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којима је потрошња уређаја моделована као константна 
током њиховог рада. Међутим, резултати ове дисертације 
указују да избор начина моделовања потрошње уређаја 
може имати значајан утицај на перформансе разматраних 
приступа за оптимизацију рада кућних уређаја. 
Дефинисана је вишециљнa функција награде која 
обједињује трошкове електричне енергије и комфор 
станара. Комфор станара је моделован у монетарним 
јединицама и представља меру њихове спремности да 
плате коришћење кућних уређаја у одређеним временским 
интервалима. На овај начин омогућено је директно 
обједињавање комфора и трошкова електричне енергије у 
оквиру јединствене функције награде, уз јасно економско 
тумачење оба критеријума. За разлику од постојећих 
приступа, у којима се функција награде најчешће 
дефинише као пондерисана сума трошкова и комфора са 
хеуристички одабраним тежинским коефицијентима, 
предложени приступ омогућава методолошки утемељено 
балансирање ова два циља. 
Као решења за оптимизацију постављеног проблема 
разматрани су модели засновани на учењу 
поткрепљивањем, укључујући двоструку дубоку Q-мрежу и 
оптимизацију проксималне политике, као и приступи 
засновани на употреби претренираних великих језичких 
модела (ВЈМ). У тренутку писања ове дисертације није 
пронађена ниједна студија која је разматрала примену ВЈМ 
у контексту оптимизације времена рада кућних уређаја, 
нити њихову ефикасност у симулацији процеса доношења 
одлука аналогних онима који се користе у учењу 
поткрепљивањем. 
Предложена решења упоређена су са референтним 
моделом заснованим на знању дефинисаном од стране 
људског експерта. Као критеријум успеха постављено је да 
разматрана решења остваре исте или боље перформансе у 
односу на референтни модел, уз доношење одлука које су 
оправдане из перспективе људског експерта. Резултати 
показују да модел заснован на оптимизацији проксималне 
политике испуњава постављене критеријуме и остварује 
најстабилније и најробусније перформансе у поређењу са 
осталим разматраним приступима, док двострука дубока Q-
мрежа не испуњава постављене критеријуме. Приступи 
засновани на великим језичким моделима (ВЈМ) нису у 
потпуности задовољили постављене критеријуме, али су 
остварили перформансе упоредиве са референтним 
моделом, што указује на њихов истраживачки потенцијал. 
Предност приступа заснованих на ВЈМ у односу на методе 
учења поткрепљивањем огледа се у елиминацији потребе 
за дуготрајним процесом тренирања. Такође, треба истаћи 
да су у оквиру ове дисертације разматране основне 
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варијанте ових приступа, те да постоји простор за 
унапређење њихових перформанси. 
Резултати су показали да перформансе и стратегије 
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доба. За разлику од ове дисертације, већина постојећих 
радова не разматра утицај сезонских разлика. Добијени 
резултати додатно указују на предност предложених 
приступа у односу на референтни модел, која се огледа у 
њиховој способности аутоматске адаптације на 
променљиве услове окружења, док би систем заснован на 
знању, дефинисан од стране људског експерта, захтевао 
редизајн при свакој значајнијој промени окружења. 
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comparable to the baseline, indicating their research potential. 
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Rezime 
 

Pametne kuće postaju sve prisutnije u savremenom životu. Primena obnovljivih izvora 
energije i mogućnosti skladištenja energije pružaju potencijal za ekonomičniju i održiviju 
potrošnju električne energije u domaćinstvima. Međutim, manuelno upravljanje 
uređajima u ovakvim sistemima zahteva vreme, kao i određeni nivo tehničkog znanja, 
zbog čega bi automatizacija sistema za upravljanje uređajima mogla značajno da rastereti 
stanare. U ovoj disertaciji razmatra se problem automatskog upravljanja uređajima u 
pametnoj kući, sa ciljem istovremene optimizacije potrošnje električne energije i 
udobnosti stanara. 

Razvijeno je modularno simulaciono okruženje koje omogućava realističnu simulaciju 
rada kućnih uređaja i jednostavno definisanje različitih konfiguracija pametnih kuća i 
eksternih uslova u kojima se one nalaze. Implementirana su dva pristupa simulaciji rada 
uređaja: simulacija sa konstantnom potrošnjom energije tokom rada uređaja i simulacija 
sa varijabilnom potrošnjom energije u okviru radnog ciklusa, čime se omogućava 
verodostojnije predstavljanje realnih sistema. Prethodna istraživanja su se pretežno 
oslanjala na simulacije u kojima je potrošnja uređaja modelovana kao konstantna tokom 
njihovog rada. Međutim, rezultati ove disertacije ukazuju da izbor načina modelovanja 
potrošnje uređaja može imati značajan uticaj na performanse razmatranih pristupa za 
optimizaciju rada kućnih uređaja. 

Definisana je višeciljna funkcija nagrade koja objedinjuje troškove električne energije i 
komfor stanara. Komfor stanara je modelovan u monetarnim jedinicama i predstavlja 
meru njihove spremnosti da plate korišćenje kućnih uređaja u određenim vremenskim 
intervalima. Na ovaj način omogućeno je direktno objedinjavanje komfora i troškova 
električne energije u okviru jedinstvene funkcije nagrade, uz jasno ekonomsko tumačenje 
oba kriterijuma. Za razliku od postojećih pristupa, u kojima se funkcija nagrade najčešće 
definiše kao ponderisana suma troškova i komfora sa heuristički odabranim težinskim 
koeficijentima, predloženi pristup omogućava metodološki utemeljeno balansiranje ova 
dva cilja. 

Kao rešenja za optimizaciju postavljenog problema razmatrani su modeli zasnovani na 
učenju potkrepljivanjem, uključujući dvostruku duboku Q-mrežu i optimizaciju 
proksimalne politike, kao i pristupi zasnovani na upotrebi pretreniranih velikih jezičkih 
modela (VJM). U trenutku pisanja ove disertacije nije pronađena nijedna studija koja je 
razmatrala primenu VJM u kontekstu optimizacije vremena rada kućnih uređaja, niti 
njihovu efikasnost u simulaciji procesa donošenja odluka analognih onima koji se koriste 
u učenju potkrepljivanjem. 

Predložena rešenja upoređena su sa referentnim modelom zasnovanim na znanju 
definisanom od strane ljudskog eksperta. Kao kriterijum uspeha postavljeno je da 
razmatrana rešenja ostvare iste ili bolje performanse u odnosu na referentni model, uz 
donošenje odluka koje su opravdane iz perspektive ljudskog eksperta. Rezultati pokazuju 
da model zasnovan na optimizaciji proksimalne politike ispunjava postavljene 
kriterijume i ostvaruje najstabilnije i najrobusnije performanse u poređenju sa ostalim 
razmatranim pristupima, dok dvostruka duboka Q-mreža ne ispunjava postavljene 
kriterijume. Pristupi zasnovani na velikim jezičkim modelima (VJM) nisu u potpunosti 
zadovoljili postavljene kriterijume, ali su ostvarili performanse uporedive sa referentnim 
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modelom, što ukazuje na njihov istraživački potencijal. Prednost pristupa zasnovanih na 
VJM u odnosu na metode učenja potkrepljivanjem ogleda se u eliminaciji potrebe za 
dugotrajnim procesom treniranja. Takođe, treba istaći da su u okviru ove disertacije 
razmatrane osnovne varijante ovih pristupa, te da postoji prostor za unapređenje njihovih 
performansi. 

Rezultati su pokazali da performanse i strategije razmatranih pristupa u velikoj meri 
zavise od godišnjeg doba. Za razliku od ove disertacije, većina postojećih radova ne 
razmatra uticaj sezonskih razlika. Dobijeni rezultati dodatno ukazuju na prednost 
predloženih pristupa u odnosu na referentni model, koja se ogleda u njihovoj sposobnosti 
automatske adaptacije na promenljive uslove okruženja, dok bi sistem zasnovan na 
znanju, definisan od strane ljudskog eksperta, zahtevao redizajn pri svakoj značajnijoj 
promeni okruženja. 
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Abstract 
 

Smart homes are becoming increasingly prevalent in everyday life. The integration of 
renewable energy sources and energy storage systems provides significant potential for 
more economical and sustainable electricity consumption in smart homes. However, 
manual control of appliances in such systems requires time as well as a certain level of 
technical expertise, which suggests that automation of appliance management systems 
could substantially reduce the burden on residents. This dissertation addresses the 
problem of automatic appliance control in a smart home, with the objective of 
simultaneously optimizing electricity consumption and occupant comfort. 

A modular simulation environment has been developed, enabling realistic simulation of 
household appliances as well as straightforward definition of various smart home 
configurations and external environmental conditions. Two approaches to appliance 
consumption modeling are implemented: simulation with constant energy consumption 
during appliance operation and simulation with variable energy consumption within the 
operating cycle, allowing for a more faithful representation of real-world systems. 
Previous studies have predominantly relied on simulations in which appliance energy 
consumption is modeled as constant throughout operation. However, the results of this 
dissertation indicate that the choice of appliance consumption modeling approach can 
have a significant impact on the performance of the considered methods for appliance 
operation optimization. 

A multi-objective reward function is defined that jointly accounts for electricity costs and 
occupant comfort. Occupant comfort is modeled in monetary terms and represents a 
measure of residents’ willingness to pay for the operation of household appliances during 
specific time intervals. This formulation enables the direct integration of comfort and 
electricity costs within a unified reward function, providing a clear economic 
interpretation of both objectives. In contrast to existing approaches, where the reward 
function is typically defined as a weighted sum of cost and comfort with heuristically 
selected weighting coefficients, the proposed approach enables a methodologically 
grounded balancing of these two objectives. 

To address the optimization problem, reinforcement learning (RL)-based methods are 
considered, including the Double Deep Q-Network (DDQN) and Proximal Policy 
Optimization (PPO), as well as approaches based on the use of pretrained Large 
Language Models (LLMs). At the time of writing this dissertation, no prior study was 
identified that investigates the application of LLMs in the context of household appliance 
scheduling in smart homes, nor their effectiveness in simulating decision-making 
processes analogous to those employed in RL. 

The proposed solutions are evaluated against a baseline knowledge-based system (KBS) 
defined by a human expert. The success criterion is established such that the considered 
solutions must achieve performance equal to or better than the baseline, while producing 
decisions that are justifiable from the perspective of a human expert. The results show 
that the PPO model satisfies the defined criteria and achieves the most stable and robust 
performance compared to the other considered approaches, whereas the DDQN model 
does not meet the established criteria. LLM-based approaches do not fully satisfy the 
defined criteria; however, they achieve performance comparable to the baseline, 
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indicating their research potential. An important advantage of LLM-based approaches 
over RL methods lies in the elimination of the need for a time-consuming training 
process. It should also be noted that only base variants of these approaches are considered 
in this dissertation, leaving room for potential performance improvements. 

The results further demonstrate that the performance and strategies of the considered 
approaches strongly depend on the season of the year. In contrast to this dissertation, 
most existing studies do not examine the impact of seasonal variations. The obtained 
results additionally highlight an advantage of the proposed approaches over the baseline, 
reflected in their ability to automatically adapt to changing environmental conditions, 
whereas a human-defined KBS would require redesign under each significant change in 
the operating environment. 
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1 Uvod 
 

Uvodno poglavlje podeljeno je na pet celina. Potpoglavlje 1.1 definiše problem 
optimizacije potrošnje električne energije uz očuvanje komfora stanara u pametnim 
kućama i prikazuje motive za njegovo rešavanje. Potpoglavlje 1.2 ističe otvorena 
istraživačka pitanja i razmatra različite pristupe rešavanju ovog problema. Potpoglavlje 
1.3 precizira predmet istraživanja, njegove ciljeve i naglašava doprinos ove disertacije. 
Konačno, potpoglavlje 1.4 pruža sažet pregled strukture disertacije.  

1.1 Značaj optimizacije potrošnje električne energije u 
pametnim kućama 

Razvoj obnovljivih i održivih izvora energije postao je globalni prioritet. Solarna 
energija, kao najbrže rastući obnovljivi izvor, široko se primenjuje u pametnim kućama 
za smanjenje zavisnosti od tradicionalne električne mreže (Chehri and Mouftah 2013). 
Međutim, kapacitet ovog izvora energije je promenljiv zbog njegove velike zavisnosti od 
meteoroloških uslova (Maimó-Far et al. 2020). Usled toga su domaćinstva ipak ovisna o 
električnoj mreži, što je pogotovo izraženo u momentu vrhunca potrošnje, kada stanari 
dolaze kući sa posla, a solarna energija je u padu (Kostková et al. 2013) (Zhang et al. 
2013). Električne mreže pokušavaju da balansiraju fluktuacije potrošnje električne 
energije primenom tarifnih inicijativa koje podstiču domaćinstva da optimizuju svoju 
potrošnju (Kirschen et al. 2000). Osim toga, domaćinstva značajno doprinose godišnjim 
emisijama ugljen-dioksida (Fenner et al. 2018), te bi optimizacija njihove potrošnje kroz 
optimalno iskorišćenje obnovljivih izvora energije imala značajan pozitivan efekat na 
životnu sredinu (Ahmad et al. 2017). 

Optimizacija potrošnje električne energije u pametnim kućama može se postići 
strateškim planiranjem vremena rada uređaja čiji rad može biti odložen bez značajnog 
uticaja na komfor stanara (Agnetis et al. 2013). Na primer, stanari mogu uključiti takve 
uređaje tokom perioda niže tarife električne energije ili kada je proizvodnja energije iz 
solarnog panela visoka. Međutim, manuelno kreiranje rasporeda rada uređaja predstavlja 
vremenski zahtevan i složen zadatak koji nije intuitivan (Barbato et al. 2009). Zbog 
složenosti i varijabilnosti u obrascima potrošnje i proizvodnje energije, automatizacija 
planiranja vremena rada uređaja postaje neophodna (Raza et al. 2024). Sistemi za 
upravljanje energijom u domaćinstvu (eng. House Energy Management Systems, HEMS) 
dizajnirani su da rešavaju brojne izazove, uključujući automatizaciju planiranja vremena 
rada uređaja, kako bi uskladili suprotstavljene ciljeve: minimizaciju troškova električne 
energije i očuvanje komfora stanara (Han et al. 2023). 

Uzimajući u obzir značaj automatizacije rada kućnih aparata za optimizaciju potrošnje 
energije uz očuvanje komfora stanara, u ovoj disertaciji predložena je primena tehnika 
dubokog učenja za rešavanje ovog problema. Razlozi za odabir ovog predmeta 
istraživanja su višestruki. 

Motiv za rešavanje navedenog problema proizlazi iz kontinuiranog rasta potražnje za 
energijom kao ključnog faktora ekonomskog razvoja država, pri čemu sektor energetike 
ostaje dominantan izvor emisije gasova sa efektom staklene bašte (eng. greenhouse 
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gases). Najveći doprinos emisijama dolazi iz sektora proizvodnje električne energije i 
grejanja, koji su 2021. godine generisali 16 milijardi tona ekvivalenta ugljen-dioksida 
(Ritchie et al. 2020). U okviru ciljeva održivog razvoja (eng. Sustainable Development 
Goals, SDG), SDG 7 naglašava potrebu za obezbeđivanjem pristupačne, pouzdane, 
održive i moderne energije za sve, dok SDG 13 ističe hitnost preduzimanja mera za 
suzbijanje klimatskih promena i njihovih posledica (Barbier and Burgess 2017). Stoga je 
neophodno intenzivno promovisati obnovljive izvore energije, poput solarne energije, 
kako bi se smanjile emisije ugljen-dioksida i ublažile posledice globalnog zagrevanja 
(Allegretti et al. 2022). Integracija obnovljivih izvora energije u pametne kuće može 
značajno doprineti smanjenju emisija ugljen-dioksida na globalnom nivou. Na primer, 
energetski efikasna porodična kuća u Poljskoj, opremljena solarnim panelima, generisala 
je 87,5% manje emisija ugljen-dioksida u poređenju sa tradicionalnom kućom 
zagrevanom ugljem (Siudek et al. 2020).  

Motiv za primenu tehnika dubokog učenja u rešavanju ovog problema proizilazi iz 
učestale upotrebe arhitekture neuronskih mreža sa propagacijom unapred (eng. 
feedfoward neural network) u optimizaciji potrošnje električne energije u pametnim 
kućama (Leitao et al. 2020). Dalji tehnološki napredak, uključujući razvoj metoda 
dubokog učenja potrepljivanjem (eng. Deep Reinforcement Learning, DRL) omogućio 
je efikasnije rešavanje složenih problema u ovoj oblasti. Pregled literature ukazuje da je 
duboko učenje potkrepljivanjem trenutno najsavremeniji (eng. state-of-the-art) pristup 
za automatizaciju rada kućnih uređaja, s  ciljem optimizacije potrošnje električne energije 
uz očuvanje komfora stanovnika. Otvorena istraživačka pitanja u ovoj oblasti detaljnije 
su analizirana u potpoglavlju 1.2.  

S obzirom na složenost problema optimizacije potrošnje električne energije, ovo 
istraživanje fokusira se na orkestraciju rada kućnih uređaja na nivou pojedinačnog 
domaćinstva. Međutim, predloženi pristup može se prilagoditi i za šire energetske 
sisteme, uključujući stambene zgrade i celokupne urbane četvrti.  

1.2 Otvorena istraživačka pitanja u automatizaciji 
planiranja rada uređaja pametne kuće 

Jedan od ključnih izazova u implementaciji HEMS za automatizaciju planiranja rada 
uređaja jeste razvoj ciljne funkcije koja balansira dva  suprotstavljena cilja: smanjenje 
troškova električne energije i povećanje komfora stanara. Za ovakve više-ciljne 
optimizacione probleme, posebno su se pokazale efikasnim tehnike ponderisanog zbira i 
Pareto Front (Gomes et al. 2022). Kombinovanje učenja potkrepljivanjem sa tehnikom 
ponderisanog zbira predstavlja najsavremeniji pristup u implementaciji HEMS sistema 
(Aldahmashi and Ma 2024) (Pan et al. 2024), zbog čega je tehnika ponderisanog zbira 
usvojena pri definisanju ciljne funkcije u ovom istraživanju. Ipak, kao što je prikazano u 
potpoglavlju 3.2 formulacija ciljne funkcije nije jednoznačno određena ni u okviru ovog 
pristupa, te i dalje ostaje otvoreno istraživačko pitanje. 

Još jedan značajan izazov u razvoju HEMS-a jeste kreiranje okruženja za simulaciju 
pametne kuće. Simulacije su ključne, budući da dizajniranje i evaluacija planova rada 
uređaja u stvarnim domovima nisu praktični. Razvoj rešenja zahteva testiranje različitih 
planova rada uređaja, pri čemu neki mogu biti neefikasni, dovesti do povećanih troškova 
električne energije i narušiti navike i komfor stanara. Pregled literature koji su sproveli 
Gomes i saradnici (Gomes et al. 2022) pokazao je da istraživači koriste različite 
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simulacione postavke za pametne kuće, pri čemu je Matlab najčešće korišćen kao 
simulaciono okruženje. Međutim, nedostatak standardizovanog simulacionog okruženja 
otežava pouzdano poređenje razvijenih rešenja. Jedna od ključnih razlika među 
postojećim simulacijama odnosi se na pristup modelovanju potrošnje uređaja u različitim 
vremenskim koracima tokom njihovog rada – bilo kao konstantnu ili promenljivu 
vrednost. Autori radova (Gholami and Sanjari 2021), kao i (Esmaeel Nezhad et al. 2021), 
definišu potrošnju uređaja u svakom vremenskom koraku kao konstantu vrednost 
određenu na osnovu srednje ili maksimalne potrošnje uređaja tokom celokupnog radnog 
ciklusa. Ovaj pristup pojednostavljuje realnu situaciju, budući da određeni uređaji, poput 
veš mašine, imaju značajne varijacije u potrošnji energije tokom različitih radnih faza. 
Kako bi povećali realističnost simulacije, autori rada (Lee and Choi 2019) uvode model 
sa različitim nivoima potrošnje za klima uređaj, pored standardnog pristupa modelovanja 
sa konstantnom maksimalnom potrošnjom.  

Kada su ciljna funkcija i okruženje za simulaciju pametne kuće dizajnirani, 
implementacija HEMS može se ostvariti primenom različitih tehnika. Tradicionalni 
pristupi uključuju dinamičko programiranje (Zhao and Keerthisinghe 2020) i stohastičko 
programiranje (Zheng et al. 2021), kao i heurističke i meta-heurističke tehnike poput 
genetskih algoritma (Gutierrez-Martinez et al. 2019) i optimizacije rojem čestica (Rezaee 
Jordehi 2020). Takođe se koriste pristupi kao što su fazi logika (Kontogiannis et al. 2021), 
konvolucione neuronske mreže (Chellaswamy et al. 2021) i sistemi zasnovani na znanju 
(eng. Knowlegde-Based Systems, KBS) (X. Zhou et al. 2023). U kontekstu HEMS, 
primena učenja potkrepljivanjem  predstavlja najmoderniju tehniku (Gomes et al. 2022). 
Ova tehnika je posebno pogodna za HEMS zbog svoje sposobnosti da se prilagođava 
dinamičkim okruženjima kroz kontinuirane interakcije, što eliminiše potrebu za 
eksplicitnim programiranjem svakog mogućeg scenarija (Shakya et al. 2023).  

Učenje potkrepljivanjem i sistemi zasnovani na znanju su trenutno najpopularniji pristupi 
za automatizaciju planiranja vremena rada uređaja u pametnim kućama (Al-Ani and Das 
2022). Ipak, u okviru HEMS-a, oba pristupa imaju određena ograničenja. Okruženje 
pametne kuće se često menja usled sezonskih temperaturnih varijacija, promena u skupu 
i karakteristikama uređaja pametne kuće ili izmena u tarifnoj politici električne mreže.  

Trenutno najuspešnija tehnika iz oblasti učenja potkrepljivanjem za implementaciju 
HEMS-a je proksimalna optimizacija politike (eng. Proximal Policy Optimization, PPO). 
PPO algoritam je dizajniran za okruženja sa nepoznatom dinamikom, što ga čini posebno 
pogodnim za rešavanje HEMS problema. Međutim, PPO tipično zahteva veliki broj 
uzoraka za efikasno obučavanje (Arulkumaran et al. 2017) i postaje suboptimalan kada 
dođe do promene u okruženju, što zahteva ponovno obučavanje (Zhou et al. 2016).  

Slično tome, implementacija sistema zasnovanih na znanju zahteva angažovanje ljudskih 
stručnjaka koji bi morali redizajnirati ponašanje sistema za svaki mogući scenario (Raza 
et al. 2024). Ovaj pristup nije skalabilan jer bi svaka izmena u okruženju zahtevala 
ponovno prilagođavanje sistema zasnovanog na znanju. 

Po znanju autora, mali broj studija koja predlaže HEMS rešenje zasnovano na učenju 
potkrepljivanjem  razmatrao je interpretabilnost rezultujućih modela.  Ovakva analiza 
mogla bi doprineti boljem razumevanju odluka modela, povećati poverenje korisnika u 
sistem i olakšati njegovo dalje usavršavanje (Beechey et al. 2023). Stoga se u ovom 
istraživanju predlaže analiza uticaja karakteristika stanja na odluke modela učenja 
potkrepljivanjem korišćenjem SHAP (eng. Shapley Additive Explanations) biblioteke 
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(Lundberg and Lee 2017), koja pruža matematičke metode za kvantifikaciju doprinosa 
pojedinačnih karakteristika stanja u konačnim predikcijama obučenih modela (Merrick 
and Taly 2020).  

Primena unapred obučenih velikih jezičkih modela (eng. Large Language Models, LLM) 
mogla bi doprineti ublažavanju ograničenja rešenja zasnovanih na učenju 
potkrepljivanjem i sistemima zasnovanih na znanju. Za razliku od ovih pristupa, LLM-
ovi imaju potencijal da se prilagode promenama u podacima bez potrebe za opsežnim 
ponovnim treniranjem ili finim podešavanjem specifičnim za domen (Cao et al. 2024). 
Oslanjajući se na velike količine postojećeg znanja, LLM-ovi mogu smanjiti zavisnost 
od stručnjaka iz određenog domena i ubrzati proces razvoja (Kaplan et al. 2020). Njihova 
sposobnost da se nose sa raznovrsnim i složenim scenarijima čini ih potencijalno 
pogodnim za primenu u dinamičnim i nepredvidivim okruženjima (Gao et al. 2023).  

Postojeća istraživanja o upotrebi LLM-ova u kontekstu HEMS-a su pretežno usmerena 
na interaktivno savetovanje stanovnika o metodama za poboljšanje komfora i smanjenje 
potrošnje električne energije (potpoglavlje 3.3). U ovim pristupima, kontrola uređaja 
ostaje manuelna, pri čemu korisnici donose konačne odluke. Po znanju autora, ne postoji 
istraživanje koje se bavi korišćenjem LLM-ova za automatizaciju upravljanja uređajima 
u cilju rešavanja definisanog više-ciljnog problema. 

U ovom istraživanju uvodi se i evaluira hipoteza da se LLM-ovi mogu efikasno primeniti 
u implementaciji HEMS-a koji balansira minimizaciju troškova električne energije i 
održavanje komfora stanara pametne kuće kroz automatizaciju planiranja vremena rada 
uređaja. Ova hipoteza zasniva se na sposobnost LLM-ova da prepoznaju obrasce i logički 
rezonuju u složenim sekvencama podataka (Brown et al. 2020). Takve karakteristike 
doprinele su ohrabrujućim rezultatima koje su LLM-ovi ostvarili u predviđanju 
vremenskih serija (eng. time series) (Gruver et al. 2023) (Jin et al. 2024.).  

1.3 Cilj, metodološki okvir i doprinosi istraživanja 
Cilj istraživanja je razvoj metodologije za automatizaciju planiranja vremena rada 
uređaja u pametnoj kući radi smanjenja troškova električne energije uz održanje komfora 
stanara. Ovaj cilj se razlaže na sledeće podciljeve istraživanja:    

C1  Dizajn simulacionog okruženja koje verno oponaša potrošnju električne energije 
u pametnoj kući. Simulaciono okruženje treba da bude adaptivno, što 
podrazumeva mogućnost definisanja raznolikih realističnih scenarija po pitanju 
pametnih kuća sa različitim tipovima uređaja3 i uslovima u kojima se one nalaze 
– vremenskim uslovima i tarifnim režimima, koji zavise od geografske lokacije. 

C2  Definisanje metrike za evaluaciju komfora stanara pametne kuće i načina na koji 
se ta metrika kombinuje sa cenom električne energije. Metrika komfora bi trebala 
da omogući stanovnicima da na intuitivan način izraze svoje želje vezane za rad 
uređaja  i kompromis tih želja sa uštedom električne energije. Definisana metrika 
bi imala ulogu funkcije nagrade koja bi se koristila za evaluaciju rešenja. 

 
3 Primeri tipova uređaja su proizvođači energije, skladišta energije i standardni potrošači. 
U slučaju standardnih potrošača, biće razmotrena mogućnost simulacije uređaja sa 
varijabilnom potrošnjom energije. 
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C3  Dizajn rešenja za automatizaciju planiranja vremena rada uređaja u pametnoj kući 
s ciljem postizanja maksimalne definisane nagrade. Analiza literature (poglavlje 
3) ukazuje na potrebu razmatranja primene metoda učenja potkrepljivanjem i 
velikih jezičkih modela pri razvoju rešenja. Kao osnovni referentni pristup (eng. 
baseline) neophodno je usvojiti manuelno definisan sistem zasnovan na znanju. 

C4  Evaluacija razvijenog rešenja za automatizaciju planiranja vremena rada uređaja 
korišćenjem definisane funkcije nagrade i dizajniranog simulacionog okruženja. 
Ključno je da evaluacija obuhvati različita godišnja doba, s obzirom na njihov 
uticaj na dinamiku potrošnje električne energije u pametnoj kući (potpoglavlje 
3.2). 

C5  Analiza prednosti i nedostataka razvijenog rešenja sprovođenjem analize 
objašnjivosti razvijenog rešenja. 

Pretpostavke na kojima se zasniva predloženo istraživanje su sledeće:  

𝑃ଵ   Adaptivno okruženje za simulaciju pametne kuće dovoljno verno simulira 
realističnu pametnu kuću da može biti iskorišćeno za pouzdanu evaluaciju rešenja. 

𝑃ଶ   Moguće je definisati metriku komfora stanara i njen kompromis sa potrošnjom 
električne energije tako da ona bude intuitivna stanovnicima. 

𝑃ସ
ଵ

 Definisana metrika za evaluaciju rešenja zaista meri zadovoljstvo stanovnika 
razvijenim rešenjem. 

𝑃ସ
ଶ

 Definisana metrika za evaluaciju omogućava rangiranje rešenja po njihovom 
kvalitetu. 

𝑃ହ  Moguće je izvršiti analizu objašnjivosti modela koja bi omogućila analizu 
njegovih prednosti i nedostataka. 

Hipoteza koja će biti evaluirana u istraživanju je da su metode učenja potkrepljivanjem 
i veliki jezički modeli efikasni pristupi za rešavanje postavljenog optimizacionog 
problema. Efikasnost se definiše kao postizanje iste ili bolje nagrade u odnosu na 
manuelno definisan sistem zasnovan na znanju, uz to da su odluke rešenja adekvatne iz 
perspektive ljudskih eksperata. Adekvatnost podrazumeva da ljudski ekspert, kroz 
analizu objašnjivosti modela, može da potvrdi da se odluke koje donosi model u datoj 
situaciji razumne. 

U nastavku je dat sažetak metodologije koja je sprovedena, dodatno opisana i u (Kaplar 
et al. 2024), radi postizanja prethodno definisanih ciljeva. 

Prvi korak istraživanja obuhvatao je implementaciju simulacionog okruženja. U tu 
svrhu razvijen je sistem koji se sastoji iz četiri sloja:  

1. Fizički sloj – Simulira potrošnju energije uređaja u pametnoj kući. U 
istraživanju razmatrana su dva pristupa modelovanju potrošnje energije:  

 Potrošnja uređaja modelovana je kao konstantna vrednost tokom 
celokupnog trajanja rada uređaja (Typhoon HIL 2008). 

 Potrošnja uređaja modelovana je kao varijabilna vrednost, zavisna od 
faze rada uređaja (Vojnović et al. 2022) (Vojnović et al. 2023b) 
(Vojnović et al. 2023a). 
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2. Sloj za donošenje odluka (HEMS) – Orkestrira rad uređaja sa ciljem 
optimizacije potrošnje električne energije uz očuvanje komfora stanara.  

3. Informacioni sloj – Obuhvata istorijske podatke o vremenskim uslovima i 
tarifnim režimima dostupnim na određenoj geografskoj lokaciji, koji se koriste 
za simulaciju. 

4. Komunikacioni sloj – Omogućava razmenu informacija između fizičkog sloja i 
sloja za donošenje odluka.  

Sledeći korak istraživanja obuhvatao je definisanje funkcije nagrade. U tu svrhu 
analizirana je relevantna literatura koja predlaže matematičke modele za optimizaciju 
energetske efikasnosti i korisničkog komfora u HEMS sistemima zasnovanim na učenju 
potkrepljivanjem i velikim jezičkim modelima. Na osnovu ove analize, funkcija nagrade 
definisana je kao ponderisana suma troškova električne energije i kvantifikacije komfora 
stanovnika. Troškovi električne energije određeni su u zavisnosti od tarifnih režima u 
različitim vremenskim intervalima, kako je prikazano u potpoglavlju 5.1.2. Stanari 
izražavaju svoje zahteve u vezi sa komforom kroz odabir jednog od tri nivoa značaja rada 
uređaja u određenom vremenskim intervalima. Kako bi se kvantifikacija komfora mogla 
sabrati sa troškovima električne energije, nivoi značaja izraženi su u monetarnim 
jedinicama, pri čemu je značaj rada uređaja povezan sa tarifnim režimima, kako je 
opisano u potpoglavlju 5.1.3. 

Treći korak istraživanja bio je razvoj HEMS pristupa koji će biti korišćeni u sloju za 
donošenje odluka. Analizom literature, utvrđeno je da treba razmotriti tri pristupa razvoju 
HEMS-a:  

1. Učenje potkrepljivanjem. Razmatrana su dva algoritma: dvostruka duboka Q-
mreža (eng. Double Deep Q-Network, DDQN) i proksimalna optimizacija 
politike (eng. Proximal Policy Optimization, PPO). 

2. Primena pretreniranih velikih jezičkih modela. U okviru ovog pristupa, 
evaluirane su dve strategije:  

 Zero-shot strategija – LLM-u je prosleđena instrukcija da generiše 
HEMS sistem zasnovan na pravilima. Rezultujući HEMS je sličan 
sistemu zasnovanom na ručno definisanim pravilima, s tom razlikom 
što pravila ne formuliše čovek, već ih LLM generiše na osnovu znanja 
stečenog tokom obuke modela. 

 Few-shot strategija – LLM je tretiran kao model učenja 
potkrepljivanjem. U svakom promptu, model je primao opis trenutnog 
stanja i birao optimalnu akciju. Pri tome, na raspolaganju su mu bili 
primeri prethodnih interakcija, gde su za prethodna stanja i sprovedene 
akcije bile dostupne vrednosti neposredne nagrade. 

3. Sistem zasnovan na ručno definisanim pravilima, definisan od strane autora 
rada. 

Četvrti korak, evaluacija metodologije, sprovedena je u dve faze – zimskoj i letnjoj 
sezoni, uzimajući u obzir njihov uticaj na dinamiku potrošnje električne energije u 
pametnoj kući. Ovaj pristup omogućio je realističniju procenu performansi razvijenih 
modela u različitim uslovima rada. Detalji eksperimentalne postavke su pojašnjeni u 
potpoglavlju 5.1.5. 

Konačno, sprovedena je analiza rezultata, koja je obuhvatila: 
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1. Evaluaciju performansi modela na osnovu definisane funkcije nagrade, pri čemu 
su analizirane pojedinačne metrike komfora, potrošnje energije, kao i njihova 
kombinacija. 

2. Ručnu analizu odluka modela putem vizuelizacije njegovih odluka tokom 
jednog nasumično odabranog dana iz letnje i jednog iz zimske sezone. Ova 
analiza omogućila je uvid u ponašanje modela u specifičnim situacijama. 

3. Analizu modela učenja potkrepljivanjem, gde su vizualizovane dnevne prosečne 
nagrade postignute tokom treniranja, radi procene konvergencije modela. 
Dodatno, za ove modele sprovedena je SHAP analiza, kojom je procenjen 
doprinos pojedinačnih karakteristika stanja u konačnim predikcijama obučenih 
modela.  

U ovoj disertaciji predstavljeni su novi pristupi i alati za optimizaciju potrošnje električne 
energije uz očuvanje komfora stanara. Doprinosi teze su sledeći: 

 Adaptivno okruženje za simulaciju pametne kuće: Razvijeno je adaptivno 
okruženje koje omogućava simulaciju raznolikih realističnih scenarija potrošnje 
energije u pametnim kućama. Simulaciono okruženje omogućava stanaru da 
kreira virtuelni model svog doma, usklađen sa stvarnim uslovima. Na osnovu 
tako konfigurisane simulacije, modeli se mogu obučavati u bezbednom i 
kontrolisanom okruženju, što omogućava procenu njihovih performansi pre 
primene u praksi. Nakon procesa obučavanja, modeli, koji poseduju visok 
stepen prilagođenosti specifičnim uslovima stanara, mogu biti implementirani u 
realnom okruženju uz manju adaptaciju na razlike između simulacije i realnog 
okruženja. Time se umanjuju gubici koji bi nastali u početnim fazama treniranja 
modela i skraćuje ukupno vreme neophodno za treniranje modela, zahvaljujući 
bržem izvođenju simulacija u odnosu na realno vreme.  

 Predlog funkcije nagrade za minimizaciju troškova električne energije uz 
očuvanje komfora stanara: Metrika komfora stanara izražena je u monetarnim 
jedinicama, čime je omogućeno njeno direktno sabiranje sa troškovima 
električne energije. Na ovaj način kvantifikuje se spremnost stanara da plate 
korišćenje određenih uređaja u definisanom vremenskom periodu. Stanari 
definišu nivo prioriteta rada uređaja (visok, srednji i nizak), pri čemu se svakom 
nivou dodeljuje određena monetarna vrednost, usklađena sa tarifnim režimima 
(visoka, srednja i niska tarifa). Za razliku od predloženog pristupa, u postojećoj 
literaturi funkcija nagrade se najčešće formulisala kao ponderisana suma 
troškova električne energije i komfora, pri čemu su težinski koeficijenti često 
bili birani heuristički, bez jasnog metodološkog objašnjenja. 

 Način modelovanja potrošnje uređaja: U disertaciji su razmatrana dva 
pristupa modelovanju potrošnje električnih uređaja: model sa konstantnom 
potrošnjom energije tokom rada i model sa varijabilnom potrošnjom energije. 
Varijabilni režim potrošnje verodostojnije oslikava ponašanje uređaja u realnim 
sistemima, čime se trenirani model čini pogodnijim za primenu u stvarnim 
uslovima eksploatacije. Nasuprot tome, u značajnom delu postojeće literature  
uređaji se modeluju pod pretpostavkom konstantne potrošnje tokom celokupnog 
radnog ciklusa, što predstavlja pojednostavljenje realnog procesa. U praksi, 
obrasci potrošnje električnih uređaja su složeni i obuhvataju više faza rada sa 
različitim nivoima potrošnje energije. Rezultati ove disertacije ukazuju da izbor 
načina modelovanja potrošnje uređaja ima značajan uticaj na performanse 
predloženih rešenja za upravljanje radom električnih uređaja. 
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 Utvrđena je potreba za periodičnim ažuriranjem modela u skladu sa 
sezonskim promenama spoljnih uslova: Analiza je pokazala da modeli donose 
značajno različite odluke u zavisnosti od sezone, što ukazuje na ograničenja 
modela treniranih i evaluiranih na vremenski usko ograničenim podacima. 
Većina postojećih radova ne razmatra sezonske razlike tokom procesa treniranja 
i evaluacije. U praktičnoj primeni spoljašnji faktori se menjaju tokom vremena, 
zbog čega je neophodno da se modeli periodično ponovo obučavaju korišćenjem 
proširenog skupa podataka koji uključuje najnovije dostupne informacije. Na 
ovaj način omogućava se kontinuirana adaptacija modela na sezonske promene 
i dugoročne obrasce u potrošnji i proizvodnji električne energije. U 
produkcionim sistemima, pad vrednosti funkcije nagrade može se koristiti kao 
indikator potrebe za ažuriranjem modela novom, adaptiranom verzijom. 

 Procena mogućnosti primene LLM na zadati problem: Sve veći broj 
istraživanja razmatra potencijal primene LLM-ova kao sistema za 
prepoznavanje obrazaca u različitim domenima, uključujući i modelovanje 
nejezičkih obrazaca (Mirchandani et al. 2023). Međutim, u trenutku pisanja 
disertacije, nije postojala nijedna studija koja je istražila kapacitet LLM-ova da 
modeluju šablone i donose odluke u kontekstu rada uređaja u pametnim kućama. 
Takođe, nisu pronađene studije koje su istraživale efikasnost pretreniranih 
LLM-ova u simulaciji procesa donošenja odluka sličnog onom koji se koristi u 
učenju potkrepljivanjem. Zahvaljujći ogromnom ugrađenom znanju, LLM-ovi 
se mogu brzo prilagoditi promenama u podacima bez skupog ponovnog 
treniranja, čime uklanja potrebu RL-a za čestim ponovnim obučavanjem. 

1.4 Struktura disertacije 
Disertacija je struktuirana u sedam poglavlja, koja detaljno pokrivaju sve aspekte 
predloženog istraživanja. 

U drugom poglavlju predstavljena je teorijska osnova neophodna za razumevanje 
sprovedenog istraživanja. Opisani su simulacioni sistemi pametnih kuća koji su 
korišćeni, pri čemu je poseban naglasak stavljen na razliku između Typhoon HIL i Load 
Flow simulacionih okruženja. Takođe, istaknuta je prednost Load Flow okruženja u 
kontekstu optimizacije i simulacije energetske efikasnosti. Nakon toga, definisani su 
osnovni koncepti modela učenja potkrepljivanjem i velikih jezičkih modela, čime se 
postavlja teorijski okvir za njihovu primenu u upravljanju energijom u pametnim 
kućama. 

Treće poglavlje pruža pregled aktuelnog stanja u oblasti upravljanja energijom u 
pametnim kućama. U njemu je dat istorijski pregled razvoja ove oblasti, opisane su 
savremene strategije zasnovane na učenju potkrepljivanjem, kao i strategije primene 
velikih jezičkih modela u optimizaciji potrošnje energije. Na kraju poglavlja opisani su 
ograničenja i nedostaci postojećih rešenja kao i potreba za detaljnijom analizom. 

Četvrto poglavlje detaljno opisuje metodologiju razvoja predloženog sistema. Prikazana 
je arhitektura HEMS-a, koja obuhvata simulaciono okruženje, modele za donošenje 
odluka i bazu eksternih podataka. Posebna pažnja posvećena je definisanju funkcije 
nagrade korišćene tokom obuke i evaluacije modela. Konačno, predstavljen je dizajn 
modela zasnovanih na učenju potkrepljivanjem i promptova za velike jezičke modele 
korišćenih u rešavanju problema automatskog određivanja vremena rada uređaja u 
pametnoj kući. 
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Peto poglavlje bavi se eksperimentalnim postupkom sprovedenim radi evaluacije 
razvijenog rešenja. Definisana je eksperimentalna postavka za simulaciju pametne kuće, 
koja uključuje modelovanje uređaja, vremenskih uslova i tarifa, definisanje zahteva 
stanara, reprezentaciju stanja i definisanje skupa mogućih akcija. Detaljno su prikazani 
rezultati rada uređaja čiji je rad automatizovan od strane modela dubokog učenja i velikog 
jezičkog modela. Rezultati su grupisani na osnovu godišnjeg doba i tipa simulacionog 
okruženja (Typhoon HIL i Load Flow). Takođe je sprovedeno ispitivanje robusnosti 
modela kroz procenu njihove sposobnosti da održe stabilne performanse u danima nakon 
treniranja, uprkos promenljivim spoljašnjim faktorima.  

Šesto poglavlje prikazuje rezultate i diskusiju modela učenja potkrepljivanjem i velikih 
jezičkih modela primenjenih u upravljanju pametnom kućom. Analizirani su proces 
konvergencije, vrednosti funkcije nagrade i odluke modela na nivou dana, uz 
interpretaciju doprinosa pojedinačnih karakteristika pomoću SHAP metoda. Rezultati 
LLM pristupa upoređeni su sa sistemom zasnovanim na pravilima definisanim od strane 
eksperta. Na kraju je ispitana robusnost modela u različitim simulacionim okruženjima i 
predložena potencijalna poboljšanja razvijenih rešenja.  

Sedmo poglavlje sadrži zaključak i sažetak najvažnijih rezultata, ističući ograničenja 
istraživanja i moguću primenu realizovanog sistema i modela u praksi. Takođe su dati 
mogući pravci budućih istraživanja. 
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2 Teorijske osnove 
 

Ovo poglavlje izlaže teorijske osnove istraživanja, neophodne za razumevanje 
metodologije korišćene u ovoj disertaciji. U potpoglavlju 2.1 predstavljeni su osnovni 
principi rada okruženja za simulaciju potrošnje električne energije u pametnim kućama. 
Potpoglavlje 2.2 predstavlja ključne koncepte modela dubokog učenja primenjenih u 
automatizaciji planiranja vremena rada uređaja u pametnim kućama. Konkretno,  
potpoglavlje 2.2.1 prezentuje osnovne pojmove učenja potkrepljivanjem, dok 
potpoglavlje 2.2.2 sažima ključne koncepte velikih jezičkih modela. 

2.1 Okruženja za simulaciju potrošnje električne 
energije u pametnim kućama 

Dizajn sistema za automatizaciju plana rada uređaja u pametnoj kući zahteva poređenje 
više alternativnih rešenja. Evaluacija u stvarnim domovima nije praktična, jer 
neoptimalna rešenja mogu povećati troškove električne energije i narušiti komfor stanara. 
Pored toga, testiranje u realnim uslovima trajalo bi više meseci, što bi onemogućilo brzu 
iteraciju i unapređenje rešenja. Stoga je ključno razviti simulaciono okruženje koje 
omogućava brzu i preciznu evaluaciju različitih pristupa. U ovom istraživanju analizirana 
je primena dva simulaciona okruženja potrošnje električne energije u pametnim kućama: 
Typhoon HIL (Typhoon HIL 2008) i Load Flow (Vojnović et al. 2022) (Vojnović et al. 
2023b) (Vojnović et al. 2023a). 

Radi pojednostavljenja simulacije, mnoga istraživanja (Forootani et al. 2022), (Huang et 
al. 2022), (Li et al. 2020), (Aldahmashi and Ma 2024) i (Pan et al. 2024) modeluju 
potrošnju uređaja kao konstantnu tokom celog perioda njihovog rada. Međutim, u 
realnim uslovima, potrošnja električne energije uređaja poput mašine za pranje veša, 
mašine za pranje sudova i šporeta varira u zavisnosti od faze rada (Pipattanasomporn et 
al. 2014). Iako je modelovanje potrošnje kao konstantne metodološki jednostavnije, ono 
pruža manje realističnu simulaciju dinamike rada uređaja u poređenju sa pristupima koji 
uzimaju u obzir varijabilnost potrošnje. Sa druge strane, u radovima (Xu et al. 2021), (Xu 
et al. 2020), i (Liu et al. 2020) korišćena su simulaciona okruženja koja omogućavaju 
preciznije modelovanje potrošnje uređaja u zavisnosti od operativne faze. U ovom 
istraživanju su isprobana oba pristupa – modelovanje potrošnje kao konstantne 
realizovano je korišćenjem platforme Typhoon HIL, dok je modelovanje varijabilne 
potrošnje uređaja realizovano upotrebom Load Flow simulacionog okruženja. 

Typhoon HIL je komercijalno simulaciono okruženje koje je u okviru ove disertacije 
korišćeno za modelovanje uređaja u domaćinstvu. Ovo okruženje omogućava precizno 
simuliranje električnih sistema i ponašanja uređaja u različitim uslovima. Detalji 
implementacije nisu prikazani, budući da komercijalna priroda sistema ne omogućava 
uvida u sve tehničke aspekte njegove realizacije. U okviru ovog istraživanja, Typhoon 
HIL je korišćen za simulaciju uređaja sa konstantnom potrošnjom energije po 
vremenskom koraku. Simulaciono okruženje Load Flow omogućava modelovanje 
promenljive potrošnje i detaljnije je prikazano u nastavku poglavlja.  



 

12 

Temperatura unutar kuće, koja je ključan faktor komfora stanara, kao i rad određenih 
uređaja, poput klima uređaja i solarnih panela, zavise od spoljnih vremenskih uslova. 
Kako simulacija bila što realističnija, prikupljeni su istorijski podaci o vremenskim 
uslovima za određenu geografsku lokaciju tokom različitih perioda godine. Po ugledu na 
radove (Huang et al. 2022), (Li et al. 2020), (Liu et al. 2020), (Lissa et al. 2021), ovi 
podaci su integrisani u simulaciju, omogućavajući verodostojnije modelovanje rada 
uređaja poput solarnih panela i klima uređaja. 

2.1.1 Proračun tokova snaga u kućnim instalacijama 
U ovoj disertaciji modelovana je električna mreža evropskog domaćinstva, prikazana na 
slici 1 (Vojnović et al. 2025). Električna mreža se sastoji od četrnaest glavnih strujnih 
kola, koja se napajaju preko trofazne razvodne table (eng. Three-Phase and Neutral 
distribution board, TPN). 

Za potrebe modelovanja potrošača, merena je potrošnja električne energije u realnim 
uslovima. Merenje je izvršeno pomoću uređaja koji će, u okviru ove disertacije, biti 
nazvan pametno brojilo (slika 2). Ovaj uređaj sastoji se iz sledećih komponenti: (1) 
komunikacionog modula, (2) pametnog brojila za merenje električne energije (izražene 
u kilovat-časovima), i (3) utičnice za povezivanje testiranog kućnog uređaja. 
Komunikacioni modul koristi MODBUS protokol (Thomas 2008) za prikupljanje 
podataka sa pametnog brojila i njihovo slanje u oblak putem Wi-Fi veze. Izmereni podaci 
koriste se za modelovanje potrošača, dok se izmerene električne karakteristike i dužine 
grana provodnika koriste za modelovanje segmenata električnih instalacija.  

Radi kreiranja detaljnog modela potrošača, sprovedeno je merenje u trajanju od 24 sata, 
što je ključno za uređaje sa vremenski promenljivim profilima potrošnje električne 
energije (na primer, mašina za pranje sudova). Tokom celog radnog ciklusa uređaja, kao 
što je mašina za veš, zabeležena je precizna promena potrošnje, uključujući sve faze rada 
(pranje, ispiranje, centrifugiranje, sušenje). Snimljeni vremenski zavisni profili potrošnje 
korišćeni su u simulacionom okruženju tako što bi se, po aktivaciji uređaja, reprodukovao 
čitav prethodno zabeleženi profil potrošnje. Na taj način, simulacija verno odražava 
realne obrasce potrošnje u situacijama kada je uređaj aktivan. 
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Legenda 
 
TPN Razvodna kutija 

Luster sa staklenim difuzorom 

Luster u obliku posude 

Zidna svetiljka u obliku posude 

Jednopolna utična sa prekidačem 
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Slika 1. Električna mreža evropskog domaćinstva (Vojnović et al. 2025). Svakom paru 
provodnika i tačke potrošnje (na primer, utičnica, svetiljka) dodeljen je jedinstveni 
identifikator u formatu: ID provodnika/ID tačke priključka. 
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2 
1 

 

Slika 2. Pametno brojilo koje se sastoji od tri komponente: (1) komunikacionog modula, 
(2) pametnog brojila za merenje električne energije (izražene u kilovat-časovima) i (3) 
utičnice za povezivanje testiranog kućnog uređaja – elementarnog potrošača. 

2.1.1.1 Višefazni vodovi u domaćinstvu 

Električne instalacija u evropskim domaćinstvima najčešće obuhvataju četvorožilne i 
petožilne trofazne konfiguracije (34𝑤, 35𝑤), kao i jednofazne trožične konfiguracije 
(13𝑤). Uzemljeni provodnik dodatno je inkorporiran u vod radi bezbednosti i 
održavanja nultog potencijala, ali je neaktivan tokom normalnog režima rada.  

Karsonove jednačine (eng. Carson’s equation), uz Kronovu redukciju (eng. Kron 
reduction), integrišu impedansu zemlje u model sistema. Na slici 3 prikazan je generalni 
Π௞  segment koji predstavlja višefaznu konfiguraciju električnih instalacija u kući 
(Vojnović et al. 2025). Redna matrica 𝒁෡௞

abc, prikazana na slici 3, obuhvata impedanse 
koje predstavljaju i sopstvenu i međusobnu induktivnost između provodnika. Matrice 
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otočnih admitansi 𝒀෡ ′
௞
abc

 i 𝒀෡″
௞
abc

 (eng. shunt) modeluju sopstvene i međusobne kapacitivne 
sprege, koje se u praksi obično tretiraju kao identične. Serijske i otočne matrice su 
dimenzija 𝑠 × 𝑠, gde 𝑠 označava broj faza. Model vodova u višefaznim domaćinstvima 
detaljno je opisano sledećim jednačinama (Vojnović et al. 2025): 

 𝑼෡ ௞
abc = 𝑼෡ ௜

abc − 𝒁෡௞
abc𝑰෠௞

abc, (1a) 

 𝑰෠′
௞଴
abc

= 𝒀෡ ′
௞
abc

𝑼෡ ௜
abc, 𝑰෠″

௞଴
abc

= 𝒀෡″
௞
abc

𝑼෡௞
abc, (1b) 

 𝑰෠′
௞
abc

= 𝑰෠௞
abc + 𝑰෠′

௞଴
abc

, 𝑰෠௞
abc = 𝑰෠″

௞଴
abc

+ 𝑰෠௞
abc + 𝑰෠″

௞
abc

. (1c) 

gde su (slika 3): (i) vektori napona čvorova 𝑼෡௞
abc, 𝑼෡ ௜

abc vektori napona čvorova  (ii) vektori 

struje rednih grana 𝑰෠௞
abc, 𝑰෠ᇱ

௞
abc

, 𝑰෠ᇳ
௞
abc

 vektori struje rednih grana, i (iii) vektori struja 

otočnih grana 𝑰෠ᇱ
௞଴
abc

 𝑰෠ᇳ
௞଴
abc

 vektori struja otočnih grana. Navedeni vektori su istih dimenzija 
𝑠 × 1. Za trofazni segment kućne instalacije, redne i otočne matrice date su sledećim 
izrazima: 

 

𝒁෡௞
abc = ቎

𝑍መ௞aa 𝑍መ௞ab 𝑍መ௞ac

𝑍መ௞ab 𝑍መ௞bb 𝑍መ௞bc

𝑍መ௞ca 𝑍መ௞cb 𝑍መ௞cc

቏, 

 

 𝒀෡ ′
௞
abc

= 𝒀෡″
௞
abc

= ቎

𝑌෠௞aa 𝑌෠௞ab 𝑌෠௞ac

𝑌෠௞ab 𝑌෠௞bb 𝑌෠௞bc

𝑌෠௞ca 𝑌෠௞cb 𝑌෠௞cc

቏. 

(2) 
 

Iz ovih matrica su isključeni redovi i kolone koje se odnose na nedostajuće faze u 
višefaznom segmentu kućne mreže. 

 

Slika 3. Višefazni Πk segment (Vojnović et al. 2025).   

2.1.1.2 Model i postupak tokova snaga kućnih mreža 

Uzimajući u obzir različite konfiguracije vodova kućnih instalacija za potrebe proračuna 
tokova snaga (13𝑤) i (34𝑤), izvedeno je dekuplovano kolo Γ௞௦, gde 𝑠 ∈ 𝜙௞ označava 
fazu segmenta (slika 4), a 𝜙௞ označava skup faza iz segmenata Π௞ (slika 3). Kolo Γ௞௦ 
može biti povezano sa više segmenata naslednika (Γ௝௦ sa slike 4), pri čemu se indeksi 

ovih naslednika čuvaju u skupu naslednika 𝛼௞௦. Segment Γ௞௦ sadrži čvorove is i ks, 𝑠 ∈

𝜙௞. 
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Slika 4. Dekuplovano kolo Γks, 𝑠 ∈ 𝑎 ∨ 𝑏 ∨ 𝑐 (Vojnović et al. 2025). 

Impedansa 𝑍መ௞௦௦ (𝑠 ∈ 𝑎 ∨ 𝑏 ∨ 𝑐) iz relacije (2) predstavlja sopstvenu induktivnost 
segmenta 𝑘 i odgovara dijagonalnom elementu matrice 𝒁෡௞

abc sa slike 3. Admitansa 𝑌෠ఀ ௞௦ 
predstavlja ukupnu otočnu admitansu segmenta Π௞  i njihovih segmenata Π௝  naslednika. 

Ove admitanse predstavljaju sopstvene kapacitivnosi segmenta 𝑘.  

