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KOjuMa je ToTpolka ypehaja moaenoBana ka0 KOHCTaHTHA
TOKOM BUXOBOT pasa. MehyTum, pesynratu oBe aucepranuje
yKazyjy Aa u300p HaurHa MOJICIOBamka MOTPOIIke ypehaja
MOXKE UMaTH 3HauajaH yTHLAj Ha nepopMaHce pasMaTpaHuX
NPUCTYTIA 32 ONTUMHU3aLMjy paja Kyhuux ypehaja.
Jedunncana je BumenrubHa (GyHKIHja Harpaae Koja
objequbyje TPOIIKOBE SIEKTPUIHE SHEPTHje H KoMpop
cranapa. Kom¢op cranapa je Moziei0BaH y MOHETapHUM
jeIMHUIIAMa U TIPE/ICTaBJha MEPy HBUXOBE CIIPEMHOCTH Ja
rate Kopumheme kKyhaux ypehaja y onpel)eHuM BpeMeHCKHM
nHTepBanuma. Ha oBaj HaunH omoryheHo je 1upexTHO
o0jenumaBambe KoM(popa U TPOILIKOBA EJICKTPUYHE CHEPTHjE Y
OKBHUPY jeHHCTBEHE (QDYHKIHjE HArpaje, y3 jaCHO EKOHOMCKO
TyMademe 00a KpuTeprjyMma. 3a pa3iuky of mocrojehmx
NIPUCTYTIa, y KOjuMa ce GpyHKuHja Harpazae Hajuenthe
neduHUIIe Kao MOHIEPHCaHa CyMa TPOITKOBa U KoMdopa ca
XEYPUCTHUYKH 0Ta0paHUM TEKUHCKUM Koe(pHIIMjeHTHMa,
NPEAI0KEHH IPUCTYTI OMOryhaBa METO/IOJIOMIKH YTEMEJBEHO
OanaHCcHpame 0Ba JIBa IIMJbA.

Kao pemema 3a onTuMu3aIujy nocTaBJbeHOT IpodiieMa
pa3MarpaHH Cy MOJICJIM 3aCHOBaHU Ha YUeHYy
MIOTKPEIUbUBAbEM, YKIbYUyjyhn IBOCTpYKY yOOKy Q-Mpexy u
ONTUMU3AIH]Y IPOKCUMAIHE TIOJUTHKE, Ka0 ¥ MPHUCTYIIN
3aCHOBAHU Ha yIIOTPEON MPETPEHUPAHIX BEIUKUX JE3MIKIX
Mmozena (BJM). V tpeHyTKy nucama oBe 1ucepralmje Huje
npoHaljeHa HUjeqHA CTyaMja Koja je pa3marpaia npuMmeny BIM
Yy KOHTEKCTY ONITHMH3aLHje BpeMeHa pajga Kyhaux ypebhaja,
HHUTHU BUXOBY €(DUKACHOCT y CUMYJIALMjH MIPOLieca JOHOIICHa
0JUTyKa aHaJOTHHX OHMMa KOjH Ce KOPUCTE y YUCHY
MTOTKPETUBUBAHEM.

[IpennoxeHna pemema ymnopeheHa cy ca peepeHTHIM
MO/IEJIOM 3aCHOBAaHMM Ha 3Hamby Ae(UHUCAHOM O] CTpaHe
JBYACKOT ekcnepTa. Kao kputepujyMm ycrexa mocTaBJbEHO je /1a
pa3MarpaHa peliema 0cTBape cTe il 0oJbe iephopmance y
OJTHOCY Ha pe()epeHTHH MOJIEI, Y3 JIOHOLICHE OJUTyKa Koje Cy
OIIpaBJaHe U3 NEPCIEKTHBE JbYACKOT ekcnepTa. Pesynratu
MTOKa3yjy Z1a MOJEJ 3aCHOBAH Ha ONTUMH3AIIMjH IPOKCHUMAITHE
MOJIMTHKE UCITyHaBa [I0CTaBJbEHE KPUTEPUjyME U OCTBapyje
HajcTaOmIIHMje ¥ HajpoOycHuje nepdopmaHnce y nopehemy ca
OCTAJIUM pa3MaTpaHUM TPUCTYIHMA, JIOK JBOCTpYKa 1yOoka Q-
MperKa He HCITy’haBa IIOCTaBJbeHEe KpuTepujyme. [lpuctymm
3aCHOBAHU Ha BEJIMKHUM je3udkuM Mojenuma (BJM) Hucy y
MOTITYHOCTH 33I0BOJBIIIH [TOCTABJEEHE KPUTEPHjyME, AU CY
OCTBapwiIN rephopMaHce yropenuse ca pehepeHTHIM
MOJIEJIOM, HITO yKa3yje Ha IBHXO0B UCTPAKUBAUKHU ITOTECHIIMjaJI.
IIpennocT mpucrtyna 3acHoBaHux Ha BJM y onHocy Ha MeTone
y4ema MOTKPEIJFIBAmhEM OTIIe I Ce Y SMMIHAIN] I ToTpede
3a IyTOTpajHUM MPOIIECOM TpeHupama. Takole, Tpedba ncrahu
Jla Cy y OKBHpY OBE JHMCEepTallije pa3MaTpaHe OCHOBHE
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BapHjaHTe OBHUX MPHUCTYIIA, T Jia MOCTOjH MPOCTOP 32
yHanpeheme BuxoBux neppopMaHcy.

Pesynratu cy mokaszanu na neppopMaHce U CTpaTerHje
pa3sMarpaHMX MPUCTYTIA Y BEIMKO] MEPHU 3aBHCE OJ] FOJUIIET
no6a. 3a pa3nuKy of oBe aucepTanje, BehnHa nocrojehux
pazoBa He pa3MaTpa yTHUIIaj CE30HCKHX pa3nuka. JJoOujeHu
pe3yNITaTH NOJATHO yKa3yjy Ha MPEJHOCT MPEIUI0KEHUX
NIPUCTYTIa Y OAHOCY Ha pe)epeHTHU MOJIEN, KOja ce oriesia y
IUXOBOj CIIOCOOHOCTH ayTOMATCKE alanTalyje Ha
IPOMEHJBUBE YCIIOBE OKPYXKEHa, JOK OM CHCTEM 3aCHOBaH Ha
3HawY, Ae(PUHNCAH O] CTPaHE JbYACKOT EKCIIepTa, 3aXTEBA0
penu3ajH IpH CBaKoj 3HaYajHUjOj IIPOMEHHU OKpPYIKeHba.
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control in a smart home, with the objective of simultaneously
optimizing electricity consumption and occupant comfort.

A modular simulation environment has been developed,
enabling realistic simulation of household appliances as well as
straightforward definition of various smart home configurations
and external environmental conditions. Two approaches to
appliance consumption modeling are implemented: simulation
with constant energy consumption during appliance operation
and simulation with variable energy consumption within the
operating cycle, allowing for a more faithful representation of
real-world systems. Previous studies have predominantly relied
on simulations in which appliance energy consumption is
modeled as constant throughout operation. However, the results
of this dissertation indicate that the choice of appliance
consumption modeling approach can have a significant impact
on the performance of the considered methods for appliance
operation optimization.

A multi-objective reward function is defined that jointly
accounts for electricity costs and occupant comfort. Occupant
comfort is modeled in monetary terms and represents a measure
of residents’ willingness to pay for the operation of household
appliances during specific time intervals. This formulation
enables the direct integration of comfort and electricity costs
within a unified reward function, providing a clear economic
interpretation of both objectives. In contrast to existing
approaches, where the reward function is typically defined as a
weighted sum of cost and comfort with heuristically selected
weighting coefficients, the proposed approach enables a
methodologically grounded balancing of these two objectives.
To address the optimization problem, reinforcement learning
(RL)-based methods are considered, including the Double Deep
Q-Network (DDQN) and Proximal Policy Optimization (PPO),
as well as approaches based on the use of pretrained Large
Language Models (LLMs). At the time of writing this
dissertation, no prior study was identified that investigates the
application of LLMs in the context of household appliance
scheduling in smart homes, nor their effectiveness in simulating
decision-making processes analogous to those employed in RL.
The proposed solutions are evaluated against a baseline
knowledge-based system (KBS) defined by a human expert.
The success criterion is established such that the considered
solutions must achieve performance equal to or better than the
baseline, while producing decisions that are justifiable from the
perspective of a human expert. The results show that the PPO
model satisfies the defined criteria and achieves the most stable
and robust performance compared to the other considered
approaches, whereas the DDQN model does not meet the
established criteria. LLM-based approaches do not fully satisfy
the defined criteria; however, they achieve performance
comparable to the baseline, indicating their research potential.

viii




An important advantage of LLM-based approaches over RL
methods lies in the elimination of the need for a time-
consuming training process. It should also be noted that only
base variants of these approaches are considered in this
dissertation, leaving room for potential performance
improvements.

The results further demonstrate that the performance and
strategies of the considered approaches strongly depend on the
season of the year. In contrast to this dissertation, most existing
studies do not examine the impact of seasonal variations. The
obtained results additionally highlight an advantage of the
proposed approaches over the baseline, reflected in their ability
to automatically adapt to changing environmental conditions,
whereas a human-defined KBS would require redesign under
each significant change in the operating environment.
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Rezime

Pametne kuce postaju sve prisutnije u savremenom zivotu. Primena obnovljivih izvora
energije i moguénosti skladistenja energije pruzaju potencijal za ekonomic¢niju i odrziviju
potro$nju elektricne energije u domacinstvima. Medutim, manuelno upravljanje
uredajima u ovakvim sistemima zahteva vreme, kao i odredeni nivo tehnickog znanja,
zbog Cega bi automatizacija sistema za upravljanje uredajima mogla znacajno da rastereti
stanare. U ovoj disertaciji razmatra se problem automatskog upravljanja uredajima u
pametnoj kuci, sa ciljem istovremene optimizacije potrosnje elektriCne energije i
udobnosti stanara.

Razvijeno je modularno simulaciono okruzenje koje omogucava realistiénu simulaciju
rada kuénih uredaja i jednostavno definisanje razli¢itih konfiguracija pametnih kuca i
eksternih uslova u kojima se one nalaze. Implementirana su dva pristupa simulaciji rada
uredaja: simulacija sa konstantnom potro$njom energije tokom rada uredaja i simulacija
sa varijabilnom potroSnjom energije u okviru radnog ciklusa, ¢ime se omoguéava
verodostojnije predstavljanje realnih sistema. Prethodna istrazivanja su se pretezno
oslanjala na simulacije u kojima je potrosnja uredaja modelovana kao konstantna tokom
njihovog rada. Medutim, rezultati ove disertacije ukazuju da izbor nacina modelovanja
potro$nje uredaja moze imati znaCajan uticaj na performanse razmatranih pristupa za
optimizaciju rada ku¢nih uredaja.

Definisana je viseciljna funkcija nagrade koja objedinjuje troskove elektricne energije i
komfor stanara. Komfor stanara je modelovan u monetarnim jedinicama i predstavlja
meru njihove spremnosti da plate koris¢enje kuénih uredaja u odredenim vremenskim
intervalima. Na ovaj nac¢in omogucéeno je direktno objedinjavanje komfora i troskova
elektri¢ne energije u okviru jedinstvene funkcije nagrade, uz jasno ekonomsko tumacenje
oba kriterijuma. Za razliku od postojecih pristupa, u kojima se funkcija nagrade najcesce
definiSe kao ponderisana suma troskova i komfora sa heuristicki odabranim tezinskim
koeficijentima, predloZeni pristup omoguc¢ava metodoloski utemeljeno balansiranje ova
dva cilja.

Kao resenja za optimizaciju postavljenog problema razmatrani su modeli zasnovani na
ucenju potkrepljivanjem, ukljucujué¢i dvostruku duboku Q-mrezu i optimizaciju
proksimalne politike, kao 1 pristupi zasnovani na upotrebi pretreniranih velikih jezic¢kih
modela (VIM). U trenutku pisanja ove disertacije nije pronadena nijedna studija koja je
razmatrala primenu VIM u kontekstu optimizacije vremena rada kuénih uredaja, niti
njihovu efikasnost u simulaciji procesa donosSenja odluka analognih onima koji se koriste
u ucenju potkrepljivanjem.

Predlozena reSenja uporedena su sa referentnim modelom zasnovanim na znanju
definisanom od strane ljudskog eksperta. Kao kriterijum uspeha postavljeno je da
razmatrana reSenja ostvare iste ili bolje performanse u odnosu na referentni model, uz
donosenje odluka koje su opravdane iz perspektive ljudskog eksperta. Rezultati pokazuju
da model zasnovan na optimizaciji proksimalne politike ispunjava postavljene
kriterijume i ostvaruje najstabilnije i najrobusnije performanse u poredenju sa ostalim
razmatranim pristupima, dok dvostruka duboka Q-mreza ne ispunjava postavljene
kriterijume. Pristupi zasnovani na velikim jezickim modelima (VIM) nisu u potpunosti
zadovoljili postavljene kriterijume, ali su ostvarili performanse uporedive sa referentnim
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modelom, §to ukazuje na njihov istrazivacki potencijal. Prednost pristupa zasnovanih na
VIM u odnosu na metode ucenja potkrepljivanjem ogleda se u eliminaciji potrebe za
dugotrajnim procesom treniranja. Takode, treba ista¢i da su u okviru ove disertacije
razmatrane osnovne varijante ovih pristupa, te da postoji prostor za unapredenje njihovih
performansi.

Rezultati su pokazali da performanse i strategije razmatranih pristupa u velikoj meri
zavise od godi$njeg doba. Za razliku od ove disertacije, ve¢ina postojecih radova ne
razmatra uticaj sezonskih razlika. Dobijeni rezultati dodatno ukazuju na prednost
predlozenih pristupa u odnosu na referentni model, koja se ogleda u njihovoj sposobnosti
automatske adaptacije na promenljive uslove okruzenja, dok bi sistem zasnovan na
znanju, definisan od strane ljudskog eksperta, zahtevao redizajn pri svakoj znacajnijoj
promeni okruzenja.
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Abstract

Smart homes are becoming increasingly prevalent in everyday life. The integration of
renewable energy sources and energy storage systems provides significant potential for
more economical and sustainable electricity consumption in smart homes. However,
manual control of appliances in such systems requires time as well as a certain level of
technical expertise, which suggests that automation of appliance management systems
could substantially reduce the burden on residents. This dissertation addresses the
problem of automatic appliance control in a smart home, with the objective of
simultaneously optimizing electricity consumption and occupant comfort.

A modular simulation environment has been developed, enabling realistic simulation of
household appliances as well as straightforward definition of various smart home
configurations and external environmental conditions. Two approaches to appliance
consumption modeling are implemented: simulation with constant energy consumption
during appliance operation and simulation with variable energy consumption within the
operating cycle, allowing for a more faithful representation of real-world systems.
Previous studies have predominantly relied on simulations in which appliance energy
consumption is modeled as constant throughout operation. However, the results of this
dissertation indicate that the choice of appliance consumption modeling approach can
have a significant impact on the performance of the considered methods for appliance
operation optimization.

A multi-objective reward function is defined that jointly accounts for electricity costs and
occupant comfort. Occupant comfort is modeled in monetary terms and represents a
measure of residents’ willingness to pay for the operation of household appliances during
specific time intervals. This formulation enables the direct integration of comfort and
electricity costs within a unified reward function, providing a clear economic
interpretation of both objectives. In contrast to existing approaches, where the reward
function is typically defined as a weighted sum of cost and comfort with heuristically
selected weighting coefficients, the proposed approach enables a methodologically
grounded balancing of these two objectives.

To address the optimization problem, reinforcement learning (RL)-based methods are
considered, including the Double Deep Q-Network (DDQN) and Proximal Policy
Optimization (PPO), as well as approaches based on the use of pretrained Large
Language Models (LLMs). At the time of writing this dissertation, no prior study was
identified that investigates the application of LLMs in the context of household appliance
scheduling in smart homes, nor their effectiveness in simulating decision-making
processes analogous to those employed in RL.

The proposed solutions are evaluated against a baseline knowledge-based system (KBS)
defined by a human expert. The success criterion is established such that the considered
solutions must achieve performance equal to or better than the baseline, while producing
decisions that are justifiable from the perspective of a human expert. The results show
that the PPO model satisfies the defined criteria and achieves the most stable and robust
performance compared to the other considered approaches, whereas the DDQN model
does not meet the established criteria. LLM-based approaches do not fully satisfy the
defined criteria; however, they achieve performance comparable to the baseline,
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indicating their research potential. An important advantage of LLM-based approaches
over RL methods lies in the elimination of the need for a time-consuming training
process. It should also be noted that only base variants of these approaches are considered
in this dissertation, leaving room for potential performance improvements.

The results further demonstrate that the performance and strategies of the considered
approaches strongly depend on the season of the year. In contrast to this dissertation,
most existing studies do not examine the impact of seasonal variations. The obtained
results additionally highlight an advantage of the proposed approaches over the baseline,
reflected in their ability to automatically adapt to changing environmental conditions,
whereas a human-defined KBS would require redesign under each significant change in
the operating environment.
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1 Uvod

Uvodno poglavlje podeljeno je na pet celina. Potpoglavlje 1.1 definiSe problem
optimizacije potro$nje elektriCne energije uz ocuvanje komfora stanara u pametnim
kucama i prikazuje motive za njegovo reSavanje. Potpoglavlje 1.2 istiCe otvorena
istrazivacka pitanja i razmatra razli¢ite pristupe resavanju ovog problema. Potpoglavlje
1.3 precizira predmet istrazivanja, njegove ciljeve i naglaSava doprinos ove disertacije.
Konacno, potpoglavlje 1.4 pruza sazet pregled strukture disertacije.

1.1 Znacaj optimizacije potroSnje elektricne energije u
pametnim kué¢ama

Razvoj obnovljivih i odrzivih izvora energije postao je globalni prioritet. Solarna
energija, kao najbrze rastué¢i obnovljivi izvor, §iroko se primenjuje u pametnim kuc¢ama
za smanjenje zavisnosti od tradicionalne elektricne mreze (Chehri and Mouftah 2013).
Medutim, kapacitet ovog izvora energije je promenljiv zbog njegove velike zavisnosti od
meteoroloskih uslova (Maimo-Far et al. 2020). Usled toga su domacinstva ipak ovisna o
elektri¢noj mrezi, $to je pogotovo izrazeno u momentu vrhunca potros$nje, kada stanari
dolaze kuéi sa posla, a solarna energija je u padu (Kostkova et al. 2013) (Zhang et al.
2013). Elektricne mreze pokuSavaju da balansiraju fluktuacije potrosnje elektricne
energije primenom tarifnih inicijativa koje podsti¢u domacinstva da optimizuju svoju
potros$nju (Kirschen et al. 2000). Osim toga, domacinstva znacajno doprinose godisnjim
emisijama ugljen-dioksida (Fenner et al. 2018), te bi optimizacija njihove potrosnje kroz
optimalno iskoris¢enje obnovljivih izvora energije imala znacajan pozitivan efekat na
zivotnu sredinu (Ahmad et al. 2017).

Optimizacija potroSnje elektricne energije u pametnim kucama moZe se postici
strateSkim planiranjem vremena rada uredaja ¢iji rad moze biti odlozen bez znacajnog
uticaja na komfor stanara (Agnetis et al. 2013). Na primer, stanari mogu ukljuciti takve
uredaje tokom perioda nize tarife elektri¢ne energije ili kada je proizvodnja energije iz
solarnog panela visoka. Medutim, manuelno kreiranje rasporeda rada uredaja predstavlja
vremenski zahtevan i slozen zadatak koji nije intuitivan (Barbato et al. 2009). Zbog
slozenosti i varijabilnosti u obrascima potrosnje i proizvodnje energije, automatizacija
planiranja vremena rada uredaja postaje neophodna (Raza et al. 2024). Sistemi za
upravljanje energijom u domacinstvu (eng. House Energy Management Systems, HEMS)
dizajnirani su da resavaju brojne izazove, ukljucujuéi automatizaciju planiranja vremena
rada uredaja, kako bi uskladili suprotstavljene ciljeve: minimizaciju troskova elektricne
energije i oCuvanje komfora stanara (Han et al. 2023).

Uzimajuéi u obzir znacaj automatizacije rada kuénih aparata za optimizaciju potroSnje
energije uz ocuvanje komfora stanara, u ovoj disertaciji predlozena je primena tehnika
dubokog ucenja za reSavanje ovog problema. Razlozi za odabir ovog predmeta
istrazivanja su visestruki.

Motiv za reSavanje navedenog problema proizlazi iz kontinuiranog rasta potraznje za
energijom kao klju¢nog faktora ekonomskog razvoja drzava, pri ¢emu sektor energetike
ostaje dominantan izvor emisije gasova sa efektom staklene baste (eng. greenhouse
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gases). Najveci doprinos emisijama dolazi iz sektora proizvodnje elektricne energije i
grejanja, koji su 2021. godine generisali 16 milijardi tona ekvivalenta ugljen-dioksida
(Ritchie et al. 2020). U okviru ciljeva odrzivog razvoja (eng. Sustainable Development
Goals, SDG), SDG 7 naglaSava potrebu za obezbedivanjem pristupacne, pouzdane,
odrzive i moderne energije za sve, dok SDG 13 isti¢e hitnost preduzimanja mera za
suzbijanje klimatskih promena i njihovih posledica (Barbier and Burgess 2017). Stoga je
neophodno intenzivno promovisati obnovljive izvore energije, poput solarne energije,
kako bi se smanjile emisije ugljen-dioksida i ublazile posledice globalnog zagrevanja
(Allegretti et al. 2022). Integracija obnovljivih izvora energije u pametne kuée moze
znacajno doprineti smanjenju emisija ugljen-dioksida na globalnom nivou. Na primer,
energetski efikasna porodi¢na kuca u Poljskoj, opremljena solarnim panelima, generisala
je 87,5% manje emisija ugljen-dioksida u poredenju sa tradicionalnom kucom
zagrevanom ugljem (Siudek et al. 2020).

Motiv za primenu tehnika dubokog ucenja u reSavanju ovog problema proizilazi iz
ucestale upotrebe arhitekture neuronskih mreza sa propagacijom unapred (eng.
Sfeedfoward neural network) u optimizaciji potroSnje elektricne energije u pametnim
kuéama (Leitao et al. 2020). Dalji tehnoloski napredak, ukljucujuéi razvoj metoda
dubokog ucenja potrepljivanjem (eng. Deep Reinforcement Learning, DRL) omogucio
je efikasnije resavanje slozenih problema u ovoj oblasti. Pregled literature ukazuje da je
duboko ucenje potkrepljivanjem trenutno najsavremeniji (eng. state-of-the-art) pristup
za automatizaciju rada kuénih uredaja, s ciljem optimizacije potrosnje elektri¢ne energije
uz ocuvanje komfora stanovnika. Otvorena istrazivacka pitanja u ovoj oblasti detaljnije
su analizirana u potpoglavlju 1.2.

S obzirom na slozenost problema optimizacije potrosnje elektricne energije, ovo
istrazivanje fokusira se na orkestraciju rada kuénih uredaja na nivou pojedina¢nog
domacdinstva. Medutim, predlozeni pristup moze se prilagoditi i za Sire energetske
sisteme, ukljucujuci stambene zgrade i celokupne urbane Cetvrti.

1.2 Otvorena istrazivaCka pitanja u automatizaciji
planiranja rada uredaja pametne kuce

Jedan od kljuénih izazova u implementaciji HEMS za automatizaciju planiranja rada
uredaja jeste razvoj ciljne funkcije koja balansira dva suprotstavljena cilja: smanjenje
troskova elektricne energije i povecanje komfora stanara. Za ovakve viSe-ciljne
optimizacione probleme, posebno su se pokazale efikasnim tehnike ponderisanog zbira i
Pareto Front (Gomes et al. 2022). Kombinovanje ucenja potkrepljivanjem sa tehnikom
ponderisanog zbira predstavlja najsavremeniji pristup u implementaciji HEMS sistema
(Aldahmashi and Ma 2024) (Pan et al. 2024), zbog Cega je tehnika ponderisanog zbira
usvojena pri definisanju ciljne funkcije u ovom istrazivanju. Ipak, kao §to je prikazano u
potpoglavlju 3.2 formulacija ciljne funkcije nije jednozna¢no odredena ni u okviru ovog
pristupa, te i dalje ostaje otvoreno istrazivacko pitanje.

Jos jedan znacajan izazov u razvoju HEMS-a jeste kreiranje okruzenja za simulaciju
pametne kuce. Simulacije su kljuéne, bududi da dizajniranje i evaluacija planova rada
uredaja u stvarnim domovima nisu prakti¢ni. Razvoj reSenja zahteva testiranje razlicitih
planova rada uredaja, pri ¢emu neki mogu biti neefikasni, dovesti do povecanih troskova
elektricne energije i narusiti navike i komfor stanara. Pregled literature koji su sproveli
Gomes 1 saradnici (Gomes et al. 2022) pokazao je da istrazivaci koriste razliCite
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simulacione postavke za pametne kuce, pri ¢emu je Matlab najcesce koris¢en kao
simulaciono okruzenje. Medutim, nedostatak standardizovanog simulacionog okruzenja
otezava pouzdano poredenje razvijenih reSenja. Jedna od klju¢nih razlika medu
postojecim simulacijama odnosi se na pristup modelovanju potrosnje uredaja u razli¢itim
vremenskim koracima tokom njihovog rada — bilo kao konstantnu ili promenljivu
vrednost. Autori radova (Gholami and Sanjari 2021), kao i (Esmaeel Nezhad et al. 2021),
definiSu potrosnju uredaja u svakom vremenskom koraku kao konstantu vrednost
odredenu na osnovu srednje ili maksimalne potrosnje uredaja tokom celokupnog radnog
ciklusa. Ovaj pristup pojednostavljuje realnu situaciju, buduéi da odredeni uredaji, poput
ve§ masSine, imaju znacajne varijacije u potroSnji energije tokom razlicitih radnih faza.
Kako bi povecali realisticnost simulacije, autori rada (Lee and Choi 2019) uvode model
sa razli¢itim nivoima potro$nje za klima uredaj, pored standardnog pristupa modelovanja
sa konstantnom maksimalnom potro$njom.

Kada su ciljna funkcija i okruzenje za simulaciju pametne kuée dizajnirani,
implementacija HEMS moze se ostvariti primenom razli¢itih tehnika. Tradicionalni
pristupi ukljucuju dinamic¢ko programiranje (Zhao and Keerthisinghe 2020) i stohasticko
programiranje (Zheng et al. 2021), kao i heuristicke i meta-heuristicke tehnike poput
genetskih algoritma (Gutierrez-Martinez et al. 2019) i optimizacije rojem Cestica (Rezaee
Jordehi 2020). Takode se koriste pristupi kao Sto su fazi logika (Kontogiannis et al. 2021),
konvolucione neuronske mreze (Chellaswamy et al. 2021) i sistemi zasnovani na znanju
(eng. Knowlegde-Based Systems, KBS) (X. Zhou et al. 2023). U kontekstu HEMS,
primena ucenja potkrepljivanjem predstavlja najmoderniju tehniku (Gomes et al. 2022).
Ova tehnika je posebno pogodna za HEMS zbog svoje sposobnosti da se prilagodava
dinami¢kim okruzenjima kroz kontinuirane interakcije, $to eliminiSe potrebu za
eksplicitnim programiranjem svakog moguceg scenarija (Shakya et al. 2023).

Ucenje potkrepljivanjem i sistemi zasnovani na znanju su trenutno najpopularniji pristupi
za automatizaciju planiranja vremena rada uredaja u pametnim kucama (Al-Ani and Das
2022). Ipak, u okviru HEMS-a, oba pristupa imaju odredena ograni¢enja. OkruzZenje
pametne kuce se ¢esto menja usled sezonskih temperaturnih varijacija, promena u skupu
i karakteristikama uredaja pametne kuce ili izmena u tarifnoj politici elektriéne mreze.

Trenutno najuspesnija tehnika iz oblasti ucenja potkrepljivanjem za implementaciju
HEMS-a je proksimalna optimizacija politike (eng. Proximal Policy Optimization, PPO).
PPO algoritam je dizajniran za okruZenja sa nepoznatom dinamikom, §to ga ¢ini posebno
pogodnim za reSavanje HEMS problema. Medutim, PPO tipi¢no zahteva veliki broj
uzoraka za efikasno obucavanje (Arulkumaran et al. 2017) i postaje suboptimalan kada
dode do promene u okruzenju, §to zahteva ponovno obucavanje (Zhou et al. 2016).

Sli¢no tome, implementacija sistema zasnovanih na znanju zahteva angazovanje ljudskih
stru¢njaka koji bi morali redizajnirati ponaSanje sistema za svaki moguci scenario (Raza
et al. 2024). Ovaj pristup nije skalabilan jer bi svaka izmena u okruZenju zahtevala
ponovno prilagodavanje sistema zasnovanog na znanju.

Po znanju autora, mali broj studija koja predlaze HEMS reSenje zasnovano na ucenju
potkrepljivanjem razmatrao je interpretabilnost rezultuju¢ih modela. Ovakva analiza
mogla bi doprineti boljem razumevanju odluka modela, povecati poverenje korisnika u
sistem 1 olakS$ati njegovo dalje usavrsavanje (Beechey et al. 2023). Stoga se u ovom
istrazivanju predlaze analiza uticaja karakteristika stanja na odluke modela ucenja
potkrepljivanjem koris¢enjem SHAP (eng. Shapley Additive Explanations) biblioteke
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(Lundberg and Lee 2017), koja pruza matematic¢ke metode za kvantifikaciju doprinosa
pojedinacnih karakteristika stanja u kona¢nim predikcijama obucenih modela (Merrick
and Taly 2020).

Primena unapred obucenih velikih jezickih modela (eng. Large Language Models, LLM)
mogla bi doprineti ublazavanju ograni¢enja reSenja zasnovanih na ucenju
potkrepljivanjem i sistemima zasnovanih na znanju. Za razliku od ovih pristupa, LLM-
ovi imaju potencijal da se prilagode promenama u podacima bez potrebe za opseznim
ponovnim treniranjem ili finim podeSavanjem specifi¢nim za domen (Cao et al. 2024).
Oslanjajuci se na velike koli¢ine postoje¢eg znanja, LLM-ovi mogu smanjiti zavisnost
od stru¢njaka iz odredenog domena i ubrzati proces razvoja (Kaplan et al. 2020). Njihova
sposobnost da se nose sa raznovrsnim i sloZenim scenarijima ¢ini ih potencijalno
pogodnim za primenu u dinami¢nim i nepredvidivim okruZzenjima (Gao et al. 2023).

Postojeca istrazivanja o upotrebi LLM-ova u kontekstu HEMS-a su pretezno usmerena
na interaktivno savetovanje stanovnika o metodama za poboljsanje komfora i smanjenje
potrosnje elektricne energije (potpoglavlje 3.3). U ovim pristupima, kontrola uredaja
ostaje manuelna, pri ¢emu korisnici donose kona¢ne odluke. Po znanju autora, ne postoji
istrazivanje koje se bavi koris¢enjem LLM-ova za automatizaciju upravljanja uredajima
u cilju resavanja definisanog vise-ciljnog problema.

U ovom istrazivanju uvodi se i evaluira hipoteza da se LLM-ovi mogu efikasno primeniti
u implementaciji HEMS-a koji balansira minimizaciju troSkova elektrine energije i
odrzavanje komfora stanara pametne kuce kroz automatizaciju planiranja vremena rada
uredaja. Ova hipoteza zasniva se na sposobnost LLM-ova da prepoznaju obrasce i logicki
rezonuju u slozenim sekvencama podataka (Brown et al. 2020). Takve karakteristike
doprinele su ohrabruju¢im rezultatima koje su LLM-ovi ostvarili u predvidanju
vremenskih serija (eng. time series) (Gruver et al. 2023) (Jin et al. 2024.).

1.3 Cilj, metodoloski okvir i doprinosi istrazivanja

Cilj istraZivanja je razvoj metodologije za automatizaciju planiranja vremena rada
uredaja u pametnoj ku¢i radi smanjenja troskova elektricne energije uz odrzanje komfora
stanara. Ovaj cilj se razlaze na sledece podciljeve istrazivanja:

Ci Dizajn simulacionog okruzenja koje verno oponasa potro$nju elektri¢ne energije
u pametnoj kuéi. Simulaciono okruzenje treba da bude adaptivno, Sto
podrazumeva mogucénost definisanja raznolikih realisticnih scenarija po pitanju
pametnih kuéa sa razli¢itim tipovima uredaja’ i uslovima u kojima se one nalaze
— vremenskim uslovima i tarifnim rezimima, koji zavise od geografske lokacije.

C,  Definisanje metrike za evaluaciju komfora stanara pametne kuce i nacina na koji
se ta metrika kombinuje sa cenom elektri¢ne energije. Metrika komfora bi trebala
da omoguc¢i stanovnicima da na intuitivan nacin izraze svoje zelje vezane za rad
uredaja i kompromis tih Zelja sa uStedom elektri¢ne energije. Definisana metrika
bi imala ulogu funkcije nagrade koja bi se koristila za evaluaciju reSenja.

3 Primeri tipova uredaja su proizvodaci energije, skladista energije i standardni potrosadi.
U slucaju standardnih potro$aca, bi¢e razmotrena moguénost simulacije uredaja sa
varijabilnom potro$njom energije.



Cs;  Dizajn reSenja za automatizaciju planiranja vremena rada uredaja u pametnoj kuci
s ciljem postizanja maksimalne definisane nagrade. Analiza literature (poglavlje
3) ukazuje na potrebu razmatranja primene metoda ucenja potkrepljivanjem i
velikih jezickih modela pri razvoju reSenja. Kao osnovni referentni pristup (eng.
baseline) neophodno je usvojiti manuelno definisan sistem zasnovan na znanju.

Cs;  Evaluacija razvijenog reSenja za automatizaciju planiranja vremena rada uredaja
koris¢enjem definisane funkcije nagrade i dizajniranog simulacionog okruzenja.
Klju¢no je da evaluacija obuhvati razlicita godiSnja doba, s obzirom na njihov
uticaj na dinamiku potrosnje elektricne energije u pametnoj kuéi (potpoglavlje
3.2).

Cs Analiza prednosti i nedostataka razvijenog reSenja sprovodenjem analize
objasnjivosti razvijenog resenja.

Pretpostavke na kojima se zasniva predloZeno istrazivanje su sledece:

Py Adaptivno okruZenje za simulaciju pametne kuce dovoljno verno simulira
realisticnu pametnu kuéu da moze biti iskoris¢eno za pouzdanu evaluaciju resenja.

P, Moguce je definisati metriku komfora stanara i njen kompromis sa potros$njom
elektri¢ne energije tako da ona bude intuitivna stanovnicima.

P}  Definisana metrika za evaluaciju reSenja zaista meri zadovoljstvo stanovnika
razvijenim resenjem.

P?  Definisana metrika za evaluaciju omoguéava rangiranje reSenja po njihovom
kvalitetu.

Ps Moguce je izvrsiti analizu objasnjivosti modela koja bi omogucila analizu
njegovih prednosti i nedostataka.

Hipoteza koja ¢e biti evaluirana u istrazivanju je da su metode ucenja potkrepljivanjem
i veliki jezicki modeli efikasni pristupi za reSavanje postavljenog optimizacionog
problema. Efikasnost se definiSe kao postizanje iste ili bolje nagrade u odnosu na
manuelno definisan sistem zasnovan na znanju, uz to da su odluke resenja adekvatne iz
perspektive ljudskih eksperata. Adekvatnost podrazumeva da ljudski ekspert, kroz
analizu objasnjivosti modela, moze da potvrdi da se odluke koje donosi model u datoj
situaciji razumne.

U nastavku je dat sazetak metodologije koja je sprovedena, dodatno opisana i u (Kaplar
et al. 2024), radi postizanja prethodno definisanih ciljeva.

Prvi korak istrazivanja obuhvatao je implementaciju simulacionog okruZenja. U tu
svrhu razvijen je sistem koji se sastoji iz Cetiri sloja:

1. Fizicki sloj — Simulira potro$nju energije uredaja u pametnoj kuc¢i. U
istrazivanju razmatrana su dva pristupa modelovanju potrosnje energije:
e Potrosnja uredaja modelovana je kao konstantna vrednost tokom
celokupnog trajanja rada uredaja (Typhoon HIL 2008).
e Potrosnja uredaja modelovana je kao varijabilna vrednost, zavisna od
faze rada uredaja (Vojnovi¢ et al. 2022) (Vojnovi¢ et al. 2023b)
(Vojnovic¢ et al. 2023a).



2. Sloj za donosenje odluka (HEMS) — Orkestrira rad uredaja sa ciljem
optimizacije potroSnje elektricne energije uz ocuvanje komfora stanara.

3. Informacioni sloj — Obuhvata istorijske podatke o vremenskim uslovima i
tarifnim rezimima dostupnim na odredenoj geografskoj lokaciji, koji se koriste
za simulaciju.

4. Komunikacioni sloj — Omoguéava razmenu informacija izmedu fizickog sloja i
sloja za donoSenje odluka.

Slede¢i korak istrazivanja obuhvatao je definisanje funkcije nagrade. U tu svrhu
analizirana je relevantna literatura koja predlaze matematicke modele za optimizaciju
energetske efikasnosti i korisnickog komfora u HEMS sistemima zasnovanim na ucenju
potkrepljivanjem i velikim jezickim modelima. Na osnovu ove analize, funkcija nagrade
definisana je kao ponderisana suma troskova elektri¢ne energije i kvantifikacije komfora
stanovnika. TroSkovi elektricne energije odredeni su u zavisnosti od tarifnih rezima u
razli¢itim vremenskim intervalima, kako je prikazano u potpoglavlju 5.1.2. Stanari
izrazavaju svoje zahteve u vezi sa komforom kroz odabir jednog od tri nivoa znacaja rada
uredaja u odredenom vremenskim intervalima. Kako bi se kvantifikacija komfora mogla
sabrati sa troSkovima elektrine energije, nivoi znacaja izraZeni su u monetarnim
jedinicama, pri ¢emu je znacaj rada uredaja povezan sa tarifnim rezimima, kako je
opisano u potpoglavlju 5.1.3.

Treéi korak istrazivanja bio je razvoj HEMS pristupa koji ¢e biti koris¢eni u sloju za
donosenje odluka. Analizom literature, utvrdeno je da treba razmotriti tri pristupa razvoju
HEMS-a:

1. Ucenje potkrepljivanjem. Razmatrana su dva algoritma: dvostruka duboka Q-
mreza (eng. Double Deep Q-Network, DDQN) i proksimalna optimizacija
politike (eng. Proximal Policy Optimization, PPO).

2. Primena pretreniranih velikih jezi€¢kih modela. U okviru ovog pristupa,
evaluirane su dve strategije:

e Zero-shot strategija — LLM-u je prosledena instrukcija da generise
HEMS sistem zasnovan na pravilima. Rezultuju¢i HEMS je slican
sistemu zasnovanom na rucno definisanim pravilima, s tom razlikom
Sto pravila ne formuliSe ¢ovek, ve¢ ih LLM generiSe na osnovu znanja
steenog tokom obuke modela.

o Few-shot strategija — LLM je tretiran kao model ucenja
potkrepljivanjem. U svakom promptu, model je primao opis trenutnog
stanja i birao optimalnu akciju. Pri tome, na raspolaganju su mu bili
primeri prethodnih interakcija, gde su za prethodna stanja i sprovedene
akcije bile dostupne vrednosti neposredne nagrade.

3. Sistem zasnovan na ruc¢no definisanim pravilima, definisan od strane autora
rada.

Cetvrti korak, evaluacija metodologije, sprovedena je u dve faze — zimskoj i letnjoj
sezoni, uzimaju¢i u obzir njihov uticaj na dinamiku potrosnje elektricne energije u
pametnoj kuc¢i. Ovaj pristup omogucio je realistiCniju procenu performansi razvijenih
modela u razli¢itim uslovima rada. Detalji eksperimentalne postavke su pojasnjeni u
potpoglavlju 5.1.5.

Konac¢no, sprovedena je analiza rezultata, koja je obuhvatila:



Evaluaciju performansi modela na osnovu definisane funkcije nagrade, pri ¢emu
su analizirane pojedina¢ne metrike komfora, potrosnje energije, kao i njihova
kombinacija.

Ru¢nu analizu odluka modela putem vizuelizacije njegovih odluka tokom
jednog nasumi¢no odabranog dana iz letnje i jednog iz zimske sezone. Ova
analiza omogucila je uvid u ponasanje modela u specifi¢nim situacijama.
Analizu modela ucenja potkrepljivanjem, gde su vizualizovane dnevne prosecne
nagrade postignute tokom treniranja, radi procene konvergencije modela.
Dodatno, za ove modele sprovedena je SHAP analiza, kojom je procenjen
doprinos pojedinacnih karakteristika stanja u kona¢nim predikcijama obucenih
modela.

U ovoj disertaciji predstavljeni su novi pristupi i alati za optimizaciju potrosnje elektricne
energije uz ocuvanje komfora stanara. Doprinosi teze su sledeéi:

Adaptivno okruZenje za simulaciju pametne kuce: Razvijeno je adaptivno
okruzenje koje omogucava simulaciju raznolikih realisti¢nih scenarija potro$nje
energije u pametnim ku¢ama. Simulaciono okruZenje omoguéava stanaru da
kreira virtuelni model svog doma, uskladen sa stvarnim uslovima. Na osnovu
tako konfigurisane simulacije, modeli se mogu obucavati u bezbednom i
kontrolisanom okruzenju, §to omogucéava procenu njihovih performansi pre
primene u praksi. Nakon procesa obuéavanja, modeli, koji poseduju visok
stepen prilagodenosti specifi¢nim uslovima stanara, mogu biti implementirani u
realnom okruzenju uz manju adaptaciju na razlike izmedu simulacije i realnog
okruzenja. Time se umanjuju gubici koji bi nastali u pocetnim fazama treniranja
modela i skracuje ukupno vreme neophodno za treniranje modela, zahvaljujuci
brzem izvodenju simulacija u odnosu na realno vreme.

Predlog funkcije nagrade za minimizaciju troSkova elektri¢ne energije uz
ocuvanje komfora stanara: Metrika komfora stanara izraZena je u monetarnim
jedinicama, ¢ime je omogucéeno njeno direktno sabiranje sa troskovima
elektricne energije. Na ovaj nacin kvantifikuje se spremnost stanara da plate
koris¢enje odredenih uredaja u definisanom vremenskom periodu. Stanari
definiSu nivo prioriteta rada uredaja (visok, srednji i nizak), pri ¢emu se svakom
nivou dodeljuje odredena monetarna vrednost, uskladena sa tarifnim rezimima
(visoka, srednja i niska tarifa). Za razliku od predloZenog pristupa, u postojecoj
literaturi funkcija nagrade se najce$¢e formulisala kao ponderisana suma
troskova elektri¢ne energije i komfora, pri ¢emu su tezinski koeficijenti Cesto
bili birani heuristicki, bez jasnog metodoloskog objasnjenja.

Nacdin modelovanja potro$nje uredaja: U disertaciji su razmatrana dva
pristupa modelovanju potrosnje elektricnih uredaja: model sa konstantnom
potro$njom energije tokom rada i model sa varijabilnom potro$njom energije.
Varijabilni rezim potro$nje verodostojnije oslikava ponasanje uredaja u realnim
sistemima, ¢ime se trenirani model ¢ini pogodnijim za primenu u stvarnim
uslovima eksploatacije. Nasuprot tome, u znacajnom delu postojece literature
uredaji se modeluju pod pretpostavkom konstantne potroSnje tokom celokupnog
radnog ciklusa, $to predstavlja pojednostavljenje realnog procesa. U praksi,
obrasci potrosnje elektri¢nih uredaja su slozeni i obuhvataju vise faza rada sa
razli¢itim nivoima potrosnje energije. Rezultati ove disertacije ukazuju da izbor
nacina modelovanja potrosnje uredaja ima znacajan uticaj na performanse
predloZenih reSenja za upravljanje radom elektri¢nih uredaja.
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e Utvrdena je potreba za periodi¢nim aZuriranjem modela u skladu sa
sezonskim promenama spoljnih uslova: Analiza je pokazala da modeli donose
znacajno razli¢ite odluke u zavisnosti od sezone, $to ukazuje na ogranicenja
modela treniranih i evaluiranih na vremenski usko ograni¢enim podacima.
Vecina postojecih radova ne razmatra sezonske razlike tokom procesa treniranja
i evaluacije. U prakti¢noj primeni spoljasnji faktori se menjaju tokom vremena,
zbog ¢ega je neophodno da se modeli periodi¢no ponovo obucavaju koris§éenjem
prosirenog skupa podataka koji ukljucuje najnovije dostupne informacije. Na
ovaj nacin omogucava se kontinuirana adaptacija modela na sezonske promene
i dugorone obrasce u potroS$nji i proizvodnji elektricne energije. U
produkcionim sistemima, pad vrednosti funkcije nagrade moze se koristiti kao
indikator potrebe za azuriranjem modela novom, adaptiranom verzijom.

e Procena moguénosti primene LLM na zadati problem: Sve ve¢i broj
istrazivanja razmatra potencijal primene LLM-ova kao sistema za
nejezickih obrazaca (Mirchandani et al. 2023). Medutim, u trenutku pisanja
disertacije, nije postojala nijedna studija koja je istrazila kapacitet LLM-ova da
modeluju Sablone i donose odluke u kontekstu rada uredaja u pametnim ku¢ama.
Takode, nisu pronadene studije koje su istrazivale efikasnost pretreniranih
LLM-ova u simulaciji procesa donoSenja odluka sli¢nog onom koji se koristi u
ucenju potkrepljivanjem. Zahvaljujéi ogromnom ugradenom znanju, LLM-ovi
se mogu brzo prilagoditi promenama u podacima bez skupog ponovnog
treniranja, ¢ime uklanja potrebu RL-a za ¢estim ponovnim obucavanjem.

1.4 Struktura disertacije

Disertacija je struktuirana u sedam poglavlja, koja detaljno pokrivaju sve aspekte
predloZenog istrazivanja.

U drugom poglavlju predstavljena je teorijska osnova neophodna za razumevanje
sprovedenog istrazivanja. Opisani su simulacioni sistemi pametnih kuéa koji su
koriS¢eni, pri ¢emu je poseban naglasak stavljen na razliku izmedu Typhoon HIL i Load
Flow simulacionih okruzenja. Takode, istaknuta je prednost Load Flow okruzenja u
kontekstu optimizacije i simulacije energetske efikasnosti. Nakon toga, definisani su
osnovni koncepti modela ucenja potkrepljivanjem i velikih jezickih modela, ¢ime se
postavlja teorijski okvir za njihovu primenu u upravljanju energijom u pametnim
kuc¢ama.

Treée poglavlje pruza pregled aktuelnog stanja u oblasti upravljanja energijom u
pametnim kuéama. U njemu je dat istorijski pregled razvoja ove oblasti, opisane su
savremene strategije zasnovane na ucenju potkrepljivanjem, kao i strategije primene
velikih jezickih modela u optimizaciji potrosnje energije. Na kraju poglavlja opisani su
ogranicenja i nedostaci postojec¢ih reSenja kao i potreba za detaljnijom analizom.

Cetvrto poglavlje detaljno opisuje metodologiju razvoja predlozenog sistema. Prikazana
je arhitektura HEMS-a, koja obuhvata simulaciono okruZenje, modele za donoSenje
odluka i bazu eksternih podataka. Posebna paznja posvecena je definisanju funkcije
nagrade koriS¢ene tokom obuke i evaluacije modela. Konac¢no, predstavljen je dizajn
modela zasnovanih na ucenju potkrepljivanjem i promptova za velike jezicke modele
kori$¢enih u reSavanju problema automatskog odredivanja vremena rada uredaja u
pametnoj kucéi.



Peto poglavlje bavi se eksperimentalnim postupkom sprovedenim radi evaluacije
razvijenog reSenja. Definisana je eksperimentalna postavka za simulaciju pametne kuce,
koja ukljuuje modelovanje uredaja, vremenskih uslova i tarifa, definisanje zahteva
stanara, reprezentaciju stanja i definisanje skupa mogucih akcija. Detaljno su prikazani
rezultati rada uredaja ¢iji je rad automatizovan od strane modela dubokog u¢enja i velikog
jezickog modela. Rezultati su grupisani na osnovu godi$njeg doba i tipa simulacionog
okruzenja (Typhoon HIL i Load Flow). Takode je sprovedeno ispitivanje robusnosti
modela kroz procenu njihove sposobnosti da odrze stabilne performanse u danima nakon

treniranja, uprkos promenljivim spoljasnjim faktorima.

Sesto poglavlje prikazuje rezultate i diskusiju modela u€enja potkrepljivanjem i velikih
jezickih modela primenjenih u upravljanju pametnom ku¢om. Analizirani su proces
konvergencije, vrednosti funkcije nagrade i odluke modela na nivou dana, uz
interpretaciju doprinosa pojedina¢nih karakteristika pomocu SHAP metoda. Rezultati
LLM pristupa uporedeni su sa sistemom zasnovanim na pravilima definisanim od strane
eksperta. Na kraju je ispitana robusnost modela u razli¢itim simulacionim okruZenjima i
predloZena potencijalna poboljsanja razvijenih resenja.

Sedmo poglavlje sadrzi zakljucak i sazetak najvaznijih rezultata, isticu¢i ogranicenja
istrazivanja i mogucu primenu realizovanog sistema i modela u praksi. Takode su dati
moguci pravci buducih istrazivanja.
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2 Teorijske osnove

Ovo poglavlje izlaze teorijske osnove istrazivanja, neophodne za razumevanje
metodologije koriS¢ene u ovoj disertaciji. U potpoglavlju 2.1 predstavljeni su osnovni
principi rada okruzenja za simulaciju potrosnje elektri¢ne energije u pametnim kuéama.
Potpoglavlje 2.2 predstavlja klju¢ne koncepte modela dubokog ucenja primenjenih u
automatizaciji planiranja vremena rada uredaja u pametnim kucama. Konkretno,
potpoglavlje 2.2.1 prezentuje osnovne pojmove ucenja potkrepljivanjem, dok
potpoglavlje 2.2.2 sazima klju¢ne koncepte velikih jezickih modela.

2.1 Okruzenja za simulaciju potrosSnje elektricne
energije u pametnim ku¢ama

Dizajn sistema za automatizaciju plana rada uredaja u pametnoj ku¢i zahteva poredenje
viSe alternativnih reSenja. Evaluacija u stvarnim domovima nije prakticna, jer
neoptimalna reSenja mogu povecati troSkove elektri¢ne energije i narusiti komfor stanara.
Pored toga, testiranje u realnim uslovima trajalo bi viSe meseci, §to bi onemogucilo brzu
iteraciju 1 unapredenje reSenja. Stoga je klju¢no razviti simulaciono okruZenje koje
omogucava brzu i preciznu evaluaciju razli¢itih pristupa. U ovom istrazivanju analizirana
je primena dva simulaciona okruZenja potrosnje elektricne energije u pametnim kuc¢ama:
Typhoon HIL (Typhoon HIL 2008) i Load Flow (Vojnovi¢ et al. 2022) (Vojnovic et al.
2023b) (Vojnovic et al. 2023a).

Radi pojednostavljenja simulacije, mnoga istrazivanja (Forootani et al. 2022), (Huang et
al. 2022), (Li et al. 2020), (Aldahmashi and Ma 2024) i (Pan et al. 2024) modeluju
potro$nju uredaja kao konstantnu tokom celog perioda njihovog rada. Medutim, u
realnim uslovima, potro$nja elektricne energije uredaja poput masine za pranje vesa,
masine za pranje sudova i Sporeta varira u zavisnosti od faze rada (Pipattanasomporn et
al. 2014). Iako je modelovanje potrosnje kao konstantne metodoloski jednostavnije, ono
pruza manje realisticnu simulaciju dinamike rada uredaja u poredenju sa pristupima koji
uzimaju u obzir varijabilnost potro$nje. Sa druge strane, u radovima (Xu et al. 2021), (Xu
et al. 2020), i (Liu et al. 2020) koriS¢ena su simulaciona okruzenja koja omogucéavaju
preciznije modelovanje potro$nje uredaja u zavisnosti od operativne faze. U ovom
istrazivanju su isprobana oba pristupa — modelovanje potrosnje kao konstantne
realizovano je kori§¢enjem platforme Typhoon HIL, dok je modelovanje varijabilne
potrosnje uredaja realizovano upotrebom Load Flow simulacionog okruZenja.

Typhoon HIL je komercijalno simulaciono okruzenje koje je u okviru ove disertacije
koris¢eno za modelovanje uredaja u domacinstvu. Ovo okruzenje omogucava precizno
simuliranje elektri¢nih sistema i ponaSanja uredaja u razliCitim uslovima. Detalji
implementacije nisu prikazani, buduéi da komercijalna priroda sistema ne omogucava
uvida u sve tehnicke aspekte njegove realizacije. U okviru ovog istrazivanja, Typhoon
HIL je koris¢en za simulaciju uredaja sa konstantnom potroSnjom energije po
vremenskom koraku. Simulaciono okruzenje Load Flow omoguéava modelovanje
promenljive potrosnje i detaljnije je prikazano u nastavku poglavlja.
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Temperatura unutar kuce, koja je kljucan faktor komfora stanara, kao i rad odredenih
uredaja, poput klima uredaja i solarnih panela, zavise od spoljnih vremenskih uslova.
Kako simulacija bila §to realisti¢nija, prikupljeni su istorijski podaci o vremenskim
uslovima za odredenu geografsku lokaciju tokom razli¢itih perioda godine. Po ugledu na
radove (Huang et al. 2022), (Li et al. 2020), (Liu et al. 2020), (Lissa et al. 2021), ovi
podaci su integrisani u simulaciju, omogucavajuc¢i verodostojnije modelovanje rada
uredaja poput solarnih panela i klima uredaja.

2.1.1 Proracun tokova snaga u kuénim instalacijama

U ovoj disertaciji modelovana je elektricna mreza evropskog domacinstva, prikazana na
slici 1 (Vojnovi¢ et al. 2025). Elektricna mreza se sastoji od Cetrnaest glavnih strujnih
kola, koja se napajaju preko trofazne razvodne table (eng. Three-Phase and Neutral
distribution board, TPN).

Za potrebe modelovanja potrosaca, merena je potrosnja elektri¢ne energije u realnim
uslovima. Merenje je izvrSeno pomocu uredaja koji ¢e, u okviru ove disertacije, biti
nazvan pametno brojilo (slika 2). Ovaj uredaj sastoji se iz slede¢ih komponenti: (1)
komunikacionog modula, (2) pametnog brojila za merenje elektri¢ne energije (izrazene
u kilovat-Casovima), 1 (3) uti€nice za povezivanje testiranog kucénog uredaja.
Komunikacioni modul koristi MODBUS protokol (Thomas 2008) za prikupljanje
podataka sa pametnog brojila i njihovo slanje u oblak putem Wi-Fi veze. Izmereni podaci
koriste se za modelovanje potroSaca, dok se izmerene elektricne karakteristike i duzine
grana provodnika koriste za modelovanje segmenata elektri¢nih instalacija.

