Univerzitet u Novom Sadu

Predmet: Modelovanje podataka u medicini (22.EAI022)

Osnovne informacije:
 
Kategorija Teorijsko-metodološki
Uža naučna oblast Primenjene računarske nauke i informatika
ESPB 6

Upoznavanje studenata sa različitim vrstama i oblicima podataka i njihovim specifičnostima u odnosu na kreiranje i obradu pri razvoju rešenja u oblasti veštačke inteligencije (dostupnost, kvantitet, kvalitet, sigurnost). Upoznavanje sa različitim načinima: dobavljanja, reprezentacije, modelovanja i skladištenja podataka. Analiza različitih modela podataka za primenu izabranih metoda mašinskog učenja i razvoj rešenja u oblasti veštačke inteligencije. Praktično osposobljavanje za inženjering karakteristika, primenu metoda rudarenja podataka i tehnika mašinskog učenja nad medicinskim podacima.

Studenti poseduju znanja o najčešćim vrstama i oblicima medicinskih podataka u praksi, njihovom reprezentacijom u računaru i pripremom za primenu metoda mašinskog učenja i razvoju rešenja u domenu veštačke inteligencije. Samostalno implementiraju i primenjuju postupke za: kreiranje, pripremu, modelovanje, korišćenje i čuvanje podataka. Raspoznaju moguća ograničenja u korišćenju dostupnih podataka. Konstruišu odgovarajuće reprezentacija i modele podataka. Analiziraju i biraju odgovarajuće metode i tehnika rudarenja podataka i mašinskog učenja pri radu sa različitim vrstama i oblicima podataka. Poznaju savremene pravce u naučnom istraživanju u oblasti modelovanja podataka i dostupe repozitorijume podataka. Otkrivaju i razmatraju potencijalni razvoj novih rešenja u oblasti veštačke inteligencije.

Vrste, formati i oblici podataka. Načini reprezentacije, dizajna i skladištenja podataka. Specifičnosti medicinskih podataka. Deidentifikacije i anonimizacije podataka. Kvalitet, standardi i klasifikacije podataka. Primarno i sekundarno korišćenje podataka. Otvoreni podaci. Analiza dostupnih repozitorijuma podataka, njihovog dizajna i upotrebljivosti. Razmatranje postojećih i potencijalnih naučnih i praktičnih istraživanja nad dostupnim podacima. Upotreba aktuelnih programskih jezika, alata i biblioteka za modelovanje i obradu podataka. Kreiranje sintetičkih podataka za istraživanje primene modela mašinskog učenja. Identifikacija, odabir i implementacija tehnika za ekstrakciju znanja iz podataka. Praktična primena i implementacija metoda mašinskog učenja nad istraženim podacima.

Nastava se odvija kroz sledeće oblike: predavanja, vežbe, samostalan rad i konsultacije. Predavanja su auditorna i na njima se u jednom delu izlaže gradivo dok se u drugom ohrabruje diskusija koja se odnosi na nova saznanja i praktičnu primenu i realizaciju rešenja. Vežbe su pokazne i praktične. Na njima se realizuju softverska rešenja koja se odnose na gradivo izneto na predavanjima. Zadaci na vežbama se rade samostalno ili u timu. Predavanja i vežbe prati odgovarajući materijalu obliku: prezentacija, dokumenata i naučnih radova. Na kraju semestra se radi test, pismeno. U toku semestra se definiše predmetni projekat koji student izvodi samostalno uz mentorstvo nastavnika i saradnika. Predmetni projekat se brani usmeno na kraju semestra.

Autori Naziv Godina Izdavač Jezik
Hadley Wickham, Garrett Grolemund R za statističku obradu podataka – uvoženje, sređivanje, transformisanje, vizuelizacija i modelovanje podataka 2017 Mikro knjiga Srpski jezik
Paula Moraga Geospatial Health Data: Modeling and Visualization with R-INLA and Shiny 2019 Chapman and Hall/CRC Engleski
Sharona Hoffman Electronic Health Records and Medical Big Data: Law and Policy 2016 Cambridge University Press Engleski
Chandan K. Reddy, Charu C. Aggarwal (Eds.) Healthcare Data Analytics 2015 CRC Press Engleski
Goran Trajković, Zoran Bukumirić Medicinska statistika u R programskom okruženju 2019 Medicinski fakultet Univerziteta u Beogradu Srpski jezik
Predmetna aktivnost Predispitna Obavezna Broj poena
Predmetna aktivnost
Predmetni projekat
Predispitna
Da
Obavezna
Da
Broj poena
50.00
Predmetna aktivnost
Usmeni deo ispita
Predispitna
Ne
Obavezna
Da
Broj poena
30.00
Predmetna aktivnost
Test
Predispitna
Da
Obavezna
Da
Broj poena
10.00
Predmetna aktivnost
Složeni oblici vežbi
Predispitna
Da
Obavezna
Da
Broj poena
10.00
Predavanja
Predavanja
Računarske vežbe
Računarske vežbe