Ukupna admitansa se izračunava sabiranjem admitansi prethodnog segmenta Π௞  i 
sledećih segmenata Π௝. Kapacitivne sprege sa drugim fazama modeluju se strujnim 

izvorom 𝐼መCC௞௦, dok se induktivne sprege sa drugim fazama označava sa 𝐸෠௞௦. Naponi 
čvorova is i ks, 𝑠 ∈ 𝜙௞ označeni su redom 𝑈෡௜௦  i 𝑈෡௞௦. Struja redne grane označena je sa 
𝐼መ௞௦, dok 𝐼መ୮୭୲௞௦ predstavlja struju potrošača. Potrošač je modelovan preko kompleksne 

snage 𝑆መ௞௦. 

Postupak proračuna tokova snaga sastoji se iz dva koraka (Vojnović et al. 2025): 

1. Korak na gore – sumiranje struja grana (eng. Backward sweep): 

൫𝐼መpot௞௦൯
ℎାଵ

=
ቂௌመೖೞቀ௎ೖೞ

ℎ ቁቃ

൫௎෡ೖೞ
ℎ ൯

∗ , (2a) 

൫𝐼መCC௞௦൯
ℎାଵ

= ∑ 𝑌෠௞௦௧൫𝑈෡௞௧൯
ℎାଵ

௧∈థೖ∧௧ஷ௦ , (2b) 

൫𝐼መ௞௦൯
௛ାଵ

= 𝑌෠ఀ ௞௦൫𝑈෡௞௦൯
௛ାଵ

+ ൫𝐼መCC௞௦൯
௛ାଵ

+ ൫𝐼መcon௞௦൯
௛ାଵ

+ ∑ ൫𝐼መ௧௦൯
௛ାଵ

௧∈ఈೖೞ
,  

𝑠 = 𝑎,b,𝑐; 
(2c) 

2. Korak korekcije napona čvorova (eng. Forward sweep): 

 ൫𝐸෠௞௦൯
ℎାଵ

= ∑ 𝑍መ௞௦௧൫𝐼መ௞௧൯
ℎାଵ

௧∈థೖ∧௧ஷ௦ , (3a) 

 ൫𝑈෡௜௦൯
ℎାଵ

= ൫𝑈෡௞௦൯
ℎାଵ

− 𝑍መ௞௦௦൫𝐼መ௞௦൯
ℎାଵ

− ൫𝐸෠௞௦൯
ℎାଵ

, 𝑠 = 𝑎,b,𝑐. (3b) 

Slika 5 prikazuje blok-dijagram postupka sumiranja struja grana i korekcije napona 
čvorova (eng. Backward-Forward Sweep, BFS). Postupak se završava kada su ispunjeni 
kriterijumi konvergencije.  

U predloženom postupku petlje se ne obrađuju, jer su električne instalacije u 
domaćinstvima strogo radijalne strukture. U distributivnim slaboupetljanim mrežama, 
petlje se rešavaju korišćenjem Tevnenove teoreme (Vojnović et al. 2023b). 
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Slika 5. Blok dijagram postupka sumiranja struja i korekcija napona. 

2.2 Modeli dubokog učenja za upravljanje vremenom 
rada uređaja u simuliranom okruženju pametne 
kuće  

U ovoj disertaciji razmatra se primena modela dubokog učenja (eng. deep learning) za 
upravljanje vremenom rada uređaja u pametnoj kući. Konkretno, razmatrani su modeli 
učenja potkrepljivanjem (eng. deep reinforcement learning) i veliki jezički modeli (eng. 
large language models). Potpoglavlje 2.2.1 prikazuje osnove učenja potkrepljivanjem, sa 
fokusom na modele dvostrukih dubokih Q-mreža (eng. double deep Q-network) (Hasselt 
et al. 2015) i modele zasnovane na proksimalnoj optimizaciji politike (eng. proximal 
policy optimization) (Schulman et al. 2017), koji predstavljaju najsavremenija rešenja za 
primenu učenja potkrepljivanjem u problemu upravljanja vremenom rada uređaja u 
pametnoj kući. Potpoglavlje 2.2.2 predstavlja osnovne koncepte velikih jezičkih modela, 
koji su u ovoj disertaciji razmatrani kao alternativa naprednim tehnikama učenja 
potkrepljivanjem. 

2.2.1 Učenje potkrepljivanjem  
Za razliku od nadgledanog mašinskog učenja (eng. supervised learning), gde se model 
obučava na označenim skupovima podataka, učenje potkrepljivanjem (eng. 
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reinforcement learning) zahteva okruženje u kojem model može posmatrati trenutna 
stanja okruženja (eng. state), isprobavati moguće akcije u datom stanju i analizirati 
njihove ishode, čime postepeno unapređuje svoje performanse kroz interakciju sa 
okruženjem (Gupta et al. 2021). Učenje potkrepljivanjem se primenjuje kada je 
neophodno rešiti problem kroz niz uzastopnih akcija, pri čemu njihov zajednički efekat 
dovodi do konačnog rešenja (Nikolic and Zecevic 2019). Ključna pretpostavka ovog 
pristupa (i osnovna razlika u odnosu na nadgledano učenje) jeste da model nema unapred 
dostupne informacije o tome koje su akcije bile ispravne u datom kontekstu, a koje ne. 

Markovljevi procesi odlučivanja (eng. Markov Descision Process, MDP) su matematička 
osnova za reprezentaciju algoritama učenja potkrepljivanjem. MDP opisuje sistem koji 
se sastoji od tri glavna elementa:  

 Agent (eng. agent), čiji je cilj da nauči koju akciju treba preduzeti u kontekstu 
datog stanja okruženja.  

 Okruženje (eng. environment), koje predstavlja sistem koji agent posmatra i u 
kom deluje. Okruženje definiše konačan skup stanja S u kojima se može naći 
agent i dopustivih akcija A(s) koje agent može da preduzme u konkretnim 
stanjima. Stanje okruženja predstavlja specifične informacije koje agent opaža 
i koje koristi prilikom donošenja odluka o preduzimanju akcija. 

 Nagrada (eng. reward) je numerička vrednost koja ocenjuje akciju agenta u 
datom stanju okruženja. Cilj agenta je da postigne najveću dugoročnu nagradu 
(eng. cumulative reward) – ukupnu očekivanu sumu nagrada koje agent može 
akumulirati kroz vreme kao rezultat pojedinačnih nagrada.  

Slika 6 ilustruje interakciju između okruženja i agenta koji interaguju u diskretnim 
vremenskim trenucima. U svakom vremenskom trenutku t, agent opaža reprezentaciju 
stanja okruženja, 𝑆௧ ∈ 𝑆, na osnovu koje preduzima akciju, 𝐴௧ ∈ 𝐴. Kao posledicu ove 
akcije, dobija neposrednu numeričku nagradu (eng. immediate reward) 𝑅௧ାଵ ∈ 𝑅 ⊂  ℝ i 
prelazi u novo stanje okruženja 𝑆௧ାଵ. Ishod učenja predstavlja optimalnu politiku, 
odnosno, pravilo preslikavanja stanja okruženja u odgovarajuće akcije koje dovodi do 
maksimalne dugoročne nagrade (Nikolic and Zecevic 2019).   

Interakcija između agenta i okruženja može se posmatrati kao sekvenca akcija. Ako se 
sekvenca akcija uvek završava konačnim stanjem (eng. terminal state) u konačnom broju 
akcija, tada ovu sekvencu zovemo epizodom, a zadatak epizodnim zadatkom (eng. 
episodic task).  Epizode su međusobno nezavisne, odnosno početak epizode ne zavisi od 
toga kako se prethodna epizoda završila. Međutim, u mnogim realnim scenarijima ne 
postoji jasno definisano konačno stanje, pa se takvi zadaci nazivaju neograničeni (eng. 
continuing task).  
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Slika 6. Interakcija agenta i okruženja 

U konačnom (eng. finite) MDP-u, skupovi stanja, akcija i nagrada (𝑆, 𝐴 i 𝑅) imaju 
konačan broj elemenata. U ovom slučaju, slučajne promenljive 𝑅௧ i 𝑆௧ imaju diskretne 
raspodele verovatnoće koje zavise isključivo od prethodnog stanja i akcije. Funkcija 
prelaska stanja 𝑝, koja određuje verovatnoće (Pr) prelaska iz jednog stanja 𝑠 u novo stanje 
𝑠′ preduzimanjem akcije a, koja rezultuje nagradom 𝑟 je definisana na sledeći način  
(Nikolic and Zecevic 2019): 

𝑝(𝑠ᇱ, 𝑟|𝑠, 𝑎) = Pr{𝑆௧ାଵ = 𝑠ᇱ, 𝑅௧ାଵ = 𝑟 | 𝑆௧ = 𝑠, 𝐴௧ = 𝑎}, ( 4 ) 

za sve 𝑠ᇱ, 𝑠 ∈ 𝑆, 𝑟 ∈ 𝑅 i 𝑎 ∈ 𝐴(𝑠). U MDP, funkcija prelaska stanja 𝑝 u potpunosti 
karakteriše dinamiku okruženja. 

Za MDP je ključno Markovljevo svojstvo (eng. Markov property), koje definiše da novo 
stanje 𝑆௧ାଵ i nagrada 𝑅௧ାଵ  u vremenskom trenutku 𝑡 + 1 zavise isključivo od prethodnog 
stanja okruženja  𝑆௧ i preduzete akcije 𝐴௧ u vremenskom trenutku 𝑡, a ne od celokupne 
istorije procesa donošenja odluka. Modelovanje MDP-a je prikazano u primeru 2.1.  
 

Primer 2.1 Proces korišćenja električnog vozila (eng. Electric Vehicle, EV) može se 
modelovati kao MDP. EV poseduje bateriju čije se stanje napunjenosti izražava u 
procentima, pri čemu vrednost  varira u opsegu od 0% do 100%. Umesto precizne 
numeričke reprezentacije napunjenosti baterije, moguće je koristiti pojednostavljen skup 
stanja 𝑆 = {𝑙𝑜𝑤, ℎ𝑖𝑔ℎ}, gde stanje low označavaju napunjenost baterije ispod 50%, dok 
stanje high označava napunjenost baterije iznad 50%. U svakom stanju, agent može 
odabrati jednu od sledećih akcija: da ne preduzme ništa (eng. idle), da puni bateriju (eng. 
recharge) ili da je prazni (eng. discharge). Skup dopustivih akcija zavisi od trenutnog 
stanja baterije:  

(1) ako je 𝑆 = 𝑙𝑜𝑤, dostupne akcije su 𝐴(𝑙𝑜𝑤) = {𝑖𝑑𝑙𝑒, 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒, 𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒}  
(2) ako je 𝑆 = ℎ𝑖𝑔ℎ,  dostupne akcije su 𝐴(ℎ𝑖𝑔ℎ) = {𝑖𝑑𝑙𝑒, 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒}, pri čemu 

punjenje baterije nije dozvoljeno.  

Tabela 1 definiše ovaj MDP – verovatnoće prelaza između stanja i odgovarajuće nagrade 
za svaku akciju, dok slika 7 ilustruje graf prelaza između stanja. Prilikom primene akcije 
discharge iz stanja high, postoje dva moguća ishoda:  

 verovatnoća da baterija ostane u stanju high iznosi 𝛼;  
 verovatnoća prelaza u stanje low iznosi 1 − 𝛼.  

U oba slučaja dodeljuje se ista nagrada 𝑟ௗ௜௦௖௛௔௥௚ . Primer prelaza sa nagradom 0 je 
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situacija u kojoj sistem, nakon primene akcije idle u stanju low, ostane u istom stanju. 
Pokušaj agenta da u stanju low primeni akcija discharge, pri čemu baterija ostaje u low 
stanju, obeshrabruje se negativnom nagradom.  

Tabela 1. Primer MDP-a koji modeluje korišćenje električnog vozila: 𝑝(𝑠ᇱ|𝑠, 𝑎) i 
𝑟(𝑠, 𝑎, 𝑠′) predstavljaju verovatnoću prelaska iz stanja s u stanje s’ preduzimanjem akcije 
a, tim redosledom. Neki prelazi su nemogući, te imaju verovatnoću 0 i nemaju dodeljenu 
nagrade.  

𝒔 𝒂 𝒔′ 𝒑(𝒔′ ∣ 𝒔, 𝒂) 𝒓(𝒔, 𝒂, 𝒔′) 
high idle high 1 𝑟௜ௗ௟௘ 

high idle low 0 - 

low idle low 1 0 

low idle high 0 - 

high discharge high α 𝑟ௗ௜௦௖௛௔௥௚௘ 

high discharge low 1-α 𝑟ௗ௜௦௖௛௔௥௚௘ 

low discharge low 1 −𝑟ௗ௜௦௖௛௔௥௚௘ 

low discharge high 0 - 

low recharge high 1 𝑟௥௘௖௛௔௥௚௘ 

low recharge low 0 - 

 

Slika 7. Graf prelaza u Markovljevom procesu odlučivanja 

 

Cilj agenta je da nauči da odabere najpogodnije akcije u datim stanjima okruženja, 
odnosno, akcije koje vode ka maksimalnoj dugoročnoj nagradi, to jest, očekivanom 
dobitku (eng. gain): 

𝐺௧  ≐ 𝑅௧ାଵ +  𝛾𝑅௧ାଶ + 𝛾ଶ𝑅௧ାଷ + ⋯ =  ෍ 𝛾௞𝑅{௧ା௞ାଵ}

ஶ

௞ୀ଴

, ( 5 ) 

gde:  

 𝑡 predstavlja trenutni vremenski korak u kojem agent donosi odluku, 

 𝑅{௧ା௞ାଵ} predstavlja neposrednu nagradu koju agent dobija u vremenskom 
koraku 𝑡 + 𝑘 + 1, 

 γ predstavlja hiper-parametar poznat kao faktor umanjenja (eng. discount rate) 
za koga važi 0 ≤ 𝛾 ≤ 1. Kada je 𝛾 = 0, agent maksimizira samo neposrednu 



 

20 

nagradu, dok se sa povećanjem γ prema vrednosti 1 uvećava fokus agenta na 
buduće nagrade.  

Primer 2.2 prikazuje značaj preciznog postavljanja ciljeva prilikom definisanja funkcije 
nagrade za agenta. U njemu su prikazana tri scenarija koja predstavljaju različite pristupe 
nagrađivanju, u zavisnosti od cilja: korišćenja električnog vozila kao skladišta energije, 
za prevoz, ili za kombinaciju oba. Ključna poruka je da funkcija nagrade mora biti 
usklađena sa konkretnim ciljem koji agent treba da ostvari. 

Primer 2.2 Vrednosti stanja i akcije iz primera 2.1 preslikavaju se u novi kontekst. 
Prilikom definisanje nagrade za električno vozilo (eng. Electric Vehicle, EV), ključno je 
jasno postaviti cilj koji agent treba da postigne. U ovom primeru posmatraju se tri 
različita cilja:  

(1) EV se koristi kao sistem za skladištenje električne energije,  

(2) EV se koristi isključivo za prevoz i  

(3) kombinacija prethodna dva cilja.  

Okruženje predstavlja EV priključeno na kućni energetski sistem, pri čemu se posmatra 
period od jednog dana (od 00:00 do 23:59). Sistem je pojednostavljen tako što je unapred 
poznato kada je EV u upotrebi i kada nije priključeno na kuću.  

U prvom scenariju, gde se EV koristi kao baterija, nagrade za prelaze stanja definišu se 
tako da podstiču akciju recharge kada je baterija u stanju low, dok se akcija discharge 
favorizuje kada je baterija u stanju high:  

 Nagrade 𝑟(ℎ𝑖𝑔ℎ, 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒, ℎ𝑖𝑔ℎ), 𝑟(ℎ𝑖𝑔ℎ, 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒, 𝑙𝑜𝑤) i 
𝑟(𝑙𝑜𝑤, 𝑟𝑒𝑐ℎ𝑎𝑟𝑔𝑒, ℎ𝑖𝑔ℎ) iznose +1, označavajući pozitivnu nagradu,  

 Nagrada 𝑟(𝑙𝑜𝑤, 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒, 𝑙𝑜𝑤) iznosi −1, predstavljajući negativnu 
nagradu.  

U drugom scenariju, uvodimo indikator lokacije koji pokazuje da li je EV priključen na 
kuću (home) ili nije (away). Pored toga, dodaje se nova akcija “vozi” (drive). Funkacija 
nagrade definisana je tako da podstiče vožnju EV kada je baterija u stanju high i povratak 
kući kada je baterija u stanju low. Sa druge strane, vožnja se obeshrabruje kada je baterija 
u stanju low. Radi pojednostavljenja, nagrade se dodeljuju samo za ključna stanja. 
Nagrade su definisane na sledeći način:  

 Nagrade 
𝑟([ℎ𝑖𝑔ℎ, ℎ𝑜𝑚𝑒], 𝑑𝑟𝑖𝑣𝑒, [ℎ𝑖𝑔ℎ, 𝑎𝑤𝑎𝑦]),
𝑟([ℎ𝑖𝑔ℎ, 𝑎𝑤𝑎𝑦], 𝑑𝑟𝑖𝑣𝑒, [ℎ𝑖𝑔ℎ, 𝑎𝑤𝑎𝑦]), 𝑟([𝑙𝑜𝑤, 𝑎𝑤𝑎𝑦], 𝑑𝑟𝑖𝑣𝑒, [𝑙𝑜𝑤, ℎ𝑜𝑚𝑒])  
iznose +1, 

 Nagrade 𝑟([𝑙𝑜𝑤, 𝑎𝑤𝑎𝑦], 𝑑𝑟𝑖𝑣𝑒, [𝑙𝑜𝑤, 𝑎𝑤𝑎𝑦]), 
𝑟([𝑙𝑜𝑤, ℎ𝑜𝑚𝑒], 𝑑𝑟𝑖𝑣𝑒, [𝑙𝑜𝑤, 𝑎𝑤𝑎𝑦])  iznose −1.  

U trećem scenariju, cilj je uspostavljanje ravnoteže između dva prethodno definisana cilja 
– korišćenja EV kao baterije dok je priključeno na kuću i efikasne upotrebe energije 
tokom vožnje. U stanje dodajemo faktor vremena kako bi se model prilagodio planiranju 
vožnje. Radi pojednostavljenja, vreme je diskretizovano, a periodi u kojima vozač planira 
polazak ili dolazak unapred su poznati. Vremenska komponenta uvedena u stanje se 
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računa kao apsolutna razlika između planiranog vremena polaska ili dolaska i trenutnog 
vremena. Ovaj scenario se neće detaljnije razmatrati zbog njegove složenosti. 

Za opisan MDP, politika (eng. policy) 𝜋 je funkcija koja svakom stanju s pridružuje 
raspodelu verovatnoća nad skupom akcija A(s). Ako agent u trenutku t postupa prema 
politici 𝜋, oznaka 𝜋(𝑎|𝑠) označava verovatnoću da će agent izvršiti akciju a u stanju s 
(Nikolic and Zecevic 2019). Deterministička politika je slučaj u kom agent izabira tačno 
jednu akciju u svakom stanju. Stohastička politika pridružuje verovatnoće akcijama, gde 
𝜋(𝑠, 𝑎) predstavlja raspodelu verovatnoća nad skupom akcija za dato stanje. Pri izboru 
akcije, agent može birati akciju sa najvećom verovatnoćom ili koristiti različite strategije 
za balansiranje istraživanja i eksploatacije. 

Funkcija vrednosti stanja (eng. state value function), poznata i kao vrednost stanja 𝑣(𝑠), 
definisana je kao očekivana dugoročna nagrada za primenu politike 𝜋 počev od stanja 𝑠: 

𝑣(𝑠) ≐ 𝔼[𝐺௧|𝑆௧ = 𝑠] = 𝔼 ൥෍ 𝛾௞𝑅௧ା௞ାଵ

ஶ

௞ୀ଴

อ 𝑆௧ = 𝑠൩ , za sve 𝑠 ∈ 𝑆 ( 6 ) 

gde: 
 𝐺௧ označava maksimalnu dugoročnu nagradu definisanu u jednačini (5) 
 𝑆௧ označava stanje u trenutku t 
 𝑅௧ା௞ାଵ označava neposrednu nagradu koju agent dobija u vremenskom koraku 

𝑡 + 𝑘 + 1 
 γ predstavlja faktor umanjenja. 

Funkcija vrednosti akcije u određenom stanju (eng. state-action value function), poznata 
i kao vrednost akcije a u stanju s, definiše se kao očekivana dugoročna nagrada koju 
agent dobija kada u stanju s odabere akciju a, nakon čega nastavlja da postupa u skladu 
sa politikom 𝜋. Ova funkcija formalno je definisana na sledeći način: 

𝑞(𝑠, 𝑎) ≐  𝔼[𝐺௧|𝑆௧ = 𝑠, 𝐴௧ = 𝑎] = 𝔼 ൥෍ 𝛾௞𝑅௧ା௞ାଵ

ஶ

௞ୀ଴

อ 𝑆௧ = 𝑠, 𝐴௧ = 𝑎൩, ( 7 ) 

gde: 
 𝐺௧ označava maksimalnu dugoročnu nagradu definisanu u jednačini (5), 
 𝑆௧ označava stanje u trenutku t, 
 𝐴௧ označava akciju agenta u stanju 𝑆௧, 
 𝑅௧ା௞ାଵ označava neposrednu nagradu koju agent dobija u vremenskom koraku 

𝑡 + 𝑘 + 1, 
 γ predstavlja faktor umanjenja. 

Funkcija vrednosti stanja (v) koristi se za procenu dugoročne nagrade, pri čemu razmatra 
isključivo trenutno stanje. Sa druge strane, funkcija vrednosti akcije u određenom stanju 
(q), prilikom procene dugoročne nagrade uzima u obzir i stanje i akciju.  

Obe funkcije vrednosti zadovoljavaju rekurentne relacijame (eng. recursive relationship) 
koje se nazivaju Belmanovim jednačinama (eng. Bellman equation) (Sutton and Barto 
2014). Za svako stanje 𝑠 i svaku politiku π važi Belmanova jednačina za 𝑣గ: 



 

22 

𝑣(𝑠) 

 

≐ 𝔼[𝐺௧|𝑆௧ = 𝑠] 

= 𝔼[𝑅௧ାଵ + 𝛾𝐺௧ାଵ|𝑆௧ = 𝑠] 

= ෍ (𝑎|𝑠)

௔

෍ 𝑝(𝑠ᇱ, 𝑟|𝑠, 𝑎)ൣ𝑟 + 𝛾𝔼[𝐺௧ାଵ|𝑆௧ାଵ = 𝑠′]൧

௦ᇲ,௥

 

= ෍ (𝑎|𝑠)

௔

෍ 𝑝(𝑠ᇱ, 𝑟|𝑠, 𝑎)[𝑟 + 𝛾𝑣(𝑠′)]

௦ᇲ,௥

. 

( 8 ) 

Slično, za svako stanje 𝑠 i svaku politiku π važi Belmanova jednačina za 𝑞గ: 

𝑞(𝑠, 𝑎) 

 

≐ 𝔼[𝐺௧|𝑆௧ = 𝑠, 𝐴௧ = 𝑎] 

= 𝔼[𝑅௧ାଵ + 𝛾𝐺௧ାଵ|𝑆௧ = 𝑠, 𝐴௧ = 𝑎] 

= ෍ 𝑝(𝑠ᇱ, 𝑟|𝑠, 𝑎)ൣ𝑟 + 𝛾𝔼[𝐺௧ାଵ|𝑆௧ାଵ = 𝑠ᇱ]൧

௦ᇲ,௥

 

= ෍ 𝑝(𝑠ᇱ, 𝑟|𝑠, 𝑎)[𝑟 + 𝛾𝑣(𝑠′)]

௦ᇲ,௥

 

= ∑ 𝑝(𝑠ᇱ, 𝑟|𝑠, 𝑎)[𝑟 + 𝛾 ∑ 𝜋(𝑎ᇱ|𝑠ᇱ)𝑞గ(𝑠ᇱ, 𝑎′)௔ᇲ  ]௦ᇲ,௥ . 

( 9 ) 

Funkcije vrednosti 𝑣గ, odnosno 𝑞గ predstavljaju jedinstveno rešenje odgovarajućih 
Belmanovih jednačina. Ove jednačine prestavljaju osnovu mnogih pristupa za računanje, 
aproksimaciju i učenje 𝑣గ i 𝑞గ, omogućavajući evaluaciju politika. Rešavanje problema 
učenja potkrepljivanjem svodi se na pronalaženje optimalne politike 𝜋∗, prema kojoj 
agent donosi odluke u okruženju s ciljem maksimizacije očekivane dugoročne nagrade. 
Politiku  smatramo boljom ili jednakom politici ′ ( ≥ ′) ako za sva stanja 𝑠 ∈ 𝑆 važi 
𝑣(𝑠) ≥ 𝑣ᇱ(𝑠). Uvek postoji najmanje jedna optimalna politika 𝜋∗ koja je bolja ili 
jednaka bilo kojoj drugoj politici (Nikolic and Zecevic 2019). 

Iako može postojati više optimalnih politika, sve dele iste funkcije 𝑣 i 𝑞: 

𝑣∗(𝑠) ≐  max


𝑣(𝑠),

𝑞∗(𝑠, 𝑎) ≐  max


𝑞(𝑠, 𝑎),
 ( 10 ) 

za svako stanje 𝑠 ∈ 𝑆 i akciju 𝑎 ∈ 𝐴. Funkcije vrednosti 𝑣∗ i 𝑞∗ su optimalne funkcije 
vrednosti. Takođe, 𝑣∗ se može definisati preko 𝑞∗ na sledeći način: 

𝑣∗(𝑠) ≐  max
௔

𝑞∗(𝑠, 𝑎), ( 11 ) 

Funkcije 𝑣∗ i 𝑞∗ mogu da se izraze Belmanovim jednakostima na sledeći način:    

𝑣∗(𝑠) =  max
௔

∑ 𝑝(𝑠ᇱ, 𝑟|𝑠, 𝑎)[𝑟 + 𝛾𝑣∗(𝑠′)]௦ᇲ,௥ , 

𝑞∗(𝑠, 𝑎) =  ∑ 𝑝(𝑠ᇱ, 𝑟|𝑠, 𝑎) ቂ𝑟 + 𝛾 max
௔ᇱ

𝑞∗(𝑠ᇱ, 𝑎′)ቃ௦ᇲ,௥ . 
( 12 ) 
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Poznajući funkcije 𝑣∗ ili 𝑞∗ moguće je izračunati barem jednu optimalnu politiku. 
Najpoželjnija akcija 𝑎 u stanju s je ona koja daje najveću očekivanu nagradu, gde je 
optimalna deterministička politika definisana na sledeći način: 

𝜋∗(𝑎|𝑠) = ቊ
1 𝑎𝑘𝑜 𝑣𝑎ž𝑖 𝑎 = argmax

௔
𝑞∗(𝑠, 𝑎) ,

0 𝑖𝑛𝑎č𝑒.
 

Posmatrajući 𝑞∗, najveća očekivana dugoročna nagrada pri preuzimanju akcije 𝑎 u stanju 
𝑠 zavisi od neposredne dobijene nagrade 𝑟 i najveće dugoročne nagrade iz novog stanja 
𝑠ᇱu koje agent prelazi nakon preduzimanja akcije 𝑎′. Težinski faktor u ovom proračunu 
predstavlja verovatnoća prelaska iz stanja 𝑠 u stanje 𝑠′ pri akciji 𝑎, koja rezultuje 
nagradom 𝑟, data u jednačini ( 4 ). 

Osnovni problem učenja potkrepljivanjem je određivanje optimalnih funkcija vrednosti 
za stanja i akcije u stanju, odnosno, pronalaženje optimalne politike. U slučaju poznatog 
okruženja, agent poseduje kompletan i tačan model dinamike okruženja. Ako je 
okruženje MDP, taj model je definisan funkcijom prelaska stanja (jednačina ( 4 )). U tom 
slučaju, funkcije vrednosti mogu se tačno izračunati korišćenjem Belmanovih jednačina. 
Međutim, u realnim scenarijima, okruženje je često nepoznato, što znači da agent nema 
pristup kompletnom i tačnom modelu okruženja. U takvim situacijama pribegava se 
metodama približnog računanja ili učenju kroz interakciju sa okruženjem. 

U slučaju nepoznatog okruženja, agent primenjuje različite akcije kako bi istražio 
okruženje sa ciljem da nauči optimalnu politiku 𝜋∗. U odgovarajućem MDP, agent 
sakuplja informaciju o funkciji ( 4 ) na dva načina : 

 U skladu sa politikom (eng. on-policy) – agent optimizuje istu politiku koju 
koristi za odabir akcija. Drugim rečima, politika koju agent koristi za interakciju 
sa okruženjem je ista politika koju pokušava da poboljša.  

 Mimo politike (eng. off-policy) –  agent koristi različite politike za odabir akcija 
(istraživanje)  od onih koje optimizuje (ciljne politike). To znači da agent može 
da koristi jednu politiku za istraživanje okruženja, dok istovremeno uči i 
poboljšava drugu politiku. 

Potpoglavlja 2.2.1.1 i 2.2.1.2 obrađuju Q-učenje (eng. Q-Learning), duboku Q-mrežu 
(eng. Deep Q-Network, DQN) i dvostruku duboku Q-mreža (eng. Double Deep Q-
Network, DDQN), koji pripadaju algoritmima učenja potkrepljivanjem mimo politike. Q-
učenje predstavlja klasičan algoritam koji koristi tabelarni pristup za procenu očekivane 
dugoročne nagrade. DQN proširuje ovaj pristup zamenom tabele neuronskom mrežom, 
što omogućava primenu u okruženjima sa velikim ili kontinuiranim skupovima stanja. 
DDQN dodatno unapređuje DQN uvođenjem dve odvojene mreže – jedne za selekciju 
akcije, a druge za njenu evaluaciju – čime se postiže stabilnije i preciznije učenje. 
Potpoglavlje 2.2.1.3 obrađuje algoritam proksimalne optimizacije politike, koji pripada 
grupi algoritama učenja potkrepljivanjem u skladu sa politikom. 

2.2.1.1 Q-učenje 

Metoda učenja trenutnih razlika (eng. temporal difference, TD) predstavlja pristup učenju 
na osnovu iskustva, bez potrebe za eksplicitnim modelom okruženja. TD metode vrše 
procene funkcije vrednosti koristeći razliku između trenutne procene funkcije vrednosti 
i novodobijene informacije dobijene iz narednog koraka.  
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Jedan od najpoznatijih TD algoritma je Q-učenje (Sutton and Barto 2014). Kod Q-učenja, 
procena funkcije vrednosti akcije u datom stanju (Q-funkcija) se ažurira na osnovu 
neposredne nagrade i maksimalne procenjene vrednosti narednog stanja, pri svakoj 
interakciji sa okruženjem, bez potrebe za eksplicitnim modelom dinamike okruženja 
(Lonza 2019). Ovaj algoritam zasniva se na sledećem pravilu ažuriranja funkcije 
vrednosti (Watkins 1989): 

 

( 13 ) 

gde 𝛼 označava stopu učenja (eng. learning rate), a 𝛾 faktor umanjenja. TD cilj 
predstavlja zbir nagrade 𝑅௧ାଵ nakon preduzimanja akcije 𝐴௧ i maksimalne Q-vrednosti 
sledećeg stanja 𝑆௧ାଵ, procenjene na osnovu pohlepne politike. TD greška se računa kao 
razlika TD cilja i prethodne procenjene Q-vrednosti. 

Kao politika ponašanja najčešće se koristi 𝜀-pohlepna politika (eng. ε-greedy policy), 
koja predstavlja kompromis između istraživanja i eksploatacije (eng. exploration-
exploitation tradeoff). Većinu vremena agent se oslanja na eksploataciju – sa 
verovatnoćom 1 − ε bira akciju koja maksimizuje trenutnu procenu Q-funkcije, odnosno, 
akciju za koju se očekuje najveća dugoročna nagrada. Da bi obezbedio istraživanje, 
odnosno prikupljanje novih informacija o okruženju, agent sa malom verovatnoćom ε >

0 nasumično bira jednu od dostupnih akcija, pri čemu sve imaju jednaku verovatnoću 
odabira. Odabir akcije prema 𝜀-pohlepnoj politici može se formalno izraziti na sledeći 
način:  

𝜋(𝑠, 𝑎) = ൞

𝜀

|𝐴(𝑠)|
, za sve akcije 𝑎 ≠ argmax

௔ᇲ
𝑄(𝑠, 𝑎ᇱ),

1 − 𝜀 +
𝜀

|𝐴(𝑠)|
, za akciju 𝑎 = argmax

௔ᇲ
𝑄(𝑠, 𝑎ᇱ) .

 ( 14 ) 

Algoritam 1 prikazuje pseudokod za algoritam Q-učenja. Algoritam započinje 
inicijalizacijom vrednosti Q-funkcije na proizvoljne vrednosti za sve parove stanja i 
akcija. Vrednosti terminalnih stanja se inicijalizuju na 0, dok se ostale vrednosti 𝑄(𝑠, 𝑎) 
tipično postavljaju na 0 radi pojednostavljenja, iako je moguće koristiti i druge početne 
vrednosti. Tokom svake epizode, u svakom vremenskom koraku 𝑡, bira se akcija 𝐴௧ u 
skladu sa politikom ponašanja, koja je najčešće ε-pohlepna politika. Nakon što se akcija 
𝐴௧ prosledi okruženju, agent dobija sledeće stanje 𝑆௧ାଵ, nagradu 𝑅௧ାଵ i indikator kraja 
epizode 𝑑𝑜𝑛𝑒. Na osnovu ovih informacija agent ažurira procenu Q-vrednosti prema 
pravilu ažuriranja iz jednačine ( 13 ). Na kraju svake epizode, stopa istraživanja 𝜀 se 
obično smanjuje prema unapred definisanom rasporedu, kako bi agent postepeno prelazio 
sa istraživanja na eksploataciju.  
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Po završetku procesa učenja, agent definiše ciljnu politiku 𝜋∗(𝑠) kao determinističku 
politiku koja u svakom stanju bira akciju sa najvećom naučenom Q-vrednošću:  

𝜋∗(𝑠) = argmax
௔

𝑄(𝑠, 𝑎). 

Na ovaj način, agent prelazi sa istraživanja na eksploataciju i koristi naučene vrednosti 
za optimalno donošenje odluka. 

Algoritam 1. Q-učenje 
 Ulaz:  

 𝑏𝑟𝑜𝑗_𝑒𝑝𝑖𝑧𝑜𝑑𝑎 – ukupan broj epizoda 

 α ∈ (0,1] – stopa učenja 

 𝛾 – faktor umanjenja 

 𝜀 – početna stopa istraživanja 

 𝜀௠௜௡ – minimalna vrednost ε 

 𝜀ௗ௘௖௔௬ – stopa smanjenja  ε  
 𝑄(𝑠, 𝑎) – inicijalizovana Q-tabela (na primer, 𝑄(𝑠, 𝑎) = 0 za sve 𝑠 ∈ 𝑆 i 𝑎 ∈ 𝐴(𝑠)). 

1 for 𝑒𝑝𝑖𝑧𝑜𝑑𝑎 in broj_epizoda do 
2  Restartuj okruženje i inicijalizuj početno stanje 𝑆଴ 
3  for 𝑡 = 1 𝑑𝑜 𝑘𝑟𝑎𝑗𝑎 𝑒𝑝𝑖𝑧𝑜𝑑𝑒 do (dok 𝑑𝑜𝑛𝑒 = 𝐹𝑎𝑙𝑠𝑒) 
4   Izabrati akciju 𝐴௧ koristeći politiku ponašanja (na primer, 𝜀-pohlepnu politiku prema 

jednačini ( 13 ) 
5   Izvršiti akciju 𝐴௧ i dobaviti (𝑆௧ାଵ, 𝑅௧ାଵ, 𝑑𝑜𝑛𝑒) iz okruženja 
6   Ažurirati Q-vrednost prema pravilu ažuriranja iz jednačine ( 13 ) 
7   Postaviti 𝑆௧ ← 𝑆௧ାଵ 
8  end 
9  Ažurirati stopu istraživanja: 𝜖௧ାଵ ← max൫𝜀௠௜௡ , 𝜖௧ ⋅ 𝜀ௗ௘௖௔௬൯ 

10 end 
 

2.2.1.2 Duboka Q-mreža i dvostruka duboka Q-mreža 

Dimenzije Q-tabele eksponencijalno rastu sa porastom veličine skupova stanja i akcija , 
što dovodi do visokih zahteva za memorijom i otežava primenu klasičnog Q-učenja u 
složenim okruženjima. DQN algoritam (Mnih et al. 2013)  razvijen je kako bi omogućio 
primenu Q-učenja u realističnim scenarijima sa velikim ili kontinuiranim prostorima 
stanja. Umesto eksplicitnog čuvanja Q-vrednosti u tabeli, DQN koristi neuronsku mrežu 
za aproksimaciju funkcije vrednosti akcije (Q-funkcije) na osnovu karakteristika stanja. 
Neuronska mreža se obučava da precizno aproksimira optimalnu funkciju vrednosti 
𝑞∗(𝑠, 𝑎).Na taj način, omogućena je generalizacija na stanja koja nisu eksplicitno 
posećena tokom učenja, kao i značajno efikasnije korišćenje memorijskih resursa.  

U DQN algoritmu koristi se mehanizam poznat kao memorija za ponovno iskustvo 
(experience replay), koji omogućava efikasnije i stabilnije učenje. U svakom 
vremenskom koraku, iskustvo agenta u obliku četvorke (𝑠௧ , 𝑎௧ , 𝑟௧ , 𝑠௧ାଵ) se smešta u 
memoriju 𝐷. Ova memorija akumulira podatke iz više epizoda, omogućavajući 
višestruko korišćenje prethodnih iskustva tokom treniranja mreže. Veličina memorije 
predstavlja jedan od hiperparametara algoritma. Za ažuriranje parametara mreže, iz 
memorije 𝐷 se nasumično uzorkuje podskup četvorki, čime se prekida korelacija između 
uzastopnih uzoraka. Nasuprot tome, u klasičnom Q-učenju ažuriranja se vrše direktno na 
osnovu uzastopnih stanja, što može izazvati visoku varijansu ažuriranja usled 
međuzavisnosti uzoraka. 
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U DQN algoritmu koriste se dve neuronske mreže: mreža politike (Q-mreža) i ciljna 
mreža (eng. target network) (Mnih et al. 2015). Ulaz u Q-mrežu čine karakteristike stanja 
𝑠௧, dok izlaz predstavlja vektor procenjenih Q-vrednosti za sve dozvoljene akcije. Ciljna 
mreža ima istu arhitekturu kao mreža politike, ali se njeni parametri 𝜃ᇱ ažuriraju ređe – 
periodičnim kopiranjem vrednosti iz Q-mreže (parametara 𝜃). Ovaj mehanizam, poznat 
kao zamrzavanje ciljne mreže (eng. target freezing), doprinosi stabilnijem učenju tako 
što sprečava oscilacije u ciljnim vrednostima. Parametri Q-mreže ažuriraju se 
minimizacijom greške između procenjene Q-vrednosti 𝑄(𝑠௧ାଵ, 𝑎௧; 𝜃) i ciljne vrednosti 𝑦, 
definisane kao: 

𝑦 = ቊ
𝑟௧ାଵ, ako je s௧ାଵ terminalno stanje,

𝑟௧ାଵ + 𝛾 max
௔ᇱ

𝑄(𝑠௧ାଵ, 𝑎ᇱ; 𝜃ᇱ) inače.  ( 15 ) 

Greška koja se minimizuje tokom obuke definiše se sledećom funkcijom gubitka: 

𝐿(𝜃) =  𝔼(௦,௔,௥,௦`)∼𝒟 ቂ൫𝑦 − 𝑄(𝑠, 𝑎; 𝜃)൯
ଶ

ቃ. ( 16 ) 

Algoritam 2 prikazuje tok DQN algoritma. Obučavanje se odvija u dve faze:  

 Uzorkovanje: agent izvršava akcije u okruženju i beleži iskustva u obliku torki 
(𝑠௧ , 𝑎௧ , 𝑟௧ , 𝑠௧ାଵ), koje se smeštaju u memoriju za ponovno iskustvo. 

 Obučavanje: nasumično se uzorkuje podskup torki iz memorije, na osnovu 
kojih se ažuriraju parametri mreže. 

Prvi korak podrazumeva inicijalizaciju parametara, uključujući kapacitet memorije za 
ponovno iskustvo 𝒟, kao i početne vrednosti parametara mreže politike 𝜃 i ciljne mreže 
𝜃ᇱ = 𝜃. Na početku svake epizode okruženje se resetuje i dobija se početno stanje. U 
svakom vremenskom koraku agent bira akciju korišćenjem 𝜀-pohlepne politike 
zasnovane na procenama Q-vrednosti iz mreže politike. Nakon primene akcije nad 
okruženjem, dobijaju se sledeće stanje, nagrada i indikator kraja epizode. Iskustvo u 
obliku torke (𝑠௧ , 𝑎௧ , 𝑟௧ , 𝑠௧ାଵ, 𝑑𝑜𝑛𝑒) smešta se u memoriju za ponovno iskustvo. Kada u 
memoriji postoji dovoljan broj torki, nasumično se uzorkuje podskup, na osnovu koga se 
izračunava ciljna vrednost 𝑦 prema jednačini ( 15 ). Mreža politike se potom obučava 
minimizacijom greške između 𝑄(𝑠௧ାଵ, 𝑎௧; 𝜃) i 𝑦, kako je definisano formulom ( 16 ). 
Konačno, parametri ciljne mreže 𝜃ᇱse periodično ažuriraju kopiranjem iz mreže politike. 

Algoritam 2. DQN algoritam 
 Ulaz:  

 𝑏𝑟𝑜𝑗_𝑒𝑝𝑖𝑧𝑜𝑑𝑎 – ukupan broj epizoda 

 𝑁௕௔௧௖௛ – veličina podskupa torki uzorkovanih iz memorije za ponovno iskustvo 

 𝐷 – kapacitet memorije za ponovno iskustvo 

 𝐶 – broj koraka nakon kojih se parametri mreže politike kopiraju u ciljnu mrežu 
1 Postavka kapaciteta memorije za ponovljeno iskustvo na 𝐷 
2 Inicijalizacija parametra mreže politike θ i postavka 𝜃ᇱ ← 𝜃 
3 for 𝑒𝑝𝑖𝑧𝑜𝑑𝑎=1 do broj_epizoda: 
4  Restartuj okruženje i postavi početno stanje 𝑆଴ 
5  for 𝑡 = 1 𝑑𝑜 𝑘𝑟𝑎𝑗𝑎 𝑒𝑝𝑖𝑧𝑜𝑑𝑒 do: (dok 𝑑𝑜𝑛𝑒 = 𝐹𝑎𝑙𝑠𝑒) 
6   Izabrati akciju 𝐴௧ korišćenjem politike ponašanja (npr., 𝜀-pohlepne politike ( 13 )) 
7   Izvršiti akciju 𝐴௧ i dobaviti (𝑆௧ାଵ, 𝑅௧, 𝑑𝑜𝑛𝑒) iz okruženja 
8   Smestiti torku (𝑆௧, 𝐴௧, 𝑅௧,  𝑆௧ାଵ, 𝑑𝑜𝑛𝑒) u memoriju za ponovno iskustvo 
9   Uzorkovati nasumični podskup od 𝑁௕௔௧௖௛ torki iz memorije za ponovno iskustvo 
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10   Izračunati ciljnu vrednost 𝑦 korišćenjem jednačine ( 15 ) 
11   Ažurirati parametre θ minimizacijom gubitka iz jednačine ( 16 ) 
12   Ako je broj koraka deljiv sa 𝐶, postavi 𝜃ᇱ ← 𝜃 
13  end 
14 end 

Jedan od ključnih problema DQN algoritma je tendencija ka precenjivanju vrednosti 
akcija, jer se ista mreža koristi i za izbor akcije i za procenu njene vrednosti. Algoritam 
DDQN unapređuje DQN razdvajanjem ovih uloga na dve odvojene neuronske mreže:  

 Mreža politike (eng. policy network, 𝑄) koristi se za izbor akcije sa najvećom 
procenjenom Q-vrednošću u sledećem stanju. 

 Ciljna mreža 𝑄ᇱ (eng. target network) koristi se za procenu vrednosti izabrane 
akcije u sledećem stanju.  

Ova modifikacija redukuje pristrasnost ka precenjivanju Q-vrednosti i doprinosi 
stabilnijem učenju (Hasselt et al. 2015). Pravilo ažuriranja u DDQN algoritmu ima 
sledeći oblik: 

𝑄(𝑆௧ , 𝐴௧) ← 𝑄(𝑆௧ , 𝐴௧) +  

𝛼 ൤𝑅௧ାଵ + 𝛾𝑄ᇱ ൬𝑆௧ାଵ, argmax
௔

𝑄(𝑆௧ାଵ, 𝑎)൰ − 𝑄(𝑆௧ , 𝐴௧)൨. 
( 17 ) 

Ciljna vrednost 𝑦௧  koja se koristi za treniranje mreže politike, računa se prema 
sledećem izrazu: 𝑎௠௔௫ = 𝑎𝑟𝑔max

௔ᇲ
𝑄(𝑠௧ାଵ, 𝑎ᇱ; 𝜃) 

𝑦௧ = ൜
𝑟௧ାଵ, ako je 𝑠௧ାଵterminalno stanje,

𝑟௧ାଵ + 𝛾𝑄′(𝑠௧ାଵ, 𝑎௠௔௫ ; 𝜃′), inače.
 

(18) 

Zabeležene torke iz memorije za ponovno iskustvo koriste se za ažuriranje mreže politike 
𝑄, dok se parametri ciljne mreže 𝑄′ ažuriraju periodično, kopiranjem iz mreže politike. 
U poređenju sa Algoritam 2, ključna razlika u pseudokodu za DDQN nalazi se u liniji 10, 
gde se ciljna vrednosti  računa prema formuli (18), umesto korišćenja maksimalne Q-
vrednosti iz iste mreže. 

2.2.1.3 Proksimalna optimizacija politike  

Za razliku od Q-učenja, DQN i DDQN algoritama, koji pripadaju metodama učenja sa 
funkcijom vrednosti, algoritam PPO (eng. Proximal Policy Optimization) pripada grupi 
metoda gradijenta politike (eng. policy gradient methods). Ove metode uče politiku 
𝜋(𝑎|𝑠) direktno, bez eksplicitnog modelovanja Q-funkcije. Pregled ključnih razlika 
između Q-učenja, DQN/DDQN i PPO algoritama dat je u tabeli 2. 

Tabela 2. Uporedna analiza algoritama Q-učenje, DQN/DDQN i PPO 

Karakteristike Q-učenje DQN/DDQN PPO 
Tip metode Tabelarna metoda sa 

funkcijom vrednosti 
Funkcija vrednosti sa 
aproksimacijom pomoću 
neuronske mreže 

Gradijent politike (akter-
kritičar pristup) 

Reprezentacija Q-tabela Neuronska mreža 
aproksimira 𝑄(𝑠, 𝑎) 

Politika 𝜋(𝑎|𝑠) 

Funkcija 
vrednosti 

𝑄(𝑠, 𝑎) 𝑄(𝑠, 𝑎) 𝑉(𝑠), 𝐴(𝑠, 𝑎) 
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Politika 
ponašanja 

𝜀- pohlepna politika 𝜀-pohlepna politika Direktna politika sa 
ograničenjem promene 
(clipping) 

Ažuriranje 
parametara 

TD pravilo MSE između Q-vrednosti 
i ciljne vrednosti 

Maksimizacija ciljne funkcije 
𝐿஼௅ூ௉ 

Stabilizacija 
učenja 

Nema Memorija za ponovno 
iskustvo i ciljna mreža 

Odsecanje promene politike, 
funkicija prednosti 
(advantage), podskupovi 
(minibatch) 

Prostor akcija Diskretan Diskretan Podržava diskretan i 
kontinuiran prostor akcija 

Prostor stanja Diskretan i 
niskodimenzioni 

Podržani su kontinuirani i 
visokodimenzioni prostori 
stanja 

Podržani su kontinuirani i 
visokodimenzioni prostori 
stanja 

PPO algoritam se zasniva na akter-kritičar (eng. actor-critic) metodama učenja, koje 
pripadaju kategoriji učenja u skladu sa politikom. Akter (eng. actor) predstavlja 
neuronsku mrežu koja uči politiku 𝜋(𝑎|𝑠), odnosno, verovatnoću izbora akcije u datom 
stanju. Kritičar (eng. critic) je neuronska mreža koja procenjuje kvalitet ponašanja aktera, 
najčešće kroz procenu funkcije vrednosti stanja 𝑉(𝑠). Na osnovu te procene, izračunava 
se funkcija prednosti 𝐴(𝑠, 𝑎), koja se koristi za ažuriranje parametara aktera. Time se 
unapređuje politika tako da povećava verovatnoću izbora akcija koje vode ka većoj 
dugoročnoj nagradi.  

Proces učenja u PPO algoritmu podrazumeva procenu ciljne funkcije vrednosti 𝑉௧
௧௔௥௚௘௧  i 

funkcije prednosti 𝐴௧. Ove vrednosti izračunavaju se pre ažuriranja parametara mreža, na 
osnovu prethodne verzije politike 𝜋ఏ೚೗೏

 funkcije vrednosti stanja 𝑉ఏ೚೗೏
 (Schulman et al. 

2017). Ciljna vrednost 𝑉௧
௧௔௥௚௘௧  predstavlja umanjenju dugoročnu nagradu dobijenu nakon 

izvršene akcije 𝑎௧ u stanju 𝑠௧, i računa se kao (Mnih et al. 2016): 

𝑉௧
௧௔௥௚௘௧

= 𝑟௧ +  𝛾𝑟௧ାଵ + 𝛾ଶ𝑟௧ାଶ + ⋯ + 𝛾௡ିଵ𝑟௧ା௡ିଵ + 𝛾௡𝑉ఏ೚೗೏
(𝑠௧ା௡). ( 19 ) 

U ( 19 ), parametar 𝑛 označava broj koraka unapred tokom kojih se akumuliraju nagrade 
pre nego što se izvrši procena vrednosti iz stanja 𝑠௧ା௡ korišćenjem aproksimatora 
vrednosti (eng. bootstrap) (Nikolic and Zecevic 2019).  

Funkcija prednosti 𝐴௧ meri koliko je konkretan ishod – odnosno, dugoročna nagrada – 
bio bolji ili lošiji od očekivane vrednosti stanja, koju procenjuje kritičar. Formalno, 
definiše se kao razlika između ciljne vrednosti i vrednosti trenutnog stanja (Schulman et 
al. 2017), (Mnih et al. 2016): 

𝐴௧ = 𝑉௧
௧௔௥௚௘௧

− 𝑉ఏ೚೗೏
(𝑠௧).  ( 20 ) 

Empirijski je pokazano da akter-kritičar metode često pate od nestabilnosti, pri čemu čak 
i jedan loše odabran korak ažuriranja može značajno narušiti performanse (Sun et al. 
2025). PPO algoritam ublažava ovu nestabilnost ograničavanjem veličine promene 
politike putem mehanizma odsecanja (eng. clipping) u ciljnoj funkciji optimizacije. 
Ciljna funkcija optimizacije 𝐿஼௅ூ௉ koristi se za ažuriranje mreže aktera (eng. PPO policy 
network) (Bick, 2021) i definisana je kao: 

𝐿஼௅ூ௉(𝜃) =  𝔼෡௧[min(𝑝௧(𝜃)𝐴௧ , 𝑐𝑙𝑖𝑝(𝑝௧(𝜃), 1 − 𝜖, 1 + 𝜖)𝐴௧)], ( 21 ) 
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gde je 𝑝௧() odnos između trenutne i prethodne politike (Schulman et al. 2017) (Kakade 
and Langford 2002), definisan kao: 

𝑝௧() =
(𝑎௧|𝑠௧)

೚೗೏
(𝑎௧|𝑠௧)

. ( 22 ) 

Odnos 𝑝௧() predstavlja količnik verovatnoća: ako je 𝑝௧( ) > 1, akcija 𝑎௧ u stanju 𝑠௧ 
ima veću verovatnoću odabira pod trenutnom politikom  nego pod prethodnom 
politikom. Suprotno važi za dok za 0 < 𝑝௧( ) < 1. 

Ciljna funkcija 𝐿஼௅ூ௉ ima dva ključna efekta: 

1. Konzervativnu procenu učinka politike – vrednost funkije uzima minimum 
između standardnog (eng. unclipped) izraza 𝑝௧(𝜃)𝐴௧ i ograničenog (eng. 
clipped) izraza 𝑐𝑙𝑖𝑝(𝑝௧(𝜃), 1 − 𝜖, 1 + 𝜖)𝐴௧). Time se ublažava uticaj prevelikih 
oscilacija u ažuriranju. 

2. Sprečavanje prevelikih promena politike – funkcija onemogućava da se 
značajno poveća verovatnoća odabira akcije 𝑎௧ u stanju 𝑠௧, naročito u 
slučajevima kada su prethodna ažuriranja već dovela do poboljšanja. Ova 
restrikcija se sprovodi putem faktora 𝑐𝑙𝑖𝑝(𝑝௧(𝜃), 1 − 𝜖, 1 + 𝜖), koji ograničava 
koliko se odnos verovatnoća između trenutne i prethodne politike može udaljiti 
od 1 (Bick, 2021): 

𝑐𝑙𝑖𝑝(𝑝௧(𝜃), 1 − 𝜖, 1 + 𝜖) = ቐ

1 − 𝜖, ako 𝑝௧(𝜃) < 1 − 𝜖,

1 + 𝜖, ako 𝑝௧(𝜃) > 1 + 𝜖,

𝑝௧(𝜃),            inače.

 ( 23 ) 

Ovaj efekat ilustrovan je na slici 8, gde se prikazuje kako se vrednost odnosa verovatnoća 
𝑝௧(𝜃) održava unutar intervala [1 − 𝜖, 1 + 𝜖], čak i nakon više epoha ažuriranja težina 
nad istim podacima za obuku. 

Radi boljeg razumevanja načina na koji mehanizam odsecanja u PPO funkcioniše u 
praksi, tabela 3 prikazuje sve moguće kombinacije odnosa verovatnoća 𝑝௧(𝜃) i znaka 
funkcije prednosti 𝐴௧. Tabela prikazuje kada dolazi do odsecanja ciljne funkcije 𝐿஼௅ூ௉(𝜃), 
da li se parametri mreže ažuriraju, kao i u kom pravcu se politika menja: 

 Kada je 1 − 𝜖 ≤ 𝑝௧(𝜃) ≤ 1 + 𝜖 ciljna funkcija se ne odseca, nezavisno od 
znaka funkcije prednosti 𝐴௧. U redu 1, kada je 𝐴௧ > 0, akcija je bolja od 
očekivane vrednosti svih dostupnih akcija u stanju 𝑠௧, te se verovatnoća njenog 
izbora povećava. U redu 2, kada je 𝐴௧ < 0, akcija je lošija od očekivanja, pa se 
verovatnoća njenog izbora smanjuje. U oba slučaja, gradijent je prisutan i 
parametri politike se ažuriraju. 