Radi kreiranja detaljnog modela potrosaca, sprovedeno je merenje u trajanju od 24 sata,
§to je kljucno za uredaje sa vremenski promenljivim profilima potroSnje elektri¢ne
energije (na primer, masina za pranje sudova). Tokom celog radnog ciklusa uredaja, kao
$to je maSina za ve$, zabelezena je precizna promena potrosnje, ukljucujuci sve faze rada
(pranje, ispiranje, centrifugiranje, susenje). Snimljeni vremenski zavisni profili potrosnje
koriséeni su u simulacionom okruzenju tako $to bi se, po aktivaciji uredaja, reprodukovao
Citav prethodno zabelezeni profil potrosnje. Na taj nacin, simulacija verno odrazava
realne obrasce potrosnje u situacijama kada je uredaj aktivan.
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Slika 1. Elektri¢na mreza evropskog domacdinstva (Vojnovic¢ et al. 2025). Svakom paru
provodnika i tacke potros$nje (na primer, uti¢nica, svetiljka) dodeljen je jedinstveni
identifikator u formatu: ID provodnika/ID tacke prikljucka.

Slika 2. Pametno brojilo koje se sastoji od tri komponente: (1) komunikacionog modula,
(2) pametnog brojila za merenje elektricne energije (izrazene u kilovat-casovima) i (3)
uti¢nice za povezivanje testiranog ku¢nog uredaja — elementarnog potrosaca.

2.1.1.1  Visefazni vodovi u domacinstvu

Elektri¢ne instalacija u evropskim domacinstvima najces¢e obuhvataju Cetvorozilne i
petozilne trofazne konfiguracije (3 p4w, 35w), kao i jednofazne trozi¢ne konfiguracije
(1¢3w). Uzemljeni provodnik dodatno je inkorporiran u vod radi bezbednosti i
odrzavanja nultog potencijala, ali je neaktivan tokom normalnog rezima rada.

Karsonove jednacine (eng. Carson’s equation), uz Kronovu redukciju (eng. Kron
reduction), integriSu impedansu zemlje u model sistema. Na slici 3 prikazan je generalni
T, segment koji predstavlja viSefaznu konfiguraciju elektricnih instalacija u kuéi
(Vojnovi¢ et al. 2025). Redna matrica Z3, prikazana na slici 3, obuhvata impedanse
koje predstavljaju i sopstvenu i medusobnu induktivnost izmedu provodnika. Matrice
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" .. oabc . seab . . ..
oto¢nih admitansi Yi ‘iy i ¢ (eng. shunf) modeluju sopstvene i medusobne kapacitivne

sprege, koje se u praksi obiCno tretiraju kao identicne. Serijske i oto¢ne matrice su
dimenzija s X s, gde s oznacava broj faza. Model vodova u viSefaznim domadinstvima
detaljno je opisano slede¢im jednacinama (Vojnovic et al. 2025):

fyabc _ fyabc _ Fabcjab
UPC = U — ZP°TS, (1a)
sabc _ sabCoape srabc  srabcosap.
Iyo =Y U Ty =Y U™, (1b)
~rabc “ab sabc =.p ~nabc “ab ~nabc
Iy =1+ Ty I =Ty + 17+ 1 (1c)
gde su (slika 3): (i) vektori napona ¢vorova U2, U2b¢ vektori napona &vorova (ii) vektori

. . ~abe ssabc =, ab . . . A . .
struje rednih grana T3¢, I’i ‘ I”i “ vektori struje rednih grana, i (iii) vektori struja

. . ~,abc =, abc . . “ . . . .. . ..
otoénih grana I'y, I", vektori struja oto¢nih grana. Navedeni vektori su istih dimenzija
s X 1. Za trofazni segment kuéne instalacije, redne i oto¢ne matrice date su slede¢im
izrazima:

Zkaa Zkab Zkac
Z2 =\ Zkw Ziww Zincls
cha chb chc

2
. 1?kaa ?kab ?kac
Vi =Y% =V Yin  Yioel|-
?kca chb ?kcc

Iz ovih matrica su iskljuceni redovi i kolone koje se odnose na nedostajuce faze u
viSefaznom segmentu kuéne mreze.

«abc  fabc < mabc
i U e U &k
> Z" T
abe wabe
koY o
fjabc abe
Ui oabc onabe Gk
Yy Y,

1 1

Slika 3. Visefazni [1; segment (Vojnovi¢ et al. 2025).
2.1.1.2  Model i postupak tokova snaga kuénih mreza

Uzimajuéi u obzir razli¢ite konfiguracije vodova kuénih instalacija za potrebe proracuna
tokova snaga (1p3w) i (3p4w), izvedeno je dekuplovano kolo I, gde s € ¢, oznacava
fazu segmenta (slika 4), a ¢, oznacava skup faza iz segmenata I1; (slika 3). Kolo [}
moZe biti povezano sa viSe segmenata naslednika (I} sa slike 4), pri ¢emu se indeksi
ovih naslednika ¢uvaju u skupu naslednika a;;. Segment I}, sadrzi Evorove is i ks, s €

Prc-
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Slika 4. Dekuplovano kolo I'is, s € a V b V ¢ (Vojnovi¢ et al. 2025).

Impedansa Zyss (SE€aVbVc) iz relacije (2) predstavlja sopstvenu induktivnost
segmenta k i odgovara dijagonalnom elementu matrice Z2° sa slike 3. Admitansa Yy
predstavlja ukupnu oto¢nu admitansu segmenta Il i njihovih segmenata II; naslednika.
Ove admitanse predstavljaju sopstvene kapacitivnosi segmenta k.

Ukupna admitansa se izraCunava sabiranjem admitansi prethodnog segmenta IIj i
slede¢ih segmenata I1;. Kapacitivne sprege sa drugim fazama modeluju se strujnim
izvorom I¢cys, dok se induktivne sprege sa drugim fazama oznadava sa Ej. Naponi
&vorova is i ks, s € ¢, oznaceni su redom Uy i Uy,. Struja redne grane oznadena je sa
I, dok fpotks predstavlja struju potrosaca. Potrosa¢ je modelovan preko kompleksne
snage Sy;.

Postupak proracuna tokova snaga sastoji se iz dva koraka (Vojnovi¢ et al. 2025):

1. Korak na gore — sumiranje struja grana (eng. Backward sweep):

R Sks(Uls
()™ = EL25) o0
(icmcs)h+1 = Ztapk/\t::s Ykst(ﬁkt)hH, (2b)
(iks)h+1 = 1’/\'):ks(ﬁks)h-'-1 + (]\CCks)h*—1 + (iconks)h+1 + Zteaks(its)h+1a (2C)
s =a,b,c;

2. Korak korekcije napona ¢vorova (eng. Forward sweep):
(Eks)h+1 = Zte¢kAt¢s stt(ikt)h+1a (3a)
(ﬁis)h+1 — (ﬁks)h+1 _ sts(iks)h+1 _ (E\‘ks)h‘l'l, s = a'b’C' (3b)

Slika 5 prikazuje blok-dijagram postupka sumiranja struja grana i korekcije napona
¢vorova (eng. Backward-Forward Sweep, BFS). Postupak se zavr§ava kada su ispunjeni
kriterijumi konvergencije.

U predlozenom postupku petlje se ne obraduju, jer su elektricne instalacije u
domacinstvima strogo radijalne strukture. U distributivnim slaboupetljanim mreZama,
petlje se resavaju koris¢enjem Tevnenove teoreme (Vojnovic et al. 2023b).
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Paramalri kutne mrade
Topologija kutne mrede
Specifikacia polrofada
Mapon na korenu mreze
Kritarijum konvergencija

Korak aumimnjal |
struja sekeija
lzratuny struju potroSada (2a) |

slaj — sloj — 1 Tzraduns] kapucitivie sprege za (2b) |
Laralunyj struju grane (2¢) |
MNe
sloj <17
[ Da
Kok korekeije >

napona Evorovi

Tzratunaj induktivae sprege faza (3a)

slaj — aloj — 1
= lzratuna napon évora (3b)

slaj =postednii sloft
| Da

Da

_. a1 je knterijum konvergeneije ispunjen’ | Zauztavi ‘

Slika 5. Blok dijagram postupka sumiranja struja i korekcija napona.

2.2 Modeli dubokog ucenja za upravljanje vremenom
rada uredaja u simuliranom okruzenju pametne
kuce

U ovoj disertaciji razmatra se primena modela dubokog ucenja (eng. deep learning) za
upravljanje vremenom rada uredaja u pametnoj kuéi. Konkretno, razmatrani su modeli
ucenja potkrepljivanjem (eng. deep reinforcement learning) i veliki jezicki modeli (eng.
large language models). Potpoglavlje 2.2.1 prikazuje osnove ucenja potkrepljivanjem, sa
fokusom na modele dvostrukih dubokih Q-mreza (eng. double deep O-network) (Hasselt
et al. 2015) 1 modele zasnovane na proksimalnoj optimizaciji politike (eng. proximal
policy optimization) (Schulman et al. 2017), koji predstavljaju najsavremenija reSenja za
primenu ucenja potkrepljivanjem u problemu upravljanja vremenom rada uredaja u
pametnoj kuci. Potpoglavlje 2.2.2 predstavlja osnovne koncepte velikih jezickih modela,
koji su u ovoj disertaciji razmatrani kao alternativa naprednim tehnikama ucenja
potkrepljivanjem.

2.2.1 Ucenje potkrepljivanjem

Za razliku od nadgledanog masinskog ucenja (eng. supervised learning), gde se model
obuCava na oznacenim skupovima podataka, ucenje potkrepljivanjem (eng.

16



reinforcement learning) zahteva okruzenje u kojem model moze posmatrati trenutna
stanja okruzenja (eng. state), isprobavati moguce akcije u datom stanju i analizirati
njihove ishode, ¢ime postepeno unapreduje svoje performanse kroz interakciju sa
okruzenjem (Gupta et al. 2021). Ucenje potkrepljivanjem se primenjuje kada je
neophodno resiti problem kroz niz uzastopnih akcija, pri ¢emu njihov zajednicki efekat
dovodi do kona¢nog resenja (Nikolic and Zecevic 2019). Klju¢na pretpostavka ovog
pristupa (i osnovna razlika u odnosu na nadgledano ucenje) jeste da model nema unapred
dostupne informacije o tome koje su akcije bile ispravne u datom kontekstu, a koje ne.

Markovljevi procesi odluc¢ivanja (eng. Markov Descision Process, MDP) su matematicka
osnova za reprezentaciju algoritama ucenja potkrepljivanjem. MDP opisuje sistem koji
se sastoji od tri glavna elementa:

e Agent (eng. agent), ¢iji je cilj da nauci koju akciju treba preduzeti u kontekstu
datog stanja okruzenja.

o Okruzenje (eng. environment), koje predstavlja sistem koji agent posmatra i u
kom deluje. Okruzenje definiSe konacan skup stanja S u kojima se moze naci
agent i dopustivih akcija A(s) koje agent moze da preduzme u konkretnim
stanjima. Stanje okruzenja predstavlja specificne informacije koje agent opaza
i koje koristi prilikom donosenja odluka o preduzimanju akcija.

e Nagrada (eng. reward) je numericka vrednost koja ocenjuje akciju agenta u
datom stanju okruzenja. Cilj agenta je da postigne najve¢u dugoro¢nu nagradu
(eng. cumulative reward) — ukupnu ocekivanu sumu nagrada koje agent moze
akumulirati kroz vreme kao rezultat pojedina¢nih nagrada.

Slika 6 ilustruje interakciju izmedu okruzenja i agenta koji interaguju u diskretnim
vremenskim trenucima. U svakom vremenskom trenutku ¢, agent opaza reprezentaciju
stanja okruzenja, S; € S, na osnovu koje preduzima akciju, 4, € A. Kao posledicu ove
akcije, dobija neposrednu numericku nagradu (eng. immediate reward) R;,1 €E R € Ri
prelazi u novo stanje okruzenja S,,,. Ishod ucenja predstavlja optimalnu politiku,
odnosno, pravilo preslikavanja stanja okruzenja u odgovarajuée akcije koje dovodi do
maksimalne dugoro¢ne nagrade (Nikolic and Zecevic 2019).

Interakcija izmedu agenta i okruZenja moZe se posmatrati kao sekvenca akcija. Ako se
sekvenca akcija uvek zavrsava konaénim stanjem (eng. ferminal state) u konaénom broju
akcija, tada ovu sekvencu zovemo epizodom, a zadatak epizodnim zadatkom (eng.
episodic task). Epizode su medusobno nezavisne, odnosno pocetak epizode ne zavisi od
toga kako se prethodna epizoda zavrsila. Medutim, u mnogim realnim scenarijima ne
postoji jasno definisano konac¢no stanje, pa se takvi zadaci nazivaju neograniceni (eng.
continuing task).
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Slika 6. Interakcija agenta i okruzenja

U konaénom (eng. finite) MDP-u, skupovi stanja, akcija i nagrada (S,4 i R) imaju
konac¢an broj elemenata. U ovom slucaju, slucajne promenljive R, i S; imaju diskretne
raspodele verovatnoce koje zavise iskljuc¢ivo od prethodnog stanja i akcije. Funkcija
prelaska stanja p, koja odreduje verovatnoce (Pr) prelaska iz jednog stanja s u novo stanje
s' preduzimanjem akcije a, koja rezultuje nagradom r je definisana na sledeéi nacin
(Nikolic and Zecevic 2019):

p(s',r|s,a) = Pr{S;y1 =", Ry =715 =5,A;, = a}, (4)

za sve s',s €S, r €R i a € A(s). U MDP, funkcija prelaska stanja p u potpunosti
karakteriSe dinamiku okruZenja.

Za MDP je klju¢no Markovljevo svojstvo (eng. Markov property), koje definiSe da novo
stanje Sy, 1 nagrada R, uvremenskom trenutku t + 1 zavise isklju¢ivo od prethodnog
stanja okruzenja S; i preduzete akcije A, u vremenskom trenutku ¢, a ne od celokupne
istorije procesa donosenja odluka. Modelovanje MDP-a je prikazano u primeru 2.1.

Primer 2.1 Proces kori§¢enja elektricnog vozila (eng. Electric Vehicle, EV) moze se
modelovati kao MDP. EV poseduje bateriju ¢ije se stanje napunjenosti izrazava u
procentima, pri ¢emu vrednost varira u opsegu od 0% do 100%. Umesto precizne
numericke reprezentacije napunjenosti baterije, moguce je koristiti pojednostavljen skup
stanja S = {low, high}, gde stanje low oznacavaju napunjenost baterije ispod 50%, dok
stanje high oznaCava napunjenost baterije iznad 50%. U svakom stanju, agent moze
odabrati jednu od sledecih akcija: da ne preduzme nista (eng. idle), da puni bateriju (eng.
recharge) ili da je prazni (eng. discharge). Skup dopustivih akcija zavisi od trenutnog
stanja baterije:

(1) ako je S = low, dostupne akcije su A(low) = {idle, discharge, recharge}
(2) ako je S = high, dostupne akcije su A(high) = {idle, discharge}, pri éemu
punjenje baterije nije dozvoljeno.

Tabela 1 definiSe ovaj MDP — verovatnoce prelaza izmedu stanja i odgovarajuce nagrade
za svaku akciju, dok slika 7 ilustruje graf prelaza izmedu stanja. Prilikom primene akcije
discharge iz stanja high, postoje dva moguca ishoda:

e verovatnoca da baterija ostane u stanju high iznosi a;
e verovatnoca prelaza u stanje low iznosi 1 — a.

U oba slucaja dodeljuje se ista nagrada 7yischarg - Primer prelaza sa nagradom 0 je
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situacija u kojoj sistem, nakon primene akcije idle u stanju /ow, ostane u istom stanju.
Pokusaj agenta da u stanju Jow primeni akcija discharge, pri ¢emu baterija ostaje u low
stanju, obeshrabruje se negativnom nagradom.

Tabela 1. Primer MDP-a koji modeluje koris¢enje elektri¢nog vozila: p(s’|s,a) i
r(s, a,s") predstavljaju verovatnoc¢u prelaska iz stanja s u stanje s” preduzimanjem akcije
a, tim redosledom. Neki prelazi su nemogudi, te imaju verovatnoc¢u 0 i nemaju dodeljenu
nagrade.

s a s' p(s'ls,a) 7r(s,as)
high idle high 1 Tiate
high idle low 0 -
low idle low 1 0
low idle high 0 -
high discharge high a Taischarge

high discharge low 1-a Tdischarge

low discharge low 1 —Tyischarge
low discharge high 0
low  recharge high 1 Trecharge
low  recharge low 0

L, Pidle 1,0

recharge
1, Trecharge

1, =Pdischarge

discharge

1-a, Tdischarge

Slika 7. Graf prelaza u Markovljevom procesu odlucivanja

Cilj agenta je da nauci da odabere najpogodnije akcije u datim stanjima okruZzenja,
odnosno, akcije koje vode ka maksimalnoj dugorocnoj nagradi, to jest, ocekivanom
dobitku (eng. gain):

Ge = Ress + YRz +¥?Ress 7= ) V*Rigun), (5)
k=0

gde:
e t predstavlja trenutni vremenski korak u kojem agent donosi odluku,

®  Rytik+1y predstavlja neposrednu nagradu koju agent dobija u vremenskom
korakut + k + 1,

e vy predstavlja hiper-parametar poznat kao faktor umanjenja (eng. discount rate)
za koga vazi 0 < y < 1. Kada je y = 0, agent maksimizira samo neposrednu
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nagradu, dok se sa povecanjem y prema vrednosti 1 uvecava fokus agenta na
buducée nagrade.

Primer 2.2 prikazuje znacaj preciznog postavljanja ciljeva prilikom definisanja funkcije
nagrade za agenta. U njemu su prikazana tri scenarija koja predstavljaju razli¢ite pristupe
nagradivanju, u zavisnosti od cilja: koriS¢enja elektri¢nog vozila kao skladista energije,
za prevoz, ili za kombinaciju oba. Klju¢na poruka je da funkcija nagrade mora biti
uskladena sa konkretnim ciljem koji agent treba da ostvari.

Primer 2.2 Vrednosti stanja i akcije iz primera 2.1 preslikavaju se u novi kontekst.
Prilikom definisanje nagrade za elektri¢no vozilo (eng. Electric Vehicle, EV), klju¢no je
jasno postaviti cilj koji agent treba da postigne. U ovom primeru posmatraju se tri
razlicita cilja:

(1) EV se koristi kao sistem za skladiStenje elektricne energije,

(2) EV se koristi isklju¢ivo za prevoz i

(3) kombinacija prethodna dva cilja.

Okruzenje predstavlja EV priklju¢eno na kuéni energetski sistem, pri ¢emu se posmatra
period od jednog dana (od 00:00 do 23:59). Sistem je pojednostavljen tako §to je unapred
poznato kada je EV u upotrebi i kada nije prikljuc¢eno na kucu.

U prvom scenariju, gde se EV koristi kao baterija, nagrade za prelaze stanja definiSu se
tako da podsticu akciju recharge kada je baterija u stanju /ow; dok se akcija discharge
favorizuje kada je baterija u stanju Aigh:

e Nagrade r(high, discharge, high), r(high, discharge, low) i
r(low, recharge, high) iznose +1, oznacavaju¢i pozitivnu nagradu,

e Nagrada r(low, discharge, low) iznosi —1, predstavljajuci negativnu
nagradu.

U drugom scenariju, uvodimo indikator lokacije koji pokazuje da li je EV prikljucen na
kuéu (home) ili nije (away). Pored toga, dodaje se nova akcija “vozi” (drive). Funkacija
nagrade definisana je tako da podstice voznju EV kada je baterija u stanju Aighi povratak
kuci kada je baterija u stanju Jow. Sa druge strane, voznja se obeshrabruje kada je baterija
u stanju Jow. Radi pojednostavljenja, nagrade se dodeljuju samo za klju¢na stanja.
Nagrade su definisane na sledeci nacin:

e Nagrade
r([high, home], drive, [high, away]),
r([high, away], drive, [high, away]), r([low, away], drive, [low, home])
iznose +1,

e Nagrade r([low, away], drive, [low, away]),
r([low, home], drive, [low, away]) iznose —1.

U tre¢em scenariju, cilj je uspostavljanje ravnoteze izmedu dva prethodno definisana cilja
— koris¢enja EV kao baterije dok je prikljuceno na kucu i efikasne upotrebe energije
tokom voznje. U stanje dodajemo faktor vremena kako bi se model prilagodio planiranju
voznje. Radi pojednostavljenja, vreme je diskretizovano, a periodi u kojima vozac planira
polazak ili dolazak unapred su poznati. Vremenska komponenta uvedena u stanje se
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racuna kao apsolutna razlika izmedu planiranog vremena polaska ili dolaska i trenutnog
vremena. Ovaj scenario se nece detaljnije razmatrati zbog njegove sloZenosti.

Za opisan MDP, politika (eng. policy) m je funkcija koja svakom stanju s pridruzuje
raspodelu verovatnoc¢a nad skupom akcija A(s). Ako agent u trenutku ¢ postupa prema
politici 7, oznaka m(a|s) oznacava verovatnocu da ¢e agent izvrsiti akciju a u stanju s
(Nikolic and Zecevic 2019). Deterministicka politika je slucaj u kom agent izabira tacno
jednu akciju u svakom stanju. Stohasticka politika pridruzuje verovatnoce akcijama, gde
7(s, a) predstavlja raspodelu verovatnoc¢a nad skupom akcija za dato stanje. Pri izboru
akcije, agent moze birati akciju sa najve¢om verovatno¢om ili koristiti razli¢ite strategije
za balansiranje istrazivanja i eksploatacije.

Funkcija vrednosti stanja (eng. state value function), poznata i kao vrednost stanja v,(s),
definisana je kao ocekivana dugoro¢na nagrada za primenu politike  pocev od stanja s:

[ee)

k
Y Reyrs1

Stzsl,zasveses (6)
k=0

U,T(S) = IE;r[thst =s]= Ez[

gde:
e (. oznaCava maksimalnu dugoro¢nu nagradu definisanu u jednacini (5)
e S, oznacava stanje u trenutku ¢
e  R;.r4+1 0znacava neposrednu nagradu koju agent dobija u vremenskom koraku
t+k+1
e vy predstavlja faktor umanjenja.

Funkcija vrednosti akcije u odredenom stanju (eng. state-action value function), poznata
i kao vrednost akcije @ u stanju s, definiSe se kao oc¢ekivana dugoro¢na nagrada koju
agent dobija kada u stanju s odabere akciju @, nakon ¢ega nastavlja da postupa u skladu
sa politikom 7. Ova funkcija formalno je definisana na sledeci nacin:

[ee)

k
Y Risks1

q/r(sl a) = Eﬁ[thst = S'At = a] = Eﬁ[
k=0

St=s,At=al, (7)

gde:
e  (,; oznacava maksimalnu dugoro¢nu nagradu definisanu u jednacini (5),
e S; oznacava stanje u trenutku ¢,
e A, oznaCava akciju agenta u stanju S,
® R, 141 0znacava neposrednu nagradu koju agent dobija u vremenskom koraku
t+k+1,
e v predstavlja faktor umanjenja.

Funkcija vrednosti stanja (v) koristi se za procenu dugoro¢ne nagrade, pri ¢emu razmatra
isklju¢ivo trenutno stanje. Sa druge strane, funkcija vrednosti akcije u odredenom stanju
(), prilikom procene dugoro¢ne nagrade uzima u obzir i stanje i akciju.

Obe funkcije vrednosti zadovoljavaju rekurentne relacijame (eng. recursive relationship)
koje se nazivaju Belmanovim jednac¢inama (eng. Bellman equation) (Sutton and Barto
2014). Za svako stanje s 1 svaku politiku T vazi Belmanova jednacina za v,:
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vzz(s) = IE;r[thst = S]
= E;[Res1 + VGri1lSe = 5]

=D aal) ) p(srls @l + VEAGealSen =51 (8)
= D x(als) Y p(s',rls, lr +yve(s)L

Sli¢no, za svako stanje s i svaku politiku 1t vazi Belmanova jednacina za q:

q.(s,a) =E,[G|S; =s,A; = a]
= E [Ri11 +VG411Se = 5,A; = a

= D bl D + VELGeiSeas = 5]
s'r (9)

= Z p(s',rls, a)[r + yv,(s"]

=X p(s"7ls, )[r +y X m(a'|s)gr (s, a)) ].

Funkcije vrednosti v,, odnosno g, predstavljaju jedinstveno reSenje odgovarajucih
Belmanovih jednac¢ina. Ove jednacine prestavljaju osnovu mnogih pristupa za racunanje,
aproksimaciju i uc¢enje vy, i q,, omogucavajuéi evaluaciju politika. ReSavanje problema
ucenja potkrepljivanjem svodi se na pronalazenje optimalne politike m,, prema kojoj
agent donosi odluke u okruzenju s ciljem maksimizacije ocekivane dugoro¢ne nagrade.
Politiku 7 smatramo boljom ili jednakom politici 7' (# = 7#') ako za sva stanja s € S vazi
v,(s) = v,(s). Uvek postoji najmanje jedna optimalna politika 7, koja je bolja ili
jednaka bilo kojoj drugoj politici (Nikolic and Zecevic 2019).

Iako moze postojati vise optimalnih politika, sve dele iste funkcije v i g:

v,(s) = maxv,(s),
q.(s,a) = maxgq,(s,a), (10)

za svako stanje s € S 1 akciju a € A. Funkcije vrednosti v, i g, su optimalne funkcije
vrednosti. Takode, v, se moze definisati preko g, na slede¢i nacin:

v.(s) = maxq.(s, ), (11)

Funkcije v, i q. mogu da se izraze Belmanovim jednakostima na slede¢i nacin:

v.(s) = max Yo p(s',rls, a)r +yv.(s)],
(12)
q.(s,a) = Yo, (s, 7ls,a) [r +y max q.(s’, a')].
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Poznaju¢i funkcije v, ili g, mogucée je izraCunati barem jednu optimalnu politiku.
Najpozeljnija akcija a u stanju s je ona koja daje najvecu ocekivanu nagradu, gde je
optimalna deterministicka politika definisana na slede¢i nacin:

1 ako vaii a = argmax q,(s,a),
. (als) = { a

0 inace.
Posmatraju¢i q,, najveca ocekivana dugoro¢na nagrada pri preuzimanju akcije a u stanju
s zavisi od neposredne dobijene nagrade r i najveée dugoro¢ne nagrade iz novog stanja
s'u koje agent prelazi nakon preduzimanja akcije a'. Tezinski faktor u ovom proracunu
predstavlja verovatnoca prelaska iz stanja s u stanje s’ pri akciji a, koja rezultuje
nagradom r, data u jednacini (4 ).

Osnovni problem uéenja potkrepljivanjem je odredivanje optimalnih funkcija vrednosti
za stanja i akcije u stanju, odnosno, pronalazenje optimalne politike. U slu¢aju poznatog
okruzenja, agent poseduje kompletan i tacan model dinamike okruzenja. Ako je
okruzenje MDP, taj model je definisan funkcijom prelaska stanja (jednacina ( 4 )). U tom
slu¢aju, funkcije vrednosti mogu se ta¢no izracunati koris¢enjem Belmanovih jednacina.
Medutim, u realnim scenarijima, okruzenje je ¢esto nepoznato, Sto znaci da agent nema
pristup kompletnom i tanom modelu okruzenja. U takvim situacijama pribegava se
metodama pribliznog racunanja ili uc¢enju kroz interakciju sa okruzenjem.

U slucaju nepoznatog okruzenja, agent primenjuje razliite akcije kako bi istrazio
okruzenje sa ciljem da nauci optimalnu politiku m,. U odgovarajuéem MDP, agent
sakuplja informaciju o funkciji (4 ) na dva nacina :

o U skladu sa politikom (eng. on-policy) — agent optimizuje istu politiku koju
koristi za odabir akcija. Drugim re¢ima, politika koju agent koristi za interakciju
sa okruzenjem je ista politika koju pokuSava da poboljsa.

e Mimo politike (eng. off-policy) — agent koristi razliite politike za odabir akcija
(istrazivanje) od onih koje optimizuje (ciljne politike). To znaci da agent moze
da koristi jednu politiku za istrazivanje okruzenja, dok istovremeno uci i
poboljsava drugu politiku.

Potpoglavlja 2.2.1.1 i 2.2.1.2 obraduju Q-ucenje (eng. O-Learning), duboku Q-mrezu
(eng. Deep Q-Network, DQN) i dvostruku duboku Q-mreza (eng. Double Deep Q-
Network, DDQN), koji pripadaju algoritmima ucenja potkrepljivanjem mimo politike. Q-
ucenje predstavlja klasi¢an algoritam koji koristi tabelarni pristup za procenu oc¢ekivane
dugoro¢ne nagrade. DQN prosSiruje ovaj pristup zamenom tabele neuronskom mrezom,
§to omogucava primenu u okruzenjima sa velikim ili kontinuiranim skupovima stanja.
DDQN dodatno unapreduje DQN uvodenjem dve odvojene mreze — jedne za selekciju
akcije, a druge za njenu evaluaciju — ¢ime se postiZe stabilnije i preciznije ucenje.
Potpoglavlje 2.2.1.3 obraduje algoritam proksimalne optimizacije politike, koji pripada
grupi algoritama ucenja potkrepljivanjem u skladu sa politikom.

2.2.1.1  Q-ucenje

Metoda ucenja trenutnih razlika (eng. temporal difference, TD) predstavlja pristup ucenju
na osnovu iskustva, bez potrebe za eksplicitnim modelom okruzenja. TD metode vrse
procene funkcije vrednosti koristeéi razliku izmedu trenutne procene funkcije vrednosti
i novodobijene informacije dobijene iz narednog koraka.
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Jedan od najpoznatijih TD algoritma je Q-ucenje (Sutton and Barto 2014). Kod Q-ucenja,
procena funkcije vrednosti akcije u datom stanju (Q-funkcija) se azurira na osnovu
neposredne nagrade i maksimalne procenjene vrednosti narednog stanja, pri svakoj
interakciji sa okruzenjem, bez potrebe za eksplicitnim modelom dinamike okruZenja
(Lonza 2019). Ovaj algoritam zasniva se na slede¢em pravilu azuriranja funkcije
vrednosti (Watkins 1989):

Q(St, Ar) ¢ Q(St, Ar) + @[ Reps +7 max Q(Sesn,a) — Q(Si, 4r)|

(13)

gde a oznadava stopu ucenja (eng. learning rate), a y faktor umanjenja. TD cilj
predstavlja zbir nagrade R;,, nakon preduzimanja akcije A, i maksimalne Q-vrednosti
sledeceg stanja S;, 1, procenjene na osnovu pohlepne politike. TD greska se racuna kao
razlika TD cilja i prethodne procenjene Q-vrednosti.

Kao politika ponaSanja najéeS¢e se koristi e-pohlepna politika (eng. e-greedy policy),
koja predstavlja kompromis izmedu istrazivanja i eksploatacije (eng. exploration-
exploitation tradeoff). Veéinu vremena agent se oslanja na eksploataciju — sa
verovatno¢om 1 — ¢ bira akciju koja maksimizuje trenutnu procenu Q-funkcije, odnosno,
akciju za koju se ocekuje najveca dugorocna nagrada. Da bi obezbedio istrazivanje,
odnosno prikupljanje novih informacija o okruzenju, agent sa malom verovatnoéom & >
0 nasumicno bira jednu od dostupnih akcija, pri ¢emu sve imaju jednaku verovatnocu
odabira. Odabir akcije prema e-pohlepnoj politici moze se formalno izraziti na sledeci
nacin:

za sve akcije a # argmax Q(s,a’),
al

(s, a) = e (14)

, zaakcijua = argmax Q(s,a’).
AG)] ’ g

Algoritam 1 prikazuje pseudokod za algoritam Q-uCenja. Algoritam zapocinje
inicijalizacijom vrednosti Q-funkcije na proizvoljne vrednosti za sve parove stanja i
akcija. Vrednosti terminalnih stanja se inicijalizuju na 0, dok se ostale vrednosti Q (s, a)
tipicno postavljaju na 0 radi pojednostavljenja, iako je moguce koristiti i druge pocetne
vrednosti. Tokom svake epizode, u svakom vremenskom koraku ¢, bira se akcija 4; u
skladu sa politikom ponasanja, koja je najcesce e-pohlepna politika. Nakon §to se akcija
A, prosledi okruzenju, agent dobija sledece stanje S;,,, nagradu R, i indikator kraja
epizode done. Na osnovu ovih informacija agent azurira procenu Q-vrednosti prema
pravilu azuriranja iz jednacine ( 13 ). Na kraju svake epizode, stopa istrazivanja € se
obi¢no smanjuje prema unapred definisanom rasporedu, kako bi agent postepeno prelazio
sa istrazivanja na eksploataciju.
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Po zavrSetku procesa ucenja, agent definie ciljnu politiku 7*(s) kao deterministicku
politiku koja u svakom stanju bira akciju sa najve¢om naucenom Q-vrednoscu:

w*(s) = argmax Q(s, a).

Na ovaj nacin, agent prelazi sa istrazivanja na eksploataciju i koristi nau¢ene vrednosti
za optimalno donosenje odluka.

Algoritam 1. Q-uéenje
Ulaz:
e broj_epizoda — ukupan broj epizoda

e a € (0,1] - stopa ucenja

e y — faktor umanjenja

e & —pocetna stopa istrazivanja

® &,in — Mminimalna vrednost €

®  Egecqy — Stopa smanjenja €

e Q(s,a) — inicijalizovana Q-tabela (na primer, Q(s,a) = 0 zasve s € Sia € A(s)).

1 for epizoda in broj _epizoda do

2 Restartuj okruZzenje i inicijalizuj pocetno stanje S,

3 for t = 1 do kraja epizode do (dok done = False)

4 Izabrati akciju A, koristeéi politiku ponaSanja (na primer, e-pohlepnu politiku prema
jednacini (13)

5 Izvrsiti akciju A, 1 dobaviti (S;4q, Ry, done) iz okruzenja

6 AZurirati Q-vrednost prema pravilu azuriranja iz jednacine ( 13 )

7 Postaviti S, < Sy

8 end

9 Azurirati stopu istrazivanja: €,,, < max(smm, € - sdemy)

10 end

2.2.1.2  Duboka Q-mreza i dvostruka duboka Q-mreza

Dimenzije Q-tabele eksponencijalno rastu sa porastom veli¢ine skupova stanja i akcija,
S$to dovodi do visokih zahteva za memorijom i otezava primenu klasicnog Q-ucenja u
slozenim okruzenjima. DQN algoritam (Mnih et al. 2013) razvijen je kako bi omogucio
primenu Q-ucenja u realisticnim scenarijima sa velikim ili kontinuiranim prostorima
stanja. Umesto eksplicitnog ¢uvanja Q-vrednosti u tabeli, DQN koristi neuronsku mrezu
za aproksimaciju funkcije vrednosti akcije (Q-funkcije) na osnovu karakteristika stanja.
Neuronska mreza se obucava da precizno aproksimira optimalnu funkciju vrednosti
q.(s,a).Na taj nacin, omogucena je generalizacija na stanja koja nisu eksplicitno
posecena tokom ucenja, kao i znacajno efikasnije koris¢enje memorijskih resursa.

U DQN algoritmu koristi se mehanizam poznat kao memorija za ponovno iskustvo
(experience replay), koji omogucava efikasnije 1 stabilnije ucenje. U svakom
vremenskom koraku, iskustvo agenta u obliku &etvorke (s;, @, 7%, S1) se smeSta u
memoriju D. Ova memorija akumulira podatke iz viSe epizoda, omogucavajuci
visestruko koriS¢enje prethodnih iskustva tokom treniranja mreze. Veli¢ina memorije
predstavlja jedan od hiperparametara algoritma. Za azuriranje parametara mreze, iz
memorije D se nasumi¢no uzorkuje podskup cetvorki, ¢ime se prekida korelacija izmedu
uzastopnih uzoraka. Nasuprot tome, u klasiénom Q-ucenju aZuriranja se vr$e direktno na
osnovu uzastopnih stanja, Sto moze izazvati visoku varijansu azuriranja usled
meduzavisnosti uzoraka.
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U DQN algoritmu koriste se dve neuronske mreze: mreza politike (Q-mreza) i ciljna
mreza (eng. target network) (Mnih et al. 2015). Ulaz u Q-mrezu ¢ine karakteristike stanja
S, dok izlaz predstavlja vektor procenjenih Q-vrednosti za sve dozvoljene akcije. Ciljna
mreZa ima istu arhitekturu kao mreza politike, ali se njeni parametri 6’ aZuriraju rede —
periodi¢nim kopiranjem vrednosti iz Q-mreZe (parametara 8). Ovaj mehanizam, poznat
kao zamrzavanje ciljne mreze (eng. target freezing), doprinosi stabilnijem ucenju tako
§to spreCava oscilacije u ciljnim vrednostima. Parametri Q-mreze azuriraju se
minimizacijom gre$ke izmedu procenjene Q-vrednosti Q (s;y41, @;; 8) i ciljne vrednosti y,
definisane kao:

Tryis ako je s;,, terminalno stanje,
Y =11 +ymax Q(sp4q,a’;0')  inace. (15)
ar

Greska koja se minimizuje tokom obuke definiSe se slede¢om funkcijom gubitka:

L(O) = Egsarsyn |y =~ 0(s5,0:0))’| (16)

Algoritam 2 prikazuje tok DQN algoritma. Obucavanje se odvija u dve faze:

o Uzorkovanje: agent izvrsava akcije u okruzenju i belezi iskustva u obliku torki
(Se, g, 1ty Se41), koje se smestaju u memoriju za ponovno iskustvo.

e Obucavanje: nasumicno se uzorkuje podskup torki iz memorije, na osnovu
kojih se azuriraju parametri mreze.

Prvi korak podrazumeva inicijalizaciju parametara, ukljucujuéi kapacitet memorije za
ponovno iskustvo D, kao i pocetne vrednosti parametara mreze politike 6 i ciljne mreze
6’ = 6. Na pocetku svake epizode okruzenje se resetuje i dobija se pocetno stanje. U
svakom vremenskom koraku agent bira akciju koriS¢enjem e&-pohlepne politike
zasnovane na procenama Q-vrednosti iz mreze politike. Nakon primene akcije nad
okruzenjem, dobijaju se sledece stanje, nagrada i indikator kraja epizode. Iskustvo u
obliku torke (s¢, ag, 13, S¢4q, done) smesta se u memoriju za ponovno iskustvo. Kada u
memoriji postoji dovoljan broj torki, nasumic¢no se uzorkuje podskup, na osnovu koga se
izraCunava ciljna vrednost y prema jednacini ( 15 ). Mreza politike se potom obucava
minimizacijom greske izmedu Q(s;44,a;; 6) i v, kako je definisano formulom ( 16 ).
Kona¢no, parametri ciljne mreze 8'se periodi¢no azuriraju kopiranjem iz mreZe politike.

Algoritam 2. DQN algoritam
Ulaz:

e broj_epizoda — ukupan broj epizoda

®  Nyqecn — veliCina podskupa torki uzorkovanih iz memorije za ponovno iskustvo
e D —kapacitet memorije za ponovno iskustvo
e ( — broj koraka nakon kojih se parametri mreze politike kopiraju u ciljnu mrezu
Postavka kapaciteta memorije za ponovljeno iskustvo na D
Inicijalizacija parametra mreze politike 0 i postavka 8’ « 0
for epizoda=1 do broj_epizoda:
Restartuj okruzenje i postavi pocetno stanje S,
for t = 1 do kraja epizode do: (dok done = False)
Izabrati akciju A, koris¢enjem politike ponasanja (npr., e-pohlepne politike ( 13 ))
Izvrsiti akciju A, 1 dobaviti (S;,4, R;, done) iz okruzenja
Smestiti torku (S;, Ay, R, Sti1,done) u memoriju za ponovno iskustvo

O 0 9NV AW —

Uzorkovati nasumicni podskup od N4, torki iz memorije za ponovno iskustvo
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10 Izracunati ciljnu vrednost y koriS¢enjem jednacine ( 15 )

11 Azurirati parametre 8 minimizacijom gubitka iz jednacine ( 16 )
12 Ako je broj koraka deljiv sa C, postavi 8’ « 8

13 end

14 end

Jedan od klju¢nih problema DQN algoritma je tendencija ka precenjivanju vrednosti
akcija, jer se ista mreza koristi i za izbor akcije i za procenu njene vrednosti. Algoritam
DDQN unapreduje DQN razdvajanjem ovih uloga na dve odvojene neuronske mreze:

e Mreza politike (eng. policy network, Q) koristi se za izbor akcije sa najve¢om
procenjenom Q-vrednos¢u u slede¢em stanju.

e Ciljna mreza Q' (eng. target network) Koristi se za procenu vrednosti izabrane
akcije u sledecem stanju.

Ova modifikacija redukuje pristrasnost ka precenjivanju Q-vrednosti i doprinosi
stabilnijem ucenju (Hasselt et al. 2015). Pravilo aZuriranja u DDQN algoritmu ima
slede¢i oblik:

Q(Se, Ap) <« Q(Sp, Ap) +

, (17)
@|Rers +vQ' (Si4r, argmax Q(Ses, @ ) - 050, 40)|
a
Ciljna vrednost y, koja se koristi za treniranje mreze politike, racuna se prema
slede¢em izrazu: Gy, = argmax Q(sg4q,a’; 6) (18)
a

y, = {rt+1: ako je s;,,terminalno stanje,
t — 1 r . v
Tep1 + VQ' (Se41) Amax; 0'), inace.

Zabelezene torke iz memorije za ponovno iskustvo koriste se za azuriranje mreze politike
Q, dok se parametri ciljne mreze Q' azuriraju periodi¢no, kopiranjem iz mreZe politike.
U poredenju sa Algoritam 2, kljuéna razlika u pseudokodu za DDQN nalazi se u liniji 10,
gde se ciljna vrednosti racuna prema formuli (18), umesto kori$éenja maksimalne Q-
vrednosti iz iste mreze.

2.2.1.3  Proksimalna optimizacija politike

Za razliku od Q-uc¢enja, DQN i DDQN algoritama, koji pripadaju metodama ucenja sa
funkcijom vrednosti, algoritam PPO (eng. Proximal Policy Optimization) pripada grupi
metoda gradijenta politike (eng. policy gradient methods). Ove metode uce politiku
nm(als) direktno, bez eksplicitnog modelovanja Q-funkcije. Pregled klju¢nih razlika
izmedu Q-ucenja, DQN/DDQN i PPO algoritama dat je u tabeli 2.

Tabela 2. Uporedna analiza algoritama Q-ucenje, DQN/DDQN i PPO

Karakteristike Q-ucenje DQN/DDQN PPO
Tip metode Tabelarna metoda sa ~ Funkcija vrednosti sa Gradijent politike (akter-
funkcijom vrednosti aproksimacijom pomocu kritiCar pristup)
neuronske mreze
Reprezentacija Q-tabela Neuronska mreza Politika (als)
aproksimira Q(s, a)
f:;:ll;céjs: Gs ) Qs,a) V(s),A(s,a)
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Politika &- pohlepna politika e-pohlepna politika Direktna politika sa

ponasanja ogranicenjem promene
(clipping)

AZuriranje TD pravilo MSE izmedu Q-vrednosti ~ Maksimizacija ciljne funkcije

parametara i ciljne vrednosti LEMP

Stabilizacija Nema Memorija za ponovno Odsecanje promene politike,

ucenja iskustvo i ciljna mreza funkicija prednosti

(advantage), podskupovi
(minibatch)

Prostor akcija Diskretan Diskretan Podrzava diskretan i
kontinuiran prostor akcija
Prostor stanja Diskretan i Podrzani su kontinuiranii ~ Podrzani su kontinuirani i
niskodimenzioni visokodimenzioni prostori  visokodimenzioni prostori
stanja stanja

PPO algoritam se zasniva na akter-kritiCar (eng. actor-critic) metodama ucenja, koje
pripadaju kategoriji uCenja u skladu sa politikom. Akter (eng. actor) predstavlja
neuronsku mrezu koja uéi politiku m(a|s), odnosno, verovatno¢u izbora akcije u datom
stanju. Kriticar (eng. critic) je neuronska mreza koja procenjuje kvalitet ponaSanja aktera,
najcesée kroz procenu funkcije vrednosti stanja I/ (s). Na osnovu te procene, izraéunava
se funkcija prednosti A(s, a), koja se koristi za azuriranje parametara aktera. Time se
unapreduje politika tako da povecava verovatnocu izbora akcija koje vode ka vecoj
dugoro¢noj nagradi.

Proces ucenja u PPO algoritmu podrazumeva procenu ciljne funkcije vrednosti V9% i

funkcije prednosti 4;. Ove vrednosti izraCunavaju se pre azuriranja parametara mreza, na
osnovu prethodne verzije politike 74, , funkcije vrednosti stanja Vy ), , (Schulman et al.

2017). Ciljna vrednost Vtmrg et predstavlja umanjenju dugoro¢nu nagradu dobijenu nakon
izvrSene akcije a; u stanju s;, i racuna se kao (Mnih et al. 2016):

Vtmrget =Tt Yl TV g+ Y o aneold (St4n)- (19)
U (19), parametar n oznacava broj koraka unapred tokom kojih se akumuliraju nagrade

pre nego Sto se izvrSi procena vrednosti iz stanja s;,, koriS¢enjem aproksimatora
vrednosti (eng. bootstrap) (Nikolic and Zecevic 2019).

Funkcija prednosti A, meri koliko je konkretan ishod — odnosno, dugoro¢na nagrada —
bio bolji ili losiji od ocekivane vrednosti stanja, koju procenjuje kriticar. Formalno,
definiSe se kao razlika izmedu ciljne vrednosti i vrednosti trenutnog stanja (Schulman et
al. 2017), (Mnih et al. 2016):

Ay = Vttarga — Vooua (St)- (20)

Empirijski je pokazano da akter-kriticar metode Cesto pate od nestabilnosti, pri ¢emu ¢ak
i jedan loSe odabran korak azuriranja moze znacajno narusiti performanse (Sun et al.
2025). PPO algoritam ublaZzava ovu nestabilnost ogranicavanjem veli¢ine promene
politike putem mehanizma odsecanja (eng. clipping) u ciljnoj funkciji optimizacije.
Ciljna funkcija optimizacije LL/F koristi se za azuriranje mreZe aktera (eng. PPO policy
network) (Bick, 2021) i definisana je kao:

LCLIP(Q) = Et[min(pt(g)At: clip(pe(6),1 —€,1+e)A)], (21)

28



gde je p.(6) odnos izmedu trenutne i prethodne politike (Schulman et al. 2017) (Kakade
and Langford 2002), definisan kao:

() = mo(aclse)

BETCAD)) (22)

Odnos p;(6) predstavlja koli¢nik verovatnoca: ako je p,(6) > 1, akcija a; u stanju s,
ima vecu verovatnocu odabira pod trenutnom politikom 7, nego pod prethodnom
politikom. Suprotno vazi za dok za 0 < p,(8) < 1.

Ciljna funkcija L°“'P ima dva klju¢na efekta:

1. Konzervativihu procenu ucinka politike — vrednost funkije uzima minimum
izmedu standardnog (eng. unclipped) izraza p.(6)A, 1 ogranienog (eng.
clipped) izraza clip(p;(0),1 — €,1 + €)A,). Time se ublazava uticaj prevelikih
oscilacija u azuriranju.

2. Sprecavanje prevelikih promena politike — funkcija onemogucava da se
znaCajno poveca verovatnoca odabira akcije a; u stanju s;, naroCito u
slucajevima kada su prethodna azuriranja ve¢ dovela do poboljSanja. Ova
restrikcija se sprovodi putem faktora clip(p;(8),1 — €,1 + €), koji ograni¢ava
koliko se odnos verovatnoé¢a izmedu trenutne i prethodne politike moze udaljiti
od 1 (Bick, 2021):

1—c¢, akop,(0) <1 —k,
clip(p:(0),1—€,1+€)=:1+F¢, akop,(0) > 1+, (23)
p:(0), inace.

Ovaj efekat ilustrovan je na slici 8, gde se prikazuje kako se vrednost odnosa verovatnoca
p:(0) odrzava unutar intervala [1 — €, 1 + €], ¢ak i nakon vi$e epoha aZuriranja tezina
nad istim podacima za obuku.

Radi boljeg razumevanja nacina na koji mehanizam odsecanja u PPO funkcioniSe u
praksi, tabela 3 prikazuje sve moguce kombinacije odnosa verovatnoca p,(8) i znaka
funkcije prednosti A,. Tabela prikazuje kada dolazi do odsecanja ciljne funkcije L°LF (6),
da li se parametri mreze azuriraju, kao i u kom pravcu se politika menja:

e Kadaje 1—€ <p;(0) <1+ € ciljna funkcija se ne odseca, nezavisno od
znaka funkcije prednosti A;. U redu 1, kada je A; > 0, akcija je bolja od
ocekivane vrednosti svih dostupnih akcija u stanju s;, te se verovatnoca njenog
izbora povecava. U redu 2, kada je A; < 0, akcija je losija od oéekivanja, pa se
verovatno¢a njenog izbora smanjuje. U oba slucaja, gradijent je prisutan i
parametri politike se azuriraju.

e U redovima 3 i 4, analiziraju se slu¢ajevi kada je p,(6) < 1 — €, §to znaéi da
trenutna politika dodeljuje akciji manju verovatnoc¢u u poredenju sa prethodnom
politikom. U redu 3, 4, > 0, Sto implicira da bi verovatnocu izbora akcije
trebalo povecati. Funkcija se ne odseca i vrsi se azuriranje. U redu 4, 4, < 0,
akcija je nepovoljna, a politika je ve¢ umanjila njenu verovatnocu. Funkcija se
odseca, gradijent je jednak nuli i ne dolazi do aZuriranja tezina.

e U redovima 5 i 6, slu¢ajevi sa p.(8) > 1 + € ukazuju da trenutna politika
znacajno favorizuje akciji u odnosu na prethodnu politiku. U redu 5, 4, > 0, Sto
znaci da je akcija dobra, ali je politika ve¢ povecala verovatnocu vise nego $to
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je dozvoljeno. Funkcija se odseca, gradijent je nula i nema azuriranja tezina. U
redu 6, A; < 0, §to implicira da akciju treba obeshrabriti. Funkcija se ne odseca,
gradijent je prisutan i verovatnoca izbora akcije se smanjuje.

Ukratko, politika se azurira ukoliko:

o p(0)€E[l—¢€1+c€](redovili2),
o Kada p.(0) € [1—¢,1+¢€], ali znak A, sugerie korektivnu promenu ka
intervalu:
o p(0) <1—¢€A4,>0 (red3),
o p(0)>1+¢,A; <0 (red6).

Tabela 3. Klasifikacija ponasanja ciljne funkcije LY (6) i azuriranje parametara u
zavisnosti od odnosa verovatnoca p,(0) i funkcije prednosti A,.

R p,(6)>0 A, Povratna Da li je ciljna funkcija Znak  Gradijent
e vrednost LCYP (@) odsetena A,
d od min
1 p(@)e[l—€1+e€] + p:(0)A; ne + v
2 p(@)€e[l—€1+e€] - p.(0)A, ne — v’
3 p(6) <1-—¢€ + p:(0)A, ne + v’
4 p(0) <1-¢ - (1-94, da - 0
5 p(@>1+¢€ + (1+04, da + 0
6 p(B)>1+¢€ - p:(0)A, ne - v
PPO odsecanje za & > 0 PPO odsecanje za A = 0
== Qriginalna cifjna funkcija (A = 0) , % - = Drginaina ciljna funkcija (A < 0)
Odsedena ciljna furkeija (& > 0} - " Odsedena ciljng funkcija (A < 0)
14 e ¢ ~064 e 4 A

1+¢ o =, o 14E
124 - & -081 + \
Ei 1.0 i -1.0
E 08 3 1 5 E 24 4 2

06 v -144
0.6 DjB 10 1.:2 14 0.6 D:a 1.0 1:2 14
Qdnos verovatnode plB) Odnos verovatnode pld)

Slika 8. Vizualizacija mehanizma odsecanja u PPO algoritmu za pozitivne i negativne
vrednosti funkcije prednosti A;. Leva strana prikazuje slucaj kada je A; > 0: odsecanje
ograni¢ava rast ciljne funkcije za visoke vrednosti odnosa verovatnoéa p.(8), koje
oznacavaju da trenutna politika favorizuje akciju a, znatno vise nego prethodna. Desna
strana prikazuje slucaj kada je A; < 0: ogranicava se pad vrednosti funkcije za niske
vrednosti p;(6), koje ukazuju da trenutna politika daje znatno manju verovatnocu toj
akciji u poredenju sa prethodnom politikom.

Algoritam 3 prikazuje pseudokod PPO algoritma, koji podrazumeva iterativno aZuriranje
stohasticke politike my (parametri mreze aktera ) i funkcije vrednosti stanja Vi (s)
(parametri mreZe kriti¢ara ¢). U svakoj iteraciji, agent izvrSava trenutnu politiku 7g, u
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okruzenju i generiSe skup trajektorija D, = {r;}. Na osnovu ovih trajektorija
izradunavaju se umanjene dugoroéne nagrade R, i procene funkcija prednosti A,. Ove
vrednosti se koriste za azuriranje:

«  Politike, maksimizacijom ciljne funkcije L¢P,
+  Kriticara, minimizacijom srednje kvadratne greske izmedu procene Vi (s) i

ciljne vrednosti R,.

Algoritam 3. PPO
Ulaz:
e & —parameter odsecanja (eng. clipping)

e T —broj vremenskih koraka po trajektoriji

1 Inicijalizacija parametara politike 8, i vrednosne funkcije ¢,

2 fork=123...do

3 Izvrsi politiku g, u okruZenju i generisi skup trajektorija Dy, = {7;}

4 Izradunaj umanjenje dugoroéne nagrade R, za svaku trajektoriju

5 Izragunaj procenu prednosti A, ( 19) i ( 20) koris¢enjem trenutne funkcije vrednosti Ve,

AZuriraj parametare aktera maksimizacijom ciljne funkcije LXP:
6 mg(aclse)
Op41 = aTgmaXID i z z <1T @ls )A“ek(st, at):g(S,A“ek(St, at))
TED) t=0 O\ el

gde funckija g primenjuje ogranicenje (clipping) nad vrednostima prednosti.
AZuriraj parametre funkcije vrednosti minimizacijom srednje kvadratne greske:

¢k+1 - argmln |D |T Z Z(V¢(sf) Rf)

TED t=0

8 end

2.2.1.4  Odredivanje uticaja karakteristika stanja na odluke modela ucenja
potkrepljivanjem

Analiza uticaja karakteristika stanja na odluke modela uc¢enja potkrepljivanjem zasniva

se na kombinatornoj teoriji igara (eng. Game Theory) (Osborne and Rubinstein 2006), a

posebno na konceptu Shapley vrednosti (Shapley 1953). Cilj je da se kvantifikuje uticaj

svake karakteristike stanja na akciju koju model bira, ¢ime se dobija interpretacija

ponasanja modela ucenja potprepljivanjem.

U kooperativnoj igri, koaliciona igra (eng. coalition game) definiSe se nad skupom od N
igraca, gde svaki igra¢ doprinosi ukupnoj vrednosti koalicije (Osborne and Rubinstein
2006). U kontekstu masinskog ucenja, igraci odgovaraju pojedinacnim karakteristikama
stanja, dok vrednost koalicije predstavlja izlaz modela.

