Faculty of Technical Sciences

Subject: Mechanics in industrial engineering (17.II1004)

Native organizations units: Chair of Technical Mechanics
General information:
 
Category Scientific-professional
Scientific or art field Mehanika
ECTS 7

The intention of this course is to provide a meaningful experience and breadth of knowledge of mechanics as a science of forces, motion and deformation of the bodies subjected to forces. This course, addresses the student to understand the basic notions, terminology and application of these notions in different problem posing and problem solving tasks, by means of recognizing, identifying and formulating appropriate models and by choosing appropriate either numerical or analytical solving procedures. In doing so an introduction to principles of engineering argumentation and decision making is also present.

At the end of the course students will be expected to have ability: to apply this new knowledge in engineering disciplines involving non-smooth mechanics; to recognize various motion of the real life systems, effect of different forces, to analyze friction and dissipation of energy, to use computer tools in prediction of various motions by means of appropriate models; to communicate with other engineers within a team work; This course prepares the student for further learning as well as for practice, hard work, creative thinking, further development of skills in design of new solutions of engineering problems.

This course covers the following topics. States, state properties, changes of states and equations relating these changes. Object under considerations and their basis movements. Force, moment of a force with respect to a point (an axis), torque. Systems of forces and torques. Description of motion for a point and rigid body. Global and local properties. Motion analysis in terms of matrices. The Euler theorem. The theorem of Rival. The theorem of Coriolis. Axioms of dynamics. Linear momentum, angular momentum for a chosen point, kinetic energy and the theorems of their changes. Work, power and energy of a mechanical system. Newton-Euler axioms. The Kenning theorem. Spatial motion of a rigid body. State of equilibrium and the Poisson theorem. Introduction to strength of materials. Stress, strain. Linear elements: extension, compression, shear, torsion, flexion and buckling. Constitutive equations: geometrical and material properties. Selected examples of how does the presented theory works in practice: crankshaft, ball bearings, universal joint, rolling disc, balancing etc. Dry friction models and impacts are also included.

Stress is laid on deduction. Careful selection of the examples which show how does the presented theory works in practice, and how things were made and how things should be used, as well as why something can be done in the proposed way and can not be done otherwise, why some procedures are superior with respect to others. After the lectures, auditory exercises, and demonstration of computer tools, homeworks, as a check of understanding and usage of the introduced notions are required. The examination ends with a final talk on the introduced notions and tools.

Authors Title Year Publisher Language
Glocker Ch. and Pfeiffer F. Dynamics of systems with unilateral constraints 1999 Springer English
Course activity Pre-examination Obligations Number of points
Homework Yes Yes 5.00
Homework Yes Yes 5.00
Lecture attendance Yes Yes 5.00
Homework Yes Yes 5.00
Oral part of the exam No Yes 40.00
Exercise attendance Yes Yes 5.00
Practical part of the exam - tasks No Yes 30.00
Homework Yes Yes 5.00

Prof. Glavardanov Valentin

Full Professor

Lectures
API Image

Asst. Prof. Mihok Sanja

Assistant Professor

Practical classes

Prof. Novaković Branislava

Full Professor

Practical classes

Assoc. Prof. Žigić Miodrag

Associate Professor

Practical classes

Assistant - Master Balać Sonja

Assistant - Master

Practical classes

Faculty of Technical Sciences

© 2024. Faculty of Technical Sciences.

Contact:

Address: Trg Dositeja Obradovića 6, 21102 Novi Sad

Phone:  (+381) 21 450 810
(+381) 21 6350 413

Fax : (+381) 21 458 133
Emejl: ftndean@uns.ac.rs

© 2024. Faculty of Technical Sciences.