 U redovima 3 i 4, analiziraju se slučajevi kada je 𝑝௧(𝜃)  < 1 − 𝜖, što znači da 
trenutna politika dodeljuje akciji manju verovatnoću u poređenju sa prethodnom 
politikom. U redu 3, 𝐴௧ > 0, što implicira da bi verovatnoću izbora akcije 
trebalo povećati. Funkcija se ne odseca i vrši se ažuriranje. U redu 4, 𝐴௧ < 0, 
akcija je nepovoljna, a politika je već umanjila njenu verovatnoću. Funkcija se 
odseca, gradijent je jednak nuli i ne dolazi do ažuriranja težina. 

 U redovima 5 i 6, slučajevi sa 𝑝௧(𝜃) > 1 + 𝜖 ukazuju da trenutna politika 
značajno favorizuje akciji u odnosu na prethodnu politiku. U redu 5, 𝐴௧ > 0, što 
znači da je akcija dobra, ali je politika već povećala verovatnoću više nego što 
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je dozvoljeno. Funkcija se odseca, gradijent je nula i nema ažuriranja težina. U 
redu 6, 𝐴௧ < 0, što implicira da akciju treba obeshrabriti. Funkcija se ne odseca, 
gradijent je prisutan i verovatnoća izbora akcije se smanjuje.    

Ukratko, politika se ažurira ukoliko: 

 𝑝௧(𝜃) ∈ [1 − 𝜖, 1 + 𝜖] (redovi 1 i 2), 
 Kada 𝑝௧(𝜃) ∉ [1 − 𝜖, 1 + 𝜖], ali znak 𝐴௧ sugeriše korektivnu promenu ka 

intervalu:  
o 𝑝௧(𝜃)  < 1 − 𝜖, 𝐴௧ > 0  (red 3), 
o 𝑝௧(𝜃) > 1 + 𝜖, 𝐴௧ < 0 (red 6). 

Tabela 3. Klasifikacija ponašanja ciljne funkcije 𝐿஼௅ூ௉(𝜃) i ažuriranje parametara u 
zavisnosti od odnosa verovatnoća 𝑝௧(𝜃) i funkcije prednosti 𝐴௧. 

R
e
d 

𝒑𝒕(𝜽) > 𝟎 𝑨𝒕 Povratna 
vrednost 
od 𝐦𝐢𝐧 

Da li je ciljna funkcija 
𝑳𝑪𝑳𝑰𝑷(𝜽) odsečena  

Znak 
𝑨𝒕 

Gradijent 

1 𝒑𝒕(𝜽) ∈ [𝟏 − 𝝐, 𝟏 + 𝝐] + 𝑝௧(𝜃)𝐴௧ ne +  
2 𝒑𝒕(𝜽) ∈ [𝟏 − 𝝐, 𝟏 + 𝝐] − 𝑝௧(𝜃)𝐴௧ ne −  
3 𝒑𝒕(𝜽)  < 𝟏 − 𝝐 + 𝑝௧(𝜃)𝐴௧ ne +  
4 𝒑𝒕(𝜽)  < 𝟏 − 𝝐 − (1 − 𝜖)𝐴௧ da − 0 
5 𝒑𝒕(𝜽) > 𝟏 + 𝝐 + (1 + 𝜖)𝐴௧ da + 0 
6 𝒑𝒕(𝜽) > 𝟏 + 𝝐 − 𝑝௧(𝜃)𝐴௧ ne −  

 

 

Slika 8. Vizualizacija mehanizma odsecanja u PPO algoritmu za pozitivne i negativne 
vrednosti funkcije prednosti 𝐴௧. Leva strana prikazuje slučaj kada je 𝐴௧ > 0: odsecanje 
ograničava rast ciljne funkcije za visoke vrednosti odnosa verovatnoća 𝑝௧(𝜃), koje 
označavaju da trenutna politika favorizuje akciju 𝑎௧ znatno više nego prethodna. Desna 
strana prikazuje slučaj kada je 𝐴௧ < 0: ograničava se pad vrednosti funkcije za niske 
vrednosti 𝑝௧(𝜃), koje ukazuju da trenutna politika daje znatno manju verovatnoću toj 
akciji u poređenju sa prethodnom politikom.  

Algoritam 3 prikazuje pseudokod PPO algoritma, koji podrazumeva iterativno ažuriranje 
stohastičke politike 𝜋ఏ  (parametri mreže aktera 𝜃) i funkcije vrednosti stanja 𝑉థ(s) 
(parametri mreže kritičara 𝜙). U svakoj iteraciji, agent izvršava trenutnu politiku 𝜋ఏೖ

 u 
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okruženju i generiše skup trajektorija 𝐷௞ = {𝜏௜}. Na osnovu ovih trajektorija 
izračunavaju se umanjene dugoročne nagrade 𝑅෠௧ i procene funkcija prednosti 𝐴መ௧. Ove 
vrednosti se koriste za ažuriranje: 

 Politike, maksimizacijom ciljne funkcije 𝐿஼௅ூ௉.  
 Kritičara, minimizacijom srednje kvadratne greške između procene 𝑉థ(s) i 

ciljne vrednosti 𝑅෠௧.  

Algoritam 3. PPO  

 

Ulaz:  
 𝜀 – parameter odsecanja (eng. clipping) 

 𝑇 – broj vremenskih koraka po trajektoriji  
1 Inicijalizacija parametara politike 𝜃଴ i vrednosne funkcije 𝜙଴ 
2 for 𝑘 = 1,2,3 … do 
3  Izvrši politiku π஘ౡ

 u okruženju i generiši skup trajektorija 𝐷௞ = {𝜏௜} 

4  Izračunaj umanjenje dugoročne nagrade 𝑅෠௧ za svaku trajektoriju 
5  Izračunaj procenu prednosti 𝐴መ௧ ( 19) i ( 20) korišćenjem trenutne funkcije vrednosti 𝑉థೖ
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 Ažuriraj parametare aktera maksimizacijom ciljne funkcije 𝐿஼௅ூ௉: 

𝜃௞ାଵ = 𝑎𝑟𝑔max
థ

1

|𝐷௞|𝑇
෍ ෍ min ൭

𝜋ఏ(𝑎௧|𝑠௧)

𝜋ఏೖ
(𝑎௧|𝑠௧)

𝐴గഇೖ (𝑠௧, 𝑎௧), 𝑔൫𝜀, 𝐴గഇೖ (𝑠௧, 𝑎௧)൯൱

்

௧ୀ଴ఛ∈஽ೖ
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 gde funckija 𝑔 primenjuje ograničenje (clipping) nad vrednostima prednosti.   
Ažuriraj parametre funkcije vrednosti minimizacijom srednje kvadratne greške: 

𝜙௞ାଵ = 𝑎𝑟𝑔min
థ

1

|𝐷௞|𝑇
෍ ෍൫𝑉థ(𝑠௧) − 𝑅෠௧൯

ଶ
்

௧ୀ଴ఛ∈஽ೖ

 

8 end 
 

2.2.1.4 Određivanje uticaja karakteristika stanja na odluke modela učenja 
potkrepljivanjem 

Analiza uticaja karakteristika stanja na odluke modela učenja potkrepljivanjem zasniva 
se na kombinatornoj teoriji igara (eng. Game Theory) (Osborne and Rubinstein 2006), a 
posebno na konceptu Shapley vrednosti (Shapley 1953). Cilj je da se kvantifikuje uticaj 
svake karakteristike stanja na akciju koju model bira, čime se dobija interpretacija 
ponašanja modela učenja potprepljivanjem. 

U kooperativnoj igri, koaliciona igra (eng. coalition game) definiše se nad skupom od 𝑁 
igrača, gde svaki igrač doprinosi ukupnoj vrednosti koalicije (Osborne and Rubinstein 
2006). U kontekstu mašinskog učenja, igrači odgovaraju pojedinačnim karakteristikama 
stanja, dok vrednost koalicije predstavlja izlaz modela. 

Značaj karakteristike 𝑖 određuje se pomoću Shapley vrednosti, koja se za karakteristiku 𝑖 
računa prema sledećoj formuli (Osborne and Rubinstein 2006): 

𝜙௜ =
1

|𝑁|!
෍ |𝑆|! (|𝑁| − |𝑆| − 1)! [𝑓(𝑆 ∪  {𝑖}) − 𝑓(𝑆)]

ௌ⊆ே{௜}

 

gde:  

 𝑁 označava skup svih karakteristika u modelu, 
 𝑆 ⊆ 𝑁{𝑖} predstavlja proizvoljan podskup karakteristika koji ne sadrži 𝑖, 
 |𝑆|! (|𝑁| − |𝑆| − 1)! predstavlja broj permutacija skupa karakteristika u kojima 

se podskup 𝑆 javlja kao skup koji prethodi karakterisitici 𝑖, 
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 𝑓(𝑆) predstavlja vrednost koalicije za skup karakteristika 𝑆, 
 𝑓(𝑆 ∪ {𝑖}) predstavlja vrednost koalicije kada se karakteristika 𝑖 doda u skup 𝑆. 

U ovoj formuli izraz 𝑓(𝑆 ∪  {𝑖}) − 𝑓(𝑆) predstavlja marginalni doprinos karakteristike 𝑖 
koaliciji 𝑆, odnosno promenu vrednosti koalicije koja nastaje dodavanjem karakteristike 
𝑖 u skup 𝑆. Tumačenje znaka marginalnog doprinosa je sledeće:  

 Pozitivna vrednost znači da karakteristika 𝑖 povećava vrednost koalicije. 
 Negativna vrednost znači da karakteristika 𝑖 smanjuje vrednost koalicije. 
 Vrednost bliska nuli ukazuje da dodavanje karakteristike 𝑖 nema značajan uticaj 

na koaliciju. 

SHAP vrednost karakteristike 𝑖 predstavlja primenu Shapley vrednosti u 
interpretabilnosti modela mašinskog učenja i dobija se kao prosečan marginalni doprinos 
karakteristike 𝑖 izračunat preko svih mogućih podskupova 𝑆. Na taj način SHAP vrednost 
kvantifikuje prosečan efekat karakteristike stanja 𝑖 na odluku modela učenja 
potkrepljivanjem da izabere određenu akciju, uzimajući u obzir sve moguće načine na 
koje se ta karakteristika može pojaviti u kombinaciji sa ostalim karakteristikama. 

 

2.2.2 Veliki jezički modeli  
Modelovanje jezika (eng. Language Modeling) imalo je ključnu ulogu u razvoju jezičke 
inteligencije mašina. Istraživanje u ovoj oblasti prošlo je kroz četiri razvojne faze (Hadi 
et al. 2023): 

 Prva faza obuhvatala je statističke jezičke modele (eng. Statistical Language 
Models) (Jelinek 1998). Tipičan primer predstavljali su n-gram modeli, koji su 
procenjivali verovatnoću sledeće reči u sekvenici na osnovu učestalosti 
pojavljivanja prethodnih n reči (Gao and Lin 2004). Na primer, bigram model 
koristi učestalost pojavljivanja svakog para uzastopnih reči u korpusu kako bi 
procenio verovatnoću da se određena reč pojavi nakon date prethodne reči 
(Collins 1996). 

 Druga faza obuhvatala je primenu jezičkih modela zasnovanih na neuronskim 
mrežama (eng. Neural Language Models, NLM) (Bengio et al., 2000). Ovi 
modeli koristili su neuronske mreže za procenu distribucije verovatnoće sledeće 
reči na osnovu prethodnih reči u sekvenci. Za razliku od n-gram modela, NLM 
su omogućavali generalizaciju na neviđene kombinacije reči, zahvaljujući 
učenju semantičkih reprezentacija (embeding) reči. Primeri uključuju 
rekurentne neuronske mreže (eng. Recurrent neural networks) (Kombrink et al. 
2011) i njihove varijante.  

 Treća faza obuhvatala je uvođenje kontekstualnih reprezentacija reči (eng. 
contextualized word embeddings), koje su omogućile da se značenje reči 
određuje dinamički, u zavisnosti od njenog konteksta unutar rečenice. Za razliku 
od statičkih embedinga, ovaj pristup koristio je unapred trenirane jezičke 
modele (eng. Pre-Tranined Language Models), čiji su parametri učeni na 
velikim korpusima. Jedan od najznačajnijih primera ove faze bio je BERT (eng. 
Bidirectional Encoder Representations from Transformers) (Devlin et al. 2019).  
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 Četvrta faza obuhvatala je pojavu velikih unapred treniranih LLM-ova, koji su 
demonstrirali sposobnost rešavanja širokog spektra zadataka iz oblasti obrade 
prirodnog jezika (eng. Natural Language Processing) (Wei et al. 2022) bez 
potrebe za dodatnim treniranjem za svaki pojedinačni zadatak. 

Danas se LLM-ovi koriste za rešavanje širokog spektra zadataka, uključujući pisanje 
eseja, sumarizaciju teksta i automatski prevod (J. Yang et al. 2024) (Hadi et al. 2023). 
LLM-ovi nalaze primenu u brojnim domenima, među kojima su obrazovanje (Susnjak 
and McIntosh 2024), medicina (Thirunavukarasu et al. 2023), finansije (Wu et al. 2023) 
i inženjerstvo (Badini et al. 2023). 

Jedan od savremenih LLM-ova je ChatGPT, model razvijen od strane kompanije OpenAI 
(OpenAI 2022). Ovaj model pripada klasi jezičkih modela poznatoj kao unapred trenirani 
generativni transformeri (eng. Generative Pre-trained Transformer, GPT) (Fui-Hoon 
Nah et al. 2023). GPT modeli primenjuju tehnike dubokog učenja i treniraju se na velikim 
skupovima podataka tokom dužeg vremenskog perioda (Cascella et al. 2023).  

ChatGPT je unapred treniran veliki jezički model koji je dodatno prilagođen (eng. fine-
tuned) za konverzacijske zadatke, čime je optimizovan za generisanje koherentnih i 
prirodnih odgovora u interakciji sa korisnikom (Fui-Hoon Nah et al. 2023). Ovaj model 
pripada široj kategoriji generativne veštačke inteligencije (eng. Generative AI), koja 
obuhvata alate sposobne za automatsko generisanje teksta, kreiranje kreativnog sadržaja, 
kao i integraciju i interpretaciju informacija iz različitih izvora (Hadi et al. 2023) (Khoury 
et al. 2023) (Haase and Hanel 2023). U okviru ove disertacije koristi se ChatGPT model 
zasnovan na GPT-4 arhitekturi (Koubaa 2023).  

Slika 9 ilustruje proces kojim LLM generiše izlazni tekst (eng. completion) na osnovu 
ulaznog teksta (eng. prompt). Prvi korak obrade ulaznog teksta je njegova numerička 
reprezentacija. Tekst se najpre segmentira u tokene – u zavisnosti od primenjene metode 
segmentacije, tokeni mogu predstavljati reči, podreči, karaktere ili bitove. Svaki token se 
zatim mapira na jedinstveni numerički identifikator, koji odgovara njegovoj poziciji u 
rečniku tokena – skupu svih mogućih tokena koji model može prepoznati i obraditi. Ovi 
identifikatori se potom konvertuju u embeding vektor (eng. embedding vector), koji 
modelu omogućavaju da obrađuje značenje i odnose između tokena u višedimenzionom 
prostoru. Proces tokenizacije ulaznog teksta detaljnije je opisan u potpoglavlju 2.2.2.1.  

Embeding vektori se zatim prosleđuju neuronskoj mreži zasnovanoj na transformer 
arhitekturi (Vaswani et al. 2023), koja je detaljnije prikazana u potpoglavlju 2.2.2.2. 
Transformeri se mogu koristiti za različite zadatke, u zavisnosti od konteksta primene. U 
ovom potpoglavlju opisan je generativni scenario, u kojem neuronska mreža na izlazu 
vraća distribuciju verovatnoća nad celokupnim rečnikom tokena, odnosno verovatnoće 
svih mogućih tokena u rečniku modela koji mogu slediti nakon ulaznog teksta. Proces 
izbora sledećeg tokena iz ove distribucije zavisi od primenjene strategije dekodiranja, 
koja je detaljnije opisana u potpoglavlju 2.2.2.2.3. 

Slika 10 prikazuje proces generisanja izlaznog teksta, koji se odvija token po token. Svaki 
generisani token zahteva jedan prolazak unapred (eng. forward pass) ulaznog teksta kroz 
model. LLM-ovi su autoregresivni (eng. autoreggressive), što znači da model, prilikom 
predikcije sledećeg tokena, na ulaz dodaje sve prethodno generisane tokene (Naveed et 
al. 2024). Ovaj proces se završava kada model generiše specijalni token za kraj sekvence 
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(eng. end-of-sequence token, EOS) ili kada dostigne maksimalan broj dozvoljenih tokena 
u izlaznom tekstu. 

Da bi mogao da generiše koherentan i smislen tekst, model se prethodno obučava na 
velikim korpusima podataka. Jezički model koji je prošao kroz ovu fazu obuke naziva se 
pre-treniran veliki jezički model (eng. pre-trained LLM). Tokom obuke, model uči 
statističke obrasce jezika i formira reprezentacije značenja reči i fraza, što mu omogućava 
da kasnije predviđa sledeće tokene u različitim kontekstima. Dalji tekst će predstaviti 
ključne komponente transformer arhitekture koje omogućavaju ovaj proces. 

 

Slika 9. Na visokom nivou apstrakcije, veliki jezički model prima ulazni tekst u obliku 
prompta (eng. prompt) i, nakon obrade, generiše izlazni tekst (eng. completion). 

 

Slika 10. Izlazni tekst se generiše iterativno, token po token. Prvi izlazni token se generiše 
na osnovu zadatog prompta. Svaki naredni token generiše se tako što model koristi 
prompt proširen prethodno generisanim tokenima kao novi ulaz. 

2.2.2.1 Tokenizator         

Tokenizator je ključna komponenta LLM arhitekture, odgovorna za segmentaciju 
ulaznog teksta u niz tokena koje model može da obradi. U zavisnosti od izabrane 
strategije za tokenizaciju, tokeni mogu biti cele reči, podreči, ili pojedinačni karaktere. 
Ova odluka utiče na efikasnost modela: manji broj dužih tokena ubrzava obradu, ali 
umanjuje fleksibilnost za retke i nepoznate reči, dok finija segmentacija povećava broj 
tokena i troškove obrade, ali poboljšava robusnost. 

Prilikom dizajniranja tokenizatora, definišu se i veličina rečnika i specijalni tokeni. 
Veličina rečnika određuje broj jedinstvenih tokena koje model može da prepozna i 
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generiše – veći rečnik omogućava veću pokrivenost jezika, ali povećava memorijske 
zahteve i složenost treniranja (Mikolov et al. 2013). Specijalni tokeni su unapred 
definisani simboli sa posebnim funkcijama unutar modela – na primer, označavanje 
početka ili kraja sekvence ili razdvajanje rečenica. 

Tokenizator se zatim trenira (ili prilagođava) na reprezentativnom tekstualnom korpusu. 
Trening tokenizatora podrazumeva statističku analizu jezika – identifikaciju frekventnih 
obrazaca, konstrukciju rečnika i određivanje optimalne segmentacije. Ovaj proces 
omogućava da model kasnije efikasno transformiše tekst u niz tokena, prilagođen 
specifičnostima jezika, domena i ciljeva zadatka. 

U ovoj disertaciji koristi se GPT-4, koji je ostvario značajno bolje rezultate u poređenju 
sa prethodnim generacijama GPT modela (Koubaa 2023) (OpenAI et al. 2024). U ovom 
istraživanju je ustanovljeno da su promptovi prikazani u potpoglavlju 4.5 previše složeni 
za starije verzije GPT modela, dok ih je GPT-4 uspešno obradio. GPT modeli koriste 
BytePair Encoding tokenizaciju (Sennrich et al. 2016). Ovaj tokenizator segmentira tekst 
na jedinice koje mogu predstavljati reči, podreči, pojedinačne znakove ili frekventne 
kombinacije karaktera i simbola. U slučaju GPT-4 modela, koristi se rečnik koji sadrži 
nešto više od 100,000 tokena. Primer rezultata tokenizacije GPT-4 modela na OpenAI 
platformi je prikazan na slici 11, gde je ilustrovano kako se ulazni tekst transformiše u 
niz tokena pre nego što se prosledi modelu na obradu.  

 

Slika 11. Tokenizator, na osnovu specifične metode i prethodno definisane procedure 
treniranja, segmentira tekst na tokene pre nego što se tekst preda LLM modelu. (OpenAI 
2022) 

Nakon što tokenizator segmentira ulazni tekst i svakom tokenu dodeli jedinstveni 
numerički identifikator, ti identifikatori se mapiraju na embeding, kao što je prikazano 
na slici 12. Embeding je gusti (eng. dense) vektor realnih brojeva fiksne dimenzije, koja 
se unapred definiše kao hiperparametar modela. Tipične dimenzionalnosti embedinga 
kreću se od 8 u jednostavnijim modelima, do 1024 kod velikih jezičkih modela. Veća 
dimenzionalnost omogućava modelu da preciznije modeluje semantičke odnose među 
tokenima, ali zahteva veću količinu podataka i računarske resurse za treniranje. 
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Embeding enkodira semantičke informacije o tokenu – slične reči su predstavljene 
vektorima sličnih vrednosti. U kontekstualnim modelima, kao što je GPT, isti token može 
imati različite embedinge u zavisnosti od konteksta u kojem se javlja, čime se postiže 
fleksibilnije i tačnije razumevanje značenja. Nasuprot tome, modeli koji ne koriste 
kontekst (na primer, word2vec) dodeljuju svakoj reči jednu, fiksnu reprezentaciju, 
nezavisno od njenog konteksta u rečenici.  

Embeding vektori se ne zadaju unapred, već se njihovi parametri uče tokom procesa 
treniranja modela – predstavljaju optimizovane težine neuronske mreže. Primer 
obučavanja embedinga reči ilustrovan je kroz algoritam word2vec (Mikolov et al. 2013). 
Za njegovo treniranje koristi se tekstualni korpus koji se sastoji od skupa rečenicama iz 
kojih se generišu parovi ulaz-izlaz za obuku modela. Word2vec primenjuje dva osnovna 
pristupa (Mikolov et al. 2013):   

 Continous Bag of Words (CBOW) – koristi reči iz konteksta kako bi prevideo 
ciljnu reč. 

 Skip-gram – koristi ciljnu reč kako bi predvideo reči koje se pojavljuju u njenom 
kontekstu, tj. u neopsrednoj blizini. 

Primer 2.3 ilustruje razliku između CBOW i Skip-gram modela u načinu predviđanja reči 
na osnovu konteksta.  

Primer 2.3 Postavka CBOW i skip-gram model ana primeru rečenice: “Mačka sedi na 
prozoru i posmatra ptice.” Ukoliko je ciljna reč “prozoru”, a veličina konteksta (eng. 
window size) 2, dobijamo sledeće: 

 CBOW koristi reči iz konteksta: „sedi“, „na“, „i“, „posmatra“ kako bi prevideo 
ciljnu reč „prozor“. 

 Skrip-gram koristi ciljnu reč „prozoru“ kao ulaz, i predviđa reči iz njenog 
konteksta: „sedi“, „na“, „i“, „posmatra“. 

CBOW se pokazao efikasnijim za učestale reči i pogodniji je za treniranje na velikom 
skupovima podataka, dok skip-gram bolje modeluje retke reči i uspešnije uči semantičke 
relacije u manjim korpusima. 

 

Slika 12. Sa leve strane prikazan je trenirani tokenizator, dok je sa desne strane prikazan 
LLM model koji sadrži embedinge. Svaki token ima svoju odgovarajuću vektorsku 
reprezentaciju. 

Kao rezultat opisanog procesa, na ulaz LLM modela dolazi niz embedinga, koji 
predstavlja numeričku reprezentaciju teksta u višedimenzionalnom prostoru. Rezultujući 
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niz embedinga se prosleđuju transformer arhitekturi, gde se obrađuju kroz slojeve 
neuronske mreže. 

2.2.2.2 Transformer arhitektura 

Detaljniji prikaz transformer arhitekture dat je na slici 13. Transformer se sastoji od 
sledećih komponenti:  

 Pozicioni enkoding (eng. positional encoding) – dodaje informacije o redosledu 
tokena unutar ulaznih sekvenci, budući da transformer nema ugrađenu 
sekvencijalnu obradu (potpoglavlje 2.2.2.2.1). 

 Enkoder (eng. encoder) – transformiše ulaznu sekvencu u kontekstualizovane 
reprezentacije (eng., contextualized embedding), omogućavajući modelu da 
razume odnose među tokenima. Za svaki ulazni token, enkoder generiše 
vektorsku reprezentaciju, koja se obogaćuje informacijama iz celokupnog 
konteksta sekvence (Vaswani et al. 2023).  

 Dekoder (eng. decoder) – koristi izlaz enkodera i prethodno generisane tokene 
kako bi autoregresivno generisao sledeće tokene u izlaznoj sekvenci. Detaljna 
analiza međusobne interakcije enkodera i dekodera u procesu generisanja teksta 
data je u potpoglavlju 2.2.2.2.3. 

 Mehanizam višestruke pažnje (eng. multi-head attention) – omogućava modelu 
da analizira odnose između tokena u sekvenci (potpoglavlje 2.2.2.2.2). 

 

Slika 13. Transformer arhitektura (Vaswani et al. 2023). 

2.2.2.2.1 Pozicioni enkoding 

Ključna prednost transformera u odnosu na rekurentne modele je njihova sposobnost 
paralelnog procesiranja tokena unutar ulazne sekvence, što značajno povećava efikasnost 
obrade i treniranja modela (Lin et al. 2022). Efikasna paralelizacija omogućava treniranje 
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transformera nad izrazito velikim skupovima podataka, što ih čini pogodnim za složene 
zadatke obrade prirodnog jezika.  

Međutim, zbog paralelne obrade, tranformeri nemaju inherentnu sposobnost 
razumevanja redosleda tokena u sekvenci, za razliku od rekurentnih modela koji prirodno 
obrađuju podatke sekvencijalno. Zbog toga je neophodno eksplicitno dodati informacije 
o poziciji svakog tokena u sekvenci, što se postiže pozicionim enkodiranjem (eng. 
positional embedding) (Vaswani et al. 2023).  

Svaki token u ulaznoj sekvenci dobija svoj pozicioni enkoding, čija je dimenzija jednaka 
dimenziji njegovog embedinga tokena (eng. token embedding). Pozicioni enkoding se 
zatim sabira sa embedingom tokena, a dobijeni rezultat se prosleđuje kao ulaz u sve 
slojeve enkodera. Slično, dekoder koristi sumu pozicionih enkodinga i embedinga svojih 
generisanih izlaznih tokena. 

Postoji više načina za definisanje pozicionog enkodinga (Gehring et al. 2017). Autori 
rada (Vaswani et al. 2023) predložili su sinusno-kosinusni pozicioni enkoding, koji 
omogućava modelu da prepoznaje relativne odnose između tokena bez potrebe za 
dodatnom optimizacijom parametara. Ovaj metod koristi periodične funkcije za 
kodiranje pozicije tokena, čime se omogućava generalizacija na sekvence različitih 
dužina. Pozicioni enkoding se računa prema sledećim formulama: 

𝑃𝐸(௣௢௦,ଶ௜) = sin ቌ
𝑝𝑜𝑠

10000
ଶ௜

ௗ೘೚೏೐೗

ቍ, 

𝑃𝐸(௣௢௦,ଶ௜ାଵ) = cos ቌ
𝑝𝑜𝑠

10000
ଶ௜

ௗ೘೚೏೐೗

ቍ , 

( 24 ) 

 

gde je 𝑝𝑜𝑠 pozicija tokena u sekvenci, 𝑑௠௢ௗ௘௟  dimenzija vektorskog prostora 
reprezentacija tokena, a 𝑖 indeks dimenzije unutar vektora pozicionog enkodinga.  

Primer 2.4 Izračunavanje pozicionog enkodinga analizirajući rečnicu: „Mačka juri miša 
dok pas spava“. Radi jednostavnosti, dimenzija vektorskog prostora postavljena je na 
𝑑௠௢ௗ௘௟ = 4, iako je u praksi ovaj broj znatno veći kako bi enkoding obuhvatio složenije 

semantičke odnose među tokenima. Indeks 𝑖 je u opsegu 0 ≤ 𝑖 ≤
ௗ

ଶ
 . Tabela 4 prikazuje 

vrednosti pozicionih enkodinga svih reči u rečenici za ovaj slučaj, izračunate na osnovu 
jednačina ( 24 ). Posmatrajući vrednosti u tabeli 4, može se primetiti da svaki token dobija 
jedinstven pozicioni enkoding koji označava njegovu apsolutnu poziciju u sekvenci. 
Pozicioni enkoding omogućava modelu da prepozna relativne i apsolutne položaje reči, 
čime postaje sposoban za obavljanje zadataka kao što su prevođenje i generisanje teksta.   

Tabela 4. Primer izračunatih vrednosti pozicionog enkodinga (zaokruženo na dve 
decimale). 

Reč Pozicija u rečenici (𝒑𝒐𝒔) 𝑷𝑬(𝒑𝒐𝒔,𝟎)  𝑷𝑬(𝒑𝒐𝒔,𝟏) 𝑷𝑬(𝒑𝒐𝒔,𝟐) 𝑷𝑬(𝒑𝒐𝒔,𝟑) 
Mačka 0 0.00 1.00 0.00 1.00 
juri 1 0.84 0.54 0.01 1.00 
miša 2 0.90 -0.41 0.02 1.00 
dok 3 0.14 -0.99 0.03 1.00 
pas 4 -0.75 -0.65 0.04 0.99 
spava 5 -0.95 0.28 0.05 0.99 
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2.2.2.2.2 Mehanizam pažnje 

Mehanizam pažnje (eng. attention) omogućava modelima dubokog učenja da se 
fokusiraju na ključne delove ulazne sekvence prilikom obrade podataka. Tradicionalni 
sekvencijalni modeli, poput rekurentnih neuronskih mreža (eng. Recurrent Neural 
Network), obrađuju podatke iterativno, gde svaka nova reprezentacija zavisi od 
prethodnih stanja. Nasuprot tome, mehanizam pažnje omogućava modelu da istovremeno 
analizira sve delove sekvence, čime se poboljšava efikasnost i omogućava bolja 
dugoročna zavisnost među tokenima. 

Mehanizam pažnje zasniva se na tri ključne komponente: 

 Upit (eng. query, q) – vektor koji predstavlja trenutno stanje modela pri obradi 
određenog tokena u sekvenci. Svi upiti u jednoj sekvenci formiraju matricu 
upita (eng. query matrix, Q), gde svaki red predstavlja jedan vektor upita za 
pojedinačan token. 

 Ključ (eng. key, k) – vektor koji kodira informacije o karakteristikama 
pojedinačnog tokena u sekvenci. Skup svih ključeva formira matricu ključeva 
(eng. key matrix, K), gde svaki red odgovara ključnom vektoru jednog tokena. 

 Vrednost (eng. value, v) – vektor koji sadrži sadržajne informacije vezane za 
dati token. Svi vektori vrednosti čine matricu vrednosti (eng. value matrix, V), 
gde svaki red nosi reprezentaciju pojedinačnog tokena u sekvenci. 

Mehanizam pažnje može se opisati kao funkcija koja, na osnovu matrice upita (Q) i skupa 
ključ-vrednost parova (K-V), računa izlazne vektore pažnje. Izlaz pažnje predstavlja 
ponderisanu sumu matrice vrednosti (V), pri čemu se težine pažnje određuju na osnovu 
sličnosti između matrice upita (Q) i matrice ključeva (K).  

Sličnost između upita i ključeva računa se kao proizvod 𝑄𝐾், pri čemu svaka vrednost u 
rezultujućoj matrici predstavlja meru sličnosti između jednog upitnog vektora i jednog 
ključnog vektora. Da bi se poboljšala stabilnost tokom obuke modela, dobijene vrednosti 

se skaliraju deljenjem sa ඥ𝑑௞, gde 𝑑௞ predstavlja dimenziju vektora ključeva. Konačno, 
rezultati se normalizuju softmax funkcijom, koja transformiše sličnosti u distribuciju 
verovatnoća. Ovaj pristup je poznat kao pažnja zasnovana na skaliranom skalarnom 
proizvodu (eng. Scaled Dot-Product Attention) (slika 14). 

Matematički, pažnja se računa po sledećoj formuli (Vaswani et al. 2023): 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ቆ
𝑄𝐾்

ඥ𝑑௞

ቇ 𝑉. ( 25 ) 

 
Ova formula omogućava modelu da dodeli veću pažnju ključevima koji su relevantniji 
za dati upit, čime se model fokusira na značajne informacije u sekvenci i poboljšava 
razumevanje konteksta. 
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Slika 14. Pažnja zasnovana na skaliranom skalarnom proizvodu vektora. 

U standardnoj transformer arhitekturi postoje dva glavna tipa pažnje: 

 Samo-pažnja (eng. self-attention) – koristi se kada model analizira odnose 
unutar iste sekvence. Enkoder koristi samo-pažnju kako bi izgradio 
reprezentaciju na osnovu međusobnih odnosa reči u ulaznoj sekvenci. Dekoder 
koristi samo-pažnju kako bi procenio odnose među već generisanim tokenima. 
U primeru 2.5 prikazana je upotreba mehanizma samo-pažnje. 

 Enkoder-dekoder pažnja (eng. encoder-decoder attention) – koristi se u 
dekoderu za interakciju sa izlaznim reprezentacijama enkodera. Omogućava 
dekoderu da generiše sledeći token oslanjajući se na informacije iz enkodera. 

 

Primer 2.5 U samo-pažnji, model analizira koliko je svaki token u sekvenci povezan sa 
ostalim tokenima. Posmatrajmo jednostavnu rečenicu: „Mačka juri miša dok pas spava“. 
Prvo, svaka reč se transformiše u vektorski embeding, a zatim se za svaku od njih 
izračunavaju odgovarajući upiti (Q), ključevi (K) i vrednosti (V): 

 Matrica upita (Q) – svaki njen red je vektor upita koji model koristi da bi odredio 
koliko su ostali tokeni važni za taj konkretan token. 

 Matrica ključeva (K) – svaki red u ovoj matrici predstavlja vektor koji sadrži 
informacije o specifičnom tokenu, što omogućava modelu da poredi token sa 
ostalim upitima. 

 Matrica vrednosti (V) – svaki red nosi sadržajnu reprezentaciju tokena, koja se 
kasnije ponderiše i koristi za računanje izlaza pažnje. 

Na primer, ako se fokusiramo na reč „juri“, model računa kompatibilnost njenog upitnog 
vektora sa svim ključnim vektorima u sekvenci pomoću proizvoda 𝑄𝐾். Ovo daje 
matricu pažnje, gde svaka vrednost pokazuje stepen sličnosti između reči „juri“ i svih 
ostalih reči u rečenici.  

Pretpostavimo da je model dodelio sledeće težine pažnje za „juri“ u kontekstu ove 
rečenice: „mačka“ → 0.1, „juri“ →  0.2, „miša” →  0.7, „dok“, „pas“, „spava“ → ≈ 0.0. 
Najveću pažnju (0.7) „juri“ pridodaje reči „miša“ jer su semantički povezane – glagol 
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„juri“ se odnosi na objekat „miša“. Takođe,  „juri“ obraća određenu pažnju na „mačka“, 
jer ona vrši radnju jurenja. Preostale reči imaju gotovo zanemarljive težine, jer nisu 
relevantne za akciju „juri” u datom trenutku obrade. 

Ulazna sekvenca prvo prolazi kroz ulazni embeding sloj i sloj pozicionog enkodinga, 
čime se za svaki token generiše vektorska reprezentacija koja sadrži informacije o 
značenju reči i njenom položaju u rečenici. Dobijene vektorske reprezentacije zatim ulaze 
u mehanizam samo-pažnje, gde se tranformišu u tri matrice: upite (𝑄), ključeve (𝐾) i 
vrednosti (𝑉). Ove transformacije se ostvaruju primenom linearnih projekcija, pri čemu 
se svaka ulazna vektorska reprezentacija 𝑋 množi sa odgovarajućom težinskom 
matricom: 

𝑄 = 𝑋𝑊ொ , 𝐾 = 𝑋𝑊௄ , 𝑉 = 𝑋𝑊௏ . 

Ovde je:  

 𝑋 matrica dimenzija 𝑛 × 𝑑௠௢ௗ௘௟ , gde je 𝑛 broj tokena, a 𝑑௠௢ௗ௘௟  dimenzija 
vektorske reprezentacije, 

 𝑊ொ, 𝑊௄  i 𝑊௏  su parametarske matrice koje se optimizuju tokom obuke 
modela.  

Transformisane reprezentacije 𝑄, 𝐾 i 𝑉 omogućavaju modelu da izračuna težine pažnje,  
odnosno da proceni koliko je svaki token relevantan u odnosu na ostale u sekvenci. Ove 
težine se koriste za izgradnju kontekstualizovanih reprezentacija, koje uzimaju u obzir 
međusobne zavisnosti između tokena. 

U višeslojnoj arhitekturi transformenra, svaki sledeći enkoderski sloj dodatno obogaćuje 
reprezentacije reči na osnovu pažnje iz prethodnog sloja. Na taj način, model progresivno 
uči da prepoznaje dublje semantičke i sintaksičke odnose između reči u rečenici. 
Mehanizam pažnje omogućava modelu da adaptivno raspodeli pažnju na različite delove 
sekvence, u skladu sa njihovim značenjem u datom kontekstu. 

Višestruki mehanizam pažnje (eng. multi-head attention), prikazan na slici 15, 
predstavlja proširenje osnovnog mehanizma pažnje kroz istovremenu primenu više 
nezavisnih pažnji. Ova tehnika omogućava modelu da se istovremeno fokusira na 
različite odnose unutar sekvence, čime se značajno povećava njegova sposobnost 
razumevanja složenih zavisnosti u tekstu. Svaka pažnja u okviru višestrukog mehanizma 
nezavisno analizira različite karakteristike podataka, nakon čega se njihovi izlazi 
kombinuju u jednu bogatiju reprezentaciju. 

Matematički, višestruka pažnja se opisuje sledećom formulom (Vaswani et al. 2023): 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑௛)𝑊ை , 
gde je: 

ℎ𝑒𝑎𝑑௜ = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛൫𝑄𝑊௜
ொ , 𝐾𝑊௜

௄ , 𝑉𝑊௜
௏൯. 

 

( 26 ) 

 
U ovoj formulaciji: 

 Q, K i V su ulazne matrice koje sadrže upite, ključeve i vrednosti za celu 
sekvencu. 

 𝑊௜
ொ, 𝑊௜

௄  i 𝑊௜
௏  su matrice projekcije, koje transformišu ulazne vektore 𝑄, 𝐾 i 𝑉 

u različite podprostore, omogućavajući svakom mehanizmu pažnje da analizira 
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različite aspekte podataka. Drugim rečima, svaka glava pažnje koristi sopstvenu 
verziju ulaznih podataka, dobijenu linearnim transformacijama pomoću ovih 
matrica. 

 Svaka glava pažnje (ℎ𝑒𝑎𝑑௜) primenjuje standardni mehanizam pažnje ( 25 ), ali 
nad različitim transformisanim verzijama ulaznih matrica Q, K i V, dobijenim 

pomoću matrica projekcije 𝑊௜
ொ, 𝑊௜

௄  i 𝑊௜
௏ . 

 𝐶𝑜𝑛𝑐𝑎𝑡 označava spajanje svih pojedinačnih izlaza pažnji u jedan objedinjeni 
vektor. 

 𝑊ை je matrica težina, koja transformiše spojen izlaz višestruke pažnje u 
odgovarajući prostor dimenzija, pripremajući ga za sledeće slojeve mreže. 

Korišćenjem višestruke pažnje, model postiže veću izražajnu moć, jer svaka glava može 
da se fokusira na različite odnose između reči u rečenici. Na primer, dok jedna glava 
pažnje može da identifikuje subjekat i glagol, druga može da poveže prideve sa 
imenicama, a treća može da prepozna dugoročne zavisnosti u rečenici. 

 

Slika 15. Višestruki mehanizam  pažnje (Vaswani et al. 2023). 

2.2.2.2.3 Enkoder i dekoder  

Primarna funkcija enkoder komponente jeste transformacija ulazne sekvence u 
kontekstualizovane vektorske reprezentacije korišćenjem višestrukog mehanizma 
pažnje. U originalnom radu (Vaswani et al. 2023), enkoder se sastojao od šest identičnih 
slojeva. Svaki sloj uključivao je dva glavna podsloja: višestruki mehanizam pažnje i 
potpuno povezanu neuronsku mrežu (eng. feedforward neural network). Nakon svakog 
podsloja primenjivane su rezidualne konekcije i sloj za normalizaciju (slika 13).   

Glavna uloga dekodera jeste autoregresivno generisanje izlazne sekvence, pri čemu 
koristi prethodno generisane tokene i kontekstualizovane reprezentacije iz enkodera kako 
bi predvideo sledeći token. U radu (Vaswani et al. 2023), dekoder se takođe sastojao od 
šest identičnih slojeva. Svaki sloj obuhvatao je tri podsloja: prva dva identična onima u 
enkoderu, dok je treći bio višestruki mehanizam pažnje nad izlazima enkodera, čime se 
omogućava uvođenje informacija iz ulazne sekvence u proces generisanja (slika 13). Kao 
i kod enkodera, svi podslojevi bili su povezani rezidualnim vezama i normalizovani 
posebnim slojevima.  
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Za razliku od enkodera, dekoder koristi maskirani višestruki mehanizam pažnje (eng. 
masked multi-head attention) kako bi sprečio da budući tokeni utiču na generisanje 
trenutnog tokena. Time se obezbeđuje da se prilikom treniranja svaki token predviđa 
isključivo na osnovu prethodno poznatih tokena. 

2.2.2.2.4 Strategije izbora sledećeg tokena 

Odabir sledećeg tokena zasniva se na strategiji dekodiranja (eng. decoding strategy). 
Strategije dekodiranja mogu se podeliti na (Shi et al. 2024):  

 Determinističke strategije – isti ulaz uvek rezultira istim izlazom. 
 Stohastičke strategije – uvode nasumičnost, što može dovesti do varijabilnosti 

izlaza čak i za isti ulaz. 

Najjednostavnija deterministička strategija je pohlepna strategija (eng. greedy strategy), 
pri kojoj se u svakom koraku bira token sa najvećom verovatnoćom. Iako je ovaj pristup 
računski efikasan, često dovodi do repetitivnih ili suboptimalnih izlaza. Stohastičke 
strategije uvode nasumičnost kako bi poboljšale varijabilnost i kreativnost generisanog 
teksta. Ove metode omogućavaju izbor tokena iz skupa najverovatnijih kandidata, 
umesto strogo najverovatnijeg tokena, čime se smanjuje rizik od predvidljivih ili 
monotonih izlaza. 

Jedan od najčešće korišćenih načina za kontrolisanje nasumičnosti u dekodiranju je 
uzorkovanje sa temperaturom (eng. temperature sampling). Ovaj postupak podrazumeva 
postavku parametra temperature (eng. temperature), čija vrednost može biti bilo koji 
realan broj ≥ 0, iako se u praksi najčešće definiše u opsegu [0, 1] (Shi et al. 2024). 
Vrednosti temperature bliže 1 ukazuju na smanjenje preciznosti LLM modela (Renze 
2024). Niže vrednosti temperature (bliže 0) vode ka determinističkom odabiru tokena, 
slično pohlepnoj strategiji. Više vrednosti temperature povećavaju nasumičnost u izboru 
tokena, što dovodi do raznovrsnijih izlaza, ali može smanjiti i koherentnost generisanog 
teksta. Parametar temperature određuje balans između predvidljivosti i varijabilnosti, što 
je ključno za prilagođavanje izlaznog teksta različitim aplikacijama. 

2.2.2.3 Tehnika prompt inženjeringa 

Veliki jezički modeli koriste se za rešavanje zadataka opšte namene (Zhao et al. 2024). 
Njihova primena je posebno izražena u interakciji sa korisnicima putem prirodnog jezika, 
gde generišu odgovore koji su stilom i strukturom slični ljudskoj komunikaciji. Među 
poznatim primerima ovih modela su GPT-3, GPT-4, ChatGPT i Claude (OpenAI 2022) 
(Claude, 2023).   

Za komunikaciju sa modelom koristi se prompt (Liu et al. 2023), koji predstavljaju 
instrukciju, pitanje ili opis problema namenjen usmeravanju modela ka generisanju 
tačnih i relevantnih odgovora (White et al. 2023). Kvalitet prompta značajno utiče na 
performanse modela, jer određuje način na koji model tumači zadatak i oblikovati izlaz 
(He et al. 2024). 

Tehnika prompt inženjeringa (eng. prompt engineering) predstavlja jedan od načina 
prilagođavanja LLM-a za rešavanje specifičnih zadataka (Liu et al. 2023). Ovaj proces 
podrazumeva osmišljavanje i optimizaciju prompta, napisanog prirodnim jezikom, sa 
ciljem usmeravanja modela ka generisanju odgovora prilagođenih specifičnim 
zahtevima.  
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Struktura prompta može biti jednostavna – nekolicina reči ili rečenica (slika 16). Dok su 
jednostavni promptovi dovoljni za dobijanje osnovnih informacija, složeniji zadaci često 
zahtevaju preciznije definisane instrukcije koje modelu pružaju dodatni kontekst i jasna 
očekivanja u vezi sa formatom odgovora. 

 

Slika 16. Jednostavni prompt bez instrukcija gde LLM treba da dovrši započetu 
rečenicu. 

Jedan od najčešćih oblika prompt inženjeringa jeste prompt zasnovan na instrukcijama 
(eng. instruction-based prompting) (Efrat and Levy 2020) (Mishra et al. 2022). Ovaj 
pristup podrazumeva precizno definisanje konkretnog problema koji treba rešiti, uz jasno 
postavljene ciljeve. Ovaj pristup se koristi u različitim zadacima, uključujući nadglednu 
klasifikaciju (eng. supervised classification), pretragu informacija, sumarizaciju teksta, 
generisanja koda i prepoznavanje imenovanih entiteta (eng. named entity recognition). 
Svaki od ovih zadataka zahteva specifičan format pompt-a kako bi se postigao optimalan 
rezultat. 

Formulisanje efektivnog prompta predstavlja iterativan proces koji zahteva primenu 
ključnih tehnika, poput preciznog definisanja zadatka, postavljanja univerzalnog 
odgovora za slučajeve kada LLM generiše halucinacije (Ji et al. 2023) i pažljivog 
strukturiranja redosleda intrukcija, pri čemu se preporučuje da se ključne instrukcije 
smeštaju na početak ili kraj prompta. 

Postoje napredne tehnike prompt inženjeringa koje olakšavaju pisanje kompleksnijih 
prompt-ova. Dok se jednostavniji promptovi uglavnom sastoje od tri komponente – 
instrukcije, podataka i formata odgovora – kompleksniji promptovi mogu uključivati 
dodatne elemente, koji omogućavaju usmeravanje modela i poboljšavaju relevantnost 
generisanih odgovora. Kompleksniji promptovi, osim tri komponente koje sadrže 
jednostavniji promptovi, mogu uključiti i sledeće elemente: 

 Persona: Definisanje specifične uloge LLM-a. Na primer, ukoliko se jasno 
precizira da LLM treba da simulira sistem za upravljanje pametnim uređajima 
sa ciljem optimizacije potrošnje energije i očuvanje udobnosti stanara, model će 
se u većini slučajeva usmeriti na relevantne aspekte zadatka (Shanahan et al. 
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2023) (Buren 2023). Postavljanje uloge pomaže modelu da bolje razume 
kontekst i prioritete, što utiče na preciznost i korisnost odgovora. 

 Publika: Identifikacija ciljne grupe korisnika koji će tumačiti odgovor LLM-a. 
Na primer, u okviru problema upravljanja energijom u pametnoj kući, može se 
naglasiti da preporuke treba prilagoditi stanaru bez tehničkog predznanja. 

 Ton: Zadavanje tona odgovora, kao što su formalni ili neformalni, u zavisnosti 
od specifične situacije i publike. Na primer, ako se stanaru daju saveti o uštedi 
energije, može se zahtevati jasan i prijateljski ton, bez stručnih izraza, kako bi 
preporuke bile lako razumljive. 

 Podaci: Relevantne informacije specifične za zadatak, koje mogu unaprediti 
kvalitet odgovora. Na primer, stanar može dopuniti prompt podacima o upotrebi 
uređaja u protekloj nedelji, čime se omogućava preciznija personalizacija 
odgovora. 

Kompleksni promptovi imaju modularnu strukturu, što omogućava fleksibilnost u 
njihovom oblikovanju. Komponente se mogu dodavati ili uklanjati proizvoljno, a 
redosled njihovog navođenja se može prilagođavati specifikaciji zadatka. Slika 17 
prikazuje primer prethodno opisanih komponenti i ilustruje kako se modularna struktura 
prompta može koristiti za optimizaciju odgovora modela. Proces kreiranja prompta je 
eksperimentalan i iterativan – na osnovu odgovara koji generiše LLM, prompt se 
prilagođava sve dok se ne pronađe optimalna struktura za dati problem. 

 

Slika 17. Primer kompleksnog pompt koji sadrži više komponenti. 
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Pored instrukcija, prompt se može proširiti konkretnim primerima odgovora, čime se 
dodatno pojašnjava očekivani ishod prompta. Ovaj postupak, poznat kao učenje iz 
konteksta (eng. in-context learning) (Brown et al. 2020), omogućava LLM modelima da 
bolje razumeju i rešavaju zadatke na osnovu datih primera, bez potrebe za dodatnom 
obukom. U zavisnosti od broja primera u promptu, razlikuju se pristupi: zero-shot (bez 
primera), one-shot (sa jednim primerom) i few-shot (sa nekoliko primera). U zavisnosti 
od broja primera u promptu, razlikuju se tri pristupa: 

 Zero-shot – model dobija samo instrukciju, bez primera odgovora i oslanja se 
isključivo na prethodno stečeno znanje. Na primer, u kontekstu HEMS-a, zero-
shot prompt može sadržati instrukciju da model treba da optimizuje potrošnju 
energije na osnovu prognoze sunčanog dana, koristeći postojeću bazu znanja. 

 One-shot – modelu se pruža jedan primer odgovora kao referenca. 
 Few-shot – model dobija nekoliko primera odgovora kako bi bolje uočio obrasce 

i prilagodio svoj izlaz. Na primer, u kontekstu HEMS-a, few-shot prompt može 
uključivati primere potrošačkih obrazaca iz prethodnih sličnih situacija, praćene 
očekivanim odgovorom sistema. Odgovor sistema može biti optimalna akcija ili 
preporuka koju sistem treba da pruži, uzimajući u obzir specifičan ulazni 
scenario.  

Ove strategije omogućavaju primenu velikih jezičkih modela u specifičnim kontekstima, 
bez potrebe za dodatnim finim podešavanjem modela.  

2.3 Analiza odluka modela zasnovanih na učenju 
potkrepljivanjem 

SHAP (SHapley Additive exPlanations) biblioteka može se koristiti za analizu uticaja 
svake ulazne karakteristike trenutnog stanja na akciju koju model učenja 
potkrepljivanjem procenjuje kao najpovoljniju u datom stanju. SHAP takođe omogućava 
uvid u relativni značaj pojedinačnih karakteristika, kao i u način na koji model koristi 
njihove međusobne interakcije prilikom donošenja odluka. Ovaj pristup se preporučuje 
isključivo za interpretaciju ponašanja modela, odnosno za analizu korelacionih odnosa 
unutar naučenog modela. Važno je napomenuti da se SHAP uvidi ne bi trebali tumačiti 
kao uzročni efekti u stvarnom svetu, jer se zasnivaju na strukturi modela i statističkim 
zavisnostima u podacima, a ne na eksperimentalno potvrđenim uzročno-posledičnim 
vezama (Molnar et al. 2021).  

SHAP vrednosti zasnivaju se na teoriji kooperativnih igara (eng. game theory), u kojoj 
se doprinos svake ulazne karakteristike posmatra analogno doprinosu pojedinačnog 
igrača u postizanju zajedničkog cilja. U kontekstu mašinskog učenja, to znači da se 
procenjuje koliki doprinos svaka karakteristika ima u ukupnoj predikciji modela, 
uzimajući u obzir sve moguće kombinacije prisustva i odsustva drugih karakteristika.  

U kontekstu učenja potkrepljivanjem, SHAP vrednosti se računaju za konkretnu akciju 
koju je model izabrao u datom stanju. Pozitivna SHAP vrednost ukazuje na to da data 
karakteristika povećava verovatnoću predikcije te izabrane akcije, dok negativna 
vrednost označava da karakteristika imaju smanjujući efekat. Intenzitet uticaja određuje 
se apsolutnom vrednošću SHAP koeficijenata, čime se kvantifikuje značaj pojedinačnih 
karakteristika u procesu donošenja odluke. Na primer, u Gridworld okruženju, gde model 
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učenja potkrepljivanjem treba da nauči kako da pronađe put do cilja, SHAP analiza može 
pokazati da horizontalna koordinata cilja ima visoku pozitivnu SHAP vrednost, jer 
snažno utiče na izbor akcije „idi desno“ – na primer, kada je cilj desno od trenutne 
pozicije agenta. Istovremeno, vertikalna koordinata cilja u tom istom stanju može imati 
neutralan ili negativan doprinos, ukoliko nije relevantna za odabir te konkretne akcije. 
Ovakva analiza omogućava bolje razumevanje koje informacije iz stanja najviše 
doprinose odlukama modela, nezavisno od kompleksnosti modela. 

U radu (Jiang et al. 2022), PPO model je treniran da postigne energetsku efikasnost 
prilikom vožnje kroz raskrsnice sa adaptivnim semaforskim sistemom, optimizujući 
ubrzavanje vozila u odnosu na dinamičko stanje okruženja. Autori su koristili SHAP za 
interpretaciju procesa donošenja odluka u svakom vremenskom koraku vožnje, 
omogućavajući kvantifikaciju doprinosa svake ulazne karakteristike stanja na izbor 
akcije. Rezultati su vizuelizovani grafovima koji prikazuju pozitivne i negativne uticaje 
pojedinačnih karakteristika, kao što su udaljenost od semafora, trenutna faza svetla i 
preostalo vreme do promene faze. Na taj način, ponašanje modela postaje transparentnije, 
a strategija verodostojnija. 