Znacaj karakteristike i odreduje se pomocu Shapley vrednosti, koja se za karakteristiku i
racuna prema sledecoj formuli (Osborne and Rubinstein 2006):
b=y O ISUANI =151 = DUFS U i) = £(5)

" SSN{i}
gde:

e N oznacava skup svih karakteristika u modelu,
e S C N{i} predstavlja proizvoljan podskup karakteristika koji ne sadrzi i,
o |S|I'(IN| —|S| — 1)! predstavlja broj permutacija skupa karakteristika u kojima
se podskup S javlja kao skup koji prethodi karakterisitici i,
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e f(S) predstavlja vrednost koalicije za skup karakteristika S,
o f(S U {i}) predstavlja vrednost koalicije kada se karakteristika i doda u skup S.

U ovoj formuli izraz f(S U {i}) — f(S) predstavlja marginalni doprinos karakteristike i
koaliciji S, odnosno promenu vrednosti koalicije koja nastaje dodavanjem karakteristike
i uskup S. Tumacenje znaka marginalnog doprinosa je sledece:

e Pozitivna vrednost znaci da karakteristika i povecava vrednost koalicije.

e Negativna vrednost znaci da karakteristika i smanjuje vrednost koalicije.

e  Vrednost bliska nuli ukazuje da dodavanje karakteristike i nema znacajan uticaj
na koaliciju.

SHAP vrednost karakteristike i predstavlja primenu Shapley vrednosti u
interpretabilnosti modela masinskog ucenja i dobija se kao prosecan marginalni doprinos
karakteristike i izracunat preko svih mogucih podskupova S. Na taj nac¢in SHAP vrednost
kvantifikuje proseCan efekat karakteristike stanja i na odluku modela ucenja
potkrepljivanjem da izabere odredenu akciju, uzimajuci u obzir sve moguce nacine na
koje se ta karakteristika moZe pojaviti u kombinaciji sa ostalim karakteristikama.

2.2.2 Veliki jezicki modeli

Modelovanje jezika (eng. Language Modeling) imalo je klju¢nu ulogu u razvoju jezicke
inteligencije masina. Istrazivanje u ovoj oblasti proslo je kroz Cetiri razvojne faze (Hadi
et al. 2023):

e Prva faza obuhvatala je statisticke jezicke modele (eng. Statistical Language
Models) (Jelinek 1998). Tipican primer predstavljali su n-gram modeli, koji su
procenjivali verovatno¢u slede¢e re¢i u sekvenici na osnovu ucestalosti
pojavljivanja prethodnih 7 reci (Gao and Lin 2004). Na primer, bigram model
koristi ucestalost pojavljivanja svakog para uzastopnih rec¢i u korpusu kako bi
procenio verovatnocu da se odredena re¢ pojavi nakon date prethodne reci
(Collins 1996).

e Druga faza obuhvatala je primenu jezickih modela zasnovanih na neuronskim
mrezama (eng. Neural Language Models, NLM) (Bengio et al., 2000). Ovi
modeli koristili su neuronske mreze za procenu distribucije verovatnoce sledece
re¢i na osnovu prethodnih reci u sekvenci. Za razliku od n-gram modela, NLM
su omogucavali generalizaciju na nevidene kombinacije reci, zahvaljujuéi
ucenju semantickih reprezentacija (embeding) reci. Primeri ukljucuju
rekurentne neuronske mreze (eng. Recurrent neural networks) (Kombrink et al.
2011) i njihove varijante.

o Treéa faza obuhvatala je uvodenje kontekstualnih reprezentacija reci (eng.
contextualized word embeddings), koje su omogucile da se znalenje reci
odreduje dinamicki, u zavisnosti od njenog konteksta unutar re¢enice. Za razliku
od statickih embedinga, ovaj pristup koristio je unapred trenirane jezicke
modele (eng. Pre-Tranined Language Models), ¢iji su parametri uceni na
velikim korpusima. Jedan od najznacajnijih primera ove faze bio je BERT (eng.
Bidirectional Encoder Representations from Transformers) (Devlin et al. 2019).
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e Cetvrta faza obuhvatala je pojavu velikih unapred treniranih LLM-ova, koji su
demonstrirali sposobnost resavanja Sirokog spektra zadataka iz oblasti obrade
prirodnog jezika (eng. Natural Language Processing) (Wei et al. 2022) bez
potrebe za dodatnim treniranjem za svaki pojedinacni zadatak.

Danas se LLM-ovi koriste za reSavanje Sirokog spektra zadataka, ukljucujuéi pisanje
eseja, sumarizaciju teksta i automatski prevod (J. Yang et al. 2024) (Hadi et al. 2023).
LLM-ovi nalaze primenu u brojnim domenima, medu kojima su obrazovanje (Susnjak
and McIntosh 2024), medicina (Thirunavukarasu et al. 2023), finansije (Wu et al. 2023)
i inzenjerstvo (Badini et al. 2023).

Jedan od savremenih LLM-ova je ChatGPT, model razvijen od strane kompanije OpenAl
(OpenAlI 2022). Ovaj model pripada klasi jezickih modela poznatoj kao unapred trenirani
generativni transformeri (eng. Generative Pre-trained Transformer, GPT) (Fui-Hoon
Nah et al. 2023). GPT modeli primenjuju tehnike dubokog ucenja i treniraju se na velikim
skupovima podataka tokom duzeg vremenskog perioda (Cascella et al. 2023).

ChatGPT je unapred treniran veliki jezicki model koji je dodatno prilagoden (eng. fine-
tuned) za konverzacijske zadatke, ¢ime je optimizovan za generisanje koherentnih i
prirodnih odgovora u interakciji sa korisnikom (Fui-Hoon Nah et al. 2023). Ovaj model
pripada Siroj kategoriji generativne veStacke inteligencije (eng. Generative AI), koja
obuhvata alate sposobne za automatsko generisanje teksta, kreiranje kreativnog sadrzaja,
kao i integraciju i interpretaciju informacija iz razli¢itih izvora (Hadi et al. 2023) (Khoury
et al. 2023) (Haase and Hanel 2023). U okviru ove disertacije koristi se ChatGPT model
zasnovan na GPT-4 arhitekturi (Koubaa 2023).

Slika 9 ilustruje proces kojim LLM generiSe izlazni tekst (eng. completion) na osnovu
ulaznog teksta (eng. prompt). Prvi korak obrade ulaznog teksta je njegova numericka
reprezentacija. Tekst se najpre segmentira u tokene — u zavisnosti od primenjene metode
segmentacije, tokeni mogu predstavljati re¢i, podreci, karaktere ili bitove. Svaki token se
zatim mapira na jedinstveni numericki identifikator, koji odgovara njegovoj poziciji u
rec¢niku tokena — skupu svih mogucih tokena koji model moze prepoznati i obraditi. Ovi
identifikatori se potom konvertuju u embeding vektor (eng. embedding vector), koji
modelu omogucavaju da obraduje znacenje i odnose izmedu tokena u visSedimenzionom
prostoru. Proces tokenizacije ulaznog teksta detaljnije je opisan u potpoglavlju 2.2.2.1.

Embeding vektori se zatim prosleduju neuronskoj mrezi zasnovanoj na transformer
arhitekturi (Vaswani et al. 2023), koja je detaljnije prikazana u potpoglavlju 2.2.2.2.
Transformeri se mogu koristiti za razli¢ite zadatke, u zavisnosti od konteksta primene. U
ovom potpoglavlju opisan je generativni scenario, u kojem neuronska mreza na izlazu
vraca distribuciju verovatnoca nad celokupnim re¢nikom tokena, odnosno verovatnoce
svih moguc¢ih tokena u re¢niku modela koji mogu slediti nakon ulaznog teksta. Proces
izbora sledeceg tokena iz ove distribucije zavisi od primenjene strategije dekodiranja,
koja je detaljnije opisana u potpoglavlju 2.2.2.2.3.

Slika 10 prikazuje proces generisanja izlaznog teksta, koji se odvija token po token. Svaki
generisani token zahteva jedan prolazak unapred (eng. forward pass) ulaznog teksta kroz
model. LLM-ovi su autoregresivni (eng. autoreggressive), §to znaci da model, prilikom
predikcije slede¢eg tokena, na ulaz dodaje sve prethodno generisane tokene (Naveed et
al. 2024). Ovaj proces se zavrsava kada model generise specijalni token za kraj sekvence
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(eng. end-of-sequence token, EOS) ili kada dostigne maksimalan broj dozvoljenih tokena
u izlaznom tekstu.

Da bi mogao da generiSe koherentan i smislen tekst, model se prethodno obucava na
velikim korpusima podataka. Jezicki model koji je prosao kroz ovu fazu obuke naziva se
pre-treniran veliki jezi€ki model (eng. pre-trained LLM). Tokom obuke, model uci
statisticke obrasce jezika i formira reprezentacije znacenja reci i fraza, §Sto mu omogucéava
da kasnije predvida sledece tokene u razli¢itim kontekstima. Dalji tekst ¢e predstaviti
kljuéne komponente transformer arhitekture koje omogucéavaju ovaj proces.

Optimizu] potroSnju energije u 1, Ulazni prompt
kuti za sledec¢a 24h na osnovu (instrukcija prosledena
predvidanja PV proizvodnje | LLM-)
potrodnje.

2. Obrada informacija i

€5 LLM Tranformer oSt

Za sledecih 24h preporutuje se sledece:

» pokretanje ves masine u 14h kada je najveca

proizvodnja solame energije 3. Generisan odgovor
+ podesavanje temperature klima uredaja na 25

C* izmedu 16h i 18h [...]

Slika 9. Na visokom nivou apstrakcije, veliki jezicki model prima ulazni tekst u obliku
prompta (eng. prompt) i, nakon obrade, generiSe izlazni tekst (eng. completion).

Optimizy] potrodnju energlie u kud

za slededa  24h ma  osnovu
1. Ulazni prompt predvidanja PV profzvodnje. | % LLM Tranformer Za 2, Generisan 1 token
pofrognje.
3, Ulazni t | prethodno Optimizuj potroénju energile u kuci i ' z
RTRTALE ) ettt i Sl i Qg LLM Tranformer sledetih 4, Genrisan nov token

generlaan loken
predvidana PV profzvodnje |
polragnje.

Za

Slika 10. Izlazni tekst se generise iterativno, token po token. Prvi izlazni token se generise
na osnovu zadatog prompta. Svaki naredni token generise se tako $to model koristi
prompt prosiren prethodno generisanim tokenima kao novi ulaz.

2.2.2.1  Tokenizator

Tokenizator je kljuéna komponenta LLM arhitekture, odgovorna za segmentaciju
ulaznog teksta u niz tokena koje model moze da obradi. U zavisnosti od izabrane
strategije za tokenizaciju, tokeni mogu biti cele reci, podreci, ili pojedinacni karaktere.
Ova odluka utice na efikasnost modela: manji broj duzih tokena ubrzava obradu, ali
umanjuje fleksibilnost za retke i nepoznate reci, dok finija segmentacija povecava broj
tokena i troskove obrade, ali poboljSava robusnost.

Prilikom dizajniranja tokenizatora, definiSu se i veliina re¢nika i specijalni tokeni.
Veli¢ina re¢nika odreduje broj jedinstvenih tokena koje model moze da prepozna i
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generiSe — ve¢i re€nik omogucéava vecu pokrivenost jezika, ali povecava memorijske
zahteve i slozenost treniranja (Mikolov et al. 2013). Specijalni tokeni su unapred
definisani simboli sa posebnim funkcijama unutar modela — na primer, oznacavanje
pocetka ili kraja sekvence ili razdvajanje recenica.

Tokenizator se zatim trenira (ili prilagodava) na reprezentativnom tekstualnom korpusu.
Trening tokenizatora podrazumeva statistiCku analizu jezika — identifikaciju frekventnih
obrazaca, konstrukciju re¢nika i odredivanje optimalne segmentacije. Ovaj proces
omogucava da model kasnije efikasno transformiSe tekst u niz tokena, prilagoden
specifi¢nostima jezika, domena i ciljeva zadatka.

U ovoj disertaciji koristi se GPT-4, koji je ostvario znacajno bolje rezultate u poredenju
sa prethodnim generacijama GPT modela (Koubaa 2023) (OpenAl et al. 2024). U ovom
istrazivanju je ustanovljeno da su promptovi prikazani u potpoglavlju 4.5 previse sloZeni
za starije verzije GPT modela, dok ih je GPT-4 uspesno obradio. GPT modeli koriste
BytePair Encoding tokenizaciju (Sennrich et al. 2016). Ovaj tokenizator segmentira tekst
na jedinice koje mogu predstavljati re¢i, podreci, pojedina¢ne znakove ili frekventne
kombinacije karaktera i simbola. U slu¢aju GPT-4 modela, koristi se re¢nik koji sadrzi
nesto vise od 100,000 tokena. Primer rezultata tokenizacije GPT-4 modela na OpenAl
platformi je prikazan na slici 11, gde je ilustrovano kako se ulazni tekst transformise u
niz tokena pre nego S$to se prosledi modelu na obradu.

GPT-40&GPT-4omini  GPT-35KGPT-4  GPT-3(Legacy)

Please close the window before you stand too close to it.

Clear  Show example
Tokens Characters

12 57

Please close the window before you stand too close to it.

Text  Token IDs

Slika 11. Tokenizator, na osnovu specifiéne metode i prethodno definisane procedure
treniranja, segmentira tekst na tokene pre nego $to se tekst preda LLM modelu. (OpenAl
2022)

Nakon S§to tokenizator segmentira ulazni tekst i svakom tokenu dodeli jedinstveni
numericki identifikator, ti identifikatori se mapiraju na embeding, kao S$to je prikazano
na slici 12. Embeding je gusti (eng. dense) vektor realnih brojeva fiksne dimenzije, koja
se unapred definiSe kao hiperparametar modela. Tipicne dimenzionalnosti embedinga
kre¢u se od 8 u jednostavnijim modelima, do 1024 kod velikih jezickih modela. Vecéa
dimenzionalnost omogucava modelu da preciznije modeluje semanticke odnose medu
tokenima, ali zahteva vecu koli¢inu podataka i racunarske resurse za treniranje.
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Embeding enkodira semanticke informacije o tokenu — slicne re¢i su predstavljene
vektorima sli¢nih vrednosti. U kontekstualnim modelima, kao $to je GPT, isti token moze
imati razli¢ite embedinge u zavisnosti od konteksta u kojem se javlja, ¢ime se postize
fleksibilnije i ta¢nije razumevanje znacenja. Nasuprot tome, modeli koji ne koriste
kontekst (na primer, word2vec) dodeljuju svakoj re¢i jednu, fiksnu reprezentaciju,
nezavisno od njenog konteksta u recenici.

Embeding vektori se ne zadaju unapred, ve¢ se njihovi parametri uce tokom procesa
treniranja modela — predstavljaju optimizovane tezine neuronske mreze. Primer
obucavanja embedinga reci ilustrovan je kroz algoritam word2vec (Mikolov et al. 2013).
Za njegovo treniranje koristi se tekstualni korpus koji se sastoji od skupa recenicama iz
kojih se generiSu parovi ulaz-izlaz za obuku modela. Word2vec primenjuje dva osnovna
pristupa (Mikolov et al. 2013):

o Continous Bag of Words (CBOW) — koristi reci iz konteksta kako bi prevideo
ciljnu rec.

e  Skip-gram —koristi ciljnu re¢ kako bi predvideo reci koje se pojavljuju u njenom
kontekstu, tj. u neopsrednoj blizini.

Primer 2.3 ilustruje razliku izmedu CBOW i Skip-gram modela u nacinu predvidanja reci
na osnovu konteksta.

Primer 2.3 Postavka CBOW i skip-gram model ana primeru recenice: “Macka sedi na
prozoru i posmatra ptice.” Ukoliko je ciljna re¢ “prozoru”, a veli¢ina konteksta (eng.
window size) 2, dobijamo sledece:

e CBOW koristi reci iz konteksta: ,,sedi, ,,na*, i, ,,posmatra“ kako bi prevideo
ciljnu re¢ ,,prozor*.

o  Skrip-gram Kkoristi ciljnu re¢ ,,prozoru’ kao ulaz, i predvida reci iz njenog
konteksta: ,sedi*, ,,na”, i, ,,posmatra®.

CBOW se pokazao efikasnijim za ucestale reci i pogodniji je za treniranje na velikom
skupovima podataka, dok skip-gram bolje modeluje retke reci i uspesnije uci semanticke
relacije u manjim korpusima.

Tokeni Token embeddings

Token 1D Token

100260 $-cq---=- <[fim_suffix|> f=p-{--- D:D

Slika 12. Sa leve strane prikazan je trenirani tokenizator, dok je sa desne strane prikazan
LLM model koji sadrzi embedinge. Svaki token ima svoju odgovarajucu vektorsku
reprezentaciju.

Kao rezultat opisanog procesa, na ulaz LLM modela dolazi niz embedinga, koji
predstavlja numericku reprezentaciju teksta u visSedimenzionalnom prostoru. Rezultujuci
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niz embedinga se prosleduju transformer arhitekturi, gde se obraduju kroz slojeve
neuronske mreze.

2.2.2.2  Transformer arhitektura

Detaljniji prikaz transformer arhitekture dat je na slici 13. Transformer se sastoji od
slede¢ih komponenti:

e Pozicioni enkoding (eng. positional encoding) — dodaje informacije o redosledu
tokena unutar ulaznih sekvenci, budu¢i da transformer nema ugradenu
sekvencijalnu obradu (potpoglavlje 2.2.2.2.1).

e Enkoder (eng. encoder) — transformise ulaznu sekvencu u kontekstualizovane
reprezentacije (eng., contextualized embedding), omogucavajué¢i modelu da
razume odnose medu tokenima. Za svaki ulazni token, enkoder generiSe
vektorsku reprezentaciju, koja se obogacuje informacijama iz celokupnog
konteksta sekvence (Vaswani et al. 2023).

e Dekoder (eng. decoder) — koristi izlaz enkodera i prethodno generisane tokene
kako bi autoregresivno generisao sledece tokene u izlaznoj sekvenci. Detaljna
analiza medusobne interakcije enkodera i dekodera u procesu generisanja teksta
data je u potpoglavlju 2.2.2.2.3.

e  Mehanizam viSestruke paznje (eng. multi-head attention) — omogucava modelu
da analizira odnose izmedu tokena u sekvenci (potpoglavlje 2.2.2.2.2).

Output
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Add & Norm
Feed
Forward N
N Add & Norm
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Multi-Head Muiti-Head
Attention Attention
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. 7 N —
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Embedding Embedding
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(shifted right)

Slika 13. Transformer arhitektura (Vaswani et al. 2023).

2.2.2.2.1  Pozicioni enkoding

Klju¢na prednost transformera u odnosu na rekurentne modele je njihova sposobnost

paralelnog procesiranja tokena unutar ulazne sekvence, $to znacajno povecava efikasnost

obrade i treniranja modela (Lin et al. 2022). Efikasna paralelizacija omogucava treniranje
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transformera nad izrazito velikim skupovima podataka, $to ih ¢ini pogodnim za slozene
zadatke obrade prirodnog jezika.

Medutim, zbog paralelne obrade, tranformeri nemaju inherentnu sposobnost
razumevanja redosleda tokena u sekvenci, za razliku od rekurentnih modela koji prirodno
obraduju podatke sekvencijalno. Zbog toga je neophodno eksplicitno dodati informacije
o poziciji svakog tokena u sekvenci, $to se postize pozicionim enkodiranjem (eng.
positional embedding) (Vaswani et al. 2023).

Svaki token u ulaznoj sekvenci dobija svoj pozicioni enkoding, ¢ija je dimenzija jednaka
dimenziji njegovog embedinga tokena (eng. foken embedding). Pozicioni enkoding se
zatim sabira sa embedingom tokena, a dobijeni rezultat se prosleduje kao ulaz u sve
slojeve enkodera. Sli¢no, dekoder koristi sumu pozicionih enkodinga i embedinga svojih
generisanih izlaznih tokena.

Postoji vise nac¢ina za definisanje pozicionog enkodinga (Gehring et al. 2017). Autori
rada (Vaswani et al. 2023) predlozili su sinusno-kosinusni pozicioni enkoding, koji
omogucava modelu da prepoznaje relativne odnose izmedu tokena bez potrebe za
dodatnom optimizacijom parametara. Ovaj metod koristi periodicne funkcije za
kodiranje pozicije tokena, ¢ime se omogucava generalizacija na sekvence razli¢itih
duzina. Pozicioni enkoding se racuna prema slede¢im formulama:

PE = si pos
(pos,2i) = S 2 )
10000%model ( 24 )
B pos
PE(pos,2i+1) = cos 2i ’
10000%modet

gde je pos pozicija tokena u sekvenci, d,q. dimenzija vektorskog prostora
reprezentacija tokena, a i indeks dimenzije unutar vektora pozicionog enkodinga.

Primer 2.4 Izracunavanje pozicionog enkodinga analizirajuéi re¢nicu: ,, Macka juri misa
dok pas spava“. Radi jednostavnosti, dimenzija vektorskog prostora postavljena je na
dmoder = 4, 1ako je u praksi ovaj broj znatno veci kako bi enkoding obuhvatio slozenije

semanticke odnose medu tokenima. Indeks i jeuopsegu 0 <i < g . Tabela 4 prikazuje

vrednosti pozicionih enkodinga svih reci u recenici za ovaj slucaj, izratunate na osnovu
jednacina ( 24 ). Posmatrajuci vrednosti u tabeli 4, moze se primetiti da svaki token dobija
jedinstven pozicioni enkoding koji oznacava njegovu apsolutnu poziciju u sekvenci.
Pozicioni enkoding omogu¢ava modelu da prepozna relativne i apsolutne polozaje reci,
¢ime postaje sposoban za obavljanje zadataka kao §to su prevodenje i generisanje teksta.

Tabela 4. Primer izracunatih vrednosti pozicionog enkodinga (zaokruzeno na dve
decimale).

Reé Pozicija u reCenici (p0s) PE(,,50) PEos1) PEgos2)  PEos3)
Macka 0 0.00 1.00 0.00 1.00
juri 1 0.84 0.54 0.01 1.00
misa 2 0.90 -0.41 0.02 1.00
dok 3 0.14 -0.99 0.03 1.00
pas 4 -0.75 -0.65 0.04 0.99
spava 5 -0.95 0.28 0.05 0.99
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2.2.2.2.2  Mehanizam paznje

Mehanizam paznje (eng. attention) omogucava modelima dubokog ucenja da se
fokusiraju na klju¢ne delove ulazne sekvence prilikom obrade podataka. Tradicionalni
sekvencijalni modeli, poput rekurentnih neuronskih mreza (eng. Recurrent Neural
Network), obraduju podatke iterativno, gde svaka nova reprezentacija zavisi od
prethodnih stanja. Nasuprot tome, mehanizam paznje omogucava modelu da istovremeno
analizira sve delove sekvence, ¢ime se poboljSava efikasnost i omogucava bolja
dugoro¢na zavisnost medu tokenima.

Mehanizam paznje zasniva se na tri klju¢ne komponente:

o  Upit (eng. query, q) — vektor koji predstavlja trenutno stanje modela pri obradi
odredenog tokena u sekvenci. Svi upiti u jednoj sekvenci formiraju matricu
upita (eng. query matrix, Q), gde svaki red predstavlja jedan vektor upita za
pojedinacan token.

e Klju¢ (eng. key, k) — vektor koji kodira informacije o karakteristikama
pojedinac¢nog tokena u sekvenci. Skup svih kljuceva formira matricu kljuceva
(eng. key matrix, K), gde svaki red odgovara kljuénom vektoru jednog tokena.

e  Vrednost (eng. value, v) — vektor koji sadrzi sadrzajne informacije vezane za
dati token. Svi vektori vrednosti ¢ine matricu vrednosti (eng. value matrix, V),
gde svaki red nosi reprezentaciju pojedina¢nog tokena u sekvenci.

Mehanizam paznje moze se opisati kao funkcija koja, na osnovu matrice upita (Q) i skupa
klju¢-vrednost parova (K-V), racuna izlazne vektore paznje. Izlaz paznje predstavlja
ponderisanu sumu matrice vrednosti (V), pri ¢emu se tezine paznje odreduju na osnovu
sli¢nosti izmedu matrice upita (Q) i matrice kljuceva (K).

Sli¢nost izmedu upita i kljuéeva ra¢una se kao proizvod QKT pri éemu svaka vrednost u
rezultuju¢oj matrici predstavlja meru slicnosti izmedu jednog upitnog vektora i jednog
kljuénog vektora. Da bi se poboljsala stabilnost tokom obuke modela, dobijene vrednosti
se skaliraju deljenjem sa \/d_k , gde d;, predstavlja dimenziju vektora klju¢eva. Konacno,
rezultati se normalizuju soffmax funkcijom, koja transformiSe sli¢nosti u distribuciju
verovatno¢a. Ovaj pristup je poznat kao paznja zasnovana na skaliranom skalarnom
proizvodu (eng. Scaled Dot-Product Attention) (slika 14).

Matematicki, paznja se racuna po sledecoj formuli (Vaswani et al. 2023):

T
Attention(Q,K,V) = softmax (QK )V. (25)

Jax

Ova formula omogucava modelu da dodeli veéu paznju klju¢evima koji su relevantniji
za dati upit, ¢cime se model fokusira na znacajne informacije u sekvenci i poboljSava
razumevanje konteksta.
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Slika 14. Paznja zasnovana na skaliranom skalarnom proizvodu vektora.

U standardnoj transformer arhitekturi postoje dva glavna tipa paznje:

e Samo-paznja (eng. self-attention) — koristi se kada model analizira odnose
unutar iste sekvence. Enkoder koristi samo-paznju kako bi izgradio
reprezentaciju na osnovu medusobnih odnosa reci u ulaznoj sekvenci. Dekoder
koristi samo-paznju kako bi procenio odnose medu ve¢ generisanim tokenima.
U primeru 2.5 prikazana je upotreba mehanizma samo-paznje.

e Enkoder-dekoder paznja (eng. encoder-decoder attention) — koristi se u
dekoderu za interakciju sa izlaznim reprezentacijama enkodera. Omogucava
dekoderu da generiSe slede¢i token oslanjajuci se na informacije iz enkodera.

Primer 2.5 U samo-paznji, model analizira koliko je svaki token u sekvenci povezan sa
ostalim tokenima. Posmatrajmo jednostavnu rec¢enicu: ,,Macka juri misa dok pas spava “.
Prvo, svaka re¢ se transformiSe u vektorski embeding, a zatim se za svaku od njih
izraCunavaju odgovarajuéi upiti (Q), kljucevi (K) i vrednosti (V):

e  Matrica upita (Q) — svaki njen red je vektor upita koji model koristi da bi odredio
koliko su ostali tokeni vazni za taj konkretan token.

e  Matrica kljuceva (K) — svaki red u ovoj matrici predstavlja vektor koji sadrzi
informacije o specificnom tokenu, §to omoguc¢ava modelu da poredi token sa
ostalim upitima.

e  Matrica vrednosti (V) — svaki red nosi sadrzajnu reprezentaciju tokena, koja se
kasnije ponderiSe i koristi za raCunanje izlaza paznje.

Na primer, ako se fokusiramo na re¢ ,,juri“, model ra¢una kompatibilnost njenog upitnog
vektora sa svim kljuénim vektorima u sekvenci pomoéu proizvoda QKT. Ovo daje
matricu paznje, gde svaka vrednost pokazuje stepen slicnosti izmedu reci ,,juri“ 1 svih
ostalih reci u reCenici.

Pretpostavimo da je model dodelio sledeée tezine paznje za ,,juri u kontekstu ove
recenice: ,,macka“ = 0.1, juri“ = 0.2, ,misa” = 0.7, ,dok*, ,pas*, ,spava“ — = 0.0.
Najvecu paznju (0.7) ,juri* pridodaje reéi ,,misa“ jer su semanti¢ki povezane — glagol
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,juri‘ se odnosi na objekat ,,misa*. Takode, ,,juri obraca odredenu paznju na ,,macka”,
jer ona vrsi radnju jurenja. Preostale reci imaju gotovo zanemarljive teZine, jer nisu
relevantne za akciju ,,juri” u datom trenutku obrade.

Ulazna sekvenca prvo prolazi kroz ulazni embeding sloj i sloj pozicionog enkodinga,
¢ime se za svaki token generiSe vektorska reprezentacija koja sadrzi informacije o
znacenju reci i njenom polozaju u recenici. Dobijene vektorske reprezentacije zatim ulaze
u mehanizam samo-paznje, gde se tranformisu u tri matrice: upite (Q), kljuceve (K) i
vrednosti (V). Ove transformacije se ostvaruju primenom linearnih projekcija, pri cemu
se svaka ulazna vektorska reprezentacija X mnozi sa odgovaraju¢om tezinskom
matricom:

Q =XWQ K =XWKV=XxW".
Ovde je:

e X matrica dimenzija n X dy,;qe;, gde je n broj tokena, a d,,,qe; dimenzija
vektorske reprezentacije,

o WO WK i WY su parametarske matrice koje se optimizuju tokom obuke
modela.

Transformisane reprezentacije Q, K i V omogucavaju modelu da izracuna tezine paznje,
odnosno da proceni koliko je svaki token relevantan u odnosu na ostale u sekvenci. Ove
tezine se koriste za izgradnju kontekstualizovanih reprezentacija, koje uzimaju u obzir
medusobne zavisnosti izmedu tokena.

U viseslojnoj arhitekturi transformenra, svaki sledeé¢i enkoderski sloj dodatno obogacuje
reprezentacije reci na osnovu paznje iz prethodnog sloja. Na taj nacin, model progresivno
uci da prepoznaje dublje semanticke i sintaksiCcke odnose izmedu re¢i u recenici.
Mehanizam paznje omoguc¢ava modelu da adaptivno raspodeli paznju na razli¢ite delove
sekvence, u skladu sa njihovim znacenjem u datom kontekstu.

Visestruki mehanizam paznje (eng. multi-head attention), prikazan na slici 15,
predstavlja proSirenje osnovnog mehanizma paznje kroz istovremenu primenu vise
nezavisnih paznji. Ova tehnika omogucava modelu da se istovremeno fokusira na
razli¢ite odnose unutar sekvence, ¢ime se znacajno povecava njegova sposobnost
razumevanja slozenih zavisnosti u tekstu. Svaka paznja u okviru visestrukog mehanizma
nezavisno analizira razliCite karakteristike podataka, nakon cega se njihovi izlazi
kombinuju u jednu bogatiju reprezentaciju.

Matematicki, visestruka paznja se opisuje sledecom formulom (Vaswani et al. 2023):

MultiHead(Q,K,V) = Concat(headl, ..., head,)W?,
gde je: . (26)
head; = Attention(QW,*, KW, vW}).

U ovoj formulaciji:

e (O, K iV su ulazne matrice koje sadrze upite, kljuCeve i vrednosti za celu
sekvencu.

. WiQ, WX i WY sumatrice projekcije, koje transformisu ulazne vektore Q, K iV
u razliCite podprostore, omogucavajuéi svakom mehanizmu paznje da analizira
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razli¢ite aspekte podataka. Drugim re¢ima, svaka glava paznje koristi sopstvenu
verziju ulaznih podataka, dobijenu linearnim transformacijama pomocu ovih
matrica.

e Svaka glava paznje (head;) primenjuje standardni mehanizam paznje ( 25 ), ali
nad razli¢itim transformisanim verzijama ulaznih matrica Q, K i V, dobijenim
pomocu matrica projekcije WiQ, wKkiwy.

e (oncat oznacava spajanje svih pojedinacnih izlaza paznji u jedan objedinjeni
vektor.

e WP9 je matrica teZina, koja transformiSe spojen izlaz viSestruke paZnje u
odgovarajuci prostor dimenzija, pripremajuci ga za sledece slojeve mreze.

Koris¢enjem visestruke paznje, model postiZze vecu izrazajnu mo¢, jer svaka glava moze
da se fokusira na razli¢ite odnose izmedu reci u recenici. Na primer, dok jedna glava
paznje moze da identifikuje subjekat i glagol, druga moze da poveze prideve sa
imenicama, a tre¢a moze da prepozna dugoro¢ne zavisnosti u recenici.

Scaled Dot-Product
Attention

| Split I l Split | l Split |
t t t

(Linear] (Linear| [ Linear|

f

v K Q

H

Slika 15. ViSestruki mehanizam paznje (Vaswani et al. 2023).

2.2.2.2.3  Enkoder i dekoder

Primarna funkcija enkoder komponente jeste transformacija ulazne sekvence u
kontekstualizovane vektorske reprezentacije koris¢enjem viSestrukog mehanizma
paznje. U originalnom radu (Vaswani et al. 2023), enkoder se sastojao od Sest identi¢nih
slojeva. Svaki sloj uklju¢ivao je dva glavna podsloja: viSestruki mehanizam paznje i
potpuno povezanu neuronsku mrezu (eng. feedforward neural network). Nakon svakog
podsloja primenjivane su rezidualne konekcije i sloj za normalizaciju (slika 13).

Glavna uloga dekodera jeste autoregresivno generisanje izlazne sekvence, pri ¢emu
koristi prethodno generisane tokene i kontekstualizovane reprezentacije iz enkodera kako
bi predvideo slede¢i token. U radu (Vaswani et al. 2023), dekoder se takode sastojao od
Sest identi¢nih slojeva. Svaki sloj obuhvatao je tri podsloja: prva dva identi¢na onima u
enkoderu, dok je tre¢i bio viSestruki mehanizam paznje nad izlazima enkodera, ¢ime se
omogucava uvodenje informacija iz ulazne sekvence u proces generisanja (slika 13). Kao
i kod enkodera, svi podslojevi bili su povezani rezidualnim vezama i normalizovani
posebnim slojevima.
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Za razliku od enkodera, dekoder koristi maskirani viSestruki mehanizam paznje (eng.
masked multi-head attention) kako bi sprec¢io da buduéi tokeni utiu na generisanje
trenutnog tokena. Time se obezbeduje da se prilikom treniranja svaki token predvida
isklju¢ivo na osnovu prethodno poznatih tokena.

2.2.2.2.4  Strategije izbora sledeceg tokena

Odabir sledeceg tokena zasniva se na strategiji dekodiranja (eng. decoding strategy).
Strategije dekodiranja mogu se podeliti na (Shi et al. 2024):

e Deterministi¢ke strategije — isti ulaz uvek rezultira istim izlazom.
e Stohasti¢ke strategije — uvode nasumicnost, Sto moze dovesti do varijabilnosti
izlaza Cak i za isti ulaz.

Najjednostavnija deterministicka strategija je pohlepna strategija (eng. greedy strategy),
pri kojoj se u svakom koraku bira token sa najve¢om verovatno¢om. lako je ovaj pristup
racunski efikasan, ¢esto dovodi do repetitivnih ili suboptimalnih izlaza. Stohasticke
strategije uvode nasumicnost kako bi poboljsale varijabilnost i kreativnost generisanog
teksta. Ove metode omogucavaju izbor tokena iz skupa najverovatnijih kandidata,
umesto strogo najverovatnijeg tokena, ¢ime se smanjuje rizik od predvidljivih ili
monotonih izlaza.

Jedan od najcesce koris¢enih nacina za kontrolisanje nasumic¢nosti u dekodiranju je
uzorkovanje sa temperaturom (eng. temperature sampling). Ovaj postupak podrazumeva
postavku parametra temperature (eng. femperature), ¢ija vrednost moze biti bilo koji
realan broj > 0, iako se u praksi najéesce definiSe u opsegu [0, 1] (Shi et al. 2024).
Vrednosti temperature blize 1 ukazuju na smanjenje preciznosti LLM modela (Renze
2024). Nize vrednosti temperature (blize 0) vode ka deterministickom odabiru tokena,
sli¢no pohlepnoj strategiji. Vise vrednosti temperature povecavaju nasumicnost u izboru
tokena, §to dovodi do raznovrsnijih izlaza, ali moze smanjiti i koherentnost generisanog
teksta. Parametar temperature odreduje balans izmedu predvidljivosti i varijabilnosti, $to
je klju¢no za prilagodavanje izlaznog teksta razli¢itim aplikacijama.

2.2.2.3  Tehnika prompt inZenjeringa

Veliki jezi¢ki modeli koriste se za reSavanje zadataka opSte namene (Zhao et al. 2024).
Njihova primena je posebno izrazena u interakciji sa korisnicima putem prirodnog jezika,
gde generiSu odgovore koji su stilom i strukturom sli¢ni ljudskoj komunikaciji. Medu
poznatim primerima ovih modela su GPT-3, GPT-4, ChatGPT i Claude (OpenAl 2022)
(Claude, 2023).

Za komunikaciju sa modelom koristi se prompt (Liu et al. 2023), koji predstavljaju
instrukciju, pitanje ili opis problema namenjen usmeravanju modela ka generisanju
tacnih i relevantnih odgovora (White et al. 2023). Kvalitet prompta znacajno uti¢e na
performanse modela, jer odreduje nacin na koji model tumaci zadatak i oblikovati izlaz
(He et al. 2024).

Tehnika prompt inZenjeringa (eng. prompt engineering) predstavlja jedan od nacina
prilagodavanja LLM-a za reSavanje specifi¢nih zadataka (Liu et al. 2023). Ovaj proces
podrazumeva osmis$ljavanje i optimizaciju prompta, napisanog prirodnim jezikom, sa
ciljem usmeravanja modela ka generisanju odgovora prilagodenih specificnim
zahtevima.
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Struktura prompta moze biti jednostavna — nekolicina reci ili recenica (slika 16). Dok su
jednostavni promptovi dovoljni za dobijanje osnovnih informacija, sloZeniji zadaci Cesto
zahtevaju preciznije definisane instrukcije koje modelu pruzaju dodatni kontekst i jasna
ocekivanja u vezi sa formatom odgovora.

Macka je Ulazni tekst

& um

..Sjajan  prijatelj i
¢esto donosi radost u
dom svojim
ponasanjem! [..]

Izlazni odgovor

Slika 16. Jednostavni prompt bez instrukcija gde LLM treba da dovrsi zapocetu
recenicu.

Jedan od najces¢ih oblika prompt inzenjeringa jeste prompt zasnovan na instrukcijama
(eng. instruction-based prompting) (Efrat and Levy 2020) (Mishra et al. 2022). Ovaj
pristup podrazumeva precizno definisanje konkretnog problema koji treba resiti, uz jasno
postavljene ciljeve. Ovaj pristup se koristi u razli¢itim zadacima, ukljuéujuci nadglednu
klasifikaciju (eng. supervised classification), pretragu informacija, sumarizaciju teksta,
generisanja koda i prepoznavanje imenovanih entiteta (eng. named entity recognition).
Svaki od ovih zadataka zahteva specifi¢an format pompt-a kako bi se postigao optimalan
rezultat.

Formulisanje efektivnog prompta predstavlja iterativan proces koji zahteva primenu
kljuénih tehnika, poput preciznog definisanja zadatka, postavljanja univerzalnog
odgovora za slucajeve kada LLM generiSe halucinacije (Ji et al. 2023) i pazljivog
strukturiranja redosleda intrukcija, pri ¢emu se preporucuje da se klju¢ne instrukcije
smestaju na pocetak ili kraj prompta.

Postoje napredne tehnike prompt inzenjeringa koje olakSavaju pisanje kompleksnijih
prompt-ova. Dok se jednostavniji promptovi uglavnom sastoje od tri komponente —
instrukcije, podataka i formata odgovora — kompleksniji promptovi mogu ukljucivati
dodatne elemente, koji omogucavaju usmeravanje modela i poboljSavaju relevantnost
generisanih odgovora. Kompleksniji promptovi, osim tri komponente koje sadrze
jednostavniji promptovi, mogu ukljuciti i sledeée elemente:

e  Persona: Definisanje specificne uloge LLM-a. Na primer, ukoliko se jasno
precizira da LLM treba da simulira sistem za upravljanje pametnim uredajima
sa ciljem optimizacije potro$nje energije i ocuvanje udobnosti stanara, model ¢e
se u vecini slucajeva usmeriti na relevantne aspekte zadatka (Shanahan et al.
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2023) (Buren 2023). Postavljanje uloge pomaze modelu da bolje razume
kontekst i prioritete, $to uti¢e na preciznost i korisnost odgovora.

e  Publika: 1dentifikacija ciljne grupe korisnika koji ¢e tumaciti odgovor LLM-a.
Na primer, u okviru problema upravljanja energijom u pametnoj kuci, moze se
naglasiti da preporuke treba prilagoditi stanaru bez tehnickog predznanja.

e  Ton: Zadavanje tona odgovora, kao $to su formalni ili neformalni, u zavisnosti
od specifi¢ne situacije i publike. Na primer, ako se stanaru daju saveti o ustedi
energije, moze se zahtevati jasan i prijateljski ton, bez stru¢nih izraza, kako bi
preporuke bile lako razumljive.

e  Podaci: Relevantne informacije specificne za zadatak, koje mogu unaprediti
kvalitet odgovora. Na primer, stanar moze dopuniti prompt podacima o upotrebi
uredaja u protekloj nedelji, ¢ime se omogucava preciznija personalizacija
odgovora.

Kompleksni promptovi imaju modularu strukturu, $to omogucava fleksibilnost u
njihovom oblikovanju. Komponente se mogu dodavati ili uklanjati proizvoljno, a
redosled njihovog navodenja se moze prilagodavati specifikaciji zadatka. Slika 17
prikazuje primer prethodno opisanih komponenti i ilustruje kako se modularna struktura
prompta moze koristiti za optimizaciju odgovora modela. Proces kreiranja prompta je
eksperimentalan i iterativan — na osnovu odgovara koji generiSe LLM, prompt se
prilagodava sve dok se ne pronade optimalna struktura za dati problem.

Persona

——

Oponasaj model za obradu_prirodnog

e
Kiasifikuj komentare prema sentimentu

ozt

Odgovor treba da bude organizovan u

Klasifikator fe koristiti analiican koji

o

Ton
——

Foslmlﬂ'-‘-ﬂeodgma treba da budu
formalne i profesionalne

s
————————————_

Slika 17. Primer kompleksnog pompt koji sadrzi vise komponenti.
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Pored instrukcija, prompt se moze prosiriti konkretnim primerima odgovora, ¢ime se
dodatno pojasnjava ocekivani ishod prompta. Ovaj postupak, poznat kao ucenje iz
konteksta (eng. in-context learning) (Brown et al. 2020), omogu¢ava LLM modelima da
bolje razumeju i reSavaju zadatke na osnovu datih primera, bez potrebe za dodatnom
obukom. U zavisnosti od broja primera u promptu, razlikuju se pristupi: zero-shot (bez
primera), one-shot (sa jednim primerom) i few-shot (sa nekoliko primera). U zavisnosti
od broja primera u promptu, razlikuju se tri pristupa:

e Zero-shot — model dobija samo instrukciju, bez primera odgovora i oslanja se
iskljuc¢ivo na prethodno steceno znanje. Na primer, u kontekstu HEMS-a, zero-
shot prompt moze sadrzati instrukciju da model treba da optimizuje potrosnju
energije na osnovu prognoze sunc¢anog dana, koriste¢i postoje¢u bazu znanja.

e One-shot — modelu se pruza jedan primer odgovora kao referenca.

e  Few-shot—model dobija nekoliko primera odgovora kako bi bolje uocio obrasce
i prilagodio svoj izlaz. Na primer, u kontekstu HEMS-a, few-shot prompt moze
ukljucivati primere potroSackih obrazaca iz prethodnih sli¢nih situacija, pracene
ocekivanim odgovorom sistema. Odgovor sistema moze biti optimalna akcija ili
preporuka koju sistem treba da pruzi, uzimajuci u obzir specifican ulazni
scenario.

Ove strategije omogucéavaju primenu velikih jeziCkih modela u specifi¢nim kontekstima,
bez potrebe za dodatnim finim podeSavanjem modela.

2.3 Analiza odluka modela zasnovanih na ucenju
potkrepljivanjem

SHAP (SHapley Additive exPlanations) biblioteka moze se koristiti za analizu uticaja
svake wulazne karakteristike trenutnog stanja na akciju koju model ucenja
potkrepljivanjem procenjuje kao najpovoljniju u datom stanju. SHAP takode omogucava
uvid u relativni znacaj pojedinacnih karakteristika, kao i u nacin na koji model koristi
njihove medusobne interakcije prilikom donosenja odluka. Ovaj pristup se preporucuje
isklju¢ivo za interpretaciju ponasanja modela, odnosno za analizu korelacionih odnosa
unutar nauc¢enog modela. Vazno je napomenuti da se SHAP uvidi ne bi trebali tumaditi
kao uzro¢ni efekti u stvarnom svetu, jer se zasnivaju na strukturi modela i statistiCkim
zavisnostima u podacima, a ne na eksperimentalno potvrdenim uzro¢no-posledi¢nim
vezama (Molnar et al. 2021).

SHAP vrednosti zasnivaju se na teoriji kooperativnih igara (eng. game theory), u kojoj
se doprinos svake ulazne karakteristike posmatra analogno doprinosu pojedinacnog
igraca u postizanju zajednickog cilja. U kontekstu maSinskog ucenja, to znaci da se
procenjuje koliki doprinos svaka karakteristika ima u ukupnoj predikciji modela,
uzimajuéi u obzir sve moguce kombinacije prisustva i odsustva drugih karakteristika.

U kontekstu ucenja potkrepljivanjem, SHAP vrednosti se racunaju za konkretnu akciju
koju je model izabrao u datom stanju. Pozitivna SHAP vrednost ukazuje na to da data
karakteristika povecava verovatno¢u predikcije te izabrane akcije, dok negativna
vrednost oznacava da karakteristika imaju smanjujuci efekat. Intenzitet uticaja odreduje
se apsolutnom vrednos¢u SHAP koeficijenata, ¢cime se kvantifikuje znacaj pojedina¢nih
karakteristika u procesu donosenja odluke. Na primer, u Gridworld okruzenju, gde model
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ucenja potkrepljivanjem treba da nauci kako da pronade put do cilja, SHAP analiza moze
pokazati da horizontalna koordinata cilja ima visoku pozitivohu SHAP vrednost, jer
snazno uti¢e na izbor akcije ,,idi desno* — na primer, kada je cilj desno od trenutne
pozicije agenta. Istovremeno, vertikalna koordinata cilja u tom istom stanju moze imati
neutralan ili negativan doprinos, ukoliko nije relevantna za odabir te konkretne akcije.
Ovakva analiza omogucava bolje razumevanje koje informacije iz stanja najviSe
doprinose odlukama modela, nezavisno od kompleksnosti modela.

U radu (Jiang et al. 2022), PPO model je treniran da postigne energetsku efikasnost
prilikom voznje kroz raskrsnice sa adaptivnim semaforskim sistemom, optimizujuci
ubrzavanje vozila u odnosu na dinamicko stanje okruzenja. Autori su koristili SHAP za
interpretaciju procesa donoSenja odluka u svakom vremenskom koraku voznje,
omogucavajuéi kvantifikaciju doprinosa svake ulazne karakteristike stanja na izbor
akcije. Rezultati su vizuelizovani grafovima koji prikazuju pozitivne i negativne uticaje
pojedinac¢nih karakteristika, kao $to su udaljenost od semafora, trenutna faza svetla i
preostalo vreme do promene faze. Na taj nacin, ponaSanje modela postaje transparentnije,
a strategija verodostojnija.

Autori (Beechey et al. 2023) prvi su pruzili teorijsku analizu primene SHAP metode za
objasnjavanje odluka modela ucenja potkrepljivanjem. U svojoj analizi ukazali su na
kljuéne nedostatke postojecih pristupa koji primenjuju SHAP za analizu vrednosne
funkcije ili politike, isticu¢i da takvi pristupi ne omogucéavaju pouzdanu interpretaciju
doprinosa pojedinacnih karakteristika stanja na performanse agenta. Kao alternativu,
autori predlazu metodu zasnovanu na Shapley vrednostima za objasnjavanje performansi
modela ucenja potkrepljivanjem (eng. Shapley Values for Explaining Reinforcement
Learning-Performance), koja umesto analize pojedinacnih predikcija razmatra promene
u ukupnoj nagradi kada se agentu uskracuju pojedine karakteristike stanja. lako ovaj
pristup omogucava dublji uvid u uzro¢ne odnose izmedu karakteristika stanja i
performansi agenta, njegova primena zahteva redefinisanje politike i uvodi dodatnu
metodolosku sloZenosti. Zbog toga nije koriS¢en u okviru ove disertacije, ali se
prepoznaje kao vazan pravac za buduca istrazivanja u okviru interpretabilnosti modela
ucenja potkrepljivanjem.
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3 Pregled aktuelnog stanja u oblasti

U ovom poglavlju analizira se postojeca literatura, sa fokusom na klju¢ne aspekte razvoja
i primene sistema za upravljanje energijom u pametnim ku¢ama. Potpoglavlje 3.1 pruza
istorijski pregled razvoja sistema za upravljanje energijom, prikazujuéi kljucne
tehnologije i pristupe kroz vreme. Potpoglavlje 3.2 analizira savremene strategije ucenja
potkrepljivanjem za upravljanje uredajima u pametnim kuc¢ama, sa posebnim naglaskom
na primeni DDQN i PPO algoritama, koji su pokazali znacajne rezultate. Potpoglavlje
3.3 razmatra primenu velikih jezickih modela u optimizaciji potros$nje energije, pri cemu
se istice nedostatak literature o njihovoj primeni u automatizaciji upravljanja uredajima
u pametnim kucama. Potpoglavlje 3.4 sumira ograni¢enja analiziranih reSenja, isticuci
otvorena istrazivacka pitanja i obrazlazuéi potrebu za istrazivanjem sprovedenim u ovoj
tezi.

3.1 Istorijski pregled razvoja sistema za upravljanje
energijom u pametnim ku¢ama

Mozemo tvrditi da termostati predstavljaju prvi oblik automatizovanog sistema za
upravljanje energijom u domacinstvu (Liu et al. 2016). Razvoj tehnologije i napredak
racunarskih sistema omogucili su pojavu softverskih resenja za upravljanje elektricnom
energijom.

Jedno od prvih takvih resenja razvili su Cook i saradnici (Cook et al. 2003), koriste¢i
inteligentnog agenta za automatizaciju upravljanja kuénim uredajima. Cilj ovog sistema
bio je poboljsanja komfora stanara i povecanje energetske efikasnosti. Optimizacija se
postizala algoritmima koji su predvidali sekvencu dogadaja u domacinstvu,
omogucavajuéi agentu da automatski reaguje na aktivnosti stanovnika i prilagodava se
njihovim rutinama. Agent je koristio algoritme za analizu ucestalosti dogadaja kako bi
predvideo i automatski izvrSavao zadatke, kao Sto su podeSavanja temperature,
ukljucivanje svetla i kafe aparata, kao i naru¢ivanje namirnica. Na taj nacin ostvarena je
usSteda energije i povecan komfor stanovnika. Vazno je napomenuti da se u novijim
istrazivanjima odredeni kuéni uredaji, koji su u ovom sistemu bili automatizovani, sada
klasifikuju kao ,,nekontrolisani potrosaci*. To znaci da njihov rad nije viSe pod kontrolom
automatizovanog HEMS-a, ve¢ je ostavljen na upravljanje stanovnicima.

Sa porastom interesovanja za obnovljive izvore energije, istrazivaci su poceli da ih
integriSu u HEMS reSenja kako bi poboljsali energetsku efikasnost. Boynuegri i saradnici
(Boynuegri et al. 2013) razvili su HEMS zasnovan na jednostavnim ,,ako-onda“ (eng. if-
then) pravilima. Sistem je ukljucivao obnovljive izvore energije, baterije za skladiStenje
energije i klima uredaj. KoriS¢enje klima uredaja bilo je ograni¢eno na letnji period i
aktiviralo se isklju¢ivo tokom ciklusa hladenja. Nisu razmatrani nac¢ini grejanja tokom
hladnijih meseci, $to je moglo umanyjiti efikasnost sistema u zimskom periodu, kada su
energetske potrebe i obrasci potros$nje drugaciji. Dodatno, pristup zasnovan na ,,ako-
onda“ pravilima je neskalabilan jer zahteva definisanje specificnih uslova za brojne
moguce scenarije, ukljuujuci varijacije u spoljnoj temperaturi, solarnoj proizvodnji,
tarifnim rezimima i karakteristikama uredaja. Rezultujuéi broj pravila moze postati velik
i nepregledan, §to otezava odrzavanje, modifikaciju, prosirenje i otklanjanje gresaka.
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Jedno od najcesce koriS¢enih resenja za energetsko upravljanje zgradama jeste sistem za
grejanje, ventilaciju i klimatizaciju (eng. Heating, Ventilation, and Air-Conditioning,
HVACQ). U literaturi je zabeleZen znacajan napredak u razvoju algoritama zasnovanih na
ucenju potkrepljivanjem za optimizaciju HVAC sistema. Yu i saradnici (Yu et al. 2020)
implementirali su algoritam dubokih deterministi¢kih gradijenata politike (eng. Deep
Deterministic Policy Gradients, DDPQG) za optimizaciju HVAC sistema, nekontrolisanih
potrosaca i sistema za skladiStenje energije (eng. Electrical Energy Storage), poput
baterija. lako su postigli poboljSanja u termalnom komforu i energetskoj efikasnosti,
njihova studija bila je ograni¢ena na letnje mesece, §to moZze uticati na generalizabilnost
rezultata na druge sezone.

Jedan od inovativnih koncepta za pametne kuce jeste integracija racunarskog vida (eng.
Computer Vision) s ciljem optimizacije potro$nje energije i poboljSanja komfora stanara.
Jaihar 1 saradnici (Jaihar et al. 2020) implementirali su sistem koji je, pored ru¢nog
upravljanja uredajima i automatizovane kontrole zasnovane na analizi korisnic¢kih
navika, koristio racunarski vid za automatsko prepoznavanje emocionalnog stanja
stanovnika. Na osnovu prepoznatih emocija, sistem je automatski prilagodavao
osvetljenje i rad ventilatora. Ogranic¢enje ove studije bilo je u tome Sto je eksperiment
sproveden u kontrolisanom okruZenju sa samo jednom osobom ispred kamere, $to je
ogranicilo mogucénost generalizacije rezultata na realne uslove u kojima se u prostoriji
moze nalaziti viSe osoba. Takode, studija nije pruzila detaljan opis nacina na koji su
identifikovane emocije mapirane na rad uredaja. KoriS¢eni pristup bio je zasnovan na
modelima masinskog u€enja za detekciju osam razli¢itih emocija, ali eksperimentalna
postavka, ukljucujuéi senzore i zvucne signalizatore, nije bila detaljno dokumentovana,
Sto oteZava razumevanje i prakti¢énu primenu dobijenih rezultata.

Nedavni pregled literature koji su sproveli Gomes i saradnici (Gomes et al. 2022) utvrdio
je da primena ucenja potkrepljivanjem predstavlja najsavremeniju tehniku za
automatizaciju upravljanja uredajima u pametnim kuéama. Zbog toga je ovaj
metodoloski pristup usvojen kao osnova za ovo istrazivanje.

3.2 Savremene strategije ucenja potkrepljivanjem za
upravljanje energijom u pametnim ku¢ama

Ovo potpoglavlje pruza pregled razvoja tehnika ucenja potkrepljivanjem za
automatizovane sisteme upravljanja u pametnim ku¢ama (HEMS).