Autori  (Beechey et al. 2023) prvi su pružili teorijsku analizu primene SHAP metode za 
objašnjavanje odluka modela učenja potkrepljivanjem. U svojoj analizi ukazali su na 
ključne nedostatke postojećih pristupa koji primenjuju SHAP za analizu vrednosne 
funkcije ili politike, ističući da takvi pristupi ne omogućavaju pouzdanu interpretaciju 
doprinosa pojedinačnih karakteristika stanja na performanse agenta. Kao alternativu, 
autori predlažu metodu zasnovanu na Shapley vrednostima za objašnjavanje performansi 
modela učenja potkrepljivanjem (eng. Shapley Values for Explaining Reinforcement 
Learning-Performance), koja umesto analize pojedinačnih predikcija razmatra promene 
u ukupnoj nagradi kada se agentu uskraćuju pojedine karakteristike stanja. Iako ovaj 
pristup omogućava dublji uvid u uzročne odnose između karakteristika stanja i 
performansi agenta, njegova primena zahteva redefinisanje politike i uvodi dodatnu 
metodološku složenosti. Zbog toga nije korišćen u okviru ove disertacije, ali se 
prepoznaje kao važan pravac za buduća istraživanja u okviru interpretabilnosti modela 
učenja potkrepljivanjem. 
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3 Pregled aktuelnog stanja u oblasti 
 

U ovom poglavlju analizira se postojeća literatura, sa fokusom na ključne aspekte razvoja 
i primene sistema za upravljanje energijom u pametnim kućama. Potpoglavlje 3.1 pruža 
istorijski pregled razvoja sistema za upravljanje energijom, prikazujući ključne 
tehnologije i pristupe kroz vreme. Potpoglavlje 3.2 analizira savremene strategije učenja 
potkrepljivanjem za upravljanje uređajima u pametnim kućama, sa posebnim naglaskom 
na primeni DDQN i PPO algoritama, koji su pokazali značajne rezultate. Potpoglavlje 
3.3 razmatra primenu velikih jezičkih modela u optimizaciji potrošnje energije, pri čemu 
se ističe nedostatak literature o njihovoj primeni u automatizaciji upravljanja uređajima 
u pametnim kućama. Potpoglavlje 3.4 sumira ograničenja analiziranih rešenja, ističući 
otvorena istraživačka pitanja i obrazlažući potrebu za istraživanjem sprovedenim u ovoj 
tezi. 

3.1 Istorijski pregled razvoja sistema za upravljanje 
energijom u pametnim kućama 

Možemo tvrditi da termostati predstavljaju prvi oblik automatizovanog sistema za 
upravljanje energijom u domaćinstvu (Liu et al. 2016). Razvoj tehnologije i napredak 
računarskih sistema omogućili su pojavu softverskih rešenja za upravljanje električnom 
energijom.  

Jedno od prvih takvih rešenja razvili su Cook i saradnici (Cook et al. 2003), koristeći 
inteligentnog agenta za automatizaciju upravljanja kućnim uređajima. Cilj ovog sistema 
bio je poboljšanja komfora stanara i povećanje energetske efikasnosti. Optimizacija se 
postizala algoritmima koji su predviđali sekvencu događaja u domaćinstvu, 
omogućavajući agentu da automatski reaguje na aktivnosti stanovnika i prilagođava se 
njihovim rutinama. Agent je koristio algoritme za analizu učestalosti događaja kako bi 
predvideo i automatski izvršavao zadatke, kao što su podešavanja temperature, 
uključivanje svetla i kafe aparata, kao i naručivanje namirnica. Na taj način ostvarena je 
ušteda energije i povećan komfor stanovnika. Važno je napomenuti da se u novijim 
istraživanjima određeni kućni uređaji, koji su u ovom sistemu bili automatizovani, sada 
klasifikuju kao „nekontrolisani potrošači“. To znači da njihov rad nije više pod kontrolom 
automatizovanog HEMS-a, već je ostavljen na upravljanje stanovnicima.  

Sa porastom interesovanja za obnovljive izvore energije, istraživači su počeli da ih 
integrišu u HEMS rešenja kako bi poboljšali energetsku efikasnost. Boynuegri i saradnici 
(Boynuegri et al. 2013) razvili su HEMS zasnovan na jednostavnim „ako-onda“ (eng. if-
then) pravilima. Sistem je uključivao obnovljive izvore energije, baterije za skladištenje 
energije i klima uređaj. Korišćenje klima uređaja bilo je ograničeno na letnji period i 
aktiviralo se isključivo tokom ciklusa hlađenja. Nisu razmatrani načini grejanja tokom 
hladnijih meseci, što je moglo umanjiti efikasnost sistema u zimskom periodu, kada su 
energetske potrebe i obrasci potrošnje drugačiji. Dodatno, pristup zasnovan na „ako-
onda“ pravilima je neskalabilan jer zahteva definisanje specifičnih uslova za brojne 
moguće scenarije, uključujući varijacije u spoljnoj temperaturi, solarnoj proizvodnji, 
tarifnim režimima i karakteristikama uređaja. Rezultujući broj pravila može postati velik 
i nepregledan, što otežava održavanje, modifikaciju, proširenje i otklanjanje grešaka. 
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Jedno od najčešće korišćenih rešenja za energetsko upravljanje zgradama jeste sistem za 
grejanje, ventilaciju i klimatizaciju (eng. Heating, Ventilation, and Air-Conditioning, 
HVAC). U literaturi je zabeležen značajan napredak u razvoju algoritama zasnovanih na 
učenju potkrepljivanjem za optimizaciju HVAC sistema. Yu i saradnici (Yu et al. 2020) 
implementirali su algoritam dubokih determinističkih gradijenata politike (eng. Deep 
Deterministic Policy Gradients, DDPG) za optimizaciju HVAC sistema, nekontrolisanih 
potrošača i sistema za skladištenje energije (eng. Electrical Energy Storage), poput 
baterija. Iako su postigli poboljšanja u termalnom komforu i energetskoj efikasnosti, 
njihova studija bila je ograničena na letnje mesece, što može uticati na generalizabilnost 
rezultata na druge sezone. 

Jedan od inovativnih koncepta za pametne kuće jeste integracija računarskog vida (eng. 
Computer Vision) s ciljem optimizacije potrošnje energije i poboljšanja komfora stanara. 
Jaihar i saradnici (Jaihar et al. 2020) implementirali su sistem koji je, pored ručnog 
upravljanja uređajima i automatizovane kontrole zasnovane na analizi korisničkih 
navika, koristio računarski vid za automatsko prepoznavanje emocionalnog stanja 
stanovnika. Na osnovu prepoznatih emocija, sistem je automatski prilagođavao 
osvetljenje i rad ventilatora.  Ograničenje ove studije bilo je u tome što je eksperiment 
sproveden u kontrolisanom okruženju sa samo jednom osobom ispred kamere, što je 
ograničilo mogućnost generalizacije rezultata na realne uslove u kojima se u prostoriji 
može nalaziti više osoba. Takođe, studija nije pružila detaljan opis načina na koji su 
identifikovane emocije mapirane na rad uređaja. Korišćeni pristup bio je zasnovan na 
modelima mašinskog učenja za detekciju osam različitih emocija, ali eksperimentalna 
postavka, uključujući senzore i zvučne signalizatore, nije bila detaljno dokumentovana, 
što otežava razumevanje i praktičnu primenu dobijenih rezultata. 

Nedavni pregled literature koji su sproveli Gomes i saradnici (Gomes et al. 2022) utvrdio 
je da primena učenja potkrepljivanjem predstavlja najsavremeniju tehniku za 
automatizaciju upravljanja uređajima u pametnim kućama. Zbog toga je ovaj 
metodološki pristup usvojen kao osnova za ovo istraživanje. 

3.2 Savremene strategije učenja potkrepljivanjem za 
upravljanje energijom u pametnim kućama 

Ovo potpoglavlje pruža pregled razvoja tehnika učenja potkrepljivanjem za 
automatizovane sisteme upravljanja u pametnim kućama (HEMS). 

Jedan od osnovnih pristupa u učenju potkrepljivanjem jeste Q-učenje (eng. Q-Learning), 
pri čemu njegova najjednostavniju varijantu predstavlja tabelarno Q-učenje (eng. 
Tabular Q-Learning). Xu i saradnici (Xu et al. 2021) primenili su tabelarno Q-učenje za 
binarnu kontrolu električnog bojlera s ciljem smanjenja potrošnje električne energije u 
domaćinstvu. Funkcija nagrade u ovom modelu zasnivala se na dva glavna faktora:  

 Troškovima električne energije, koji su izračunavani na osnovu aktuelnih tarifa.  
 Visokim negativnim penalima dodeljenim zbog odstupanja temperature vode od 

zadatih vrednosti u trenucima kada korisnici imaju potrebu za toplom vodom.  

Ova metodologija omogućila je efikasno upravljanje energijom prilagođavanjem rada 
bojlera stvarnim potrebama stanovnika, čime su optimizovani potrošnja energije i komfor 
korisnika. 
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Xu i saradnici (Xu et al. 2020) takođe su koristili tabelarno Q-učenje. Za razliku od 
prethodnog rada, proširili su model dodavanjem novih tipova uređaja i uveli varijabilnu 
potrošnju energije, umesto pretpostavke da uređaji troše konstantnu količinu energije 
tokom rada. Modelovanje varijabilne potrošnje omogućilo je veću kontrolu rada uređaja. 
Pored toga, autori su definisali više-ciljnu funkciju nagrade, koja obuhvata energetske 
troškove i komfor korisnika, zavisno od tipa uređaja. Uređaji su klasifikovani u četiri 
kategorije: 

 Uređaji sa fiksnim rasporedom rada (eng. non-shiftable),  
 Uređaji sa prilagodljivom snagom rada (eng. power-shiftable),  
 Uređaji čiji se rad prilagođava vremenskim tarifama (eng. time-shiftable),   
 Električno vozilo, tretirano kao poseban tip uređaja.  

Za sve tipove uređaja, osim onih sa fiksnim rasporedom rada, definisani su koeficijenti 
nezadovoljstva (eng. dissatisfaction coefficient) čije vrednosti nisu dodatno pojašnjene 
od strane autora. Koeficijenti nezadovoljstva se razlikuju u zavisnosti od tipa uređaja:  

 Za uređaje sa promenljivom snagom rada, komfor se računao kao proizvod 
odgovarajućeg koeficijenta nezadovoljstva i kvadrata razlike između 
maksimalne potrebne energije i trenutne potrošnje uređaja.  

 Za uređaje čiji se rad prilagođava vremenskim tarifama, komfor se definisao kao 
proizvod odgovarajućeg koeficijenta nezadovoljstva i kvadrata razlike između 
stvarnog i željenog vremena početka rada uređaja.  

 Za električno vozilo, komfor je definisan kao proizvod odgovarajućeg 
koeficijenta nezadovoljstva i kvadratne razlike između maksimalne i trenutne 
energije za punjenje.  

Za sve uređaje, osim električnog vozila, trošak električne energije računat je kao proizvod 
predviđene tarife i razlike između potrošnje energije uređaja i energije proizvedene iz 
solarnog panela. Kod električnog vozila, trošak se računao samo na osnovu potrošnje 
energije potrebne za punjenje. Na  kraju, sve pojedinačne nagrade sabirane su kako bi se 
dobila ukupna funkcija nagrade sistema.  

Glavni nedostatak tabelarnog Q-učenja jeste njegova zavisnost od Q-tabele fiksne 
veličine, koja služi za čuvanje i ažuriranje q-vrednosti za svaku moguću kombinaciju 
stanja i akcija (Mohammadi et al. 2018). U kontekstu HEMS-a, broj mogućih stanja i 
akcija može biti izuzetno veliki, zbog prisustva različitih tipova uređaja, vremenskih 
uslova, tarifnih režima i preferencija korisnika. Svaka dodatna dimenzija u prostoru 
stanja ili akcija eksponencijalno povećava veličinu Q-tabele. U realnim HEMS 
primenama, Q-tabela brzo postaje prevelika za efikasno čuvanje i ažuriranje, čime se 
značajno smanjuje njena praktičnost. Zbog toga se u razvoju HEMS-a sve više 
primenjuju modeli dubokog učenja potkrepljivanjem (eng. Deep Reinforcement 
Learning, DRL), koji omogućavaju efikasnije upravljanje velikim i složenim prostorima 
stanja. 

Lissa i saradnici (Lissa et al. 2021) predložili su HEMS rešenje zasnovano na DQN 
algoritmu, sa ciljem optimizacije potrošnje električne energije korišćenjem proizvodnje 
iz solarnih panela. Fokus istraživanja bio je na smanjenju troškova električne energije 
povezanih sa grejanjem prostora i temperaturom tople vode. Definisana je funkcija 
nagrade sastavljena od pojedinačnih komponenti, koje imaju za cilj očuvanje komfora 
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stanovnika kroz kontrolu unutrašnje temperature prostora, temperature vode i korišćenje 
energije proizvedene putem solarnog panela:  

 Komponente funkcije nagrade vezane za temperaturu imale su vrednost 0 kada 
je temperatura bila unutar zadatog opsega, dok se u suprotnom računala razlika 
između trenutne i srednje vrednosti temperature.  

 Komponenta funkcije nagrade vezana za solarni panel imala je vrednost 0 
ukoliko je energija proizvedena putem solarnog panela bila veća od ukupne 
energije potrebne za rad svih uređaja. U suprotnom, nagrada za solarni panel 
predstavljala je preostali iznos energije potreban za napajanje svih uređaja.  

Konačna nagrada izračunavana je kao ponderisana suma pojedinačnih komponenti. 
Vrednost težinskog koeficijenta u funkciji nagrade određena je na osnovu analize 
zavisnosti između ukupne potrošnje energije i odstupanja temperature od zadatih granica, 
pri čemu je kao optimalna izabrana tačka neposredno pre one u kojoj dalji pad potrošnje 
uzrokuje značajno narušavanje komfora. Autori nisu razmatrali tarifne režime električne 
mreže niti su automatizovali upravljanje uređajima koji nisu povezani sa grejanjem, što 
bi moglo doprineti sveobuhvatnijem pristupu upravljaju energijom. 

U radu (Forootani et al. 2022), problem više-ciljne optimizacije HEMS-a rešavan je 
dekompozicijom kontrole kompletnog skupa uređaja na pojedinačnu kontrolu svakog 
uređaja. Za svaki uređaj razvijen je nezavistan DQN model koji predviđa optimalne 
diskretne akcije specifične za taj uređaj. Modeli su obučavani odvojeno, sa ciljem 
minimizacije troškova električne energije i maksimizacije komfor stanara. Funkcija 
nagrade definisana je kao ponderisana suma dve komponente: (1) potrošnje električne 
energije i (2) komfora izraženog u vidu razlike između stvarnog i željenog vremena rada 
uređaja. Autori nisu ponudili metod za automatsku kalibraciju težinskih koeficijenata u 
funkciji nagrade, već su njihovo podešavanje prepustili stanarima. 

Glavni nedostatak DQN algoritma jeste njegova ograničena efikasnost pri rešavanju 
problema koji se odlikuju velikim i kontinuiranim prostorima stanja (eng. continuous 
state space) (Mnih et al. 2015). U kontekstu HEMS-a, kontinuirani prostor stanja 
obuhvata varijable kao što su količina potrošene energije, količina energije proizvedene 
putem solarnih panela i vrednost temperature. Efikasnost treniranja DQN modela u 
ovakvom prostoru može se poboljšati primenom DDQN pristupa (Fu et al. 2022).  

U radu (Liu et al. 2020) analizirana je efikasnost DQN i DDQN pristupa u obuci HEMS-
a, čiji je cilj minimizacija troškova električne energije uz istovremeno očuvanje komfora 
stanovnika. Komfor korisnika kvantifikovan je vremenskim ograničenjima rada uređaja, 
pri čemu je funkcija nagrade uključivala negativni penal ukoliko uređaj nije aktiviran 
unutar željenog vremenskog opsega. Željeni opsezi rada su navedeni na osnovu 
istorijskih statistika i autori nisu dali smernice oko određivanje vredosti penala. Autori 
su u svoju postavku problema uključili proizvodnju električne energije putem solarnih 
panela, mogućnost skladištenja energije u baterijama i tarifne režime električne mreže. 
Rezultati su pokazali da DDQN model postiže bolje performanse u odnosu na DQN 
model. U skladu sa tim nalazima, u ovom istraživanju se koristi DDQN pristup za obuku 
HEMS-a, sa ciljem rešavanja problema sličnog onom analiziranom u pomenutom radu. 

Huang i saradnici (Huang et al. 2022) nastojali su da minimizuju operativne troškove 
sistema za upravljanje energijom u domaćinstvu, uz očuvanje termalnog komfora i 
poštovanje ograničenja vremena rada uređaja. Unutar domaćinstva analizirano je 
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upravljanje HVAC sistemom, obnovljivim izvorima energije, skladištem energije i 
uređajima sa ograničenim vremenom rada. HVAC sistem, koji obezbeđuje termalni 
komfor, kao i sistem za skladištenje energije, zahtevali su akcije koje podrazumevaju 
određivanje količine potrošene energije za rad uređaja ili, u slučaju baterija, količine 
energije za pražnjenje i punjenje. Zbog toga se za kontrolu ovih uređaja koristio DDPG 
pristup, čija je ciljna funkcija bila ponderisana suma potrošnje energije i termalnog 
komfora, definisanog kao razlika između postignute i željene temperature. Uređaji sa 
ograničenim vremenom rada zahtevali su diskretne akcije uključivanja i isključivanja. 
Stoga se za njihovu kontrolu koristio DQN pristup, gde je ciljna funkcija predstavljena 
kao ponderisana suma potrošnje energije i komfora u vezi sa preferiranim vremenom 
rada, izraženog kao razlika između stvarnog vremena rada uređaja i definisanog 
vremenskog okvira. Integracijom DQN i DDPG modela omogućeno je efikasno 
upravljanja kombinovanim diskretnim i kontinuiranim prostorom akcija u energetskom 
upravljanju pametnim kućama. Međutim, autori nisu naveli smernice za odabir težinskih 
koeficijenata u funkcijama nagrade. 

Primena PPO modela mogla bi biti efikasnije rešenje u odnosu na treniranje dva odvojena 
modela, budući da PPO model podržava i diskretne i kontinuirane akcije, čime se 
smanjuje složenost sistema i olakšava optimizacija (Shakya et al. 2023). 

Li i saradnici (Li et al. 2020) koristili su PPO algoritam za upravljanje HEMS-om sa tri 
tipa uređaja:  

 Kritični uređaji, poput televizora, frižidera i osvetljenja, radili su na zahtev 
stanovnika i nisu bili pod kontrolom HEMS-a.   

 Prilagodljivi uređaji, kao što su mašina za pranje sudova, veš mašina, mašina za 
sušenje i šporet, mogli su da prilagode vreme rada u skladu sa tarifnim 
režimima. HEMS je upravljao ovim uređajima koristeći diskretne akcije 
uključivanja i isključivanja.  

 Kontrolisani uređaji, poput električnog vozila, imali su mogućnost fleksibilnog 
punjenja. HEMS je upravljao njihovom potrošnjom pomoću kontinuiranih 
akcija, određujući nivo snage za punjenje i pražnjenje baterije.  

Cilj istraživanja bio je minimizacija troškova električne energije domaćinstva, uzimajući 
u obzir nesigurnost u cenama električne energije u realnom vremenu i neizvesnost u 
obrascima ponašanja stanara. Funkcija nagrade definisana je kao ponderisana suma dva 
faktora: (1) ukupne cene energije utrošene za rad uređaja i (2) kvadrata energije potrebne 
da se električno vozilo potpuno napuni. Autori nisu naveli kriterijume na osnovu kojih 
su određene težine ovih faktora u funkciji nagrade. 

Koristeći opisanu postavku, Li i saradnici trenirali su PPO model i uporedili njegove 
performanse sa modelima zasnovanim na ručno definisanim pravilima – referentnim 
modelom i teorijski optimalnim modelom:  

 Referentni model pokretao je sve uređaje (prilagodljive i kontrolisane) čim su 
oni bili spremni za rad, bez obzira na cenu električne energije ili zadati željeni 
opseg rada uređaja.  

 Teoretski optimalan model predstavljao je ručno definisan raspored rada 
uređaja, usklađen sa unapred poznatim cenama električne energije. Ovaj model 
nije moguće implementirati u praksi jer podrazumeva poznavanje buduće cene 
električne energije, što je u ovoj postavci bila informacija koja je nedostupna 
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agentu u trenutku donošenja odluke. Zbog toga je ovaj model služio samo za 
procenu gornje granice performansi algoritma.  

Rezultati su pokazali da je PPO model postigao značajno smanjenje troškova električne 
energije u odnosu na referentni model, dok su njegove performanse bile bliske 
performansama teoretski optimalnog modela. 

Mbuwir i saradnici (Mbuwir et al. 2021) predstavili su hibridni pristup za punjenje 
električnih vozila, koji je kombinovao PPO algoritam sa sistemom kontrole zasnovanim 
na pravilima (eng. rule-based). Funkcija nagrade definiše se kao negativna suma troškova 
punjenja električnih vozila iz mreže i prihoda od prodaje viška energije nazad u mrežu. 
Takođe, u funkciju nagrade bio je uvršćen i faktor kazne, koji se primenjivao kada 
električno vozilo nije bilo u potpunosti napunjeno do heuristički procenjenog vremena 
polaska. Skup akcija bio je kontinuiran i predstavljao količinu snage (u 𝑘𝑊) koja se 
koristila za punjenje električnog vozila. PPO model određivao je ovu akciju, dok je sistem 
zasnovan na pravilima služio kao kontroler koji je prilagođavao akciju predloženu od 
strane PPO modela, uzimajući u obzir trenutnu proizvodnju energije iz solarnog panela.  

Mbuwir i saradnici su uporedili su predloženu kombinaciju PPO modela i ručno 
definisanih pravila sa dve strategije zasnovane na ručno definisanim pravilima:  

 Naivna strategija, podrazumevala je punjenje vozila odmah po njegovom 
priključenju na stanicu za punjenje.  

 Strategija sa perfektnim informacijama pretpostavljala je potpuno poznavanje 
svih relevantnih faktora dan unapred, uključujući vreme dolaska i odlaska 
električnog vozila, energiju potrebnu za punjenje, maksimalnu dozvoljenu 
snagu punjenja, količinu energije proizvedene putem solarnog panela i cenu 
električne energije. Ova strategija predstavljala je idealizovan scenario u kojem 
su sve informacije dostupne u trenutku donošenja odluke, dok su u realnim 
uslovima mnoge od tih informacija nepoznate u trenutku donošenja odluke. 

PPO model sa pravilima je značajno smanjio troškove električne energije za 62.5% u 
poređenju sa naivnom strategijom. U poređenju sa strategijama sa perfektnim 
informacijama, ostvaruje rezultat koji je slabiji za samo 5%. 

Sun i saradnici (Sun et al. 2020) razvili su više-agentni PPO algoritam za optimizaciju 
troškova električne energije u HEMS-u velikih razmera (eng. large-scale). Simulaciono 
okruženje obuhvatalo je više domaćinstava, pri čemu je svakom pametnom kućom 
upravljao poseban, nezavisni agent. Stanje pojedinačne kuće obuhvatalo je trenutnu cenu 
električne energije, minimalni nivo neophodne potrošnje za rad uređaja, kao i informacije 
o stanju električnog vozila, baterije i solarnog panela. Skup akcija bio je kontinuiran i 
uključivao je brzinu punjenja i pražnjenja električnih vozila i kućnih baterija, kao i 
donošenje odluka o trgovini električnom energijom unutar mikro-mreže (eng. 
microgrid). Cilj je bilo smanjenje troškova električne energije, pri čemu je cena bila 
dinamički određivana na osnovu odnosa ponude i potražnje u mreži. Funkcija nagrade 
definisana na nivou domaćinstva uključivala je: (1) trošak električne energije, (2) 
penalizaciju za potrošnju tokom perioda visoke tarife i (3) kolektivnu entropiju ponašanja 
(eng. Collective Behavior Entropy), koja je uvedena radi obeshrabrivanja 
sinhronizovanog opterećenja mreže.  

Azuatalam i saradnici (Azuatalam et al. 2020) primenili su PPO algoritam za optimizaciju 
kontrole HVAC sistema u zgradi, sa ciljem balansiranja između očuvanja termalnog 
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komfora i smanjenja troškova električne energije. Skup mogućih akcija bio je kontinuiran 
i prestavljao je precizna podešavanja unutrašnje temperature. Simulaciono okruženje je 
bilo definisano uz pomoć EnergyPlus4 platforme, koja je simulirala HVAC sistem u 
zgradi. Kako bi se postigla realističnost simulacije, u uključeni su istorijski podaci o 
spoljnim vremenskim uslovima i solarnom zračenju. Funkcija nagrada definisana je kao 
ponderisana suma troškova električne energije i odstupanje unutrašnje temperature od 
željenog temperaturnog opsega. Težinski koeficijenti u funkciji nagrade bili su određeni 
empirijski, pri čemu autori nisu naveli smernice za njihovo podešavanje. U radu su 
upoređena tri pristupa: 

 Osnovni model zgrade, koji je predstavljao jednostavne, ručno definisane 
strategije za upravljanje HVAC sistemom. 

 Standardni PPO model.                                                                                                     
 Kombinacija PPO modela sa dva dodatna kontrolera, koji su prilagođavala 

njegove akcije: 
o Downward Demand Response (DDR) kontroler, koji je smanjivao 

potrošnju energije tokom perioda visokih tarifa ili kada je bilo potrebno 
smanjiti opterećenja na mreži.  

o Upward Demand Response (UDR) kontroler, koji je povećavao 
potrošnju energije tokom perioda niskih cena električne energije ili 
kada je bilo potrebno povećanje opterećenja na mreži.  

Najbolji rezultati postignuti su kombinovanjem PPO modela sa DDR i UDR 
kontrolerima. Konkretno, kombinacija PPO modela sa DDR kontrolerom pokazala je 
najbolje rezultate u smanjenju potrošnje energije tokom perioda visokih tarifa, dok je 
kombinacija PPO modela sa UDR kontrolerom bila najefikasnija u povećanju potrošnje 
energije tokom perioda niskih tarifa. 

Aldahmashi i Ma (Aldahmashi and Ma 2024) definisali su novi optimizacioni problem 
koji integriše upravljanje aktivnom i reaktivnom električnom energijom u pametnim 
kućama, uz uvažavanje komfora stanara. Funkcija nagrade formulisana je kao 
ponderisana suma sledećih komponenti, pri čemu autori nisu naveli kriterijume za izbor 
težinskih koeficijenata: 

 Ukupne električne energije potrebne za rad svih uređaja – električnog vozila, 
baterije i solarnog panela.  

 Koeficijenta nezadovoljstva stanara, koji obuhvata odstupanje unutrašnje 
temperature od željenog opsega, kašnjenje u izvršavanju zadataka uređaja sa 
vremenskim ograničenjima, kao i nedovoljnu napunjenost baterije električnog 
vozila pre odlaska iz kuće. 

 Penala koji se primenjivao u slučaju da fakor snage (eng. power factor) padne 
ispod zadatog minimalnog praga5, pri čemu je svakom uređaju bio dodeljen 
unapred definisan prag koji opisuje njegov odnos između potrošnje aktivne i 
reaktivne snage. 

 
4 https://energyplus.net/ 

5 Faktor snage predstavlja odnos između aktivne snage (koja obavlja korisni rad) i 
prividne snage (ukupne snage u sistemu). Nizak faktor snage ukazuje na nisku energetsku 
efikasnost, jer veći deo prenesene energije ostaje neiskorišćen za rad. 
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Autori su trenirali PPO model i uporedili ga sa sledećim alternativama: 

 DQN i DDPG modelima, koji su trenirani korišćenjem iste funkcije nagrade, uz 
neophodne izmene skupova akcija i stanja radi prilagođavanja ovim 
algoritmima. Kod DQN-a, sve akcije, uključujući i kontinualne (na primer, 
snaga punjenja, reaktivna snaga), bile su diskretizovane zbog ograničenja DQN 
algoritma na diskretne prostore akcija. Kod DDPG-a, binarne akcije (na primer, 
uključivanje uređaja) transformisane su u kontinualni oblik, a zatim 
aproksimirane prilikom izbora konkretne akcije, kako bi bile kompatibilne sa 
prirodom kontinualnog akcijskog prostora koji DDPG zahteva. 

 FIO (eng. full information observable) modelom, koji je imao pristup potpunim 
informacijama o svim relevantnim parametrima. U FIO modelu, dinamički 
promenljivi i unapred nepoznati faktori, poput proizvodnje električne energije 
putem solarnog panela, tretirani su kao deterministički i unapred poznati. Cilj 
uključivanja idealizovanog FIO modela bio je određivanje najefikasnije 
strategije planiranja vremena rada uređaja, radi procene gornje granice 
performansi treniranih modela. U okviru FIO modela, reaktivna energija nije 
bila optimizovana. 

U izvedenim eksperimentima, PPO model je ostvario najbolje rezultate među metodama 
koje funkcionišu u uslovima nesigurnosti, zahvaljujući svojoj sposobnosti da u realnom 
vremenu optimizuje upravljanje aktivnom električnom energijom u bateriji i električnom 
vozilu. Postignuta ušteda iznosila je 31.5%, što je blisko maksimalnoj uštedi od 39.6% 
postignutoj idealizovanim FIO pristupom. Za poređenje, DDPG i DQN postigli su uštede 
od 24.8% i 18.6%, tim redosledom.  

Na osnovu pregleda literature u ovom poglavlju, mogu se izvesti sledeći zaključci:  

 Najperspektivnija rešenja za razvoj HEMS-a zasnovana na učenju 
potkrepljivanjem su DDQN i PPO algoritmi. 

 Tipovi uređaja razmatrani u simulacijama pametnih kuća obuhvataju: 
o Uređaje za regulaciju temperature i uređaje sa vremenskim 

ograničenjem rada, koje HEMS kontroliše diskretnim akcijama 
uključivanja i isključivanja. 

o Skladišta energije, koja HEMS kontroliše kontinuiranim akcijama 
zadavanja snage punjenja ili pražnjenja uređaja. 

o Uređaje koji nisu regulisani od strane HEMS-a, uključujući uređaje 
koji rade isključivo na zahtev stanovnika (na primer, televizor) i 
proizvođače energije (na primer, solarni panel). 

 Većina simuliranih pametnih kuća modeluje potrošnju uređaja kao konstantnu 
tokom rada iako uređaji poput veš mašine imaju složene obrasce potrošnje, sa 
složenim razlikama u potrošnji energije u različitim radnim fazama. 

 Najčešće razmatrani aspekti komfora su termalni komfor i ograničenje vremena 
rada uređaja. Za kvantifikaciju komfora koriste se pristupi zasnovani na 
penalima i razlikama između definisanih i trenutnih vrednosti temperature, 
odnosno vremena rada uređaja. 

 U većini slučajeva, više-ciljna optimizacija komfora i potrošnja električne 
energije realizuje se kroz ponderisane sume unutar funkcije nagrade. Pojedini 
pristupi dodatno uvode restrikcije rada uređaja i penale za nepoželjna ponašanja. 
Težinski koeficijenti i vrednosti penala najčešće se određuju empirijski, bez 
detaljnog metodološkog obrazloženja. 
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 Većina radova u okviru simulacije uzima u obzir tarifne režime i spoljašnje 
vremenske uslove. 

 Većina radova koji predlažu pristupe zasnovane na učenju potkrepljivanjem 
poredi ove metode sa ručno definisanim strategijama, koje se koriste kao 
referentni modeli. Takve strategije su obično pojednostavljene, sa unapred 
poznatim obrascima potrošnje uređaja ili sa pojednostavljenim operativnim 
kriterijumima, što može ograničiti njihovu primenljivost u realnim uslovima. 

3.3 Primena velikih jezičkih modela u sistemima za 
upravljanje energijom u pametnim kućama 

Analiza literature pokazala je da su postojeće studije istraživale primenu LLM-ova u 
HEMS-u u tri glavna pravca:  

 Simulacija okruženja pametne kuće,  
 Razvoj pomoćnih alata za poboljšanje komfora korisnika, 
 Podsticanje stanovnika na racionalnu potrošnju električne energije kroz 

formiranje energetski efikasnih navika.  

U radu (Almashor and Miyashita 2024), LLM-ovi su primenjeni za simulaciju okruženja 
pametne kuće. U razvijenoj simulaciji, agenti vođeni LLM-ovima imitirali su dnevne 
rutine i aktivnosti stanovnika koje su uticale na potrošnju energije, generišući obrasce 
potrošnje koji su oponašali stvarnu potrošnju energije u domaćinstvu. Simulacija je 
omogućavala kreiranje realističnih i javno dostupnih skupova podataka koji odražavaju 
energetsko ponašanje specifičnih geografskih regiona. Ovim pristupom eliminisana je 
potreba za korišćenjem stvarnih, osetljivih podataka, čime je obezbeđeno očuvanje 
privatnosti. Međutim, glavni nedostatak ovog pristupa bila je pretpostavka da uređaji 
tokom rada troše konstantnu količinu energije. Uređaji poput veš mašine imaju složene 
obrasce potrošnje, sa značajnim razlikama u potrošnji energije tokom različitih radnih 
faza. Zbog toga je njihovo modelovanje kao uređaja sa konstantnom potrošnjom moglo 
rezultovati manje preciznim podacima o varijacijama u energetskoj potrošnji.  

Giudici i saradnici (Giudici et al. 2024) istraživali su kako LLM-ovi mogu biti iskorišćeni 
za kreiranje rutina za automatizaciju domaćinstva koje podstiču ekološki svesno 
ponašanje. U njihovom radu, model GPT-4 (Koubaa 2023) korišćen je za asistenciju 
korisnicima pri kreiranju i kontroli automatizovanih rutina koje optimizuju potrošnju 
energije i promovišu održive navike. U interakciji sa korisnikom, GPT-4 imao je ulogu 
edukativnog agenta koji je vodio korisnike kroz proces kreiranja i prilagođavanja 
njihovih rutina. Glavno ograničenje ove studije bilo je to što je evaluirana na 
hipotetičkom scenariju, gde su korišćeni simulirani podaci umesto stvarnih interakcija sa 
kućnim uređajima. Alat nije pružao kompletnu automatizaciju, već je imao savetodavnu 
ulogu, prepuštajući donošenje odluka korisniku. Konačno, autori nisu evaluirali 
efikasnost sistema u redukciji potrošnje energije. 

King i saradnici (King et al. 2024) primenili su LLM za interpretaciju i izvršavanje ciljno 
orijentisanih komandi koje su neprecizno formulisane, poput „učini prostor prijatnim“. 
Ovaj pristup omogućavao je korisnicima da izraze svoje želje na prirodniji način, čime 
se poboljšavao njihov komfor. Na osnovu korisničke komande, LLM je generisao akcioni 
plan u formi JSON šablona, koji je detaljno opisivao kako se raspoloživi uređaji i senzori 
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mogu koristiti za postizanje željene atmosfere. Glavni nedostatak ovog pristupa bila je 
sklonost LLM-a da generiše nerelevantne ili čak potpuno netačne akcione planove. 

U radu (Oprea and Bâra 2024) predstavljen je sistem koji je vlasnicima kuća pružao 
savete za optimizaciju energetskih transakcija i prilagođavanje potrošnje opterećenju 
lokalnog energetskog tržišta. Sistem je koristio pretrenirani LLM kao klasifikator koji je 
primao tekstualne opise stanja okruženja i, na osnovu njih, predviđao optimalne akcije. 
Moguće akcije uključivale su kupovinu ili prodaju električne energije, kao i smanjenje 
ili povećanje njene potrošnje. Autori nisu analizirali uticaj određenih podataka iz 
tekstualnog opisa stanja okruženja na konačne predikcije klasifikatora.  

Pregledom literature je utvrđeno da nijedna studija nije istraživala efikasnost 
pretreniranih LLM-ova u orkestraciji uređaja u pametnim kućama s ciljem optimizacije 
višeciljnog problema smanjenja troškova električne energije uz održanje komfora 
stanovnika. Stoga, postoji potreba za istraživanjem koje će ispitati mogućnost primene 
LLM-ova za rešavanje ovog problema. 

3.4 Ograničenja postojećih rešenja i obrazloženje 
potrebe za daljim istraživanjem 

Sistemi za upravljanje energijom u domaćinstvima predstavljaju izazovnu i dinamičnu 
oblast u kojoj još nisu standardizovani protokoli za optimizaciju i implementaciju rešenja 
(Mahapatra and Nayyar 2022). Pregledom literature identifikovane su značajne razlike u 
definisanju problema optimizacije, što otežava poređenje različitih rešenja. Ove razlike 
uključuju (Gomes et al. 2022) (Mahapatra and Nayyar 2022): 

 Cilj optimizacije: različite studije koristile su različite funkcije nagrade za 
minimizaciju potrošnje električne energije uz očuvanje komfora stanovnika. 
Mere komfora bile su definisane na različite načine, a razlikovao se i način 
njihove integracije sa merama potrošnje energije u funkciji nagrade.  

 Okruženja: simulaciona okruženja za pametne kuće razlikovala su se po 
dostupnim uređajima, njihovim karakteristikama i tarifnim režimima. Matlab je 
bio najčešće korišćen kao simulaciono okruženje, a nedostatak 
standardizovanog simulacionog okruženja istaknut je kao značajna prepreka za 
efikasno poređenje različitih rešenja (Gomes et al. 2022). Glavni nedostatak 
većine posmatranih okruženja odnosio se na nemogućnost modelovanja uređaja 
sa varijabilnom potrošnjom električne energije tokom različitih faza rada. U 
većini radova, uređaji poput veš mašine i mašine za sudove bili su modelovani 
tako da imaju konstantnu potrošnju tokom celokupnog perioda rada, što ne 
odgovara stvarnim karakteristikama njihove potrošnje. 

 Trening i test podaci: modeli predloženi u analiziranim studijama obično su 
trenirani i testirani samo u određenim periodima godine, što je dovodilo u 
pitanje njihovu sposobnost generalizacije na druge periode sa različitim 
vremenskim uslovima i obrascima potrošnje. Da bi se ovo ograničenje 
prevazišlo, potrebno je obuhvatati treniranje i testiranje modela tokom različitih 
sezona u godini.   

 Tehnike optimizacije ciljne funkcije: Savremena istraživanja pretežno su se 
fokusirala na primenu tehnika učenja potkrepljivanjem za automatizaciju rada 
uređaja u pametnim kućama, sa ciljem minimizacije troškova energije i 
očuvanja komfora stanovnika. Međutim, nije pronađeno nijedno rešenje koje je 
razmatralo primenu pretreniranih LLM-ova za rešavanje ovog problema. 
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Takođe, utvrđeno je da postojeća rešenja nisu analizirala uticaj parametara stanja 
okruženja na odluke modela učenja potkrepljivanjem. Ovakva analiza mogla bi doprineti 
objašnjenju odluka donetih od strane HEMS-a, povećati poverenje korisnika u sistem i 
omogućiti njegovo rafiniranje. 

Iz pregleda aktuelnog stanja u oblasti ustanovljeno je da problem optimizacije više-ciljne 
funkcije, koja uključuje minimizaciju troškova električne energije i održanje komfora 
stanara, nije u potpunosti rešen. Stoga postoji potreba za daljim istraživanjem u ovoj 
oblasti. U ovom istraživanju, navedeni problem biće rešavan automatizacijom planiranja 
vremena rada uređaja u pametnoj kući. Analizom literature utvrđeno je da rešenje treba 
da obuhvati sledeće aspekte: 

 Definiciju adaptivnog okruženja za simulaciju pametne kuće. Okruženje bi 
trebalo da omogući simulaciju različitih tipova uređaja i fleksibilno podešavanje 
njihovih karakteristika. Kako bi simulacija uređaja bila što realističnija, 
poželjno je omogućiti simulaciju uređaja sa varijabilnom potrošnjom energije. 
Simulacija bi takođe trebala da podrži definisanje dostupnih tarifnih režima. 
Konačno, radi postizanja veće realističnosti eksperimenta, prilikom evaluacije 
rešenja je u simulaciju potrebno uključiti istorijske podatke o vremenskim 
uslovima i tarifnim režimima na određenoj geografskoj lokaciji. 

 Definisanje metrika koje kombinuje komfor stanovnika pametne kuće sa cenom 
električne energije. Metrika komfora treba da omogući stanarima intuitivno 
definisanje željenog stepena i opseg rada pojedinačnih uređaja. Ove metrike se 
formalizuju putem funkcije nagrade, koja se koristi za obučavanje modela 
zasnovanih na učenju potkrepljivanjem, donošenje odluka od strane LLM-a, kao  
i za evaluaciju performansi RL i LLM modela. 

 Odabir odgovarajućeg modela za treniranje HEMS-a. Potrebno je razmotriti 
DDQN i PPO algoritme učenja potkrepljivanjem, koji su prepoznati kao 
najperspektivnije strategije za rešavanje ovog problema. Takođe, neophodno je 
istražiti mogućnost primene LLM-ova, koji imaju potencijal da ublaže 
ograničenja navedenih algoritama. Kao referentni pristup, potrebno je definisati 
sistem zasnovan na ručno definisanim pravilima.  

 Postupak evaluacije na trening i test podacima koji pokrivaju različita godišnja 
doba. 

 Analizu uticaja ulaznih parametara stanja okruženja na odluke razvijenog 
HEMS sistema. Ovo istraživanje predlaže primenu SHAP (eng. Shapley 
Additive Explanations) biblioteke (Lundberg and Lee 2017), koja omogućava 
dekompoziciju predikcija modela na pojedinačne doprinose svakog ulaznog 
parametra.  
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4 Metodologija 
 

Ovo poglavlje opisuje metodologiju za optimizacije potrošnje električne energije uz 
očuvanje komfora stanovnika pametne kuće, ostvarenu strateškim planiranjem vremena 
rada uređaja. Potpoglavlje 4.1 izlaže arhitekturu implementiranog sistema. Potpoglavlje 
4.2 opisuje dizajn adaptivnog simulacionog okruženja, dok potpoglavlje 4.3 opisuje 
funkciju nagrade. Potpoglavlje 4.4 opisuje primenu algoritama učenja potkrepljivanjem 
za rešavanje ovog problema. Potpoglavlje 4.5 objašnjava način korišćenja pretreniranih 
velikih jezičkih modela u ovom kontekstu, sa fokusom na dizajn efektivnih promptova.  

4.1 Arhitektura sistema 
U okviru ove disertacije, sistem je podeljen na četiri sloja, po uzoru na rad Cook i 
saradnika (Cook et al. 2003). Slika 18 prikazuje arhitekturu sistema raščlanjenu po 
slojevima:  

 Simulaciono okruženje pametne kuće (fizički sloj) – Simulira okruženje i 
generiše podatke o potrošnji električne energije kućnih aparata.  
Radi evaluacije predloženog pristupa, kreirana je simulacija konkretne pametne 
kuće, čije su postavke opisane u potpoglavlju 5.1. 

 Sloj za donošenje odluka (HEMS) – Predstavlja model koji donosi odluke na 
osnovu trenutnog stanja okruženja. Unutar ovog sloja moguće je menjati model 
odlučivanja u cilju analize efekata različitih rešenja na potrošnju električne 
energije i komfor stanovnika.  

 Informacioni sloj – Prikuplja podatke relevantne za simulaciju. U 
eksperimentima izvedenim u okviru ove disertacije, korišćeni su istorijski 
podaci o vremenskim uslovima i tarifnim režimima na određenoj geografskoj 
lokaciji. Ove informacije su neophodne za preciznu simulaciju rada određenih 
uređaja i računanje troškova električne energije.  

 Komunikacioni sloj – Omogućava razmenu podataka između HEMS-a i 
simulacionog okruženja. Implementiran je kao Python aplikacija i omogućava 
da se simulacija potrošnje električne energije prilagodi realnim uslovima. 
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Slika 18. Arhitektura sistema – komponente simulacionog okruženja za obuku i 
evaluaciju HEMS-a za upravljanje uređajima u pametnoj kući. U okviru sloja odluke 
moguće je odabrati jedan od sledećih pristupa: algoritam dvostruke duboke Q-mreže 
(DDQN), algoritam optimizacije proksimalne politike (PPO), jednu od dve varijante 
modela zasnovanog na velikom jezičkom modelu (LLM) ili model zasnovan na znanju 
(KBS). 

4.2 Dizajn adaptivnog simulacionog okruženja 
Za obučavanje i evaluaciju modela dubokog učenja i sistema zasnovanog na znanju, 
implementirana su dva adaptivna simulaciona okruženja: 

 Typhoon HIL (Typhoon HIL 2008), u okviru koga se potrošnja uređaja modeluje 
kao konstantna vrednost tokom celokupnog trajanja rada uređaja,  

 Load Flow (Vojnović et al. 2022) (Vojnović et al. 2023b) (Vojnović et al. 
2023a), u okviru koga se potrošnja uređaja modeluje kao varijabilna vrednost, 
zavisna od faze rada uređaja.  

U okviru simulacije modelovani su proizvođači i potrošači električne energije. Rad 
proizvođača energije (solarnog panela) zavisi od eksternih vremenskih uslova. Svi 
potrošači energije predstavljaju uređaje sa promenljivim vremenom rada, odnosno, 
uređaje čiji rad može biti odložen ili zakazan unutar vremenskih opsega koje definišu 
korisnici.  

Potrošači se dalje klasifikuju u termalne i netermalne uređaje. Rad termalnih uređaja (na 
primer, klima uređaj) zavisi od sledećih faktora:  

 Eksterni vremenski uslovi, poput temperature i sunčeve iradijacije. 

 Termodinamičke karakteristike kuće, koje se u simulaciji definišu putem dva 
parametra: toplotna provodnost i koeficijent iskorišćenja klima uređaja. 

 Željeni temperaturni opseg, koji definišu korisnici, a koji se koristi za regulaciju 
unutrašnje temperature u cilju očuvanja komfora. 

Za netermalne uređaje (na primer, veš mašina), osim vremenskog okvira u kojem 
korisnici očekuju da uređaj završi svoj rad, moguće je dodatno definisati da li uređaj 
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zahteva neprekidni ciklus rada. Ukoliko HEMS prekine rad uređaja sa neprekidnim 
ciklusom rada, taj uređaj mora biti ponovo pokrenut od početka, pri čemu se sva 
prethodno utrošena energija gubi. Ovakav ishod se smatra neefikasnim i treba ga izbeći 
adekvatnim planiranjem vremena rada uređaja.  

Pored toga, za netermalne uređaje uveden je indikator spremnosti za rad, koji označava 
da li je uređaj spreman da započne radni ciklus. Na primer, veš mašina je spremna za rad 
samo ako je prethodno napunjena vešom. Nakon završetka radnog ciklusa, uređaj se više 
ne smatra spremnim za rad, dok se ne ispuni novi uslov spremnosti. U simulaciji je 
eksplicitno onemogućeno pokretanje uređaja koji nije spreman za rad. 

Vremenski korak 𝑡 u simulaciji postavljen je na 15 minuta, iako sistem omogućava 
definisanje i drugih vrednosti. U kontekstu HEMS-a, vremenski korak predstavlja 
osnovnu jedinicu vremena u kojoj sistem donosi odluke. Na početku svakog vremenskog 
koraka, HEMS očitava trenutno stanje okruženja i, na osnovu toga, određuje 
odgovarajuće akcije za upravljanje uređajima. Doneta odluka se primenjuje tokom celog 
trajanja tog koraka. Izbor trajanja vremenskog koraka direktno utiče na ponašanje 
sistema: kraći vremenski koraci omogućavaju finiju kontrolu i brže reagovanje na 
promene u okruženju, ali povećavaju složenost obuke i zahteve u pogledu obrade 
podataka. Nasuprot tome, duži vremenski koraci smanjuju računarske zahteve, ali mogu 
ograničiti sposobnost sistema da se pravovremeno prilagodi dinamičnim uslovima, 
naročito u slučaju naglih promena u proizvodnji ili potrošnji energije. U postojećim 
radovima, vremenski korak obično traje od nekoliko minuta do jednog sata, kako bi se 
omogućila jednostavna primena algoritma u realnom sistemu pametne kuće (Yu et al. 
2020). Radovi (Yu et al. 2020), (Lissa et al. 2021) i (Lee and Choi 2019) koriste 
vremenski korak od 1h, dok je u ovom istraživanju odabrana vrednost od 15 minuta u 
skladu sa praksom u relevantnoj literaturi, uključujući radove (Azuatalam et al. 2020) i 
(Aldahmashi and Ma 2024). 

4.3 Dizajn funkcije nagrade 
Problem optimizacije razmatran u ovoj disertaciji predstavlja više-ciljnu optimizaciju, pri 
čemu je određivanje međuzavisnosti i interakcije između pojedinačnih ciljeva 
kompleksno (Moffaert and Nowe 2014). Funkcija nagrade formulisana je kao 
ponderisana suma različitih ciljeva izraženih u novčanim jedinicama, čime se omogućava 
njihovo objedinjavanje u jedinstvenu funkciju i olakšava postupak optimizacije.  U ovom 
radu razmatraju se dva ključna cilja: očuvanje komfora stanara, i minimizacija troškova 
električne energije. Oba cilja su kvantifikovana u istim monetarnim terminima 
(euro/kWh), što omogućava njihovo direktno sabiranje. 

Komfor stanara u vremenskom koraku 𝑡 računa se kao suma komfora svih 𝑁୳୮୰ୟ୴୪୨୧୴ 

uređaja kojima HEMS upravlja: 

𝑅௧
୩୭୫୤୭୰ = ෍ ൭𝐸௧

௜ +
1

1000ቄா೟
೔ୀ଴ቅ

൱ ∗

ே౫౦౨౗౬ౢౠ౟౬

௜ୀଵ

𝐵௧
௜ ∗ 𝐾𝑎𝑧𝑛𝑎௧

௜ , ( 27 ) 

gde: 

 𝐸௧
௜ predstavlja energiju koju potroši uređaj 𝑖 u vremenskom koraku 𝑡.  
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 𝐵௧
௜  predstavlja novčani značaj dodeljen radu uređaja 𝑖 u vremenskom koraku 𝑡, 

prema vrednostima prikazanim u tabeli 14.  

 Indikatorska funkcija 
ଵ

ଵ଴଴଴ቄா೟
೔ୀ଴ቅ

 ima vrednost 
ଵ

ଵ଴଴଴
 ako uređaj 𝑖 nije radio u 

vremenskom koraku 𝑡, a u suprotnom ima vrednost 0. Ova konstanta uvedena 
je kako bi se kazna primenila i na uređaje koji nisu aktivni, čime se izbegava 
nula u izrazu i obezbeđuje minimalni doprinos vrednosti komfora u skladu sa 
minimalnom potrošnjom uređaja. 

 𝐾𝑎𝑧𝑛𝑎௧
௜  predstavlja penalizaciju za nepotrebnu aktivaciju ili deaktivaciju 

uređaja 𝑖 u vremenskom koraku 𝑡. Na primer, nepotrebna aktivacija nastupa 
kada se klima uređaj uključi iako je temperatura već u željenom opsegu. Bez 
uvedene kazne, HEMS bi u ovom slučaju dobio nagradu za komfor, uprkos 
nepotrebnoj potrošnji energije. Sa druge strane, nepotrebna deaktivacija nastupa 
kada se klima uređaj isključi iako unutrašnja temperatura nije u željenom 
opsegu.  

Kazna se razlikuje u zavisnosti od tipa uređaja (termalni i netermalni uređaji): 

𝐾𝑎𝑧𝑛𝑎௧
௜ = ቊ

𝐾𝑎𝑧𝑛𝑎௧,୲ୣ୰୫ୟ୪୬୧
௜ , ako je 𝑖 termalan uređaj,

𝐾𝑎𝑧𝑛𝑎௧,௡௘୲ୣ୰୫ୟ୪୬୧
௜ ako je 𝑖 netermalan uređaj.

 ( 28 ) 

Kazna za termalne uređaje može poprimiti tri različite vrednosti: 

𝐾𝑎𝑧𝑛𝑎௧,୲ୣ୰୫ୟ୪୬୧
௜

=

⎩
⎪⎪
⎨

⎪⎪
⎧

−1,

𝛥𝑇௧,୰ୟ୸୪୧୩ୟ = 0 i

𝐴୳୩୪୨୳č୧
௜ ∈ 𝐴௧  i

 Δ𝑇௧ିଵ,୰ୟ୸୪୧୩ୟ = 0,

   

−ห𝛥𝑇௧,୰ୟ୸୪୧୩ୟห ∗ 10,
𝛥𝑇௧,୰ୟ୸୪୧୩ୟ ≠ 0 i

𝐴୳୩୪୨୳č୧
௜ ∉ 𝐴௧ ,

 

1, inače.

 ( 29 ) 

gde je:  

 𝛥𝑇௧,୰ୟ୸୪୧୩ୟ – razlika između trenutne unutrašnje temperature i željenog 
temperaturnog opsega u vremenskom koraku 𝑡,  

 Δ𝑇௧ିଵ,୰ୟ୸୪୧୩ୟ – razlika u prethodnom vremenskom koraku 𝑡 − 1,  

 𝐴୳୩୪୨୳č୧
௜  – akcija uključivanja termalnog uređaja 𝑖,  

 𝐴௧ – skup akcija preduzetih u vremenskom koraku 𝑡.  

Na primer, kazna od -1 primenjuje se ako HEMS uključi klima uređaj iako je unutrašnja 
temperatura već bila unutar željenog opsega u prethodnom i trenutnom vremenskom 
koraku, čime se sprečava dodela nagrade za komfor kroz nepotrebnu potrošnju energije. 
S druge strane, ako je temperatura van željenog opsega, a HEMS ne aktivira AC, kazna 
se povećava proporcionalno odstupanju od željenog temperaturnog opsega. U suprotnom 
nema kazne (𝐾𝑎𝑧𝑛𝑎௧,୲ୣ୰୫ୟ୪୬୧

௜
= 1). 

Kazna za netermalne uređaje uvedena je da obeshrabri HEMS da bespotrebno isključuje 
uređaje: 
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𝐾𝑎𝑧𝑛𝑎௧,୬ୣ୲ୣ୰୫ୟ୪୬୧
௜

= ቊ
−1, 𝑏𝑟𝑜𝑗𝑐𝑖𝑘𝑙𝑢𝑠𝑎௧,୬ୣ୲ୣ୰୫ୟ୪୬୧

௜ = 0 i  𝑆௧ିଵ,୛
௜ = 0 i 𝐴୧ୱ୩୪୨୳č୧

௜ ∈ 𝐴௧ ,

1, u suprotnom.
  

( 30 ) 

Kazna od -1 primenjuje se u sledećem slučaju:  

 uređaj je završio sve cikluse (𝑏𝑟𝑜𝑗𝑐𝑖𝑘𝑙𝑢𝑠𝑎௧,୬ୣ୲ୣ୰୫ୟ୪୬୧
௜ = 0),  

 uređaj je bio isključen u prethodnom koraku (𝑆௧ିଵ,୛
௜ = 0),  

 HEMS pokušava da isključi uređaj (𝐴୧ୱ୩୪୨୳č୧
௜ ∈ 𝐴௧), iako to nije potrebno. 

Postoji dodatna kazna za netermalne uređaje (mašina za sudove i mašina za veš).  

Neposredna nagrada na kraju dana 𝑅෨୩୭୫୤୭୰
୘ računa se kao neposredna nagrada u 

vremenskom koraku T, uvećana za eventualne kazne koje se primenjuju ukoliko 
netermalni uređaji nisu završili svoj posao: 

 𝑅෨୩୭୫୤୭୰
୘  = 𝑅୘ + ෍ 𝑘𝑎𝑧𝑛𝑎୘

௜

ே౤౛౪౛౨ౣ౗ౢ౤౟

௜

. ( 31 ) 

 

Kazna 𝑘𝑎𝑧𝑛𝑎் uzima vrednost 0 ukoliko je uređaj 𝑖 završio svoj rad do kraja dana 
(vremenski trenutak 𝑇). U suprotnom, predstavlja fiksnu novčanu penalizaciju koja je 
empirijski određena tako da bude približna najvećoj prosečnoj nagradi svih modela. Na 
osnovu eksperimentalne evaluacije (potpoglavlje 6.1), ukupna dnevna nagrada kreće se 
u intervalu od −6 do 4 (6.1.1), gde je najveća prosečna dnevna nagrada oko 4 evra za 
letnji mesec prilikom obučavanja PPO modela u Typhoon HIL simulacionom okruženju. 
Stoga je kazna postavljena na −4 evra po uređaju koji ne završi svoj rad do kraja dana, 
kako bi postojao značajan uticaj na ukupnu nagradu u slučaju neizvršavanja zahteva. 

Ukupni trošak električne energije u vremenskom koraku 𝑡 računa se kao suma potrošnje 
svih aktivnih uređaja: 

 𝑅௧
୮୭୲୰୭š୬୨ୟ

= ∑ ൫𝐸௧
௜ ∗ 𝑡𝑎𝑟𝑖𝑓𝑎௧൯ே

௜ୀଵ , ( 32 ) 

gde: 

 𝑁 predstavlja broj aktivnih uređaja, uključujući uređaje pod kontrolom HEMS-
a (čiji je broj 𝑁௨௣௥௔௩௟௝௜௩) i uređaje koji predstavljaju proizvođače energije. 

 𝐸௧
௜ označava količinu energije koju 𝑖-ti uređaj potroši ili proizvede u 

vremenskom koraku 𝑡. Vrednost 𝐸௧
௜ je pozitivna ako uređaj troši energiju, a 

negativna ako je proizvodi. 
 𝑡𝑎𝑟𝑖𝑓𝑎௧ predstavlja cenu električne energije u vremenskom koraku 𝑡. 

Neposredna nagrada (𝑅௧) u vremenskom koraku 𝑡 definiše se kao zbir komponente koja 
kvantifikuje komfor stanara za uređaje kojima upravlja HEMS ൫𝑅௧

୩୭୫୤୭୰൯ i komponente 
koja predstavlja trošak potrošnje električne energije svih aktivnih uređaja u tom 

vremenskom koraku ൫𝑅௧
୮୭୲୰୭š୬୨ୟ

൯: 

𝑅௧ = 𝑅௧
୩୭୫୤୭୰ + 𝑅௧

୮୭୲୰୭š୬୨ୟ
. ( 33 ) 

U finalnom vremenskom koraku T = 96, neposredna nagrada 𝑅୘ se računa kao: 
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𝑅௧ = 𝑅෨୩୭୫୤୭୰
୘  + 𝑅୘

୮୭୲୰୭š୬୨ୟ
, 

gde se 𝑅୘
୮୭୲୰୭š୬୨ୟ računa na osnovu ( 32 ), dok se 𝑅෨୩୭୫୤୭୰

୘ računa na osnovu ( 31 ), koja 
je izmenjena nagrada za komfor koja podržava kazne za netermalne uređaje. 

4.4 Dizajn modela učenja potkrepljivanjem za 
određivanje optimalnog vremena rada uređaja 
pametne kuće 

Pregledom literature (potpoglavlje 3.2) utvrđeno je da su DDQN i PPO algoritmi 
najperspektivnija rešenja za razvoj HEMS-a zasnovanog na učenju potkrepljivanjem. 
Shodno tome, ovi algoritmi su primenjeni u ovom istraživanju. 

U ovom istraživanju, rešavani problem modelovan je kao epizodni zadatak, pri čemu 
jedna epizoda odgovara jednom danu simulacije6. Tokom obučavanja modela učenja 
potkrepljivanjem, svaki naredni dan bira se nasumično, kako bi se izbegla zavisnost 
između uzastopnih epizoda. Na kraju svake epizode, simulacija se resetuje u početno 
stanje. Reset uključuje postavljanje unutrašnje temperature na vrednost 
max൫18°C, Tempatura଴,ୱ୮୭୪୨ୟš୬୨ୟ൯.  Takođe, indikatori spremnosti svih uređaja se 

resetuju i postavljaju u stanje „spremnost za rad“.  

Postavke neuronskih mreža u DDQN i PPO algoritmima imaju identične dimenzije 
ulaznog i izlaznog sloja. Ulazni sloj ima deset dimenzija, što odgovara komponentama 
vektora stanja definisanim u potpoglavlju 5.1.4.1. Izlazni sloj ima sedam dimenzija i 
predstavlja ukupan broj mogućih akcija koje su opisane u potpoglavlju 5.1.4.2.  

Slična postavka problema prisutna je u literaturi, pri čemu dužina epizode i inicijalni 
uslovi variraju u različitim istraživanjima: 

 U radu Aldahmashi and Ma (Aldahmashi and Ma 2024), jedna epizoda trajala 
je jedan dan.  Nakon svake epizode, okruženje se resetovalo tako što se 
unutrašnja temperatura nasumično postavljala u opsegu od 20°𝐶 do 22°𝐶, dok 
su ostale varijable imaju unapred definisane početne vrednosti. Prilikom obuke 
PPO modela korišćeno je 300 nasumično sortiranih dana.  

 U radovima Yu et al. (Yu et al. 2020) i Lee and Choi (Lee and Choi 2019), 
epizoda je takođe trajala jedan dan. Autori nisu eksplicitno naveli inicijalne 
vrednosti početnog stanja, već su definisali fiksne vrednosti za hiperparametre, 
potrošnju uređaja i minimamalnu/maksimalnu temperaturu. 

 U radu Lissa et al. (Lissa et al. 2021), epizoda je trajala osam meseci (od maja 
do decembra). Autori su naveli samo vrednosti hiperparametara i željeni 
temperaturni opseg, ali nisu eksplicitno opisali inicijalno stanje.  

 U radu Azuatalam et al. (Azuatalam et al. 2020), epizoda je trajala dva meseca 
(januar i februar). Nije naglašeno da se okruženje resetovalo između epizoda, 
ali su navedene  inicijalne vrednosti hiperparametara i druge konstante 
relevantne za simulaciju.  

 
6 Budući da se simulacija odvija u 15-minutnim koracima, jedna epizoda sadrži 96 
vremenskih koraka. 
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 U radu Li, Wan i He (Li et al. 2020), epizoda je trajala jedan dan. Autori su 
eksplicitno naveli inicijalne vrednosti hiperparametara i ostale parametre 
neophodne vrednosti za simulaciju. 

Radovi Azuatalam et al. (Azuatalam et al. 2020) i Aldahmashi and Ma (Aldahmashi and 
Ma 2024) pokazali su da PPO model brže konvergira u poređenju sa DDQN modelom. 
U radu (Azuatalam et al. 2020) PPO algoritmu bilo je potrebno oko 1000 epizoda za 
obuku. U njihovoj postavci, jedna epizoda trajala je dva meseca, uz vremenski korak od 
15 minuta, što odgovara otprilike 5.760 vremenskih koraka po epizodi. Slično tome, u 
radu (Aldahmashi and Ma 2024), PPO model je konvergirao nakon približno 1.000 
epizoda, dok je DDQN zahtevao oko 3.500 epizoda da bi postigao stabilnu 
konvergenciju. U njihovom eksperimentu, svi modeli su se trenirali 5.000 epizoda. 
Epizoda je trajala jedan dan i obuhvatala 96 vremenskih koraka (vremenski korak od 15 
minuta). Li, Wan i He (Li et al. 2020)  trenirali su PPO algoritam  na 50.000 epizoda, gde 
je svaka epizoda trajala jedan dan simuliran u vremenskim koracima od 15 minuta. U 
ovoj tezi, PPO algoritam treniran je kroz 11.000 epizoda u okviru oba simulaciona 
okruženja, dok je za DDQN model korišćeno 22.000 epizoda u Load Flow okruženju i 
44.000 epizoda u Typhoon HIL okruženju. 

Potpoglavlja 4.4.1 i 4.4.2 prikazuju odabir ostalih hiperparametara DDQN i PPO 
algoritma. 

4.4.1 Postavka hiperparametara za model dvostruke duboke Q-
mreže 

Odabir arhitekture duboke Q-mreže zavisi od dimenzije prostora stanja i akcija. Na 
primer, u radu (Aldahmashi and Ma 2024), prostor stanja bio je predstavljen kao vektor 
od 16 realnih vrednosti, dok je skup akcija obuhvatao 576 diskretnih vrednosti. Zbog 
visoke složenosti ove postavke, autori su dizajnirali DDQN model sa šest skrivenih 
slojeva – tri sloja sa po 128 neurona i tri sloja sa po 64 neurona. Kao aktivaciona funkcija 
korišćena je ReLU, a vrednost faktora umanjenja postavljena je na 0,99. DDQN model 
iz rada (Li et al. 2020) imao je jednostavniju arhitekturu, sa dva skrivena sloja od po 64 
neurona. Ovakva konfiguracija odgovarala je manje složenoj postavci – prostor stanja 
sadržao je 33 realne vrednosti, ali je skup akcija bio znatno jednostavniji i sadržao svega 
pet mogućih akcija (četiri binarne i jednu kontinulanu). I u ovom slučaju korišćena je 
ReLU aktivaciona funkcija, uz faktor umanjenja od 0,995.  

U ovom istraživanju, prostor stanja i akcija bio je jednostavniji u poređenju sa prethodno 
analiziranim radovima. Prostor stanja modelovan je kao 10-dimenzioni vektor koji 
uključuje realne i celobrojne vrednosti, dok skup akcija obuhvata sedam diskretnih 
mogućnosti (potpoglavlje 5.1.4). U skladu sa manjom složenošću problema, korišćena je 
potpuno povezana neuronska mreža sa dva skrivena sloja od po 64 neurona. Kao i u 
analiziranim radovima, korišćena je ReLU aktivaciona funkcija, dok je faktora umanjenja 
postavljen na 0,99. 

Rad (Fuente and Guerra 2024) prikazao je eksperimentalnu postavku za DDQN i PPO 
modele, u okviru koje su upoređivane krive obučavanja za različite vrednosti stope 
učenja. Najvišu srednju vrednost nagrade postigla je stopa učenja 5𝑒 − 5, dok je vrednost 
5𝑒 − 4 pokazala sličnu dinamiku konvergencije. U skladu sa ovim analizama, u okviru 
ovog istraživanja ispitano je više vrednosti stope učenja unutar tog raspona. Optimalna 
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vrednost odabrana je na osnovu vizuelne analize krivih obučavanja (primeri krivih 
obučavanja su prikazani na slikama u potpoglavlju 6.1.1. 

Radi rešavanja kompromisa između istraživanja i eksploatacije, u ovom istraživanju 
primenjena je ε-pohlepna strategija sa linearnim opadanjem parametra 𝜀, i opsegu od 1 
do 0.1. Ovakva šema smanjenja podstiče intenzivno istraživanje u ranim fazama obuke, 
dok postepeno prelazi na eksploataciju naučene politike u kasnijim fazama treniranja. 
Linearno smanjenje 𝜀 omogućava postepen i stabilan prelazak između faza istraživanja i 
eksploatacije. I pored ograničenja poput nekonzistentnosti u izboru akcija tokom 
vremena (Plappert et al. 2018), ε-pohlepna strategija ostaje široko korišćena u praksi 
zbog jednostavne implementacije i robustnih performansi tokom procesa obuke. 

Konačan izbor hiperparametara za DDQN model bio je prilagođen specifičnostima 
podataka generisanih korišćenjem korišćenjem različitih simulacionih okruženja. 
Vrednosti hiperparametara određene su na osnovu vizuelne analize krivih obučavanja 
(odnosno prosečne nagrade po epizodi), kao i u skladu sa preporukama iz relevantne 
literature. Tokom obuke, hiperparametari poput stope opadanja istraživanja (eng. 
exploration rate decay), stope učenja i ukupnog broja epoha varirali su u zavisnosti od 
konkretnih karakteristika simulacionog okruženja. Podaci dobijeni iz Typhoon HIL 
simulacionog okruženja zahtevali su veći broj epizoda za postizanje konvergencije. 
Budući da stope učenja i stope opadanja istraživanja zavise od ukupnog trajanja obuke, 
njihove optimalne vrednosti su se razlikovale u poređenju sa vrednostima korišćenim u 
Load Flow simulacionom okruženju. Optimalne vrednosti hiperparametara korišćenih za 
DDQN model prikazane su u tabeli 5. 

Tabela 5. Vrednosti hiperparametara korišćene za obučavanje DDQN modela. 

Hiperparametar Vrednost 
Typhoon HIL Load Flow 

Aktivaciona funkcija ReLU 

Veličina skupa i memorijskog bafera 64/100.000 

Faktor umanjenja (𝜸) 0,99 

Broj vremenskih koraka po epizodi 96 

Broj epizoda 44.000 11.000 

Stopa opadanja fakora istraživanja (𝜺) 0,99/(44.000 * 96) 0,99/(11.000 * 96) 

Krajnji vrednost faktora istraživanja 
(𝜺𝐦𝐢𝐧)  

0,1 

Broj skrivenih slojeva  2 sloja od po 64 neurona 

Stopa učenja (𝜶) 2,5e-5 2,5e-4 

Funkcija greške Huber 

Optimizator Adam 

 

4.4.2 Postavka hiperparametara algoritma optimizacije 
proksimalne politike 

U ovom istraživanju primenjena je ista postavka PPO algoritma kao u radu (Azuatalam 
et al. 2020), uz prilagođavanje vrednosti hiperparametara specifičnostima razvijenog 
simulacionog okruženja i ciljevima eksperimenta.  
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U navedenom radu, stanje sistema bilo je predstavljeno pomoću 15 kontinualnih 
vrednosti, dok je skup akcija sadržao 10 kontinualnih vrednosti. Mreže politike i 
vrednosti imale su po dva skrivena sloja sa po 64 neurona i tanh aktivacionom funkcijom. 
Parametar clip iznosio je 0,2, a faktor umanjenja γ = 0,99, čime se obezbeđuje stabilna 
ravnoteža između trenutnih i budućih nagrada. 

U poređenju sa prethodnim istraživanjima, gde je broj epizoda često prelazio nekoliko 
desetina hiljada (npr. 50.000 u radu (Li et al. 2020)), u ovom istraživanju su vrednosti 
hiperparametara određene tako da obezbede kompromis između stabilnosti obuke, brzine 
konvergencije i vremenske složenosti simulacije. 

Na osnovu rezultata radova radu (Azuatalam et al. 2020) i (Aldahmashi and Ma 2024), 
gde je PPO model konvergirao znatno brže od DDQN-a (oko 1.000 epizoda naspram 
3.500), definisane su sledeće vrednosti: 11.000 epizoda u Load Flow okruženju, i 22.000 
epizoda u Typhoon HIL okruženju. Svaka epizoda obuhvata 96 vremenskih koraka 
(odgovara jednom danu simulacije sa vremenskim korakom od 15 minuta). Ovim 
izborom omogućeno je postizanje stabilne konvergencije uz prihvatljivo trajanje 
simulacija i konzistentnost sa referentnim radovima. 

Parametar clip =  0,2 preuzet je iz originalnog PPO rada (Schulman et al. 2017) i 
potvrđen kao stabilan u istraživanjima navedenih autora, dok su stope učenja odabrane 
eksperimentalno: 3 × 10⁻⁴ za mrežu politike i 1 × 10⁻³ za mrežu vrednosti. Ove 
vrednosti su se pokazale pogodnim za brzu stabilizaciju gradijenta bez oscilacija tokom 
treninga. 

Broj slojeva i neurona (dva skrivena sloja sa po 64 neurona) preuzet je iz radova 
(Azuatalam et al. 2020) i (Li et al. 2020), čime je očuvana arhitektonska jednostavnost 
uz dovoljnu reprezentacionu moć modela. 

Korišćene vrednosti hiperparametara PPO modela prikazane su u tabeli 6. 

Tabela 6. Vrednosti hiperparametara korišćeni za obučavanje algoritma optimizacije 
proksimalne politike. 

Hiperparametri Vrednosti 
Typhoon HIL Load Flow 

Aktivaciona funkcija tanh 

Clip parametar 0,2 

Faktor umanjenja 0,99 

Broj vremenskih koraka po epizodi 96 
Broj epizoda 22.000 11.000 

Broj skrivenih slojeva 2 sloja od po 64 neurona 

Stopa učenja (mreža politike) 3e-4 

Stopa učenja (mreža vrednosti) 1e-3 
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4.5 Dizajn prompta koji omogućava velikom jezičkom 
modelu da odredi optimalno vreme rada uređaja 
pametne kuće 

U ovom potpoglavlju prikazane su dve strategije definisanja prompta pri primeni LLM-
a na problem automatskog određivanja vremena rada uređaja u cilju smanjenja potrošnje 
električne energije uz očuvanje komfora stanara.  

potpoglavlje 4.5.1 prikazuje implementaciju strategije bez primera (eng. zero-shot), u 
kojoj je modelu data instrukcija da generiše kod koji predstavlja HEMS zasnovan na 
pravilima. Cilj ovog pristupa je provera da li LLM može automatski generisati sistem 
zasnovan na pravilima, na način sličan ljudskom ekspertu. Stoga je sistem zasnovan na 
pravilima generisan od strane LLM-a upoređen sa sistemom zasnovanim na pravilima 
koji je definisao autor disertacije. 

U potpoglavlju 4.5.2 prikazana je few-shot strategija, u okviru koje je LLM tretiran kao 
model učenja potkrepljivanjem. Model je primao niz promptova, pri čemu je svaki 
prompt odgovarao jednom vremenskom koraku simulacije. U okviru svakog prompta, 
modelu je bio prosleđen opis trenutnog stanja, na osnovu koga je trebalo da odabere 
optimalnu akciju. Pored toga, model je imao pristup ograničenom broju prethodnih 
interakcija, koje su uključivale opise prethodnih stanja, odabranih akcija i pripadajuće 
vrednosti neposredne nagrade. Ovaj pristup omogućava imitaciju procesa donošenja 
odluka karakterističnog za učenje potkrepljivanjem, bez potrebe za dodatnim treniranjem 
modela. 

Promptovi korišćeni u navedenim strategijama definisani su na osnovu tehnika 
predstavljenih u potpoglavlju 2.2.2.3. Ove tehnike pružaju strukturirani obrazac za 
formatiranje promptova, čime se obezbeđuje jasna interpretacija zadatka, doslednost u 
odgovorima i optimizacija akcija u skladu sa ciljevima HEMS-a. Ove dve strategije, 
uključujući KBS definisan od strane eksperta, se razlikuju od modela zasnovanih na 
učenju potkrepljivanjem jer kao rezultat mogu da vrate više akcija u vremenskom koraku. 

4.5.1 Zero-shot strategija prompta 
Zero-shot strategija koristi LLM za generisanje sistema baziranog na znanju, polazeći od 
prompta koji opisuje problem. Prompt je razvijan iterativno: u svakoj iteraciji LLM je 
dobijao opis problema uz zadatak da identifikuje nejasnoće i predloži dopune. Na osnovu 
konačne verzije prompta, od modela je zatraženo da generiše Python kod koji 
implementira sistem baziran na znanju. Tekst prompta je prikazan u tabeli 7. 

Tabela 7. Tekst prompta na osnovu koga je LLM generisao Python kod koji implementira 
sistem zasnovan na znanju za upravljanje uređajima pametne kuće. 

Prompt Objašnjenje 
You are a house energy management 
system. 
You must manage when appliances 
work so that electricity costs are 
reduced, while ensuring that the 
resident's comfort is maintained. 

Definiše se osnovna funkcija sistema za upravljanje energijom u 
domaćinstvu – planiranje vremena rada uređaja radi smanjenja 
troškova električne energije, uz očuvanje komfora stanara. 
Naglašeno je da više uređaja može raditi istovremeno. 
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Multiple devices are allowed to run 
in parallel. 

The house has a solar panel and is 
connected to the electrical grid. 

The grid has the following fixed 
schedule for tariffs: peak (0.4 
eur/kWh), shoulder (0.3 eur/kWh), 
and off-shoulder (0.2 eur/kWh). 

Kuća je opremljena solarnim panelom i priključena na električnu 
mrežu. Navedene su fiksne tarife koje zavise od doba dana. 

The house also has controllable 
devices: a washing machine, a 
dishwasher, and an AC. 

The energy consumption rates are 
variable throughout their run. 

Navedeni su uređaji čijim radom sistem može upravljati: mašina 
za veš, mašina za sudove i klima uređaj. Ukazano je da je njihova 
potrošnja energije promenljiva tokom ciklusa rada. 

The washing machine has a defined 
duration of 4 h 30 min, with 
consumption rates from 0 kWh to 
around 0.5 kWh. 

The dishwasher has a defined 
duration of 2 h, with consumption 
rates from 0 kWh to around 0.45 
kWh. 

The washing machine and 
dishwasher can only be run when 
"available" (e.g., when loaded). 
Currently, both devices are ready at 
the start of the day. Once run, they 
cannot run again. 

These two appliances must run once 
daily; failure to run them results in a 
large, fixed penalty in the reward 
function. 

Opisane su karakteristike mašine za veš i mašine za sudove, 
uključujući trajanje ciklusa i opseg potrošnje energije. Istaknuto 
je da ovi uređaji mogu raditi samo kada su spremni za rad i da 
moraju biti pokrenuti tačno jednom u toku dana. 

The AC has a variable period, can be 
run multiple times per day, and has 
consumption rates ranging from 0 
kWh to around 0.6 kWh. 

Opisane su karakteristike klima uređaja. Istaknuto je da klima 
uređaj može biti uključen više puta dnevno. 

The priorities of each device 
(washing machine, dishwasher, and 
AC) are different, time-dependent, 
and defined by users. 

For example, the washing machine's 
default priority is low, but if the 
residents want laundry done by 5 PM 
and it takes 2 hours, the priority 
becomes mid at 1 PM and high at 3 
PM, signaling urgency. 

Prioriteti uređaja definišu se od strane korisnika i vremenski su 
promenljivi. Definicija prioriteta se ilustruje kroz primer mašine 
za veš. 

Residential comfort is modeled in 
monetary terms. Each controllable 
device at each timestep is assigned a 
priority value: high (0.45 eur/kWh), 
mid (0.35 eur/kWh), and low (0 
eur/kWh). 

Komfor se modeluje u novčanim jedinicama i zavisi od prioriteta 
uređaja. 

The immediate reward function at 
each timestep is the sum of the 
benefit and the total energy 

Vrednost neposredne nagrade u svakom vremenskom koraku 
predstavlja zbir komfora i potrošnje električne energije. Komfor 
pojedinačnog uređaja se računa kao proizvod potrošnje energije 
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consumption and production of each 
device (in euros). 

Specifically, comfort is calculated as 
the sum of the product of energy 
consumption, benefit, and penalty 
for each device in the current 
timestep. 

tog uređaja, njegovog prioriteta i eventualne kazne vezane za rad 
uređaja. 
Ova komponenta komfora formalno je definisana sumom 
prikazanom u formuli ( 27 ), gde je izražena kao zbir doprinosa 
svih upravljivih uređaja u datom vremenskom koraku. 
 

There is a penalty factor if the 
dishwasher or washing machine are 
stopped during operation. 

The AC incurs a penalty if the 
temperature difference between 
desired and actual indoor 
temperatures becomes too high. 

If total energy consumption is 
negative, this indicates excess 
production from the solar panel. 

Kazne vezane za rad uređaja se primenjuju u specifičnim 
situacijama: kažnjava se prekid ciklusa rada mašine za veš ili 
mašne za sudove, dok klima uređaj dobija kaznu ukoliko razlika 
između željene i stvarne unutrašnje temperature postane 
prevelika. Naglašava se da ukupna potrošnja energije može biti i 
negativna, što ukazuje da je proizvodnja energije putem solarnog 
panela veća od potrošnje neophodne za rad uređaja. 
 

 

The energy produced by the solar 
panel is directly used by devices, but 
surplus energy cannot be sold or 
stored. 

Production depends on external 
weather conditions; real-world 
historical data is used as input. 

Energija proizvedena solarnim panelom mora se odmah 
iskoristiti, jer se višak ne može ni skladištiti ni prodati. Količina 
proizvedene energije zavisi od vremenskih uslova, pri čemu se 
kao ulaz koriste realni istorijski meteorološki podaci. 

The final reward at the end of the 
day is calculated by summing the 
immediate rewards from each 
timestep. 

Timesteps occur in discrete intervals 
of 15 minutes. 

Each episode represents one 
independent day. 

Ukupna nagrada za jedan dan dobija se sabiranjem trenutnih 
nagrada iz svih vremenskih koraka. Vremenski koraci su 
diskretni i traju po 15 minuta. Svaka epizoda modeluje jedan 
nezavisan dan. 

Algoritam 4 definiše kriterijume za upravljanje uređajima na osnovu koda generisanog 
LLM-om. Algoritam 5 predstavlja sistem zasnovan na znanju koji je definisao autor 
disertacije. Oba algoritma, na osnovu stanja sistema (definisanim u ( 34 )) i skupa 
mogućih akcija (definisanim u ( 35 )), odlučuju koje uređaje treba uključiti ili isključiti u 
datom vremenskom koraku. Ulaz predstavlja trenutno stanje sistema, dok izlaz čini skup 
odabranih akcija. 

Ulaz u algoritam 4 čini stanje sistema (𝑆). Na izlazu algoritam vraća kolekciju akcija koje 
definišu koje uređaje treba uključiti u narednom vremenskom koraku. 

Tokom izvršavanja, algoritam iterira kroz sve uređaje u sistemu i za svaki od njih 
određuje uslove za aktivaciju. Sa ovim ciljem se definišu pomoćne promenljive:  

 𝑝𝑟𝑜𝑖𝑧𝑣𝑒𝑑𝑒𝑛𝑎_𝑠𝑡𝑟𝑢𝑗𝑎_𝑝𝑟𝑒𝑙𝑎𝑧𝑖_𝑝𝑟𝑎𝑔, koja označava proveru da li proizvedena 
solarna energija u trenutnom vremenskom koraku prelazi prag od 0,1 𝑘𝑊ℎ. 
Vrednost praga od 0,1 𝑘𝑊ℎ uvedena je od strane LLM-a, kako bi se izbegli 
šumovi u merenju i sprečilo uključivanje uređaja kada količina proizvedene 
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energije nije dovoljna za njihovu upotrebu. Prag je određen od strane LLM-a na 
osnovu minimalne potrebne energije za rad uređaja. 

 𝑛𝑖𝑠𝑘𝑎_𝑡𝑎𝑟𝑖𝑓𝑎, koja označava da li je tarifa električne energije na najnižem 
nivou.  

Ukoliko je reč o netermalnom uređaju (mašina za veš ili mašina za sudove), koji je 
spreman za rad, a nije radio tokom tekućeg dana, algoritam donosi odluku o njegovom 
uključivanju na osnovu značaja rada. Ako je značaj označen kao “Visok”, uređaj se 
uključuje. Ako je označen kao “Srednji”, uređaj se uključuje samo u slučaju da solarna 
proizvodnja prelazi prag ili da je tarifa “Niska” ili “Srednja”. Ako je značaj rada označen 
kao “Nije važno”, uređaj se uključuje samo ako je proizvodnja solarna energije veća od 
praga. 

Aktivacija klima uređaja zavisi od njegovog značaja rada i uslova okruženja. Ako je 
značaj rada označen kao “Visok“ ili “Srednji”, uređaj se uključuje u jednom od sledećih 
slučajeva:  

 proizvodnja solarne energije prelazi zadati prag ili je trenutno niska tarifa.  

 Razlika između željene i trenutne temperature je veća od 2 °𝐶, a značaj rada je 
“Visok”. Vrednost od 2 °𝐶 definiše maksimalnu dozvoljenu temperaturnu 
razliku, pri čemu željeni temperaturni opseg, u rasponu od 20 °𝐶 do 25 °𝐶, 
određuje korisnik. Toleranciju od 2 °𝐶  je LLM zadao na osnovu istraživanja 
(Buratti et al. 2015), gde je pokazano da temperaturna razlika veća od 2 °𝐶 
izaziva izražen subjektivni osećaj nelagodnosti, odnosno osećaj da je prostor 
previše hladan ili topao. 

Algoritam 4. Algoritam za određivanje koji uređaji treba da rade u datom vremenskom koraku, zasnovan 
na sistemu baziranom na znanju koji je generisao LLM. Oznake korišćene u algoritmu odgovaraju onima 
iz prikaza stanja 𝑆 (jednačina ( 34 )) i iz skupa akcija 𝐴 (jednačina ( 35 )): 

 𝑆୼்౨౗౰ౢ౟ౡ౗
  označava razliku između željene i trenutne unutrašnje temperature 

 𝑆୮
୅େ je značaj rada klima uređaja 

 ൫𝑆୛
େ୛, 𝑆୐

େ୛, 𝑆୮
େ୛൯ i ൫ 𝑆୛

ୈ୛, 𝑆୐
ୈ୛, 𝑆୮

ୈ୛൯ odgovaraju mašini za veš i mašini za sudove i 
označavaju da li je uređaj već radio tokom dana, da li je uređaj spreman za rad i značaj rada 
uređaja. 

 𝑢𝑟𝑒đ𝑎𝑗𝑖 predstavlja skup svih uređaja. 
 𝐴୳୩୪୨୳č୧

୳୰ୣđୟ୨  označava akciju uključivanja uređaja. 

 Ulaz: Stanje  𝑆 = (𝑆୼்౨౗౰ౢ౟ౡ౗
, 𝑆୮

୅େ, 𝑆୛
େ୛, 𝑆୐

େ୛, 𝑆୮
େ୛, 𝑆୛

ୈ୛, 𝑆୐
ୈ୛, 𝑆୮

ୈ୛, 𝑆୔୚, 𝑡𝑎𝑟𝑖𝑓𝑎) u trenutnom 
vremenskom koraku 

Izlaz: skup uređaja koje treba uključiti u sledećem vremenskom koraku 

1 Inicijalizacija:  
 𝑎𝑘𝑐𝑖𝑗𝑒  ∅ 
 𝑝𝑟𝑜𝑖𝑧𝑣𝑒𝑑𝑒𝑛𝑎_𝑠𝑡𝑟𝑢𝑗𝑎_𝑝𝑟𝑒𝑙𝑎𝑧𝑖_𝑝𝑟𝑎𝑔  𝑆௉௏ > 0.1𝑘𝑊ℎ 
 niska_tarifa  𝑡𝑎𝑟𝑖𝑓𝑎 == NISKA 

2 for 𝒖𝒓𝒆đ𝒂𝒋 in 𝒖𝒓𝒆đ𝒂𝒋𝒊 do 
3  if 𝑆୐

୬ୣ୲ୣ୰୫ୟ୪୬୧ and not  𝑆୛
୬ୣ୲ୣ୰୫ୟ୪୬୧then 

4   if 𝑆୔
୬ୣ୲ୣ୰୫୧୬ୟ୪ ==  VISOK then 

5    dodaj 𝐴௨௞௟௝௨č௜
௡௘௧௘௥௠௔௟௡௜u akcije 

6   else if 𝑆୔
୬ୣ୲ୣ୰୫ୟ୪୬୧ ==  SREDNJI then 

7    if 𝑝𝑟𝑜𝑧𝑣𝑒𝑑𝑒𝑛𝑎_𝑠𝑡𝑟𝑢𝑗𝑎 or tarifa ∈ {NISKA, SREDNJA} then 
8     dodaj 𝐴୳୩୪୨୳č୧

୬ୣ୲ୣ୰୫ୟ୪୬୧ u akcije 
9   else if 𝑆୔

୬ୣ୲ୣ୰୫୧୬ୟ୪ ==  NIJE VAŽNO  and 𝑝𝑟𝑜𝑧𝑣𝑒𝑑𝑒𝑛𝑎_𝑠𝑡𝑟𝑢𝑗𝑎 then 
10    dodaj 𝐴୳୩୪୨୳č୧

୬ୣ୲ୣ୰୫ୟ୪୬୧u akcije 
11  if 𝑆୔

୅େ ==  {VISOK , 𝑆𝑅𝐸𝐷𝑁𝐽𝐼 } then 
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12   if proizvedena_struja_prelazi_prag 𝐨𝐫 niska_tarifa then 
13    dodaj 𝐴୳୩୪୨୳č୧

୅େ u akcije 
14   if 𝑆୼்౨౗౰ౢ౟ౡ౗

> 2.0 𝐚𝐧𝐝 𝑆୮
୅େ ==  HIGH then 

15    dodaj 𝐴୳୩୪୨୳č୧
୅େ u akcije 

16 end 
17 return akcije 

Algoritam 5 predstavlja sistem upravljanja radom uređaja zasnovan na znanju, koji je 
definisan od strane autora disertacije. Za razliku od prethodnog algoritma generisanog od 
strane LLM-a, ovaj pristup uvodi sofisticiraniju logiku prioritizacije i alokacije dostupne 
energije, oslanjajući se na detaljno razumevanje energetskih i komfornih zahteva stanara. 

Ulaz u algoritam 5 čini stanje sistema (𝑆). Na izlazu algoritam vraća skup akcija 
uključivanja i isključivanja uređaja koje treba sprovesti u narednom vremenskom koraku.  
U algoritmu se prvo svi uređaji sortiraju prema značaju rada u datom vremenskom 
koraku, čime se obezbeđuje da se najpre razmatraju oni sa višim prioritetom. Uređaji se 
obrađuju sekvencijalno, a logika se razlikuje u zavisnosti od toga da li je u pitanju 
termalni (klima uređaj) ili netermalni uređaj (veš mašina i mašina za sudove): 

Klima uređaj se uključuje ukoliko trenutna unutrašnja temperatura odstupa od željnog 
temperaturnog opsega, a značaj rada ovog uređaja je „Visok“. U suprotnom, klima uređaj 
se isključuje. 

Netermalni uređaje koji rade ili nisu spremni za rad se preskaču (njihovo stanje rada se 
ne menja). Ponašanje za ostale netermalne uređaje zavisi od značaja njihovog rada i 
tarife: 

 Uključuju se svi netermalni uređaji čiji je značaj „Visok“. 
 Uređaji čiji je značaj „Srednji“ se uključuju ukoliko tarifa nije „Visoka“. 

Svi ostali uređaji se isključuju. 

Algoritam vodi računa da se uređaji uključuju tako da ne pređu trenutno dostupnu 
količinu solarne energije ako je moguće, a tek posle donosi odluke na osnovu značaja 
rada uređaja i tarife. 

Algoritam 5. Sistem zasnovan na znanju za upravljanje uređajima, definisan od strane autora disertacije. 
Reprezentacija stanja 𝑆 definisana je formulom ( 34 ), dok je skup akcija 𝐴 definisan formulom ( 35 ): 

 ൫𝑆୛
୳୰ୣđୟ୨

, 𝑆୐
୳୰ୣđୟ୨

, 𝑆୮
୳୰ୣđୟ୨

൯ označavaju da li je uređaj već radio tokom dana, da li je uređaj spreman 
za rad i značaj rada uređaja 

 𝐸௧
୔୚ označava proizvodnju solarnog panela u vremenskom koraku 𝑡. 

 𝐸ୗ označava ukupnu potrošenu energiju kada bi svi uređaji radili tokom vremenskog koraka 𝑡. 
 𝑢𝑟𝑒đ𝑎𝑗𝑖 predstavlja listu svih uređaja, sortiranu prema značaju njihovog rada u vremenskom 

koraku 𝑡. 
 𝐸୫ୟ୩ୱ୧୫ୟ୪୬ୟି୮୭୲୰୭š୬୨ୟ

୳୰ୣđୟ୨ୟ  označava maksimalnu potrošnju uređaja kada je uključen. 

 ž𝑒𝑙𝑗𝑒𝑛𝑎_𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑎 je indikator koji označava da li se trenutna temperatura nalazi unutar 
željenog temperaturnog opsega. 

 𝐴୳୩୪୨୳č୧
௨௥௘đ௔௝ označava akciju uključivanja uređaja. 

 𝐴୧ୱ୩୪୨୳č୧
୳୰ୣđୟ୨  označava akciju isključivanja uređaja. 

 Ulaz: Stanje 𝑆 = (𝑆୼்౨౗౰ౢ౟ౡ౗
, 𝑆୮

୅େ, 𝑆୛
େ୛, 𝑆୐

େ୛, 𝑆୮
େ୛, 𝑆୛

ୈ୛, 𝑆୐
ୈ୛, 𝑆୮

ୈ୛, 𝑆୔୚, 𝑡𝑎𝑟𝑖𝑓𝑎) u trenutnom 
vremenskom koraku 
Izlaz: kolekcija akcija koje treba sprovesti u sledećem vremenskom koraku  

1 Inicijalizacija: 
𝑎𝑘𝑐𝑖𝑗𝑒  ∅ 
𝐸ୗ0  
𝑢𝑟𝑒đ𝑎𝑗𝑖  uređaji sortirani na osnovu značaja rada 

2 for 𝒖𝒓𝒆đ𝒂𝒋 in 𝒖𝒓𝒆đ𝒂𝒋𝒊 do 
3  if 𝑢𝑟𝑒đ𝑎𝑗 ==  AC then 
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4   if  not ž𝑒𝑙𝑗𝑒𝑛𝑎_𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑎 and 𝑆୔
୳୰ୣđୟ୨

==  VISOK  then 
5    dodaj 𝐴୳୩୪୨୳č୧

୳୰ୣđୟ୨  u akcije 

6   else  
7    dodaj 𝐴୧ୱ୩୪୨୳č୧

୳୰ୣđୟ୨  u akcije  

8  else  
9   if S୛

୳୰ୣđୟ୨ or not 𝑆୐
୳୰ୣđୟ୨

 then  
10    continue 
11   if E௧ 

୔୚ > 𝐸ୱ and 𝑆୔
୳୰ୣđୟ୨

 ! =  NIJE VAŽNO then 
12    dodaj 𝐴୳୩୪୨୳č୧

୳୰ୣđୟ୨ u akcije i  

izvrši se 𝐸ୗ+= 𝐸୫ୟ୩ୱ୧୫ୟ୪୬୳ି୮୭୲୰୭š୬୨௔
୳୰ୣđୟ୨ୟ  

13   else 
14    if  𝑆୔

୳୰ୣđୟ୨
==  VISOK then 

15     dodaj 𝐴୳୩୪୨୳č୧
୳୰ୣđୟ୨ u akcije i  

izvrši se 𝐸ୗ+= 𝐸୫ୟ୩ୱ୧୫ୟ୪୬୳ି୮୭୲୰୭š୬୨ୟ
୳୰ୣđୟ୨ୟ  

16    else if  𝑆୔
୳୰ୣđୟ୨

== SREDNJI then 
17     if 𝑡𝑎𝑟𝑖𝑓𝑎 ! =  VISOK then 
18      dodaj 𝐴୳୩୪୨୳č୧

୳୰ୣđୟ୨ u akcije i 

izvrši se 𝐸ୗ+= 𝐸୫ୟ୩ୱ୧୫ୟ୪୬୳ି୮୭୲୰୭š୬୨ୟ
୳୰ୣđୟ୨ୟ  

19     else 
20      dodaj 𝐴୧ୱ୩୪୨୳č୧

୳୰ୣđୟ୨  u akcije 

21 end 
22 return akcije  

 

Kod koji je definisan od strane domenskog eksperta složeniji je u poređenju sa kodom 
generisanog od strane LLM-a. Algoritam 4 vraća isključivo akcije za uključivanje 
uređaja, dok algoritam 5 obuhvata i akcije za njihovo isključivanje.  

Za netermalne uređaje, algoritam 5 daje veći prioritet značaju rada. Ovaj algoritam ne 
dozvoljava rad netermalnih uređaja čiji je značaj „Nije važno“ i kada tarifa „Visoka“, 
dok algoritam 4 omogućava uključivanje čak i pri nižim prioritetima ukoliko postoji 
solarna proizvodnja ili povoljna tarifa.  

Za termalne uređaje, algoritam 5 strogo zahteva uključivanje kada je temperatura van 
željenog opsega, dok algoritam 4 omogućava uključivanje na osnovu proizvedene 
solarne energije ili niske tarife, i kada je temperaturna razlika manja od praga. 

Takođe, algoritam 5 dinamički prati kumulativnu potrošnju energije uključenih uređaja i 
usklađuje odluke sa raspoloživom solarnom proizvodnjom, dok algoritam 4 donosi 
odluke bez kontrole da li ukupna potrošnja premašuje trenutnu proizvodnju. 

4.5.2 Few-shot strategija prompta 
U okviru few shot strategije, u svakom koraku simulacije, LLM prima prompt sa opisom 
prethodnog stanja, preduzete akcije u tom stanju, neposredne nagrade koja je bila 
posledica te akcije i opis trenutnog stanja7. Modelu se daje instrukcija da na osnovu ovih 

 
7 U prvom koraku simulacije, prompt ne sadrži primere prethodnih interakcija između 
okruženja i LLM-a. Kako simulacija odmiče, interakcije se sukcesivno memorišu i 
uključuju u naredne promptove, sve do n-tog koraka, nakon čega se memorija resetuje i 
započinje novo sekvencijalno prikupljanje do kraja dana. Ovakva strategija je usvojena 
kako bi se izbeglo prekomerno povećanje dužine prompta, koje može značajno usporiti 
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informacija generiše optimalnu akciju za trenutno stanje u predefinisanom formatu. 
Ovim postupkom se imitira proces donošenja odluka u učenju potkrepljivanjem, pri čemu 
LLM koristi dostupne primere interakcija kako bi poboljšao svoje odluke u kontekstu 
optimizacije potrošnje energije. 

Tabela 8 prikazuje standardizovani prompt sistemske poruke koji definiše ulogu modela 
i kontekst problema, te se dodaje na početak svakog korisničkog prompta. Tabela 9 
prikazuje pojednostavljeni primer korisničkog prompta koji model prima u toku 
simulacije. Tabela 10 sadrži tekst koji se dodaje na kraj svakog korisničkog prompta. 
Ovaj tekst definiše željeni format odgovora i naglašava da je cilj maksimizacija nagrade, 
odnosno da vrednost nagrade bude pozitivna.   

Dizajn prompta zasnovan je na preporukama iz literature. Radovi (Reif et al. 2022) i 
(Kirk et al. 2024) ističu da se efektivnost i konzistentnost odgovora LLM-a može 
poboljšati uključivanjem primera, graničnih oznaka (delimitera) i jasno označenih 
komponenti unutar prompta. U skladu sa preporukama iz radova (C. Yang et al. 2024) i 
(D. Zhou et al. 2023), prompt uključuje primere prethodnih koraka sa odgovarajućim 
rezultatima, ali je njihov broj ograničen na konačan broj uzastopno zabeleženih koraka 
zbog ograničenja kapaciteta tokena koje LLM može obraditi u jednom zahtevu. 
Sekvencijalni redosled primera u promptu, inspirisan primenom LLM-a u prognoziranju 
vremenskih serija (eng. time series forecasting) (Gruver et al. 2023) (Jin et al. 2024.), 
konceptualno odgovara mehanizmu ponavljanja iskustva (eng. experience replay) u 
dubokom učenju potkrepljivanjem. U dubokom učenju potkrepljivanjem, agent 
optimizuje politiku koristeći prethodno sačuvano iskustvo, dok LLM, iako ne ažurira 
svoju mrežu politike, koristi istorijske podatke o prethodnim sekvencijalnim odlukama 
za predviđanje budućih akcija. Ova paralela sa DRL strategijom omogućava modelu da 
koristi sekvencijalno i kontekstualno donošenje odluka za poboljšanje performansi.  

Jedan od izazova u radu sa LLM-om bio je generisanje izlaza koji nisu mogli biti 
automatski parsirani, što je u skladu sa nalazima rada (Reif et al. 2022). Ovaj problem je 
ublažen primenom koncepta meta-promptova, kako je predloženo u radu (Y. Zhou et al. 
2023), što je značajno smanjilo broj nepravilno formatiranih odgovora. U slučajevima 
kada LLM ipak generiše neispravan odgovor, on se tretira kao Idle akcija, odnosno, 
sistem ne preduzima nijednu radnju tokom tog vremenskog koraka. Dodatno, eksplicitno 
navođenje modela da svoj izlaz formatira u JSON strukturi na kraju svakog prompta 
doprinelo he većoj doslednosti i pouzdanosti parsiranja odgovora.  

Tabela 8. Sistemska poruka za usmeravanje LLM-a 

 Prompt Objašnjenje  

You are a house energy management system. Your task is to 
optimize electricity consumption and user comfort in a simulated 
home, outputting an integer value from 0 to 6 for the chosen action. 

Postavljanje tona prompta: 
objašnjenje cilja, izlaza i procesa 
simulacije.  

The simulation progresses in 15-minute time steps. At each step, you 
will receive previous states, actions, and rewards for the action 
applied in that state. The reward reflects the quality of the action: a 
higher reward indicates a better action. 

Opis vremenskog toka simulacije 
i mehanizma povratne 
informacije.  

 
generisanje odgovora i degradirati tačnost modela,  što je potvrđeno i u literaturi (Levy 
et al. 2024). 
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Restrictions: 

The Clothes Wash and Dishwasher can only operate once per day. 
Once started, they cannot be interrupted. 

Postavljanje operativnih 
ograničenja za određene uređaje. 

Action Dictionary: 

        action_dict = { 

            0: 'AC: ON', 

            1: 'AC: OFF', 

            2: 'Clothes Wash: ON', 

            3: 'Clothes Wash: OFF', 

            4: 'Dishwasher: ON', 

            5: 'Dishwasher: OFF', 

            6: 'IDLE: DO NOTHING'} 

Definisanje mogućih akcija koje 
sistem može preduzeti. 

State Dictionary: The states are provided as a tuple of 10 values:  

state_dict = { 

'Temp Difference': Difference between desired and actual indoor 
temperature (integer), 

'Priority AC': ['High', Medium, 'Do not care'], 

'Worked Today Clothes Wash': [Worked Today', 'Didn’t Work], 

'Loaded Clothes Wash': ['Loaded’, 'Not Loaded'], 

'Priority Clothes Wash': ['High', 'Medium', 'Do Not Care'], 

'Worked Today Dishwasher': ['Worked Today', 'Didn't Work'], 

'Loaded Dishwasher': ['Loaded', 'Not Loaded'], 

'Priority Dishwasher': ['High', 'Medium', 'Do Not Care'], 

'Production Pv': How much the PV produced, 

'Tariff': ['Off Shoulder', 'Shoulder', 'Peak'], 

'Time': Current time} 

Objašnjenje reprezentacije stanja 
korišćene u simulaciji. 

Priority Levels: 

- 'High': The device must work, 

- 'Medium': The device should work, 

- 'Do Not Care': It does not matter if the device works. 

Definisanje nivoa prioriteta za 
različite akcije. 

The simulation begins at 00:00 (midnight) and runs until 00:00 
(midnight) the following day. 

Definisanje vremenskog okvira 
simulacije i glavnog zadatka 
HEMS-a. 

Your task is to determine the best action for the given state. To 
determine the action, do the following steps: 

- Look at the previous states, actions you took, and the rewards that 
resulted from taking a certain action. 

- Always strive to get a positive reward for each time step. Do not 
decide on the next action before considering the restrictions. 

- Check the defined priority levels. If they are high and still do not 
work, turn the device on 

- Check the PV production. If the number is greater than 50, consider 
turning on a device that didn't work or has a high priority 

- Check the tariff price. Consider turning off devices when the tariff 
is peak 

Navođenje detaljnih koraka za 
određivanje optimalne akcije u 
datom stanju. 
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Use the following format to evaluate the next possible action: 

The Previous states, actions, and the rewards: 

''' state, action, reward for each time step here ''' 

Current state:  

'' Current state here ''' 

Formatiranje odgovora. 

 

Tabela 9. Uprošćen primer korisničkog prompta 

Prompt Odgovor LLM-a  Objašnjenje 

The previous states, actions, and 
the rewards: 

''' <other previous states, actions 
and rewards> 

Temp Difference: 0  

Priority Ac: Do Not Care  

Worked_Today Clothes Wash: 
Didn't Work  

Loaded Clothes Wash: Loaded  

Priority Clothes Wash: Do Not 
Care  

Worked Today Dishwasher: 
Didn't Work  

Loaded Dishwasher: Loaded  

Priority Dishwasher: Medium  

Production Pv: -204  

Tariff: Shoulder  

Time: 13:15 

For the action: Idle  

The reward was: 
0.44999999999999996 ''' 

 

The Current State: ''' 

Temp Difference: 0  

Priority Ac: Do Not Care  

Worked Today Clothes Wash: 
Didnt Work  

Loaded Clothes Wash: Loaded  

Priority Clothes Wash: Do Not 
Care  

Worked Today Dishwasher: 
Didnt Work  

Loaded Dishwasher: Loaded  

Priority Dishwasher: Medium  

Production Pv: -184  

Tariff: Shoulder  

Time: 13:30 ''' 

{"actions": [4]}.  Mašina za sudove nije radila 
tokom dana i trenutno je 
spremna za upotrebu (napunjena 
sudovima). Nivo prioriteta 
dodeljen mašini za sudove je 
srednji, a tarifa električne 
energije se nalazi u srednjem 
cenovnom periodu. Pored toga, u 
ovom trenutku je zabeležena 
proizvodnja električne energije 
putem solarnog panela.  

Na osnovu ovih uslova, LLM je 
predložio akciju 4 – uključivanje 
mašine za sudove. 
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The previous states, actions, and 
the rewards: ''' 

<other previous states, actions 
and rewards> 

Temp Difference: 2  

Priority Ac: High  

Worked_Today Clothes Wash: 
Didnt Work  

Loaded Clothes Wash: Loaded  

Priority Clothes Wash: Do Not 
Care  

Worked_Today Dishwasher: 
Worked Today  

Loaded Dishwasher: Not Loaded  

Priority Dishwasher: Do Not 
Care  

Production Pv: 0  

Tariff: Shoulder  

Time: 18:45 

For the action: AC: on 

The reward was: 
93.68653112989435 ''' 

 

The current state: ''' 

Temp Difference: 0  

Priority Ac: High  

Worked_Today Clothes Wash: 
Didnt Work  

Loaded Clothes Wash: Loaded  

Priority Clothes Wash: Medium  

Worked_Today Dishwasher: 
Worked Today  

Loaded Dishwasher: Not Loaded  

Priority Dishwasher: Do Not 
Care  

Production Pv: 0  

Tariff: Shoulder  

Time: 19:00 ''' 

{"actions": [2]}.  Mašina za veš nije bila aktivna 
tokom dana i trenutno je 
spremna za upotrebu (napunjena 
vešom). Njen nivo prioriteta je 
srednji, a tarifa električne 
energije se nalazi u srednjem 
cenovnom periodu.  

Na osnovu ovih uslova, LLM je 
predložio akciju 2 – uključivanje 
mašine za veš. 

 

Tabela 10. Dodatni tekst na kraju korisničkog prompta 

Prompt Objašnjenje  

Respond only in the form of '{ "actions": [] } '. 
Actions are int values from 0 to 6. The goal is for the reward to be a 
positive value. 

Definisanje željenog formata 
izlaza.  
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5 Evaluacija metodologije 
 

Ovo poglavlje opisuje eksperimentalnu postavku za evaluaciju razvijenih HEMS pristupa 
i prikazuje dobijene rezultate evaluacije. Potpoglavlje 5.1 predstavlja studiju slučaja, 
definišući parametre simulacije pametne kuće koja se koristi za razvoj i evaluaciju HEMS 
sistema.  

5.1 Studija slučaja: eksperimentalna postavka za 
simulaciju pametne kuće 

U okviru disertacije dizajnirano je adaptivno simulaciono okruženje koje oponaša 
potrošnju električne energije u pametnoj kući (potpoglavlje 4.2). U ovom potpoglavlju, 
to okruženje je korišćeno za simulaciju studije slučaja – pametne kuće locirane u 
Nemačkoj, koja je opremljena solarnim panelom. Od uređaja kontrolisanih od strane 
HEMS-a, prisutni su klima uređaj, mašina za sudove i mašina za veš (tabela 11). Za svaki 
od ovih uređaja definisani su zahtevi u pogledu željenog vremena rada i temperature 
unutrašnjeg prostora. Ova postavka simulacije korišćena je za obučavanje i evaluaciju 
različitih HEMS pristupa.  

Tabela 11. Tipovi uređaja koji su podržani u simulacionim okruženjima. 

Uređaj/Tip 
uređaja 

Promenljivo vreme 
rada 

Rad zavisan od 
eksternih 

vremenskih 
podataka 

Potrošač 
energije 

Proizvođač 
energije 

Klima uređaj     
Mašina za sudove     
Mašine za veš     
Solarni panel     

 

Potpoglavlje 5.1.1 prikazuje karakteristike uređaja u pametnoj kući i akcije kojima ih 
HEMS može kontrolisati. Takođe je istaknuta razlika u simulaciji ovih uređaja u 
zavisnosti od korišćenog simulacionog okruženja, odnosno od toga da li se njihova 
potrošnja modeluje kao konstantna ili varijabilna. Potpoglavlje 5.1.2 prikazuje eksterne 
podatke relevantne za simulaciju pametne kuće na određenoj lokaciji, uključujući 
istorijske podatke o vremenskim uslovima i dostupnim tarifama. Potpoglavlje 5.1.3 
specificira zahteve stanara u vezi sa radom uređaja koje kontroliše HEMS. Potpoglavlje 
5.1.4 sumira definiciju stanja i akcija dostupnih HEMS-u. Konačno, potpoglavlje 5.1.5 
definiše eksperimentalnu postavku. 

5.1.1 Modelovanje uređaja u pametnoj kući 
Svaki od uređaja definisanih u narednim potpoglavljima modelovan je korišćenjem 
Typhoon HIL (Typhoon HIL 2008) i Load Flow (Vojnović et al. 2022) (Vojnović et al. 
2023b) (Vojnović et al. 2023a) okruženja. Razlika između ovih okruženja ogleda se u 
načinu modelovanja potrošnje električne energije tokom rada uređaja. U okviru Typhoon 
HIL simulacionog okruženja, potrošnja uređaja se modeluje kao konstantna – vrednost 
potrošnje u svakom vremenskom koraku predstavlja prosečnu vrednost potrošnje tokom 
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celokupnog vremena rada uređaja. Nasuprot tome, Load Flow okruženje omogućava 
modelovanje promenljive potrošnje uređaja tokom rada, čime se postiže realističnija 
simulacija njihovog rada. Modelovanje uređaja pomoću Load Flow simulacionog 
okruženja je opisano u potpoglavlju 2.1.1.  

Svaki od modelovanih uređaja ima unapred definisan skup akcija kojima HEMS može 
upravljati njihovim radom. Osnovna akcija dostupna za sve HEMS-kontrolisane uređaja 
jeste uključivanje ili isključivanje na početku vremenskog koraka, što određuje da li će 
uređaj raditi tokom tog vremenskog intervala. Na kraju svakog vremenskog koraka, 
HEMS može očitati izlazne podatke uređaja, koji su relevantni za razumevanje trenutnog 
stanja sistema i donošenje narednih odluka.  

5.1.1.1 Klima uređaj  

Klima uređaj (eng. Air Condition, AC) je modelovan kao termalni uređaj sa promenljivim 
vremenom rada, i predstavlja potrošač energije.  