Jedan od osnovnih pristupa u u€enju potkrepljivanjem jeste Q-ucenje (eng. O-Learning),
pri ¢emu njegova najjednostavniju varijantu predstavlja tabelarno Q-ucenje (eng.
Tabular Q-Learning). Xu i saradnici (Xu et al. 2021) primenili su tabelarno Q-ucenje za
binarnu kontrolu elektri¢nog bojlera s ciljem smanjenja potrosnje elektri¢ne energije u
domacinstvu. Funkcija nagrade u ovom modelu zasnivala se na dva glavna faktora:

e Troskovima elektri¢ne energije, koji su izracunavani na osnovu aktuelnih tarifa.
e  Visokim negativnim penalima dodeljenim zbog odstupanja temperature vode od
zadatih vrednosti u trenucima kada korisnici imaju potrebu za toplom vodom.

Ova metodologija omogucila je efikasno upravljanje energijom prilagodavanjem rada
bojlera stvarnim potrebama stanovnika, ¢ime su optimizovani potrosnja energije i komfor
korisnika.
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Xu 1 saradnici (Xu et al. 2020) takode su koristili tabelarno Q-ucenje. Za razliku od
prethodnog rada, prosirili su model dodavanjem novih tipova uredaja i uveli varijabilnu
potro$nju energije, umesto pretpostavke da uredaji troSe konstantnu koli¢inu energije
tokom rada. Modelovanje varijabilne potro$nje omoguéilo je ve¢u kontrolu rada uredaja.
Pored toga, autori su definisali viSe-ciljnu funkciju nagrade, koja obuhvata energetske
troskove 1 komfor korisnika, zavisno od tipa uredaja. Uredaji su klasifikovani u Cetiri
kategorije:

e  Uredaji sa fiksnim rasporedom rada (eng. non-shiftable),
e Uredaji sa prilagodljivom snagom rada (eng. power-shiftable),

e  Uredaji ¢iji se rad prilagodava vremenskim tarifama (eng. time-shiftable),
e Elektri¢no vozilo, tretirano kao poseban tip uredaja.

Za sve tipove uredaja, osim onih sa fiksnim rasporedom rada, definisani su koeficijenti
nezadovoljstva (eng. dissatisfaction coefficient) ¢ije vrednosti nisu dodatno pojasnjene
od strane autora. Koeficijenti nezadovoljstva se razlikuju u zavisnosti od tipa uredaja:

e Za uredaje sa promenljivom snagom rada, komfor se racunao kao proizvod
odgovarajuc¢eg koeficijenta nezadovoljstva i kvadrata razlike izmedu
maksimalne potrebne energije i trenutne potros$nje uredaja.

e  Zauredaje ¢iji se rad prilagodava vremenskim tarifama, komfor se definisao kao
proizvod odgovarajuceg koeficijenta nezadovoljstva i kvadrata razlike izmedu
stvarnog i Zeljenog vremena pocetka rada uredaja.

e Za celektritno vozilo, komfor je definisan kao proizvod odgovarajuceg
koeficijenta nezadovoljstva i kvadratne razlike izmedu maksimalne i trenutne
energije za punjenje.

Za sve uredaje, osim elektri¢nog vozila, troSak elektri¢ne energije racunat je kao proizvod
predvidene tarife i razlike izmedu potroSnje energije uredaja i energije proizvedene iz
solarnog panela. Kod elektricnog vozila, trosak se racunao samo na osnovu potrosnje
energije potrebne za punjenje. Na kraju, sve pojedinacne nagrade sabirane su kako bi se
dobila ukupna funkcija nagrade sistema.

Glavni nedostatak tabelarnog Q-ucenja jeste njegova zavisnost od Q-tabele fiksne
veli¢ine, koja sluzi za Cuvanje i azuriranje q-vrednosti za svaku mogu¢u kombinaciju
stanja i akcija (Mohammadi et al. 2018). U kontekstu HEMS-a, broj moguc¢ih stanja i
akcija moze biti izuzetno veliki, zbog prisustva razli¢itih tipova uredaja, vremenskih
uslova, tarifnih rezima i preferencija korisnika. Svaka dodatna dimenzija u prostoru
stanja ili akcija eksponencijalno povecava veli¢inu Q-tabele. U realnim HEMS
primenama, Q-tabela brzo postaje prevelika za efikasno ¢uvanje i azuriranje, ¢ime se
znacajno smanjuje njena prakti¢nost. Zbog toga se u razvoju HEMS-a sve vise
primenjuju modeli dubokog ucenja potkrepljivanjem (eng. Deep Reinforcement
Learning, DRL), koji omogucavaju efikasnije upravljanje velikim i sloZzenim prostorima
stanja.

Lissa i saradnici (Lissa et al. 2021) predlozili su HEMS resenje zasnovano na DQN
algoritmu, sa ciljem optimizacije potroSnje elektri¢ne energije koriS¢enjem proizvodnje
iz solarnih panela. Fokus istrazivanja bio je na smanjenju troSkova elektri¢ne energije
povezanih sa grejanjem prostora i temperaturom tople vode. Definisana je funkcija
nagrade sastavljena od pojedina¢nih komponenti, koje imaju za cilj o€uvanje komfora
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stanovnika kroz kontrolu unutra$nje temperature prostora, temperature vode i kori§¢enje
energije proizvedene putem solarnog panela:

e Komponente funkcije nagrade vezane za temperaturu imale su vrednost 0 kada
je temperatura bila unutar zadatog opsega, dok se u suprotnom racunala razlika
izmedu trenutne i srednje vrednosti temperature.

e Komponenta funkcije nagrade vezana za solarni panel imala je vrednost 0
ukoliko je energija proizvedena putem solarnog panela bila ve¢a od ukupne
energije potrebne za rad svih uredaja. U suprotnom, nagrada za solarni panel
predstavljala je preostali iznos energije potreban za napajanje svih uredaja.

Konac¢na nagrada izraCunavana je kao ponderisana suma pojedina¢nih komponenti.
Vrednost tezinskog koeficijenta u funkciji nagrade odredena je na osnovu analize
zavisnosti izmedu ukupne potrosnje energije i odstupanja temperature od zadatih granica,
pri éemu je kao optimalna izabrana ta¢ka neposredno pre one u kojoj dalji pad potro$nje
uzrokuje znacajno narusavanje komfora. Autori nisu razmatrali tarifne rezime elektricne
mreze niti su automatizovali upravljanje uredajima koji nisu povezani sa grejanjem, $to
bi moglo doprineti sveobuhvatnijem pristupu upravljaju energijom.

U radu (Forootani et al. 2022), problem viSe-ciljne optimizacije HEMS-a reSavan je
dekompozicijom kontrole kompletnog skupa uredaja na pojedinacnu kontrolu svakog
uredaja. Za svaki uredaj razvijen je nezavistan DQN model koji predvida optimalne
diskretne akcije specificne za taj uredaj. Modeli su obucavani odvojeno, sa ciljem
minimizacije troskova elektricne energije i maksimizacije komfor stanara. Funkcija
nagrade definisana je kao ponderisana suma dve komponente: (1) potroSnje elektricne
energije i (2) komfora izrazenog u vidu razlike izmedu stvarnog i Zeljenog vremena rada
uredaja. Autori nisu ponudili metod za automatsku kalibraciju tezinskih koeficijenata u
funkciji nagrade, ve¢ su njihovo podeSavanje prepustili stanarima.

Glavni nedostatak DQN algoritma jeste njegova ograni¢ena efikasnost pri reSavanju
problema koji se odlikuju velikim i kontinuiranim prostorima stanja (eng. continuous
state space) (Mnih et al. 2015). U kontekstu HEMS-a, kontinuirani prostor stanja
obuhvata varijable kao §to su koli¢ina potroSene energije, koli¢ina energije proizvedene
putem solarnih panela i vrednost temperature. Efikasnost treniranja DQN modela u
ovakvom prostoru moze se poboljsati primenom DDQN pristupa (Fu et al. 2022).

U radu (Liu et al. 2020) analizirana je efikasnost DQN i DDQN pristupa u obuci HEMS-
a, ¢iji je cilj minimizacija troskova elektricne energije uz istovremeno ocuvanje komfora
stanovnika. Komfor korisnika kvantifikovan je vremenskim ograni¢enjima rada uredaja,
pri ¢emu je funkcija nagrade ukljucivala negativni penal ukoliko uredaj nije aktiviran
unutar Zeljenog vremenskog opsega. Zeljeni opsezi rada su navedeni na osnovu
istorijskih statistika i autori nisu dali smernice oko odredivanje vredosti penala. Autori
su u svoju postavku problema ukljucili proizvodnju elektri¢ne energije putem solarnih
panela, moguénost skladiStenja energije u baterijama i tarifne rezime elektri¢ne mreze.
Rezultati su pokazali da DDQN model postize bolje performanse u odnosu na DQN
model. U skladu sa tim nalazima, u ovom istrazivanju se koristi DDQN pristup za obuku
HEMS-a, sa ciljem reSavanja problema slicnog onom analiziranom u pomenutom radu.

Huang 1 saradnici (Huang et al. 2022) nastojali su da minimizuju operativne troskove
sistema za upravljanje energijom u domacdinstvu, uz ocuvanje termalnog komfora i
poStovanje ograniCenja vremena rada uredaja. Unutar domacdinstva analizirano je
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upravljanje HVAC sistemom, obnovljivim izvorima energije, skladiStem energije i
uredajima sa ograni¢enim vremenom rada. HVAC sistem, koji obezbeduje termalni
komfor, kao i sistem za skladiStenje energije, zahtevali su akcije koje podrazumevaju
odredivanje koli¢ine potroSene energije za rad uredaja ili, u slucaju baterija, koli¢ine
energije za praznjenje i punjenje. Zbog toga se za kontrolu ovih uredaja koristio DDPG
pristup, ¢ija je ciljna funkcija bila ponderisana suma potrosnje energije i termalnog
komfora, definisanog kao razlika izmedu postignute i Zeljene temperature. Uredaji sa
ogranic¢enim vremenom rada zahtevali su diskretne akcije uklju¢ivanja i iskljucivanja.
Stoga se za njihovu kontrolu koristio DQN pristup, gde je ciljna funkcija predstavljena
kao ponderisana suma potrosnje energije i komfora u vezi sa preferiranim vremenom
rada, izrazenog kao razlika izmedu stvarnog vremena rada uredaja i definisanog
vremenskog okvira. Integracijom DQN i DDPG modela omoguceno je efikasno
upravljanja kombinovanim diskretnim i kontinuiranim prostorom akcija u energetskom
upravljanju pametnim ku¢ama. Medutim, autori nisu naveli smernice za odabir tezinskih
koeficijenata u funkcijama nagrade.

Primena PPO modela mogla bi biti efikasnije reSenje u odnosu na treniranje dva odvojena
modela, budu¢i da PPO model podrzava i diskretne i kontinuirane akcije, ¢ime se
smanjuje slozenost sistema i olakSava optimizacija (Shakya et al. 2023).

Li 1 saradnici (Li et al. 2020) koristili su PPO algoritam za upravljanje HEMS-om sa tri
tipa uredaja:

e  Kiriticni uredaji, poput televizora, frizidera i osvetljenja, radili su na zahtev
stanovnika i nisu bili pod kontrolom HEMS-a.

e  Prilagodljivi uredaji, kao $to su masina za pranje sudova, ve§ masina, masina za
suSenje 1 Sporet, mogli su da prilagode vreme rada u skladu sa tarifnim
rezimima. HEMS je upravljao ovim uredajima koriste¢i diskretne akcije
ukljucivanja i iskljucivanja.

e Kontrolisani uredaji, poput elektri¢nog vozila, imali su mogucénost fleksibilnog
punjenja. HEMS je upravljao njihovom potroSnjom pomocu kontinuiranih
akcija, odredujuéi nivo snage za punjenje i praznjenje baterije.

Cilj istrazivanja bio je minimizacija troskova elektricne energije domacinstva, uzimajuci
u obzir nesigurnost u cenama elektricne energije u realnom vremenu i neizvesnost u
obrascima ponasanja stanara. Funkcija nagrade definisana je kao ponderisana suma dva
faktora: (1) ukupne cene energije utroSene za rad uredaja i (2) kvadrata energije potrebne
da se elektri¢no vozilo potpuno napuni. Autori nisu naveli kriterijume na osnovu kojih
su odredene tezine ovih faktora u funkciji nagrade.

Koriste¢i opisanu postavku, Li i saradnici trenirali su PPO model i uporedili njegove
performanse sa modelima zasnovanim na ru¢no definisanim pravilima — referentnim
modelom i teorijski optimalnim modelom:

e Referentni model pokretao je sve uredaje (prilagodljive i kontrolisane) ¢im su
oni bili spremni za rad, bez obzira na cenu elektricne energije ili zadati zeljeni
opseg rada uredaja.

e Teoretski optimalan model predstavljao je rucno definisan raspored rada
uredaja, uskladen sa unapred poznatim cenama elektri¢ne energije. Ovaj model
nije moguce implementirati u praksi jer podrazumeva poznavanje buduce cene
elektricne energije, $to je u ovoj postavci bila informacija koja je nedostupna
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agentu u trenutku donoSenja odluke. Zbog toga je ovaj model sluzio samo za
procenu gornje granice performansi algoritma.

Rezultati su pokazali da je PPO model postigao znacajno smanjenje troskova elektricne
energije u odnosu na referentni model, dok su njegove performanse bile bliske
performansama teoretski optimalnog modela.

Mbuwir 1 saradnici (Mbuwir et al. 2021) predstavili su hibridni pristup za punjenje
elektri¢nih vozila, koji je kombinovao PPO algoritam sa sistemom kontrole zasnovanim
na pravilima (eng. rule-based). Funkcija nagrade definise se kao negativna suma troskova
punjenja elektri¢nih vozila iz mreZe i prihoda od prodaje viska energije nazad u mrezu.
Takode, u funkciju nagrade bio je uvrscen i faktor kazne, koji se primenjivao kada
elektricno vozilo nije bilo u potpunosti napunjeno do heuristicki procenjenog vremena
polaska. Skup akcija bio je kontinuiran i predstavljao koli¢inu snage (u kW) koja se
koristila za punjenje elektricnog vozila. PPO model odredivao je ovu akciju, dok je sistem
zasnovan na pravilima sluzio kao kontroler koji je prilagodavao akciju predlozenu od
strane PPO modela, uzimajuéi u obzir trenutnu proizvodnju energije iz solarnog panela.

Mbuwir i saradnici su uporedili su predlozenu kombinaciju PPO modela i ruc¢no
definisanih pravila sa dve strategije zasnovane na ru¢no definisanim pravilima:

e Naivna strategija, podrazumevala je punjenje vozila odmah po njegovom
prikljucenju na stanicu za punjenje.

e Strategija sa perfektnim informacijama pretpostavljala je potpuno poznavanje
svih relevantnih faktora dan unapred, ukljucuju¢i vreme dolaska i odlaska
elektricnog vozila, energiju potrebnu za punjenje, maksimalnu dozvoljenu
snagu punjenja, koli¢inu energije proizvedene putem solarnog panela i cenu
elektricne energije. Ova strategija predstavljala je idealizovan scenario u kojem
su sve informacije dostupne u trenutku donoSenja odluke, dok su u realnim
uslovima mnoge od tih informacija nepoznate u trenutku donosenja odluke.

PPO model sa pravilima je znacajno smanjio troskove elektricne energije za 62.5% u
poredenju sa naivnom strategijom. U poredenju sa strategijama sa perfektnim
informacijama, ostvaruje rezultat koji je slabiji za samo 5%.

Sun 1 saradnici (Sun et al. 2020) razvili su viSe-agentni PPO algoritam za optimizaciju
troskova elektri¢ne energije u HEMS-u velikih razmera (eng. large-scale). Simulaciono
okruzenje obuhvatalo je viSe domadinstava, pri ¢emu je svakom pametnom kuéom
upravljao poseban, nezavisni agent. Stanje pojedinac¢ne kuce obuhvatalo je trenutnu cenu
elektricne energije, minimalni nivo neophodne potrosnje za rad uredaja, kao i informacije
o stanju elektri¢nog vozila, baterije i solarnog panela. Skup akcija bio je kontinuiran i
uklju¢ivao je brzinu punjenja i praznjenja elektricnih vozila i kuénih baterija, kao i
donosenje odluka o trgovini elektricnom energijom unutar mikro-mreze (eng.
microgrid). Cilj je bilo smanjenje troskova elektricne energije, pri ¢emu je cena bila
dinamicki odredivana na osnovu odnosa ponude i potraznje u mrezi. Funkcija nagrade
definisana na nivou domacinstva ukljucivala je: (1) troSak elektri¢ne energije, (2)
penalizaciju za potro$nju tokom perioda visoke tarife i (3) kolektivnu entropiju ponasanja
(eng. Collective Behavior Entropy), koja je uvedena radi obeshrabrivanja
sinhronizovanog opterecenja mreze.

Azuatalam 1 saradnici (Azuatalam et al. 2020) primenili su PPO algoritam za optimizaciju
kontrole HVAC sistema u zgradi, sa ciljem balansiranja izmedu ocuvanja termalnog
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komfora i smanjenja troSkova elektricne energije. Skup mogucih akcija bio je kontinuiran
i prestavljao je precizna podeSavanja unutrasnje temperature. Simulaciono okruzenje je
bilo definisano uz pomo¢ EnergyPlus* platforme, koja je simulirala HVAC sistem u
zgradi. Kako bi se postigla realisticnost simulacije, u ukljuceni su istorijski podaci o
spoljnim vremenskim uslovima i solarnom zrac¢enju. Funkcija nagrada definisana je kao
ponderisana suma troSkova elektri¢ne energije i odstupanje unutrasnje temperature od
zeljenog temperaturnog opsega. Tezinski koeficijenti u funkciji nagrade bili su odredeni
empirijski, pri ¢emu autori nisu naveli smernice za njihovo podeSavanje. U radu su
uporedena tri pristupa:

e Osnovni model zgrade, koji je predstavljao jednostavne, rucno definisane
strategije za upravljanje HVAC sistemom.

e  Standardni PPO model.

e Kombinacija PPO modela sa dva dodatna kontrolera, koji su prilagodavala
njegove akcije:

o Downward Demand Response (DDR) kontroler, koji je smanjivao
potro$nju energije tokom perioda visokih tarifa ili kada je bilo potrebno
smanjiti optere¢enja na mrezi.

o Upward Demand Response (UDR) kontroler, koji je povecavao
potro$nju energije tokom perioda niskih cena elektrine energije ili
kada je bilo potrebno povecanje optere¢enja na mrezi.

Najbolji rezultati postignuti su kombinovanjem PPO modela sa DDR i UDR
kontrolerima. Konkretno, kombinacija PPO modela sa DDR kontrolerom pokazala je
najbolje rezultate u smanjenju potro$nje energije tokom perioda visokih tarifa, dok je
kombinacija PPO modela sa UDR kontrolerom bila najefikasnija u povecanju potrosnje
energije tokom perioda niskih tarifa.

Aldahmashi 1 Ma (Aldahmashi and Ma 2024) definisali su novi optimizacioni problem
koji integriSe upravljanje aktivnhom i reaktivnom elektricnom energijom u pametnim
kucama, uz uvaZzavanje komfora stanara. Funkcija nagrade formulisana je kao
ponderisana suma slede¢ih komponenti, pri ¢emu autori nisu naveli kriterijume za izbor
tezinskih koeficijenata:

e  Ukupne elektri¢ne energije potrebne za rad svih uredaja — elektricnog vozila,
baterije i solarnog panela.

e Koeficijenta nezadovoljstva stanara, koji obuhvata odstupanje unutraSnje
temperature od Zeljenog opsega, kasnjenje u izvrSavanju zadataka uredaja sa
vremenskim ograni¢enjima, kao i nedovoljnu napunjenost baterije elektricnog
vozila pre odlaska iz kuce.

e Penala koji se primenjivao u slucaju da fakor snage (eng. power factor) padne
ispod zadatog minimalnog praga’®, pri ¢emu je svakom uredaju bio dodeljen
unapred definisan prag koji opisuje njegov odnos izmedu potro$nje aktivne i
reaktivne snage.

4 https://energyplus.net/

5 Faktor snage predstavlja odnos izmedu aktivne snage (koja obavlja korisni rad) i
prividne snage (ukupne snage u sistemu). Nizak faktor snage ukazuje na nisku energetsku
efikasnost, jer vec¢i deo prenesene energije ostaje neiskori$¢en za rad.

55



Autori su trenirali PPO model i uporedili ga sa slede¢im alternativama:

DQN i DDPG modelima, koji su trenirani kori§¢enjem iste funkcije nagrade, uz
neophodne izmene skupova akcija i stanja radi prilagodavanja ovim
algoritmima. Kod DQN-a, sve akcije, ukljucuju¢i i kontinualne (na primer,
snaga punjenja, reaktivna snaga), bile su diskretizovane zbog ograni¢enja DQN
algoritma na diskretne prostore akcija. Kod DDPG-a, binarne akcije (na primer,
ukljucivanje uredaja) transformisane su u kontinualni oblik, a zatim
aproksimirane prilikom izbora konkretne akcije, kako bi bile kompatibilne sa
prirodom kontinualnog akcijskog prostora koji DDPG zahteva.

FIO (eng. full information observable) modelom, koji je imao pristup potpunim
informacijama o svim relevantnim parametrima. U FIO modelu, dinamicki
promenljivi i unapred nepoznati faktori, poput proizvodnje elektri¢ne energije
putem solarnog panela, tretirani su kao deterministicki i unapred poznati. Cilj
ukljucivanja idealizovanog FIO modela bio je odredivanje najefikasnije
strategije planiranja vremena rada uredaja, radi procene gornje granice
performansi treniranih modela. U okviru FIO modela, reaktivna energija nije
bila optimizovana.

U izvedenim eksperimentima, PPO model je ostvario najbolje rezultate medu metodama
koje funkcioniSu u uslovima nesigurnosti, zahvaljujuci svojoj sposobnosti da u realnom
vremenu optimizuje upravljanje aktivnom elektricnom energijom u bateriji i elektricnom
vozilu. Postignuta usteda iznosila je 31.5%, Sto je blisko maksimalnoj ustedi od 39.6%
postignutoj idealizovanim FIO pristupom. Za poredenje, DDPG i DQN postigli su uStede
od 24.8% 1 18.6%, tim redosledom.

Na osnovu pregleda literature u ovom poglavlju, mogu se izvesti sledeci zakljucci:

Najperspektivnija reSenja za razvoj HEMS-a zasnovana na ucenju
potkrepljivanjem su DDQN i PPO algoritmi.
Tipovi uredaja razmatrani u simulacijama pametnih ku¢a obuhvataju:

o Uredaje za regulaciju temperature 1 uredaje sa vremenskim
ograni¢enjem rada, koje HEMS kontroliSe diskretnim akcijama
ukljucivanja i iskljucivanja.

o Skladista energije, koja HEMS kontroliSe kontinuiranim akcijama
zadavanja snage punjenja ili praznjenja uredaja.

o Uredaje koji nisu regulisani od strane HEMS-a, ukljucujuéi uredaje
koji rade isklju¢ivo na zahtev stanovnika (na primer, televizor) i
proizvodace energije (na primer, solarni panel).

Vecina simuliranih pametnih ku¢a modeluje potrosnju uredaja kao konstantnu
tokom rada iako uredaji poput ve§ masine imaju sloZene obrasce potrosnje, sa
slozenim razlikama u potrosnji energije u razlicitim radnim fazama.

Najcesce razmatrani aspekti komfora su termalni komfor i ogranicenje vremena
rada uredaja. Za kvantifikaciju komfora koriste se pristupi zasnovani na
penalima i razlikama izmedu definisanih i trenutnih vrednosti temperature,
odnosno vremena rada uredaja.

U vecini slucajeva, viSe-ciljna optimizacija komfora i potrosnja elektricne
energije realizuje se kroz ponderisane sume unutar funkcije nagrade. Pojedini
pristupi dodatno uvode restrikcije rada uredaja i penale za nepozeljna ponasanja.
Tezinski koeficijenti i vrednosti penala najces¢e se odreduju empirijski, bez
detaljnog metodoloskog obrazlozenja.
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e Vecina radova u okviru simulacije uzima u obzir tarifne rezime i spoljasnje
vremenske uslove.

e Vecina radova koji predlazu pristupe zasnovane na ucenju potkrepljivanjem
poredi ove metode sa rucno definisanim strategijama, koje se koriste kao
referentni modeli. Takve strategije su obi¢no pojednostavljene, sa unapred
poznatim obrascima potro$nje uredaja ili sa pojednostavljenim operativnim
kriterijjumima, §to moze ograniciti njihovu primenljivost u realnim uslovima.

3.3 Primena velikih jezickih modela u sistemima za
upravljanje energijom u pametnim ku¢ama

Analiza literature pokazala je da su postojece studije istrazivale primenu LLM-ova u
HEMS-u u tri glavna pravca:

e Simulacija okruZenja pametne kuce,

e Razvoj pomoc¢nih alata za poboljSanje komfora korisnika,

e Podsticanje stanovnika na racionalnu potro$nju elektriéne energije kroz
formiranje energetski efikasnih navika.

U radu (Almashor and Miyashita 2024), LLM-ovi su primenjeni za simulaciju okruzenja
pametne kuce. U razvijenoj simulaciji, agenti vodeni LLM-ovima imitirali su dnevne
rutine i aktivnosti stanovnika koje su uticale na potro$nju energije, generiSuéi obrasce
potro$nje koji su oponasali stvarnu potrosnju energije u domadinstvu. Simulacija je
omogucavala kreiranje realisticnih i javno dostupnih skupova podataka koji odrazavaju
energetsko ponaSanje specificnih geografskih regiona. Ovim pristupom eliminisana je
potreba za koriS¢enjem stvarnih, osetljivih podataka, ¢ime je obezbedeno ocuvanje
privatnosti. Medutim, glavni nedostatak ovog pristupa bila je pretpostavka da uredaji
tokom rada trose konstantnu koli¢inu energije. Uredaji poput ve$ masine imaju slozene
obrasce potrosnje, sa znacajnim razlikama u potro$nji energije tokom razlicitih radnih
faza. Zbog toga je njihovo modelovanje kao uredaja sa konstantnom potro$njom moglo
rezultovati manje preciznim podacima o varijacijama u energetskoj potrosnji.

Giudici i saradnici (Giudici et al. 2024) istrazivali su kako LLM-ovi mogu biti iskori§¢eni
za kreiranje rutina za automatizaciju domacinstva koje podsticu ekoloski svesno
ponasanje. U njihovom radu, model GPT-4 (Koubaa 2023) koriS¢en je za asistenciju
korisnicima pri kreiranju i kontroli automatizovanih rutina koje optimizuju potro$nju
energije 1 promovisu odrzive navike. U interakciji sa korisnikom, GPT-4 imao je ulogu
edukativnog agenta koji je vodio korisnike kroz proces kreiranja i prilagodavanja
njihovih rutina. Glavno ogranicenje ove studije bilo je to §to je evaluirana na
hipotetickom scenariju, gde su koris¢eni simulirani podaci umesto stvarnih interakcija sa
kuénim uredajima. Alat nije pruzao kompletnu automatizaciju, ve¢ je imao savetodavnu
ulogu, prepustajuéi donoSenje odluka korisniku. Kona¢no, autori nisu evaluirali
efikasnost sistema u redukciji potrosnje energije.

King 1 saradnici (King et al. 2024) primenili su LLM za interpretaciju i izvrSavanje ciljno
orijentisanih komandi koje su neprecizno formulisane, poput ,,uéini prostor prijatnim®.
Ovaj pristup omoguéavao je korisnicima da izraze svoje Zelje na prirodniji nain, ¢ime
se poboljSavao njihov komfor. Na osnovu korisnicke komande, LLM je generisao akcioni
plan u formi JSON sablona, koji je detaljno opisivao kako se raspolozivi uredaji i senzori
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mogu koristiti za postizanje zeljene atmosfere. Glavni nedostatak ovog pristupa bila je
sklonost LLM-a da generiSe nerelevantne ili cak potpuno netac¢ne akcione planove.

U radu (Oprea and Bara 2024) predstavljen je sistem koji je vlasnicima kuéa pruzao
savete za optimizaciju energetskih transakcija i prilagodavanje potro$nje opterecenju
lokalnog energetskog trzista. Sistem je koristio pretrenirani LLM kao klasifikator koji je
primao tekstualne opise stanja okruzenja i, na osnovu njih, predvidao optimalne akcije.
Moguce akcije ukljucivale su kupovinu ili prodaju elektri¢ne energije, kao i smanjenje
ili povecanje njene potro$nje. Autori nisu analizirali uticaj odredenih podataka iz
tekstualnog opisa stanja okruZzenja na konacne predikcije klasifikatora.

Pregledom literature je utvrdeno da nijedna studija nije istrazivala efikasnost
pretreniranih LLM-ova u orkestraciji uredaja u pametnim kucama s ciljem optimizacije
viSeciljnog problema smanjenja troskova elektricne energije uz odrzanje komfora
stanovnika. Stoga, postoji potreba za istrazivanjem koje ¢e ispitati moguénost primene
LLM-ova za reSavanje ovog problema.

3.4 OgraniCenja postojecih reSenja i obrazloZenje
potrebe za daljim istrazivanjem

Sistemi za upravljanje energijom u domacinstvima predstavljaju izazovnu i dinamic¢nu
oblast u kojoj jos§ nisu standardizovani protokoli za optimizaciju i implementaciju reSenja
(Mahapatra and Nayyar 2022). Pregledom literature identifikovane su znacajne razlike u
definisanju problema optimizacije, §to otezava poredenje razlicitih resenja. Ove razlike
ukljucuju (Gomes et al. 2022) (Mahapatra and Nayyar 2022):

e Cilj optimizacije: razliCite studije koristile su razli¢ite funkcije nagrade za
minimizaciju potros$nje elektricne energije uz ocuvanje komfora stanovnika.
Mere komfora bile su definisane na razli¢ite nacine, a razlikovao se i nacin
njihove integracije sa merama potrosnje energije u funkciji nagrade.

e OkruZenja: simulaciona okruzenja za pametne kuce razlikovala su se po
dostupnim uredajima, njihovim karakteristikama i tarifnim rezimima. Matlab je
bio najces¢e koris¢en kao simulaciono okruzenje, a nedostatak
standardizovanog simulacionog okruzenja istaknut je kao znacCajna prepreka za
efikasno poredenje razlicitih reSenja (Gomes et al. 2022). Glavni nedostatak
vecine posmatranih okruzenja odnosio se na nemoguénost modelovanja uredaja
sa varijabilnom potro$njom elektricne energije tokom razlicitih faza rada. U
vecini radova, uredaji poput ves masine i masine za sudove bili su modelovani
tako da imaju konstantnu potro$nju tokom celokupnog perioda rada, $to ne
odgovara stvarnim karakteristikama njihove potrosnje.

e Trening i test podaci: modeli predloZeni u analiziranim studijama obi¢no su
trenirani i testirani samo u odredenim periodima godine, §to je dovodilo u
pitanje njihovu sposobnost generalizacije na druge periode sa razlicitim
vremenskim uslovima i obrascima potrosnje. Da bi se ovo ograniCenje
prevazislo, potrebno je obuhvatati treniranje i testiranje modela tokom razli¢itih
sezona u godini.

e Tehnike optimizacije ciljne funkcije: Savremena istrazivanja pretezno su se
fokusirala na primenu tehnika uc¢enja potkrepljivanjem za automatizaciju rada
uredaja u pametnim kucama, sa ciljem minimizacije troskova energije i
ocuvanja komfora stanovnika. Medutim, nije pronadeno nijedno resenje koje je
razmatralo primenu pretreniranih LLM-ova za reSavanje ovog problema.
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Takode, utvrdeno je da postoje¢a reSenja nisu analizirala uticaj parametara stanja
okruzenja na odluke modela ucenja potkrepljivanjem. Ovakva analiza mogla bi doprineti
objasnjenju odluka donetih od strane HEMS-a, povecati poverenje korisnika u sistem i
omoguciti njegovo rafiniranje.

Iz pregleda aktuelnog stanja u oblasti ustanovljeno je da problem optimizacije viSe-ciljne
funkcije, koja uklju¢uje minimizaciju troskova elektri¢ne energije i odrzanje komfora
stanara, nije u potpunosti reSen. Stoga postoji potreba za daljim istraZivanjem u ovoj
oblasti. U ovom istrazivanju, navedeni problem bi¢e reSavan automatizacijom planiranja
vremena rada uredaja u pametnoj ku¢i. Analizom literature utvrdeno je da reSenje treba
da obuhvati sledec¢e aspekte:

Definiciju adaptivnog okruzenja za simulaciju pametne kuce. Okruzenje bi
trebalo da omoguci simulaciju razlicitih tipova uredaja i fleksibilno podesavanje
njihovih karakteristika. Kako bi simulacija uredaja bila $to realisti¢nija,
pozeljno je omoguciti simulaciju uredaja sa varijabilnom potrosnjom energije.
Simulacija bi takode trebala da podrzi definisanje dostupnih tarifnih rezima.
Konac¢no, radi postizanja vece realisti¢nosti eksperimenta, prilikom evaluacije
reSenja je u simulaciju potrebno ukljuciti istorijske podatke o vremenskim
uslovima i tarifnim rezimima na odredenoj geografskoj lokaciji.

Definisanje metrika koje kombinuje komfor stanovnika pametne kucée sa cenom
elektricne energije. Metrika komfora treba da omoguéi stanarima intuitivno
definisanje Zeljenog stepena i opseg rada pojedinacnih uredaja. Ove metrike se
formalizuju putem funkcije nagrade, koja se koristi za obucavanje modela
zasnovanih na ucenju potkrepljivanjem, donosenje odluka od strane LLM-a, kao
i za evaluaciju performansi RL i LLM modela.

Odabir odgovaraju¢eg modela za treniranje HEMS-a. Potrebno je razmotriti
DDQN i PPO algoritme ucenja potkrepljivanjem, koji su prepoznati kao
najperspektivnije strategije za reSavanje ovog problema. Takode, neophodno je
istraziti moguénost primene LLM-ova, koji imaju potencijal da ublaze
ogranicenja navedenih algoritama. Kao referentni pristup, potrebno je definisati
sistem zasnovan na rucno definisanim pravilima.

Postupak evaluacije na trening i test podacima koji pokrivaju razli¢ita godi$nja
doba.

Analizu uticaja ulaznih parametara stanja okruzenja na odluke razvijenog
HEMS sistema. Ovo istrazivanje predlaze primenu SHAP (eng. Shapley
Additive Explanations) biblioteke (Lundberg and Lee 2017), koja omogucéava
dekompoziciju predikcija modela na pojedinacne doprinose svakog ulaznog
parametra.
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4 Metodologija

Ovo poglavlje opisuje metodologiju za optimizacije potrosnje elektricne energije uz
ocuvanje komfora stanovnika pametne kuce, ostvarenu strateskim planiranjem vremena
rada uredaja. Potpoglavlje 4.1 izlaZe arhitekturu implementiranog sistema. Potpoglavlje
4.2 opisuje dizajn adaptivnog simulacionog okruzenja, dok potpoglavlje 4.3 opisuje
funkciju nagrade. Potpoglavlje 4.4 opisuje primenu algoritama ucenja potkrepljivanjem
za reSavanje ovog problema. Potpoglavlje 4.5 objasnjava nacin kori$¢enja pretreniranih
velikih jezickih modela u ovom kontekstu, sa fokusom na dizajn efektivnih promptova.

4.1 Arhitektura sistema

U okviru ove disertacije, sistem je podeljen na Cetiri sloja, po uzoru na rad Cook i
saradnika (Cook et al. 2003). Slika 18 prikazuje arhitekturu sistema ras¢lanjenu po
slojevima:

e Simulaciono okruzenje pametne kuce (fizicki sloj) — Simulira okruZenje i
generise podatke o potrosnji elektri¢ne energije kuénih aparata.

Radi evaluacije predloZenog pristupa, kreirana je simulacija konkretne pametne
kuce, €ije su postavke opisane u potpoglavlju 5.1.

e Sloj za donosenje odluka (HEMS) — Predstavlja model koji donosi odluke na
osnovu trenutnog stanja okruzenja. Unutar ovog sloja moguce je menjati model
odlucivanja u cilju analize efekata razliCitih reSenja na potros$nju elektricne
energije i komfor stanovnika.

e Informacioni sloj — Prikuplja podatke relevantne za simulaciju. U
eksperimentima izvedenim u okviru ove disertacije, koriS¢eni su istorijski
podaci o vremenskim uslovima i tarifnim rezimima na odredenoj geografskoj
lokaciji. Ove informacije su neophodne za preciznu simulaciju rada odredenih
uredaja i racunanje troskova elektri¢ne energije.

e Komunikacioni sloj — Omoguéava razmenu podataka izmedu HEMS-a i
simulacionog okruZenja. Implementiran je kao Python aplikacija i omogucava
da se simulacija potrosnje elektri¢ne energije prilagodi realnim uslovima.
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Fizicki slaj:
Sloj odiuke: Simulator pametne kude

Sistem za upravljanje energijom u
pametnim ku€ama

DDQN, PPO, LLM, KBS

Komunikacioni sloj:
Aplikacija

'B AE %
I

Informacioni sloj:
Realni podaci

0= B W

Istorijski podaci

» tamperatura
» solarna iradijacia
= tarife

Slika 18. Arhitektura sistema — komponente simulacionog okruzenja za obuku i
evaluaciju HEMS-a za upravljanje uredajima u pametnoj kuc¢i. U okviru sloja odluke
moguce je odabrati jedan od slede¢ih pristupa: algoritam dvostruke duboke Q-mreze
(DDQN), algoritam optimizacije proksimalne politike (PPO), jednu od dve varijante
modela zasnovanog na velikom jezickom modelu (LLM) ili model zasnovan na znanju
(KBS).

4.2 Dizajn adaptivnog simulacionog okruzenja

Za obucavanje i evaluaciju modela dubokog uc€enja i sistema zasnovanog na znanju,
implementirana su dva adaptivna simulaciona okruzenja:

e  Typhoon HIL (Typhoon HIL 2008), u okviru koga se potrosnja uredaja modeluje
kao konstantna vrednost tokom celokupnog trajanja rada uredaja,

e Load Flow (Vojnovi¢ et al. 2022) (Vojnovi¢ et al. 2023b) (Vojnovi¢ et al.
2023a), u okviru koga se potrosnja uredaja modeluje kao varijabilna vrednost,
zavisna od faze rada uredaja.

U okviru simulacije modelovani su proizvodaci i potros$aci elektricne energije. Rad
proizvodaca energije (solarnog panela) zavisi od eksternih vremenskih uslova. Svi
potrosaci energije predstavljaju uredaje sa promenljivim vremenom rada, odnosno,
uredaje Ciji rad moze biti odlozen ili zakazan unutar vremenskih opsega koje definiSu
korisnici.

Potrosaci se dalje klasifikuju u termalne i netermalne uredaje. Rad termalnih uredaja (na
primer, klima uredaj) zavisi od sledec¢ih faktora:

e  Eksterni vremenski uslovi, poput temperature i sunéeve iradijacije.

e Termodinamicke karakteristike kuce, koje se u simulaciji definiSu putem dva
parametra: toplotna provodnost i koeficijent iskoriS¢enja klima uredaja.

e  Zeljeni temperaturni opseg, koji defini$u korisnici, a koji se koristi za regulaciju
unutra$nje temperature u cilju ocuvanja komfora.

Za netermalne uredaje (na primer, ve§ masina), osim vremenskog okvira u kojem

korisnici o¢ekuju da uredaj zavrsi svoj rad, moguce je dodatno definisati da li uredaj
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zahteva neprekidni ciklus rada. Ukoliko HEMS prekine rad uredaja sa neprekidnim
ciklusom rada, taj uredaj mora biti ponovo pokrenut od pocetka, pri cemu se sva
prethodno utrosena energija gubi. Ovakav ishod se smatra neefikasnim i treba ga izbeéi
adekvatnim planiranjem vremena rada uredaja.

Pored toga, za netermalne uredaje uveden je indikator spremnosti za rad, koji oznacava
da li je uredaj spreman da zapoc¢ne radni ciklus. Na primer, ve§ masina je spremna za rad
samo ako je prethodno napunjena vesom. Nakon zavrSetka radnog ciklusa, uredaj se vise
ne smatra spremnim za rad, dok se ne ispuni novi uslov spremnosti. U simulaciji je
eksplicitno onemoguceno pokretanje uredaja koji nije spreman za rad.

Vremenski korak t u simulaciji postavljen je na 15 minuta, iako sistem omogucava
definisanje i drugih vrednosti. U kontekstu HEMS-a, vremenski korak predstavlja
osnovnu jedinicu vremena u kojoj sistem donosi odluke. Na pocetku svakog vremenskog
koraka, HEMS ocitava trenutno stanje okruzenja i, na osnovu toga, odreduje
odgovarajuce akcije za upravljanje uredajima. Doneta odluka se primenjuje tokom celog
trajanja tog koraka. Izbor trajanja vremenskog koraka direktno uti¢e na ponaSanje
sistema: kra¢i vremenski koraci omogucavaju finiju kontrolu i brze reagovanje na
promene u okruzenju, ali povecavaju slozenost obuke i zahteve u pogledu obrade
podataka. Nasuprot tome, duzi vremenski koraci smanjuju racunarske zahteve, ali mogu
ograniciti sposobnost sistema da se pravovremeno prilagodi dinami¢nim uslovima,
naro€ito u slucaju naglih promena u proizvodnji ili potrosnji energije. U postoje¢im
radovima, vremenski korak obi¢no traje od nekoliko minuta do jednog sata, kako bi se
omogucila jednostavna primena algoritma u realnom sistemu pametne kuce (Yu et al.
2020). Radovi (Yu et al. 2020), (Lissa et al. 2021) i (Lee and Choi 2019) koriste
vremenski korak od 1h, dok je u ovom istrazivanju odabrana vrednost od 15 minuta u
skladu sa praksom u relevantnoj literaturi, uklju¢ujuéi radove (Azuatalam et al. 2020) i
(Aldahmashi and Ma 2024).

4.3 Dizajn funkcije nagrade

Problem optimizacije razmatran u ovoj disertaciji predstavlja viSe-ciljnu optimizaciju, pri
¢emu je odredivanje meduzavisnosti i interakcije izmedu pojedinacnih ciljeva
kompleksno (Moffaert and Nowe 2014). Funkcija nagrade formulisana je kao
ponderisana suma razlicitih ciljeva izraZenih u nov€anim jedinicama, ¢ime se omogucava
njihovo objedinjavanje u jedinstvenu funkciju i olakSava postupak optimizacije. U ovom
radu razmatraju se dva kljuc¢na cilja: o€uvanje komfora stanara, i minimizacija troskova
elektricne energije. Oba cilja su kvantifikovana u istim monetarnim terminima
(euro/kWh), $to omogucava njihovo direktno sabiranje.

Komfor stanara u vremenskom koraku t raCuna se kao suma komfora svih Nypravijiv
uredaja kojima HEMS upravlja:

Nupravl]’iv

. 1 . .
Riomfor — z (Et‘ + W{Eti:o}) * Bf * Kaznay, (27)

i=1
gde:

e E! predstavlja energiju koju potrosi uredaj i u vremenskom koraku t.
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e Bl predstavlja novéani znacaj dodeljen radu uredaja i u vremenskom koraku t,
prema vrednostima prikazanim u tabeli 14.

e Indikatorska funkcija —_ ima vrednost — ako uredaj i nije radio u
1000{55:0} 1000

vremenskom koraku ¢, a u suprotnom ima vrednost 0. Ova konstanta uvedena
je kako bi se kazna primenila i na uredaje koji nisu aktivni, ¢ime se izbegava
nula u izrazu i obezbeduje minimalni doprinos vrednosti komfora u skladu sa
minimalnom potro$njom uredaja.

e Kazna! predstavlja penalizaciju za nepotrebnu aktivaciju ili deaktivaciju
uredaja i u vremenskom koraku t. Na primer, nepotrebna aktivacija nastupa
kada se klima uredaj ukljuci iako je temperatura ve¢ u Zeljenom opsegu. Bez
uvedene kazne, HEMS bi u ovom sluc¢aju dobio nagradu za komfor, uprkos
nepotrebnoj potrosnji energije. Sa druge strane, nepotrebna deaktivacija nastupa
kada se klima uredaj isklju¢i iako unutraSnja temperatura nije u Zeljenom
opsegu.

Kazna se razlikuje u zavisnosti od tipa uredaja (termalni i netermalni uredaji):

i . .
; Kaznag qermamiy  ako je i termalan uredaj,
Kazna; = ; . . (28)
Kaznag yerermani  ako je i netermalan ureda;j.
Kazna za termalne uredaje moze poprimiti tri razli¢ite vrednosti:
( ATt,razlika =0i
i .
| -1, ukljugi € At
i ATt-1 razlika = 0
Kazna, P = { e
t,termalni |AT | 1 ATt,razlika #01i (29)
~|41 ¢ razlika| * 1Y, i
l ukljusi € At
1, inace.

gde je:

®  AT;ragika — razlika izmedu trenutne unutraSnje temperature i Zeljenog
temperaturnog opsega u vremenskom koraku ¢,

®  AT:_1razlika — Tazlika u prethodnom vremenskom koraku ¢t — 1,

. Aflkljua — akcija ukljucivanja termalnog uredaja i,

e A, —skup akcija preduzetih u vremenskom koraku t.

Na primer, kazna od -1 primenjuje se ako HEMS ukljuci klima uredaj iako je unutraSnja
temperatura ve¢ bila unutar Zeljenog opsega u prethodnom i trenutnom vremenskom
koraku, ¢ime se sprecava dodela nagrade za komfor kroz nepotrebnu potro$nju energije.
S druge strane, ako je temperatura van Zeljenog opsega, a HEMS ne aktivira AC, kazna
se povecava proporcionalno odstupanju od Zeljenog temperaturnog opsega. U suprotnom
nema kazne (K aznai,termalm =1).

Kazna za netermalne uredaje uvedena je da obeshrabri HEMS da bespotrebno iskljucuje
uredaje:
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Kaznaé,netermalni
€A, (30)

.. i N o P
— {_1' bro]aklusat,netermalni =0i St—l,W =01 Aiskl]'uéi

1, usuprotnom.
Kazna od -1 primenjuje se u sledecem slucaju:

e uredaj je zavrsio sve cikluse (brojciklusai_neterma]ni =0),
e uredaj je bio iskljucen u prethodnom koraku (Sti—l,W =0),
e HEMS pokusava da iskljuci uredaj (Afskljuéi € A,;), iako to nije potrebno.

Postoji dodatna kazna za netermalne uredaje (masina za sudove i masina za ves).

Neposredna nagrada na kraju dana RX™©T. raguna se kao neposredna nagrada u

vremenskom koraku T, uvecCana za eventualne kazne koje se primenjuju ukoliko
netermalni uredaji nisu zavrsili svoj posao:

Nnetermalni

R‘komfol‘T — RT + z kazna.ir_ (31 )

Kazna kazna; uzima vrednost 0 ukoliko je uredaj i zavrSio svoj rad do kraja dana
(vremenski trenutak T). U suprotnom, predstavlja fiksnu nov€anu penalizaciju koja je
empirijski odredena tako da bude priblizna najvecoj prose¢noj nagradi svih modela. Na
osnovu eksperimentalne evaluacije (potpoglavlje 6.1), ukupna dnevna nagrada krece se
u intervalu od —6 do 4 (6.1.1), gde je najveca prosecna dnevna nagrada oko 4 evra za
letnji mesec prilikom obuc¢avanja PPO modela u Typhoon HIL simulacionom okruzenju.
Stoga je kazna postavljena na —4 evra po uredaju koji ne zavrsi svoj rad do kraja dana,
kako bi postojao znacajan uticaj na ukupnu nagradu u slu¢aju neizvrsavanja zahteva.

Ukupni trosak elektri¢ne energije u vremenskom koraku ¢t ra¢una se kao suma potrosnje
svih aktivnih uredaja:

R?otroénja _ Zivzl(EtL " tarifat), (32)
gde:

e N predstavlja broj aktivnih uredaja, ukljucujuci uredaje pod kontrolom HEMS-
a (Ciji je broj Nyprauijiv) 1 uredaje koji predstavljaju proizvodace energije.

e E! oznatava koli¢inu energije koju i-ti uredaj potrosi ili proizvede u
vremenskom koraku t. Vrednost E} je pozitivna ako uredaj trodi energiju, a
negativna ako je proizvodi.

e tarifa, predstavlja cenu elektri¢ne energije u vremenskom koraku ¢t.

Neposredna nagrada (R;) u vremenskom koraku t defini$e se kao zbir komponente koja
kvantifikuje komfor stanara za uredaje kojima upravlija HEMS (R‘;Omf"r) i komponente
koja predstavlja troSak potrosnje elektri¢ne energije svih aktivnih uredaja u tom

otrosnja
vremenskom koraku (R{J ) ):

Rt — R%(omfor + Rpotroénja (33 )
¢ .
U finalnom vremenskom koraku T = 96, neposredna nagrada Ry se rauna kao:
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_ pkomfor potrosnja
R,=R T +RY

)

Rpotroénja Rkomfor
T

gde se t racuna na osnovu ( 31 ), koja
je izmenjena nagrada za komfor koja podrzava kazne za netermalne uredaje.

racuna na osnovu ( 32 ), dok se

4.4 Dizajn modela ucenja potkrepljivanjem za
odredivanje optimalnog vremena rada uredaja

pametne kuce

Pregledom literature (potpoglavlje 3.2) utvrdeno je da su DDQN i PPO algoritmi
najperspektivnija reSenja za razvoj HEMS-a zasnovanog na ucenju potkrepljivanjem.
Shodno tome, ovi algoritmi su primenjeni u ovom istrazivanju.

U ovom istrazivanju, reSavani problem modelovan je kao epizodni zadatak, pri cemu
jedna epizoda odgovara jednom danu simulacije®. Tokom obudavanja modela udenja
potkrepljivanjem, svaki naredni dan bira se nasumicno, kako bi se izbegla zavisnost
izmedu uzastopnih epizoda. Na kraju svake epizode, simulacija se resetuje u pocetno
stanje. Reset wukljuuje postavljanje unutraSnje temperature na vrednost
max(18°C, Tempaturaorspoljagnja). Takode, indikatori spremnosti svih uredaja se
resetuju i postavljaju u stanje ,,spremnost za rad®.

Postavke neuronskih mreza u DDQN i PPO algoritmima imaju identi¢ne dimenzije
ulaznog i izlaznog sloja. Ulazni sloj ima deset dimenzija, §to odgovara komponentama
vektora stanja definisanim u potpoglavlju 5.1.4.1. Izlazni sloj ima sedam dimenzija i
predstavlja ukupan broj mogucih akcija koje su opisane u potpoglavlju 5.1.4.2.

Sli¢na postavka problema prisutna je u literaturi, pri ¢emu duzina epizode i inicijalni
uslovi variraju u razli¢itim istrazivanjima:

e U radu Aldahmashi and Ma (Aldahmashi and Ma 2024), jedna epizoda trajala
je jedan dan. Nakon svake epizode, okruZzenje se resetovalo tako Sto se
unutra$nja temperatura nasumicno postavljala u opsegu od 20°C do 22°C, dok
su ostale varijable imaju unapred definisane pocetne vrednosti. Prilikom obuke
PPO modela koris¢eno je 300 nasumicno sortiranih dana.

e U radovima Yu et al. (Yu et al. 2020) i Lee and Choi (Lee and Choi 2019),
epizoda je takode trajala jedan dan. Autori nisu eksplicitno naveli inicijalne
vrednosti poéetnog stanja, ve¢ su definisali fiksne vrednosti za hiperparametre,
potros$nju uredaja i minimamalnu/maksimalnu temperaturu.

e U radu Lissa et al. (Lissa et al. 2021), epizoda je trajala osam meseci (od maja
do decembra). Autori su naveli samo vrednosti hiperparametara i Zeljeni
temperaturni opseg, ali nisu eksplicitno opisali inicijalno stanje.

o U radu Azuatalam et al. (Azuatalam et al. 2020), epizoda je trajala dva meseca
(januar 1 februar). Nije naglaseno da se okruzenje resetovalo izmedu epizoda,
ali su navedene inicijalne vrednosti hiperparametara i druge konstante
relevantne za simulaciju.

® Budu¢i da se simulacija odvija u 15-minutnim koracima, jedna epizoda sadrzi 96
vremenskih koraka.
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e U radu Li, Wan i He (Li et al. 2020), epizoda je trajala jedan dan. Autori su
eksplicitno naveli inicijalne vrednosti hiperparametara i ostale parametre
neophodne vrednosti za simulaciju.

Radovi Azuatalam et al. (Azuatalam et al. 2020) i Aldahmashi and Ma (Aldahmashi and
Ma 2024) pokazali su da PPO model brze konvergira u poredenju sa DDQN modelom.
U radu (Azuatalam et al. 2020) PPO algoritmu bilo je potrebno oko 1000 epizoda za
obuku. U njihovoj postavci, jedna epizoda trajala je dva meseca, uz vremenski korak od
15 minuta, $to odgovara otprilike 5.760 vremenskih koraka po epizodi. Sli¢no tome, u
radu (Aldahmashi and Ma 2024), PPO model je konvergirao nakon priblizno 1.000
epizoda, dok je DDQN zahtevao oko 3.500 epizoda da bi postigao stabilnu
konvergenciju. U njihovom eksperimentu, svi modeli su se trenirali 5.000 epizoda.
Epizoda je trajala jedan dan i obuhvatala 96 vremenskih koraka (vremenski korak od 15
minuta). Li, Wan i He (Li et al. 2020) trenirali su PPO algoritam na 50.000 epizoda, gde
je svaka epizoda trajala jedan dan simuliran u vremenskim koracima od 15 minuta. U
ovoj tezi, PPO algoritam treniran je kroz 11.000 epizoda u okviru oba simulaciona
okruzenja, dok je za DDQN model koris¢eno 22.000 epizoda u Load Flow okruZenju i
44.000 epizoda u Typhoon HIL okruzenju.

Potpoglavlja 4.4.1 i 4.4.2 prikazuju odabir ostalih hiperparametara DDQN i PPO
algoritma.

4.4.1 Postavka hiperparametara za model dvostruke duboke Q-
mreze

Odabir arhitekture duboke Q-mreze zavisi od dimenzije prostora stanja i akcija. Na
primer, u radu (Aldahmashi and Ma 2024), prostor stanja bio je predstavljen kao vektor
od 16 realnih vrednosti, dok je skup akcija obuhvatao 576 diskretnih vrednosti. Zbog
visoke slozenosti ove postavke, autori su dizajnirali DDQN model sa Sest skrivenih
slojeva — tri sloja sa po 128 neurona i tri sloja sa po 64 neurona. Kao aktivaciona funkcija
koriS¢ena je ReLU, a vrednost faktora umanjenja postavljena je na 0,99. DDQN model
iz rada (Li et al. 2020) imao je jednostavniju arhitekturu, sa dva skrivena sloja od po 64
neurona. Ovakva konfiguracija odgovarala je manje slozenoj postavci — prostor stanja
sadrzao je 33 realne vrednosti, ali je skup akcija bio znatno jednostavniji i sadrzao svega
pet mogucih akcija (Cetiri binarne i jednu kontinulanu). I u ovom slucaju kori$éena je
ReLU aktivaciona funkcija, uz faktor umanjenja od 0,995.

U ovom istrazivanju, prostor stanja i akcija bio je jednostavniji u poredenju sa prethodno
analiziranim radovima. Prostor stanja modelovan je kao 10-dimenzioni vektor koji
ukljucuje realne i celobrojne vrednosti, dok skup akcija obuhvata sedam diskretnih
mogucénosti (potpoglavlje 5.1.4). U skladu sa manjom slozenos¢u problema, kori§éena je
potpuno povezana neuronska mreza sa dva skrivena sloja od po 64 neurona. Kao i u
analiziranim radovima, koriS¢ena je ReLU aktivaciona funkcija, dok je faktora umanjenja
postavljen na 0,99.

Rad (Fuente and Guerra 2024) prikazao je eksperimentalnu postavku za DDQN i PPO
modele, u okviru koje su uporedivane krive obucavanja za razliite vrednosti stope
ucenja. Najvisu srednju vrednost nagrade postigla je stopa ucenja 5e — 5, dok je vrednost
5e — 4 pokazala sli¢nu dinamiku konvergencije. U skladu sa ovim analizama, u okviru
ovog istrazivanja ispitano je viSe vrednosti stope ucenja unutar tog raspona. Optimalna
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vrednost odabrana je na osnovu vizuelne analize krivih obucavanja (primeri krivih
obucavanja su prikazani na slikama u potpoglavlju 6.1.1.

Radi resavanja kompromisa izmedu istrazivanja i eksploatacije, u ovom istrazivanju
primenjena je e-pohlepna strategija sa linearnim opadanjem parametra €, i opsegu od 1
do 0.1. Ovakva Sema smanjenja podstice intenzivno istrazivanje u ranim fazama obuke,
dok postepeno prelazi na eksploataciju naucene politike u kasnijim fazama treniranja.
Linearno smanjenje € omogucava postepen i stabilan prelazak izmedu faza istrazivanja i
eksploatacije. I pored ograniCenja poput nekonzistentnosti u izboru akcija tokom
vremena (Plappert et al. 2018), e-pohlepna strategija ostaje Siroko koriS¢ena u praksi
zbog jednostavne implementacije i robustnih performansi tokom procesa obuke.

Konacan izbor hiperparametara za DDQN model bio je prilagoden specifi¢nostima
podataka generisanih koriS¢enjem koriS¢enjem razli¢itih simulacionih okruZzenja.
Vrednosti hiperparametara odredene su na osnovu vizuelne analize krivih obucavanja
(odnosno prosecne nagrade po epizodi), kao i u skladu sa preporukama iz relevantne
literature. Tokom obuke, hiperparametari poput stope opadanja istrazivanja (eng.
exploration rate decay), stope ucenja i ukupnog broja epoha varirali su u zavisnosti od
konkretnih karakteristika simulacionog okruzenja. Podaci dobijeni iz Typhoon HIL
simulacionog okruZenja zahtevali su veci broj epizoda za postizanje konvergencije.
Buduc¢i da stope ucenja i stope opadanja istrazivanja zavise od ukupnog trajanja obuke,
njihove optimalne vrednosti su se razlikovale u poredenju sa vrednostima kori§¢enim u
Load Flow simulacionom okruzenju. Optimalne vrednosti hiperparametara koris§¢enih za
DDQN model prikazane su u tabeli 5.

Tabela 5. Vrednosti hiperparametara kori§¢ene za obuc¢avanje DDQN modela.

Hiperparametar Vrednost
Typhoon HIL Load Flow
Aktivaciona funkcija ReLU
Veli¢ina skupa i memorijskog bafera 64/100.000
Faktor umanjenja (y) 0,99
Broj vremenskih koraka po epizodi 96
Broj epizoda 44.000 11.000

Stopa opadanja fakora istraZivanja (€)

Krajnji vrednost faktora istraZivanja
(Smin)
Broj skrivenih slojeva

0,99/(44.000 * 96) 0,99/(11.000 * 96)

0,1

2 sloja od po 64 neurona

Stopa ucenja (a) 2,5e-5 2,5e-4
Funkcija greske Huber
Optimizator Adam
4.4.2 Postavka hiperparametara algoritma optimizacije

proksimalne politike

U ovom istrazivanju primenjena je ista postavka PPO algoritma kao u radu (Azuatalam
et al. 2020), uz prilagodavanje vrednosti hiperparametara specificnostima razvijenog
simulacionog okruzenja i ciljevima eksperimenta.
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U navedenom radu, stanje sistema bilo je predstavljeno pomocéu 15 kontinualnih
vrednosti, dok je skup akcija sadrzao 10 kontinualnih vrednosti. Mreze politike i
vrednosti imale su po dva skrivena sloja sa po 64 neurona i tanh aktivacionom funkcijom.
Parametar clip iznosio je 0,2, a faktor umanjenja y = 0,99, ¢ime se obezbeduje stabilna
ravnoteza izmedu trenutnih i buduc¢ih nagrada.

U poredenju sa prethodnim istrazivanjima, gde je broj epizoda ¢esto prelazio nekoliko
desetina hiljada (npr. 50.000 u radu (Li et al. 2020)), u ovom istrazivanju su vrednosti
hiperparametara odredene tako da obezbede kompromis izmedu stabilnosti obuke, brzine
konvergencije 1 vremenske slozenosti simulacije.

Na osnovu rezultata radova radu (Azuatalam et al. 2020) i (Aldahmashi and Ma 2024),
gde je PPO model konvergirao znatno brze od DDQN-a (oko 1.000 epizoda naspram
3.500), definisane su sledece vrednosti: 11.000 epizoda u Load Flow okruzenju, i 22.000
epizoda u Typhoon HIL okruzenju. Svaka epizoda obuhvata 96 vremenskih koraka
(odgovara jednom danu simulacije sa vremenskim korakom od 15 minuta). Ovim
izborom omogucéeno je postizanje stabilne konvergencije uz prihvatljivo trajanje
simulacija i konzistentnost sa referentnim radovima.

Parametar clip = 0,2 preuzet je iz originalnog PPO rada (Schulman et al. 2017) i
potvrden kao stabilan u istrazivanjima navedenih autora, dok su stope ucenja odabrane
eksperimentalno: 3 X 10™* za mrezu politike i 1 X 107 za mrezu vrednosti. Ove
vrednosti su se pokazale pogodnim za brzu stabilizaciju gradijenta bez oscilacija tokom
treninga.

Broj slojeva i neurona (dva skrivena sloja sa po 64 neurona) preuzet je iz radova
(Azuatalam et al. 2020) i (Li et al. 2020), ¢ime je ocuvana arhitektonska jednostavnost
uz dovoljnu reprezentacionu mo¢ modela.

Koris¢ene vrednosti hiperparametara PPO modela prikazane su u tabeli 6.

Tabela 6. Vrednosti hiperparametara koris¢eni za obucavanje algoritma optimizacije
proksimalne politike.

Hiperparametri Vrednosti
Typhoon HIL Load Flow
Aktivaciona funkcija tanh
Clip parametar 0,2
Faktor umanjenja 0,99
Broj vremenskih koraka po epizodi 96
Broj epizoda 22.000 11.000
Broj skrivenih slojeva 2 sloja od po 64 neurona
Stopa ucenja (mreZa politike) 3e-4
Stopa udenja (mreZa vrednosti) le-3
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4.5 Dizajn prompta koji omogucava velikom jezickom
modelu da odredi optimalno vreme rada uredaja
pametne kuce

U ovom potpoglavlju prikazane su dve strategije definisanja prompta pri primeni LLM-
a na problem automatskog odredivanja vremena rada uredaja u cilju smanjenja potrosnje
elektri¢ne energije uz ocuvanje komfora stanara.

potpoglavlje 4.5.1 prikazuje implementaciju strategije bez primera (eng. zero-shot), u
kojoj je modelu data instrukcija da generiSe kod koji predstavlja HEMS zasnovan na
pravilima. Cilj ovog pristupa je provera da li LLM moze automatski generisati sistem
zasnovan na pravilima, na nacin slican ljudskom ekspertu. Stoga je sistem zasnovan na
pravilima generisan od strane LLM-a uporeden sa sistemom zasnovanim na pravilima
koji je definisao autor disertacije.

U potpoglavlju 4.5.2 prikazana je few-shot strategija, u okviru koje je LLM tretiran kao
model ucenja potkrepljivanjem. Model je primao niz promptova, pri ¢emu je svaki
prompt odgovarao jednom vremenskom koraku simulacije. U okviru svakog prompta,
modelu je bio prosleden opis trenutnog stanja, na osnovu koga je trebalo da odabere
optimalnu akciju. Pored toga, model je imao pristup ogranicenom broju prethodnih
interakcija, koje su ukljucivale opise prethodnih stanja, odabranih akcija i pripadajuce
vrednosti neposredne nagrade. Ovaj pristup omoguéava imitaciju procesa donosSenja
odluka karakteristicnog za ucenje potkrepljivanjem, bez potrebe za dodatnim treniranjem
modela.

Promptovi koriS¢eni u navedenim strategijama definisani su na osnovu tehnika
predstavljenih u potpoglavlju 2.2.2.3. Ove tehnike pruzaju strukturirani obrazac za
formatiranje promptova, ¢ime se obezbeduje jasna interpretacija zadatka, doslednost u
odgovorima i optimizacija akcija u skladu sa ciljevima HEMS-a. Ove dve strategije,
ukljucuju¢i KBS definisan od strane eksperta, se razlikuju od modela zasnovanih na
ucenju potkrepljivanjem jer kao rezultat mogu da vrate viSe akcija u vremenskom koraku.

4.5.1 Zero-shot strategija prompta

Zero-shot strategija koristi LLM za generisanje sistema baziranog na znanju, polaze¢i od
prompta koji opisuje problem. Prompt je razvijan iterativno: u svakoj iteraciji LLM je
dobijao opis problema uz zadatak da identifikuje nejasnoce i predlozi dopune. Na osnovu
kona¢ne verzije prompta, od modela je zatrazeno da generiSe Python kod koji
implementira sistem baziran na znanju. Tekst prompta je prikazan u tabeli 7.

Tabela 7. Tekst prompta na osnovu koga je LLM generisao Python kod koji implementira
sistem zasnovan na znanju za upravljanje uredajima pametne kuce.

Prompt Objasnjenje

You are a house energy management  DefiniSe se osnovna funkcija sistema za upravljanje energijom u
system. domacinstvu — planiranje vremena rada uredaja radi smanjenja
You must manage when appliances troskova elektri¢ne energije, uz ouvanje komfora stanara.

work so that electricity costs are Naglaseno je da viSe uredaja moze raditi istovremeno.

reduced, while ensuring that the
resident's comfort is maintained.
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Multiple devices are allowed to run
in parallel.

The house has a solar panel and is
connected to the electrical grid.

The grid has the following fixed
schedule for tariffs: peak (0.4
eur/kWh), shoulder (0.3 eur/kWh),
and off-shoulder (0.2 eur/kWh).

The house also has controllable
devices: a washing machine, a
dishwasher, and an AC.

The energy consumption rates are
variable throughout their run.

The washing machine has a defined
duration of 4 h 30 min, with
consumption rates from 0 kWh to
around 0.5 kWh.

The dishwasher has a defined
duration of 2 h, with consumption
rates from 0 kWh to around 0.45
kWh.

The washing machine and
dishwasher can only be run when
"available" (e.g., when loaded).
Currently, both devices are ready at
the start of the day. Once run, they
cannot run again.

These two appliances must run once
daily; failure to run them results in a
large, fixed penalty in the reward
function.

The AC has a variable period, can be
run multiple times per day, and has
consumption rates ranging from 0
kWh to around 0.6 kWh.

The priorities of each device
(washing machine, dishwasher, and
AC) are different, time-dependent,
and defined by users.

For example, the washing machine's
default priority is low, but if the
residents want laundry done by 5 PM
and it takes 2 hours, the priority
becomes mid at 1| PM and high at 3
PM, signaling urgency.

Residential comfort is modeled in
monetary terms. Each controllable
device at each timestep is assigned a
priority value: high (0.45 eur/kWh),
mid (0.35 eur/kWh), and low (0O
eur/kWh).

The immediate reward function at
each timestep is the sum of the
benefit and the total energy

Kuca je opremljena solarnim panelom i prikljucena na elektri¢nu
mrezu. Navedene su fiksne tarife koje zavise od doba dana.

za ves§, masina za sudove i klima uredaj. Ukazano je da je njihova
potrosnja energije promenljiva tokom ciklusa rada.

Opisane su karakteristike masine za ve$ i masine za sudove,
ukljudujuci trajanje ciklusa i opseg potrosnje energije. Istaknuto
je da ovi uredaji mogu raditi samo kada su spremni za rad i da
moraju biti pokrenuti ta¢no jednom u toku dana.

Opisane su karakteristike klima uredaja. Istaknuto je da klima
uredaj moze biti ukljucen viSe puta dnevno.

Prioriteti uredaja definisu se od strane korisnika i vremenski su
promenljivi. Definicija prioriteta se ilustruje kroz primer masine
za ves.

Komfor se modeluje u novéanim jedinicama i zavisi od prioriteta
uredaja.

Vrednost neposredne nagrade u svakom vremenskom koraku
predstavlja zbir komfora i potro$nje elektri¢ne energije. Komfor
pojedinacnog uredaja se racuna kao proizvod potrosnje energije
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consumption and production of each
device (in euros).

Specifically, comfort is calculated as

tog uredaja, njegovog prioriteta i eventualne kazne vezane za rad
uredaja.
Ova komponenta komfora formalno je definisana sumom

prikazanom u formuli ( 27 ), gde je izraZzena kao zbir doprinosa

the sum of the product of energy . o |
svih upravljivih uredaja u datom vremenskom koraku.

consumption, benefit, and penalty
for each device in the current
timestep.

Kazne vezane za rad uredaja se primenjuju u specifi¢nim
situacijama: kaznjava se prekid ciklusa rada masine za ves ili
masne za sudove, dok klima uredaj dobija kaznu ukoliko razlika
izmedu Zeljene i stvarne unutrasnje temperature postane
prevelika. Naglasava se da ukupna potro$nja energije moze biti i
negativna, §to ukazuje da je proizvodnja energije putem solarnog
panela veca od potro$nje neophodne za rad uredaja.

There is a penalty factor if the
dishwasher or washing machine are
stopped during operation.

The AC incurs a penalty if the
temperature difference between
desired and actual indoor
temperatures becomes too high.

If total energy consumption is
negative, this indicates excess
production from the solar panel.

Energija proizvedena solarnim panelom mora se odmah
iskoristiti, jer se viSak ne moze ni skladistiti ni prodati. Koli¢ina
proizvedene energije zavisi od vremenskih uslova, pri ¢emu se
kao ulaz koriste realni istorijski meteoroloski podaci.

The energy produced by the solar
panel is directly used by devices, but
surplus energy cannot be sold or
stored.

Production depends on external
weather conditions; real-world
historical data is used as input.

Ukupna nagrada za jedan dan dobija se sabiranjem trenutnih
nagrada iz svih vremenskih koraka. Vremenski koraci su
diskretni i traju po 15 minuta. Svaka epizoda modeluje jedan
nezavisan dan.

The final reward at the end of the
day is calculated by summing the
immediate rewards from each
timestep.

Timesteps occur in discrete intervals
of 15 minutes.

Each episode represents one
independent day.

Algoritam 4 definise kriterijume za upravljanje uredajima na osnovu koda generisanog
LLM-om. Algoritam 5 predstavlja sistem zasnovan na znanju koji je definisao autor
disertacije. Oba algoritma, na osnovu stanja sistema (definisanim u ( 34 )) i skupa
datom vremenskom koraku. Ulaz predstavlja trenutno stanje sistema, dok izlaz ¢ini skup
odabranih akcija.

Ulaz u algoritam 4 ¢ini stanje sistema (§). Na izlazu algoritam vraca kolekciju akcija koje
definisu koje uredaje treba ukljuciti u narednom vremenskom koraku.

Tokom izvrSavanja, algoritam iterira kroz sve uredaje u sistemu i za svaki od njih
odreduje uslove za aktivaciju. Sa ovim ciljem se definiSu pomoéne promenljive:

e proizvedena_struja_prelazi_prag, koja oznacava proveru da li proizvedena
solarna energija u trenutnom vremenskom koraku prelazi prag od 0,1 kWh.
Vrednost praga od 0,1 kWh uvedena je od strane LLM-a, kako bi se izbegli
Sumovi u merenju i sprecilo ukljucivanje uredaja kada koli¢ina proizvedene
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energije nije dovoljna za njihovu upotrebu. Prag je odreden od strane LLM-a na
osnovu minimalne potrebne energije za rad uredaja.

niska_tarifa, koja oznacava da li je tarifa elektricne energije na najnizem
nivou.

Ukoliko je re¢ o netermalnom uredaju (masSina za ves$ ili masina za sudove), koji je
spreman za rad, a nije radio tokom tekuceg dana, algoritam donosi odluku o njegovom
uklju¢ivanju na osnovu znacaja rada. Ako je znacaj oznacen kao “Visok”, uredaj se
ukljucuje. Ako je oznacen kao “Srednji”, uredaj se ukljucuje samo u slucaju da solarna
proizvodnja prelazi prag ili da je tarifa “Niska” ili “Srednja”. Ako je znacaj rada oznacen
kao “Nije vazno”, uredaj se ukljucuje samo ako je proizvodnja solarna energije veca od

praga.

Aktivacija klima uredaja zavisi od njegovog znacaja rada i uslova okruzenja. Ako je
znacaj rada oznacen kao “Visok* ili “Srednji”, uredaj se ukljucuje u jednom od sledeé¢ih
slucajeva:

proizvodnja solarne energije prelazi zadati prag ili je trenutno niska tarifa.

Razlika izmedu Zeljene i trenutne temperature je veéa od 2 °C, a znacaj rada je
“Visok”. Vrednost od 2 °C definiSe maksimalnu dozvoljenu temperaturnu
razliku, pri ¢emu Zeljeni temperaturni opseg, u rasponu od 20 °C do 25 °C,
odreduje korisnik. Toleranciju od 2 °C je LLM zadao na osnovu istrazivanja
(Buratti et al. 2015), gde je pokazano da temperaturna razlika ve¢a od 2 °C
izaziva izrazen subjektivni osecaj nelagodnosti, odnosno osec¢aj da je prostor
previse hladan ili topao.

Algoritam 4. Algoritam za odredivanje koji uredaji treba da rade u datom vremenskom koraku, zasnovan
na sistemu baziranom na znanju koji je generisao LLM. Oznake kori§éene u algoritmu odgovaraju onima
iz prikaza stanja S (jednacina ( 34 )) i iz skupa akcija A (jednacina ( 35 )):

Sar,. . oznaCava razliku izmedu Zeljene i trenutne unutrasnje temperature
razlika

SQC je znacaj rada klima uredaja

(S&,W, SEW, SSW) i (S&W,SEW,S}?W) odgovaraju masini za ves i masini za sudove i
oznacavaju da li je uredaj ve¢ radio tokom dana, da li je uredaj spreman za rad i znacaj rada
uredaja.

uredaji predstavlja skup svih uredaja.
Auredaj

ukljuz OZnacava akciju ukljucivanja uredaja.

O 002 O WL AW

—_ =
—_ o

Ulaz: Stanje S = (SATraz“ka,Sgc,S‘fvw,wa, SsW, s, SPY, SPW, S¥Y, tarifa) u trenutnom
vremenskom koraku
Izlaz: skup uredaja koje treba ukljuciti u slede¢em vremenskom koraku
Inicijalizacija:
akcije < @
proizvedena_struja_prelazi_prag < S*V > 0.1kWh
niska_tarifa < tarifa == NISKA
for uredaj in uredaji do
if Slr}etermalm al'_ld not S‘r/i,etermalmthen
if speterminal == VISOK then
dodaj Apgisii® ™y akcije
else if Spetermalni —— SREDN]I then
if prozvedena_struja or tarifa € {NISKA, SREDNJA} then
dodaj ARgiermaint y akcije
else if speterminal —— NIJE VAZNO and prozvedena_struja then
dodaj Ajgierainly akcije

if SAC == {VISOK,SREDN]I } then
73



12 if proizvedena_struja_prelazi_prag or niska_tarifa  then

13 dodaj AfG;,zu akcije

14 if Sar, i > 2.0 and S5€ == HIGH then
15 dodaj Aﬁf(:ljuﬁu akcije

16 end

17 return akcije

Algoritam 5 predstavlja sistem upravljanja radom uredaja zasnovan na znanju, koji je
definisan od strane autora disertacije. Za razliku od prethodnog algoritma generisanog od
strane LLM-a, ovaj pristup uvodi sofisticiraniju logiku prioritizacije i alokacije dostupne
energije, oslanjajuéi se na detaljno razumevanje energetskih i komfornih zahteva stanara.

Ulaz u algoritam 5 ¢ini stanje sistema (S). Na izlazu algoritam vraca skup akcija
ukljucivanja i iskljuc¢ivanja uredaja koje treba sprovesti u narednom vremenskom koraku.
U algoritmu se prvo svi uredaji sortiraju prema znacaju rada u datom vremenskom
koraku, ¢ime se obezbeduje da se najpre razmatraju oni sa visim prioritetom. Uredaji se
obraduju sekvencijalno, a logika se razlikuje u zavisnosti od toga da li je u pitanju
termalni (klima uredaj) ili netermalni uredaj (ve§ masina i maSina za sudove):

Klima uredaj se ukljucuje ukoliko trenutna unutra$nja temperatura odstupa od Zeljnog
temperaturnog opsega, a znacaj rada ovog uredaja je ,,Visok*. U suprotnom, klima ureda;j
se iskljucuje.
Netermalni uredaje koji rade ili nisu spremni za rad se preskacu (njihovo stanje rada se
ne menja). Ponasanje za ostale netermalne uredaje zavisi od znacaja njihovog rada i
tarife:

e Ukljucuju se svi netermalni uredaji ¢iji je znacaj ,,Visok™.

e Uredaji ¢iji je znacaj ,,Srednji“ se ukljucuju ukoliko tarifa nije ,,Visoka“.
Svi ostali uredaji se iskljucuju.
Algoritam vodi racuna da se uredaji ukljucuju tako da ne predu trenutno dostupnu

koli¢inu solarne energije ako je moguce, a tek posle donosi odluke na osnovu znacaja
rada uredaja i tarife.

Algoritam 5. Sistem zasnovan na znanju za upravljanje uredajima, definisan od strane autora disertacije.
Reprezentacija stanja S definisana je formulom ( 34 ), dok je skup akcija A definisan formulom ( 35 ):
. (S\L,‘Vr edaj Sf redaj S}'; red"”) oznacavaju da li je uredaj ve¢ radio tokom dana, da li je uredaj spreman
za rad i znacaj rada uredaja
. EFV oznadava proizvodnju solamnog panela u vremenskom koraku t.
. Eg oznacava ukupnu potroSenu energiju kada bi svi uredaji radili tokom vremenskog koraka t.
e  uredaji predstavlja listu svih uredaja, sortiranu prema znacaju njihovog rada u vremenskom

koraku t.
Euredaja
maksimalna—potrosnja

. Zeljena_temperatura je indikator koji oznacava da li se trenutna temperatura nalazi unutar
Zeljenog temperaturnog opsega.
Aure.d(% ]
ukl]uc_l
. A:lsrkel?jil oznacava akciju iskljucivanja uredaja.
Ulaz: Stanje S = (SATraz“ka,S}‘}C, SV, SEW, SEW, SR, SPW, spW, SPY, tarifa) u trenutnom
vremenskom koraku
Izlaz: kolekcija akcija koje treba sprovesti u sledecem vremenskom koraku
1 Inicijalizacija:
akcije < @
Es<0
uredaji < uredaji sortirani na osnovu znacaja rada
2 for uredaj in uredaji do
3 | ifuredaj == AC then

oznacava maksimalnu potrosnju uredaja kada je ukljucen.

. oznacava akciju ukljucivanja uredaja.
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4 if not Zeljena_temperatura and S;redaj == VISOK then
5 dodaj Azgﬁz u akcije
6 else )
7 dodaj A:’Sr:i?jil u akcije
8 else . )
9 if S";\,r‘)’da] ornotS; "% then
10 continue _
11 if EPY > E, and Sp™°* | = NIJE VAZNO then
. daj N
12 dodaj Azﬂfjuaé’iu akcije i
. ye __ puredaja
izvr§i se Es+= Emaksimalnu—potroénja

13 else )
14 if SpT% == VISOK then
15 dodaj Azifﬁl?iu akcije i

. . __ puredaja

1ZVrs1 s€ ES+_ Emaksimalnu—potroénja
16 else if Sp™°'¥ == SREDNJI then
17 if tarifa! = VISOK then
18 dodaj Al akeije i

. ye __ puredaja
izvr§i se Es+= Emaksimalnu—potroénja
19 else
. daj "

20 dodaj A:’sﬁ]j; u akcije
21  end

22 return akcije

Kod koji je definisan od strane domenskog eksperta sloZeniji je u poredenju sa kodom
generisanog od strane LLM-a. Algoritam 4 vraca isklju¢ivo akcije za ukljucivanje
uredaja, dok algoritam 5 obuhvata i akcije za njihovo iskljucivanje.

Za netermalne uredaje, algoritam 5 daje veci prioritet znacaju rada. Ovaj algoritam ne
dozvoljava rad netermalnih uredaja ¢iji je znacaj ,,Nije vazno* i kada tarifa ,,Visoka®,
dok algoritam 4 omoguc¢ava ukljucivanje ¢ak i pri nizim prioritetima ukoliko postoji

solarna proizvodnja ili povoljna tarifa.

Za termalne uredaje, algoritam 5 strogo zahteva ukljucivanje kada je temperatura van
zeljenog opsega, dok algoritam 4 omogucéava ukljuCivanje na osnovu proizvedene
solarne energije ili niske tarife, i kada je temperaturna razlika manja od praga.

Takode, algoritam 5 dinamicki prati kumulativinu potro$nju energije ukljucenih uredaja i
uskladuje odluke sa raspoloZivom solarnom proizvodnjom, dok algoritam 4 donosi
odluke bez kontrole da li ukupna potrosnja premasuje trenutnu proizvodnju.

4.5.2 Few-shot strategija prompta

U okviru few shot strategije, u svakom koraku simulacije, LLM prima prompt sa opisom
prethodnog stanja, preduzete akcije u tom stanju, neposredne nagrade koja je bila
posledica te akcije i opis trenutnog stanja’. Modelu se daje instrukcija da na osnovu ovih

7 U prvom koraku simulacije, prompt ne sadrzi primere prethodnih interakcija izmedu
okruzenja i LLM-a. Kako simulacija odmice, interakcije se sukcesivnho memoriSu i
ukljucuju u naredne promptove, sve do n-tog koraka, nakon ¢ega se memorija resetuje i
zapocinje novo sekvencijalno prikupljanje do kraja dana. Ovakva strategija je usvojena
kako bi se izbeglo prekomerno povecanje duzine prompta, koje moze znacajno usporiti
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informacija generiSe optimalnu akciju za trenutno stanje u predefinisanom formatu.
Ovim postupkom se imitira proces donosenja odluka u u¢enju potkrepljivanjem, pri cemu
LLM koristi dostupne primere interakcija kako bi poboljSao svoje odluke u kontekstu
optimizacije potroSnje energije.

Tabela 8 prikazuje standardizovani prompt sistemske poruke koji definiSe ulogu modela
i kontekst problema, te se dodaje na pocetak svakog korisnickog prompta. Tabela 9
prikazuje pojednostavljeni primer korisnickog prompta koji model prima u toku
simulacije. Tabela 10 sadrzi tekst koji se dodaje na kraj svakog korisni¢kog prompta.
Ovaj tekst definiSe zeljeni format odgovora i naglaSava da je cilj maksimizacija nagrade,
odnosno da vrednost nagrade bude pozitivna.

Dizajn prompta zasnovan je na preporukama iz literature. Radovi (Reif et al. 2022) i
(Kirk et al. 2024) isticu da se efektivnost i konzistentnost odgovora LLM-a moze
poboljsati ukljuCivanjem primera, grani¢nih oznaka (delimitera) i jasno oznacenih
komponenti unutar prompta. U skladu sa preporukama iz radova (C. Yang et al. 2024) i
(D. Zhou et al. 2023), prompt ukljucuje primere prethodnih koraka sa odgovaraju¢im
rezultatima, ali je njihov broj ogranic¢en na konacan broj uzastopno zabelezenih koraka
zbog ograniCenja kapaciteta tokena koje LLM moZe obraditi u jednom zahtevu.
Sekvencijalni redosled primera u promptu, inspirisan primenom LLM-a u prognoziranju
vremenskih serija (eng. time series forecasting) (Gruver et al. 2023) (Jin et al. 2024.),
konceptualno odgovara mehanizmu ponavljanja iskustva (eng. experience replay) u
dubokom ucenju potkrepljivanjem. U dubokom ucenju potkrepljivanjem, agent
optimizuje politiku koristeéi prethodno saduvano iskustvo, dok LLM, iako ne azurira
svoju mrezu politike, koristi istorijske podatke o prethodnim sekvencijalnim odlukama
za predvidanje buducih akcija. Ova paralela sa DRL strategijom omogucava modelu da
koristi sekvencijalno i kontekstualno donosenje odluka za poboljSanje performansi.

Jedan od izazova u radu sa LLM-om bio je generisanje izlaza koji nisu mogli biti
automatski parsirani, $to je u skladu sa nalazima rada (Reif et al. 2022). Ovaj problem je
ublazen primenom koncepta meta-promptova, kako je predlozeno u radu (Y. Zhou et al.
2023), sto je znacajno smanjilo broj nepravilno formatiranih odgovora. U slucajevima
kada LLM ipak generiSe neispravan odgovor, on se tretira kao /dle akcija, odnosno,
sistem ne preduzima nijednu radnju tokom tog vremenskog koraka. Dodatno, eksplicitno
navodenje modela da svoj izlaz formatira u JSON strukturi na kraju svakog prompta
doprinelo he ve¢oj doslednosti i pouzdanosti parsiranja odgovora.

Tabela 8. Sistemska poruka za usmeravanje LLM-a

Prompt Objasnjenje

You are a house energy management system. Your task is to Postavljanje tona prompta:
optimize electricity consumption and user comfort in a simulated objasnjenje cilja, izlaza i procesa
home, outputting an integer value from 0 to 6 for the chosen action. simulacije.

The simulation progresses in 15-minute time steps. At each step, you = Opis vremenskog toka simulacije
will receive previous states, actions, and rewards for the action i mehanizma povratne

applied in that state. The reward reflects the quality of the action: a informacije.

higher reward indicates a better action.

generisanje odgovora i degradirati tacnost modela, §to je potvrdeno i u literaturi (Levy
et al. 2024).
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Restrictions:
The Clothes Wash and Dishwasher can only operate once per day.
Once started, they cannot be interrupted.
Action Dictionary:

action_dict = {

0:'AC: ON',

:'AC: OFF',
: 'Clothes Wash: ON',
: 'Clothes Wash: OFF',
: 'Dishwasher: ON',
: 'Dishwasher: OFF',
:'IDLE: DO NOTHING'}

AN L R W N =

State Dictionary: The states are provided as a tuple of 10 values:
state_dict = {

'"Temp Difference': Difference between desired and actual indoor
temperature (integer),

'Priority AC': ['High', Medium, 'Do not care'],

'Worked Today Clothes Wash'": [Worked Today', 'Didn’t Work],
'Loaded Clothes Wash': ['Loaded’, 'Not Loaded'],

'Priority Clothes Wash': ['High', 'Medium', 'Do Not Care'],
'Worked Today Dishwasher': ['Worked Today', 'Didn't Work'],
'Loaded Dishwasher": ['Loaded', 'Not Loaded'],

'Priority Dishwasher': ['High', 'Medium', 'Do Not Care'],
'Production Pv": How much the PV produced,

'Tariff": ['Off Shoulder', 'Shoulder', 'Peak'],

'Time": Current time}

Priority Levels:

- 'High": The device must work,

- 'Medium': The device should work,

- 'Do Not Care": It does not matter if the device works.

The simulation begins at 00:00 (midnight) and runs until 00:00
(midnight) the following day.

Your task is to determine the best action for the given state. To
determine the action, do the following steps:

- Look at the previous states, actions you took, and the rewards that
resulted from taking a certain action.

- Always strive to get a positive reward for each time step. Do not
decide on the next action before considering the restrictions.

- Check the defined priority levels. If they are high and still do not
work, turn the device on

- Check the PV production. If the number is greater than 50, consider

turning on a device that didn't work or has a high priority

- Check the tariff price. Consider turning off devices when the tariff

is peak
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Postavljanje operativnih
ogranicenja za odredene uredaje.

Definisanje moguc¢ih akcija koje
sistem moze preduzeti.

Objasnjenje reprezentacije stanja
kori$¢ene u simulaciji.

Definisanje nivoa prioriteta za
razli¢ite akcije.

Definisanje vremenskog okvira
simulacije i glavnog zadatka
HEMS-a.

Navodenje detaljnih koraka za
odredivanje optimalne akcije u
datom stanju.



Use the following format to evaluate the next possible action: Formatiranje odgovora.

The Previous states, actions, and the rewards:
""" state, action, reward for each time step here "'
Current state:

" Current state here "'

Tabela 9. Uproscen primer korisnickog prompta

Prompt Odgovor LLM-a Objasnjenje
The previous states, actions, and = {"actions": [4]}. Masina za sudove nije radila
the rewards: tokom dana i trenutno je

spremna za upotrebu (napunjena
sudovima). Nivo prioriteta
dodeljen masini za sudove je
srednji, a tarifa elektriCne

""" <other previous states, actions
and rewards>

Temp Difference: 0

Priority Ac: Do Not Care

Worked Today Clothes Wash:
Didn't Work

Loaded Clothes Wash: Loaded

energije se nalazi u srednjem
cenovnom periodu. Pored toga, u
ovom trenutku je zabelezena
proizvodnja elektri¢ne energije

putem solarnog panela.

Priority Clothes Wash: Do Not o @i melove, IULRY s

S predlozio akciju 4 — ukljucivanje
Worked Today Dishwasher: masine za sudove.
Didn't Work

Loaded Dishwasher: Loaded
Priority Dishwasher: Medium
Production Pv: -204

Tariff: Shoulder

Time: 13:15

For the action: Idle

The reward was:
0.44999999999999996 "'

The Current State: "
Temp Difference: 0
Priority Ac: Do Not Care

Worked Today Clothes Wash:
Didnt Work

Loaded Clothes Wash: Loaded

Priority Clothes Wash: Do Not
Care

Worked Today Dishwasher:
Didnt Work

Loaded Dishwasher: Loaded
Priority Dishwasher: Medium
Production Pv: -184

Tariff: Shoulder

Time: 13:30 ™
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The previous states, actions, and | {"actions": [2]}.

the rewards: "

<other previous states, actions
and rewards>

Temp Difference: 2
Priority Ac: High

Worked Today Clothes Wash:
Didnt Work

Loaded Clothes Wash: Loaded

Priority Clothes Wash: Do Not
Care

Worked_Today Dishwasher:
Worked Today

Loaded Dishwasher: Not Loaded

Priority Dishwasher: Do Not
Care

Production Pv: 0
Tariff: Shoulder
Time: 18:45

For the action: AC: on

The reward was:
93.68653112989435 "

The current state: "
Temp Difference: 0
Priority Ac: High

Worked Today Clothes Wash:
Didnt Work

Loaded Clothes Wash: Loaded
Priority Clothes Wash: Medium

Worked Today Dishwasher:
Worked Today

Loaded Dishwasher: Not Loaded

Priority Dishwasher: Do Not
Care

Production Pv: 0
Tariff: Shoulder
Time: 19:00 ™

Masina za ves nije bila aktivna
tokom dana i trenutno je
spremna za upotrebu (napunjena
vesom). Njen nivo prioriteta je
srednji, a tarifa elektricne
energije se nalazi u srednjem
cenovnom periodu.

Na osnovu ovih uslova, LLM je
predlozio akciju 2 — ukljucivanje
masine za ves.

Tabela 10. Dodatni tekst na kraju korisnickog prompta

Prompt Objasnjenje

Respond only in the form of '{ "actions": [] } '. Definisanje zeljenog formata
Actions are int values from 0 to 6. The goal is for the reward to be a izlaza.

positive value.
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5 Evaluacija metodologije

Ovo poglavlje opisuje eksperimentalnu postavku za evaluaciju razvijenih HEMS pristupa
i prikazuje dobijene rezultate evaluacije. Potpoglavlje 5.1 predstavlja studiju slucaja,
definiSuci parametre simulacije pametne kuce koja se koristi za razvoj i evaluaciju HEMS
sistema.

5.1 Studija slucaja: eksperimentalna postavka za
simulaciju pametne kucée

U okviru disertacije dizajnirano je adaptivno simulaciono okruzenje koje oponasa
potrosnju elektri¢ne energije u pametnoj kuci (potpoglavlje 4.2). U ovom potpoglavlju,
to okruzenje je koriS¢eno za simulaciju studije slu¢aja — pametne kuce locirane u
Nemackoj, koja je opremljena solarnim panelom. Od uredaja kontrolisanih od strane
HEMS-a, prisutni su klima uredaj, masina za sudove i masina za ves (tabela 11). Za svaki
od ovih uredaja definisani su zahtevi u pogledu Zeljenog vremena rada i temperature
unutras$njeg prostora. Ova postavka simulacije kori$¢ena je za obucavanje i evaluaciju
razli¢itih HEMS pristupa.

Tabela 11. Tipovi uredaja koji su podrzani u simulacionim okruzenjima.

Rad zavisan od

Uredaj/Tip Promenljivo vreme eksternih Potrosa¢ Proizvodad
uredaja rada vremenskih energije energije
podataka
Klima uredaj v v v x
Masina za sudove v x v x
MasSine za ve§ v x v x
x v x v

Solarni panel

Potpoglavlje 5.1.1 prikazuje karakteristike uredaja u pametnoj ku¢i i akcije kojima ih
HEMS moze kontrolisati. Takode je istaknuta razlika u simulaciji ovih uredaja u
zavisnosti od koris¢enog simulacionog okruzenja, odnosno od toga da li se njihova
potro$nja modeluje kao konstantna ili varijabilna. Potpoglavlje 5.1.2 prikazuje eksterne
podatke relevantne za simulaciju pametne kuce na odredenoj lokaciji, ukljucujuci
istorijske podatke o vremenskim uslovima i dostupnim tarifama. Potpoglavlje 5.1.3
specificira zahteve stanara u vezi sa radom uredaja koje kontroliSe HEMS. Potpoglavlje
5.1.4 sumira definiciju stanja i akcija dostupnih HEMS-u. Konacno, potpoglavlje 5.1.5
definiSe eksperimentalnu postavku.

5.1.1 Modelovanje uredaja u pametnoj kuci

Svaki od uredaja definisanih u narednim potpoglavljima modelovan je koris¢enjem
Typhoon HIL (Typhoon HIL 2008) i Load Flow (Vojnovi¢ et al. 2022) (Vojnovic et al.
2023b) (Vojnovi¢ et al. 2023a) okruzenja. Razlika izmedu ovih okruzenja ogleda se u
nacinu modelovanja potrosnje elektricne energije tokom rada uredaja. U okviru Typhoon
HIL simulacionog okruzenja, potro$nja uredaja se modeluje kao konstantna — vrednost
potros$nje u svakom vremenskom koraku predstavlja prose¢nu vrednost potrosnje tokom
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celokupnog vremena rada uredaja. Nasuprot tome, Load Flow okruzenje omogucava
modelovanje promenljive potro$nje uredaja tokom rada, ¢ime se postize realisti¢nija
simulacija njihovog rada. Modelovanje uredaja pomocu Load Flow simulacionog
okruzenja je opisano u potpoglavlju 2.1.1.

Svaki od modelovanih uredaja ima unapred definisan skup akcija kojima HEMS moze
upravljati njihovim radom. Osnovna akcija dostupna za sve HEMS-kontrolisane uredaja
jeste ukljucivanje ili iskljucivanje na pocetku vremenskog koraka, $to odreduje da li ¢e
uredaj raditi tokom tog vremenskog intervala. Na kraju svakog vremenskog koraka,
HEMS moze ocitati izlazne podatke uredaja, koji su relevantni za razumevanje trenutnog
stanja sistema i donosSenje narednih odluka.

5.1.1.1  Klima uredaj

Klima uredaj (eng. Air Condition, AC) je modelovan kao termalni uredaj sa promenljivim
vremenom rada, i predstavlja potroSac energije.

Unutras$nja temperatura kuce zavisi ne samo od rada klima uredaja, ve¢ 1 od
termodinamickih karakteristika kuce i spoljasnjih vremenskih uslova. Termodinamika
kuée obuhvata razmenu toplote sa spoljasnjim okruzenjem kroz zidove i prozore,
ukljucujuci gubitke i dobitke toplote.

Na pocetku svakog vremenskog koraka, HEMS moze da izvrsi sledece akcije:

e Uklju¢i AC — Klima uredaj zapocinje cikluse hladenja ili grejanja kako bi
odrzao unutrasnju temperaturu unutar zeljenog intervala od 20°C do 25°C.

e Iskljuéi AC — Klima uredaj prestaje sa radom, ¢ime prestaje i regulacija
unutrasnje temperature.

PotroSnja energija moZe se optimizovati regulacijom unutrasnje temperature u skladu sa
prisustvom stanara u domacinstvu. Idealni scenario podrazumeva iskljucenje klima
uredaja pre odlaska stanara iz kuce, uz ocuvanje temperature unutar zeljenog opsega dok
su prisutni. Nakon njihovog odlaska, temperatura bi se postepeno prilagodavala
spoljasnjim vremenskim uslovima. Klima uredaj bi se ponovo aktivirao pre povratka
stanara, kako bi osigurao postizanje Zeljene unutrasnje temperature pre njihovog dolaska.
Ovakav pristup spre¢ava naglu i visoku potrosnju elektri¢ne energije potrebne za brzo
vradanje tremperature u Zzeljeni opsega, Sto bi se moglo desiti u slucaju vecih
temperaturnih odstupanja u trenutku povratka stanara.

Na kraju svakog vremenskog koraka, klima uredaj vrac¢a informaciju o potrosnji
elektricne energije Ppc. U zavisnosti od koris¢enog okruzenja, izlazne vrednosti
potro$nje mogu se razlikovati:

e  Typhoon HIL simulaciono okruzenje: vraca konstantnu potros$nju od 1.8 kW
(Pedrasa, Spooner, and MacGill 2010).

e  Load Flow simulaciono okruZenje: vraca promenljivu potrosnju izrazenu u kW,
kao $to je opisano u potpoglavlju 2.1.1.

Zbog razlicite snage elektricne energije koju koristi klima uredaj u zavisnosti od
simulacionog okruzenja, gde uredaj u Typhoon HIL ima slabiju snagu u poredenju sa
uredajem u Load Flow, temperatura sporije raste tokom zime, odnosno sporije opada
tokom leta.
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5.1.1.2  Masina za sudove

Masina za sudove (eng. dishwasher) je uredaj sa promenljivim vremenom rada i potroSac
energije sa neprekidnim radnim ciklusom, Cija potrosnja energije u realnim uslovima
varira tokom razli¢itih faza rada. Ukoliko dode do prekida rada, HEMS mora pokrenuti
pranje ispocetka, pri ¢emu sva do tada utrosena energija predstavlja nepovratni gubitak.
Nakon ovakvog prekida, uredaj ostaje u stanju ,spreman za rad“. Zbog ovih
karakteristika, neophodno je pazljivo planirati vreme rada masine za sudove, kako bi se
istovremeno ocuvao komfor stanara u pogledu zeljenog vremena zavrSetka pranja i
optimizovali troskovi elektricne energije, kroz wuskladivanje rada uredaja sa
proizvodnjom solarnog panela i vaze¢im tarifnim rezimima.

Na pocetku svakog vremenskog koraka t, HEMS moze da izvrsi jednu od slede¢ih akcija
u vezi sa masinom za sudove:

e  Pokrene uredaj, ukoliko je spreman za rad. Uredaj se smatra spremnim za rad
ako je napunjen sudovima. Ukoliko uredaj nije spreman, njegovo pokretanje
nije mogu¢e. U okviru simulacije razvijene u ovom istrazivanju, uredaj je
spreman za rad samo jednom dnevno — na pocetku dana. Po zavrsetku pranja,
uredaj se viSe ne smatra spremnim za rad do narednog dana.

e Zaustavi uredaj, ¢ime se prekida njegov rad, ¢ime se trenutni radni ciklus
prekida. U tom slucaju, pranje sudova moracée da se zapocéne ispocetka, a do tada
utroSena energija se gubi.

Na kraju svakog vremenskog koraka t, masina za sudove vraca sledece izlazne vrednosti:

®  Agishwasher — Indikator koji oznacava da li je uredaj spreman za rad.
®  Pyishwasher — Potrosnja elektri¢ne energije uredaja tokom vremenskog koraka t
izraZzena u kW i varira u zavisnosti od koris¢enog okruzenja:
o Typhoon HIL simulaciono okruzenje: vra¢a konstantnu potrosnju od 1
kW, gde je ukupan vreme rada 1h i 30min, odnosno 6 ciklusa od 15
minuta (Pedrasa, Spooner, and MacGill 2010).
o Load Flow simulaciono okruzenje: vraca promenljivu potro$nju u kW,
gde je ukupno vreme rada 2h, odnosno 8 ciklusa od 15 minuta.

5.1.1.3  Masina za ves

Kombinovana masina za pranje i suSenje vesa (eng. washing machine) predstavlja uredaj
promenljivog vremena rada koji je potrosac energije. Na pocetku svakog vremenskog
koraka t, HEMS moze izvrsiti akcije:

e  Ukljudi ureda;.
e  Zaustavi uredaj.

Na kraju svakog vremenskog koraka t, masina za ve$ vraca sledece izlazne vrednosti,
analogno masini za sudove:

®  Awashingmachine — indikator spremnosti uredaja za rad. U simulacijama
sprovedenim u okviru ovog istrazivanja, uredaj se smatra spremnim za rad
iskljuéivo na pocetku dana. Ukoliko uredaj nije spreman, njegovo pokretanje
nije moguce. Po zavrSetku pranja, uredaj se viSe ne smatra spremnim za rad do
narednog dana.
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®  Pyashingmachine — potroSnja elektriCne energije maSine za ve§ u vremenskom
koraku t, izrazena u kilovatima (kW). Tip potro$nje zavisi od koriseénog
simulacionog okruzenja:

o Typhoon HIL simulaciono okruzenje: modeluje potroSnju kao
konstantnu, sa vredno$¢u od 0,5 kW i ukupnim vremenom rada od 2
sata (Pedrasa, Spooner, and MacGill 2010).

o Load Flow simulaciono okruzenje: omoguéava modelovanje
promenljive potros$nje tokom ciklusa rada. U ovom slu¢aju, ukupno
vreme rada iznosi 4 sata i 30 minuta, odnosno 18 vremenskih koraka
od po 15 minuta.

5.1.1.4  Solarni panel

Solarni panel je proizvoda¢ elektricne energije ¢iji rad zavisi od eksternih vremenskih
uslova. Proizvodnja elektri¢ne energije solarnog panela izracunava se na osnovu stvarnih
meteoroloskih podataka o spoljasnjoj temperaturi i solarnoj iradijaciji, koji su detaljno
opisani u potpoglavlju 5.1.2. Proizvedena energija moze direktno napajati potrosace u
domadinstvu, pri ¢emu se visak energije ne moze prodavati elektricnoj mrezi. Na kraju
svakog vremenskog koraka t, solarni panel vrac¢a vrednost trenutne snage proizvedene
elektri¢ne energije Ppy, izrazenu u kilovatima (kW), nezavisno od kori§¢enog
simulacionog okruzenja.

5.1.2 Vremenski uslovi 1 tarifni rezimi

Definisan tarifni rezim (tabela 12) oslikava domacinstvo iz Nemacke® i predstavljen je u
€/kWh.

Tabela 12. Pregled tarifnih rezima.

Sati Cena (€/kWh)
Visoka cena struje Sh—13h 0,4
Srednja cena struje 13h — 00h 0,3
Niska cena struje 00h — 5h 0,2

Podaci o vremenskim uslovima, iradijaciji i spoljasnjoj temperaturi preuzeti su sa sajta
Solcast®. Podaci su prikljupljeni za Berlin na 15 minutnom vremenskom intervalu tokom
dva razli¢ita perioda — od 1. do 23. januara i juna 2016.

5.1.3 Definisanje zahteva stanara pametne kuce

Ograniéenje koje postavljaju stanari odnosi se na Zeljeni opseg unutrasnje temperature,
definisan u intervalu od 20°C do 25°C. Pored toga, komfor stanara je modelovan kroz
njihove zahteve u pogledu vremenskog rasporeda rada pojedinacnih uredaja. Vrednosti
znacaja rezima rada koje stanari koriste za definisanje prioriteta rada uredaja (prikazane
u tabeli 13) odreduju se u skladu sa tarifnim rezimima za elektri¢nu energiju prikazanim
u tabeli 12, na osnovu pristupa iz (Pedrasa, Spooner, and MacGill 2010).

8 https://www.agora-energiewende.de/

9 https://solcast.com/
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Radi objedinjavanja sa troSkovima elektri¢ne energije, komfor stanara kvantifikovan je
umonetarnim jedinicama (€/kW h). Monetarne vrednosti dodeljene znacaju rada uredaja
(prikazane u tabeli 14) formulisane su tako da odrazavaju spremnost stanara da koriste
odredene uredaje u specificnim tarifnim periodima:

e Visoka vrednost dodeljuje se uslugama koje stanari ocekuju i u periodima
visoke tarife, te je visa od maksimalne cene elektri¢ne energije.

e Srednja vrednost nalazi se izmedu tarife srednjeg i visokog tarifnog perioda, $to
sugeriSe da se upotreba tih uredaja moze vremenski prilagodavati.

Tabela 13 prikazuje dodeljene prioritete za svaki uredaj tokom razlicitih perioda dana.
Navedene vrednosti predstavljaju ulazne parametre simulacije, koje stanari definiSu radi
iskazivanja svojih preferencija u pogledu Zeljenog vremena rada uredaja.

Tabela 13. Znacaj rada uredaja u razlicitim periodima dana prema korisnickim
zahtevima.

Uredaj ReZim rada Znacaj reZima rada
Klima uredaj 17h — 8h (naredni dan) Visok
8h—17h Nije vazno
Masina za sudove 9h — 14h Srednji
14h—17h Visok
Ostatak dana Nije vazno
Masina za ve$§ 19h —21h Srednji
21h —24h Visok
Ostatak dana Nije vazno

Tabela 14. Novcane vrednosti dodeljene radu uredaja na osnovu korisnickih prioriteta.

Znacaj Vrednost (€/kW h) Opis
rada
Visok 0,45 Kriticna usluga koju je pozeljno pruziti ¢ak i tokom perioda

visoke tarife. Vrednost je postavljena iznad maksimalne tarife
kako bi se obezbedio prioritet rada uredaja.

Srednji 0,35 Usluga ¢iji se rad moze ograniciti tokom perioda vise tarife.
Vrednost je izmedu tarifa za srednji i visok tarifni period,
odrazavajuci umeren prioritet.

Nije Uredaji koji nisu termalni: 0 Stanari su ravnodusni prema radu uredaja u datom

vazno Termalni uredaji: 0,1 vremenskom periodu. Kod termalnih uredaja dodeljuje se
mala nenulta vrednost, kako bi se penalizovala znacajna
odstupanja od zeljenog temperaturnog opsega i sprecilo
prekomerno hladenje ili zagrevanje unutrasnjeg prostora.

U primerima 5.1 1 5.2 prikazana je logika definisanja vremenskih opsega znacaja rada za
masinu za ves$ i masinu za sudove, u skladu sa zahtevima stanara. Primer 5.3, na primeru
klima uredaja, ilustruje kako se, na osnovu zadatih prioriteta i njima pridruzenih
monetarnih vrednosti, izratunava vrednost komfora u zavisnosti od perioda rada uredaja.

Primer 5.1. Postavka znacaja komfora na primeru ves maSine.

Pretpostavimo da stanari Zele da ves bude opran do 21 casa. Znacaj rada ves masine varira
tokom dana, u zavisnosti od preostalog vremena za zavrSetak ciklusa:

e Na pocetku dana, znacaj je postavljen na ,,Nije vazno”, jer nije bitno kada ¢e se
ves prati, sve dok bude gotov do 21 ¢asa.
e Kadase priblizava 21 ¢as, znacaj prelazi u ,,Srednji*, signalizirajuci da bi uskoro
trebalo pokrenuti uredaj.
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e U 21 cas, kada ostane ta¢no onoliko vremena koliko je potrebno za zavrsetak
ciklusa pre pono¢i, znacaj se postavlja na “Visok”, jer je to poslednja mogucénost
za ispunjenje cilja.

Primer 5.2. Postavka znacaja komfora na primeru masine za sudove.

Pretpostavlja se da stanari zele da sudovi budu oprani najkasnije do 12 ¢asova (slika 19).
Znacaj rada maSine za sudove varira tokom dana, u skladu sa ovim zahtevom:

e Na pocetku dana, znacaj je postavljen na ,,Nije vazno®, jer vreme pokretanja
nije kriti¢no sve dok se ciklus moze zavrsiti do 12 ¢asova.

e Od 6 do 8 casova, znacaj prelazi u ,,Srednji®, signaliziraju¢i da se priblizava
trenutak kada bi uredaj trebalo aktivirati, ali jos postoji fleksibilnost u planiranju
vremena pokretanja.

e Od 8 casova, znacCaj postize nivo ,,Visok®, jer je preostalo tacno onoliko
vremena koliko je potrebno da se ciklus pranja zavrsi do 12 ¢asova. Uredaj biu
ovom trenutku trebalo pokrenuti, ¢ak i ako je cena elektri¢ne energije visoka.

e Nakon 12 ¢asova, znacaj se vraca na ,,Nije vazno®, pod pretpostavkom da je
zahtev korisnika ispunjen. Ukoliko uredaj nije pokrenut na vreme, pretpostavlja
se da korisnicima vise nije bitno kada ¢e biti aktiviran.

Visok

Srednji 1

Znacaj rada

Mije vazno 4

001 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24
Vreme (Easovi, 24-casovni format)

Slika 19. Primer dinamic¢kog odredivanja znacaja rada masine za sudove.
Primer 5.3. Postavka racunanja komfora na primeru klima uredaja.

U ovom primeru analiziran je klima uredaj kao ilustracija racunanja komfora prema
izrazu ( 27 ). Radi pojednostavljenja, pretpostavlja se da je vrednost penalizacije
Kaznal = 1.

Tabela 15 prikazuje vrednosti komfora za klima uredaj za svaki 15-minutni vremenski
korak. HEMS upravlja unutra§njom temperaturom kontrolisanjem rada klima uredaja, s
ciljem odrzavanja temperature unutar zadatog temperaturnog opsega. Uredaj se moze
iskljuciti, $to omogucava prirodni porast ili pad unutrasnje temperature, u zavisnosti od
spoljasnjih vremenskih uslova.

Stanari definiSu visok znacaj rada klima uredaja u periodima kada su prisutni u ku¢i —u
ovom primeru, to je interval od 17:00 do 8:00 narednog dana. Tokom odsustva, znacaj
rada uredaja se postavlja na ,,Nije vazno*. Ipak, kako bi se izbegao prekomerni pad ili
rast temperature dok su stanari odsutni, termalnim uredajima se i u tom periodu dodeljuje
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mala nenulta novcana vrednost znacaja, koja u ovom primeru iznosti 0,1 €/kWh, u
skladu sa vrednostima prikazanim u tabeli 14. Radi jednostavnosti prikaza kazna iz
formule ( 27 ) se ne uzima u razmatranje.