Unutrašnja temperatura kuće zavisi ne samo od rada klima uređaja, već i od 
termodinamičkih karakteristika kuće i spoljašnjih vremenskih uslova. Termodinamika 
kuće obuhvata razmenu toplote sa spoljašnjim okruženjem kroz zidove i prozore, 
uključujući gubitke i dobitke toplote. 

Na početku svakog vremenskog koraka, HEMS može da izvrši sledeće akcije: 

 Uključi AC – Klima uređaj započinje cikluse hlađenja ili grejanja kako bi 
održao unutrašnju temperaturu unutar željenog intervala od 20°𝐶 do 25°𝐶. 

 Isključi AC – Klima uređaj prestaje sa radom, čime prestaje i regulacija 
unutrašnje temperature. 

Potrošnja energija može se optimizovati regulacijom unutrašnje temperature u skladu sa 
prisustvom stanara u domaćinstvu. Idealni scenario podrazumeva isključenje klima 
uređaja pre odlaska stanara iz kuće, uz očuvanje temperature unutar željenog opsega dok 
su prisutni. Nakon njihovog odlaska, temperatura bi se postepeno prilagođavala 
spoljašnjim vremenskim uslovima. Klima uređaj bi se ponovo aktivirao pre povratka 
stanara, kako bi osigurao postizanje željene unutrašnje temperature pre njihovog dolaska. 
Ovakav pristup sprečava naglu i visoku potrošnju električne energije potrebne za brzo 
vraćanje tremperature u željeni opsega, što bi se moglo desiti u slučaju većih 
temperaturnih odstupanja u trenutku povratka stanara. 

Na kraju svakog vremenskog koraka, klima uređaj vraća informaciju o potrošnji 
električne energije 𝑃୅େ. U zavisnosti od korišćenog okruženja, izlazne vrednosti 
potrošnje mogu se razlikovati: 

 Typhoon HIL simulaciono okruženje: vraća konstantnu potrošnju od 1.8 kW 
(Pedrasa, Spooner, and MacGill 2010). 

 Load Flow simulaciono okruženje: vraća promenljivu potrošnju izraženu u kW, 
kao što je opisano u potpoglavlju 2.1.1. 

Zbog različite snage električne energije koju koristi klima uređaj u zavisnosti od 
simulacionog okruženja, gde uređaj u Typhoon HIL ima slabiju snagu u poređenju sa 
uređajem u Load Flow, temperatura sporije raste tokom zime, odnosno sporije opada 
tokom leta.  
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5.1.1.2 Mašina za sudove 

Mašina za sudove (eng. dishwasher) je uređaj sa promenljivim vremenom rada i potrošač 
energije sa neprekidnim radnim ciklusom, čija potrošnja energije u realnim uslovima 
varira tokom različitih faza rada. Ukoliko dođe do prekida rada, HEMS mora pokrenuti 
pranje ispočetka, pri čemu sva do tada utrošena energija predstavlja nepovratni gubitak. 
Nakon ovakvog prekida, uređaj ostaje u stanju „spreman za rad“. Zbog ovih 
karakteristika, neophodno je pažljivo planirati vreme rada mašine za sudove, kako bi se 
istovremeno očuvao komfor stanara u pogledu željenog vremena završetka pranja i 
optimizovali troškovi električne energije, kroz usklađivanje rada uređaja sa 
proizvodnjom solarnog panela i važećim tarifnim režimima.  

Na početku svakog vremenskog koraka 𝑡, HEMS može da izvrši jednu od sledećih akcija 
u vezi sa mašinom za sudove: 

 Pokrene uređaj, ukoliko je spreman za rad. Uređaj se smatra spremnim za rad 
ako je napunjen sudovima. Ukoliko uređaj nije spreman, njegovo pokretanje 
nije moguće. U okviru simulacije razvijene u ovom istraživanju, uređaj je 
spreman za rad samo jednom dnevno – na početku dana. Po završetku pranja,  
uređaj se više ne smatra spremnim za rad do narednog dana. 

 Zaustavi uređaj, čime se prekida njegov rad, čime se trenutni radni ciklus 
prekida. U tom slučaju, pranje sudova moraće da se započne ispočetka, a do tada 
utrošena energija se gubi. 

Na kraju svakog vremenskog koraka 𝑡, mašina za sudove vraća sledeće izlazne vrednosti: 

 𝐴ୢ୧ୱ୦୵ୟୱ୦ୣ୰ – Indikator koji označava da li je uređaj spreman za rad.  
 𝑃 ୧ୱ୦୵ୟୱ୦ୣ୰ – Potrošnja električne energije uređaja tokom vremenskog koraka 𝑡 

izražena u 𝑘𝑊 i varira u zavisnosti od korišćenog okruženja: 
o Typhoon HIL simulaciono okruženje: vraća konstantnu potrošnju od 1 

kW, gde je ukupan vreme rada 1h i 30min, odnosno 6 ciklusa od 15 
minuta (Pedrasa, Spooner, and MacGill 2010). 

o Load Flow simulaciono okruženje: vraća promenljivu potrošnju u kW, 
gde je ukupno vreme rada 2h, odnosno 8 ciklusa od 15 minuta. 

5.1.1.3 Mašina za veš 

Kombinovana mašina za pranje i sušenje veša (eng. washing machine) predstavlja uređaj 
promenljivog vremena rada koji je potrošač energije. Na početku svakog vremenskog 
koraka 𝑡, HEMS može izvršiti akcije: 

 Uključi uređaj. 
 Zaustavi uređaj.  

Na kraju svakog vremenskog koraka 𝑡, mašina za veš vraća sledeće izlazne vrednosti, 
analogno mašini za sudove:  

 𝐴୵ୟୱ୦୧୬୥୫ୟୡ୦୧୬ୣ – indikator spremnosti uređaja za rad. U simulacijama 

sprovedenim u okviru ovog istraživanja, uređaj se smatra spremnim za rad 
isključivo na početku dana. Ukoliko uređaj nije spreman, njegovo pokretanje 
nije moguće. Po završetku pranja,  uređaj se više ne smatra spremnim za rad do 
narednog dana. 
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 𝑃୵ୟୱ୦୧୬୥୫ୟୡ୦୧୬ୣ – potrošnja električne energije mašine za veš u vremenskom 

koraku 𝑡, izražena u kilovatima (𝑘𝑊). Tip potrošnje zavisi od korišećnog 
simulacionog okruženja: 

o Typhoon HIL simulaciono okruženje: modeluje potrošnju kao 
konstantnu, sa vrednošću od 0,5 𝑘𝑊 i ukupnim vremenom rada od 2 
sata (Pedrasa, Spooner, and MacGill 2010). 

o Load Flow simulaciono okruženje: omogućava modelovanje 
promenljive potrošnje tokom ciklusa rada. U ovom slučaju, ukupno 
vreme rada iznosi 4 sata i 30 minuta, odnosno 18 vremenskih koraka 
od po 15 minuta. 

5.1.1.4 Solarni panel 

Solarni panel je proizvođač električne energije čiji rad zavisi od eksternih vremenskih 
uslova. Proizvodnja električne energije solarnog panela izračunava se na osnovu stvarnih 
meteoroloških podataka o spoljašnjoj temperaturi i solarnoj iradijaciji, koji su detaljno 
opisani u potpoglavlju 5.1.2. Proizvedena energija može direktno napajati potrošače u 
domaćinstvu, pri čemu se višak energije ne može prodavati električnoj mreži. Na kraju 
svakog vremenskog koraka 𝑡, solarni panel vraća vrednost trenutne snage proizvedene 
električne energije 𝑃௉௏ , izraženu u kilovatima (𝑘𝑊), nezavisno od korišćenog 
simulacionog okruženja. 

5.1.2 Vremenski uslovi i tarifni režimi 
Definisan tarifni režim (tabela 12) oslikava domaćinstvo iz Nemačke8 i predstavljen je u 
€/𝑘𝑊ℎ. 

Tabela 12. Pregled tarifnih režima. 

 Sati Cena (€/𝒌𝑾𝒉 ) 
Visoka cena struje 5h – 13h 0,4 
Srednja cena struje 13h – 00h 0,3 
Niska cena struje 00h – 5h 0,2 

 

Podaci o vremenskim uslovima, iradijaciji i spoljašnjoj temperaturi preuzeti su sa sajta 
Solcast9. Podaci su prikljupljeni za Berlin na 15 minutnom vremenskom intervalu tokom 
dva različita perioda – od 1. do 23. januara i juna 2016. 

5.1.3 Definisanje zahteva stanara pametne kuće 
Ograničenje koje postavljaju stanari odnosi se na željeni opseg unutrašnje temperature, 
definisan u intervalu od 20°𝐶 do 25°𝐶. Pored toga, komfor stanara je modelovan kroz 
njihove zahteve u pogledu vremenskog rasporeda rada pojedinačnih uređaja. Vrednosti 
značaja režima rada koje stanari koriste za definisanje prioriteta rada uređaja (prikazane 
u tabeli 13) određuju se u skladu sa tarifnim režimima za električnu energiju prikazanim 
u tabeli 12, na osnovu pristupa iz (Pedrasa, Spooner, and MacGill 2010).   

 
8 https://www.agora-energiewende.de/  

9 https://solcast.com/  
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Radi objedinjavanja sa troškovima električne energije, komfor stanara kvantifikovan je 
u monetarnim jedinicama (€/𝑘𝑊ℎ). Monetarne vrednosti dodeljene značaju rada uređaja 
(prikazane u tabeli 14) formulisane su tako da odražavaju spremnost stanara da koriste 
određene uređaje u specifičnim tarifnim periodima:  

 Visoka vrednost dodeljuje se uslugama koje stanari očekuju i u periodima 
visoke tarife, te je viša od maksimalne cene električne energije.  

 Srednja vrednost nalazi se između tarife srednjeg i visokog tarifnog perioda, što 
sugeriše da se upotreba tih uređaja može vremenski prilagođavati. 

Tabela 13 prikazuje dodeljene prioritete za svaki uređaj tokom različitih perioda dana. 
Navedene vrednosti predstavljaju ulazne parametre simulacije, koje stanari definišu radi 
iskazivanja svojih preferencija u pogledu željenog vremena rada uređaja.  

Tabela 13. Značaj rada uređaja u različitim periodima dana prema korisničkim 
zahtevima. 

Uređaj Režim rada Značaj režima rada 
Klima uređaj 17h – 8h (naredni dan) Visok 

8h – 17h Nije važno 
Mašina za sudove 9h – 14h Srednji 

14h – 17h Visok 
Ostatak dana Nije važno 

Mašina za veš 19h – 21h Srednji 
21h – 24h Visok 

Ostatak dana Nije važno 

Tabela 14. Novčane vrednosti dodeljene radu uređaja na osnovu korisničkih prioriteta. 

Značaj 
rada 

Vrednost (€/𝒌𝑾𝒉) Opis 

Visok 0,45 Kritična usluga koju je poželjno pružiti čak i tokom perioda 
visoke tarife. Vrednost je postavljena iznad maksimalne tarife 
kako bi se obezbedio prioritet rada uređaja. 

Srednji 0,35 Usluga čiji se rad može ograničiti tokom perioda više tarife. 
Vrednost je između tarifa za srednji i visok tarifni period, 
odražavajući umeren prioritet. 

Nije 
važno 

Uređaji koji nisu termalni: 0 Stanari su ravnodušni prema radu uređaja u datom 
vremenskom periodu. Kod termalnih uređaja dodeljuje se 
mala nenulta vrednost, kako bi se penalizovala značajna 
odstupanja od željenog temperaturnog opsega i sprečilo 
prekomerno hlađenje ili zagrevanje unutrašnjeg prostora. 

Termalni uređaji: 0,1 

U primerima 5.1 i 5.2 prikazana je logika definisanja vremenskih opsega značaja rada za 
mašinu za veš i mašinu za sudove, u skladu sa zahtevima stanara. Primer 5.3, na primeru 
klima uređaja, ilustruje kako se, na osnovu zadatih prioriteta i njima pridruženih 
monetarnih vrednosti, izračunava vrednost komfora u zavisnosti od perioda rada uređaja. 

Primer 5.1. Postavka značaja komfora na primeru veš mašine.  

Pretpostavimo da stanari žele da veš bude opran do 21 časa. Značaj rada veš mašine varira 
tokom dana, u zavisnosti od preostalog vremena za završetak ciklusa:  

 Na početku dana, značaj je postavljen na „Nije važno”, jer nije bitno kada će se 
veš prati, sve dok bude gotov do 21 časa.  

 Kada se približava 21 čas, značaj prelazi u „Srednji“, signalizirajući da bi uskoro 
trebalo pokrenuti uređaj. 
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 U 21 čas, kada ostane tačno onoliko vremena koliko je potrebno za završetak 
ciklusa pre ponoći, značaj se postavlja na “Visok”, jer je to poslednja mogućnost 
za ispunjenje cilja.  

Primer 5.2. Postavka značaja komfora na primeru mašine za sudove.  

Pretpostavlja se da stanari žele da sudovi budu oprani najkasnije do 12 časova (slika 19). 
Značaj rada mašine za sudove varira tokom dana, u skladu sa ovim zahtevom: 

 Na početku dana, značaj je postavljen na „Nije važno“, jer vreme pokretanja 
nije kritično sve dok se ciklus može završiti do 12 časova. 

 Od 6 do 8 časova, značaj prelazi u „Srednji“, signalizirajući da se približava 
trenutak kada bi uređaj trebalo aktivirati, ali još postoji fleksibilnost u planiranju 
vremena pokretanja. 

 Od 8 časova, značaj postiže nivo „Visok“, jer je preostalo tačno onoliko 
vremena koliko je potrebno da se ciklus pranja završi do 12 časova. Uređaj bi u 
ovom trenutku trebalo pokrenuti, čak i ako je cena električne energije visoka. 

 Nakon 12 časova, značaj se vraća na „Nije važno“, pod pretpostavkom da je 
zahtev korisnika ispunjen. Ukoliko uređaj nije pokrenut na vreme, pretpostavlja 
se da korisnicima više nije bitno kada će biti aktiviran. 

 

Slika 19. Primer dinamičkog određivanja značaja rada mašine za sudove. 

Primer 5.3. Postavka računanja komfora na primeru klima uređaja. 

U ovom primeru analiziran je klima uređaj kao ilustracija računanja komfora prema 
izrazu ( 27 ). Radi pojednostavljenja, pretpostavlja se da je vrednost penalizacije 
𝐾𝑎𝑧𝑛𝑎௧

௜ = 1.  

Tabela 15 prikazuje vrednosti komfora za klima uređaj za svaki 15-minutni vremenski 
korak. HEMS upravlja unutrašnjom temperaturom kontrolisanjem rada klima uređaja, s 
ciljem održavanja temperature unutar zadatog temperaturnog opsega. Uređaj se može 
isključiti, što omogućava prirodni porast ili pad unutrašnje temperature, u zavisnosti od 
spoljašnjih vremenskih uslova.  

Stanari definišu visok značaj rada klima uređaja u periodima kada su prisutni u kući – u 
ovom primeru, to je interval od 17:00 do 8:00 narednog dana. Tokom odsustva, značaj 
rada uređaja se postavlja na „Nije važno“. Ipak, kako bi se izbegao prekomerni pad ili 
rast temperature dok su stanari odsutni, termalnim uređajima se i u tom periodu dodeljuje 
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mala nenulta novčana vrednost značaja, koja u ovom primeru iznosti 0,1 €/𝑘𝑊ℎ, u 
skladu sa vrednostima prikazanim u tabeli 14. Radi jednostavnosti prikaza kazna iz 
formule ( 27 ) se ne uzima u razmatranje. 

Tabela 15. Primer izračunavanja novčanog značaja rada klima uređaja tokom dana. 
Vrednost 𝐵௧

஺஼  predstavlja novčani značaj rada klima uređaja u vremenskom koraku 𝑡, u 
skladu sa opisom iz tabele 14. Vrednost 𝐸௧

஺஼  označava potrošnju električne energije klima 
uređaja u istom vremenskom koraku. Podaci o trenutnoj potrošnji preuzeti su iz 
simulacionog okruženja Typhoon HIL, opisanog u potpoglavlju 5.1.1.1. Komfor koji 
obezbeđuje klima uređaj modelovan je pomoću pojednostavljene jednačine ( 27 ), pri 
čemu se razmatra isključivo rad klima uređaja,, bez penalizacije, uz pretpostavku da je 
potrošnja u svakom vremenskom koraku različita od nule (𝐸௧

஺஼ ≠ 0). 

Vreme 𝐁 𝒕
𝑨𝑪 𝑬𝒕

𝑨𝑪 Komfor AC 

7:45 0,45 (Visok) 1.8 kW * 15min (0,25h) = 0,45 kWh 0,45* 0,45 = 0,2025 
8:00 0,1 (Nije važno) 1.8 kW * 15min (0,25h) = 0,45 kWh 0,45 * 0,1 = 0,045 
8:15 0,1 (Nije važno) 1.8 kW * 15min (0,25h) = 0,45 kWh 0,45 * 0,1 = 0,045 

… 
16:45 0,1 (Nije važno) 1.8 kW * 15min (0,25h) = 0,45 kWh 0,45 * 0,1 = 0,045 
17:00 0,45 (Visok) 1.8 kW * 15min (0,25h) = 0,45 kWh 0,4 * 0,45 = 0,2025 

 

5.1.4 Reprezentacija stanja i skup mogućih akcija  
U ovom potpoglavlju opisane su ključne komponente simulacionog okruženja koje 
definišu simulaciju u svakom vremenskom koraku – reprezentacija posmatranog stanja 
(potpoglavlje 5.1.4.1) i moguće akcije koje HEMS može preduzeti (potpoglavlje 5.1.4.2).  

5.1.4.1 Reprezentacije stanja  

Reprezentacija stanja zavisi od prirode posmatranog okruženja. Na primer, u video-
igrama stanje može biti predstavljeno jednim frejmom igre (eng. game frame) (Mnih et 
al. 2013). U kontekstu HEMS-a prikazanog u ovoj disertaciji, stanje obuhvata: izlazne 
vrednosti uređaja definisanih u potpoglavlju 5.1.1, vremenske uslove i tarifni režim iz 
potpoglavlja 5.1.2, kao i zahteve stanara definisane u potpoglavlju 5.1.3. Stanje je 
modelovano kao vektor diskretnih, celobrojnih i realnih vrednosti: 

𝑆 = (𝑆୼்౨౗౰ౢ౟ౡ౗
, 𝑆୮

୅େ, 𝑆୛
େ୛, 𝑆୐

େ୛, 𝑆୮
େ୛, 𝑆୛

ୈ୛, 𝑆୐
ୈ୛, 𝑆୮

ୈ୛, 𝑆୔୚, 𝑡𝑎𝑟𝑖𝑓𝑎), ( 34 ) 

gde su komponente vektora definisane na sledeći način: 

 𝑆୼்౨౗౰ౢ౟ౡ౗
 predstavlja razliku između unutrašnje temperature na početku 

trenutnog vremenskog koraka (za koji se donosi odluka) i ciljanog 
temperaturnog opsega definisanog od strane korisnika. Vrednosti su celobrojne 
pozitivne vrednosti. 

 𝑆୮
௜  označava nivo značaja rada uređaja 𝑖 na početku trenutnog vremenskog 

koraka (“Visok”, “Srednji” ili “Nije važno”, prema tabeli 13) za sve uređaje 
kojima HEMS upravlja: klima uređaj (AC), mašina za pranje veša (CW) i 
mašina za pranje sudova (DW). Radi stabilizacije procesa obučavanja modela, 
kategorije su predstavljene kao celobrojne vrednosti: 2 za „Visok“, 1 za 
„Srednji“ i 0 za „Nije važno“. Pored ovoga klima uređaj u kategoriji „Nije 
važno“ ima vrednost 0,1. 
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 Za netremalne uređaje kojima HEMS upravlja (CW i DW):  
o 𝑆ௐ označava da li je uređaj bio aktivan u prethodnom vremenskom 

koraku. 
o 𝑆௅ označava da li je uređaj spreman za rad na početku trenutnog 

vremenskog koraka. 
 𝑆୔୚ označava količinu energije koju je solarni panel proizveo u tekućem 

vremenskom koraku. Ova vrednost procenjenjuje se na osnovu solarne 
iradijacije izmerene na početku tog koraka. Vrednosti su prikazane kao 
negativni celi brojevi. 

 𝑡𝑎𝑟𝑖𝑓𝑎 označava režim cene električne energije na početku trenutnog 
vremenskog koraka, koji može poprimiti jednu od tri diskretne vrednosti 
prikazane u tabeli 12. Radi stabilizacije procesa obučavanja modela, kategorije 
su predstavljene kao celobrojne vrednosti: 2 za „Visoka cena struje“, 1 za 
„Srednja cena struje“ i 0 za „Niska cena struje“. 

5.1.4.2 Skup akcija 

Definisani skup akcija za uređaje kojima HEMS može upravljati je binaran: 

𝐴 = ൛𝐴୳୩୪୨୳č୧
௜ , 𝐴୧ୱ୩୪୨୳č୧

௜ , 𝐴୧ୢ୪ୣ|𝑖 ∈ {1, … , 𝑁}ൟ, ( 35 ) 

gde je: 𝐴 skup mogućih akcija, 𝐴୳୩୪୨୳č୧
௜  akcija uključivanja uređaja 𝑖, 𝐴୧ୱ୩୪୨୳č୧

௜  akcija 

isključivanja uređaja 𝑖, a 𝑁 ukupan broj uređaja kojima HEMS upravlja. Dodatna akcija 
kada agent ne preduzima nikakvu akciju 𝐴୧ୢ୪ୣ. Ukupno ima 7 akcija. 

Zbog ograničenja modela, pristupi zasnovani na učenju potkrepljivanjem mogu odaberati 
samo jednu optimalnu akciju u vremenskom koraku. Nasuprot tome, LLM modeli 
omogućavaju odabir više akcija.  

5.1.5 Eksperimentalna postavka 
Trening skup za modele učenja potkrepljivanjem obuhvata prve tri nedelje u mesecu, 
odnosno prvih 22 dana. Tokom obuke, za svaki trening korak nasumično se bira jedan od 
dana iz trening skupa, čime se izbegava moguća zavisnost između uzastopnih dana i 
podstiče sposobnost generalizacije modela. Za razliku od modela učenja 
potkrepljivanjem, LLM modeli ne zahtevaju proces obučavanja, već se primenjuju 
direktno u inferenciji. 

Zbog ograničenja dostupnog budžeta ovom istraživanju, evaluacija LLM modela 
sprovedena je samo na jednom danu – 23. dan u mesecu. Radi objektivnog poređenja, svi 
modeli su evaluirani na istom danu, uključujući:  

 Modele učenja potkrepljivanjem (DDQN i PPO), 
 Sistem baziran na znanju (pravila definisana od strane autora rada) (KBS 

stručnjak), 
 Modeli bazirani na velikim jezičkim modelima: 

o KBS definisan od strane LLM bez primera (KBS LLM), 
o LLM sa nekoliko primera simulirajući ponašanje RL-a (RL LLM). 
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Prikazana je evaluacija modela primenom metrika za komfor ( 27 ), potrošnju ( 32 ) i 
ukupnu nagradu ( 33 ). Detaljno će se analizirati i uporediti odluke različitih modela, gde 
će se istaći najbolji postignuti rezultati. 

Dodatno, modeli DDQN, PPO i KBS definisan od strane ljudskog eksperta i KBS 
definisan od strane LLM bez primera i LLMM sa nekoliko primera simulirajući ponašnje 
RL-a su evaluirani na 7 dana, od 23. do 31. dana u januaru i junu, da bi se ispitala 
konzistentnost dobijenih rezultata. 

Radi provere robusnosti modela, opisana evaluacija je sprovedena u dva eksperimenta, 
za dva različita meseca koji predstavljaju različita godišnja doba (zima i leto). Ovaj 
pristup osigurava da su modeli izloženi različitim uslovima potrošnje električne energije 
i vremenskim uslovima, čime se ispituje njihova otpornost na sezonske promene. 

U ovom potpoglavlju detaljno se analiziraju rezultati modela dubokog učenja. U 
potpoglavlju 6.1 analiziraju se rezultati DDQN i PPO modela, gde su rezultati 
predstavljeni u kontekstu simulacionih okruženja Typhoon HIL i Load Flow. U 
potpoglavlju 6.2 prikazana je analiza rezultata velikog jezičkog modela.  

Prvo su analizirane vrednosti funkcija nagrade i odluke modela na jednom danu koji je 
sledio nakon perioda treniranja. Zatim su, za potrebe ispitivanja robusnosti modela, 
analizirane vrednosti funkcije nagrade u periodu od sedam dana koji slede nakon perioda 
treniranja. Ista analiza sprovedena je u zimskom i letnjem periodu, kako bi se sagledale 
sezonske varijacije u rezultatima. 
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6 Rezultati i diskusija 
 

U ovom poglavlju prikazani su i diskutovani rezultati modela za orkestraciju pametnih 
uređaja sa ciljem optimizacije udobnosti stanara i potrošnje električne energije. U 
potpoglavlju 6.1 analiziraju se rezultati modela učenja potkrepljivanjem uz detaljnu 
analizu procesa obučavanja i odluka obučenih modela na jednom testnom danu koji sledi 
neposredno nakon perioda treninga. Potpoglavlje 6.2 obuhvata istu analizu u kontekstu 
primene velikih jezičkih modela. U potpoglavlju 6.3 rezultati svih modela su upoređeni 
sa performansama sistema zasnovanog na znanju definisanog od strane ljudskog 
eksperta. U potpoglavlju 6.4 ispituje se robusnost modela pri donošenju odluka u periodu 
od sedam uzastopnih dana. Na kraju, potpoglavlje 6.5 sumira i diskutuje sve rezultate.  

6.1 Analiza rezultata modela učenja potkrepljivanjem 
U ovom potpoglavlju prikazani su rezultati ostvareni pomoću modela dubokog učenja 
potkrepljivanjem. Potpoglavlje 6.1.1 analizira proces konvergencije nagrade – prikazuje 
se promena vrednosti srednje dnevne nagrade tokom obuke radi utvrđivanja da li su 
modeli konvergirali. U potpoglavlju 6.1.2 prikazane su vrednosti funkcije nagrade koji 
trenirani modeli ostvaruju na testnom danu koji sledi neposredno nakon perioda obuke. 
Za svako simulaciono okruženje prikazana je posebna tabela, pri čemu su u svakoj tabeli 
objedinjeni rezultati za zimski i letnji period. Potpoglavlje 6.1.3 analizira odluke modela 
na istim testnim danima. Ovde su zasebno analizirane odluke modela vezane za 
kontrolisanje unutrašnje temperature i upravljanje radom mašine za pranje sudova i 
mašine za veš. 

6.1.1 Analiza procesa konvergencije nagrade  
Prikaz rezultata konvergencije modela ističe brzinu obučavanja modela, gde se od 
istreniranog modela očekuje stabilan rast vrednosti nagrade kroz iteracije, uz minimalne 
oscilacije. DDQN i PPO modeli su trenirani u dva različita meseca iz 2016. godine 
(potpoglavlje 5.1.2) – zimskom (od 01. do 22. januara) i letnjem (od 01. do 22. juna). 
Krive obučavanja DDQN i PPO modela u simulacionim okruženjima Typhoon HIL i 
Load Flow za ove mesece su prikazane na slikama 20 i 21.  

Modeli učenja potkrepljivanjem zahtevaju veliki broj iteracija kako bi dostigli stabilno 
ponašanje (Cobbe et al. 2019). Bez obzira na scenario, PPO modeli su se obučili nakon 
11.000 epizoda u zimskom i letnjem periodu. Za razliku od njih, DDQN modeli su 
zahtevali veći broj epizoda za uspešno obučavanje (oko 22.000 epizoda u zimskom i 
40.000 epizoda u letnjem periodu).  

Konačne prosečne dnevne nagrade DDQN modela bile su niže i pokazivale su veće 
oscilacije u poređenju sa nagradama PPO modela. U zimskom periodu, u oba okruženja, 
PPO je ostvario prosečnu dnevnu nagradu od oko 2 €, dok je DDQN postigao oko −2 €. 
U letnjem periodu, u Typhoon HIL simulacionom okruženju, prosečna dnevna nagrada 
PPO modela iznosila je oko 3 €,  dok je DDQN postigao približno 0 €. U letnjem periodu 
u Load Flow simulacionom okruženju, prosečna dnevna nagrada PPO modela iznosila je 
oko 2 €, dok je DDQN postigao prosečnu dnevnu nagradu od oko 0 €. 
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Ovde prikazani rezultati su u skladu sa rezultatima prikazanim u radovima (Kozlica et al. 
2023) (Sabbir M 2024), koji su poredili performanse DDQN i PPO modela u rešavanju 
različitih problema. Rad (Kozlica et al. 2023) je utvrdio da DDQN model sporije 
konvergira u poređenju sa PPO modelom, kao i da PPO postiže bolje rezultate nakon 
treniranja. 

 
(a) Typhoon HIL simulaciono okruženje 

 
(b) Load Flow simulaciono okruženje 
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Slika 20. Prosečna nagrada po epizodi za zimski mesec (1. do 22. januar). 

 
(a) Typhoon HIL simulaciono okruženje 

 
(b) Load Flow simulaciono okruženje 

Slika 21. Prosečna nagrada po epizodi za letnji mesec (1. do 22. jun). 

Rezultati ukazuju na ograničenu konvergenciju DDQN modela. Iako deluje da je DDQN 
dostigao konvergenciju nagrade, naredne analize su pokazale da ovaj model nije uspešno 
obučen:  

 Analiza odluka modela na testnom danu koji sledi neposredno nakon treniranja 
je otkrila da je model propustio da uključi veš mašinu u Load Flow 
simulacionom okruženju u zimskom danu (potpoglavlje 6.1.3.1) 
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 Interpretacija odluka koje model donosi (potpoglavlje 6.1.4.1) je otkrila da 
odluke DDQN modela u zimskom i letnjem danu deluju gotovo nasumično i 
često ne prate logiku energetske optimizacije i udobnosti stanara. 

 Ispitivanje robusnosti modela njegovom primenom na sedam testnih dana koji 
slede neposredno nakon treniranja je ukazalo na to da model često propušta da 
upali veš mašinu (potpoglavlje 6.4). 

Uzrok ovakvog ishoda leži u činjenici da algoritmi optimizacije zasnovani na 
gradijentima, koji nemaju formalne garancije konvergencije, mogu dovesti do učenja 
suboptimalnih poltika čak i kada je obezbeđena dovoljna eksploracija (Zhang et al. 2018). 
Optimizacija u učenju potkrepljivanjem značajno je složenija nego u nagledanom učenju, 
što dovodi do nestabilnih krivih nagrade i nepredvidivih ishoda treniranja (Zhang et al. 
2018). Pored toga, epizodne nagrade tokom obučavanja često osciluju (Mnih et al. 2013), 
a male promene u inicijalizaciji težina mogu značajno uticati na krajnje performanse 
(Henderson et al. 2018). Zbog toga se konvergencija krive nagrade ne može tumačiti kao 
garancija uspešnog i ispravnog obučavanja DDQN modela i neophodno je vršiti dodatne 
analize ponašanja modela.  

6.1.2 Analiza vrednosti funkcije nagrade na testnom danu koji 
sledi neposredno nakon perioda treniranja  

U ovom potpoglavlju sprovedena je analiza vrednosti nagrade koju modeli ostvaruju u 
danu koji neposredno sledi nakon perioda obuke, sa ciljem ispitivanja njihove 
sposobnosti da generalizuju naučenu politiku i donose odluke u nepoznatim uslovima. 
Posebno su razmatrane vrednosti nagrade povezane sa udobnošću stanara, cenom 
električne energije i njihovim zbirnim efektom.  

Rezultati analize biće razdvojeni u zavisnosti od simulacionog okruženja (Typhoon HIL 
i Load Flow), pri čemu se za svako okruženje prikazuju rezultati ostvareni u zimskom i 
letnjem danu. Uređaji simulirani u Typhoon HIL okruženju troše manje energije u 
poređenju sa uređajima simuliranim u Load Flow okruženju, zbog čega se vrednosti 
nagrade ostvarene u različitim okruženjima ne mogu direktno porediti. 

U tabeli 16 prikazane su vrednosti nagrade, izražene u evrima, koje su modeli ostvarili 
na testnim danima (23. januara i 23. juna) u okviru Load Flow simulacionog okruženja. 
Iako deluje da je DDQN u januarskom danu ostvario veću uštedu električne energije u 
odnosu na PPO model, ovaj rezultat je posledica činjenice da DDQN model nije aktivirao 
veš mašinu (tabela 16 i slika 24). PPO model je u analiziranom januarskom danu ostvario 
ukupnu funkciju nagrade veću za 4,22 € u odnosu na DDQN, što predstavlja unapređenje 
od približno 160%. U junskom testnom danu, oba modela su uspela da organizuju rad 
uređaja tako da proizvodnja električne energije premašuje potrošnju. PPO je u tom danu 
ostvario ukupnu funkciju nagrade veću za 0,29 €, što odgovara unapređenju od oko 16% 
u odnosu na DDQN. Na osnovu rezultata dobijenih za oba testna dana može se zaključiti 
da je PPO model u Load Flow simulacionom okruženju ostvario bolje performanse u 
pogledu ukupne funkcije nagrade u odnosu na DDQN model. Ovaj rezultat je u skladu 
sa očekivanjima, budući da je tokom faze obuke PPO model ostvario približno 2 puta 
veću konačnu nagradu u zimskom, odnosno 2,5 puta veću u letnjem danu u poređenju sa 
DDQN modelom (potpoglavlje 6.1.1). 
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Tabela 16. Load Flow okruženje: vrednosti nagrade ostvarene na testnom danu (23. dan 
januara i juna). Negativne vrednosti označavaju da je potrošnja energije bila veća od 
proizvodnje, dok pozitivne vrednosti označavaju da je proizvodnja električne energije 
veća od potrošnje. 

 Model 
Udobnost ( 27 ) sa kaznama za 
nepoštovanje želja stanara  [€] 

Cena električne 
energije ( 32 ) [€] 

Zbir komponenti 
udobnosti i cene  [€] 

Ja
nu

ar
 DDQN 0,49 -3.11 -2,62 

PPO 5,80 -4,20 1,60 

Ju
n 

DDQN 1,09 0,72 1,81 

PPO 1,39 0,67 2,10 

Tabela 17 prikazuje performanse modela za 23. dan u januaru i junu u okviru Typhoon 
HIL simulacionog okruženja. U ovom okruženju, DDQN model je pokazao bolje 
performanse od PPO modela i u januarskom i u junskom danu, posmatrano prema 
ukupnoj funkciji nagrade. DDQN model je ostvario veću vrednost ukupne funkcije 
nagrade za 0,06 € (3.6% unapređenja) u januarskom danu i 0.14 € (4.7% unapređenja) 
u junskom danu u odnosu na PPO model.  Ovakvi rezultati nisu u potpunosti u skladu sa 
vrednostima konačne funkcije nagrade koje su modeli ostvarili tokom faze obuke 
(potpoglavlje 6.1.1). Moguće objašnjenje za ovaj ishod leži u činjenici da su posmatrani 
dani posebno povoljni za DDQN model. Naime, analiza robusnosti modela sprovedena 
na periodu od sedam uzastopnih dana nakon završetka treninga (potpoglavlje 6.4) 
pokazuje da, iako PPO model ostvaruje slabije rezultate u konkretnim danima januara i 
juna, on u proseku ostvaruje bolje performanse od DDQN modela u Typhoon HIL 
simulacionom okruženju, posmatrano na sedam testnih dana, za oba perioda godine. I u 
ovom slučaju, u junskom danu oba modela uspešno su organizovala rad uređaja tako da 
je ukupna potrošnja električne energije bila manja od proizvedene. 

Tabela 17. Typhoon HIL okruženje: vrednosti nagrade ostvarene na testnom danu (23. 
dan januara i juna). Negativne vrednosti označavaju da je potrošnja energije bila veća od 
proizvodnje, dok pozitivne vrednosti označavaju da je proizvodnja električne energije 
veća od potrošnje. 

 Model 
Udobnost ( 27 ) sa kaznama za 
nepoštovanje želja stanara  [€] 

Cena električne 
energije ( 32 ) [€] 

Zbir komponenti 
udobnosti i cene  [€] 

Ja
n

ua
r DDQN 5,30 -3,63 1,67 

PPO 5,22 -3,61 1,61 

Ju
n 

DDQN 1,36 1,62 2,98 

PPO 1,41 1,43 2,84 

 

Iako PPO model u okviru Typhoon HIL simulacionog okruženja ostvaruje nešto slabije 
rezultate u poređenju sa DDQN modelom (smanjenje od 3,6%, odnosno 4,7%), ovo 
pogoršanje nije značajno u odnosu na unapređenje koje PPO model pokazuje u Load 
Flow simulacionom okruženju (povećanje od 160% i 16%). Na osnovu toga može se 
zaključiti da su ukupne performanse PPO modela robusnije u odnosu na različite 
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postavke simulacionog okruženja. U Typhoon HIL simulacionom okruženju, uređaji su 
trošili više električne energije, pri čemu je njihova potrošnja modelovana kao konstantna. 
Nasuprot tome, u Load Flow simulacionom okruženju, uređaji su trošili manje električne 
energije, a njihova potrošnja modelovana je kao varijabilna. 

U odnosu na konačnu vrednost funkcije nagrade ostvarene tokom faze obuke 
(potpoglavlje 6.1.1), u okviru Load Flow simulacionog okruženja DDQN model je na 
testnom danu u januaru ostvario ukupnu nagradu manju za 0,62 €, dok je na testnom 
danu u junu ostvario ukupnu nagradu veću za približno 1,67 €. U okviru Typhoon HIL 
simulacionog okruženja, DDQN model je pokazao izraženija odstupanja u odnosnu na 
nagrade ostvarene tokom obuke – ukupna funkcija nagrade bila je značajno viša, i to za 
3,76 € u januarskom i 2,98 € u junskom danu. Ova značajna odstupanja ukazuju na 
nestabilnost i ograničenu sposobnost generalizacije odluka DDQN modela na dane koje 
nisu bili obuhvaćeni procesom obuke, što je potvrđeno i analizom robusnosti modela 
sprovedenom njihovom primenom na sedam testnih dana (potpoglavlje 6.4). 

Sa druge strane, ukupna funkcija nagrade koju je PPO model ostvario na testnim danima 
pokazuje visok stepen konzistentnosti u odnosu na konačne vrednosti nagrade ostvarene 
tokom tokom faze obuke (potpoglavlje 6.1.1). U okviru Load Flow simulacionog 
okruženja, u januarskom danu PPO model je ostvario ukupnu nagradu za 0.4 € nižu u 
odnosu na nagradu postignutu tokom obuke, dok je u junskom danu postigao gotovo 
identičnu ukupnu nagradu, od približno 2 €. U Typhoon HIL simulacionom okruženju, 
PPO model je u januarskom danu ostvario ukupnu nagradu nižu za 0,39 €, dok je u 
junskom danu ostvario nagradu veću za 0,16 € u odnosu na vrednosti dobijene tokom 
obuke. Konzistentnost nagrada ostvarenih na testnim danima u odnosu na nagrade 
postignute tokom obuke ukazuje na to da PPO model poseduje bolju sposobnost 
generalizacije odluka u poređenju sa DDQN modelom. 

Naredno potpoglavlje analizira odluke koje su modeli donosili u testnim danima 
analiziranim u ovom poglavlju.  

6.1.3 Analiza odluka modela na nivou dana 
Svrha analize odluke modela na nivou jednog dana, iz perspektive ljudskog eksperta, je 
da se proceni da li su odluke modela usklađene sa željama stanara (potpoglavlje 5.1.3) 
uz racionalnu potrošnju električne energije. Analiza je razdvojena po uređajima i 
obuhvata kontrolu unutrašnje temperature, rad mašine za pranje sudova i rad mašine za 
veš. Ove analize su grupisane na nivou godišnjeg doba gde potpoglavlje 6.1.3.1 analizira 
rad uređaja u zimskom danu, a potpoglavlje 6.1.3.2 analizira rad uređaja u letnjem danu. 

Za evaluaciju modela učenja potkrepljivanjem, odabrani su dani koji nisu korišćeni 
tokom procesa treniranja modela. Za obučavanje modela korišćena su prva 22 dana u 
mesecu, dok je za evaluaciju korišćen 23. dan. Analiziran je zimski i letnju dan s ciljem 
demonstracije zavisnosti odbranih akcija modela od sezonskih uslova.  

 

6.1.3.1 Analiza rada uređaja u zimskom danu 

U zimskom danu analiziran je rad tri uređaja pod kontrolom obučenih modela: klima 
uređaj, mašina za pranje sudova i veš mašina, sa ciljem da se proceni usklađenost 
njihovih odluka sa spoljašnjim faktorima karakterističnim za ovo doba godine, kao i sa 
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preferencijama stanara. Pošto DDQN model u okviru Load Flow simulacionog okruženja 
tokom zimskog testnog dana nije aktivirao veš mašinu, u ovom potpoglavlju nije 
prikazana njegova kontrola tog uređaja. 

Slika 22 prikazuje način na koji su DDQN i PPO modeli kontrolisali unutrašnju 
temperaturu tokom zimskog dana. U oba simulaciona okruženja, PPO model održava 
unutrašnju temperaturu na sličan način – klima uređaj se isključi oko 8:00 i uključuje oko 
17:00 (u skladu sa željama stanara iz tabele 13), nakon čega se unutrašnja temperatura 
brzo vraća u željeni opseg. DDQN model u Typhoon HIL okruženju održava temperaturu 
na isti način. Iako DDQN model u Load Flow simulacionom okruženju dostigne željeni 
opseg pre ostalih modela, ne postiže bolje rezultate u pogledu ukupne nagrade jer ne 
aktivira sve uređaje, što negativno utiče na udobnost stanara. 

 

Slika 22. Kontrolisanje unutrašnje temperature u toku zimskog dana. 

 

Slika 23 prikazuje upravljanje mašinom za pranje sudova tokom zimskog dana. PPO 
model u Typhoon HIL simulacionom okruženju ne koristi optimalno mašinu za pranje 
sudova (nakon pokretanja) jer je ciklus pranja prekinut pre završetka, čime je prethodno 
uložena energija izgubljena, a model prinuđen da ponovo pokrene proces pranja od 
početka. Što se tiče perioda pokretanja mašine za pranje sudova, PPO modeli u oba 
simulaciona okruženja biraju da pokrenu uređaj tokom perioda srednje tarife, kada 
započinje interval visokog značaja rada ovog uređaja. 

U Typhoon HIL simulacionom okruženju, DDQN model aktivira mašinu za pranje 
sudova u periodu proizvodnje električne energije, pri visokoj tarifi i srednjem značaju 
rada uređaja. Takvom odlukom, DDQN model, prema rezultatima u tabeli 17, u  
poređenju sa PPO modelom ostvaruje bolji balans između udobnosti stanara i uštede 
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električne energije. DDQN model u Load Flow simulacionom okruženju pokreće mašinu 
dosta ranije u odnosu na ostale modele, u periodu niske tarife.  

 

Slika 23. Upravljanje mašinom za sudove u zimskom danu. 

Slika 24 prikazuje način upravljanja veš mašinom tokom zimskog dana. PPO modeli 
aktiviraju uređaj pre početka perioda srednjeg značaja rada, i to u vreme trajanja srednje 
tarife električne energije. PPO model u Typhoon HIL simulacionom okruženju pokreće 
uređaj znatno pre nego što započne željeni opseg rada. Sa druge strane, DDQN model u 
Typhoon HIL simulacionom okruženju aktivira veš mašinu u periodu srednje tarife, 
tokom srednjeg i visokog značaja rada uređaja. U poređenju sa PPO modelom u istom 
simulacionom okruženju, DDQN model je ostvario bolje rezultate u pogledu ukupne 
nagrade, što je potvrđeno i  rezultatima prikazanim u tabeli 17. DDQN model je u Load 
Flow simulacionom okruženju propustio da aktivira mašinu za veš. 

 

Slika 24. Upravljanje mašinom za veš u zimskom danu. 
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Razlika u upravljanjem radom mašine za pranje sudova i mašinom za veš ogleda se u 
tome što su modeli pridali veću važnost periodu značaja rada mašine za pranje sudova, 
dok period značaja rada mašine za veš nije imao podjednak uticaj na proces donošenja 
odluka. Odluke DDQN modela u Typhoon HIL simulacionom okruženju pokazale su se 
boljim u odnosu na odluke PPO modela. U Load Flow simulacionom okruženju, DDQN 
model nije uspešno pokrenuo mašinu za veš, što je rezultovalo nižom cenom električne 
energije, ali i smanjenom udobnošću stanara.  

6.1.3.2 Analiza rada uređaja u letnjem danu 

Tokom letnjeg dana posmatran je rad klima uređaja, mašine za pranje sudova i mašine 
za veš pod kontrolom obučenih modela. Analiziran je uticaj spoljašnjih faktora 
karakterističnih za letnje uslove na odluke koje modeli donose. 

Slika 25 prikazuje regulaciju unutrašnje temperature tokom letnjeg dana. Temperatura 
kod PPO modela na kratko izlazi iz željenog temperaturnog opsega – u Load Flow 
simulacionom okruženju željeni temperaturni opseg dostiže se tek od 19 časova. Ostali 
modeli upravljaju radom klima uređaja na sličan način, ali uspevaju da dostignu željeni 
temperaturni opseg od 17 časova, u skladu sa željama stanara. U Load Flow 
simulacionom okruženju PPO model ostvaruje bolje rezultate u pogledu uštede električne 
energije, jer u poređenju sa DDQN modelom ređe aktivira klima uređaj (tabela 16). 
Takođe, postignuti su nešto bolji rezultati i u pogledu udobnosti, iako se ova prednost 
PPO modela u odnosu na DDQN ne ogleda u načinu upravljanja klima uređajem. Sa 
druge strane, u Typhoon HIL simulacionom okruženju, DDQN postiže bolje rezultate u 
poređenju sa PPO modelom (tabela 17), ali se o ova prednost ne može u potpunosti uočiti 
samo na osnovu analize upravljanja klima uređajem.  

 

Slika 25. Kontrolisanje unutrašnje temperature u toku letnjeg dana. 
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Na slici 26 prikazan je način na koji modeli upravljaju radom mašine za pranje sudova 
tokom letnjeg dana. Svi modeli aktiviraju mašinu za pranje sudova u periodu kada solarni 
paneli proizvode energiju. DDQN model u Load Flow simulacionom okruženju pokreće 
mašinu za pranje sudova pre početka perioda srednjeg značaja rada i u vreme povećane 
proizvodnje solarne energije. Zbog toga, u poređenju sa PPO modelom u istom 
okruženju, ostvaruje slabije rezultate u pogledu udobnosti stanara. PPO model u Load 
Flow simulacionom okruženju aktivira mašinu za pranje sudove u periodu srednjeg 
značaja rada. U Typhoon HIL simulacionom okruženju, vreme aktiviranja mašine je 
gotovo identično kod oba modela, pa se na osnovu toga ne može jasno sagledati od čega 
potiče prednost DDQN modela u odnosu na PPO (tabela 17). 

 

 Slika 26. Upravlja mašinom za sudove u letnjem danu. 

Na slici 27 prikazana je kontrola rada mašine za veš tokom letnjeg dana. Algoritmi 
pokreću mašinu za veš u vremenskom intervalu koji je sličan periodu aktiviranja mašine 
za sudove. Svi modeli započinju rad uređaja tokom perioda visoke tarife, ali istovremeno 
i u vreme povećane proizvodnje električne energije iz solarnog panela. Nijedan od 
modela ne uzima u obzir želje stanara vezane za vreme rada uređaja, što ukazuje na to da 
je prioritet stavljen na optimizaciju potrošnje električne energije nauštrb udobnosti 
stanara.  
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Slika 27. Upravljanje mašinom za veš u letnjem danu. 

 

6.1.3.3 Zaključak analize odluka model na nivou zimskog i letnjeg dana 

Na osnovu prethodno prikazanih rezultata (Slike 23–27) može se uočiti da se logika 
ponašanja modela razlikuje između zimskog i letnjeg dana usled promene spoljašnjih 
uslova i dostupnosti izvora energije. Tokom zimskog dana, modeli su usmereni na 
održavanje komfora stanara, jer je proizvodnja energije putem solarnog panela smanjena. 
U tom periodu modeli teže postizanju ravnoteže između potrošnje i udobnosti, pri čemu 
je ključan faktor tarifni režim električne energije. Nasuprot tome, u letnjem danu 
prisustvo solarne proizvodnje značajno menja prioritete modela. U letnjem danu odluke 
se donose sa ciljem maksimalnog korišćenja raspoložive solarne energije, čak i po cenu 
smanjenja komfora stanara. Time se fokus modela pomera sa balansiranja između tarifa 
na optimizaciju potrošnje energije, što objašnjava različite obrasce ponašanja u letnjem 
danu.  

Rezultati ukazuju da logika donošenja odluka o aktiviranju uređaja nije trivijalna niti 
ujednačena tokom cele godine. Ona zavisi od kombinacije sezonskih faktora, tarifnih 
perioda i definisanih opsega značaja rada uređaja. Ručno podešavanje rada uređaja 
zahteva definisanje posebnih obrazaca upravljanja u zavisnosti od doba godine, pri čemu 
je neophodno istovremeno uzeti u obzir više međuzavisnih parametara, što dodatno 
komplikuje proces. Značaj automatizovanog sistema za upravljanje uređajima u 
pametnoj kući ogleda se u njegovoj sposobnosti da integriše različite spoljne i unutrašnje 
faktore i donosi optimalne odluke, koje bi stanarima bile složene i zahtevne za 
svakodnevno planiranje. 
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6.1.4 Analiza uticaja karakteristika stanja na odluke modela 
U ovom potpoglavlju biće analizirane odluke modela, gde će se za modele zasnovane na 
učenju potkrepljivanjem sprovesti detaljna analiza odlučivanja optimalnih akcija u 
posmatranim stanjima korišćenjem SHAP bibilioteke. Vizuelna interpretacija SHAP 
vrednosti realizovana je putem dijagrama sažetka značaja atributa (eng. summary plot) i 
dijagrama sile doprinosa (eng. force plot), koji omogućavaju analizu uticaja 
karakteristika stanja na odluke modela. U potpoglavlju 6.1.4.1 interpretiraju se odluke na 
osnovu više uzoraka stanja, i interpretiraju se odluke u određenim koracima simulacije. 
Analize su grupisane na nivou simulacionih okruženja i dalje podeljenje na osnovu 
godišnjeg doba. Za interpretacije modela na globalnom i lokalnom nivou korišćeno je 
sedam testnih dana u januaru i junu. 

6.1.4.1 Interpretacija odluka  

Interpretacija odluka može da se izvrši na osnovu više uzoraka stanja tj. na globalnom 
nivou i u određenom vremenskom koraku tj. na lokalnom nivou.  

Interpretacija na globalnom nivou se zasniva na dijagramu sažetka značaja koji prikazuju 
agregirane SHAP vrednosti za svaku karakteristiku stanja kroz više uzoraka stanja. 
Konkretno, za svaku moguću akciju aktivacije uređaja, prikupljeni su svi uzorci stanja 𝑆௧ 
u toku posmatranog perioda (sedam testnih dana). Za svako stanje 𝑆௧, SHAP vrednost 
𝜙௜(𝑆௧) je izračunata za svaku karakteristiku stanja 𝑖, i ova vrednost pokazuje koliko bi se 
odluka modela da izvrši akciju promenila ako bi ta karakteristika bila uklonjena iz ulaza.  

Na 𝑦-osi prikazane su karakteristike stanja, rangirane prema prosečnom apsolutnom 
doprinosu odluci modela (odabranoj akciji), pri čemu se najuticajnije nalaze na vrhu. 
Sortiranje se vrši na osnovu jednačine: 

MEAN(|𝜙௜|) =
1

𝑁
෍|𝜙(𝑆௧)|

୘

௧ୀଵ

, 

gde T predstavlja broj uzoraka u evaluaciji (sedam testnih dana po sezoni, gde svaki dan 
ima 96 vremenskih koraka 𝑡 zbog 15 minutnog koraka simulacije).  

𝑋-osa prikazuje SHAP vrednosti 𝜙௜(𝑆௧) koje kvantifikuju doprinos konkretne vrednosti 
karakteristike na akciju koju je model odabrao. Svaka tačka na dijagramu predstavlja 
SHAP vrednost izračunatu za jednu karakteristiku u konkretnom uzorku stanja. Boja 
tačke ukazuje na vrednost te karakteristike u posmatranom stanju: crvena označava 
visoke, a plava niske vrednosti. Položaj tačke duž horizontalne ose pokazuje da li ta 
vrednost pozitivno ili negativno utiče na odabranu akciju u datom stanju, i koliki je 
intenzitet tog uticaja. Rasipanje tačaka ilustruje kako se doprinos određene karakteristike 
menja u različitim stanjima, tj. koliko je njen uticaj stabilan ili zavisan od konteksta. Na 
osnovu dijagrama moguće je zaključiti koje karakteristike stanja najviše doprinose 
odabranim akcijama, kako se njihov uticaj menja u zavisnosti od konkretnih vrednosti 
karakteristike, i da li postoji konzistentan pravac tog uticaja. Na taj način se dobija 
globalna slika o tome koje informacije model koristi pri izboru akcija. 

Dijagram sile doprinosa koristi se za lokalnu interpretaciju, odnosno za objašnjenje zašto 
je model odabrao određenu akciju u konkretnom stanju. Za razliku od globalne 
interpretacije koja prikazuje opšti uticaj karakteristika na ponašanje modela, lokalna 
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analiza se fokusira na jednu specifičnu predikciju i doprinos svake karakteristike toj 
odluci. Vizualizacija se zasniva na pomeranju vrednosti predikcije u odnosu na 
referentnu vrednost (na primer, prosečnu predikciju za sve uzorke eng. base value). 

base value =  𝔼[𝑓(𝑆௧)], 

gde je 𝑓(𝑆௧) predikcija modela. SHAP vrednosti za svaku karakteristiku u posmatranom 
stanju se zatim sabiraju sa baznom vrednošću: 

𝑓(𝑆௧) = base value + ෍ 𝜙௜(𝑆௧),

୑

௜ୀଵ

 

gde je M broj karakteristika stanja. Ovim se dobija ukupna predikcija modela za stanje 
𝑆௧. 

Svaka karakteristika stanja prikazana je pravougaonikom duž horizontalne ose, pri čemu 
crvena boja označava pozitivan doprinos (povećava verovatnoću izbora date akcije), a 
plava negativan doprinos (smanjuje verovatnoću izbora date akcije). Karakteristike sa 
jačim uticajem nalaze se bliže centralnoj granici između pozitivnih i negativnih 
doprinosa, dok širina pravougaonika reflektuje intenzitet njihovog efekta |𝜙௜(𝑆௧)|. 
Ovakav prikaz omogućava intuitivno razumevanje ponašanja agenta u konkretnoj 
situaciji, posebno u stanjima koja odstupaju od tipičnih obrazaca. U kombinaciji sa 
globalnom interpretacijom, lokalna interpretacija doprinosi dubljem razumevanju 
ponašanja modela, kako na nivou pojedinačnih odluka, tako i u kontekstu ukupne 
strategije učenja potkrepljivanjem. 