Tabela 15. Primer izraCunavanja nov€anog znacaja rada klima uredaja tokom dana.
Vrednost B£A¢ predstavlja novéani znadaj rada klima uredaja u vremenskom koraku t, u
skladu sa opisom iz tabele 14. Vrednost E{'C ozna¢ava potro$nju elektri¢ne energije klima
uredaja u istom vremenskom koraku. Podaci o trenutnoj potrosnji preuzeti su iz
simulacionog okruzenja Typhoon HIL, opisanog u potpoglavlju 5.1.1.1. Komfor koji
obezbeduje klima uredaj modelovan je pomocu pojednostavljene jednacine ( 27 ), pri
¢emu se razmatra iskljucivo rad klima uredaja,, bez penalizacije, uz pretpostavku da je
potro$nja u svakom vremenskom koraku razli¢ita od nule (E{£\¢ # 0).

Vreme B4¢ EA¢ Komfor AC
7:45 0,45 (Visok) 1.8 kW * 15min (0,25h) = 0,45 kWh 0,45* 0,45 = 0,2025
8:00 0,1 (Nije vazno) 1.8 kW * 15min (0,25h) = 0,45 kWh 0,45 * 0,1 =0,045
8:15 0,1 (Nije vazno) 1.8 kW * 15min (0,25h) = 0,45 kWh 0,45 * 0,1 = 0,045
16:45 0,1 (Nije vazno) 1.8 kW * 15min (0,25h) = 0,45 kWh 0,45 * 0,1 =0,045
17:00 0,45 (Visok) 1.8 kW * 15min (0,25h) = 0,45 kWh 0,4 *0,45=0,2025

5.1.4 Reprezentacija stanja 1 skup mogucih akcija

U ovom potpoglavlju opisane su kljuéne komponente simulacionog okruzenja koje
definiSu simulaciju u svakom vremenskom koraku — reprezentacija posmatranog stanja
(potpoglavlje 5.1.4.1) i moguce akcije koje HEMS moze preduzeti (potpoglavlje 5.1.4.2).

5.1.4.1  Reprezentacije stanja

Reprezentacija stanja zavisi od prirode posmatranog okruzenja. Na primer, u video-
igrama stanje moze biti predstavljeno jednim frejmom igre (eng. game frame) (Mnih et
al. 2013). U kontekstu HEMS-a prikazanog u ovoj disertaciji, stanje obuhvata: izlazne
vrednosti uredaja definisanih u potpoglavlju 5.1.1, vremenske uslove i tarifni rezim iz
potpoglavlja 5.1.2, kao i zahteve stanara definisane u potpoglavlju 5.1.3. Stanje je
modelovano kao vektor diskretnih, celobrojnih i realnih vrednosti:

S = (Saryyiar SEC S SCW, SEW, SV, SPW, SPW, SPY, tarifa), (34)
gde su komponente vektora definisane na slede¢i nacin:

. predstavlja razliku izmedu unutra$nje temperature na pocetku

SATrazlika
trenutnog vremenskog koraka (za koji se donosi odluka) i ciljanog

temperaturnog opsega definisanog od strane korisnika. Vrednosti su celobrojne
pozitivne vrednosti.

. Sli oznaCava nivo znacaja rada uredaja i na pocetku trenutnog vremenskog
koraka (“Visok”, “Srednji” ili “Nije vazno”, prema tabeli 13) za sve uredaje
kojima HEMS upravlja: klima uredaj (AC), maSina za pranje vesa (CW) i
masina za pranje sudova (DW). Radi stabilizacije procesa obucavanja modela,
kategorije su predstavljene kao celobrojne vrednosti: 2 za ,,Visok™, 1 za
»drednji“ 1 0 za ,,Nije vazno®“. Pored ovoga klima uredaj u kategoriji ,,Nije
vazno“ ima vrednost 0,1.
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e Zanetremalne uredaje kojima HEMS upravlja (CW i DW):

o Sy oznacava da li je uredaj bio aktivan u prethodnom vremenskom
koraku.

o S, oznacava da li je uredaj spreman za rad na pocetku trenutnog
vremenskog koraka.

e Spy oznaCava koli¢inu energije koju je solarni panel proizveo u teku¢em
vremenskom koraku. Ova vrednost procenjenjuje se na osnovu solarne
iradijacije izmerene na pocetku tog koraka. Vrednosti su prikazane kao
negativni celi brojevi.

e tarifa oznaava rezim cene elektriCne energije na pocetku trenutnog
vremenskog koraka, koji moze poprimiti jednu od tri diskretne vrednosti
prikazane u tabeli 12. Radi stabilizacije procesa obucavanja modela, kategorije
su predstavljene kao celobrojne vrednosti: 2 za ,,Visoka cena struje®, 1 za
,»Srednja cena struje® i 0 za ,,Niska cena struje®.

5.14.2  Skup akcija
Definisani skup akcija za uredaje kojima HEMS moze upravljati je binaran:

A= {Aflkljuéi'A{skljuéi:Aidleli €f{L,..,N}}, (35)

gde je: A skup mogucih akcija, A

flkljuéi akcija ukljucivanja uredaja i, Aiiskljuéi akcija
iskljucivanja uredaja i, a N ukupan broj uredaja kojima HEMS upravlja. Dodatna akcija

kada agent ne preduzima nikakvu akciju A;q;.. Ukupno ima 7 akcija.

Zbog ogranicenja modela, pristupi zasnovani na ucenju potkrepljivanjem mogu odaberati
samo jednu optimalnu akciju u vremenskom koraku. Nasuprot tome, LLM modeli
omogucavaju odabir vise akcija.

5.1.5 Eksperimentalna postavka

Trening skup za modele ucenja potkrepljivanjem obuhvata prve tri nedelje u mesecu,
odnosno prvih 22 dana. Tokom obuke, za svaki trening korak nasumic¢no se bira jedan od
dana iz trening skupa, ¢ime se izbegava moguca zavisnost izmedu uzastopnih dana i
podstice sposobnost generalizacije modela. Za razliku od modela ucenja
potkrepljivanjem, LLM modeli ne zahtevaju proces obucavanja, ve¢ se primenjuju
direktno u inferenciji.

Zbog ogranicenja dostupnog budzeta ovom istrazivanju, evaluacija LLM modela
sprovedena je samo na jednom danu — 23. dan u mesecu. Radi objektivnog poredenja, svi
modeli su evaluirani na istom danu, ukljuéujuci:

Modele ucenja potkrepljivanjem (DDQN i PPO),
Sistem baziran na znanju (pravila definisana od strane autora rada) (KBS
strucnjak),
e Modeli bazirani na velikim jezickim modelima:
o KBS definisan od strane LLM bez primera (KBS LLM),
o LLM sa nekoliko primera simulirajuci ponasanje RL-a (RL LLM).
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Prikazana je evaluacija modela primenom metrika za komfor ( 27 ), potrosnju ( 32 ) i
ukupnu nagradu ( 33 ). Detaljno ¢e se analizirati i uporediti odluke razli¢itih modela, gde
¢e se istaci najbolji postignuti rezultati.

Dodatno, modeli DDQN, PPO i KBS definisan od strane ljudskog eksperta i KBS
definisan od strane LLM bez primera i LLMM sa nekoliko primera simulirajuéi ponasnje
RL-a su evaluirani na 7 dana, od 23. do 31. dana u januaru i junu, da bi se ispitala
konzistentnost dobijenih rezultata.

Radi provere robusnosti modela, opisana evaluacija je sprovedena u dva eksperimenta,
za dva razlic¢ita meseca koji predstavljaju razlic¢ita godiSnja doba (zima i leto). Ovaj
pristup osigurava da su modeli izloZeni razli¢itim uslovima potro$nje elektricne energije
i vremenskim uslovima, ¢ime se ispituje njihova otpornost na sezonske promene.

U ovom potpoglavlju detaljno se analiziraju rezultati modela dubokog ucenja. U
potpoglavlju 6.1 analiziraju se rezultati DDQN i PPO modela, gde su rezultati
predstavljeni u kontekstu simulacionih okruzenja Typhoon HIL i Load Flow. U
potpoglavlju 6.2 prikazana je analiza rezultata velikog jezic¢kog modela.

Prvo su analizirane vrednosti funkcija nagrade i odluke modela na jednom danu koji je
sledio nakon perioda treniranja. Zatim su, za potrebe ispitivanja robusnosti modela,
analizirane vrednosti funkcije nagrade u periodu od sedam dana koji slede nakon perioda
treniranja. Ista analiza sprovedena je u zimskom i letnjem periodu, kako bi se sagledale
sezonske varijacije u rezultatima.
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6 Rezultatiidiskusija

U ovom poglavlju prikazani su i diskutovani rezultati modela za orkestraciju pametnih
uredaja sa ciljem optimizacije udobnosti stanara i potrosnje elektri¢ne energije. U
potpoglavlju 6.1 analiziraju se rezultati modela ucenja potkrepljivanjem uz detaljnu
analizu procesa obucavanja i odluka obu€enih modela na jednom testnom danu koji sledi
neposredno nakon perioda treninga. Potpoglavlje 6.2 obuhvata istu analizu u kontekstu
primene velikih jezickih modela. U potpoglavlju 6.3 rezultati svih modela su uporedeni
sa performansama sistema zasnovanog na znanju definisanog od strane ljudskog
eksperta. U potpoglavlju 6.4 ispituje se robusnost modela pri donosenju odluka u periodu
od sedam uzastopnih dana. Na kraju, potpoglavlje 6.5 sumira i diskutuje sve rezultate.

6.1 Analiza rezultata modela ucenja potkrepljivanjem

U ovom potpoglavlju prikazani su rezultati ostvareni pomoc¢u modela dubokog ucenja
potkrepljivanjem. Potpoglavlje 6.1.1 analizira proces konvergencije nagrade — prikazuje
se promena vrednosti srednje dnevne nagrade tokom obuke radi utvrdivanja da li su
modeli konvergirali. U potpoglavlju 6.1.2 prikazane su vrednosti funkcije nagrade koji
trenirani modeli ostvaruju na testnom danu koji sledi neposredno nakon perioda obuke.
Za svako simulaciono okruzenje prikazana je posebna tabela, pri c¢emu su u svakoj tabeli
objedinjeni rezultati za zimski i letnji period. Potpoglavlje 6.1.3 analizira odluke modela
na istim testnim danima. Ovde su zasebno analizirane odluke modela vezane za
kontrolisanje unutra$nje temperature i upravljanje radom masine za pranje sudova i
masine za ves.

6.1.1 Analiza procesa konvergencije nagrade

Prikaz rezultata konvergencije modela istice brzinu obucavanja modela, gde se od
istreniranog modela ocekuje stabilan rast vrednosti nagrade kroz iteracije, uz minimalne
oscilacije. DDQN i PPO modeli su trenirani u dva razli¢ita meseca iz 2016. godine
(potpoglavlje 5.1.2) — zimskom (od 01. do 22. januara) i letnjem (od 01. do 22. juna).
Krive obucavanja DDQN i PPO modela u simulacionim okruzenjima Typhoon HIL i
Load Flow za ove mesece su prikazane na slikama 20 i 21.

Modeli u€enja potkrepljivanjem zahtevaju veliki broj iteracija kako bi dostigli stabilno
ponasanje (Cobbe et al. 2019). Bez obzira na scenario, PPO modeli su se obucili nakon
11.000 epizoda u zimskom i letnjem periodu. Za razliku od njih, DDQN modeli su
zahtevali ve¢i broj epizoda za uspeSno obucavanje (oko 22.000 epizoda u zimskom i
40.000 epizoda u letnjem periodu).

Konac¢ne prosecne dnevne nagrade DDQN modela bile su nize i pokazivale su vece
oscilacije u poredenju sa nagradama PPO modela. U zimskom periodu, u oba okruzenja,
PPO je ostvario prosecnu dnevnu nagradu od oko 2 €, dok je DDQN postigao oko —2 €.
U letnjem periodu, u Typhoon HIL simulacionom okruzenju, prose¢na dnevna nagrada
PPO modela iznosila je oko 3 €, dok je DDQN postigao priblizno 0 €. U letnjem periodu
u Load Flow simulacionom okruzenju, prose¢na dnevna nagrada PPO modela iznosila je
oko 2 €, dok je DDQN postigao prose¢nu dnevnu nagradu od oko 0 €.
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Ovde prikazani rezultati su u skladu sa rezultatima prikazanim u radovima (Kozlica et al.
2023) (Sabbir M 2024), koji su poredili performanse DDQN i PPO modela u reSavanju
razli¢itih problema. Rad (Kozlica et al. 2023) je utvrdio da DDQN model sporije
konvergira u poredenju sa PPO modelom, kao i da PPO postize bolje rezultate nakon
treniranja.

Typhoon HIL: Prosetna nagrada po epizedi (DDOQN vs PPO) - Januar
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Slika 20. Prose¢na nagrada po epizodi za zimski mesec (1. do 22. januar).

Typhoon HIL: Prosecna nagrada po epizodi (DDQN vs PPO) - jun
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Slika 21. Prose¢na nagrada po epizodi za letnji mesec (1. do 22. jun).

Rezultati ukazuju na ograni¢enu konvergenciju DDQN modela. lako deluje da je DDQN
dostigao konvergenciju nagrade, naredne analize su pokazale da ovaj model nije uspesno
obucen:

e  Analiza odluka modela na testnom danu koji sledi neposredno nakon treniranja
je otkrila da je model propustio da uklju¢i ve§ maSinu u Load Flow
simulacionom okruzenju u zimskom danu (potpoglavlje 6.1.3.1)
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e Interpretacija odluka koje model donosi (potpoglavlje 6.1.4.1) je otkrila da
odluke DDQN modela u zimskom i letnjem danu deluju gotovo nasumicno i
Cesto ne prate logiku energetske optimizacije i udobnosti stanara.

e Ispitivanje robusnosti modela njegovom primenom na sedam testnih dana koji
slede neposredno nakon treniranja je ukazalo na to da model Cesto propusta da
upali ve$ masinu (potpoglavlje 6.4).

Uzrok ovakvog ishoda lezi u cCinjenici da algoritmi optimizacije zasnovani na
gradijentima, koji nemaju formalne garancije konvergencije, mogu dovesti do ucenja
suboptimalnih poltika ¢ak i kada je obezbedena dovoljna eksploracija (Zhang et al. 2018).
Optimizacija u u¢enju potkrepljivanjem znacajno je sloZenija nego u nagledanom ucenju,
S$to dovodi do nestabilnih krivih nagrade i nepredvidivih ishoda treniranja (Zhang et al.
2018). Pored toga, epizodne nagrade tokom obucavanja cesto osciluju (Mnih et al. 2013),
a male promene u inicijalizaciji teZina mogu znacajno uticati na krajnje performanse
(Henderson et al. 2018). Zbog toga se konvergencija krive nagrade ne moze tumaciti kao
garancija uspesnog i ispravnog obucavanja DDQN modela i neophodno je vrsiti dodatne
analize ponasanja modela.

6.1.2 Analiza vrednosti funkcije nagrade na testnom danu koji
sledi neposredno nakon perioda treniranja

U ovom potpoglavlju sprovedena je analiza vrednosti nagrade koju modeli ostvaruju u
danu koji neposredno sledi nakon perioda obuke, sa ciljem ispitivanja njihove
sposobnosti da generalizuju naucenu politiku i donose odluke u nepoznatim uslovima.
Posebno su razmatrane vrednosti nagrade povezane sa udobnoS¢u stanara, cenom
elektricne energije i njihovim zbirnim efektom.

Rezultati analize bi¢e razdvojeni u zavisnosti od simulacionog okruzenja (Typhoon HIL
i Load Flow), pri ¢emu se za svako okruzenje prikazuju rezultati ostvareni u zimskom i
letnjem danu. Uredaji simulirani u Typhoon HIL okruZenju troSe manje energije u
poredenju sa uredajima simuliranim u Load Flow okruzenju, zbog Cega se vrednosti
nagrade ostvarene u razli¢itim okruzenjima ne mogu direktno porediti.

U tabeli 16 prikazane su vrednosti nagrade, izrazene u evrima, koje su modeli ostvarili
na testnim danima (23. januara i 23. juna) u okviru Load Flow simulacionog okruzenja.
lako deluje da je DDQN u januarskom danu ostvario vecu ustedu elektricne energije u
odnosu na PPO model, ovaj rezultat je posledica ¢injenice da DDQN model nije aktivirao
ves$ masinu (tabela 16 i slika 24). PPO model je u analiziranom januarskom danu ostvario
ukupnu funkciju nagrade veéu za 4,22 € u odnosu na DDQN, §to predstavlja unapredenje
od priblizno 160%. U junskom testnom danu, oba modela su uspela da organizuju rad
uredaja tako da proizvodnja elektri¢ne energije premasuje potrosnju. PPO je u tom danu
ostvario ukupnu funkciju nagrade vecéu za 0,29 €, §to odgovara unapredenju od oko 16%
u odnosu na DDQN. Na osnovu rezultata dobijenih za oba testna dana moze se zakljuciti
da je PPO model u Load Flow simulacionom okruzenju ostvario bolje performanse u
pogledu ukupne funkcije nagrade u odnosu na DDQN model. Ovaj rezultat je u skladu
sa ocekivanjima, budu¢i da je tokom faze obuke PPO model ostvario priblizno 2 puta
vecu konacnu nagradu u zimskom, odnosno 2,5 puta ve¢u u letnjem danu u poredenju sa
DDQN modelom (potpoglavlje 6.1.1).
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Tabela 16. Load Flow okruzenje: vrednosti nagrade ostvarene na testnom danu (23. dan
januara i juna). Negativne vrednosti oznacavaju da je potroS$nja energije bila veca od
proizvodnje, dok pozitivne vrednosti oznacavaju da je proizvodnja elektricne energije
veca od potrosnje.

Model Udobnost (27 ) sa kaznama za Cena elektri¢ne Zbir komponenti
nepostovanje Zelja stanara [€] energije (32) [€] udobnosti i cene [€]
5 DDQN 049 -3.11 -2,62
S
§ PPO 5,80 -4,20 1,60
< DDQN 1,09 0,72 1,81
S PO 1,39 0.67 2,10

Tabela 17 prikazuje performanse modela za 23. dan u januaru i junu u okviru Typhoon
HIL simulacionog okruzenja. U ovom okruzenju, DDQN model je pokazao bolje
performanse od PPO modela i u januarskom i u junskom danu, posmatrano prema
ukupnoj funkciji nagrade. DDQN model je ostvario vecu vrednost ukupne funkcije
nagrade za 0,06 € (3.6% unapredenja) u januarskom danu i 0.14 € (4.7% unapredenja)
u junskom danu u odnosu na PPO model. Ovakvi rezultati nisu u potpunosti u skladu sa
vrednostima konac¢ne funkcije nagrade koje su modeli ostvarili tokom faze obuke
(potpoglavlje 6.1.1). Moguce objasnjenje za ovaj ishod lezi u €injenici da su posmatrani
dani posebno povoljni za DDQN model. Naime, analiza robusnosti modela sprovedena
na periodu od sedam uzastopnih dana nakon zavrSetka treninga (potpoglavlje 6.4)
pokazuje da, iako PPO model ostvaruje slabije rezultate u konkretnim danima januara i
juna, on u proseku ostvaruje bolje performanse od DDQN modela u Typhoon HIL
simulacionom okruzenju, posmatrano na sedam testnih dana, za oba perioda godine. I u
ovom slucaju, u junskom danu oba modela uspesno su organizovala rad uredaja tako da
je ukupna potrosnja elektri¢ne energije bila manja od proizvedene.

Tabela 17. Typhoon HIL okruzenje: vrednosti nagrade ostvarene na testnom danu (23.
dan januara i juna). Negativne vrednosti oznacavaju da je potrosnja energije bila veca od
proizvodnje, dok pozitivne vrednosti oznacavaju da je proizvodnja elektri¢ne energije
vecéa od potrosnje.

Model Udobnost (27 ) sa kaznama za Cena elektri¢ne Zbir komponenti
nepostovanje Zelja stanara [€] energije (32) [€] udobnosti i cene [€]
DDQN 5,30 -3,63 1,67
< | PPO 522 -3,61 1,61
DDQN 1,36 1,62 2,98
PPO 1,41 1,43 2,84

Iako PPO model u okviru Typhoon HIL simulacionog okruzenja ostvaruje nesto slabije
rezultate u poredenju sa DDQN modelom (smanjenje od 3,6%, odnosno 4,7%), ovo
pogorsanje nije znac¢ajno u odnosu na unapredenje koje PPO model pokazuje u Load
Flow simulacionom okruzenju (povecanje od 160% i1 16%). Na osnovu toga moze se
zakljuciti da su ukupne performanse PPO modela robusnije u odnosu na razlicite
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postavke simulacionog okruzenja. U Typhoon HIL simulacionom okruzenju, uredaji su
trosili vise elektri¢ne energije, pri ¢emu je njihova potrosnja modelovana kao konstantna.
Nasuprot tome, u Load Flow simulacionom okruzenju, uredaji su trosili manje elektri¢ne
energije, a njihova potrosnja modelovana je kao varijabilna.

U odnosu na kona¢nu vrednost funkcije nagrade ostvarene tokom faze obuke
(potpoglavlje 6.1.1), u okviru Load Flow simulacionog okruzenja DDQN model je na
testnom danu u januaru ostvario ukupnu nagradu manju za 0,62 €, dok je na testnom
danu u junu ostvario ukupnu nagradu vecu za priblizno 1,67 €. U okviru Typhoon HIL
simulacionog okruzenja, DDQN model je pokazao izraZenija odstupanja u odnosnu na
nagrade ostvarene tokom obuke — ukupna funkcija nagrade bila je znacajno visa, i to za
3,76 € u januarskom i 2,98 € u junskom danu. Ova znaCajna odstupanja ukazuju na
nestabilnost i ogranic¢enu sposobnost generalizacije odluka DDQN modela na dane koje
nisu bili obuhvaceni procesom obuke, Sto je potvrdeno i analizom robusnosti modela
sprovedenom njihovom primenom na sedam testnih dana (potpoglavlje 6.4).

Sa druge strane, ukupna funkcija nagrade koju je PPO model ostvario na testnim danima
pokazuje visok stepen konzistentnosti u odnosu na konac¢ne vrednosti nagrade ostvarene
tokom tokom faze obuke (potpoglavlje 6.1.1). U okviru Load Flow simulacionog
okruzenja, u januarskom danu PPO model je ostvario ukupnu nagradu za 0.4 € nizu u
odnosu na nagradu postignutu tokom obuke, dok je u junskom danu postigao gotovo
identi¢nu ukupnu nagradu, od priblizno 2 €. U Typhoon HIL simulacionom okruzenju,
PPO model je u januarskom danu ostvario ukupnu nagradu nizu za 0,39 €, dok je u
junskom danu ostvario nagradu vec¢u za 0,16 € u odnosu na vrednosti dobijene tokom
obuke. Konzistentnost nagrada ostvarenih na testnim danima u odnosu na nagrade
postignute tokom obuke ukazuje na to da PPO model poseduje bolju sposobnost
generalizacije odluka u poredenju sa DDQN modelom.

Naredno potpoglavlje analizira odluke koje su modeli donosili u testnim danima
analiziranim u ovom poglavlju.

6.1.3 Analiza odluka modela na nivou dana

Svrha analize odluke modela na nivou jednog dana, iz perspektive ljudskog eksperta, je
da se proceni da li su odluke modela uskladene sa Zeljama stanara (potpoglavlje 5.1.3)
uz racionalnu potrosnju elektri¢ne energije. Analiza je razdvojena po uredajima i
obuhvata kontrolu unutrasnje temperature, rad masine za pranje sudova i rad masine za
ves. Ove analize su grupisane na nivou godiSnjeg doba gde potpoglavlje 6.1.3.1 analizira
rad uredaja u zimskom danu, a potpoglavlje 6.1.3.2 analizira rad uredaja u letnjem danu.

Za evaluaciju modela u€enja potkrepljivanjem, odabrani su dani koji nisu koris¢eni
tokom procesa treniranja modela. Za obucavanje modela koris¢ena su prva 22 dana u
mesecu, dok je za evaluaciju kori§¢en 23. dan. Analiziran je zimski i letnju dan s ciljem
demonstracije zavisnosti odbranih akcija modela od sezonskih uslova.

6.1.3.1  Analiza rada uredaja u zimskom danu

U zimskom danu analiziran je rad tri uredaja pod kontrolom obucenih modela: klima
uredaj, maSina za pranje sudova i ve§ masina, sa ciljem da se proceni uskladenost
njihovih odluka sa spoljasnjim faktorima karakteristicnim za ovo doba godine, kao i sa
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preferencijama stanara. Posto DDQN model u okviru Load Flow simulacionog okruzenja
tokom zimskog testnog dana nije aktivirao ve$ masinu, u ovom potpoglavlju nije
prikazana njegova kontrola tog uredaja.

Slika 22 prikazuje nacin na koji su DDQN i PPO modeli kontrolisali unutrasnju
temperaturu tokom zimskog dana. U oba simulaciona okruzenja, PPO model odrzava
unutra$nju temperaturu na sli¢an nacin — klima uredaj se iskljuci oko 8:00 i ukljucuje oko
17:00 (u skladu sa zeljama stanara iz tabele 13), nakon Cega se unutrasnja temperatura
brzo vracau Zeljeni opseg. DDQN model u Typhoon HIL okruzenju odrzava temperaturu
na isti nacin. lako DDQN model u Load Flow simulacionom okruZenju dostigne Zeljeni
opseg pre ostalih modela, ne postize bolje rezultate u pogledu ukupne nagrade jer ne
aktivira sve uredaje, $to negativno utice na udobnost stanara.

Promena unutrasnje temperature tokom zimskog dana
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Slika 22. Kontrolisanje unutras$nje temperature u toku zimskog dana.

Slika 23 prikazuje upravljanje masinom za pranje sudova tokom zimskog dana. PPO
model u Typhoon HIL simulacionom okruzenju ne koristi optimalno masinu za pranje
sudova (nakon pokretanja) jer je ciklus pranja prekinut pre zavrsetka, ¢ime je prethodno
ulozena energija izgubljena, a model prinuden da ponovo pokrene proces pranja od
pocetka. Sto se tiGe perioda pokretanja masine za pranje sudova, PPO modeli u oba
simulaciona okruzenja biraju da pokrenu uredaj tokom perioda srednje tarife, kada
zapocinje interval visokog znacaja rada ovog uredaja.

U Typhoon HIL simulacionom okruzenju, DDQN model aktivira maSinu za pranje
sudova u periodu proizvodnje elektrine energije, pri visokoj tarifi i srednjem znacaju
rada uredaja. Takvom odlukom, DDQN model, prema rezultatima u tabeli 17, u
poredenju sa PPO modelom ostvaruje bolji balans izmedu udobnosti stanara i uStede
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elektricne energije. DDQN model u Load Flow simulacionom okruzenju pokre¢e masinu
dosta ranije u odnosu na ostale modele, u periodu niske tarife.

Potrednja madine za sudove i proizvodnja Pyv-a u zimskom danu
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Slika 23. Upravljanje masinom za sudove u zimskom danu.

Slika 24 prikazuje nain upravljanja ve§ masinom tokom zimskog dana. PPO modeli
aktiviraju uredaj pre pocetka perioda srednjeg znacaja rada, i to u vreme trajanja srednje
tarife elektri¢ne energije. PPO model u Typhoon HIL simulacionom okruZenju pokrece
uredaj znatno pre nego $to zapoc¢ne zeljeni opseg rada. Sa druge strane, DDQN model u
Typhoon HIL simulacionom okruzenju aktivira ve$ masinu u periodu srednje tarife,
tokom srednjeg i visokog znacaja rada uredaja. U poredenju sa PPO modelom u istom
simulacionom okruzenju, DDQN model je ostvario bolje rezultate u pogledu ukupne
nagrade, Sto je potvrdeno i rezultatima prikazanim u tabeli 17. DDQN model je u Load
Flow simulacionom okruzenju propustio da aktivira masinu za ves.

Potrodnja ved madine | proizvodnja Pv-a u zimskom danu
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Slika 24. Upravljanje maSinom za ves u zimskom danu.
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Razlika u upravljanjem radom masine za pranje sudova i masinom za ve§ ogleda se u
tome $to su modeli pridali ve¢u vaznost periodu znacaja rada masine za pranje sudova,
dok period znacaja rada masine za ves nije imao podjednak uticaj na proces donosenja
odluka. Odluke DDQN modela u Typhoon HIL simulacionom okruzenju pokazale su se
boljim u odnosu na odluke PPO modela. U Load Flow simulacionom okruzenju, DDQN
model nije uspesno pokrenuo masinu za ves, $to je rezultovalo nizom cenom elektri¢ne
energije, ali i smanjenom udobnosc¢u stanara.

6.1.3.2  Analiza rada uredaja u letnjem danu

Tokom letnjeg dana posmatran je rad klima uredaja, masine za pranje sudova i masine
za ve$ pod kontrolom obucenih modela. Analiziran je uticaj spoljasnjih faktora
karakteristi¢nih za letnje uslove na odluke koje modeli donose.

Slika 25 prikazuje regulaciju unutrasnje temperature tokom letnjeg dana. Temperatura
kod PPO modela na kratko izlazi iz Zeljenog temperaturnog opsega — u Load Flow
simulacionom okruZenju zeljeni temperaturni opseg dostize se tek od 19 casova. Ostali
modeli upravljaju radom klima uredaja na slican nacin, ali uspevaju da dostignu Zeljeni
temperaturni opseg od 17 casova, u skladu sa Zzeljama stanara. U Load Flow
simulacionom okruzenju PPO model ostvaruje bolje rezultate u pogledu ustede elektri¢ne
energije, jer u poredenju sa DDQN modelom rede aktivira klima uredaj (tabela 16).
Takode, postignuti su nesto bolji rezultati i u pogledu udobnosti, iako se ova prednost
PPO modela u odnosu na DDQN ne ogleda u nadinu upravljanja klima uredajem. Sa
druge strane, u Typhoon HIL simulacionom okruzenju, DDQN postize bolje rezultate u
poredenju sa PPO modelom (tabela 17), ali se o ova prednost ne moZze u potpunosti uociti
samo na osnovu analize upravljanja klima uredajem.

Promena unutradnje temperature tokom letnjeg dana
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Slika 25. Kontrolisanje unutras$nje temperature u toku letnjeg dana.
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Na slici 26 prikazan je nacin na koji modeli upravljaju radom maSine za pranje sudova
tokom letnjeg dana. Svi modeli aktiviraju masinu za pranje sudova u periodu kada solarni
paneli proizvode energiju. DDQN model u Load Flow simulacionom okruzenju pokrece
masinu za pranje sudova pre pocetka perioda srednjeg znacaja rada i u vreme povecane
proizvodnje solarne energije. Zbog toga, u poredenju sa PPO modelom u istom
okruzenju, ostvaruje slabije rezultate u pogledu udobnosti stanara. PPO model u Load
Flow simulacionom okruzenju aktivira maSinu za pranje sudove u periodu srednjeg
znacaja rada. U Typhoon HIL simulacionom okruZenju, vreme aktiviranja masine je
gotovo identi¢no kod oba modela, pa se na osnovu toga ne moze jasno sagledati od cega
potice prednost DDQN modela u odnosu na PPO (tabela 17).

Potrosnja masine za sudove | proizvodnja PV-a u letnjemn danu
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Prioritet

300 “
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o
o
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100

0 B N N 0
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Vreme {24-Casovni format)

Slika 26. Upravlja masinom za sudove u letnjem danu.

Na slici 27 prikazana je kontrola rada maSine za ve§ tokom letnjeg dana. Algoritmi
pokrecu masinu za ves§ u vremenskom intervalu koji je sli¢an periodu aktiviranja masine
za sudove. Svi modeli zapocinju rad uredaja tokom perioda visoke tarife, ali istovremeno
i u vreme povecane proizvodnje elektricne energije iz solarnog panela. Nijedan od
modela ne uzima u obzir Zelje stanara vezane za vreme rada uredaja, §to ukazuje na to da
je prioritet stavljen na optimizaciju potrosnje elektriCne energije nau$trb udobnosti
stanara.
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) ) ) ) Petroinja ves masine i proizvodnja PV-a u letnjem danu
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Slika 27. Upravljanje masinom za ves u letnjem danu.

6.1.3.3  Zakljucak analize odluka model na nivou zimskog i letnjeg dana

Na osnovu prethodno prikazanih rezultata (Slike 23-27) moze se uociti da se logika
ponasanja modela razlikuje izmedu zimskog i letnjeg dana usled promene spoljasnjih
uslova i dostupnosti izvora energije. Tokom zimskog dana, modeli su usmereni na
odrzavanje komfora stanara, jer je proizvodnja energije putem solarnog panela smanjena.
U tom periodu modeli teZe postizanju ravnoteze izmedu potrosnje i udobnosti, pri cemu
je kljucan faktor tarifni rezim elektricne energije. Nasuprot tome, u letnjem danu
prisustvo solarne proizvodnje znacajno menja prioritete modela. U letnjem danu odluke
se donose sa ciljem maksimalnog kori$¢enja raspolozive solarne energije, ¢ak i po cenu
smanjenja komfora stanara. Time se fokus modela pomera sa balansiranja izmedu tarifa
na optimizaciju potros$nje energije, Sto objasnjava razlicite obrasce ponasanja u letnjem
danu.

Rezultati ukazuju da logika donoSenja odluka o aktiviranju uredaja nije trivijalna niti
ujednacena tokom cele godine. Ona zavisi od kombinacije sezonskih faktora, tarifnih
perioda i definisanih opsega znacaja rada uredaja. Ru¢no podesavanje rada uredaja
zahteva definisanje posebnih obrazaca upravljanja u zavisnosti od doba godine, pri cemu
je neophodno istovremeno uzeti u obzir vise meduzavisnih parametara, §to dodatno
komplikuje proces. Znacaj automatizovanog sistema za upravljanje uredajima u
pametnoj kuéi ogleda se u njegovoj sposobnosti da integriSe razli¢ite spoljne i unutrasnje
faktore i donosi optimalne odluke, koje bi stanarima bile slozene i zahtevne za
svakodnevno planiranje.
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6.1.4 Analiza uticaja karakteristika stanja na odluke modela

U ovom potpoglavlju bi¢e analizirane odluke modela, gde ¢e se za modele zasnovane na
ucenju potkrepljivanjem sprovesti detaljna analiza odlucivanja optimalnih akcija u
posmatranim stanjima koris¢enjem SHAP bibilioteke. Vizuelna interpretacija SHAP
vrednosti realizovana je putem dijagrama saZetka znacaja atributa (eng. summary plot) i
dijagrama sile doprinosa (eng. force plof), koji omoguéavaju analizu uticaja
karakteristika stanja na odluke modela. U potpoglavlju 6.1.4.1 interpretiraju se odluke na
osnovu vise uzoraka stanja, i interpretiraju se odluke u odredenim koracima simulacije.
Analize su grupisane na nivou simulacionih okruZenja i dalje podeljenje na osnovu
godisnjeg doba. Za interpretacije modela na globalnom i lokalnom nivou kori$¢eno je
sedam testnih dana u januaru i junu.

6.1.4.1  Interpretacija odluka

Interpretacija odluka moze da se izvrsi na osnovu vise uzoraka stanja tj. na globalnom
nivou i u odredenom vremenskom koraku tj. na lokalnom nivou.

Interpretacija na globalnom nivou se zasniva na dijagramu sazetka znacaja koji prikazuju
agregirane SHAP vrednosti za svaku karakteristiku stanja kroz viSe uzoraka stanja.
Konkretno, za svaku mogucu akciju aktivacije uredaja, prikupljeni su svi uzorci stanja S;
u toku posmatranog perioda (sedam testnih dana). Za svako stanje S;, SHAP vrednost
¢, (S;) je izracunata za svaku karakteristiku stanja i, i ova vrednost pokazuje koliko bi se
odluka modela da izvrsi akciju promenila ako bi ta karakteristika bila uklonjena iz ulaza.

Na y-osi prikazane su karakteristike stanja, rangirane prema prosecnom apsolutnom
doprinosu odluci modela (odabranoj akciji), pri ¢emu se najuticajnije nalaze na vrhu.
Sortiranje se vr$i na osnovu jednacine:

T
1
MEAN(I$iD) = D 16,

gde T predstavlja broj uzoraka u evaluaciji (sedam testnih dana po sezoni, gde svaki dan
ima 96 vremenskih koraka t zbog 15 minutnog koraka simulacije).

X-osa prikazuje SHAP vrednosti ¢;(S;) koje kvantifikuju doprinos konkretne vrednosti
karakteristike na akciju koju je model odabrao. Svaka tacka na dijagramu predstavlja
SHAP vrednost izracunatu za jednu karakteristiku u konkretnom uzorku stanja. Boja
taCke ukazuje na vrednost te karakteristike u posmatranom stanju: crvena oznacava
visoke, a plava niske vrednosti. Polozaj tacke duz horizontalne ose pokazuje da li ta
vrednost pozitivno ili negativno uti¢e na odabranu akciju u datom stanju, i koliki je
intenzitet tog uticaja. Rasipanje tacaka ilustruje kako se doprinos odredene karakteristike
menja u razli¢itim stanjima, tj. koliko je njen uticaj stabilan ili zavisan od konteksta. Na
osnovu dijagrama moguce je zakljuciti koje karakteristike stanja najviSe doprinose
odabranim akcijama, kako se njihov uticaj menja u zavisnosti od konkretnih vrednosti
karakteristike, i da li postoji konzistentan pravac tog uticaja. Na taj nacin se dobija
globalna slika o tome koje informacije model koristi pri izboru akcija.

Dijagram sile doprinosa koristi se za lokalnu interpretaciju, odnosno za objasnjenje zasto
je model odabrao odredenu akciju u konkretnom stanju. Za razliku od globalne
interpretacije koja prikazuje opsti uticaj karakteristika na ponasanje modela, lokalna
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analiza se fokusira na jednu specificnu predikciju i doprinos svake karakteristike toj
odluci. Vizualizacija se zasniva na pomeranju vrednosti predikcije u odnosu na
referentnu vrednost (na primer, prosecnu predikciju za sve uzorke eng. base value).

base value = E[f(S))],

gde je f(S;) predikcija modela. SHAP vrednosti za svaku karakteristiku u posmatranom
stanju se zatim sabiraju sa baznom vrednoscu:

M
f(S;) = basevalue + ) ¢;(S;),
t ; t

gde je M broj karakteristika stanja. Ovim se dobija ukupna predikcija modela za stanje
S

Svaka karakteristika stanja prikazana je pravougaonikom duz horizontalne ose, pri cemu
crvena boja oznacava pozitivan doprinos (povecava verovatnocu izbora date akcije), a
plava negativan doprinos (smanjuje verovatnocu izbora date akcije). Karakteristike sa
jacim uticajem nalaze se blize centralnoj granici izmedu pozitivnih i negativnih
doprinosa, dok S§irina pravougaonika reflektuje intenzitet njihovog efekta |¢;(S;)|.
Ovakav prikaz omogucava intuitivno razumevanje ponasanja agenta u konkretnoj
situaciji, posebno u stanjima koja odstupaju od tipi¢nih obrazaca. U kombinaciji sa
globalnom interpretacijom, lokalna interpretacija doprinosi dubljem razumevanju
ponasanja modela, kako na nivou pojedinacnih odluka, tako i u kontekstu ukupne
strategije ucenja potkrepljivanjem.

Izdvojicemo nekoliko primera kako bismo ilustrovali razloge za odluke modela u
odredenim stanjima, koriste¢i dijagram sile doprinosa. Ova analiza omogucuje bolje
razumevanje uticaja pojedinacnih faktora na odluke modela u razli¢itim simulacionim
okruzenjima.

6.1.4.1.1  Odluke u zimskom periodu

Slike 28 i 29 prikazuju agregirane srednje apsolutne SHAP vrednosti za sve akcije, sa
ciljem da se identifikuju koje karakteristike stanja najviSe uti¢u na odluke modela.

Slika 28 ukazuje na to da PPO model ima konzistentan obrazac znacaja karakteristika u
oba simulaciona okruzenja. Najvec¢i uticaj na predikcije modela ima proizvedena energija
iz PV, sto ukazuje da PPO efikasno koristi raspolozivu solarnu energiju prilikom
planiranja aktivacije uredaja. Sledece bitne karakteristike su znacaj rad klima uredaja,
stanja masSine za sudove i masSine za ves i termalni komfor korisnika izrazen kao razlika
izmedu unutrasnje i Zzeljene temperature. Redosled najuticajnijih karakteristika na
predikciju modela je isti u Load Flow i Typhoon HIL simulacionim okruzenjima. Ova
stabilnost u ponaSanju sugerise na robusnost u donosenju odluka od strane PPO modela,
$to ukazuje na sposobnost generalizacije u razli¢itim simulacionim okruzenjima.
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PPO

Globalni znadaj karakteristika (agregirano kroz akcije)

Proizvedena energija putem PV

Znadaj rada klima uredaja

Znacaj rada masine za sudove

Razlika unutrasnje i zeljene temperature
Masina za sudove je spremna za aktivaciju
Masina za sudove je aktivirana danas
Znacaj rada masine za ves

1.499

Tarifa
Masina za ves je spremna za aktivaciju
Masina za ves je aktivirana danas

Typhoon HIL

0.0 0.5 1.0 1.5
Mean |SHAP|
(a)

Globalni znacaj karakteristika (agregirano kroz akcije)

Proizvedena energija putem PV 1.613
Znacaj rada klima uredaja

Znacaj rada masine za sudove

Razlika unutrasnje i Zeljene temperature
Masina za sudove je spremna za aktivaciju
Tarifa

Masina za sudove je aktivirana danas
Znacaj rada masine za ves

Masina za ves je aktivirana danas

Masina za ves je spremna za aktivaciju

Load Flow

0.0 0.5 1.0 15
Mean |SHAP|
(b)

Slika 28. PPO model: agregiran uticaj karakteristika stanja kroz akcije u toku zimskog
perioda.

Slika 29 ukazuje na to da DDQN model ispoljava drugaciju logiku ponasanja u odnosu
na PPO model. Na predikcije DDQN modela najve¢i uticaj ima tarifa elektri¢ne energije,
nakon ¢ega slede znacaj rada ve§ masine i proizvodnja energije putem solarnog panela.
Takode treba istaci da, za razliku od PPO modela, rang znacaja karakteristika kod DDQN
modela se razlikuje u razliCitim simulacionim okruzenjima. U oba okruzenja
karakteristike vezane za masinu za ve$ imaju zanemarljiv uticaj na konacnu odluku
modela.
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DDQN

Globalni znacaj karakteristika (agregirano kroz akcije)

Tarifa 0,209
Znacaj rada masine za ves

Proizvedena energija putem PV

Znaéaj rada masine za sudove

Razlika unutrasnje i Zzeljene temperature
Znacaj rada klima uredaja

Masina za sudove je spremna za aktivaciju
Masina za sudove je aktivirana danas -

Masina za ves je aktivirana danas

Typhoon HIL

Masina za ves je spremna za aktivaciju 4 0.002

DJIZlO 0.05 0.10 0.15 0.20
Mean |SHAP|

(a)

Globalni znacaj karakteristika (agregirano kroz akcije)

Tarifa 0.194
Proizvedena energija putem PV

Znacaj rada masine za ves

Razlika unutrasnje i Zeljene temperature
Znacaj rada klima uredaja

Znacaj rada masine za sudove -

Masina za sudove je aktivirana danas

Masina za sudove je spremna za aktivaciju
Masina za ves je spremna za aktivaciju {0.000
Masina za ves je aktivirana danas {0.000

Load Flow

0.00 0.05 0.10 0.15 0.20
Mean |SHAP|
(b)

Slika 29. DDQN model: agregiran uticaj karakteristika stanja kroz akcije tokom zimskog
perioda.

Slike 28 i 29 pruzaju globalni uvid u ponasanje modela, ali ovaj pristup ima odredena
ograni¢enja. Srednja apsolutna vrednost prikriva vremensku dinamiku, te prividno visoke
vrednosti odredene karakteristike mogu proiste¢i iz nekoliko izolovanih momenata, a ne
iz doslednog uticaja tokom celog perioda. Takode, poSto se SHAP vrednosti agregiraju
preko svih akcija, ne moze se jasno sagledati doprinos svake pojedinacne karakteristike
na konkretne odluke modela.

Na slici 30 prikazan je uticaj karakteristika stanja na odluku o uklju¢ivanju klima uredaja
tokom zimskog dana za PPO model. PPO modeli su u oba simulaciona okruzenja uspesno
odrzavali unutrasnju temperaturu u Zeljenom opsegu tokom visokog znacaja rada klima
uredaja (slika 22). Na slici 30 vidimo da su odluke modela zasnovane na karakteristikama
stanja koje su zaista relevantne za ovu odluku. Konkretno, karakteristike stanja sa
najve¢im doprinosom odluci o uklju¢ivanju klima uredaja u oba simulaciona okruzenja
su sledece:

e niska proizvodnje energije putem solarnog panela (Spy),

e visok znacaj rada klima uredaja (Sf?c),

e nizak znadaj rada masine za sudove (SPW) i

e visok temperaturni komfor, odnosno niska razlika unutra$nje i Zeljene
temperature (S AT, aglika ) .
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Vazno je naglasiti da velike negativne vrednosti na x-oznacavaju veliku PV proizvodnju,
dok vrednosti bliske 0 znace da je PV proizvodnja niska. Takode, razlika unutrasnje i
zeljene temperature je apsolutna vrednosti, gde niske vrednosti oznacavaju manje
odstupanje unutrasnje temperature od zeljene i obrnuto, odnosno, visoke vrednosti
oznacavaju veliko odstupanje.

Na slici 30 vidimo da ponaSanje modela deluje kontraintuitivno u odnosu na
karakteristiku proizvodnje energije iz solarnog panela. Pri visokoj PV proizvodnji, SHAP
vrednosti su negativne, odnosno model smanjuje verovatno¢u izbora akcije ukljucivanja
klima uredaja kada je raspoloziva veca koliina proizvedene energije. Takode, u zoni
niske PV proizvodnje, pojavljuje se mali broj slucajeva sa pozitivnim SHAP doprinosom,
§to znaci da model u tim instancama procenjuje da je ukljuCivanje klima uredaja
optimalna akcija. Ovakvo ponasanje moze delovati kontraintuitivno, jer niska
proizvodnja energije intuitivno sugeriSe manju spremnost sistema da uklju¢i dodatno
optereéenje.

Na prvi pogled, nelogicno ponaSanje se ogleda u pozitivnom doprinosu odluci o
aktiviranju klima uredaja za niske vrednosti apsolutne vrednosti temperaturne razlike
(ve¢i komfor) i negativnom doprinosu odluci o aktiviranju klima uredaja u veéim
apsolutnim vrednostima razlike (nizi komfor) u Typhoon HIL simulacionom okruzenju.
Niske apsolutne vrednosti temperaturne razlike (1°C — 2°C) oznacavaju visok nivo
komfora, zato $to je unutras$nja temperatura u zeljenom opsegu, §to rezultuje pozitivnom
doprinosu odluci da se klima uredaj aktivira. Suprotnom tome, visoke apsolutne vrednosti
ukazuju na veéa odstupanja od Zeljene temperature, odnosno manji komfor, ¢ime
negativno uti¢u na odluku da se klima uredaj aktivira.

Iako takvo ponaSanje deluje kontraintuitivno, moguée objasnjenje je u nacinu na koji je
znacaj rada klima uredaja definisan od strane stanara (tabela 13), odnosno stanarima nije
bitan rad klime u periodu njihovog odsustva, te aktiviranje klima uredaja od strane
treniranog PPO modela u toku dana, kada stanari nisu prisutni, ne rezultuje pozitivnom
nagradom. Dok je odrzavanje temperature, odnosno komfora stanara, rezultovalo znatno
ve¢om nagradom. Veéina pozitivnih odluka o aktiviranju klima uredaja doneta je u
uslovima visokog znacaja rada klima uredaja, male temperaturne razlike i niske PV
proizvodnje. Suprotno tome, situacije sa visokom temperaturnom razlikom, koje takode
mogu rezultovati pozitivnom nagradom, javljaju se retko, pretezno oko 17:00 casova,
kada je znacaj rada uredaja najvisi (tabela 13). Buduci da su takvi slucajevi brojcano
zanemarljivi u odnosu na dominantne, model nije razvio stabilan obrazac koji bi
prepoznao veliku temperaturnu razliku kao pozitivan faktor, Sto se odrazilo i u SHAP
analizi. Dodatni uticaj niskog znacaja rada masSine za sudove moze se objasniti
definisanim znacajem rada uredaja od strane stanara (tabela 13). Naime, u periodima
kada se klima uredaj aktivirao, znacaj rada masine za sudove bio je nizak.
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Slika 30. PPO model: uticaj karakteristika stanja na akciju “ukljuci klima uredaj” tokom
zimskog perioda.

lako se SHAP vrednosti Cesto koriste za interpretaciju ponasanja RL modela, njihova
analiza u kompleksnim okruzenjima moze dovesti do kontraintuitivnih rezultata. Naime,
smer uticaja pojedinih karakteristika na odluke modela ne mora nuzno odgovarati
ocekivanjima ili realnom doprinosu tih karakteristika performansama agenta. Jedan od
kljucnih razloga za to je Sto SHAP pretpostavlja nezavisnost karakteristika i odsustvo
medusobne korelacije (Engelhardt et al. 2024) (Salih et al. 2025). Zbog te pretpostavke,
analiza zavisnosti izmedu pojedinacnih SHAP vrednosti i odluka modela moze biti
ograni¢ene pouzdanosti, jer u realnim RL sistemima odluke Cesto proizilaze iz sloZzene
interakcije vise osobina. Upravo ta nemoguénost SHAP-a da obuhvati zajednicke efekte
i nelinearne zavisnosti izmedu karakteristika predstavlja znacajan nedostatak njegove
primene u kompleksnim RL sistemima (Engelhardt et al. 2024).

SHAP predstavlja post-hoc metod interpretacije odluka koji omogucavaju identifikaciju
osobina sa najve¢im uticajem na odluke treniranog model (Mersha et al. 2024). Posebno
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je koristan za poredenje znacaja pojedinacnih osobina u okviru razli¢itih modela ili
scenarija. Rezultate SHAP analize neophodno je prikazivati zajedno sa odgovaraju¢im
grafikonima, ¢ime se olakSava razumevanje doprinosa svake osobine izlazu modela i
pretpostavki na kojima se metoda zasniva (Salih et al. 2025).

Naslici 31 je prikazana odluka PPO modela da “ukljuci klima uredaj” u zimskom periodu
u Typhoon HIL simulacionom okruZenju u jednom vremenskom koraku (izmedu 7:00 i
8:00) Pozitivan uticaj na odluku o aktiviranju klima uredaja imaju niska proizvodnja
energije (¥ = 0), nizak znadaj rada masine za sudove (S5")i masine za ves (SF%).
Ovde je uticaj proizvodnje energije kontraintuitivan, dok je ocekivano da pozitivan uticaj
imaju niski znacaji rada ostalih uredaja. NelogiCan pozitivan uticaja niske vrednosti
temperaturne razlike, uocen na globalnom nivou (slika 30), nije imao znacajan uticaj na
odluku o aktiviranju klima uredaja u ovom vremenskom koraku (slika 31). Slika 32
prikazuje kombinaciju faktora koja odgovara opisanoj situaciji. Konkretno, grafikom se
prikazuje vremenski trenutak oznacen simbolom x, koji predstavlja momenat aktiviranja
klima uredaja. Na slici se vidi da model u ovom slucaju aktivira klima uredaj dok se
temperatura kre¢e u Zeljenom temperaturnom opsegu kako bi obezbedio da unutrasnja
temperatura ostane unutar opsega dok je visok znacaj rada klima uredaja (do 8:00). Stoga,
iako smer uticaja niske proizvodnje energije deluje kontra-intuitivno, vidi se da odluka
sistema jeste intuitivna kada se u obzir uzme kombinacija vise razli¢itih faktora.

Ukljuéi-Klima uredaj
higher = lowe
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Slika 31. PPO model: uticaj karakteristika na akciju “ukljuci klima uredaj” u Typhoon
HIL simulacionom okruzenju u zimskom danu za stanje u vremenskom koraku 07:15.

Temperatura i PV proizvodnja (07:00-08:00)

24.01.2016

25.0 1

2251 /'4
U 20.0 X
g 0 -3
Wl
§ 1731 B
s F23
g 15.0 z
5
= 125 Komforni opseg (20-25°C)

10.0 - —— Unutrasnja temperatura

—— Spoljasnja temperatura
7.5 4 ; L X Ukljucena klima
07:00 07:15 07:30 PV proizvodnja

Slika 32. PPO model: upravljanje unutrasnjom temperaturom uz pregled proizvodnje
energije putem solarnog panela i temperaturni komfor izmedu 7:00 i 8:00 sati, u Typhoon
HIL simulacionom okruzenju.

Nasslici 33 je prikazana odluka PPO modela da “ukljuci klima uredaj” u zimskom periodu
u Typhoon HIL simulacionom okruzenju na pocetku dana, gde smer uticaja nije logic¢an
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za karakteristike SV (proizvodnja energije putem solarnog panela) i SATrapina (Tazlika
unutrasnje i Zeljene temperature). Pozitivan uticaj na odluku o aktiviranju klima uredaja
ima niska proizvodnja energije, dok negativan uticaj ima velika temperaturna razlika
(niska temperaturna udobnost). Uvid u ponasanje PPO modela pocetkom dana je
prikazan na slici 34, gde grafikom prikazuje trenutak aktiviranje klima uredaja oznacen
simbolom x u 00:15 sati. U tom trenutku, unutrasnja temperatura nalazi se van Zeljenog
temperaturnog opsega, dok nema proizvodnje energije od strane PV-a. Ovakva
kombinacija karakteristika u potpunosti odgovara vrednostima prikazanim na slici 33,
§to potvrduje da je model odluku o ukljuéivanju klima uredaja doneo u situaciji niske PV
proizvodnje i visoke temperaturne razlike, sa ciljem da obezbedi stabilnost unutrasnje
temperature tokom perioda visokog znacaja rada uredaja. lako je kontraintuitvan
negativan uticaj visoke temperaturne razlike, na slici 22 se vidi da je model uspesno
naucio da odrZava temperaturu u Zeljenom temperaturnom opsegu.
Ukljuéi-Klima uredaj
ST

o 1 2 ) 4 4.99 6 7
l!——_l
U ="0.0 S =20

SIW=T0.0 /S 5 SWETY Sar.... = 4.0 L L T M

base value = 2.703  fx}) = 4.991

Slika 33. PPO model: uticaj karakteristika na akciju “ukljuci klima uredaj” u Typhoon
HIL simulacionom okruzenju u zimskom danu za stanje u vremenskom koraku 00:00.

Temperatura i PV proizvodnja (00:00-01:00)
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Slika 34. PPO model: upravljanje unutrasnjom temperaturom uz pregled proizvodnje
energije putem solarnog panela i temperaturni komfor izmedu 00:00 i 01:00 sati, u
Typhoon HIL simulacionom okruZenju.

Naslici 35 prikazan je uticaj karakteristika stanja na odluku o uklju¢ivanju klima uredaja
tokom zimskog dana za DDQN model. DDQN modeli u oba simulaciona okruzenja su
uspesno odrzavali unutrasnju temperaturu u Zeljenom opsegu tokom viskog znacaja rada
klima uredaja (slika 22). Karakteristike stanja sa najve¢im doprinosom odluci o
ukljucivanju klima uredaja su sledece:

e niske vrednosti tarife (tarifa),
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e visoka PV proizvodnja u Typhoon HIL simulacionom okruzenju i kombinacija
visoke i niske PV proizvodnje u Load Flow simulacionom okruzenju (Spy),

e  nizi znacaja rada masine za sudove u Typhoon HIL simulacionom okruZenju
(SPW) i nizi znagaja rada magine za ve§ u oba simulaciona okruzenja (S§%),

e visi znacaj rada klima uredaja u Typhoon HIL simulacionom okruZenju i nizi i
visi znacaj rada u Load Flow simulacionom okruzenju (S{}C),

e  manji termalni komfor, odnosno vise vrednosti razlike unutrasnje i zeljene
temperature Syt

Za razliku od PPO modela, kod DDQN modela u oba simulaciona okruzenja tarifa ima
znacajnu ulogu u donosenju odluke o radu klima uredaja.

Kod DDQN modela u Load Flow simulacionom okruZenju, gde model nije bio uspesno
obucen da aktivira ve$ masinu, takode se vidi da na odluku o aktiviranju klima uredaja
imaju nelogican uticaj sledece karakteristike: niska PV proizvodnja (Spy) i nizak znacaj
rada klima uredaja (S5'©).

Pozitivan uticaj niske PV proizvodnje na odluku o aktivaciji klima uredaja se moze
objasniti na isti nacin kao u prethodnim primerima, gde se period visokog znacaja rada
klima uredaja (tabela 13) poklapao sa periodom niske PV proizvodnje. Sa druge strane,
period visoke PV proizvodnje se u zimskom periodu retko poklapao sa visokim znacajem
rada klima uredaja, s obzirom na to da je PV proizvodnja bila generalno niska u toku
dana.

Dodatni uticaj niskog znacaja rada masina za sudove i ve$ moze se objasniti definisanim
znacajem rada uredaja od strane stanara (tabela 13). Naime, u periodima kada se klima
uredaj aktivirao, znacaj rada masina za sudove i ves bili su niski.

DDQN
| visoka
Tarifa -h-.“"—'*
Znacaj rada masinezaves ¢ 4 ‘q

Proizvedena energija putem PV | &
-
w Znacaj rada masine za sudove .-h g
S - g
m 2 Razlika unutrasnje i Zeljene temperature *— -
N g s
S = Znacaj rada klima uredaja =
S = 8
'i 2 Masina za sudove je spremna za aktivaciju '* §
-~ £
N Masina za sudove je aktivirana danas “ =

Masina za ves je aktivirana danas -

Masina za ves je spremna za aktivaciju o
; : T niska
-0.5 0.0 0.5

Uticaj SHAP vrednosti
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Slika 35. DDQN model: uticaj karakteristika stanja na akciju “ukljuci klima uredaj”
tokom zimskog perioda.

Na slici 36 prikazana su karakteristike koje su imale uticaj na odluku o aktiviranju klima
uredaja od strane DDQN modela u Load Flow simulacionom okruzenju za akciju
izvrSenu u vremenskom trenutku 00:00. Pozitivan uticaj na odluku imaju karakteristike:
niska tarifa, visoke vrednosti temperaturne razlike i (kontraintuitvno) niska PV
proizvodnja. Slika 37 prikazuje aktiviranje klima uredaja u 00:00, oznacen simbolom x,
gde su prethodno pomenute karakteristike imale uticaj na odluku. Unutra$nja temperatura
se krece ka zeljenom temperaturnom opsegu. Odsustvo i umanjen znacaja rada klima
uredaja na odluku modela moze da proizilazi iz ¢injenice da tarifa ima jak uticaj na
odluke DDQN modela (slika 29).

Ukljugi-Klima uredaj
higher = lower

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.78 g 0.9

SSV=00 SEV =00 S, =40 SV=0.0 tarifa = 0.0
base value = -0.002  flx) = 0.779

Slika 36. DDQN model: uticaj karakteristika na akciju “ukljuci klima uredaj” u Load
Flow simulacionom okruzenju u zimskom danu za stanje u vremenskom koraku 00:00.
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Temperatura i PV proizvodnja (00:00-01:00)
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Slika 37. DDQN model: upravljanje unutrasnjom temperaturom uz pregled proizvodnje
energije putem solarnog panela i temperaturni komfor izmedu 00:00 i 01:00 sati, u Load
Flow simulacionom okruzenju.

Na slici 38 prikazan je uticaj karakteristika na aktiviranje klima uredaja od strane DDQN
model u Load Flow simulacionom okruzenju u vremenskom koraku 06:45. Konkretan
vremenski korak je prikazan na slici 39 simbolom x u 06:45. Karakteristike koje su imale
pozitivan uticaj na odluku o uklju¢ivanju klima uredaja su: (kontraintuivno) visoka tarifa
(tarifa), nizak znacaj rada masine za ve$ (SSV), visok znacaj rada klima uredaja (S5C)
i Cinjenica da masina za sudove nije spremna za rad (SPW). Ova kombinacija
karakteristika odgovara upravljanju klimom uredaja prikazanom na slici 39. Pozitivan
uticaj visoke tarife je nelogican i proizilazi iz treniranog DDQN modela koji je pridao
veliki znacaj tarifi, dok je zanemario ostale karakteristike (slika 29).

Ukljugi-Klima uredaj

higher = lower
=0.04 =0.02 0.00 0.02 0.04 0.08 0.08 0.09310 o012 0.14 0.16
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Slika 38. DDQN model: uticaj karakteristika na akciju “ukljuci klima uredaj” u Load
Flow simulacionom okruzenju u zimskom danu za stanje u vremenskom koraku 06:45.
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Temperatura i PV proizvodnja (06:00-08:00)
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Slika 39. DDQN model: upravljanje unutrasnjom temperaturom uz pregled proizvodnje
energije putem solarnog panela i temperaturni komfor izmedu 06:00 1 08:00 sati, u Load
Flow simulacionom okruzenju.

Slika 40, prikazuje vremenski korak 17:15, koji je takode na slici 41 oznacen simbolom
x. U ovom slucaju su karakteristike sa pozitivnim uticajem na odluku uklju¢ivanja klima
uredaja bile visoka temperaturna razlika (Sar,,,,.,.)» Nizak znacaj rada masine za ve§
(SSW), niska PV proizvodnja (SPV )i visok znacaj rada klima uredaja (S5). Sa druge
strane, veliki negativan uticaj je imala srednja vrednost tarife. Neintuitivna je ¢injenica
da je visok znacCaja rada klima uredaja imao slab uticaj na odluku, Sto se ogleda i u
redosledu prioriteta karakteristika kod treniranog DDQN modela (slika 29).

Ukljuéi-Klima uredaj

higher & lower
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Slika 40. DDQN model: uticaj karakteristika na akciju “ukljuci klima uredaj” u Load
Flow simulacionom okruzenju u zimskom danu za stanje u vremenskom koraku 17:15.
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Temperatura i PV proizvodnja (16:00-18:00)
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Slika 41. DDQN model: upravljanje unutrasnjom temperaturom uz pregled proizvodnje
energije putem solarnog panela i temperaturni komfor izmedu 16:00 i 18:00 sati, u Load
Flow simulacionom okruzenju.

Na slici 42 prikazane su karakteristike koje uti¢u na akciju aktiviranja masine za sudove
kod PPO modela. Karakteristike koje imaju uticaj na odluku u oba simulaciona okruzenja
su:

e visoka proizvodnja elektri¢ne energije Spy,
e nizak znacaj rada klima uredaja SAC,
e visok i srednji znadaj rada masine za sudove SPW.

Na osnovu slike 23 uocava se jasno poklapanje izmedu pozitivnog uticaja navedenih
karakteristika i stvarnih odluka PPO modela o aktiviranju masine za sudove. Model je
masinu aktivirao u trenucima visoke proizvodnje elektriéne energije, kada je znacaj rada
klima uredaja bio nizak, a znac¢aj maSine za sudove visok, §to ukazuje na uskladenost
odluka modela sa o¢ekivanim obrascima racionalnog upravljanja energijom.
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Slika 42. PPO model: uticaj karakteristika stanja na akciju “ukljuci masinu za sudove”
tokom zimskog perioda.

Na slici 43 prikazane su karakteristike koje uticu na odluku “ukljuci masinu za sudove”
kod DDQN modela. Karakteristike koje su imali uticaj na odluku u oba simulaciona
okruzenja su:

e niska tarifa tarifa,

e visoka PV proizvodnja elektricne energije u Typhoon HIL simulacionom
okruzenju i niska PV proizvodnja elektricne energije u Load Flow
simulacionom okruzenju STV,

e nizak znadaj rada masine sa ve§ S5V,

e nizak znacaj rada masine za sudove u Typhoon HIL simulacionog okruzenja i
visok znaéaj rada kod Load Flow simulacionog okruzenja SPW i

e manji termalni komfor tj. visoka razlika unutrasnje i Zeljenje temperature

SATrazlika :

Uocava se nelogican pozitivan uticaj niskog znacaja rada masine za sudove u Typhoon
HIL simulacionom okruZenju i niske proizvodnje elektricne energije u Load Flow
okruzenju na odluku modela da aktivira masinu za sudove. Ovakvo ponasanje odstupa
od ocekivanog, jer bi aktiviranje masine za sudove trebalo da bude podstaknuto visokim
znacajem rada masine za sudove i pove¢anom PV proizvodnjom elektri¢ne energije.

U poredenju sa konkretnim posmatranim danom na slici 23, odluka DDQN modela ne
odgovara vrednostima karakteristike znaCaja rada masine za sudove. Konkretno u
Typhoon HIL simulacionom okruzenju masina se aktivirala u periodu srednjeg znacaja,
dok u Load Flow simulacionom okruzenju masina za sudove se aktivira u periodu niskog
znacaja rada uredaja.
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Slika 43. DDQN model: uticaj karakteristika stanja na akciju “ukljuci masinu za sudove”
tokom zimskog perioda.

Slika 44 ukazuje da je DDQN model u Typhoon HIL simulacionom okruzenju odlucio da
uklju¢i masinu sudove pod uticajem visoke PV proizvodnje elektriéne energije (STV),
niskog znagaja rada masine za ves (SSW) i visoke tarife (tarifa). Medutim, ¢injenica da
je model visoku tarifu tretirao kao faktor koji povecava verovatnocu aktiviranje masine
za sudove predstavlja nelogi¢no ponaSanje, jer bi visoka tarifa trebalo da ima suprotan
efekat odlaganja rada uredaja. Moguci razlog za ovo ponasanje modela je $to se period
visoke PV proizvodnje preklapa sa periodom visoke tarife. Ako je PV proizvodnja
dovoljno visoka da pokrije potrosnju uredaja, ne troSi se energija iz mreze, te visoka
vrednost tarife nema uticaja na funkciju nagrade. Dodatno, negativan doprinos srednjeg
znadaja rada masine za sudove (SPW) je nelogi¢an. Intuitivno bi bilo da poveéan znacaj
rada uredaja doprinosi vecoj verovatno¢i njegovog aktiviranja. Sporna karakteristika u
Typhoon HIL simulacionom okruzenju (slika 43 (a)), nizak znacaj rada maSine za sudove,
nije imala ulogu na aktiviranje uredaja.
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Slika 44. DDQN model: Uticaj karakteristika na akciju “wukljuci masinu za sudove” u
Typhoon HIL simulacionom okruzenju u zimskom danu za stanje u odredenom
vremenskom koraku.

Na slici 45 prikazano je da su na odluku DDQN modela o aktiviranju masine za sudove
u Load Flow okruzenju pozitivno uticale niska tarifa (tarifa) i, nelogi¢no, niske
vrednosti zna¢aja rada masine za sudove (S§W) i PV proizvodnje SPV. Tako je model
reagovao u periodu niske tarife, sto je ekonomski opravdano, DDQN u Load Flow
okruzenju nije uspeo da ostvari ravnotezu izmedu ustede energije i udobnosti stanara kao
u Typhoon HIL okruzenju.

Uklju€i-Magina za sudove

higher = low

-0.3 -0.2 -0.1 0.0 0.1 0.2 03 0.4 0.45 05 0.6 0.7 0.8

SV="00 SW='0.0 SE"'=0.0 tarifa =00 | Sar ., = 00SP* =110 s =00 5X

base value = -0.002 fix] = 0.450

Slika 45. DDQN model: Uticaj karakteristika na akciju “ukljuci masinu za sudove” u
Load Flow simulacionom okruzenju u zimskom danu za stanje u odredenom
vremenskom koraku.

Na slici 46 prikazane su karakteristike koje u PPO modelu uticu na aktiviranje masine za
pranje vesa. Karakteristike koje imaju uticaj u oba simulaciona okruzenja su:

e visoka PV proizvodnja u Typhoon HIL simulacionom okruzenju i niska PV
proizvodnja elektri¢ne energije u Load Flow simulacionom okruzenju (SFV),

e nizak znacaj rada klima uredaja u Typhoon HIL simulacionom okruzenju i visok
znadaj rada klima uredaja u Load Flow simulacionom okruZenju (S5€) i

e visok znaCaj rada maSine za sudove je imao jaci uticaj u Typhoon HIL
simulacionom okruZenju u odnosu na Load Flow okruzenje (SPW).

U oba okruZzenja, karakteristike vezane za masinu za ve$ nisu imale znacajan uticaj na
odluku o aktivaciji ovog uredaja. U Typhoon HIL simulacionom okruzenju, masina za
pranje vesa se akvirirala nesto pre 16:00, u periodu visokog znacaja rada masine za pranje
sudova i niskog znacCaja rada klima uredaja (slika 24). U Load Flow simulacionom
okruzenju, su takode znacajne karakteristike se karakteristike poput visokog znacaja rada
klima uredaja i Cinjenice da masina za sudove viSe nije spremna za rad (posSto je
prethodno zavrsSila sa radom). Kontraintuitivan je pozitivan uticaj niske PV proizvodnje
na odluku aktiviranja masine za ves, S$to ukazuje da je treniran PPO model, voden
funkcijom nagrade, u ovom slu¢aju dao prednost udobnosti u odnosu na ustedu elektri¢ne
energije.
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Slika 46. PPO model: uticaj karakteristika stanja na akciju “ukljuci ves masinu” tokom
zimskog perioda.

Na slici 47 analizira se odluka DDQN modela da aktivira ve$ masinu u zimskom danu.
Karakteristike koje pozitivno uti¢u na odluku o aktivaciji ovog uredaja su:

e niska tarifa (tarifa),
e nizak znadaj rada masine za ves (S§W) i

e visoka PV proizvodnja u Typhoon HIL simulacionom okruzenju i niska PV
proizvodnja u Load Flow simulacionom okruzenju (SFV).

Odluka DDQN modela da aktivira ve§ masinu u Typhoon HIL simulacionom okruzenju
(slika 24) u potpunosti se podudara sa karakteristikama koje su identifikovane kao
najuticajnije u globalnoj SHAP analizi (slika 46). Naime, model je aktivirao uredaj u
periodu niske tarife i neoc¢ekivano niskog znacaja rada masine za ves, Sto su upravo
faktori koji prema analizi najviSe doprinose odluci o aktivaciji. Jedini faktor koji se ne
poklapa je pozitivan uticaj visoke PV proizvodnje. U Load Flow simulacionom
okruzenju, DDQN model je propustio da aktivira masinu za ves u toku dana.
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Slika 47. DDQN model: uticaj karakteristika stanja na akciju “ukljuci ves masinu” tokom
zimskog perioda.

Na slici 48 prikazano je da obu¢eni DDQN model pokazuje nelogican negativan uticaj
karakteristike srednjeg znacaja rada masine za ves (SSW). Za razliku od globalne analize
(slika 47), gde je visoka PV proizvodnja (SFV) imala pozitivan doprinos odluci o
aktivaciji, u ovom konkretnom slucaju ta karakteristika nema znacajan uticaj na odluku
da se masina za ves ukljuci.

Ukljugi-Masina za ves

highgr w» |ower
-0.8 —0.7 -0 -0.57 -05 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

TS 2
SPN=J0" |5, = 0.0 SSW=10 tarifa = 1.0 s =00
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Slika 48. DDQN model: Uticaj karakteristika na akciju “wukljuci masinu za ves” u
Typhoon HIL simulacionom okruzenju u zimskom danu za stanje u odredenom
vremenskom koraku.

6.1.4.1.1.1  Zakljuc¢ak na nivou odluka u zimskom periodu

U zimskom danu modeli su pokazali uticaj razlicitih karakteristika na donoSenje odluka.
Odluke PPO modela ukazuju na vise-ciljnu optimizaciju, gde postoji dvostruki uticaj
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proizvodnje elektricne energije i znacaj rada uredaja, ¢ime se ostvaruje uravnotezen
odnos ustede i udobnosti stanara. PPO model je pokazao konzistentnost i stabilnost u oba
simulaciona okruzenja, pri ¢emu su odluke bile zasnovane na logi¢nim energetskim
obrascima i realnim uslovima sistema.

Suprotno tome, DDQN model je pokazao veéi stepen osetljivosti na pojedinacne
karakteristike, pri ¢emu je tarifa imala dominantan uticaj na odluke. Takvo ponaSanje
ukazuje na jednostranu optimizaciju usmerenu ka smanjenju potroS$nje elektricne
energije, ¢esto na racun udobnosti korisnika. Dodatno, u Load Flow simulacionom
okruZenju uocene su nelogi¢nosti u smeru uticaja pojedinih karakteristika, §to ukazuje na
ograni¢enu sposobnost modela da generalizuje obrasce ponasanja u razli¢itim uslovima.

Generalno, PPO model se pokazao robusnijim i pouzdanijim, sa sposobnos¢u donosenja
odluka koje su u skladu sa racionalnim energetskim principima, dok DDQN model
pokazuje ograniCenja u interpretabilnosti i stabilnosti, naroCito u dinamiénim
okruzenjima poput Load Flow simulacije.

6.1.4.1.2  Odluke u letnjem periodu

Slike 49 i 50 prikazuju agregirane srednje apsolutne SHAP vrednosti za sve akcije sa
ciljem da se identifikuju koje karakteristike stanja najvise uticu na odluke modela.

U oba okruzenja, najve¢i uticaj na predikcije modela imaju karakteristike PV
proizvodnja, znacaj rada klima uredaja i znacaj rada masine za sudove, §to ukazuje da
PPO efikasno koristi raspolozivu solarnu energiju prilikom planiranja aktivacija uredaja.
Redosled znacCaja ostalih karakteristika je razli¢it u Typhoon HIL i Load Flow
okruzenjima. U oba okruzenja, razlika unutrasnje i spolja$nje temperature nema veliki
uticaj na odluke modela jer, u letnjim danima, spoljasnja temperatura nije znacajno
razli¢ita u odnosu na unutrasnju.
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Slika 49. PPO model: uticaj karakteristika stanja agregirano kroz akcije u toku letnjeg
perioda.

Kod DDQN modela (slika 49), rezultati ove analize su razli¢iti. Glavni uticaj na
predikcije modela imaju PV proizvodnja i tarifa elektricne energije. U Load Flow
simulacionom okruzenju, jedino jo§ znacaj rada masine za ve§ ima znacCajan uticaj na
odluke modela. Kao i kod PPO modela, najnizi uticaj ima razlika unutrasnje i Zeljene
temperature.
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Slika 50. DDQN model: uticaj karakteristika stanja agregirano kroz akcije tokom letnjeg
perioda.
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Na slikama 51 i 54 prikazan je uticaj vrednosti karakteristika na odluku o ukljuc¢ivanju
klima uredaja tokom letnjeg dana kod PPO i DDQN modela.

Kod PPO modela (slika 51), u oba simulaciona okruzenja, slede¢e karakteristike imaju
znacajan uticaj na rad klima uredaja:

e  nizi znacaj rada masine za sudove (SPV),

e niska PV proizvodnja (STV),
e visok znacaj rada klima uredaja (S5'¢) i
e  visoka tarifa.

Na slici 25 prikazana je kontrola rada klima uredaja tokom letnjeg dana, gde se uocava
poklapanje navedenih uvida (slika 51) sa ponaSanjem PPO modela u oba simulaciona
okruzenja. Model je dosledno aktivirao klima uredaj u periodima kada je znacaj rada
ovog uredaja bio visok, a znadaj rada ostalih uredaja nizak, ¢ime je obezbedeno
odrzavanje zeljenog termalnog komfora korisnika.

Kontraintuitivan pozitivan doprinos niske PV proizvodnje na odluku o aktiviranju klima
uredaja moze se objasniti definisanim znaCajem rada uredaja od strane stanara (tabela
13). Tokom perioda odsutnosti stanara, termalna udobnost nije prioritet, pa aktiviranje
klima uredaja od strane PPO modela u tim trenucima ne donosi pozitivnu nagradu.
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Slika 51. PPO model: uticaj karakteristika stanja na akciju “ukljuci klima uredaj” tokom
letnjeg perioda.

Na slikama 52 i 53 prikazan je nelogi¢an pozitivan uticaj niske PV proizvodnje (S¥V) u
Typhoon HIL i Load Flow simulacionom okruzenju. Iako je na globalnom nivou (slika
51) uoCen sporan pozitivan uticaj visoke tarife (tarifa), u ovim konkretnim sluc¢ajevima
ova karakteristika nema znacajan uticaj na odluku.
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Slika 52. PPO model: Uticaj karakteristika na akciju “ukljuci klima uredaj” u Typhoon
HIL simulacionom okruzenju u letnjem danu za stanje u odredenom vremenskom koraku.
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highar = lower
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Slika 53. PPO model: Uticaj karakteristika na akciju “ukljuci klima uredaj” v Load Flow
simulacionom okruzenju u letnjem danu za stanje u odredenom vremenskom koraku.

Karakteristike koje imaju uticaj na odluke DDQN model u oba simulaciona okruzenja su
(slika 54):

e visoka PV proizvodnja (Spy),

e niska tarife,

o  karakteristike vezane za masinu za ves$: d u Typhoon HIL okruzenju da nije
radila (S$V), a u Load Flow okruZenju da je znadaj rada ovog uredaja visok
(SS™)

e visok znacaj rada klima uredaja (S5C).

Medusobne zavisnosti izmedu rada uredaja ne mogu se u potpunosti objasniti na osnovu
ovih analiza. Uloge karakteristika vezanih za masinu za ves u donosenju odluka o radu
klima uredaja nemaju jasno opravdanje i ne proizlazi iz ocekivane logike energetskog
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upravljanja. Posebno je nelogi¢no §to znacaj rada klima uredaja, koji bi u realnim
uslovima trebalo da bude dominantan faktor, pokazuje ograni¢en uticaj na odluku o
aktiviranju ovog uredaja.

DDQN

wisoka

Proizvedena energija putem PV
Tarifa

Masina za ves je aktivirana danas
Znacaj rada klima uredaja

Znacaj rada masine za ves

*+f$:;i#i¥

Masina za ves je spremna za aktivaciju

Karakteristike

Znacaj rada masine za sudove

Vrednost karakteristike

Masina za sudove je spremna za aktivaciju

Masina za sudove je aktivirana danas

Typhoon HIL

Razlika unutrasnje i Zeljene temperature

niska
o 2
Uticaj SHAP vrednosti

(a)

visoka

:
i

Tarifa

Proizvedena energija putem PV

Znacaj rada masine za ves o
Znacaj rada masine za sudove
Znacaj rada klima uredaja

Masina za ves je aktivirana danas

Karakteristike

Masina za sudove je aktivirana danas

Vrednost karakteristike

Masina za sudove je spremna za aktivaciju

Masina za ves je spremna za aktivaciju

Load Flow

Razlika unutrasnje i Zeljene temperature

...-_-___-_.% #

—+————— "niska
25 00 25 50
Uticaj SHAP vrednosti

(b)

Slika 54. DDQN model: uticaj karakteristika stanja na akciju “ukljuci klima uredaj”
tokom letnjeg dana

Na slikama 55 i 57 prikazan je uticaj karakteristika stanja na akciju uklju¢ivanja masine
za sudove kod PPO i DDQN modela, tim redosledom.

Karakteristike koje uticu na odluku PPO modela da pokrene masinu za sudove u oba
simulaciona okruzenja u letnjem periodu su:

e  visok znadaj rada magine za sudove (SPW),
e niska vrednost za indikator da je ves§ masina spremna za aktivaciju (SFW),
e  visoka vrednost za indikator da je ves masina danas radila (S$V),

e niska PV proizvodnja (S*V).

Dodatno, manji uticaj ima spremnost masine za sudove za rad, gde je visoka vrednost za
indikator da je masina za sudove spremna za rad (SPW) i niska vrednost za indikrator da
masina nije radila danas (SPV).Niska vrednost karakteristike Siy, gde i € {CW, DW},
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oznacava da masina jo§ uvek nije radila, dok visoka oznacava da jeste. Sli¢no, niska
vrednost karakteristike S; oznaCava da masina nije spremna za rad, a visoka vrednosti da
jeste.

Vrednosti ovih karakteristika se u najvecoj meri poklapaju sa stvarnim odlukama PPO
modela o aktiviranju masine za sudove u posmatranom letnjem danu (slika 26). Model
je, u skladu sa ocekivanim obrascem, donosio odluke o aktiviranju uredaja nakon
zavrSetka rada masine za ves i u periodima visokog znac¢aja rada masSine za sudove.

Ipak, kontraintuitivno je da niska PV proizvodnja ima pozitivan doprinos odluci o
pokretanju masine za sudove. Ovakvo ponasanje odstupa od ocekivanog energetskog
racionaliteta, buducéi da bi veca raspoloziva proizvodnja solarne energije trebalo da bude
podsticaj za aktiviranje potrosaca.
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Slika 55. PPO model: uticaj karakteristika stanja na akciju “ukljuci masinu za sudove”
tokom letnjeg perioda.

Na slici 56 je prikazan SHAP dijagram koji objasnjava odluku PPO modela da aktivira
masinu za sudove u konkretnom vremenskom koraku. Sve karakteristike koje doprinose
odluci imaju logi¢an smer uticaja i u skladu su sa oc¢ekivanim obrascima ponasanja
modela. Srednji zna¢aj rada masine za sudove (SPW), spremnost masine za sudove za rad
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(SPW, SPWY i zavrietak rada masine za ves (S, SGV) doprinose poveéanju verovatnoce
aktiviranja masine za sudove. Nasuprot tome, visoka tarifa (tarif a) ima manji negativan
doprinos odluci, §to je u skladu sa ocekivanim uticajem troskova energije. Sporna niska
PV proizvodnja nema znacajan uticaj na odluku. Time se potvrduje da je odluka PPO
modela u ovom primeru u potpunosti u skladu sa logikom energetski efikasnog i
racionalnog upravljanja uredajem.

Ukljugi-Masina za sudove
higher e lower
-1 0 1 2 3 4 5 5.97 7 i}

SPW=T0 [S3" =00 S=0.0 SF—020 S =10 o g tarifa = 2.0
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Slika 56. PPO model: Uticaj karakteristika na akciju “ukljuci masinu za sudove” u
Typhoon HIL simulacionom okruzenju u letnjem danu za stanje u odredenom
vremenskom koraku.

Karakteristike koje uti¢u na odluku DDQN modela da aktivira masinu za sudove u oba
simulaciona okruzenja su:

e niska tarifa,

e visoka PV proizvodnja elektri¢ne energije (Spy),

e indikator da masina za ve$ nije radila danas (S{"),
e  visok znacaj rada klima uredaja (S5C) i

e nizak znacaj rada masine za ves§ u Typhoon HIL simulacionom okruzenju i visok
zna&aj rada masine za ve$ u Load Flow simulacionom okruzenju (SS™W).

Odluke DDQN modela prikazane na slici 26 uglavnom se poklapaju sa karakteristikama
identifikovanim na globalnom nivou (slika 57) u oba simulaciona okruzenja. Uredaji su
se u oba okruzenja aktivirali u periodima visoke proizvodnje elektricne energije. U
Typhoon HIL okruzenju aktivacija se javljala tokom niskog znacaja rada klima uredaja,
dok se u Load Flow okruzenju deSavala u periodu niskog znacaja rada masine za ves.

Za razliku od globalne analize, u oba simulaciona okruzenja model je masinu za sudove
aktivirao u periodu visoke, a ne niske tarife. U Load Flow okruzenju dodatno odstupa i
karakteristika znacaja rada masine za ves, jer se model nije ponasao u skladu sa globalnim
obrascem prema kome se uredaj aktivira pri visokom znacaju rada masine za ves.
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Slika 57. DDQN model: uticaj karakteristika stanja na akciju “wukljuci masinu za sudove”
tokom letnjeg perioda.

Karakteristike koje su imale pozitivan uticaj na odluku DDQN modela o aktiviranju
masine za sudove u Typhoon HIL simulacionom okruzenju ukljucuju visoku tarifu (Sto
je kontraintuitivno), visoku PV proizvodnju i spremnost za rad masine za sudove.
Negativan doprinos odluci imaju nizak znacaj rada klima uredaja, ¢injenica da je masina
za sudove vec radila, kao i (kontraintuitivno) srednji znacaj rada masine za sudove (slika
58).

Iako je DDQN model u Typhoon HIL simulacionom okruZzenju uspeo da postigne
relativno dobar balans izmedu ustede energije i komfora korisnika, smer uticaja pojedinih
faktora na odluku nije u skladu sa ocekivanim obrascima energetski racionalnog
ponasanja.
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Ukljugi-Masina za sudove
higher = |ower
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Slika 58. DDQN model: Uticaj karakteristika na akciju “wukljuci masinu za sudove” u
Typhoon HIL simulacionom okruZenju u letnjem danu za stanje u odredenom
vremenskom koraku.

Na slici 59 prikazana je konkretna odluka DDQN modela u Load Flow simulacionom
okruzenju da aktivira masinu za sudove. U ovom primeru, model je imao pretezno
pozitivne faktore: visoku PV proizvodnju (S¥V), nizak zna¢aj rada masine za ves (S§W),
visok znadaj rada klima uredaja (SA€) i spremnost masine za sudove za rad (SPW).
Takode, logi¢an negativan uticaj je imala visoka tarifa (tarifa). Medutim, uocen je
kontraintuitivan pozitivan doprinos niskog znacaja rada masine za sudove, $to odstupa
od oc¢ekivanog ponaSanja sistema. Dodatno, karakteristika visoke vrednosti znacaja rada
masine za ves, koja se na globalnom nivou izdvojila kao uticajna (slika 57 (b)), nije imala
znacajan uticaj na odluku modela u ovom slucaju.

Za razliku od PPO modela, DDQN u Load Flow simulacionom okruZenju nije uspeo da
uspostavi ravnotezu izmedu usStede elektricne energije i o¢uvanja komfora stanara.

Ukljuéi-Masina za sudove

higher = lowe
0.6 0.8 1.0 12 1.4 16 1.8 2.0 2.2
S0 SPY 00 S =00 5PV =10 =20 | 557 =0.0 s™=-195.0 | rarifa

base value = 0.857 f{x) = 2,196

Slika 59. DDQN model: Uticaj karakteristika na akciju “wukljuci masinu za sudove” u
Load Flow simulacionom okruZenju u letnjem danu za stanje u odredenom vremenskom
koraku.

Karakteristike sa znacajnim uticajem na odluku PPO modela da aktivira maSinu za ve§ u
oba simulaciona okruZenja su:

e visoka i niska PV proizvodnja (SFV),

e u Typhoon HIL simulacionom okruzenju, indikator spremnosti za rad masine za
ves (SEV 1 SEW)

e u Load Flow simulacionom okruzenju je manji uticaj imao i indikator da je

masina za sudove radila danas (SW).

Na globalnom nivou (slika 60), navedene karakteristike pokazuju dosledan uticaj na
odluke PPO modela, dok se na nivou jednog odabranog letnjeg dana (slika 27) uocava
njihovo poklapanje sa stvarnim upravljanjem uredaja. Jedino odstupanje predstavlja
indikator da je masina za sudove radila, koji nema znacajan uticaj na odluku o aktiviranju
masine za ves.
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Slika 60. PPO model: uticaj karakteristika stanja na akciju “ukljuci ves masinu” tokom
letnjeg dana.

Na slici 61 prikazan je uticaj karakteristika na odluku PPO modela da aktivira masinu za
ves u Typhoon HIL simulacionom okruZenju u letnjem danu. Pozitivni faktori bili su
visoka PV proizvodnja (SPV), indikator da masina za ve§ nije dana radila (S$V), da je
masina za ve§ spremna za rad (SW), visoka tarifa (tarifa) i nizak znacaj rada masine
za sudove (SPW). Negativan uticaj su imale karakteristike da masina za sudove nije radila
danas (S3W), visok znacaj rada klima uredaja (SAC) i nizak znadaj rada masine za ves
(SSW). Kontraintuitivni uvid da je pozitivan utican na aktiviranje masine za ve$ ima
karakteristika da je masina za sudove radila (slika 60 (a)) se ne pojavljuje u predikciji.

Ukljuéi-Magina za ves
higher = lower
_.1 0 1 2 3 3.90
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Slika 61. PPO model: Uticaj karakteristika na akciju “ukljuci masinu za ves” u Typhoon
HIL simulacionom okruZenju u letnjem danu za stanje u odredenom vremenskom koraku.

Na slici 62 prikazane su karakteristike koje su uticale na odluku PPO modela da aktivira
masinu za ve§ u jednom odredenom vremenskom koraku. Pozitivan doprinos odluci
imale su visoka PV proizvodnja (SPV), visok zna&aj rada klima uredaja (S5'C) i Ginjenica
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da masina za ves jo§ uvek nije bila aktivna (S$). Nasuprot tome, negativan uticaj na
odluku imale su karakteristike koje ukazuju da je masina za sudove spremna za rad i nije
radila (SPW i S§W), visoka tarifa (tarifa) elektri¢ne energije i nizak zna¢aj rada masine
za sudove (SPW). Sporni uvid iz globalne analize da pozitivan uticaj na odluku
ukljuc¢ivanja masine za ves ima Cinjenica da je masina za sudove radila (slika 60 (b)) nije
imala u ovom primeru uticaja na odluku o aktiviranju masine za ves.

Ukljuéi-Magina za ves

higher = lower
-1 0 2 2 3 3.51 4 5 B

T - = : E
SEr=ENY h- =y sW=.1580 s =10 SPWZ00 tarifa = 2.0 5™ =00

base value = 0.986  flx] = 3.509

Slika 62. PPO model: Uticaj karakteristika na akciju “ukljuci masinu za ves” u Load Flow
simulacionom okruzenju u letnjem danu za stanje u odredenom vremenskom koraku.

Karakteristike sa znacajnim uticajem na odluku DDQN modela da aktivira masinu za ves
u oba simulaciona okruzenja su:

e visoka PV proizvodnja elektri¢ne energije (STV),

e niska i visoka vrednost tarife u Typhoon HIL simulacionom okruzenju i
isklju¢ivo niske vrednosti tarife u Load Flow simulacionom okruzenju (tarifa),

e indikator da maSina za ves nije radila danas u Typhoon HIL simulacionom
okruzenju (&) i

e visok znadaj rada masine za ve§ u Load Flow simulacionom okruzenju (SSW).

Sve karakteristike identifikovane na globalnom nivou (slika 63), osim visokog znacaja

rada masSine za ve§ u Load Flow simulacionom okruZenju, se poklapaju sa uocenom

logikom upravljanja masine za ves od strane obuc¢enog DDQN modela (slika 27).
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Slika 63. DDQN model: uticaj karakteristika stanja na akciju “ukljuci masinu za ves”
tokom letnjeg perioda.

Na slici 64 prikazano je aktiviranje masine za ve§ od strane obuc¢enog DDQN modela u
jednom odredenom vremenskom koraku. Pozitivan doprinos odluci imale su
karakteristike visoke PV proizvodnje (STV), niskog znacaja rada masine za sudove
(SPW™), spremnosti za rad masine za ves (SPW i SOW) i (kontraintuitivno) nizak znacaj
rada masine za ves (S5"). Negativan uticaj imale su visoka tarifa (tarifa) i nizak znaéaj
rada klima uredaja (S5°).

Sporna karakteristika visokog znacaja rada masine za ves, koja je na globalnom nivou
imala pozitivan doprinos odluci (slika 63 (b)), u ovom slucaju nije imala znacajan uticaj.
DDQN model je u ovom primeru pokazao da pridaje veci znacaj ustedi elektri¢ne
energije na racun komfora stanara.

Ukljuéi-Masina za ves

higher stiowe
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Slika 64. DDQN model: Uticaj karakteristika na akciju “ukljuci masinu za ves” u Load
Flow simulacionom okruzenju u letnjem danu za stanje u odredenom vremenskom
koraku.

6.1.4.1.2.1  Zakljucak na nivou odluka u letnjem periodu

Analiza rezultata pokazuje da PPO model u oba simulaciona okruzenja donosi odluke
koje su u vecoj meri uskladene sa logikom energetski efikasnog i komfornog upravljanja
uredajima. Model je pokazao doslednost u ponasanju gde su se odluke o aktiviranju
uredaja najCesc¢e poklapale sa visokim znacajem rada pojedinacnih uredaja i zavrSetkom
rada drugih potrosaca, uz efikasno koris¢enje dostupne solarne energije. Iako su
povremeno uoceni kontraintuitivni doprinosi niske PV proizvodnje, njihov uticaj nije
znacajno narusio racionalnost odluka. PPO je zadrzao stabilnost i u letnjem periodu,
posebno u Typhoon HIL okruzenju, gde su odluke bile konzistentnije i bolje prilagodene
dinami¢kim uslovima proizvodnje i potro$nje.

Suprotno tome, DDQN model je u oba okruzenja pokazao veci stepen varijabilnosti i
manju sposobnost uspostavljanja balansa izmedu ustede energije i komfora korisnika. U
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Typhoon HIL okruzenju model je povremeno postizao zadovoljavajuée rezultate, ali sa
nelogi¢nim smerom uticaja pojedinih karakteristika, poput visoke tarife i niskog znacaja
rada uredaja, koje su pozitivno doprinosile odluci. U Load Flow okruzenju odstupanja su
bila izrazenija. Model je davao prioritet ustedi elektricne energije u odnosu na komfor,
$to je dovelo do odluka koje nisu u skladu sa ocekivanim obrascima ponasanja sistema
pametne kuce.

Na osnovu sprovedene analize moze se zakljuciti da je PPO model ostvario bolje rezultate
od DDQN modela u pogledu stabilnosti, racionalnosti i uskladenosti odluka sa ciljevima
optimizacije sistema. PPO je pokazao vecu sposobnost generalizacije izmedu
simulacionih okruzenja, dok je DDQN pokazao ograni¢enja u adaptaciji i sklonost
nelogi¢nim obrascima odluc¢ivanja. Time se potvrduje da PPO model predstavlja
pogodniji pristup za upravljanje pametnim kuénim sistemima tokom letnjeg perioda, gde
je potrebno istovremeno odrzati energetsku efikasnost i komfor korisnika.

6.1.4.1.3  Zakljucak interpretacije odluka na nivou razli¢itih godisnjih doba

Rezultati sprovedenih eksperimenata pokazuju da je PPO model u oba sezonska perioda
ostvario stabilnije i racionalnije upravljanje uredajima u odnosu na DDQN model. U
zimskom periodu PPO je pokazao sposobnost viSeciljne optimizacije, balansirajuci
izmedu ustede energije i odrzavanja komfora stanara. Model je dosledno reagovao na
kljuéne faktore kao §to su znaCaj rada uredaja, termalni komfor i raspoloziva PV
proizvodnja, pri ¢emu su odluke bile u skladu sa logikom realnog energetskog sistema.
U Typhoon HIL i Load Flow okruzenju PPO je pokazao slicne obrasce ponasanja, §to
ukazuje na dobru generalizaciju modela i otpornost na promenu uslova okruzenja.

U letnjem periodu PPO model je zadrzao slican obrazac odlu¢ivanja. Odluke su se
uglavnom poklapale sa periodima visokog znacaja rada uredaja i zavrSetkom rada drugih
potroSaca, uz efikasno koriS¢enje solarne energije. Povremeno su se javljali
kontraintuitivni doprinosi niske PV proizvodnje, ali bez znacajnog uticaja na
performanse. U Typhoon HIL okruzenju PPO je pokazao najvecu stabilnost i
konzistentnost, dok su u Load Flow okruzenju uofene manje varijacije u uticaju
pojedinacnih karakteristika, ali bez narusavanja energetske racionalnosti odluka.

Nasuprot tome, DDQN model pokazao je vecu osetljivost na pojedinacne karakteristike
i manju sposobnost uspostavljanja balansa izmedu troskova i komfora u oba perioda. U
zimskom periodu tarifa je imala dominantan uticaj na odluke. U letnjem periodu model
je pokazao vecéi stepen varijabilnosti i nelogi¢ne doprinose karakteristika poput visoke
tarife i niskog znacaja rada uredaja. U Typhoon HIL okruzenju DDQN je povremeno
ostvarivao zadovoljavajué¢e odluke, dok je u Load Flow okruzenju pokazao slabiju
adaptaciju i odstupanja od ocekivanih obrazaca ponasanja.

Na osnovu ukupne analize moze se zakljuciti da PPO model daje bolje rezultate u odnosu
na DDQN u pogledu stabilnosti, interpretabilnosti i sposobnosti generalizacije izmedu
razlicitih sezonskih uslova i simulacionih okruzenja. PPO je pokazao uravnotezen pristup
izmedu energetske efikasnosti i komfora, dok DDQN model pokazuje manju sposobnost
integracije vise ciljeva u procesu odlucivanja, §to ga ¢ini manje pogodnim za kompleksne
zadatke upravljanja pametnim kuénim sistemima.
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6.2 Analiza rezultata velikog jeziCkog modela

U ovom potpoglavlju prikazani su rezultati upravljanja uredajima u pametnoj kuci
ostvareni pomocu pretreniranih velikih jezickih modela. U potpoglavlju 6.2.1 prikazane
su vrednosti funkcije nagrade koju veliki jezicki modeli ostvaruju na 23. danu u januaru
i junu, istom danu na kom su u potpoglavlju 6.1.2 analizirani modeli ucenja
potkrepljivanjem. Za svako simulaciono okruZenje prikazana je posebna tabela, pri cemu
su u svakoj tabeli objedinjeni rezultati za zimski i letnji dan. Potpoglavlje 6.2.2 analizira
odluke modela u tim danima, gde su posebno izdvojene odluke modela vezane za
kontrolisanje unutra$nje temperature i upravljanje radom masine za pranje sudova i
masine za ves.

Zbog ogranicenja resursa, odluke donesene od strane RL LLM modela su analizirane
samo u Load Flow simulacionom okruzenju.

6.2.1 Analiza vrednosti funkcije nagrade na nivou
simulacionog okruzenja

U ovom potpoglavlju analizirane su vrednosti funkcije nagrade koje veliki jezicki modeli
ostvaruju na 23. danu u januaru i junu, koji neposredno slede periodu treniranja modela.
Zasebno su analizirane i komponente funkcije nagrade — udobnost i cena elektricne
energije. Cilj ove analize je da se ispita mogucnost primene pretreniranih velikih jezickih
modela za upravljanje uredajima u pametnoj kuéi.

U tabelama 18 i 19 rezultati su prikazani na nivou simulacionog okruzenja (Load Flow i
Typhoon HIL) i obuhvataju ostvarene rezultate u zimskom i letnjem danu. Rezultati se
ne mogu porediti izmedu razli¢itih simulacionih okruzenja jer konfiguracije uredaja nije
identi¢na na oba simulatora.

U januaru (tabela 18), u Load Flow simulacionom okruzenju, KBS LLM je postigao bolje
rezultate u poredenju sa RL LLM u pogledu svih posmatranih metrika. U januarskom
danu, KBS LLM je ostvario ukupnu funkciju nagrade vecu za 0,24 €, $to odgovara
unapredenju od oko 13%.

U junu je KBS LLM ostvario bolje rezultate u pogledu cene elektri¢ne energije i ukupne
nagrade, dok je RL LLM imao bolji rezultat u pogledu udobnosti. Ipak, KBS LLM
ostvario je bolji balans izmedu udobnosti i uStede elektricne energije, odnosno, ostvario
je visu ukupnu nagradu. U letnjem danu, KBS LLM ostvaruje ukupnu nagradu vecu za
0,05 €, tj. oko 5% unapredenja.

Tabela 18. Load Flow okruzenje: vrednost funkcije nagrade ostvarene na testnim danima
(23. januar i jun). Negativne vrednosti oznacavaju da je potros$nja energije bila vec¢a od
proizvodnje, dok pozitivne vrednosti oznacavaju da je proizvodnja elektricne energije
vecéa od potrosnje.

Model Udobnost (27 ) sa kaznama za Cena elektri¢ne Zbir komponenti
nepostovanje Zelja stanara [€] energije (32) [€] udobnosti i cene [€]

KBS

5 LLM 6,26 -4,16 2,10

S

S RL

S -

S M 6,05 4,19 1,86
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KBS

< LLM 1,14 -0,25 0,89
3 RL
LLM 2,18 -1,34 0,84

Tabela 19 prikazuje vrednosti KBS LLM u Typhoon HIL simulacionom okruzenju. Zbog
nedostatka resursa, RL LLM model nije pokrenut u datom okruzenju.

Tabela 19. Typhoon HIL okruzenje: vrednost funkcije nagrade ostvarene na testnim
danima (23. januaru i junu). Negativne vrednosti oznacavaju da je potrosnja energije bila
veca od proizvodnje, dok pozitivne vrednosti oznacavaju da je proizvodnja elektricne
energije veca od potrosnje.

Model Udobnost (27 ) sa kaznama za Cena elektri¢ne Zbir komponenti
nepostovanje Zelja stanara [€] energije (32) [€] udobnosti i cene [€]
]
$ KBSLLM 5,41 -3,53 1,88
S
~
§ KBSLLM 104 0,60 1,63

Rezultati pokazuju da je KBS LLM ostvario viSe vrednosti funkcije nagrade u poredenju
sa RL LLM modelom, uz unapredenja od oko 13% u zimskom i 5% u letnjem danu. KBS
LLM je postigao bolji balans izmedu komfora i troskova elektri¢ne energije, Cime je
obezbedena efikasnija upotreba resursa. Dodatno, KBS LLM pristup zahteva znatno
manje resursa, jer ne zahteva viSestruko obucavanje niti kontinuirano slanje upita
velikom jezickom modelu, §to ga ¢ini pogodnijim za primenu u realnim pametnim
okruzenjima.

6.2.2 Analiza odluka modela na nivou dana

Analiza odluka modela treba da ukaze moguénost primene velikog jezickog modela u
upravljanju uredajima pametne kuce sa ciljem optimizacije potrosnje elektri¢ne energije
uz istovremeno odrzavanje udobnosti stanara. Analiza je grupisana po sezonama: zimski
dan (potpoglavlje 6.2.2.1) i letnji dan (potpoglavlje 6.2.2.2), pri ¢emu se zasebno
posmatra kontrola klima uredaja, rad masine za pranje sudova i rad masSine za ves.
Posmatrani su isti 23. dan u januaru i junu kao i u analizi modela zasnovani na ucenju
potkrepljivanjem.

Zbog nedostatka resursa u analizi nece se prikazati rezultati RL LLM Typhoon HIL
simulacionom okruzenju.

6.2.2.1  Analiza rada uredaja u zimskom danu

Slika 65 prikazuje kako modeli kontroliSu unutrasnju temperaturu tokom zimskog dana.
Bez obzira na intenzitet potro$nje klima uredaja u razli¢itim simulacionim okruzenjima,
modeli na sli¢an nacin upravljaju klima uredajem. RL LLM se razlikuje od ostalih
modela po tome §to aktivira klima uredaj neposredno pre pocetka opsega velikog znacaja
temperature (u 16:00), §to je u skladu sa zeljama stanara iz tabele 13. Ostali modeli

134



aktiviraju klimu uredaj tacno na pocetku opsega velikog znacaja temperature (u 17:00).
Razlog zasto su oba modela u Load Flow simulacionom okruzenju dostigla Zeljeni
temperaturni opseg u isto vreme (oko 18:00) je Sto je KBS LLM pokrenuo klimu uredaj
15 minuta ranije od RL LLM modela.

Promena unutrasnje temperature tokem zimskog dana

== KBS LLM (Typhoon HIL)
= KBS LLM {Load Flow)
RL LLM {Load Flow)
sal=— Donja granica Zeljenog opsega temperature (20°C)
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Slika 65. Kontrolisanje unutrasnje temperature u toku zimskog dana.

Na slici 66 uocava se da je KBS LLM postigao veéu kumulativau udobnost u odnosu na
RL LLM jer je oko 13:00 vidljiv skok vrednosti kod KBS LLM modela, koji odgovara
trenutku aktiviranja masine za sudove (slika 67). Zbog toga RL LLM nije uspeo da
dostigne ukupnu vrednost udobnosti koju je ostvario KBS LLM do kraja dana.

Udobnost sa kaznama za nepoitovanje Zelja stanara u zimskom danu

Udabnost

o 1 1‘ 3 4 5 6 7 B 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Vreme (24 casouni format)

Slika 66. Udobnost u zimskom danu.

Slike 67 i 68 prikazuju nacin upravljanja masinom za pranje sudova u zimskom danu.
KBS LLM u oba simulaciona okruzenja pokrece uredaj u periodu srednje tarife i visokog
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znaCaja rada. RL LLM pokrece uredaj nesto kasnije kada ima manje proizvedene
elektri¢ne energije. Kao posledica, KBS LLM model postize bolju ustedu elektricne
energije u odnosu na RL LLM model, bez kompromitovanja udobnosti stanara (tabela
18). Takode je rezultovalo u vecoj vrednosti udobnosti od strane KBS LLM zbog
definisane znacaja rada u tabeli 14.
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Slika 67. Upravljanje masinom za sudove u zimskom danu.

Slika 68 ilustruje kako modeli upravljaju radom masine za ve§ u zimskom danu. Svi
modeli, nezavisno od simulacionog okruzenja, pridodaju veci prioritet znacaju rada
uredaja u odnosu na ustedu elektri¢ne energije. Ovo je posledica toga §to u zimskom danu
nema perioda visoke proizvodnje elektri¢ne energije od strane solarnog panela.
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Potrodnja ves masine i proizvodnja PV-a u zimskom danu
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509 B KBS LLM (Typhoon HILY 1 2
BN KBS LLM (Load Flow) i
RL LLM (Load Flow) i
-- Tarifa :
400 Prioritet !
s 'a
c i
300 ®
N E
s [
- - 13
o i
& 2
200 £
£
100
O messsssssssssssmsssssssanes 0
0,00, 80, 00 0 0 0 O O o0 o 000, D, o0, 0 0, 0 60 D O O OO O
1360&\016‘—‘0*0’3@@ 0%0‘3@\}\3-{5\. 03503601 929090 0 ¥ P

Vreme (24-fasovni format)

Slika 68. Upravljanje masinom za ve$ u zimskom danu.

Prethodne slike i vrednosti metrika iz tabele 18 potvrduju da oba modela imaju sli¢ne
obrasce kontrole uredaja u Load Flow simulacionom okruzenju.

6.2.2.2  Analiza rada uredaja u letnjem danu

Slika 69 prikazuje kako modeli kontroliSu unutra$nju temperaturu tokom analiziranog
letnjeg dana. Bez obzira na intenzitet potrosnje, modeli kontrolisu klima uredaj na gotovo
identic¢an naéin. Modeli odrzavaju unutra$nju temperaturu u zeljenom opsegu do 8:00
nakon Cega temperatura raste i modeli aktiviraju klimu uredaj tek oko 17:00, §to je u
skladu sa zeljama stanara iz tabele 13. RL LLM model, sli¢no kao i u analiziranom
zimskom danu, aktivira uredaj nesto ranije od KBS LLM modela, te brze dostigne Zeljeni
temperaturni opseg. Zbog ovoga je RL LLM ostvario bolje performanse u pogledu
udobnosti od KBS LLM modela u Load Flow simulacionom okruzenju (tabela 18).
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Promena unutrainje tokom fetnjeq dana
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Slika 69. Kontrolisanje unutra$nje temperature u toku letnjeg dana.

Slike 70 1 71 prikazuju nacin na koji modeli upravljaju masinom za pranje sudova i
masinom za ves$ u analiziranom letnjem danu. Primec¢uje se da KBS LLM, nezavisno od
simulacionog okruzenja (Typhoon HIL i Load Flow), odnosno tipa potro$nje elektricna
energije (konstantna ili promenljiva u jedinici vremena), inicira rad uredaja u istim
vremenskim tackama, dok se RL LLM vise fokusira na udobnost stanara, $to se odrazava
na konacne rezultate prikazane u tabeli 18.

Potrofnja masine za sudove i proizvodnja PV-a u letnjem danu

Proizvodnja P¥aa s 8| 2
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Slika 70. Upravljanje masinom za sudove u analiziranom letnjem danu.

Slika 71 ilustruje kako modeli upravljaju radom maSine za ves$ u analiziranom letnjem
danu. Obrazac upravljanja KBS LLM u oba simulaciona okruZenja identi¢an je kao kod
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masine za sudove u letnjem danu gde se uredaj pokrecu u istom vremenskom intervalu
koji se odlikuju sa viskom tarifom i istom proizvodnjom elektricne energije. Nasuprot
tome, RL LLM ukljuCuje uredaj nesto pre perioda srednjeg znacaja rada, kako bi
iskoristio poveéanu proizvodnju elektri¢ne energije od strane PV panela.

i . . . _Potrodnja ves masine | proizvodnja PV-a u letnjem danu
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Slika 71. Upravljanje masinom za ves u letnjem danu.

Rezultati pokazuju da je RL LLM ostvario bolje rezultate iskljuc¢ivo u pogledu udobnosti
stanara. Kao Sto je prikazano na slikama (slika 69, slika 70 i slika 71), ovaj model pokrece
uredaje u periodima srednjeg i visokog znaCaja rada, ¢ime doprinosi viSem nivou
udobnosti stanara. Medutim, KBS LLM ostvario je bolje rezultate u pogledu ustede
elektri¢ne energije i ukupne nagrade jer aktivira uredaje u periodima visoke proizvodnje
elektricne energije, iako po cenu manjeg nivoa udobnosti (slika 70 i slika 71).

6.2.2.3  Zakljucak analize odluka model na nivou zimskog i letnjeg dana

Analiza upravljanja svih uredaja u zimskom danu je slicna u oba simulaciona okruzenja.
Tokom zimskog dana, svi modeli se fokusiraju na udobnost stanara, i pokrecu uredaje
kada je znacaj rada srednji ili visok.

Suprotno tome, u letnjem danu u kome je proizvodnja elektri¢ne energije putem solarnog
panela ve¢a, KBS LLM pokrece uredaje izvan opsega srednjeg i visokog znacaja rada,
nezavisno od koris¢enog simulacionog okruzenja. Nasuprot tome, RL LLM, donosi
odluke nezavisno od godisnjeg doba i proizvodnje solarnog panela, te uredaje aktivira
iskljuc¢ivo kada postoji visok znacaj rada.

6.3 Poredenje modela na nivou jednog dana sa KBS
definisanim od strane ljudskog eksperta

U ovom potpoglavlju prikazane su tabele koje sumiraju sve prethodno prikazane rezultate
u pogledu udobnosti, potrosnje elektricne energije i ukupne nagrade za sve uredaje. Svi
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modeli su evaluirani na istim danima, odnosno na zimskom i letnjem testnom danu koji
slede neposredno nakon perioda treniranja. Kao referentni model koris¢en je KBS
definisan od strane ljudskog eksperta.