Izdvojićemo nekoliko primera kako bismo ilustrovali razloge za odluke modela u 
određenim stanjima, koristeći dijagram sile doprinosa. Ova analiza omogućuje bolje 
razumevanje uticaja pojedinačnih faktora na odluke modela u različitim simulacionim 
okruženjima. 

6.1.4.1.1 Odluke u zimskom periodu 

Slike 28 i 29 prikazuju agregirane srednje apsolutne SHAP vrednosti za sve akcije, sa 
ciljem da se identifikuju koje karakteristike stanja najviše utiču na odluke modela.  

Slika 28 ukazuje na to da PPO model ima konzistentan obrazac značaja karakteristika u 
oba simulaciona okruženja. Najveći uticaj na predikcije modela ima proizvedena energija 
iz PV, što ukazuje da PPO efikasno koristi raspoloživu solarnu energiju prilikom 
planiranja aktivacije uređaja. Sledeće bitne karakteristike su značaj rad klima uređaja, 
stanja mašine za sudove i mašine za veš i termalni komfor korisnika izražen kao razlika 
između unutrašnje i željene temperature. Redosled najuticajnijih karakteristika na 
predikciju modela je isti u Load Flow i Typhoon HIL simulacionim okruženjima. Ova 
stabilnost u ponašanju sugeriše na robusnost u donošenju odluka od strane PPO modela, 
što ukazuje na sposobnost generalizacije u različitim simulacionim okruženjima.  
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 PPO 
 

 
(a)  

 

 
(b)  

Slika 28. PPO model: agregiran uticaj karakteristika stanja kroz akcije u toku zimskog 
perioda.  

Slika 29 ukazuje na to da DDQN model ispoljava drugačiju logiku ponašanja u odnosu 
na PPO model. Na predikcije DDQN modela najveći uticaj ima tarifa električne energije, 
nakon čega slede značaj rada veš mašine i proizvodnja energije putem solarnog panela. 
Takođe treba istaći da, za razliku od PPO modela, rang značaja karakteristika kod DDQN 
modela se razlikuje u različitim simulacionim okruženjima. U oba okruženja 
karakteristike vezane za mašinu za veš imaju zanemarljiv uticaj na konačnu odluku 
modela.  
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 DDQN 
 

(a)  

 

(b)  

Slika 29. DDQN model: agregiran uticaj karakteristika stanja kroz akcije tokom zimskog 
perioda. 

Slike 28 i 29 pružaju globalni uvid u ponašanje modela, ali ovaj pristup ima određena 
ograničenja. Srednja apsolutna vrednost prikriva vremensku dinamiku, te prividno visoke 
vrednosti određene karakteristike mogu proisteći iz nekoliko izolovanih momenata, a ne 
iz doslednog uticaja tokom celog perioda. Takođe, pošto se SHAP vrednosti agregiraju 
preko svih akcija, ne može se jasno sagledati doprinos svake pojedinačne karakteristike 
na konkretne odluke modela.  

Na slici 30 prikazan je uticaj karakteristika stanja na odluku o uključivanju klima uređaja 
tokom zimskog dana za PPO model. PPO modeli su u oba simulaciona okruženja uspešno 
održavali unutrašnju temperaturu u željenom opsegu tokom visokog značaja rada klima 
uređaja (slika 22). Na slici 30 vidimo da su odluke modela zasnovane na karakteristikama 
stanja koje su zaista relevantne za ovu odluku. Konkretno, karakteristike stanja sa 
najvećim doprinosom odluci o uključivanju klima uređaja u oba simulaciona okruženja 
su sledeće:  

 niska proizvodnje energije putem solarnog panela (𝑆୔୚),  
 visok značaj rada klima uređaja ൫𝑆୔

୅େ൯, 

 nizak značaj rada mašine za sudove ൫𝑆୔
ୈ୛൯ i 

 visok temperaturni komfor, odnosno niska razlika unutrašnje i željene 
temperature ൫𝑆∆୘౨౗౰ౢ౟ౡ౗

൯.  
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Važno je naglasiti da velike negativne vrednosti na 𝑥-označavaju veliku PV proizvodnju, 
dok vrednosti bliske 0 znače da je PV proizvodnja niska. Takođe, razlika unutrašnje i 
željene temperature je apsolutna vrednosti, gde niske vrednosti označavaju manje 
odstupanje unutrašnje temperature od željene i obrnuto, odnosno, visoke vrednosti 
označavaju veliko odstupanje. 

Na slici 30 vidimo da ponašanje modela deluje kontraintuitivno u odnosu na 
karakteristiku proizvodnje energije iz solarnog panela. Pri visokoj PV proizvodnji, SHAP 
vrednosti su negativne, odnosno model smanjuje verovatnoću izbora akcije uključivanja 
klima uređaja kada je raspoloživa veća količina proizvedene energije. Takođe, u zoni 
niske PV proizvodnje, pojavljuje se mali broj slučajeva sa pozitivnim SHAP doprinosom, 
što znači da model u tim instancama procenjuje da je uključivanje klima uređaja 
optimalna akcija. Ovakvo ponašanje može delovati kontraintuitivno, jer niska 
proizvodnja energije intuitivno sugeriše manju spremnost sistema da uključi dodatno 
opterećenje. 

Na prvi pogled, nelogično ponašanje se ogleda u pozitivnom doprinosu odluci o 
aktiviranju klima uređaja za niske vrednosti apsolutne vrednosti temperaturne razlike 
(veći komfor) i negativnom doprinosu odluci o aktiviranju klima uređaja u većim 
apsolutnim vrednostima razlike (niži komfor) u Typhoon HIL simulacionom okruženju. 
Niske apsolutne vrednosti temperaturne razlike (1°𝐶 − 2°𝐶) označavaju visok nivo 
komfora, zato što je unutrašnja temperatura u željenom opsegu, što rezultuje pozitivnom 
doprinosu odluci da se klima uređaj aktivira. Suprotnom tome, visoke apsolutne vrednosti 
ukazuju na veća odstupanja od željene temperature, odnosno manji komfor, čime 
negativno utiču na odluku da se klima uređaj aktivira.  

Iako takvo ponašanje deluje kontraintuitivno, moguće objašnjenje je u načinu na koji je 
značaj rada klima uređaja definisan od strane stanara (tabela 13), odnosno stanarima nije 
bitan rad klime u periodu njihovog odsustva, te aktiviranje klima uređaja od strane 
treniranog PPO modela u toku dana, kada stanari nisu prisutni, ne rezultuje pozitivnom 
nagradom. Dok je održavanje temperature, odnosno komfora stanara, rezultovalo znatno 
većom nagradom. Većina pozitivnih odluka o aktiviranju klima uređaja doneta je u 
uslovima visokog značaja rada klima uređaja, male temperaturne razlike i niske PV 
proizvodnje. Suprotno tome, situacije sa visokom temperaturnom razlikom, koje takođe 
mogu rezultovati pozitivnom nagradom, javljaju se retko, pretežno oko 17:00 časova, 
kada je značaj rada uređaja najviši (tabela 13). Budući da su takvi slučajevi brojčano 
zanemarljivi u odnosu na dominantne, model nije razvio stabilan obrazac koji bi 
prepoznao veliku temperaturnu razliku kao pozitivan faktor, što se odrazilo i u SHAP 
analizi. Dodatni uticaj niskog značaja rada mašine za sudove može se objasniti 
definisanim značajem rada uređaja od strane stanara (tabela 13). Naime, u periodima 
kada se klima uređaj aktivirao, značaj rada mašine za sudove bio je nizak. 
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 PPO 
 

 
(a)  

 

 
(b)  

Slika 30. PPO model: uticaj karakteristika stanja na akciju “uključi klimа uređaj” tokom 
zimskog perioda. 

Iako se SHAP vrednosti često koriste za interpretaciju ponašanja RL modela, njihova 
analiza u kompleksnim okruženjima može dovesti do kontraintuitivnih rezultata. Naime, 
smer uticaja pojedinih karakteristika na odluke modela ne mora nužno odgovarati 
očekivanjima ili realnom doprinosu tih karakteristika performansama agenta. Jedan od 
ključnih razloga za to je što SHAP pretpostavlja nezavisnost karakteristika i odsustvo 
međusobne korelacije (Engelhardt et al. 2024) (Salih et al. 2025). Zbog te pretpostavke, 
analiza zavisnosti između pojedinačnih SHAP vrednosti i odluka modela može biti 
ograničene pouzdanosti, jer u realnim RL sistemima odluke često proizilaze iz složene 
interakcije više osobina. Upravo ta nemogućnost SHAP-a da obuhvati zajedničke efekte 
i nelinearne zavisnosti između karakteristika predstavlja značajan nedostatak njegove 
primene u kompleksnim RL sistemima (Engelhardt et al. 2024). 

SHAP predstavlja post-hoc metod interpretacije odluka koji omogućavaju identifikaciju 
osobina sa najvećim uticajem na odluke treniranog model (Mersha et al. 2024). Posebno 
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je koristan za poređenje značaja pojedinačnih osobina u okviru različitih modela ili 
scenarija. Rezultate SHAP analize neophodno je prikazivati zajedno sa odgovarajućim 
grafikonima, čime se olakšava razumevanje doprinosa svake osobine izlazu modela i 
pretpostavki na kojima se metoda zasniva (Salih et al. 2025). 

Na slici 31 je prikazana odluka PPO modela da “uključi klima uređaj” u zimskom periodu 
u Typhoon HIL simulacionom okruženju u jednom vremenskom koraku (između 7:00 i 
8:00) Pozitivan uticaj na odluku o aktiviranju klima uređaja imaju niska proizvodnja 
energije (𝑆௉௏ = 0), nizak značaj rada mašine za sudove (𝑆௉

஽ௐ)i mašine za veš (𝑆௉
஼ௐ). 

Ovde je uticaj proizvodnje energije kontraintuitivan, dok je očekivano da pozitivan uticaj 
imaju niski značaji rada ostalih uređaja. Nelogičan pozitivan  uticaja niske vrednosti 
temperaturne razlike, uočen na globalnom nivou (slika 30), nije imao značajan uticaj na 
odluku o aktiviranju klima uređaja u ovom vremenskom koraku (slika 31). Slika 32 
prikazuje kombinaciju faktora koja odgovara opisanoj situaciji. Konkretno, grafikom se 
prikazuje vremenski trenutak označen simbolom x, koji predstavlja momenat aktiviranja 
klima uređaja. Na slici se vidi da model u ovom slučaju aktivira klima uređaj dok se 
temperatura kreće u željenom temperaturnom opsegu kako bi obezbedio da unutrašnja 
temperatura ostane unutar opsega dok je visok značaj rada klima uređaja (do 8:00). Stoga, 
iako smer uticaja niske proizvodnje energije deluje kontra-intuitivno, vidi se da odluka 
sistema jeste intuitivna kada se u obzir uzme kombinacija više različitih faktora. 

 

 

Slika 31. PPO model: uticaj karakteristika na akciju “uključi klima uređaj” u Typhoon 
HIL simulacionom okruženju u zimskom danu za stanje u vremenskom koraku 07:15. 

 

Slika 32. PPO model: upravljanje unutrašnjom temperaturom uz pregled proizvodnje 
energije putem solarnog panela i temperaturni komfor između 7:00 i 8:00 sati, u Typhoon 
HIL simulacionom okruženju. 

Na slici 33 je prikazana odluka PPO modela da “uključi klima uređaj” u zimskom periodu 
u Typhoon HIL simulacionom okruženju na početku dana, gde smer uticaja nije logičan 
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za karakteristike 𝑆୔୚ (proizvodnja energije putem solarnog panela) i 𝑆୼୘౨౗౰ౢ౟ౡ౗
 (razlika 

unutrašnje i željene temperature). Pozitivan uticaj na odluku o aktiviranju klima uređaja 
ima niska proizvodnja energije, dok negativan uticaj ima velika temperaturna razlika 
(niska temperaturna udobnost). Uvid u ponašanje PPO modela početkom dana je 
prikazan na  slici 34, gde grafikom prikazuje trenutak aktiviranje klima uređaja označen 
simbolom x u 00:15 sati. U tom trenutku, unutrašnja temperatura nalazi se van željenog 
temperaturnog opsega, dok nema proizvodnje energije od strane PV-a. Ovakva 
kombinacija karakteristika u potpunosti odgovara vrednostima prikazanim na slici 33, 
što potvrđuje da je model odluku o uključivanju klima uređaja doneo u situaciji niske PV 
proizvodnje i visoke temperaturne razlike, sa ciljem da obezbedi stabilnost unutrašnje 
temperature tokom perioda visokog značaja rada uređaja. Iako je kontraintuitvan 
negativan uticaj visoke temperaturne razlike, na slici 22 se vidi da je model uspešno 
naučio da održava temperaturu u željenom temperaturnom opsegu. 

 

Slika 33. PPO model: uticaj karakteristika na akciju “uključi klima uređaj” u Typhoon 
HIL simulacionom okruženju u zimskom danu za stanje u vremenskom koraku 00:00. 

 

Slika 34. PPO model: upravljanje unutrašnjom temperaturom uz pregled proizvodnje 
energije putem solarnog panela i temperaturni komfor između 00:00 i 01:00 sati, u 
Typhoon HIL simulacionom okruženju. 

 

Na slici 35 prikazan je uticaj karakteristika stanja na odluku o uključivanju klima uređaja 
tokom zimskog dana za DDQN model. DDQN modeli u oba simulaciona okruženja su 
uspešno održavali unutrašnju temperaturu u željenom opsegu tokom viskog značaja rada 
klima uređaja (slika 22). Karakteristike stanja sa najvećim doprinosom odluci o 
uključivanju klima uređaja su sledeće: 

 niske vrednosti tarife (tarifa), 
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 visoka PV proizvodnja u Typhoon HIL simulacionom okruženju i kombinacija 
visoke i niske PV proizvodnje u Load Flow simulacionom okruženju  (𝑆୔୚),   

 niži značaja rada mašine za sudove u Typhoon HIL simulacionom okruženju 
൫𝑆୔

ୈ୛൯ i niži značaja rada mašine za veš u oba simulaciona okruženja ൫𝑆୔
େ୛൯, 

 viši značaj rada klima uređaja u Typhoon HIL simulacionom okruženju i niži i 
viši značaj rada u Load Flow simulacionom okruženju ൫𝑆୔

୅େ൯, 

 manji termalni komfor, odnosno više vrednosti razlike unutrašnje i željene 
temperature 𝑆∆୘౨౗౰ౢ౟ౡ౗

. 

Za razliku od PPO modela, kod DDQN modela u oba simulaciona okruženja tarifa ima 
značajnu ulogu u donošenju odluke o radu klima uređaja.  

Kod DDQN modela u Load Flow simulacionom okruženju, gde model nije bio uspešno 
obučen da aktivira veš mašinu, takođe se vidi da na odluku o aktiviranju klima uređaja 
imaju nelogičan uticaj sledeće karakteristike: niska PV proizvodnja (𝑆௉௏) i nizak značaj 
rada klima uređaja (𝑆୔

୅େ).  

Pozitivan uticaj niske PV proizvodnje na odluku o aktivaciji klima uređaja se može 
objasniti na isti način kao u prethodnim primerima, gde se period visokog značaja rada 
klima uređaja (tabela 13) poklapao sa periodom niske PV proizvodnje. Sa druge strane, 
period visoke PV proizvodnje se u zimskom periodu retko poklapao sa visokim značajem 
rada klima uređaja, s obzirom na to da je PV proizvodnja bila generalno niska u toku 
dana.  

Dodatni uticaj niskog značaja rada mašina za sudove i veš može se objasniti definisanim 
značajem rada uređaja od strane stanara (tabela 13). Naime, u periodima kada se klima 
uređaj aktivirao, značaj rada mašina za sudove i veš bili su niski. 
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Slika 35. DDQN model: uticaj karakteristika stanja na akciju “uključi klimа uređaj” 
tokom zimskog perioda.  

Na slici 36 prikazana su karakteristike koje su imale uticaj na odluku o aktiviranju klima 
uređaja od strane DDQN modela u Load Flow simulacionom okruženju za akciju 
izvršenu u vremenskom trenutku 00:00. Pozitivan uticaj na odluku imaju karakteristike: 
niska tarifa, visoke vrednosti temperaturne razlike i (kontraintuitvno) niska PV 
proizvodnja. Slika 37 prikazuje aktiviranje klima uređaja u 00:00, označen simbolom x, 
gde su prethodno pomenute karakteristike imale uticaj na odluku. Unutrašnja temperatura 
se kreće ka željenom temperaturnom opsegu. Odsustvo i umanjen značaja rada klima 
uređaja na odluku modela može da proizilazi iz činjenice da tarifa ima jak uticaj na 
odluke DDQN modela (slika 29). 

 

Slika 36. DDQN model: uticaj karakteristika na akciju “uključi klima uređaj” u Load 
Flow simulacionom okruženju u zimskom danu za stanje u vremenskom koraku 00:00. 
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Slika 37. DDQN model: upravljanje unutrašnjom temperaturom uz pregled proizvodnje 
energije putem solarnog panela i temperaturni komfor između 00:00 i 01:00 sati, u Load 
Flow simulacionom okruženju. 

Na slici 38 prikazan je uticaj karakteristika na aktiviranje klima uređaja od strane DDQN 
model u Load Flow simulacionom okruženju u vremenskom koraku 06:45. Konkretan 
vremenski korak je prikazan na slici 39 simbolom x u 06:45. Karakteristike koje su imale 
pozitivan uticaj na odluku o uključivanju klima uređaja su: (kontraintuivno) visoka tarifa 
(𝑡𝑎𝑟𝑖𝑓𝑎), nizak značaj rada mašine za veš (𝑆୔

େ୛), visok značaj rada klima uređaja (𝑆୔
୅େ) 

i činjenica da mašina za sudove nije spremna za rad (𝑆୐
ୈ୛). Ova kombinacija 

karakteristika odgovara upravljanju klimom uređaja prikazanom na slici 39. Pozitivan 
uticaj visoke tarife je nelogičan i proizilazi iz treniranog DDQN modela koji je pridao 
veliki značaj tarifi, dok je zanemario ostale karakteristike (slika 29).  

 

Slika 38. DDQN model: uticaj karakteristika na akciju “uključi klima uređaj” u Load 
Flow simulacionom okruženju u zimskom danu za stanje u vremenskom koraku 06:45. 
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Slika 39. DDQN model: upravljanje unutrašnjom temperaturom uz pregled proizvodnje 
energije putem solarnog panela i temperaturni komfor između 06:00 i 08:00 sati, u Load 
Flow simulacionom okruženju. 

 

Slika 40, prikazuje vremenski korak 17:15, koji je takođe na slici 41 označen simbolom 
x. U ovom slučaju su karakteristike sa pozitivnim uticajem na odluku uključivanja klima 
uređaja bile visoka temperaturna razlika (𝑆୼୘౨౗౰ౢ౟ౡ౗

), nizak značaj rada mašine za veš 

(𝑆୔
େ୛), niska PV proizvodnja (𝑆୔୚ )i visok značaj rada klima uređaja (𝑆୔

୅େ). Sa druge 
strane, veliki negativan uticaj je imala srednja vrednost tarife. Neintuitivna je činjenica 
da je visok značaja rada klima uređaja imao slab uticaj na odluku, što se ogleda i u 
redosledu prioriteta karakteristika kod treniranog DDQN modela (slika 29). 

 

Slika 40. DDQN model: uticaj karakteristika na akciju “uključi klima uređaj” u Load 
Flow simulacionom okruženju u zimskom danu za stanje u vremenskom koraku 17:15. 
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Slika 41. DDQN model: upravljanje unutrašnjom temperaturom uz pregled proizvodnje 
energije putem solarnog panela i temperaturni komfor između 16:00 i 18:00 sati, u Load 
Flow simulacionom okruženju. 

Na slici 42 prikazane su karakteristike koje utiču na akciju aktiviranja mašine za sudove 
kod PPO modela. Karakteristike koje imaju uticaj na odluku u oba simulaciona okruženja 
su: 

 visoka proizvodnja električne energije 𝑆୔୚, 
 nizak značaj rada klima uređaja 𝑆୔

୅େ, 
 visok i srednji značaj rada mašine za sudove  𝑆୔

ୈ୛.  

Na osnovu slike 23 uočava se jasno poklapanje između pozitivnog uticaja navedenih 
karakteristika i stvarnih odluka PPO modela o aktiviranju mašine za sudove. Model je 
mašinu aktivirao u trenucima visoke proizvodnje električne energije, kada je značaj rada 
klima uređaja bio nizak, a značaj mašine za sudove visok, što ukazuje na usklađenost 
odluka modela sa očekivanim obrascima racionalnog upravljanja energijom. 
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Slika 42. PPO model: uticaj karakteristika stanja na akciju “uključi mašinu za sudove” 
tokom zimskog perioda.  

Na slici 43 prikazane su karakteristike koje utiču na odluku “uključi mašinu za sudove” 
kod DDQN modela. Karakteristike koje su imali uticaj na odluku u oba simulaciona 
okruženja su: 

 niska tarifa 𝑡𝑎𝑟𝑖𝑓𝑎, 

 visoka PV proizvodnja električne energije u Typhoon HIL simulacionom 
okruženju i niska PV proizvodnja električne energije u Load Flow 
simulacionom okruženju 𝑆୔୚, 

 nizak značaj rada mašine sa veš 𝑆୔
େ୛, 

 nizak značaj rada mašine za sudove u Typhoon HIL simulacionog okruženja i 
visok značaj rada kod Load Flow simulacionog okruženja 𝑆୔

ୈ୛ i 

 manji termalni komfor tj. visoka razlika unutrašnje i željenje temperature 
𝑆∆୘౨౗౰ౢ౟ౡ౗

.  

Uočava se nelogičan pozitivan uticaj niskog značaja rada mašine za sudove u Typhoon 
HIL simulacionom okruženju i niske proizvodnje električne energije u Load Flow 
okruženju na odluku modela da aktivira mašinu za sudove. Ovakvo ponašanje odstupa 
od očekivanog, jer bi aktiviranje mašine za sudove trebalo da bude podstaknuto visokim 
značajem rada mašine za sudove i povećanom PV proizvodnjom električne energije.  

U poređenju sa konkretnim posmatranim danom na slici 23, odluka DDQN modela ne 
odgovara vrednostima karakteristike značaja rada mašine za sudove. Konkretno u 
Typhoon HIL simulacionom okruženju mašina se aktivirala u periodu srednjeg značaja, 
dok u Load Flow simulacionom okruženju mašina za sudove se aktivira u periodu niskog 
značaja rada uređaja.  
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Slika 43. DDQN model: uticaj karakteristika stanja na akciju “uključi mašinu za sudove” 
tokom zimskog perioda. 

Slika 44 ukazuje da je DDQN model u Typhoon HIL simulacionom okruženju odlučio da 
uključi mašinu sudove pod uticajem visoke PV proizvodnje električne energije (𝑆୔୚), 
niskog značaja rada mašine za veš (𝑆୔

େ୛) i visoke tarife (𝑡𝑎𝑟𝑖𝑓𝑎). Međutim, činjenica da 
je model visoku tarifu tretirao kao faktor koji povećava verovatnoću aktiviranje mašine 
za sudove predstavlja nelogično ponašanje, jer bi visoka tarifa trebalo da ima suprotan 
efekat odlaganja rada uređaja. Mogući razlog za ovo ponašanje modela je što se period 
visoke PV proizvodnje preklapa sa periodom visoke tarife. Ako je PV proizvodnja 
dovoljno visoka da pokrije potrošnju uređaja, ne troši se energija iz mreže, te visoka 
vrednost tarife nema uticaja na funkciju nagrade. Dodatno, negativan doprinos srednjeg 
značaja rada mašine za sudove (𝑆୔

ୈ୛) je nelogičan. Intuitivno bi bilo da povećan značaj 
rada uređaja doprinosi većoj verovatnoći njegovog aktiviranja. Sporna karakteristika u 
Typhoon HIL simulacionom okruženju (slika 43 (a)), nizak značaj rada mašine za sudove, 
nije imala ulogu na aktiviranje uređaja.  
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Slika 44. DDQN model: Uticaj karakteristika na akciju “uključi mašinu za sudove” u 
Typhoon HIL simulacionom okruženju u zimskom danu za stanje u određenom 
vremenskom koraku. 

Na slici 45 prikazano je da su na odluku DDQN modela o aktiviranju mašine za sudove 
u Load Flow okruženju pozitivno uticale niska tarifa (𝑡𝑎𝑟𝑖𝑓𝑎) i, nelogično, niske 
vrednosti značaja rada mašine za sudove (𝑆୔

େ୛) i PV proizvodnje 𝑆୔୚. Iako je model 
reagovao u periodu niske tarife, što je ekonomski opravdano, DDQN u Load Flow 
okruženju nije uspeo da ostvari ravnotežu između uštede energije i udobnosti stanara kao 
u Typhoon HIL okruženju.  

 

Slika 45. DDQN model: Uticaj karakteristika na akciju “uključi mašinu za sudove” u 
Load Flow simulacionom okruženju u zimskom danu za stanje u određenom 
vremenskom koraku. 

Na slici 46 prikazane su karakteristike koje u PPO modelu utiču na aktiviranje mašine za 
pranje veša. Karakteristike koje imaju uticaj u oba simulaciona okruženja su: 

 visoka PV proizvodnja u Typhoon HIL simulacionom okruženju i niska PV 
proizvodnja električne energije u Load Flow simulacionom okruženju (𝑆୔୚),  

 nizak značaj rada klima uređaja u Typhoon HIL simulacionom okruženju i visok 
značaj rada klima uređaja u Load Flow simulacionom okruženju (𝑆୔

୅େ) i 
 visok značaj rada mašine za sudove je imao jači uticaj u Typhoon HIL 

simulacionom okruženju u odnosu na Load Flow okruženje (𝑆୔
ୈ୛). 

U oba okruženja, karakteristike vezane za mašinu za veš nisu imale značajan uticaj na 
odluku o aktivaciji ovog uređaja. U Typhoon HIL simulacionom okruženju, mašina za 
pranje veša se akvirirala nešto pre 16:00, u periodu visokog značaja rada mašine za pranje 
sudova i niskog značaja rada klima uređaja (slika 24). U Load Flow simulacionom 
okruženju, su takođe značajne karakteristike se karakteristike poput visokog značaja rada 
klima uređaja i činjenice da mašina za sudove više nije spremna za rad (pošto je 
prethodno završila sa radom). Kontraintuitivan je pozitivan uticaj niske PV proizvodnje 
na odluku aktiviranja mašine za veš, što ukazuje da je treniran PPO model, vođen 
funkcijom nagrade, u ovom slučaju dao prednost udobnosti u odnosu na uštedu električne 
energije. 
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Slika 46. PPO model: uticaj karakteristika stanja na akciju “uključi veš mašinu” tokom 
zimskog perioda.  

Na slici 47 analizira se odluka DDQN modela da aktivira veš mašinu u zimskom danu. 
Karakteristike koje pozitivno utiču na odluku o aktivaciji ovog uređaja su: 

 niska tarifa (𝑡𝑎𝑟𝑖𝑓𝑎), 

 nizak značaj rada mašine za veš (𝑆୔
େ୛) i 

 visoka PV proizvodnja u Typhoon HIL simulacionom okruženju i niska PV 
proizvodnja u Load Flow simulacionom okruženju (𝑆୔୚).  

Odluka DDQN modela da aktivira veš mašinu u Typhoon HIL simulacionom okruženju 
(slika 24) u potpunosti se podudara sa karakteristikama koje su identifikovane kao 
najuticajnije u globalnoj SHAP analizi (slika 46). Naime, model je aktivirao uređaj u 
periodu niske tarife i neočekivano niskog značaja rada mašine za veš, što su upravo 
faktori koji prema analizi najviše doprinose odluci o aktivaciji. Jedini faktor koji se ne 
poklapa je pozitivan uticaj visoke PV proizvodnje. U Load Flow simulacionom 
okruženju, DDQN model je propustio da aktivira mašinu za veš u toku dana.  
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Slika 47. DDQN model: uticaj karakteristika stanja na akciju “uključi veš mašinu” tokom 
zimskog perioda. 

Na slici 48 prikazano je da obučeni DDQN model pokazuje nelogičan negativan uticaj 
karakteristike srednjeg značaja rada mašine za veš (𝑆୔

େ୛). Za razliku od globalne analize 
(slika 47), gde je visoka PV proizvodnja (𝑆୔୚) imala pozitivan doprinos odluci o 
aktivaciji, u ovom konkretnom slučaju ta karakteristika nema značajan uticaj na odluku 
da se mašina za veš uključi. 

 

Slika 48. DDQN model: Uticaj karakteristika na akciju “uključi mašinu za veš” u 
Typhoon HIL simulacionom okruženju u zimskom danu za stanje u određenom 
vremenskom koraku. 

6.1.4.1.1.1 Zaključak na nivou odluka u zimskom periodu 

U zimskom danu modeli su pokazali uticaj različitih karakteristika na donošenje odluka. 
Odluke PPO modela ukazuju na više-ciljnu optimizaciju, gde postoji dvostruki uticaj 
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proizvodnje električne energije i značaj rada uređaja, čime se ostvaruje uravnotežen 
odnos uštede i udobnosti stanara. PPO model je pokazao konzistentnost i stabilnost u oba 
simulaciona okruženja, pri čemu su odluke bile zasnovane na logičnim energetskim 
obrascima i realnim uslovima sistema. 

Suprotno tome, DDQN model je pokazao veći stepen osetljivosti na pojedinačne 
karakteristike, pri čemu je tarifa imala dominantan uticaj na odluke. Takvo ponašanje 
ukazuje na jednostranu optimizaciju usmerenu ka smanjenju potrošnje električne 
energije, često na račun udobnosti korisnika. Dodatno, u Load Flow simulacionom 
okruženju uočene su nelogičnosti u smeru uticaja pojedinih karakteristika, što ukazuje na 
ograničenu sposobnost modela da generalizuje obrasce ponašanja u različitim uslovima.  

Generalno, PPO model se pokazao robusnijim i pouzdanijim, sa sposobnošću donošenja 
odluka koje su u skladu sa racionalnim energetskim principima, dok DDQN model 
pokazuje ograničenja u interpretabilnosti i stabilnosti, naročito u dinamičnim 
okruženjima poput Load Flow simulacije. 

6.1.4.1.2 Odluke u letnjem periodu 

Slike 49 i 50 prikazuju agregirane srednje apsolutne SHAP vrednosti za sve akcije sa 
ciljem da se identifikuju koje karakteristike stanja najviše utiču na odluke modela.  

U oba okruženja, najveći uticaj na predikcije modela imaju karakteristike PV 
proizvodnja, značaj rada klima uređaja i značaj rada mašine za sudove, što ukazuje da 
PPO efikasno koristi raspoloživu solarnu energiju prilikom planiranja aktivacija uređaja. 
Redosled značaja ostalih karakteristika je različit u Typhoon HIL i Load Flow 
okruženjima. U oba okruženja, razlika unutrašnje i spoljašnje temperature nema veliki 
uticaj na odluke modela jer, u letnjim danima, spoljašnja temperatura nije značajno 
različita u odnosu na unutrašnju. 
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(b)  

Slika 49. PPO model: uticaj karakteristika stanja agregirano kroz akcije u toku letnjeg 
perioda. 

Kod DDQN modela (slika 49), rezultati ove analize su različiti. Glavni uticaj na 
predikcije modela imaju PV proizvodnja i tarifa električne energije. U Load Flow 
simulacionom okruženju, jedino još značaj rada mašine za veš ima značajan uticaj na 
odluke modela. Kao i kod PPO modela, najniži uticaj ima razlika unutrašnje i željene 
temperature. 

 DDQN 
 

 
(c)  

 

 
(d)  

Slika 50. DDQN model: uticaj karakteristika stanja agregirano kroz akcije tokom letnjeg 
perioda. 
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Na slikama 51 i 54 prikazan je uticaj vrednosti karakteristika na odluku o uključivanju 
klima uređaja tokom letnjeg dana kod PPO i DDQN modela.  

Kod PPO modela (slika 51), u oba simulaciona okruženja, sledeće karakteristike imaju 
značajan uticaj na rad klima uređaja:  

 niži značaj rada mašine za sudove (𝑆୔
ୈ୛), 

 niska PV proizvodnja (𝑆୔୚), 

 visok značaj rada klima uređaja (𝑆୔
୅େ) i 

 visoka tarifa. 

Na slici 25 prikazana je kontrola rada klima uređaja tokom letnjeg dana, gde se uočava 
poklapanje navedenih uvida (slika 51) sa ponašanjem PPO modela u oba simulaciona 
okruženja. Model je dosledno aktivirao klima uređaj u periodima kada je značaj rada 
ovog uređaja bio visok, a značaj rada ostalih uređaja nizak, čime je obezbeđeno 
održavanje željenog termalnog komfora korisnika. 

Kontraintuitivan pozitivan doprinos niske PV proizvodnje na odluku o aktiviranju klima 
uređaja može se objasniti definisanim značajem rada uređaja od strane stanara (tabela 
13). Tokom perioda odsutnosti stanara, termalna udobnost nije prioritet, pa aktiviranje 
klima uređaja od strane PPO modela u tim trenucima ne donosi pozitivnu nagradu. 
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(b)  

Slika 51. PPO model: uticaj karakteristika stanja na akciju “uključi klimа uređaj” tokom 
letnjeg perioda. 

Na slikama 52 i 53 prikazan je nelogičan pozitivan uticaj niske PV proizvodnje (𝑆୔୚) u 
Typhoon HIL i Load Flow simulacionom okruženju. Iako je na globalnom nivou (slika 
51) uočen sporan pozitivan uticaj visoke tarife (𝑡𝑎𝑟𝑖𝑓𝑎), u ovim konkretnim slučajevima 
ova karakteristika nema značajan uticaj na odluku. 

 

Slika 52. PPO model: Uticaj karakteristika na akciju “uključi klimа uređaj” u Typhoon 
HIL simulacionom okruženju u letnjem danu za stanje u određenom vremenskom koraku. 

 

Slika 53. PPO model: Uticaj karakteristika na akciju “uključi klimа uređaj” u Load Flow 
simulacionom okruženju u letnjem danu za stanje u određenom vremenskom koraku. 

Karakteristike koje imaju uticaj na odluke DDQN model u oba simulaciona okruženja su 
(slika 54): 

 visoka PV proizvodnja (𝑆୔୚), 
 niska tarife,  
 karakteristike vezane za mašinu za veš: d u Typhoon HIL okruženju  da nije 

radila (𝑆୛
େ୛), a u Load Flow okruženju da je značaj rada ovog uređaja visok 

(𝑆୔
େ୛) 

 visok značaj rada klima uređaja (𝑆୔
୅େ). 

Međusobne zavisnosti između rada uređaja ne mogu se u potpunosti objasniti na osnovu 
ovih analiza. Uloge karakteristika vezanih za mašinu za veš u donošenju odluka o radu 
klima uređaja nemaju jasno opravdanje i ne proizlazi iz očekivane logike energetskog 
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upravljanja. Posebno je nelogično što značaj rada klima uređaja, koji bi u realnim 
uslovima trebalo da bude dominantan faktor, pokazuje ograničen uticaj na odluku o 
aktiviranju ovog uređaja. 

 DDQN 
 

 
(a)  

 

 
(b)  

Slika 54. DDQN model: uticaj karakteristika stanja na akciju “uključi klimа uređaj” 
tokom letnjeg dana 

Na slikama 55 i 57 prikazan je uticaj karakteristika stanja na akciju uključivanja mašine 
za sudove kod PPO i DDQN modela, tim redosledom.  

Karakteristike koje utiču na odluku PPO modela da pokrene mašinu za sudove u oba 
simulaciona okruženja u letnjem periodu su: 

 visok značaj rada mašine za sudove (𝑆୔
ୈ୛), 

 niska vrednost za indikator da je veš mašina spremna za aktivaciju (𝑆୐
େ୛),  

 visoka vrednost za indikator da je veš mašina danas radila (𝑆୛
େ୛), 

 niska PV proizvodnja (𝑆୔୚). 

Dodatno, manji uticaj ima spremnost mašine za sudove za rad, gde je visoka vrednost za 
indikator da je mašina za sudove spremna za rad (𝑆୐

ୈ୛) i niska vrednost za indikrator da 
mašina nije radila danas (𝑆୐

ୈ୛).Niska vrednost karakteristike 𝑆୛
௜ , gde 𝑖 ∈ {CW, DW}, 
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označava da mašina još uvek nije radila, dok visoka označava da jeste. Slično, niska 
vrednost karakteristike 𝑆୐

୧  označava da mašina nije spremna za rad, a visoka vrednosti da 
jeste. 

Vrednosti ovih karakteristika se u najvećoj meri poklapaju sa stvarnim odlukama PPO 
modela o aktiviranju mašine za sudove u posmatranom letnjem danu (slika 26). Model 
je, u skladu sa očekivanim obrascem, donosio odluke o aktiviranju uređaja nakon 
završetka rada mašine za veš i u periodima visokog značaja rada mašine za sudove. 

Ipak, kontraintuitivno je da niska PV proizvodnja ima pozitivan doprinos odluci o 
pokretanju mašine za sudove. Ovakvo ponašanje odstupa od očekivanog energetskog 
racionaliteta, budući da bi veća raspoloživa proizvodnja solarne energije trebalo da bude 
podsticaj za aktiviranje potrošača. 

 PPO 
 

 
(a)  

 

 
(b)  

Slika 55. PPO model: uticaj karakteristika stanja na akciju “uključi mašinu za sudove” 
tokom letnjeg perioda.  

Na slici 56 je prikazan SHAP dijagram koji objašnjava odluku PPO modela da aktivira 
mašinu za sudove u konkretnom vremenskom koraku. Sve karakteristike koje doprinose 
odluci imaju logičan smer uticaja i u skladu su sa očekivanim obrascima ponašanja 
modela. Srednji značaj rada mašine za sudove (𝑆୔

ୈ୛), spremnost mašine za sudove za rad 
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(𝑆୐
ୈ୛, 𝑆୛

ୈ୛) i završetak rada mašine za veš (𝑆୐
େ୛, 𝑆୛

େ୛) doprinose povećanju verovatnoće 
aktiviranja mašine za sudove. Nasuprot tome, visoka tarifa (𝑡𝑎𝑟𝑖𝑓𝑎) ima manji negativan 
doprinos odluci, što je u skladu sa očekivanim uticajem troškova energije. Sporna niska 
PV proizvodnja nema značajan uticaj na odluku. Time se potvrđuje da je odluka PPO 
modela u ovom primeru u potpunosti u skladu sa logikom energetski efikasnog i 
racionalnog upravljanja uređajem. 

 

Slika 56. PPO model: Uticaj karakteristika na akciju “uključi mašinu za sudove” u 
Typhoon HIL simulacionom okruženju u letnjem danu za stanje u određenom 
vremenskom koraku. 

Karakteristike koje utiču na odluku DDQN modela da aktivira mašinu za sudove u oba 
simulaciona okruženja su: 

 niska tarifa, 

 visoka PV proizvodnja električne energije (𝑆୔୚),  

 indikator da mašina za veš nije radila danas (𝑆୛
େ୛), 

 visok značaj rada klima uređaja (𝑆୔
୅େ) i  

 nizak značaj rada mašine za veš u Typhoon HIL simulacionom okruženju i visok 
značaj rada mašine za veš u Load Flow simulacionom okruženju (𝑆୔

େ୛). 

Odluke DDQN modela prikazane na slici 26 uglavnom se poklapaju sa karakteristikama 
identifikovanim na globalnom nivou (slika 57) u oba simulaciona okruženja. Uređaji su 
se u oba okruženja aktivirali u periodima visoke proizvodnje električne energije. U 
Typhoon HIL okruženju aktivacija se javljala tokom niskog značaja rada klima uređaja, 
dok se u Load Flow okruženju dešavala u periodu niskog značaja rada mašine za veš. 

Za razliku od globalne analize, u oba simulaciona okruženja model je mašinu za sudove 
aktivirao u periodu visoke, a ne niske tarife. U Load Flow okruženju dodatno odstupa i 
karakteristika značaja rada mašine za veš, jer se model nije ponašao u skladu sa globalnim 
obrascem prema kome se uređaj aktivira pri visokom značaju rada mašine za veš. 
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(a)  

 

 
(b)  

Slika 57. DDQN model: uticaj karakteristika stanja na akciju “uključi mašinu za sudove” 
tokom letnjeg perioda. 

Karakteristike koje su imale pozitivan uticaj na odluku DDQN modela o aktiviranju 
mašine za sudove u Typhoon HIL simulacionom okruženju uključuju visoku tarifu (što 
je kontraintuitivno), visoku PV proizvodnju i spremnost za rad mašine za sudove. 
Negativan doprinos odluci imaju nizak značaj rada klima uređaja, činjenica da je mašina 
za sudove već radila, kao i (kontraintuitivno) srednji značaj rada mašine za sudove (slika 
58). 

Iako je DDQN model u Typhoon HIL simulacionom okruženju uspeo da postigne 
relativno dobar balans između uštede energije i komfora korisnika, smer uticaja pojedinih 
faktora na odluku nije u skladu sa očekivanim obrascima energetski racionalnog 
ponašanja. 
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Slika 58. DDQN model: Uticaj karakteristika na akciju “uključi mašinu za sudove” u 
Typhoon HIL simulacionom okruženju u letnjem danu za stanje u određenom 
vremenskom koraku. 

Na slici 59 prikazana je konkretna odluka DDQN modela u Load Flow simulacionom 
okruženju da aktivira mašinu za sudove. U ovom primeru, model je imao pretežno 
pozitivne faktore: visoku PV proizvodnju (𝑆୔୚), nizak značaj rada mašine za veš (𝑆୔

େ୛), 
visok značaj rada klima uređaja (𝑆୔

୅େ) i spremnost mašine za sudove za rad (𝑆୐
ୈ୛). 

Takođe, logičan negativan uticaj je imala visoka tarifa (𝑡𝑎𝑟𝑖𝑓𝑎). Međutim, uočen je 
kontraintuitivan pozitivan doprinos niskog značaja rada mašine za sudove, što odstupa 
od očekivanog ponašanja sistema. Dodatno, karakteristika visoke vrednosti značaja rada 
mašine za veš, koja se na globalnom nivou izdvojila kao uticajna (slika 57 (b)), nije imala 
značajan uticaj na odluku modela u ovom slučaju. 

Za razliku od PPO modela, DDQN u Load Flow simulacionom okruženju nije uspeo da 
uspostavi ravnotežu između uštede električne energije i očuvanja komfora stanara. 

 

Slika 59. DDQN model: Uticaj karakteristika na akciju “uključi mašinu za sudove” u 
Load Flow simulacionom okruženju u letnjem danu za stanje u određenom vremenskom 
koraku. 

Karakteristike sa značajnim uticajem na odluku PPO modela da aktivira mašinu za veš u 
oba simulaciona okruženja su: 

 visoka i niska PV proizvodnja (𝑆୔୚),  

 u Typhoon HIL simulacionom okruženju, indikator spremnosti za rad mašine za 
veš (𝑆୛

େ୛ i 𝑆୐
େ୛) 

 u Load Flow simulacionom okruženju je manji uticaj imao i indikator da je 
mašina za sudove radila danas (𝑆୛

ୈ୛). 

Na globalnom nivou (slika 60), navedene karakteristike pokazuju dosledan uticaj na 
odluke PPO modela, dok se na nivou jednog odabranog letnjeg dana (slika 27) uočava 
njihovo poklapanje sa stvarnim upravljanjem uređaja. Jedino odstupanje predstavlja 
indikator da je mašina za sudove radila, koji nema značajan uticaj na odluku o aktiviranju 
mašine za veš. 
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Slika 60. PPO model: uticaj karakteristika stanja na akciju “uključi veš mašinu” tokom 
letnjeg dana. 

Na slici 61 prikazan je uticaj karakteristika na odluku PPO modela da aktivira mašinu za 
veš u Typhoon HIL simulacionom okruženju u letnjem danu. Pozitivni faktori bili su 
visoka PV proizvodnja (𝑆୔୚), indikator da mašina za veš nije dana radila (𝑆୛

େ୛), da je 
mašina za veš spremna za rad (𝑆୐

େ୛), visoka tarifa (𝑡𝑎𝑟𝑖𝑓𝑎) i nizak značaj rada mašine 
za sudove (𝑆୔

ୈ୛). Negativan uticaj su imale karakteristike da mašina za sudove nije radila 
danas (𝑆୛

ୈ୛), visok značaj rada klima uređaja (𝑆୔
୅େ) i nizak značaj rada mašine za veš 

(𝑆୔
େ୛). Kontraintuitivni uvid da je pozitivan utican na aktiviranje mašine za veš ima 

karakteristika da je mašina za sudove radila (slika 60 (a)) se ne pojavljuje u predikciji. 

 

Slika 61. PPO model: Uticaj karakteristika na akciju “uključi mašinu za veš” u Typhoon 
HIL simulacionom okruženju u letnjem danu za stanje u određenom vremenskom koraku. 

Na slici 62 prikazane su karakteristike koje su uticale na odluku PPO modela da aktivira 
mašinu za veš u jednom određenom vremenskom koraku. Pozitivan doprinos odluci 
imale su visoka PV proizvodnja (𝑆୔୚), visok značaj rada klima uređaja (𝑆୔

୅େ) i činjenica 
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da mašina za veš još uvek nije bila aktivna (𝑆୛
େ୛). Nasuprot tome, negativan uticaj na 

odluku imale su karakteristike koje ukazuju da je mašina za sudove spremna za rad i nije 
radila (𝑆௅

ୈ୛ i 𝑆୛
ୈ୛), visoka tarifa (𝑡𝑎𝑟𝑖𝑓𝑎) električne energije i nizak značaj rada mašine 

za sudove (𝑆୔
ୈ୛). Sporni uvid iz globalne analize da pozitivan uticaj na odluku 

uključivanja mašine za veš ima činjenica da je mašina za sudove radila (slika 60 (b)) nije 
imala u ovom primeru uticaja na odluku o aktiviranju mašine za veš. 

 

Slika 62. PPO model: Uticaj karakteristika na akciju “uključi mašinu za veš” u Load Flow 
simulacionom okruženju u letnjem danu za stanje u određenom vremenskom koraku. 

Karakteristike sa značajnim uticajem na odluku DDQN modela da aktivira mašinu za veš 
u oba simulaciona okruženja su: 

 visoka PV proizvodnja električne energije (𝑆୔୚), 
 niska i visoka vrednost tarife u Typhoon HIL simulacionom okruženju i 

isključivo niske vrednosti tarife u Load Flow simulacionom okruženju (𝑡𝑎𝑟𝑖𝑓𝑎),  
 indikator da mašina za veš nije radila danas u Typhoon HIL simulacionom 

okruženju (𝑆୛
େ୛)  i 

 visok značaj rada mašine za veš u Load Flow simulacionom okruženju (𝑆୔
େ୛). 

Sve karakteristike identifikovane na globalnom nivou (slika 63), osim visokog značaja 
rada mašine za veš u Load Flow simulacionom okruženju, se poklapaju sa uočenom 
logikom upravljanja mašine za veš od strane obučenog DDQN modela (slika 27). 
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(b)  

Slika 63. DDQN model: uticaj karakteristika stanja na akciju “uključi mašinu za veš” 
tokom letnjeg perioda. 

Na slici 64 prikazano je aktiviranje mašine za veš od strane obučenog DDQN modela u 
jednom određenom vremenskom koraku. Pozitivan doprinos odluci imale su 
karakteristike visoke PV proizvodnje (𝑆୔୚), niskog značaja rada mašine za sudove 
(𝑆୔

ୈ୛), spremnosti za rad mašine za veš (𝑆௅
ୈ୛ i 𝑆୛

ୈ୛) i (kontraintuitivno) nizak značaj 
rada mašine za veš (𝑆୔

େ୛). Negativan uticaj imale su visoka tarifa (𝑡𝑎𝑟𝑖𝑓𝑎) i nizak značaj 
rada klima uređaja (𝑆୔

୅େ). 

Sporna karakteristika visokog značaja rada mašine za veš, koja je na globalnom nivou 
imala pozitivan doprinos odluci (slika 63 (b)), u ovom slučaju nije imala značajan uticaj. 
DDQN model je u ovom primeru pokazao da pridaje veći značaj uštedi električne 
energije na račun komfora stanara. 

 

Slika 64. DDQN model: Uticaj karakteristika na akciju “uključi mašinu za veš” u Load 
Flow simulacionom okruženju u letnjem danu za stanje u određenom vremenskom 
koraku. 

6.1.4.1.2.1 Zaključak na nivou odluka u letnjem periodu 

Analiza rezultata pokazuje da PPO model u oba simulaciona okruženja donosi odluke 
koje su u većoj meri usklađene sa logikom energetski efikasnog i komfornog upravljanja 
uređajima. Model je pokazao doslednost u ponašanju gde su se odluke o aktiviranju 
uređaja najčešće  poklapale sa visokim značajem rada pojedinačnih uređaja i završetkom 
rada drugih potrošača, uz efikasno korišćenje dostupne solarne energije. Iako su 
povremeno uočeni kontraintuitivni doprinosi niske PV proizvodnje, njihov uticaj nije 
značajno narušio racionalnost odluka. PPO je zadržao stabilnost i u letnjem periodu, 
posebno u Typhoon HIL okruženju, gde su odluke bile konzistentnije i bolje prilagođene 
dinamičkim uslovima proizvodnje i potrošnje. 

Suprotno tome, DDQN model je u oba okruženja pokazao veći stepen varijabilnosti i 
manju sposobnost uspostavljanja balansa između uštede energije i komfora korisnika. U 
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Typhoon HIL okruženju model je povremeno postizao zadovoljavajuće rezultate, ali sa 
nelogičnim smerom uticaja pojedinih karakteristika, poput visoke tarife i niskog značaja 
rada uređaja, koje su pozitivno doprinosile odluci. U Load Flow okruženju odstupanja su 
bila izraženija. Model je davao prioritet uštedi električne energije u odnosu na komfor, 
što je dovelo do odluka koje nisu u skladu sa očekivanim obrascima ponašanja sistema 
pametne kuće. 

Na osnovu sprovedene analize može se zaključiti da je PPO model ostvario bolje rezultate 
od DDQN modela u pogledu stabilnosti, racionalnosti i usklađenosti odluka sa ciljevima 
optimizacije sistema. PPO je pokazao veću sposobnost generalizacije između 
simulacionih okruženja, dok je DDQN pokazao ograničenja u adaptaciji i sklonost 
nelogičnim obrascima odlučivanja. Time se potvrđuje da PPO model predstavlja 
pogodniji pristup za upravljanje pametnim kućnim sistemima tokom letnjeg perioda, gde 
je potrebno istovremeno održati energetsku efikasnost i komfor korisnika.  

6.1.4.1.3 Zaključak interpretacije odluka na nivou različitih godišnjih doba 

Rezultati sprovedenih eksperimenata pokazuju da je PPO model u oba sezonska perioda 
ostvario stabilnije i racionalnije upravljanje uređajima u odnosu na DDQN model. U 
zimskom periodu PPO je pokazao sposobnost višeciljne optimizacije, balansirajući 
između uštede energije i održavanja komfora stanara. Model je dosledno reagovao na 
ključne faktore kao što su značaj rada uređaja, termalni komfor i raspoloživa PV 
proizvodnja, pri čemu su odluke bile u skladu sa logikom realnog energetskog sistema. 
U Typhoon HIL i Load Flow okruženju PPO je pokazao slične obrasce ponašanja, što 
ukazuje na dobru generalizaciju modela i otpornost na promenu uslova okruženja. 

U letnjem periodu PPO model je zadržao sličan obrazac odlučivanja. Odluke su se 
uglavnom poklapale sa periodima visokog značaja rada uređaja i završetkom rada drugih 
potrošača, uz efikasno korišćenje solarne energije. Povremeno su se javljali 
kontraintuitivni doprinosi niske PV proizvodnje, ali bez značajnog uticaja na 
performanse. U Typhoon HIL okruženju PPO je pokazao najveću stabilnost i 
konzistentnost, dok su u Load Flow okruženju uočene manje varijacije u uticaju 
pojedinačnih karakteristika, ali bez narušavanja energetske racionalnosti odluka. 

Nasuprot tome, DDQN model pokazao je veću osetljivost na pojedinačne karakteristike 
i manju sposobnost uspostavljanja balansa između troškova i komfora u oba perioda. U 
zimskom periodu tarifa je imala dominantan uticaj na odluke. U letnjem periodu model 
je pokazao veći stepen varijabilnosti i nelogične doprinose karakteristika poput visoke 
tarife i niskog značaja rada uređaja. U Typhoon HIL okruženju DDQN je povremeno 
ostvarivao zadovoljavajuće odluke, dok je u Load Flow okruženju pokazao slabiju 
adaptaciju i odstupanja od očekivanih obrazaca ponašanja. 

Na osnovu ukupne analize može se zaključiti da PPO model daje bolje rezultate u odnosu 
na DDQN u pogledu stabilnosti, interpretabilnosti i sposobnosti generalizacije između 
različitih sezonskih uslova i simulacionih okruženja. PPO je pokazao uravnotežen pristup 
između energetske efikasnosti i komfora, dok DDQN model pokazuje manju sposobnost 
integracije više ciljeva u procesu odlučivanja, što ga čini manje pogodnim za kompleksne 
zadatke upravljanja pametnim kućnim sistemima. 
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6.2 Analiza rezultata velikog jezičkog modela 
U ovom potpoglavlju prikazani su rezultati upravljanja uređajima u pametnoj kući 
ostvareni pomoću pretreniranih velikih jezičkih modela. U potpoglavlju 6.2.1 prikazane 
su vrednosti funkcije nagrade koju veliki jezički modeli ostvaruju na 23. danu u januaru 
i junu, istom danu na kom su u potpoglavlju 6.1.2 analizirani modeli učenja 
potkrepljivanjem. Za svako simulaciono okruženje prikazana je posebna tabela, pri čemu 
su u svakoj tabeli objedinjeni rezultati za zimski i letnji dan. Potpoglavlje 6.2.2 analizira 
odluke modela u tim danima, gde su posebno izdvojene odluke modela vezane za 
kontrolisanje unutrašnje temperature i upravljanje radom mašine za pranje sudova i 
mašine za veš. 

Zbog ograničenja resursa, odluke donesene od strane RL LLM modela su analizirane 
samo u Load Flow simulacionom okruženju.   

6.2.1 Analiza vrednosti funkcije nagrade na nivou 
simulacionog okruženja 

U ovom potpoglavlju analizirane su vrednosti funkcije nagrade koje veliki jezički modeli 
ostvaruju na 23. danu u januaru i junu, koji neposredno slede periodu treniranja modela. 
Zasebno su analizirane i komponente funkcije nagrade – udobnost i cena električne 
energije. Cilj ove analize je da se ispita mogućnost primene pretreniranih velikih jezičkih 
modela za upravljanje uređajima u pametnoj kući. 

U tabelama 18 i 19 rezultati su prikazani na nivou simulacionog okruženja (Load Flow i 
Typhoon HIL) i obuhvataju ostvarene rezultate u zimskom i letnjem danu. Rezultati se 
ne mogu porediti između različitih simulacionih okruženja jer konfiguracije uređaja nije 
identična na oba simulatora. 