Za zimski dan u Load Flow simulacionom okruzenju, KBS definisan od strane ljudskog
stru¢njaka i KBS LLM su postigli najbolje rezultate (tabela 20). Slede¢i najuspesniji
model je RL LLM, sa metrikom udobnosti nizom za 0,21 € i za 0,03 € ve¢om ustedom
elektri¢ne energije, $to ¢ini da je ukupna nagrada gora za 0,24 € (umanjenje od oko 13%).
DDQN model ostvaruje vecu ustedu elektri¢na energije jer nije aktivirao masinu za ves,
zbog Cega je 1 metrika udobnosti niza. Sli¢ni rezultati uoceni su i u Typhoon HIL
simulacionom okruzenju (tabela 21).

Za odabrani letnji dan, referentni model ostvario je najbolje rezultate u pogledu udobnosti
u oba simulaciona okruzenja (tabela 20 i tabela 21). U Load Flow simulacionom
okruzenju, PPO model imao je najbolje performanse ukupne nagrade za 0,61 € vise u
odnosu na KBS definisanog od strane ljudskog eksperta. U Typhoon HIL simulacionom
okruzenju, DDQN model je pokazao najbolje rezultate u pogledu cene elektri¢ne energije
za 2,32 € i ukupne nagrade za 1,72 € u odnosu na KBS definisanog od strane ljudskog
eksperta.

Tabela 20. Metrike performansi za zimski i letnji dan u Load Flow simulacionom
okruzenju, ukazujuci na potrosnju elektri¢ne energije, udobnost i ukupnu nagradu za sve
uredaje zajedno, izrazene u evrima. Negativne vrednosti oznacavaju da je potrosnja
energije bila ve¢a od proizvodnje, dok pozitivne vrednosti oznacavaju da je proizvodnja
elektricne energije veca od potrosnje.

Model Udobnost (27 ) sa kaznama za  Cena elektri¢ne Zbir komponenti
nepostovanje Zelja stanara [€] energije (32) [€] udobnosti i cene [€]
DDQN 0,49 -3,11 -2,62
PPO 5,80 -4,20 1,60
5 KBS LLM 6,26 -4,16 2,10
£ RLLLM 6.05 4,19 1.86
~
KBS definisan
od strane
it 6,26 -4,16 2,10
eksperta
DDQN 1,09 0,72 1,81
PPO 1,39 0,67 2,10
KBS LLM 1,14 -0,25 0,89
E RL LLM 2,18 -1,34 0,84
KBS definisan
od strane
ljudskog 2,84 -1,35 1,49
eksperta
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Tabela 21. Metrike performansi za zimski i letnji dan u Typhoon HIL simulacionom
okruzenju, ukazujuci na potrosnju elektri¢ne energije, udobnost i ukupnu nagradu za sve
uredaje zajedno, izraZzene u evrima. Negativne vrednosti oznacavaju da je potrosnja
energije bila ve¢a od proizvodnje, dok pozitivne vrednosti oznacavaju da je proizvodnja
elektricne energije veca od potrosnje.

Model Udobnost (27 ) sa kaznama za  Cena elektri¢ne Zbir komponenti
nepostovanje Zelja stanara [€] energije (32) [€] udobnosti i cene [€]
DDQN 5,30 -3,63 1,67
PPO 522 -3,61 1,61
~
§ KBS LLM 5,41 -3,53 1,88
S KBS definisan
od strane
Jjudskog 5,41 -3,53 1,88
eksperta
DDQN 1,36 1,62 2,98
PPO 1,28 1,43 2,71
5 KBS LLM 1,04 0,60 1,63
S KBS definisan
od strane
ljudskog 1,96 -0,70 1,26
eksperta

KBS definisan od strane stru¢njaka je viSe orijentisan ka maksimizaciji udobnosti
stanara, $to isti¢e potrebu za automatizacijom sistema upravljanja uredajima u pametnim
kuéama u kontekstu vise-ciljne optimizacije.

PPO modeli su imali konzistentno dobre rezultate bliske najboljem rezultatu, gde su
rezultati PPO modela u poredenju sa najboljim rezultatima nizi u zimskom periodu za
23% u Load Flow i za 14% u Typhoon HIL simulacionim okruZenjima.

U letnjem periodu u Load Flow simulacionom okruzenju PPO model je ostvario najbolje
rezultate.

Takode, PPO modeli su pokazali da dobro funkcionisu u situacijama gde je neophodno
detaljnije istraziti okruzenje i razviti kompleksnije strategije, sto ih ¢ini pogodnijim za
slozenije i dinamicnije scenarije (Fuente and Guerra 2024). U letnjem periodu, RL
modeli u oba simulaciona okruZenja su viSe orijentisana ka ustedi elektri¢ne energije i
aktiviraju masinu za sudove i ves$ u periodu vise proizvodnje elektriéne energije Sto je
uticalo na nize vrednosti udobnosti.

6.4 Ispitivanje robusnosti modela

Prethodne analize su sprovedene na podacima koji se odnose na jedan dan. Medutim,
izdvojeni dan moze posedovati specificne karakteristike koje ga Cine atipi¢nim, odnosno
moze biti “povoljan” ili “nepovoljan” za primenu modela. Kako bi se umanjio rizik
donosenja zakljucaka zasnovanih na specijalnom slucaju i obezbedila pouzdanija
procena performansi, sprovedena je evaluacija robusnosti modela njihovom primenom
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na duzem vremenskom periodu, koji obuhvata sedam uzastopnih dana neposredno nakon
faze obucavanja modela. U zimskom periodu analizirani su dani koji slede nakon 23.
januara, dok su u letnjem periodu analizirani dani koji slede nakon 23. juna.

U analizi se zasebno razmatraju tri metrike: udobnost, cena elektri¢ne energije i ukupna
nagrada. U tabelama 22 — 25 prikazane su srednje vrednosti (eng. mean) i standardne
devijacije (eng. standard deviation, std) ovih metrika. Istaknute vrednosti oznaCavaju
najbolje performanse u okviru pojedinacne metrike, pri ¢emu veca srednja vrednost i
manja standardna devijacija ukazuju na bolje performanse modela i vecu robusnost u
procesu donosenja odluka.

Tabela 22 prikazuje rezultate koje modeli postizu u Load Flow simulacionom okruzenju
u januaru, dok slika 72 daje njihov graficki prikaz. KBS definisan od strane ljudskog
eksperta ostvario je najstabilnije i najuspesnije rezultate u pogledu skoro svih razmatranih
metrika, iskljucujuéi cenu elektricne energije. U pogledu ukupne nagrade, PPO i KBS
LLM modeli postizu rezultate konkurentne rezultatima KBS modela definisanog od
strane ljudskog eksperta, ostvarujuci ukupnu nagradu manju za 23% i 15%. U metrici
udobnosti beleze priblizne performanse kao referentni model (udobnost je umanjena za
10% 1 6%). Najslabije performanse pokazao je DDQN model, koji ostvaruje 178% manju
ukupnu nagradu i 93% manju udobnost u poredenju sa ljudski definisanim KBS
modelom. U pogledu elektricne energije, iako DDQN ostvaruje najbolje rezultate, oni se
ne mogu se uporediti sa rezultatima ostalih modela jer je DDQN model u svega 50%
slucajeva uspesno aktivirao masinu za sudove i ve$ u toku dana. Izuzimaju¢i DDQN
model, je PPO model je najuspes$niji po pitanju ustede elektriCne energije, nakon ¢ega
slede KBS LLM i KBS definisan od strane ljudskog eksperta, koji ostvaruju 2% i 4%
manju ustedu elektricne energije u poredenju sa rezultatima PPO modela.

Tabela 22. Load Flow okruZenje: srednje vrednosti (mean) 1 standardne devijacije (std)
metrika udobnosti, cene elektriéne energije i ukupne nagrade, koje modeli ostvaruju
tokom sedam testnih dana u januaru. Negativne vrednosti oznacavaju da je potrosnja
energije bila ve¢a od proizvodnje, dok pozitivne vrednosti oznacavaju da je proizvodnja
elektri¢ne energije veca od potrosnje.

ox Ukupna . .
. Udobnost Cena elektri¢ne Broj pokretanja
Model/ metrika (mean + std) | energije (mean = std) :as%;z)lda (e uredaja (od 14)
DDQN 0,46 + 0,44 -3,11 +£0,32 -2,64 £0,13 7
PPO 5,70 + 0,45 -4,10+ 0,34 1,60 £ 0,14 14
KBS LLM 5,94 +0,91 -4,18 + 0,40 1,77 £ 0,55 14
KBS definisan od
strane ljudskog 6,32 £ 0,55 -4,25+0,34 2,08 £ 0,24 14
eksperta

Tabela 23 prikazuje rezultate koje modeli postizu u Typhoon HIL simulacionom
okruzenju u januaru, dok slika 73 daje njihov graficki prikaz. KBS definisan od strane
ljudskog eksperta ostvario je najstabilnije i najuspesnije rezultate u pogledu svih
razmatranih metrika osim cene elektri¢ne energije. U pogledu ukupne nagrade, PPO i
KBS LLM modeli postizu rezultate konkurentne rezultate KBS modela definisanog od
strane ljudskog eksperta, ostvarujuéi ukupnu nagradu manju za 15% i 3%. U metrici
udobnosti PPO i KBS LLM modeli ostvaruju umanjene vrednosti za 5% i 3%. Najslabije
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performanse pokazao je DDQN model, koji ostvaruje 132% manju ukupnu nagradu i
47% manju udobnost u poredenju sa ljudski definisanim KBS modelom. U pogledu
elektricne energije, iako je DDQN ponovo ustedeo energiju time Sto nije uspesno
aktivirao uredaje, najbolji rezultat je ostvario KBS LLM. Nakon tog modela, po pitanju
ustede elektricne energije slede KBS definisan od strane ljudskog eksperta i PPO sa
vrednostima umanjenim za 2,5% i 0,8%.

Tabela 23. Typhoon HIL okruZenje: srednje vrednosti (mean) i standardne devijacije (std)
metrika udobnosti, cene elektri¢ne energije i ukupne nagrade, koje modeli ostvaruju
tokom sedam testnih dana u januaru. Negativne vrednosti oznacavaju da je potro$nja
energije bila veéa od proizvodnje, dok pozitivne vrednosti oznac¢avaju da je proizvodnja
elektri¢ne energije veca od potrosnje.

Model/metrika Udobnost Cena elektri¢ne Ukupna nagrada | Broj pokretanja
(mean =+ std) energije (mean =+ std) (mean =+ std) uredaja (od 14)

DDQN 2,90 +3,10 -3,52+£0,34 -0,62 +2,92 12

PPO 5,22 +£0,39 -3,59+0,28 1,63 £0,10 14

KBS LLM 5,35+0,55 -3,47 £ 0,40 1,87 +£0,16 14

KBS definisan

od strane 5,50 + 0,44 -3,56 +£0,32 1,92 + 0,14 14

eksperta

Rezultati modela su sli¢ni u dva razli¢ita simulaciona okruzenja. DDQN model je imao
najslabije rezultate, pri ¢emu nije uspesno aktivirao masine zbog ¢ega nisu uporedeni
rezultati metrike cene potrosnje sa ostalim modelima.
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Slika 72. Graficki prikaz performansi modela ostvarenih u Load Flow simulacionom
okruzenju u sedam uzastopnih testnih dana u januaru.
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Slika 73. Graficki prikaz performansi modela ostvarenih u Typhoon HIL simulacionom
okruzenju u sedam uzastopnih testnih dana u januaru.

Tabela 24 prikazuje rezultate koje modeli postizu u Load Flow simulacionom okruzenju
u junu, dok slika 74 daje njihov graficki prikaz. KBS definisan od strane ljudskog
eksperta ostvario je najstabilnije i najuspesnije rezultate samo u pogledu udobnosti. U
pogledu ukupne nagrade, PPO model je ostvario najbolje rezultate, dok je KBS definisan
od strane ljudskog eksperta bio slede¢i najblizi sa 12% manjom ukupnom nagradom, dok
su DDQN i KBS LLM imali slabije rezultate sa umanjenjem od 43% i 55%. U pogledu
elektricne potros$nje, DDQN je ostvario najbolji rezultat, ali, posto nije uspeSno aktivirao
jedan uredaj, mozemo konstatovati da je PPO model u ovom pogledu postigao najbolji
rezultat. Preostali modeli su ostvarili znacajno gore rezultate u pogledu potrosnje
elektricne energije. KBS LLM i KBS definisan od strane ljudskog eksperta su ostvarili
322% 1 652% manju ustedu u odnosu na PPO model. U pogledu udobnosti, najbolje
rezultate je ostvario KBS model definisan od strane ljudskog eksperta, gde su sledeci po
redu PPO, KBS LLM i DDQN sa umanjenjem od 48%, 54% 1 77%.

Tabela 24. Load Flow okruzenje: srednje vrednosti (mean) 1 standardne devijacije (std)
metrika udobnosti, cene elektri¢ne energije i ukupne nagrade, koje modeli ostvaruju
tokom sedam testnih dana u junu. Negativne vrednosti oznacavaju da je potroSnja
energije bila veéa od proizvodnje, dok pozitivne vrednosti oznacavaju da je proizvodnja
elektricne energije veca od potrosnje.

Model/ Udobnost Cena elektri¢ne Ukupna nagrada | Broj pokretanja
metrika (mean = std) energije (mean £ std) | (mean + std) uredaja (od 14)
DDQN 0,71 +£ 1,23 0,36 + 0,30 1,07+ 1,41 13

PPO 1,62 +0,30 0,27+0,37 1,89 £ 0,22 14

KBS LLM 1,45+0,34 -0,60 + 0,32 0,85+0,22 14

KBS definisan

od strane 3,15+ 0,34 -1,49+0,16 1,66 £ 0,20 14

eksperta

Tabela 25 prikazuje rezultate koje modeli postizu u Typhoon HIL simulacionom
okruzenju u junu, dok slika 75 daje njihov graficki prikaz. KBS definisan od strane
ljudskog eksperta ostvario je najstabilnije i najuspesnije rezultate samo u pogledu
udobnosti, dok su ostali modeli PPO, DDQN i KBS LLM ostvarili umanjenje od 23%,
32% 140%. U ostalim metrikama (ceni elektri¢ne energije i ukupne nagrade) PPO model
je ostvario najbolje rezultate. U pogledu ukupne nagrade DDQN, KBS LLM i KBS
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definisan od strane ljudskog eksperta su imali umanjene vrednosti za 25%, 43% i 50%.
U pogledu cene elektricne energije su imali, u istom redosledu, umanjene vrednosti od
49%, 74%, 1 178%. KBS definisan od strane ljudskog eksperta ima zna¢ajno umanjenje
jer model vedi znacaj pridaje udobnosti.

Tabela 25. Typhoon HIL okruzenje: srednje vrednosti i standardne devijacije metrika
udobnosti, cene elektricne energije i ukupne nagrade, koje modeli ostvaruju tokom sedam
testnih dana u junu. Negativne vrednosti oznacavaju da je potroSnja energije bila veca od
proizvodnje, dok pozitivne vrednosti oznacavaju da je proizvodnja elektricne energije
veca od potrosnje.

Model/metrika Udobnost Cena elektri¢ne Ukupna nagrada | Broj pokretanja
(mean = std) energije (mean =+ std) (mean = std) uredaja (od 14)
DDQN 1,53+ 0,24 0,55+0,91 2,10+ 0,84 14
PPO 1,72 + 0,24 1,08 £ 0,31 2,80 + 0,30 14
KBS LLM 1,34+ 0,24 0,28 £ 0,26 1,61 +£0,22 14
KBS definisan
od strane 2,25+ 0,24 -0,85+0,12 1,41 +£0,16 14
eksperta
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Slika 74. Graficki prikaz performansi modela ostvarenih u Load Flow simulacionom
okruzenju u sedam uzastopnih testnih dana u junu.
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Slika 75. Grafi¢ki prikaz performansi modela ostvarenih u 7yphoon HIL simulacionom
okruzenju u sedam uzastopnih testnih dana u junu.
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6.4.1 Zakljucak ispitivanja robustnosti modela

U Load Flow simulacionom okruzenju u januaru, najbolje rezultate u pogledu ukupne
nagrade je ostvario KBS definisan od strane ljudskog eksperta. KBS LLM i PPO su
postigli 15% i 23% nizu ukupnu nagradu. DDQN model nije uvek aktivirao uredaje u
toku dana, zbog Cega nije pouzdan za upotrebu u realnim uslovima.

U Load Flow simulacionom okruzenju u junu, najbolje rezultate u pogledu ukupne
nagrade je ostvario PPO model, dok je KBS definisan od strane ljudskog eksperta
ostvario 12% manju ukupnu nagradu. DDQN i KBS LLM su imali znatno slabije
performanse u odnosu na PPO (43% i 55% manju ukupnu nagradu). Ponovo, DDQN
model nije uvek uspesno aktivirao sve uredaje.

U Typhoon HIL simulacionom okruZenju su rezultati bili sli¢ni. U januaru je najbolje
rezultate ostvario KBS definisan od strane ljudskog eksperta, a KBS LLM i PPO su imali
ukupnu nagradu nizu za 3% i 15%. I u ovom sluc¢aju, DDQN model nije uvek uspesno
aktivirao uredaje. U junu, PPO je postigao najbolje rezultate u pogledu ukupne nagrade.
KBS definisan od strane ljudskog stru¢njaka je ostvario 50% nizu ukupnu nagradu.

Rezultati su se znacajno razlikovali izmedu Load Flow i Typhoon HIL simulacionih
okruzenja zbog nacina simulacije potrosnje uredaja. Kod Load Flow simulacionog
okruzenja potrosnja elektricne energije pojedinacnog uredaja varira u toku njegovog
rada. Ova dinamicnost povecava kompleksnost optimizacije modela ali i omogucava
finije upravljanje uredajima. PPO model je u ovom slucaju pokazao vecu fleksibilnost i
sposobnost pronalazenja optimalnog kompromisa izmedu cene elektricne energije i
udobnosti stanara.

Sa druge strane, u Typhoon HIL simulaiconom okruzenju, uredaji su simulirani sa
konstantnom potrosnjom tokom rada, §to pojednostavljuje proces ucenja jer modeli imaju
stabilnije ulazne obrasce, ali je takva simulacija manje realisticna.

Posmatrajuci rezultate u pogledu oba simulaciona okruzenja i oba godisnja doba, KBS
definisan od strane ljudskog eksperta se pokazao najbolji u zimskom periodu, dok se PPO
model pokazao najbolji u letnjem periodu. PPO model je u vise scenarija, posebno u junu,
nadmasio ostale modele u pogledu ukupne nagrade i cene elektri¢ne energije. Ovim je
postignuta automatska prilagodljivost §to predstavlja klju¢nu prednost RL modela u
odnosu na stati¢ki definisane ekspertske sisteme, jer ovaj pristup omoguéava efikasno
reagovanje na razli¢ite sezonske i dinami¢ne promene u potro$nji. Prednost RL pristupa
je njihova potpuna automatizacija, zahvaljuju¢i kojoj stanar nije opterecen rucnim
podesavanjem rasporeda rada uredaja, ve¢ sistem sam uci optimalne obrasce ponasanja.

U januaru KBS LLM je ostvario vec¢e vrednosti ukupne nagrade u odnosu na PPO u oba
simulaciona okruzenja, sa poboljsanjem od 10% u Load Flow simulacionom okruZenju i
14% u Typhoon HIL simulacionom okruzenju. U junu je PPO ostvario 122% veéu
ukupnu nagradu u Load Flow simulacionom okruzenju i 74% u Typhoon HIL
simulacionom okruzenju. Tako je KBS LLM ostvario gore performanse u odnosu na PPO
model, prednost LLM modela je sposobnost automatskog prilagodavanja promenama u
okruzenju bez potrebe za ponovnim treniranjem ili dodatnim finim podeSavanjem.

Shuvo i Yilmaz (2022) su predlozili model zasnovan na akter-kriti¢ar algoritmu (eng.
Advantage Actor-Critic), koji upravlja radom ku¢nih uredajima sa ciljem optimizacije

potro$nje elektrine energije i oCuvanja udobnosti stanara u pametnoj kuci. Kao
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referentni model autori koriste pristup zasnovan na ru¢nom upravljanju kuénim
uredajima, u kojem je ponaSanje modela direktno kontrolisano od strane stanara, bez
primene automatizovanog planiranja ili optimizacije. Okruzenje za simulaciju je
modelovalo uredaje sa varijabilnom potrosnjom (klima uredaj), konstantnom potro§njom
(masina za ves i sudove) i kombinovanom potrosnjom (elektri¢éno vozilo). Akter-kriti¢ar
algoritam je ostvario 23% bolju funkciju nagrade u odnosu na referentni model.
Medutim, treba istaéi da je evaluacija sprovedena na istom periodu koji je koriSéen za
treniranje modela, odnosno, nije izdvojen poseban test skup kao u ovoj disertaciji.
Takode, razmatrani period je obuhvatao 30 uzastopnih dana u proleénom periodu, $to
znaci da nije ispitivan uticaj sezonskih promena. Ova teza unapreduje pomenutu studiju
proSirivanjem eksperimentalne postavke na razliCita simulaciona okruzenja, razlicite
tipove potrosnje (konstantnu i varijabilnu) i analizu uticaja sezonalnosti. PPO model je u
ovoj disertaciji ostvario znacajno bolje rezultate u letnjem periodu u poredenju sa
referentnim KBS definisanim od strane ljudskog eksperta (za 98% u Typhoon HIL
simulacionom okruzenju i za 14% u Load Flow simulacionom okruZenju ), gde je
evaluacija odradena na sedam testnih dana.

Li i saradnici (Li et al. 2020) predlozili su PPO zasnovani pristup za upravljanje kuénim
energetskim sistemom sa ciljem minimizacije troSkova elektricne energije u uslovima
neizvesnih cena 1 ponaSanja stanara. Sistem obuhvata kriti¢ne, prilagodljive i
kontrolisane uredaje, pri cemu se funkcija nagrade zasniva na trosku elektrine energije
i penalizaciji nedovoljne napunjenosti baterije elektricnog vozila. Rezultati pokazuju da
PPO model ostvaruje smanjenje troSkova od oko 40% u odnosu na referentni model bez
automatizovanog upravljanja, dok teoretski optimalni model postize priblizno 3% nize
troSkove u poredenju sa PPO modelom. Evaluacija je sprovedena u stohasticki
modelovanom simulacionom okruzenju, bez analize komfora stanara i sezonskih uticaja.
Nasuprot tome, u okviru ove teze razmatran je referentni KBS dizajniran od strane
ljudskog eksperta sa ciljem optimizacije koji kombinuje potrosnju energije sa udobnoséu
stanara.

Rad (Lissa et al. 2021) je predlozio strategiju ucenja potkrepljivanjem sa ciljem reSavanja
problema upravljanja unutrasnjom temperaturom i radom toplotne pumpe. Treniranje i
evaluacija sprovedeni su u periodu od maja do decembra, pri ¢emu je simulirana
varijabilna potro$nje energije od strane uredaja. Autori su definisali dva referentna
modela. Prvi referentni model je bio jednostavan, zasnovan na fiksnim pravilima
upravljanja, sa ciljem odrzavanja unutra$nje temperature unutar definisanog opsega
temperaturnih granica, bez koris¢enja informacija o PV proizvodnji elektri¢ne energije.
Drugi referentni model je takode bio zasnovan na pravilima, ali je umesto fiksnih koristio
dinamicki definisane temperaturne granice, u zavisnosti od doba dana, ¢ime je
omoguceno fleksibilnije upravljanje komforom kroz dozvoljena odstupanja od
nominalne temperature. U poredenju sa referentnim modelima, predlozeni DQN model
je smanjio potrosnju elektri¢ne energije za 2,66% u junu, ali je u decembru rezultovao
0.26% povecanom potrosnjom elektri¢ne energije. Autori su definisali udobnost kao
procenat preklapanja unutras$nje temperature sa zeljenim temperaturnim opsegom, koji je
za sve modele iznosio oko 99%.

U ovoj tezi, u pogledu cene elektriéne energije, PPO model je u oba simulaciona
okruzenja u januaru i junu postigao bolje rezultate cene elektri¢ne energije u odnosu na
referentni model, osim u jednoj postavci. U Typhoon HIL simulacionom okruzenju u junu
rezultati su bili bolji za 227%, dok su u Load Flow simulacionom okruzenju bili bolji za
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118%. U januaru, u Typhoon HIL simulacionom okruzenju rezultati cene elektricne
energije PPO modela bili su slabiji za 0,84%, dok su u Load Flow simulacionom
okruzenju bili bolji za 3,5%. Znacajno veca usteda elektri¢ne energije ukazuje na to da
je predlozeni PPO model efikasnije resenje za slozenija simulaciona okruzenja sa ve¢im
brojem uredaja i promenljivom PV proizvodnjom.

6.5 ZakljuCciipotencijalna poboljSanja

U ovoj disertaciji evaluirana je hipoteza da su metode zasnovane na ucenju
potkrepljivanjem i veliki jezicki modeli efikasni pristupi za reSavanje postavljenog
optimizacionog problema balansiranja potrosnje elektricne energije i udobnosti stanara.
Efikasnost predlozenih pristupa je definisana kroz sledece kriterijume:

(1) Predlozeno resenje postize iste ili bolje vrednosti funkcije nagrade u odnosu na
KBS definisan od strane ljudskog eksperta i
(2) Adekvatnost odluka iz perspektive ljudskog eksperta.

Posmatrajuci vrednost ukupne nagrade, PPO model ne ostvaruje bolje rezultate u svim
razmatranim sluc¢ajevima u poredenju sa KBS definisanim modelom od strane ljudskog
eksperta. U zimskom periodu PPO model ostvario je 23% i 15% manju ukupnu nagradu
u Load Flow i Typhoon HIL simulacionom okruZenju, tim redosledom. Nasuprot tome,
u letnjem periodu, PPO model je ostvario znacajno bolje rezultate, sa ukupnom ve¢om
za 14% 1 98%, uu Load Flow i Typhoon HIL simulacionom okruzenju, tim redosledom.
Zarazliku od ru¢no dizajniranih sistema zasnovanih na znanju, koji zahtevaju eksplicitno
redefinisanje pravila pri svakoj promeni uslova rada, PPO model omogucava adaptivno
ucenje politike direktno iz interakcije sa okruzenjem, $to ga Cini pogodnijim za rad u
okruZenjima sa nepoznatom ili promenljivom dinamikom. Posmatrano na osnovu
ukupnih rezultata, moze se zakljuciti da PPO model ispunjava prvi kriterijum. Rezultati
takode ukazuju na potrebu prilagodavanja modela sezonskim uslovima i karakteristikama
simulacionog okruzenja, $to je PPO model ostvario kroz proces ponovnog treniranja. U
literaturi je zapazeno da je modele sa eksplicitno definisanim ciljem optimizacije,
ukljucujudi ljudski definisane KBS, tesko nadmasiti u svim uslovima rada (Lissa et al.
2021), (Lietal. 2020), (Mbuwir et al. 2021) i (Aldahmashi and Ma 2024). Kada referentni
model ne ukljucuje automatizovano planiranje i rasporedivanje rada kuénih uredaja, niti
eksplicitno definisan cilj optimizacije potrosnje elektricne energije, razlika u
performansama izmedu predlozenog algoritma i referentnog pristupa postaje izrazito
velika (Li et al. 2020), (Mbuwir et al. 2021) i (Aldahmashi and Ma 2024). Budu¢i da je
KBS dizajniran od strane ljudskog eksperta u ovoj disertaciji sadrzao jasno definisan cilj
optimizacije, manja razlika u ukupnoj nagradi u odnosu na predlozeno resenje moze se
smatrati o¢ekivanom.

Za razliku od PPO modela, DDQN model je u svim razmatranim postavkama ostvario
losije performanse u poredenju sa KBS modelom definisanim od strane ljudskog
eksperta. Pored znatno nizih vrednosti ukupne nagrade, uoceno je i nestabilno ponasanje
modela, gde je DDQN model u pojedinim scenarijama propustio da pokrene sve uredaje.
Na osnovu ovih rezultata, mozemo zakljuciti da DDQN model ne zadovoljava prvi
kriterijum uspeha.

U pogledu ukupne nagrade, KBS LLM model u gotovo svim razmatranim slucajevima
ne ostvaruje bolje rezultate u poredenju sa KBS modelom definisanim od strane ljudskog
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eksperta. U januaru je KBS LLM ostvario 15% i 3% nizu ukupnu nagradu u Load Flow
i Typhoon HIL simulacionom okruzenju, tim redosledom. U letnjem periodu je razlika u
ukupnoj nagradi bila znatno izrazenija. KBS LLM je ostvario 49% manju ukupnu
nagradu u Load Flow simulacionom okruZenju, dok je u Typhoon HIL postigao 14% vecu
ukupnu nagradu. Ipak, klju¢na prednost KBS LLM nad ljudski definisanim KBS je $to
ne zahteva rucni dizajn pravila, koji bi morao da se ponavlja pri svakoj promeni
okruzenja. Dodatno, u poredenju sa RL modelima, KBS LLM eliminiSe potrebu za
dugotrajnim procesom treniranja. Na osnovu ukupnih rezultata moze se zakljuciti da
KBS LLM model ne ispunjava prvi postavljeni kriterijum, ali ipak predstavlja
obecavajuci pravac daljih istrazivanja.

Usled ogranicenja resursa, RL LLM je mogao biti pokrenut samo na jednom testnom
danu u januaru i u junu, u Load Flow simulacionom okruZenju. U datom slucaju, RL
LLM model nije ostvario bolje rezultate u poredenju sa KBS modelom definisanim od
strane ljudskog eksperta. U zimskom danu, RL LLM je ostvario 11% nizu ukupnu
nagradu, dok je u letnjem ostvario 44% nizu ukupnu nagradu. Slicno KBS LLM pristupu,
RL LLM ne zahteva eksplicitno definisanje pravila od strane ljudskog eksperta, niti
dugotrajan proces obucavanja kao RL modeli. Medutim, RL LLM model zahteva
kontinuiranu komunikaciju sa velikim jezickim modelom tokom izvrSavanja, Sto ga ¢ini
skupljim i infrastrukturno zahtevnijim za primenu u odnosu na KBS LLM. Zbog ovih
ogranicenja, rezultati su evaluirani isklju¢ivo na nivou jednog dana i u Load Flow
simulacionom okruZenju. Na osnovu rezultata moze se zakljuc¢iti da RL LLM model ne
nadmasuje ljudski definisan KBS po kriterijumu ukupne nagrade.

Posmatrajuci iznesene rezultate, PPO model se pokazao kao najefikasniji pristup,
posebno u uslovima koji zahtevaju prilagodavanje sezonskim promenama i
karakteristikama simulacionog okruzenja. Iako u pojedinim scenarijima ne nadmasuje
KBS model definisan od strane ljudskog eksperta, PPO model ostvaruje konkuretne ili
bolje rezultate bez znaCajnog pogorSanja performansi, ¢ime ispunjava prvi kriterijum
efikasnosti. Sa druge strane, LLM-generisana reSenja pokazuju znacajan potencijal.
Posebno se KBS LLM istie kao perspektivna prakticna alternativa KBS modelu
definisanom od strane ljudskog eksperta. Iako RL LLM ne nadmasuje ljudski definisan
model po kriterijumu ukupne nagrade, postignuti rezultati ukazuju na izvodljivost
integracije velikih jezickih modela u procesu donosenja odluka.

U pogledu drugog kriterijuma, analiza sprovedena u potpoglavlju 6.1.3 je pokazala je da
su odluke PPO modela razumne iz perspektive ljudskog eksperta. SHAP analiza
(potpoglavlje 6.1.4) je pokazala da se PPO model pri donoSenju odluka oslanja na
relevantne karakteristike stanja, te da su odluke PPO modela povezane sa stvarnim
sezonskim i tarifnim uslovima. Dakle, mozemo zakljuciti da PPO model ispunjava i drugi
kriterijum uspeha.

Sa druge strane, analiza odluka DDQN modela je pokazala da odluke modela ve¢inom
zavise od tarife, dok se druge relevantne karakteristike zanemaruju. Analiza je pokazala
i da DDQN model u odredenim situacijama ne upravlja uredajima na optimalan nacin,
kao i da povremeno propusta da aktivira uredaj tokom dana. Stoga mozemo zakljuciti da
DDQN model ne zadovoljava drugi kriterijum uspeha.

Uzimajuéi u obzir sve analizirane metrike, postavljena hipoteza je potvrdena za PPO
model. ITako RL LLM pristup primenjen u ovom radu ne ispunjava postavljene
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kriterijjume uspeha, ostvareni rezultati pokazuju da je ovaj pravac istrazivanja
obecavajuc¢i. Bolji rezultati bi se mogli posti¢i unapredenjem dizajna prompt-ova,
pazljivim izborom i strukturiranjem primera za few-shot pristup, kao i prilagodavanje
velikog jezickog modela specificnostima razmatranog zadatka kroz postupke finog
podesavanja (eng. fine-tuning).
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7 Zakljucak

U ovoj disertaciji razmatra se problem automatskog upravljanja potrosnjom elektricne
energije u okviru jednog domacinstva, sa ciljem balansiranja troskova elektri¢ne energije
i komfora stanara, uz integraciju obnovljivih izvora energije. Motivacija za reSavanje
ovog problema proizlazi iz rastuée globalne potraznje za energijom i potrebe za
smanjenjem emisija gasova sa efektom staklene baste, pri ¢emu pametne kuce
predstavljaju znacajnu priliku za unapredenje energetske efikasnosti na lokalnom nivou.
Primena metoda dubokog ucenja, a posebno dubokog ucenja potkrepljivanjem,
omogucava adaptivihu automatizaciju rada kuénih uredaja u okruzenjima sa
promenljivom dinamikom, ¢ime se postize efikasnije koriS¢enje elektri¢ne energije uz
ocuvanje kvaliteta stanovanja.

Cilj ove teze je ispitivanje efikasnosti savremenih metoda veStacke inteligencije u
reSavanju optimizacionog problema upravljanja potrosnjom elektricne energije i
komforom stanara u okviru jednog domacinstva. U tom kontekstu razmatrana su dva
pristupa: metode ucenja potkrepljivanjem i pristupi zasnovani na velikim jeziCkim
modelima. Istrazivacka hipoteza teze glasi da oba pristupa mogu ostvariti iste ili bolje
vrednosti funkcije nagrade u poredenju sa manuelno definisanim sistemom zasnovanim
na znanju, pri ¢emu su odluke koje donose modeli adekvatne iz perspektive ljudskog
eksperta, $to se potvrduje kroz analizu objasnjivosti modela.

Radi evaluacije i treniranja modela razvijeno je simulaciono okruzenje koje verno
oponasa potrosnju elektricne energije u pametnoj kuéi. Okruzenje je dizajnirano da bude
adaptivno, odnosno na taj nacin da je lako dodavati razli¢ite tipove uredaja i definisati
raznolike scenarije u pogledu spoljnih vremenskih uslova i tarifnih rezima. U pogledu
simulacije rada uredaja, koriS¢ena su dva pristupa. U Typhoon HIL okruzenju, uredaji su
modelovani tako da imaju konstantnu potrosnju tokom rada, dok su u Load Flow
okruzenju modelovani tako da imaju varijabilnu potrosnju u toku rada, §to vise odgovara
realnoj situaciji.

Radi evaluacije predlozenog pristupa definisana je viSeciljna funkcija nagrade koja
objedinjuje cenu elektri¢ne energije i komfor stanara. Metrika komfora stanara izrazena
je u monetarnim jedinicama, ¢ime je omoguceno njeno direktno sabiranje sa troskovima
elektricne energije unutar funkcije nagrade. Ova metrika kvantifikuje spremnost stanara
da plate uslugu rada uredaja u odredenom periodu dana. Konkretne vrednosti odredene
su uvodenjem tri nivoa prioriteta uredaja (visok, srednji i nizak), kao i njihovim
mapiranjem na odgovarajuce tarifne rezime elektri¢ne energije (visoka, srednja i niska
tarifa).

Dizajnirana su sledeca reSenja za automatizaciju planiranja vremena rada uredaja u
pametnoj kuéi, s ciljem postizanja maksimalne definisane nagrade:

e  Metode zasnovane na uc¢enju potkrepljivanjem: DDQN i PPO modeli.
e  Pristupi zasnovani na primeni velikih jezickih modela:
o KBS LLM: LLM-u je prosledena instrukcija da, na osnovu opisa
okruZenja i zahteva stanara, generiSe sistem zasnovan na pravilima.
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o RL LLM: LLM je tretiran kao model ucenja potkrepljivanjem, pri
¢emu je u svakom promptu prosledivan opis trenutnog stanja na
osnovu kog je birao optimalnu akciju. Dodatno, na raspolaganju su mu
bili primeri prethodnih interakcija, sa dostupnim vrednostima
neposredne nagrade za ranija stanja i sprovedene akcije.

Radi ispitivanja hipoteze disertacije, dizajnirana reSenja uporedena su sa referentnim
modelom, koji predstavlja KBS sistem dizajniran od strane ljudskog eksperta. PonaSanje
predlozenih resenja analizirano je u odnosu na referentni model u razli¢itim uslovima, u
pogledu simulacionog okruzenja i godisnjeg doba. Pored poredenja ukupne vrednosti
funkcije nagrade, sprovedena je i detaljna analiza odluka modela, koja je obuhvatila
runu analizu ponasanja, kao i SHAP analizu doprinosa pojedinacnih karakteristika
stanja u formiranju konac¢nih predikcija obuc¢enih modela.

Rezultati su pokazali da se PPO model obucava stabilnije i brze u odnosu na DDQN
model u svim razmatranim scenarijima. Takode je utvrdeno da PPO model ispunjava
postavljene kriterijume: posmatrano globalno, kroz sve testirane scenarije, ostvaruje vecu
vrednost ukupne funkcije nagrade u poredenju sa KBS sistemom definisanim od strane
ljudskog eksperta, dok su odluke koje donosi razumljive iz perspektive ljudskog eksperta
i zasnovane na relevantnim karakteristikama stanja. Nasuprot tome, DDQN model nije
ispunio nijedan od definisanih kriterijuma.

Pristupi zasnovani na velikim jezickim modelima nisu ispunili kriterijum prema kojem
je bilo ocekivano da ostvare bolje rezultate u odnosu na referentni model. Ipak, rezultati
su pokazali da performanse sistema u velikoj meri zavise od godi$njeg doba i koris¢enog
simulacionog okruZenja. Prednost svih predloZzenih modela u odnosu na referentni model
ogleda se u njihovoj sposobnosti automatske adaptacije na ove uslove, dok bi KBS sistem
definisan od strane ljudskog eksperta zahtevao redizajn pri svakoj promeni okruzenja.

Imajuéi u vidu da pristupi zasnovani na velikim jezickim modelima nisu ostvarili
znacajno losije rezultate u poredenju sa referentnim modelom, ovaj pravac istraZivanja
moze se smatrati obecavajué¢im. Takode, vazno je naglasiti da su u okviru ove disertacije
razmatrani osnovni oblici ovih pristupa, te da bi se njihove performanse potencijalno
mogle unaprediti unapredenjem dizajna promptova, pazljivijim izborom i
strukturiranjem primera za RL LLM pristup, kao i prilagodavanjem velikog jezickog
modela specificnostima razmatranog zadatka kroz postupke finog podeSavanja.

Na osnovu dobijenih rezultata, mogu se izdvojiti dodatni pravci daljeg unapredenja
predlozenih resenja. S obzirom na to da PPO model nije nadmasio referentni model u
svim razmatranim scenarijima, jedan od potencijalnih pravaca predstavlja hibridni
pristup koji kombinuje PPO model i KBS sistem definisan od strane ljudskog eksperta,
¢ime bi se objedinile prednosti ucenja iz podataka i ekspertskog znanja.

Dodatni pravac unapredenja odnosi se na unapredenje reprezentacije stanja sistema. U
okviru ovog istrazivanja stanje je definisano na osnovu trenutnih merenja i poznatih
parametara okruzenja, S$to predstavlja uobiCajen i praktiCan pristup, ali ne ukljucuje
eksplicitne informacije o budu¢im promenama u potros$nji i proizvodnji elektricne
energije. U tom smislu, potencijalno unapredenje podrazumevalo bi prosirenje prostora
stanja ukljucivanjem predikcija eksternih modela, kao §to su kratkorocne prognoze PV
proizvodnje i potrosnje pojedinacnih uredaja.
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Evaluaciona postavka mogla bi se dodatno unaprediti primenom modela na podatke koji
obuhvataju celu godinu, uz koriS¢enje pristupa zasnovanog na pokretnom vremenskom
prozoru. U ovom pristupu modeli bi se periodi¢no ponovo obucavali na prosirenom
skupu podataka, koji ukljucuje najnovije dostupne informacije, ¢ime bi se omogucila
kontinuirana adaptacija na sezonske promene i dugorofne obrasce u potrosnji i
proizvodnji elektri¢ne energije.

Testirani scenariji mogli bi se dodatno obogatiti omogu¢avanjem prodaje viska
proizvedene elektricne energije elektri¢noj mrezi, kao i uvodenjem baterijskog sistema
za skladiStenje energije u pametnoj kué¢i. Konacno, nivo optimizacije mogao bi se
prosiriti sa nivoa pojedinacne kuce na nivo zgrade ili ¢ak celog naselja. Ovakav pristup
omogucio bi efikasniju upotrebu elektrine energije, pri ¢emu bi se viSeciljna
optimizacija primenjivala na Sirem planu, ¢ime bi se automatizovalo upravljanje
energetskim resursima u ve¢im razmerama.

U okviru ove disertacije dizajnirana je ciljna funkcija nagrade koja je formalno uskladena
sa zeljama korisnika 1 istovremeno pogodna za treniranje modela ucenja
potkrepljivanjem. Medutim, ostaje otvoreno pitanje u kojoj meri ovako definisana
funkcija nagrade verno odrazava stvarne preferencije korisnika, narocito u pogledu
kompromisa izmedu troskova elektri¢ne energije i subjektivnog komfora. lako je komfor
modelovan kroz unapred definisane prioritete 1 monetarne ekvivalente, ovakav pristup
neminovno predstavlja aproksimaciju slozenih i ¢esto kontekstualno zavisnih korisnickih
preferencija. Zbog toga bi adekvatniji postupak evaluacije podrazumevao ukljucivanje
korisnika u proces testiranja, kroz prikupljanje eksplicitnih povratnih informacija o
donetim odlukama sistema, koje bi se mogle koristiti za dodatno prilagodavanje ciljne
funkcije ili politike upravljanja.

Vazno je takode ista¢i da su sva razmatrana reSenja evaluirana u simulacionom
okruzenju, te je neophodno ispitati u kojoj meri bi se njihovo ponasanje prenelo na realne
uslove rada pametne kuce. Jedan od prakticnih pristupa podrazumevao bi treniranje
modela u simulaciji, a zatim primenu ve¢ obucenog modela u stvarnom okruzenju, uz
mogucnost njegovog dodatnog prilagodavanja na osnovu realnih podataka.

Upravo u tom smislu, oc¢ekivani rezultati ovog istrazivanja imaju znacajnu prakti¢nu i
naucnu vrednost. Definisani simulator pametne kuce, zajedno sa komunikacionim slojem
ka modelu upravljanja, predstavlja osnovu adaptivnog okruzenja sposobnog da simulira
proizvoljne konfiguracije pametnih kuéa. Takav simulator omogucava realisticne
scenarije za obucavanje i evaluaciju modela pre njihove primene u stvarnim uslovima,
¢ime se dodatno smanjuje rizik od nezeljenog ponasanja sistema, koje bi moglo dovesti
do nepotrebnih troSkova elektricne energije ili narusavanja navika i komfora stanara.
Dodatnu prakti¢nu vrednost predstavlja definisana funkcija nagrade, koja omogucava
stanarima da na intuitivan nacin iskazu svoje potrebe i prioritete. Modeli obuceni u
simulaciji, koji su pokazali sposobnost donoSenja optimalnih odluka, mogu stoga
posluziti kao polazna osnova za implementaciju sistema upravljanja energijom (HEMS)
u stvarnoj pametnoj kuéi.

Nauéni doprinos ovog istrazivanja ogleda se u tome Sto simulator i definisana funkcija
nagrade predstavljaju reproduktivnu i pros$irivu istrazivacku platformu, koju drugi
istrazivaci mogu koristiti za razvoj i evaluaciju sopstvenih HEMS resSenja. Pored toga,
ovo istrazivanje spada medu prva koja sistematski ispituju primenu pretreniranih velikih
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jezickih modela u kontekstu automatizovanog upravljanja energijom u pametnim
kuc¢ama.
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Osaj Obpazay wunu cacmagHu 0eo OOKMOPCKe oucepmayuje, 0OHOCHO OOKMOPCKOZ2
yMemHuuukoe npojekma koju ce 6panu na Ynusepszumemy y Hosom Caody. Ilonyren
Obpasay yxkopuuumu u3a mekcma OOKMOpPCKe oucepmayuje, 0OHOCHO OOKMOPCKOZ2
YMEMHUYKO2 NpojeKkma.

[Inan Tpermana nojaraka

Hasue npojekTta/ncrpa>kmpara

AyTOMaTCKu CUCTEM yIpaBjbama ypehajuma namerne kyhe 3a OanaHcuparme TPOIIKOBA EJICKTPUYHE
eHepruje U yqoOHOCTU CTaHOBama 3aCHOBaH Ha METoaMa JyOOKOr yuema

Ha3uB nHCTUTYIIH]e/MHCTUTYITH]a Y OKBUPY KOJUX CE CIIPOBOJIN HCTPAKHBAHE

@DaxynTeT TEXHUYKUX Hayka, YHuBep3uteT y HoBom Camy

Haszue nporpama y oKBUpY KOT C€ peain3yje NCTPaKHBaHE

PauynapcTBO M ayTOMaTHKa — JOKTOPCKA ANCEPTAIH]ja

1. Omuc momataka

1.1 Bpcra ctyamje

Yxpamxo onucamu mun cmyouje y okeupy xoje ce nooayu npuxynsajy

JokTopcka qucepranuja

1.2 Bpcre nopataka
a) KBAaHTUTATHBHU

0) KBATUTATHBHU

1.3. Hauus npukymbama nogaraka
a) aHKeTe, YITUTHUILHN, TECTOBU
0) KIMHMYKE NpOLEHE, MEAMIIMHCKH 3aITUCH, €JIEKTPOHCKH 3/1PaBCTBEHH 3aIIUCH

B) TCHOTUIIOBU: HABECTU BPCTY

F) AIMUHUCTPATUBHU MOJAalM: HABECTU BPCTY

1) Y30pILH TKUBA: HABECTU BPCTY

1)) cammit, hoTorpaduje: HaBeCTH BPCTY

€) TEeKCT, HABECTH BPCTY AKTYeJHA JIUTepaTypa y 00/1acTH HCTPAsKUBAHA

HanvonanHu noprail OTBOpEHE HAyKe — OPEN.ac.rs



’K) MaIa, HaBeCTH BPCTY

3) OCTAJIO: OMUCATH

1.3 ®opmar nogaraka, ynorpedspeHe CKaie, KOTHIMHA oJaTaKa

1.3.1 Ynotpebsberu copTBep U HopMaT JaTOTEKE:

a) Excel ¢ajn, narorexa

b) SPSS ¢ajin, natoreka

c) PDF ¢ajn, narorexa

d) Tekct ¢ajn, narorexa

e) JPG ¢ajn, natoreka

f) Ocrano, naroteka

1.3.2. Bpoj 3amuca (kKo KBAHTUTATHBHUX IOJIaTaKa)

a) 6poj BapujadIu

6) Opoj Mepema (MCIIMTaHuKa, IPOLIEHa, CHUMAaKa U ClI.)

1.3.3. IlonoBbEHA MEpEHa
a) na

0) He

YKOJIMKO je OJIrOBOp 11a, OATOBOPUTH Ha ciiefeha muTama:

a) BPEMEHCKHU pa3MakK W3MeJIjy TIOHOBJbEHUX Mepa je

0) BapujabIie Koje ce BHIIE ITyTa Mepe OJHOCE ce Ha

B) HOBe Bep3Hje (hajiIoBa Koju capike MOHOBJbEHA MEPEHa Cy IMEHOBAHE Kao
Hanomene:
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Ja nu popmamu u cogpmeep omozyhasajy oemerve u 0y20pouHy 8aruOHOCH nodamara?
a) Ja
06) He

Axo je 002080p He, 0bpasznoxcumu

2. Ilpukyripame mogaraka

2.1 Meropooruja 3a NpUKyIJbamke/TeHEpUCahe TIogaTaka
2.1.1. Y oxBHpY KOT UCTPAKUBAYKOT HAIPTa Cy MOJAIHN MPHUKYIIJHeHH?

a) C€KCIICPUMEHT, HABECTU TUIL

0) KOpeIalMOHO UCTPAKUBAHE, HABECTH THII

11) aHAJIM3a TEKCTa, HABECTH THI AHAJIM3a J0CTYIHe JIUTepaType

1) OCTaJlo, HABECTH 11ITa

2.1.2 Hasecmu épcme MepHUX UHCMPYMEHAMA Ulu CManoapoe nooamaxa cneyu@uunux 3a oopehemny
HayuHy OUCYUnIuUHy (axo nocmoje).

2.2 KpanmuTeT nogataka M cTaHIApIu

2.2.1. TpetmaH HefocTajyhux momaraka

a) [la mu maTpwuia caapku Henoctajyhe monatke? [a He

AKo je oaroBop Ja, OATOBOPHUTH Ha cieneha nurama:

a) Konuku je Opoj HenocTajyhux monataka?
0) Ja nu ce KOpUCHHUKY MaTpHLe Ipernopyydyje 3amena Hepocrajyhux nogaraka? Jla He
B) AKO je 0ITOBOp J1a, HABECTH CYreCTHje 3a TPETMaH 3aMeHe HeocTajyhux mojataka
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2.2.2. Ha xoju Ha9MH je KOHTPOJIMCAH KBAJIUTET NoAaTaka? OmnucaTtn

2.2.3. Ha xoju Ha9MH je U3BpIIEHA KOHTPOJIA YHOCA ITOJaTaKa y MaTpHILy?

3.1. TpermaH u dyBame IOAaTaka

3.1.2. URL aopeca

Ksamurer mogaTtaka je KOHTpOMCaH HopehermeM eKCIIepIMEHTATHIX M TEOPHjCKUX T0aTaka

3. TpermaH moxaraka u npateha mToKyMeHTaluja

3.1.1. Ilooayu he 6umu denonosanu y PEno3umopujym.

3.1.3. DOI

3.1.4. [la au he nodayu bumu y omeoperom npucmyny?

a) Ja
0) a, anu nocne embapea xoju he mpajamu 0o
8) He

Axo je 002080p He, Hagecmu pasioe

3.1.5. Ilooayu nehe 6umu 0enoHosauu y penosumopujym, aiu he oumu 4ysanu.

Obpasnocerve

3.2 Meranozanu 1 JOKyMEHTaIHja oaaTaka

3.2.1. Koju crannmapn 3a meranogatke he 6uti npuMemeH?

3.2.1. HaBecTn MeTamoiaTke Ha OCHOBY KOjUX Cy ITOJAIN JETIOHOBAHH Y PETIO3UTOPH]jYM.
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Axo je nompebHo, Hagecmu Memole Koje ce Kopucme 3a Rpey3uMarbe nooamaxd, AHAIumuyke u
npoyeoypaine ungpopmayuje, LUXo80 Koouparse, demasshe onuce 8apujabau, 3anuca umo.

3.3 Crpateruja v cTaHiapay 3a YyBame HoaTaKa

3.3.1. Jlo xor nepuona he mojauy OWTH YyBaHU y PENO3UTOPUjyMY?

3.3.2. Jla nu he momaum 6utn nenoHoBanu nox mwudpom? Jla He

3.3.3. Jla nu he mwmudpa 6utn nocrynna oxpelheHom kpyry uctpaxusada? Jla He

3.3.4. Jla nu ce nopaiy Mopajy yKJIOHUTH M3 OTBOPEHOT IIPUCTYIA MOCJIE U3BECHOT BpeMeHa?
Ha He

O0pa3noxuTu

4. Be3benHOCT OJJaTaKa M 3alITHTA TOBEPJLUBUX WH(OpMAIH]ja

Ogaj onesbaxk MOPA 6uTH NOnymeH ako BalllM MOAAIM YKJbYUY]jy JIMYHE HOAATKE KOjHU ce OJHOCE Ha
YUECHUKE y UCTPaKMBamy. 3a Jpyra UCTpaKMBama Tpeba Takolje pasMOTPHUTH 3aIUTUTY U CUT'YPHOCT
rojaTaka.

4.1 ®opmanHu cTaHAAPIU 32 CUTYPHOCT HH(OpMaIIija/mogaTaka

HcTpaxuBadn KOju CIIpOBOJIE HCIIUTHBAKA C JbYANMA MOPajy Jla ce IPUAPKaBajy 3aKoHa O 3aIITUTH
noaaraka o JIMIHOCTH (hittps.://www.paragraf.rs/propisi/zakon_o_zastiti_podataka o _licnosti.html) n
onrosapajyher HHCTUTYIIHOHAJIHOT KOJIEKCa O aKaJeMCKOM MHTEIPUTETY.

4.1.2. Jla mu je uctpaxxuBame 0100peHO o1 cTpaHe eTuke komucuje? [la He

Axo je onrosop [la, HaBecTH JaTyM M Ha3MB €THYKE KOMHUCH]jE KOja je 0JJ00pHiIa UCTPaKHBAE

4.1.2. la 1 mojany ykJpy4yjy JIMUHE NOAATKE yuecHUKa y uctpaxkusamwy? Jla He

AKoO je 0IroBOp J1a, HaBEJUTE HA KOjU HAUYMH CTE OCUT'YPaJH MOBEPJEUBOCT M CUTYPHOCT MH(OpManuja
BE33aHUX 32 UCTIUTAHUKE:
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a) INomamym HUCY y OTBOPEHOM IPHCTYITY
0) [onmamm cy aHOHUMHU3UpPAHU

1) OcTano, HaBECTH IIITa

5. JlocTynmHOCT mojaTaka

5.1. Ilooayu he bumu

a) jagno oocmynnu

6) 0ocmynHu camo ycKkom Kpyay ucmpasicusaia y oopelenoj Hayurnoj ooaacmu
Yy) 3ameopeHu

Ako cy nodayu docmynHu camo YCKOM Kpyey UCMpajcusaia, Hagecmu noo KOjum yCioguma mozy 0a ux
Kopucme:

Ako cy nodayu 00Cmynnu camo ycKkoM Kpy2y UCmpajcusaid, Hagecmu Ha KOju Ha4un Mo2y NpUCIyRumu
nooayuma:

5.4. Hasecmu nuyenyy noo xojom he npuxynmenu nooayu bumu apxusupanu.

6. Yiore u 0oAroBOpHOCT

6.1. Hasecmu ume u npe3ume u meji aopecy 1acHuKa (aymopa) nooamaxa
Anexcanapa Kanaap, aleksandra.a@uns.ac.rs

6.2. Hasecmu ume u npesume u meji aopecy ocobe Koja o0picasa Mmampuyy ¢ nooayuma

6.3. Hasecmu ume u npesume u mejn aopecy ocobe koja omoeyhyje npucmyn nooayuma opyeum
ucmpasxcusa uma
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