U januaru (tabela 18), u Load Flow simulacionom okruženju, KBS LLM je postigao bolje 
rezultate u poređenju sa RL LLM u pogledu svih posmatranih metrika. U januarskom 
danu, KBS LLM je ostvario ukupnu funkciju nagrade veću za 0,24 €, što odgovara 
unapređenju od oko 13%.  

U junu je KBS LLM ostvario bolje rezultate u pogledu cene električne energije i ukupne 
nagrade, dok je RL LLM imao bolji rezultat u pogledu udobnosti. Ipak, KBS LLM 
ostvario je bolji balans između udobnosti i uštede električne energije, odnosno, ostvario 
je višu ukupnu nagradu. U letnjem danu, KBS LLM ostvaruje ukupnu nagradu veću za 
0,05 €, tj. oko 5% unapređenja. 

Tabela 18. Load Flow okruženje: vrednost funkcije nagrade ostvarene na testnim danima 
(23. januar i jun). Negativne vrednosti označavaju da je potrošnja energije bila veća od 
proizvodnje, dok pozitivne vrednosti označavaju da je proizvodnja električne energije 
veća od potrošnje. 

 Model 
Udobnost ( 27 ) sa kaznama za 
nepoštovanje želja stanara  [€] 

Cena električne 
energije ( 32 ) [€] 

Zbir komponenti 
udobnosti i cene  [€] 

Ja
nu

ar
 

KBS 
LLM  

6,26 -4,16 2,10 

RL 
LLM  

6,05 -4,19 1,86 
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Ju
n 

KBS 
LLM  

1,14 -0,25 0,89 

RL 
LLM  

2,18 -1,34 0,84 

 

Tabela 19 prikazuje vrednosti KBS LLM u Typhoon HIL simulacionom okruženju. Zbog 
nedostatka resursa, RL LLM model nije pokrenut u datom okruženju. 

Tabela 19. Typhoon HIL okruženje: vrednost funkcije nagrade ostvarene na testnim 
danima (23. januaru i junu). Negativne vrednosti označavaju da je potrošnja energije bila 
veća od proizvodnje, dok pozitivne vrednosti označavaju da je proizvodnja električne 
energije veća od potrošnje. 

 

Model 
Udobnost ( 27 ) sa kaznama za 
nepoštovanje želja stanara  [€] 

Cena električne 
energije ( 32 ) [€] 

Zbir komponenti 
udobnosti i cene  [€] 

Ja
nu

ar
 

KBS LLM  5,41 -3,53 1,88 

Ju
n 

KBS LLM  1,04 0,60 1,63 

 

Rezultati pokazuju da je KBS LLM ostvario više vrednosti funkcije nagrade u poređenju 
sa RL LLM modelom, uz unapređenja od oko 13% u zimskom i 5% u letnjem danu. KBS 
LLM je postigao bolji balans između komfora i troškova električne energije, čime je 
obezbeđena efikasnija upotreba resursa. Dodatno, KBS LLM pristup zahteva znatno 
manje resursa, jer ne zahteva višestruko obučavanje niti kontinuirano slanje upita 
velikom jezičkom modelu, što ga čini pogodnijim za primenu u realnim pametnim 
okruženjima. 

6.2.2 Analiza odluka modela na nivou dana  
Analiza odluka modela treba da ukaže mogućnost primene velikog jezičkog modela u 
upravljanju uređajima pametne kuće sa ciljem optimizacije potrošnje električne energije 
uz istovremeno održavanje udobnosti stanara. Analiza je grupisana po sezonama: zimski 
dan (potpoglavlje 6.2.2.1) i letnji dan (potpoglavlje 6.2.2.2), pri čemu se zasebno 
posmatra kontrola klima uređaja, rad mašine za pranje sudova i rad mašine za veš. 
Posmatrani su isti 23. dan u januaru i junu kao i u analizi modela zasnovani na učenju 
potkrepljivanjem.  

Zbog nedostatka resursa u analizi neće se prikazati rezultati RL LLM Typhoon HIL 
simulacionom okruženju. 

6.2.2.1 Analiza rada uređaja u zimskom danu 

Slika 65 prikazuje kako modeli kontrolišu unutrašnju temperaturu tokom zimskog dana. 
Bez obzira na intenzitet potrošnje klima uređaja u različitim simulacionim okruženjima, 
modeli na sličan način upravljaju klima uređajem. RL LLM se razlikuje od ostalih 
modela po tome što aktivira klima uređaj neposredno pre početka opsega velikog značaja 
temperature (u 16:00), što je u skladu sa željama stanara iz tabele 13. Ostali modeli 
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aktiviraju klimu uređaj tačno na početku opsega velikog značaja temperature (u 17:00). 
Razlog zašto su oba modela u Load Flow simulacionom okruženju dostigla željeni 
temperaturni opseg u isto vreme (oko 18:00) je što je KBS LLM pokrenuo klimu uređaj 
15 minuta ranije od RL LLM modela. 

 

Slika 65. Kontrolisanje unutrašnje temperature u toku zimskog dana. 

Na slici 66 uočava se da je KBS LLM postigao veću kumulativnu udobnost u odnosu na 
RL LLM jer je oko 13:00 vidljiv skok vrednosti kod KBS LLM modela, koji odgovara 
trenutku aktiviranja mašine za sudove (slika 67). Zbog toga RL LLM nije uspeo da 
dostigne ukupnu vrednost udobnosti koju je ostvario KBS LLM do kraja dana. 

 

Slika 66. Udobnost u zimskom danu. 

Slike 67 i 68 prikazuju način upravljanja mašinom za pranje sudova u zimskom danu. 
KBS LLM u oba simulaciona okruženja pokreće uređaj u periodu srednje tarife i visokog 
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značaja rada. RL LLM pokreće uređaj nešto kasnije kada ima manje proizvedene 
električne energije. Kao posledica, KBS LLM model postiže bolju uštedu električne 
energije u odnosu na RL LLM model, bez kompromitovanja udobnosti stanara (tabela 
18). Takođe je rezultovalo u većoj vrednosti udobnosti od strane KBS LLM zbog 
definisane značaja rada u tabeli 14.  

 

Slika 67. Upravljanje mašinom za sudove u zimskom danu. 

Slika 68 ilustruje kako modeli upravljaju radom mašine za veš u zimskom danu. Svi 
modeli, nezavisno od simulacionog okruženja, pridodaju veći prioritet značaju rada 
uređaja u odnosu na uštedu električne energije. Ovo je posledica toga što u zimskom danu 
nema perioda visoke proizvodnje električne energije od strane solarnog panela.  
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Slika 68. Upravljanje mašinom za veš u zimskom danu. 

Prethodne slike i vrednosti metrika iz tabele 18 potvrđuju da oba modela imaju slične 
obrasce kontrole uređaja u Load Flow simulacionom okruženju. 

6.2.2.2 Analiza rada uređaja u letnjem danu 

Slika 69 prikazuje kako modeli kontrolišu unutrašnju temperaturu tokom analiziranog 
letnjeg dana. Bez obzira na intenzitet potrošnje, modeli kontrolišu klima uređaj na gotovo 
identičan način. Modeli održavaju unutrašnju temperaturu u željenom opsegu do 8:00 
nakon čega temperatura raste i modeli aktiviraju klimu uređaj tek oko 17:00, što je u 
skladu sa željama stanara iz tabele 13. RL LLM model, slično kao i u analiziranom 
zimskom danu, aktivira uređaj nešto ranije od KBS LLM modela, te brže dostigne željeni 
temperaturni opseg. Zbog ovoga je RL LLM ostvario bolje performanse u pogledu 
udobnosti od KBS LLM modela u Load Flow simulacionom okruženju (tabela 18). 
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Slika 69. Kontrolisanje unutrašnje temperature u toku letnjeg dana. 

Slike 70 i 71 prikazuju način na koji modeli upravljaju mašinom za pranje sudova i 
mašinom za veš u analiziranom letnjem danu. Primećuje se da KBS LLM, nezavisno od 
simulacionog okruženja (Typhoon HIL i Load Flow), odnosno tipa potrošnje električna 
energije (konstantna ili promenljiva u jedinici vremena), inicira rad uređaja u istim 
vremenskim tačkama, dok se RL LLM više fokusira na udobnost stanara, što se odražava 
na konačne rezultate prikazane u tabeli 18. 

 

Slika 70. Upravljanje mašinom za sudove u analiziranom letnjem danu. 

Slika 71 ilustruje kako modeli upravljaju radom mašine za veš u analiziranom letnjem 
danu. Obrazac upravljanja KBS LLM u oba simulaciona okruženja identičan je kao kod 
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mašine za sudove u letnjem danu gde se uređaj pokreću u istom vremenskom intervalu 
koji se odlikuju sa viskom tarifom i istom proizvodnjom električne energije. Nasuprot 
tome, RL LLM uključuje uređaj nešto pre perioda srednjeg značaja rada, kako bi 
iskoristio povećanu proizvodnju električne energije od strane PV panela. 

 

Slika 71. Upravljanje mašinom za veš u letnjem danu. 

Rezultati pokazuju da je RL LLM ostvario bolje rezultate isključivo u pogledu udobnosti 
stanara. Kao što je prikazano na slikama (slika 69, slika 70 i slika 71), ovaj model pokreće 
uređaje u periodima srednjeg i visokog značaja rada, čime doprinosi višem nivou 
udobnosti stanara. Međutim, KBS LLM ostvario je bolje rezultate u pogledu uštede 
električne energije i ukupne nagrade jer aktivira uređaje u periodima visoke proizvodnje 
električne energije, iako po cenu manjeg nivoa udobnosti (slika 70 i slika 71). 

6.2.2.3 Zaključak analize odluka model na nivou zimskog i letnjeg dana 

Analiza upravljanja svih uređaja u zimskom danu je slična u oba simulaciona okruženja. 
Tokom zimskog dana, svi modeli se fokusiraju na udobnost stanara, i pokreću uređaje 
kada je značaj rada srednji ili visok.  

Suprotno tome, u letnjem danu u kome je proizvodnja električne energije putem solarnog 
panela veća, KBS LLM pokreće uređaje izvan opsega srednjeg i visokog značaja rada, 
nezavisno od korišćenog simulacionog okruženja. Nasuprot tome, RL LLM, donosi 
odluke nezavisno od godišnjeg doba i proizvodnje solarnog panela, te uređaje aktivira 
isključivo kada postoji visok značaj rada. 

6.3 Poređenje modela na nivou jednog dana sa KBS 
definisanim od strane ljudskog eksperta 

U ovom potpoglavlju prikazane su tabele koje sumiraju sve prethodno prikazane rezultate 
u pogledu udobnosti, potrošnje električne energije i ukupne nagrade za sve uređaje. Svi 
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modeli su evaluirani na istim danima, odnosno na zimskom i letnjem testnom danu koji 
slede neposredno nakon perioda treniranja. Kao referentni model korišćen je KBS 
definisan od strane ljudskog eksperta. 

Za zimski dan u Load Flow simulacionom okruženju, KBS definisan od strane ljudskog 
stručnjaka i KBS LLM su postigli najbolje rezultate (tabela 20). Sledeći najuspešniji 
model je RL LLM, sa metrikom udobnosti nižom za 0,21 € i za 0,03 € većom uštedom 
električne energije, što čini da je ukupna nagrada gora za 0,24 € (umanjenje od oko 13%). 
DDQN model ostvaruje veću uštedu električna energije jer nije aktivirao mašinu za veš, 
zbog čega je i metrika udobnosti niža. Slični rezultati uočeni su i u Typhoon HIL 
simulacionom okruženju (tabela 21). 

Za odabrani letnji dan, referentni model ostvario je najbolje rezultate u pogledu udobnosti 
u oba simulaciona okruženja (tabela 20 i tabela 21). U Load Flow simulacionom 
okruženju, PPO model imao je najbolje performanse ukupne nagrade za 0,61 € više u 
odnosu na KBS definisanog od strane ljudskog eksperta. U Typhoon HIL simulacionom 
okruženju, DDQN model je pokazao najbolje rezultate u pogledu cene električne energije 
za 2,32 € i ukupne nagrade za 1,72 € u odnosu na KBS definisanog od strane ljudskog 
eksperta. 

Tabela 20. Metrike performansi za zimski i letnji dan u Load Flow simulacionom 
okruženju, ukazujući na potrošnju električne energije, udobnost i ukupnu nagradu za sve 
uređaje zajedno, izražene u evrima. Negativne vrednosti označavaju da je potrošnja 
energije bila veća od proizvodnje, dok pozitivne vrednosti označavaju da je proizvodnja 
električne energije veća od potrošnje. 

 Model 
Udobnost ( 27 ) sa kaznama za 
nepoštovanje želja stanara  [€] 

Cena električne 
energije ( 32 ) [€] 

Zbir komponenti 
udobnosti i cene  [€] 

Ja
nu

ar
 

DDQN 0,49 -3,11 -2,62 

PPO  5,80 -4,20 1,60 

KBS LLM  6,26 -4,16 2,10 

RL LLM  6,05 -4,19 1,86 

KBS definisan 
od strane 
ljudskog 
eksperta   

6,26 -4,16 2,10 

Ju
n 

DDQN  1,09 0,72 1,81 
PPO  1,39 0,67 2,10 

KBS LLM  1,14 -0,25 0,89 

RL LLM  2,18 -1,34 0,84 

KBS definisan 
od strane 
ljudskog 
eksperta   

2,84 -1,35 1,49 
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Tabela 21. Metrike performansi za zimski i letnji dan u Typhoon HIL simulacionom 
okruženju, ukazujući na potrošnju električne energije, udobnost i ukupnu nagradu za sve 
uređaje zajedno, izražene u evrima. Negativne vrednosti označavaju da je potrošnja 
energije bila veća od proizvodnje, dok pozitivne vrednosti označavaju da je proizvodnja 
električne energije veća od potrošnje. 

 

Model 
Udobnost ( 27 ) sa kaznama za 
nepoštovanje želja stanara  [€] 

Cena električne 
energije ( 32 ) [€] 

Zbir komponenti 
udobnosti i cene  [€] 

Ja
n

ua
r 

DDQN 5,30 -3,63 1,67 

PPO  5,22 -3,61 1,61 

KBS LLM  5,41 -3,53 1,88 

KBS definisan 
od strane 
ljudskog 
eksperta   

5,41 -3,53 1,88 

Ju
n 

DDQN  1,36 1,62 2,98 

PPO  1,28 1,43 2,71 

KBS LLM  1,04 0,60 1,63 

KBS definisan 
od strane 
ljudskog 
eksperta   

1,96 -0,70 1,26 

 

KBS definisan od strane stručnjaka je više orijentisan ka maksimizaciji udobnosti 
stanara, što ističe potrebu za automatizacijom sistema upravljanja uređajima u pametnim 
kućama u kontekstu više-ciljne optimizacije. 

PPO modeli su imali konzistentno dobre rezultate bliske najboljem rezultatu, gde su 
rezultati PPO modela u poređenju sa najboljim rezultatima niži u zimskom periodu za 
23% u Load Flow i za 14% u Typhoon HIL simulacionim okruženjima. 

U letnjem periodu u Load Flow simulacionom okruženju PPO model je ostvario najbolje 
rezultate. 

Takođe, PPO modeli su pokazali da dobro funkcionišu u situacijama gde je neophodno 
detaljnije istražiti okruženje i razviti kompleksnije strategije, što ih čini pogodnijim za 
složenije i dinamičnije scenarije (Fuente and Guerra 2024). U letnjem periodu, RL 
modeli u oba simulaciona okruženja su više orijentisana ka uštedi električne energije i 
aktiviraju mašinu za sudove i veš u periodu više proizvodnje električne energije što je 
uticalo na niže vrednosti udobnosti.  

6.4 Ispitivanje robusnosti modela 
Prethodne analize su sprovedene na podacima koji se odnose na jedan dan. Međutim, 
izdvojeni dan može posedovati specifične karakteristike koje ga čine atipičnim, odnosno 
može biti “povoljan” ili “nepovoljan” za primenu modela. Kako bi se umanjio rizik 
donošenja zaključaka zasnovanih na specijalnom slučaju i obezbedila pouzdanija 
procena performansi, sprovedena je evaluacija robusnosti modela njihovom primenom 
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na dužem vremenskom periodu, koji obuhvata sedam uzastopnih dana neposredno nakon 
faze obučavanja modela. U zimskom periodu analizirani su dani koji slede nakon 23. 
januara, dok su u letnjem periodu analizirani dani koji slede nakon 23. juna.  

U analizi se zasebno razmatraju tri metrike: udobnost, cena električne energije i ukupna 
nagrada. U tabelama 22 – 25 prikazane su srednje vrednosti (eng. mean) i standardne 
devijacije (eng. standard deviation, std) ovih metrika. Istaknute vrednosti označavaju 
najbolje performanse u okviru pojedinačne metrike, pri čemu veća srednja vrednost i 
manja standardna devijacija ukazuju na bolje performanse modela i veću robusnost u 
procesu donošenja odluka. 

Tabela 22 prikazuje rezultate koje modeli postižu u Load Flow simulacionom okruženju 
u januaru, dok slika 72 daje njihov grafički prikaz. KBS definisan od strane ljudskog 
eksperta ostvario je najstabilnije i najuspešnije rezultate u pogledu skoro svih razmatranih 
metrika, isključujući cenu električne energije. U pogledu ukupne nagrade, PPO i KBS 
LLM modeli postižu rezultate konkurentne rezultatima KBS modela definisanog od 
strane ljudskog eksperta, ostvarujući ukupnu nagradu manju za 23% i 15%. U metrici 
udobnosti beleže približne performanse kao referentni model (udobnost je umanjena za 
10% i 6%). Najslabije performanse pokazao je DDQN model, koji ostvaruje 178% manju 
ukupnu nagradu i 93% manju udobnost u poređenju sa ljudski definisanim KBS 
modelom. U pogledu električne energije, iako DDQN ostvaruje najbolje rezultate, oni se 
ne mogu se uporediti sa rezultatima ostalih modela jer je DDQN model u svega 50% 
slučajeva uspešno aktivirao mašinu za sudove i veš u toku dana. Izuzimajući DDQN 
model, je PPO model je najuspešniji po pitanju uštede električne energije, nakon čega 
slede KBS LLM i KBS definisan od strane ljudskog eksperta, koji ostvaruju 2% i 4% 
manju uštedu električne energije u poređenju sa rezultatima PPO modela.  

Tabela 22. Load Flow okruženje: srednje vrednosti (mean) i standardne devijacije (std) 
metrika udobnosti, cene električne energije i ukupne nagrade, koje modeli ostvaruju 
tokom sedam testnih dana u januaru. Negativne vrednosti označavaju da je potrošnja 
energije bila veća od proizvodnje, dok pozitivne vrednosti označavaju da je proizvodnja 
električne energije veća od potrošnje. 

Model/ metrika 
Udobnost 
(mean ± std) 

Cena električne 
energije (mean ± std) 

Ukupna 
nagrada (mean 
± std) 

Broj pokretanja 
uređaja (od 14)  

DDQN 0,46 ± 0,44 -3,11 ± 0,32 -2,64 ± 0,13 7 

PPO 5,70 ± 0,45 -4,10 ± 0,34 1,60 ± 0,14 14 

KBS LLM 5,94 ± 0,91 -4,18 ± 0,40 1,77 ± 0,55 14 

KBS definisan od 
strane  ljudskog 
eksperta 

6,32 ± 0,55 -4,25 ± 0,34 2,08 ± 0,24 14 

 

Tabela 23 prikazuje rezultate koje modeli postižu u Typhoon HIL simulacionom 
okruženju u januaru, dok slika 73 daje njihov grafički prikaz. KBS definisan od strane 
ljudskog eksperta ostvario je najstabilnije i najuspešnije rezultate u pogledu svih 
razmatranih metrika osim cene električne energije. U pogledu ukupne nagrade, PPO i 
KBS LLM modeli postižu rezultate konkurentne rezultate KBS modela definisanog od 
strane ljudskog eksperta, ostvarujući ukupnu nagradu manju za 15% i 3%. U metrici 
udobnosti PPO i KBS LLM modeli ostvaruju umanjene vrednosti za  5% i 3%. Najslabije 
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performanse pokazao je DDQN model, koji ostvaruje 132% manju ukupnu nagradu i 
47% manju udobnost u poređenju sa ljudski definisanim KBS modelom. U pogledu 
električne energije, iako je DDQN ponovo uštedeo energiju time što nije uspešno 
aktivirao uređaje, najbolji rezultat je ostvario KBS LLM. Nakon tog modela, po pitanju 
uštede električne energije slede KBS definisan od strane ljudskog eksperta i PPO sa 
vrednostima umanjenim za 2,5% i 0,8%. 

Tabela 23. Typhoon HIL okruženje: srednje vrednosti (mean) i standardne devijacije (std) 
metrika udobnosti, cene električne energije i ukupne nagrade, koje modeli ostvaruju 
tokom sedam testnih dana u januaru. Negativne vrednosti označavaju da je potrošnja 
energije bila veća od proizvodnje, dok pozitivne vrednosti označavaju da je proizvodnja 
električne energije veća od potrošnje. 

Model/metrika 
Udobnost 
(mean ± std) 

Cena električne 
energije (mean ± std) 

Ukupna nagrada 
(mean ± std) 

Broj pokretanja 
uređaja (od 14) 

DDQN 2,90 ± 3,10 -3,52 ± 0,34 -0,62 ± 2,92 12 

PPO 5,22 ± 0,39 -3,59 ± 0,28 1,63 ± 0,10 14 

KBS LLM 5,35 ± 0,55 -3,47 ± 0,40 1,87 ± 0,16 14 

KBS definisan 
od strane 
eksperta 

5,50 ± 0,44 -3,56 ± 0,32 1,92 ± 0,14 14 

Rezultati modela su slični u dva različita simulaciona okruženja. DDQN model je imao 
najslabije rezultate, pri čemu nije uspešno aktivirao mašine zbog čega nisu upoređeni 
rezultati metrike cene potrošnje sa ostalim modelima.  

 

Slika 72. Grafički prikaz performansi modela ostvarenih u Load Flow simulacionom 
okruženju u sedam uzastopnih testnih dana u januaru. 
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Slika 73. Grafički prikaz performansi modela ostvarenih u Typhoon HIL simulacionom 
okruženju u sedam uzastopnih testnih dana u januaru. 

Tabela 24 prikazuje rezultate koje modeli postižu u Load Flow simulacionom okruženju 
u junu, dok slika 74 daje njihov grafički prikaz. KBS definisan od strane ljudskog 
eksperta ostvario je najstabilnije i najuspešnije rezultate samo u pogledu udobnosti. U 
pogledu ukupne nagrade, PPO model je ostvario najbolje rezultate, dok je KBS definisan 
od strane ljudskog eksperta bio sledeći najbliži sa 12% manjom ukupnom nagradom, dok 
su DDQN i KBS LLM imali slabije rezultate sa umanjenjem od 43% i 55%. U pogledu 
električne potrošnje, DDQN je ostvario najbolji rezultat, ali, pošto nije uspešno aktivirao 
jedan uređaj, možemo konstatovati da je PPO model u ovom pogledu postigao najbolji 
rezultat. Preostali modeli su ostvarili značajno gore rezultate u pogledu potrošnje 
električne energije. KBS LLM i KBS definisan od strane ljudskog eksperta su ostvarili 
322% i 652% manju uštedu u odnosu na PPO model. U pogledu udobnosti, najbolje 
rezultate je ostvario KBS model definisan od strane ljudskog eksperta, gde su sledeći po 
redu PPO, KBS LLM i DDQN sa umanjenjem od 48%, 54% i 77%.  

Tabela 24. Load Flow okruženje: srednje vrednosti (mean) i standardne devijacije (std) 
metrika udobnosti, cene električne energije i ukupne nagrade, koje modeli ostvaruju 
tokom sedam testnih dana u junu. Negativne vrednosti označavaju da je potrošnja 
energije bila veća od proizvodnje, dok pozitivne vrednosti označavaju da je proizvodnja 
električne energije veća od potrošnje. 

Model/ 
metrika 

Udobnost 
(mean ± std) 

Cena električne 
energije (mean ± std) 

Ukupna nagrada 
(mean ± std) 

Broj pokretanja 
uređaja (od 14)  

DDQN 0,71 ± 1,23 0,36 ± 0,30 1,07± 1,41 13 

PPO 1,62 ± 0,30 0,27 ± 0,37 1,89 ± 0,22 14 

KBS LLM 1,45 ± 0,34 -0,60 ± 0,32 0,85 ± 0,22 14 

KBS definisan 
od strane 
eksperta 

3,15 ± 0,34 -1,49 ± 0,16 1,66 ± 0,20 14 

 

Tabela 25 prikazuje rezultate koje modeli postižu u Typhoon HIL simulacionom 
okruženju u junu, dok slika 75 daje njihov grafički prikaz. KBS definisan od strane 
ljudskog eksperta ostvario je najstabilnije i najuspešnije rezultate samo u pogledu 
udobnosti, dok su ostali modeli PPO, DDQN i KBS LLM ostvarili umanjenje od 23%, 
32% i 40%. U ostalim metrikama (ceni električne energije i ukupne nagrade) PPO model 
je ostvario najbolje rezultate. U pogledu ukupne nagrade DDQN, KBS LLM i KBS 
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definisan od strane ljudskog eksperta su imali umanjene vrednosti za 25%, 43% i 50%. 
U pogledu cene električne energije su imali, u istom redosledu, umanjene vrednosti od 
49%, 74%, i 178%. KBS definisan od strane ljudskog eksperta ima značajno umanjenje 
jer model veći značaj pridaje udobnosti.  

Tabela 25. Typhoon HIL okruženje: srednje vrednosti i standardne devijacije metrika 
udobnosti, cene električne energije i ukupne nagrade, koje modeli ostvaruju tokom sedam 
testnih dana u junu. Negativne vrednosti označavaju da je potrošnja energije bila veća od 
proizvodnje, dok pozitivne vrednosti označavaju da je proizvodnja električne energije 
veća od potrošnje. 

Model/metrika 
Udobnost 
(mean ± std) 

Cena električne 
energije (mean ± std) 

Ukupna nagrada 
(mean ± std) 

Broj pokretanja 
uređaja (od 14) 

DDQN 1,53± 0,24 0,55 ± 0,91 2,10 ± 0,84 14 

PPO 1,72 ± 0,24 1,08 ± 0,31 2,80 ± 0,30 14 

KBS LLM 1,34 ± 0,24 0,28 ± 0,26 1,61 ± 0,22 14 

KBS definisan 
od strane 
eksperta 

2,25 ± 0,24 -0,85 ± 0,12 1,41 ± 0,16 14 

 

 

 

Slika 74. Grafički prikaz performansi modela ostvarenih u Load Flow simulacionom 
okruženju u sedam uzastopnih testnih dana u junu. 

 

 

Slika 75. Grafički prikaz performansi modela ostvarenih u Typhoon HIL simulacionom 
okruženju u sedam uzastopnih testnih dana u junu. 
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6.4.1 Zaključak ispitivanja robustnosti modela 
U Load Flow simulacionom okruženju u januaru, najbolje rezultate u pogledu ukupne 
nagrade je ostvario KBS definisan od strane ljudskog eksperta. KBS LLM i PPO su 
postigli 15% i 23% nižu ukupnu nagradu. DDQN model nije uvek aktivirao uređaje u 
toku dana, zbog čega nije pouzdan za upotrebu u realnim uslovima. 

U Load Flow simulacionom okruženju u junu, najbolje rezultate u pogledu ukupne 
nagrade je ostvario PPO model, dok je KBS definisan od strane ljudskog eksperta 
ostvario 12% manju ukupnu nagradu. DDQN i KBS LLM su imali znatno slabije 
performanse u odnosu na PPO (43% i 55% manju ukupnu nagradu). Ponovo, DDQN 
model nije uvek uspešno aktivirao sve uređaje.    

U Typhoon HIL simulacionom okruženju su rezultati bili slični. U januaru je najbolje 
rezultate ostvario KBS definisan od strane ljudskog eksperta, a KBS LLM i PPO su imali 
ukupnu nagradu nižu za 3% i 15%. I u ovom slučaju, DDQN model nije uvek uspešno 
aktivirao uređaje. U junu, PPO je postigao najbolje rezultate u pogledu ukupne nagrade. 
KBS definisan od strane ljudskog stručnjaka je ostvario 50% nižu ukupnu nagradu. 

Rezultati su se značajno razlikovali između Load Flow i Typhoon HIL simulacionih 
okruženja zbog načina simulacije potrošnje uređaja. Kod Load Flow simulacionog 
okruženja potrošnja električne energije pojedinačnog uređaja varira u toku njegovog 
rada. Ova dinamičnost povećava kompleksnost optimizacije modela ali i omogućava 
finije upravljanje uređajima. PPO model je u ovom slučaju pokazao veću fleksibilnost i 
sposobnost pronalaženja optimalnog kompromisa između cene električne energije i 
udobnosti stanara.  

Sa druge strane, u Typhoon HIL simulaiconom okruženju, uređaji su simulirani sa 
konstantnom potrošnjom tokom rada, što pojednostavljuje proces učenja jer modeli imaju 
stabilnije ulazne obrasce, ali je takva simulacija manje realistična. 

Posmatrajući rezultate u pogledu oba simulaciona okruženja i oba godišnja doba, KBS 
definisan od strane ljudskog eksperta se pokazao najbolji u zimskom periodu, dok se PPO 
model pokazao najbolji u letnjem periodu. PPO model je u više scenarija, posebno u junu, 
nadmašio ostale modele u pogledu ukupne nagrade i cene električne energije. Ovim je 
postignuta automatska prilagodljivost što predstavlja ključnu prednost RL modela u 
odnosu na statički definisane ekspertske sisteme, jer ovaj pristup omogućava efikasno 
reagovanje na različite sezonske i dinamične promene u potrošnji. Prednost RL pristupa 
je njihova potpuna automatizacija, zahvaljujući kojoj stanar nije opterećen ručnim 
podešavanjem rasporeda rada uređaja, već sistem sam uči optimalne obrasce ponašanja.  

U januaru KBS LLM je ostvario veće vrednosti ukupne nagrade u odnosu na PPO u oba 
simulaciona okruženja, sa poboljšanjem od 10% u Load Flow simulacionom okruženju i 
14% u Typhoon HIL simulacionom okruženju. U junu je PPO ostvario 122% veću 
ukupnu nagradu u Load Flow simulacionom okruženju i 74% u Typhoon HIL 
simulacionom okruženju. Iako je KBS LLM ostvario gore performanse u odnosu na PPO 
model, prednost LLM modela je sposobnost automatskog prilagođavanja promenama u 
okruženju bez potrebe za ponovnim treniranjem ili dodatnim finim podešavanjem. 

Shuvo i Yilmaz (2022) su predložili model zasnovan na akter-kritičar algoritmu (eng. 
Advantage Actor-Critic), koji upravlja radom kućnih uređajima sa ciljem optimizacije 
potrošnje električne energije i očuvanja udobnosti stanara u pametnoj kući. Kao 
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referentni model autori koriste pristup zasnovan na ručnom upravljanju kućnim 
uređajima, u kojem je ponašanje modela direktno kontrolisano od strane stanara, bez 
primene automatizovanog planiranja ili optimizacije. Okruženje za simulaciju je 
modelovalo uređaje sa varijabilnom potrošnjom (klima uređaj), konstantnom potrošnjom 
(mašina za veš i sudove) i kombinovanom potrošnjom (električno vozilo). Akter-kritičar 
algoritam je ostvario 23% bolju funkciju nagrade u odnosu na referentni model. 
Međutim, treba istaći da je evaluacija sprovedena na istom periodu koji je korišćen za 
treniranje modela, odnosno, nije izdvojen poseban test skup kao u ovoj disertaciji. 
Takođe, razmatrani period je obuhvatao 30 uzastopnih dana u prolećnom periodu, što 
znači da nije ispitivan uticaj sezonskih promena. Ova teza unapređuje pomenutu studiju 
proširivanjem eksperimentalne postavke na različita simulaciona okruženja, različite 
tipove potrošnje (konstantnu i varijabilnu) i analizu uticaja sezonalnosti. PPO model je u 
ovoj disertaciji ostvario značajno bolje rezultate u letnjem periodu u poređenju sa 
referentnim KBS definisanim od strane ljudskog eksperta (za 98% u Typhoon HIL 
simulacionom okruženju i za 14% u Load Flow simulacionom okruženju ), gde je 
evaluacija odrađena na sedam testnih dana.  

Li i saradnici (Li et al. 2020) predložili su PPO zasnovani pristup za upravljanje kućnim 
energetskim sistemom sa ciljem minimizacije troškova električne energije u uslovima 
neizvesnih cena i ponašanja stanara. Sistem obuhvata kritične, prilagodljive i 
kontrolisane uređaje, pri čemu se funkcija nagrade zasniva na trošku električne energije 
i penalizaciji nedovoljne napunjenosti baterije električnog vozila. Rezultati pokazuju da 
PPO model ostvaruje smanjenje troškova od oko 40% u odnosu na referentni model bez 
automatizovanog upravljanja, dok teoretski optimalni model postiže približno 3% niže 
troškove u poređenju sa PPO modelom. Evaluacija je sprovedena u stohastički 
modelovanom simulacionom okruženju, bez analize komfora stanara i sezonskih uticaja. 
Nasuprot tome, u okviru ove teze razmatran je referentni KBS dizajniran od strane 
ljudskog eksperta sa ciljem optimizacije koji kombinuje potrošnju energije sa udobnošću 
stanara.  

Rad (Lissa et al. 2021) je predložio strategiju učenja potkrepljivanjem sa ciljem rešavanja 
problema upravljanja unutrašnjom temperaturom i radom toplotne pumpe. Treniranje i 
evaluacija sprovedeni su u periodu od maja do decembra, pri čemu je simulirana 
varijabilna potrošnje energije od strane uređaja. Autori su definisali dva referentna 
modela. Prvi referentni model je bio jednostavan, zasnovan na fiksnim pravilima 
upravljanja, sa ciljem održavanja unutrašnje temperature unutar definisanog opsega 
temperaturnih granica, bez korišćenja informacija o PV proizvodnji električne energije. 
Drugi referentni model je takođe bio zasnovan na pravilima, ali je umesto fiksnih koristio 
dinamički definisane temperaturne granice, u zavisnosti od doba dana, čime je 
omogućeno fleksibilnije upravljanje komforom kroz dozvoljena odstupanja od 
nominalne temperature. U poređenju sa referentnim modelima, predloženi DQN model 
je smanjio potrošnju električne energije za 2,66% u junu, ali je u decembru rezultovao 
0.26% povećanom potrošnjom električne energije. Autori su definisali udobnost kao 
procenat preklapanja unutrašnje temperature sa željenim temperaturnim opsegom, koji je 
za sve modele iznosio oko 99%. 

U ovoj tezi, u pogledu cene električne energije, PPO model je u oba simulaciona 
okruženja u januaru i junu postigao bolje rezultate cene električne energije u odnosu na 
referentni model, osim u jednoj postavci. U Typhoon HIL simulacionom okruženju u junu 
rezultati su bili bolji za 227%, dok su u Load Flow simulacionom okruženju bili bolji za 
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118%. U januaru, u Typhoon HIL simulacionom okruženju rezultati cene električne 
energije PPO modela bili su slabiji za 0,84%, dok su u Load Flow simulacionom 
okruženju bili bolji za 3,5%. Značajno veća ušteda električne energije ukazuje na to da 
je predloženi PPO model efikasnije rešenje za složenija simulaciona okruženja sa većim 
brojem uređaja i promenljivom PV proizvodnjom.  

6.5 Zaključci i potencijalna poboljšanja  
U ovoj disertaciji evaluirana je hipoteza da su metode zasnovane na učenju 
potkrepljivanjem i veliki jezički modeli efikasni pristupi za rešavanje postavljenog 
optimizacionog problema balansiranja potrošnje električne energije i udobnosti stanara. 
Efikasnost predloženih pristupa je definisana kroz sledeće kriterijume: 

(1) Predloženo rešenje postiže iste ili bolje vrednosti funkcije nagrade u odnosu na 
KBS definisan od strane ljudskog eksperta i  

(2) Adekvatnost odluka iz perspektive ljudskog eksperta. 

Posmatrajući vrednost ukupne nagrade, PPO model ne ostvaruje bolje rezultate u svim 
razmatranim slučajevima u poređenju sa KBS definisanim modelom od strane ljudskog 
eksperta. U zimskom periodu PPO model ostvario je 23% i 15% manju ukupnu nagradu 
u Load Flow i Typhoon HIL simulacionom okruženju, tim redosledom. Nasuprot tome, 
u letnjem periodu, PPO model je ostvario značajno bolje rezultate, sa ukupnom većom 
za 14% i 98%, u u Load Flow i Typhoon HIL simulacionom okruženju, tim redosledom. 
Za razliku od ručno dizajniranih sistema zasnovanih na znanju, koji zahtevaju eksplicitno 
redefinisanje pravila pri svakoj promeni uslova rada, PPO model omogućava adaptivno 
učenje politike direktno iz interakcije sa okruženjem, što ga čini pogodnijim za rad u 
okruženjima sa nepoznatom ili promenljivom dinamikom. Posmatrano na osnovu 
ukupnih rezultata, može se zaključiti da PPO model ispunjava prvi kriterijum. Rezultati 
takođe ukazuju na potrebu prilagođavanja modela sezonskim uslovima i karakteristikama 
simulacionog okruženja, što je PPO model ostvario kroz proces ponovnog treniranja. U 
literaturi je zapaženo da je modele sa eksplicitno definisanim ciljem optimizacije, 
uključujući ljudski definisane KBS, teško nadmašiti u svim uslovima rada (Lissa et al. 
2021), (Li et al. 2020), (Mbuwir et al. 2021) i (Aldahmashi and Ma 2024). Kada referentni 
model ne uključuje automatizovano planiranje i raspoređivanje rada kućnih uređaja, niti 
eksplicitno definisan cilj optimizacije potrošnje električne energije, razlika u 
performansama između predloženog algoritma i referentnog pristupa postaje izrazito 
velika (Li et al. 2020), (Mbuwir et al. 2021) i (Aldahmashi and Ma 2024). Budući da je 
KBS dizajniran od strane ljudskog eksperta u ovoj disertaciji sadržao jasno definisan cilj 
optimizacije, manja razlika u ukupnoj nagradi u odnosu na predloženo rešenje može se 
smatrati očekivanom. 

Za razliku od PPO modela, DDQN model je u svim razmatranim postavkama ostvario 
lošije performanse u poređenju sa KBS modelom definisanim od strane ljudskog 
eksperta. Pored znatno nižih vrednosti ukupne nagrade, uočeno je i nestabilno ponašanje 
modela, gde je DDQN model u pojedinim scenarijama propustio da pokrene sve uređaje. 
Na osnovu ovih rezultata, možemo zaključiti da DDQN model ne zadovoljava prvi 
kriterijum uspeha. 

U pogledu ukupne nagrade, KBS LLM model u gotovo svim razmatranim slučajevima 
ne ostvaruje bolje rezultate u poređenju sa KBS modelom definisanim od strane ljudskog 
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eksperta. U januaru je KBS LLM ostvario 15% i 3% nižu ukupnu nagradu u Load Flow 
i Typhoon HIL simulacionom okruženju, tim redosledom. U letnjem periodu je razlika u 
ukupnoj nagradi bila znatno izraženija. KBS LLM je ostvario 49% manju ukupnu 
nagradu u Load Flow simulacionom okruženju, dok je u Typhoon HIL postigao 14% veću 
ukupnu nagradu. Ipak, ključna prednost KBS LLM nad ljudski definisanim KBS je što 
ne zahteva ručni dizajn pravila, koji bi morao da se ponavlja pri svakoj promeni 
okruženja. Dodatno, u poređenju sa RL modelima, KBS LLM eliminiše potrebu za 
dugotrajnim procesom treniranja. Na osnovu ukupnih rezultata može se zaključiti da 
KBS LLM model ne ispunjava prvi postavljeni kriterijum, ali ipak predstavlja 
obećavajući pravac daljih istraživanja. 

Usled ograničenja resursa, RL LLM je mogao biti pokrenut samo na jednom testnom 
danu u januaru i u junu, u Load Flow simulacionom okruženju. U datom slučaju, RL 
LLM model nije ostvario bolje rezultate u poređenju sa KBS modelom definisanim od 
strane ljudskog eksperta. U zimskom danu, RL LLM je ostvario 11% nižu ukupnu 
nagradu, dok je u letnjem ostvario 44% nižu ukupnu nagradu. Slično KBS LLM pristupu, 
RL LLM ne zahteva eksplicitno definisanje pravila od strane ljudskog eksperta, niti 
dugotrajan proces obučavanja kao RL modeli. Međutim, RL LLM model zahteva 
kontinuiranu komunikaciju sa velikim jezičkim modelom tokom izvršavanja, što ga čini 
skupljim i infrastrukturno zahtevnijim za primenu u odnosu na KBS LLM. Zbog ovih 
ograničenja, rezultati su evaluirani isključivo na nivou jednog dana i u Load Flow 
şimulacionom okruženju. Na osnovu rezultata može se zaključiti da RL LLM model ne 
nadmašuje ljudski definisan KBS po kriterijumu ukupne nagrade.  

Posmatrajući iznesene rezultate, PPO model se pokazao kao najefikasniji pristup, 
posebno u uslovima koji zahtevaju prilagođavanje sezonskim promenama i 
karakteristikama simulacionog okruženja. Iako u pojedinim scenarijima ne nadmašuje 
KBS model definisan od strane ljudskog eksperta, PPO model ostvaruje konkuretne ili 
bolje rezultate bez značajnog pogoršanja performansi, čime ispunjava prvi kriterijum 
efikasnosti. Sa druge strane, LLM-generisana rešenja pokazuju značajan potencijal. 
Posebno se KBS LLM ističe kao perspektivna praktična alternativa KBS modelu 
definisanom od strane ljudskog eksperta. Iako RL LLM ne nadmašuje ljudski definisan 
model po kriterijumu ukupne nagrade, postignuti rezultati ukazuju na izvodljivost 
integracije velikih jezičkih modela u procesu donošenja odluka. 

U pogledu drugog kriterijuma, analiza sprovedena u potpoglavlju 6.1.3 je pokazala je da 
su odluke PPO modela razumne iz perspektive ljudskog eksperta. SHAP analiza 
(potpoglavlje 6.1.4) je pokazala da se PPO model pri donošenju odluka oslanja na 
relevantne karakteristike stanja, te da su odluke PPO modela povezane sa stvarnim 
sezonskim i tarifnim uslovima. Dakle, možemo zaključiti da PPO model ispunjava i drugi 
kriterijum uspeha. 

Sa druge strane, analiza odluka DDQN modela je pokazala da odluke modela većinom 
zavise od tarife, dok se druge relevantne karakteristike zanemaruju. Analiza je pokazala 
i da DDQN model u određenim situacijama ne upravlja uređajima na optimalan način, 
kao i da povremeno propušta da aktivira uređaj tokom dana. Stoga možemo zaključiti da 
DDQN model ne zadovoljava drugi kriterijum uspeha.  

Uzimajući u obzir sve analizirane metrike, postavljena hipoteza je potvrđena za PPO 
model. Iako RL LLM pristup primenjen u ovom radu ne ispunjava postavljene 
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kriterijume uspeha, ostvareni rezultati pokazuju da je ovaj pravac istraživanja 
obećavajući. Bolji rezultati bi se mogli postići unapređenjem dizajna prompt-ova, 
pažljivim izborom i strukturiranjem primera za few-shot pristup, kao i prilagođavanje 
velikog jezičkog modela specifičnostima razmatranog zadatka kroz postupke finog 
podešavanja (eng. fine-tuning).  
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7 Zaključak 
 

U ovoj disertaciji razmatra se problem automatskog upravljanja potrošnjom električne 
energije u okviru jednog domaćinstva, sa ciljem balansiranja troškova električne energije 
i komfora stanara, uz integraciju obnovljivih izvora energije. Motivacija za rešavanje 
ovog problema proizlazi iz rastuće globalne potražnje za energijom i potrebe za 
smanjenjem emisija gasova sa efektom staklene bašte, pri čemu pametne kuće 
predstavljaju značajnu priliku za unapređenje energetske efikasnosti na lokalnom nivou. 
Primena metoda dubokog učenja, a posebno dubokog učenja potkrepljivanjem, 
omogućava adaptivnu automatizaciju rada kućnih uređaja u okruženjima sa 
promenljivom dinamikom, čime se postiže efikasnije korišćenje električne energije uz 
očuvanje kvaliteta stanovanja. 

Cilj ove teze je ispitivanje efikasnosti savremenih metoda veštačke inteligencije u 
rešavanju optimizacionog problema upravljanja potrošnjom električne energije i 
komforom stanara u okviru jednog domaćinstva. U tom kontekstu razmatrana su dva 
pristupa: metode učenja potkrepljivanjem i pristupi zasnovani na velikim jezičkim 
modelima. Istraživačka hipoteza teze glasi da oba pristupa mogu ostvariti iste ili bolje 
vrednosti funkcije nagrade u poređenju sa manuelno definisanim sistemom zasnovanim 
na znanju, pri čemu su odluke koje donose modeli adekvatne iz perspektive ljudskog 
eksperta, što se potvrđuje kroz analizu objašnjivosti modela. 

Radi evaluacije i treniranja modela razvijeno je simulaciono okruženje koje verno 
oponaša potrošnju električne energije u pametnoj kući. Okruženje je dizajnirano da bude 
adaptivno, odnosno na taj način da je lako dodavati različite tipove uređaja i definisati 
raznolike scenarije u pogledu spoljnih vremenskih uslova i tarifnih režima. U pogledu 
simulacije rada uređaja, korišćena su dva pristupa. U Typhoon HIL okruženju, uređaji su 
modelovani tako da imaju konstantnu potrošnju tokom rada, dok su u Load Flow 
okruženju modelovani tako da imaju varijabilnu potrošnju u toku rada, što više odgovara 
realnoj situaciji.  

Radi evaluacije predloženog pristupa definisana je višeciljna funkcija nagrade koja 
objedinjuje cenu električne energije i komfor stanara. Metrika komfora stanara izražena 
je u monetarnim jedinicama, čime je omogućeno njeno direktno sabiranje sa troškovima 
električne energije unutar funkcije nagrade. Ova metrika kvantifikuje spremnost stanara 
da plate uslugu rada uređaja u određenom periodu dana. Konkretne vrednosti određene 
su uvođenjem tri nivoa prioriteta uređaja (visok, srednji i nizak), kao i njihovim 
mapiranjem na odgovarajuće tarifne režime električne energije (visoka, srednja i niska 
tarifa). 

Dizajnirana su sledeća rešenja za automatizaciju planiranja vremena rada uređaja u 
pametnoj kući, s ciljem postizanja maksimalne definisane nagrade: 

 Metode zasnovane na učenju potkrepljivanjem: DDQN i PPO modeli. 
 Pristupi zasnovani na primeni velikih jezičkih modela:  

o KBS LLM: LLM-u je prosleđena instrukcija da, na osnovu opisa 
okruženja i zahteva stanara, generiše sistem zasnovan na pravilima. 



 

152 

o RL LLM: LLM je tretiran kao model učenja potkrepljivanjem, pri 
čemu je u svakom promptu prosleđivan opis trenutnog stanja na 
osnovu kog je birao optimalnu akciju. Dodatno, na raspolaganju su mu 
bili primeri prethodnih interakcija, sa dostupnim vrednostima 
neposredne nagrade za ranija stanja i sprovedene akcije. 

Radi ispitivanja hipoteze disertacije, dizajnirana rešenja upoređena su sa referentnim 
modelom, koji predstavlja KBS sistem dizajniran od strane ljudskog eksperta. Ponašanje 
predloženih rešenja analizirano je u odnosu na referentni model u različitim uslovima, u 
pogledu simulacionog okruženja i godišnjeg doba. Pored poređenja ukupne vrednosti 
funkcije nagrade, sprovedena je i detaljna analiza odluka modela, koja je obuhvatila 
ručnu analizu ponašanja, kao i SHAP analizu doprinosa pojedinačnih karakteristika 
stanja u formiranju konačnih predikcija obučenih modela. 

Rezultati su pokazali da se PPO model obučava stabilnije i brže u odnosu na DDQN 
model u svim razmatranim scenarijima. Takođe je utvrđeno da PPO model ispunjava 
postavljene kriterijume: posmatrano globalno, kroz sve testirane scenarije, ostvaruje veću 
vrednost ukupne funkcije nagrade u poređenju sa KBS sistemom definisanim od strane 
ljudskog eksperta, dok su odluke koje donosi razumljive iz perspektive ljudskog eksperta 
i zasnovane na relevantnim karakteristikama stanja. Nasuprot tome, DDQN model nije 
ispunio nijedan od definisanih kriterijuma. 

Pristupi zasnovani na velikim jezičkim modelima nisu ispunili kriterijum prema kojem 
je bilo očekivano da ostvare bolje rezultate u odnosu na referentni model. Ipak, rezultati 
su pokazali da performanse sistema u velikoj meri zavise od godišnjeg doba i korišćenog 
simulacionog okruženja. Prednost svih predloženih modela u odnosu na referentni model 
ogleda se u njihovoj sposobnosti automatske adaptacije na ove uslove, dok bi KBS sistem 
definisan od strane ljudskog eksperta zahtevao redizajn pri svakoj promeni okruženja. 

Imajući u vidu da pristupi zasnovani na velikim jezičkim modelima nisu ostvarili 
značajno lošije rezultate u poređenju sa referentnim modelom, ovaj pravac istraživanja 
može se smatrati obećavajućim. Takođe, važno je naglasiti da su u okviru ove disertacije 
razmatrani osnovni oblici ovih pristupa, te da bi se njihove performanse potencijalno 
mogle unaprediti unapređenjem dizajna promptova, pažljivijim izborom i 
strukturiranjem primera za RL LLM pristup, kao i prilagođavanjem velikog jezičkog 
modela specifičnostima razmatranog zadatka kroz postupke finog podešavanja. 

Na osnovu dobijenih rezultata, mogu se izdvojiti dodatni pravci daljeg unapređenja 
predloženih rešenja. S obzirom na to da PPO model nije nadmašio referentni model u 
svim razmatranim scenarijima, jedan od potencijalnih pravaca predstavlja hibridni 
pristup koji kombinuje PPO model i KBS sistem definisan od strane ljudskog eksperta, 
čime bi se objedinile prednosti učenja iz podataka i ekspertskog znanja.  

Dodatni pravac unapređenja odnosi se na unapređenje reprezentacije stanja sistema. U 
okviru ovog istraživanja stanje je definisano na osnovu trenutnih merenja i poznatih 
parametara okruženja, što predstavlja uobičajen i praktičan pristup, ali ne uključuje 
eksplicitne informacije o budućim promenama u potrošnji i proizvodnji električne 
energije. U tom smislu, potencijalno unapređenje podrazumevalo bi proširenje prostora 
stanja uključivanjem predikcija eksternih modela, kao što su kratkoročne prognoze PV 
proizvodnje i potrošnje pojedinačnih uređaja.  
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Evaluaciona postavka mogla bi se dodatno unaprediti primenom modela na podatke koji 
obuhvataju celu godinu, uz korišćenje pristupa zasnovanog na pokretnom vremenskom 
prozoru. U ovom pristupu modeli bi se periodično ponovo obučavali na proširenom 
skupu podataka, koji uključuje najnovije dostupne informacije, čime bi se omogućila 
kontinuirana adaptacija na sezonske promene i dugoročne obrasce u potrošnji i 
proizvodnji električne energije. 

Testirani scenariji mogli bi se dodatno obogatiti omogućavanjem prodaje viška 
proizvedene električne energije električnoj mreži, kao i uvođenjem baterijskog sistema 
za skladištenje energije u pametnoj kući. Konačno, nivo optimizacije mogao bi se 
proširiti sa nivoa pojedinačne kuće na nivo zgrade ili čak celog naselja. Ovakav pristup 
omogućio bi efikasniju upotrebu električne energije, pri čemu bi se višeciljna 
optimizacija primenjivala na širem planu, čime bi se automatizovalo upravljanje 
energetskim resursima u većim razmerama. 

U okviru ove disertacije dizajnirana je ciljna funkcija nagrade koja je formalno usklađena 
sa željama korisnika i istovremeno pogodna za treniranje modela učenja 
potkrepljivanjem. Međutim, ostaje otvoreno pitanje u kojoj meri ovako definisana 
funkcija nagrade verno odražava stvarne preferencije korisnika, naročito u pogledu 
kompromisa između troškova električne energije i subjektivnog komfora. Iako je komfor 
modelovan kroz unapred definisane prioritete i monetarne ekvivalente, ovakav pristup 
neminovno predstavlja aproksimaciju složenih i često kontekstualno zavisnih korisničkih 
preferencija. Zbog toga bi adekvatniji postupak evaluacije podrazumevao uključivanje 
korisnika u proces testiranja, kroz prikupljanje eksplicitnih povratnih informacija o 
donetim odlukama sistema, koje bi se mogle koristiti za dodatno prilagođavanje ciljne 
funkcije ili politike upravljanja. 

Važno je takođe istaći da su sva razmatrana rešenja evaluirana u simulacionom 
okruženju, te je neophodno ispitati u kojoj meri bi se njihovo ponašanje prenelo na realne 
uslove rada pametne kuće. Jedan od praktičnih pristupa podrazumevao bi treniranje 
modela u simulaciji, a zatim primenu već obučenog modela u stvarnom okruženju, uz 
mogućnost njegovog dodatnog prilagođavanja na osnovu realnih podataka.  

Upravo u tom smislu, očekivani rezultati ovog istraživanja imaju značajnu praktičnu i 
naučnu vrednost. Definisani simulator pametne kuće, zajedno sa komunikacionim slojem 
ka modelu upravljanja, predstavlja osnovu adaptivnog okruženja sposobnog da simulira 
proizvoljne konfiguracije pametnih kuća. Takav simulator omogućava realistične 
scenarije za obučavanje i evaluaciju modela pre njihove primene u stvarnim uslovima, 
čime se dodatno smanjuje rizik od neželjenog ponašanja sistema, koje bi moglo dovesti 
do nepotrebnih troškova električne energije ili narušavanja navika i komfora stanara. 
Dodatnu praktičnu vrednost predstavlja definisana funkcija nagrade, koja omogućava 
stanarima da na intuitivan način iskažu svoje potrebe i prioritete. Modeli obučeni u 
simulaciji, koji su pokazali sposobnost donošenja optimalnih odluka, mogu stoga 
poslužiti kao polazna osnova za implementaciju sistema upravljanja energijom (HEMS) 
u stvarnoj pametnoj kući. 

Naučni doprinos ovog istraživanja ogleda se u tome što simulator i definisana funkcija 
nagrade predstavljaju reproduktivnu i proširivu istraživačku platformu, koju drugi 
istraživači mogu koristiti za razvoj i evaluaciju sopstvenih HEMS rešenja. Pored toga, 
ovo istraživanje spada među prva koja sistematski ispituju primenu pretreniranih velikih 
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jezičkih modela u kontekstu automatizovanog upravljanja energijom u pametnim 
kućama. 
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