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Фосилна горива су, по својој природи, ограничен ресурс, што подстиче 
истраживаче да се усмере на возила са алтернативним погонима. Међу 
њима, електрична возила су привукла највећу пажњу. Њихова примена је 
у сталном порасту, посебно због све већих такси на емисију угљен-
диоксида и подстицаја за предузећа која прелазе на алтернативне погоне. 

Као резултат тога, многе компаније за дистрибуцију постепено укључују 
електрична возила у своје возне паркове. 
 
Са порастом значаја електричних возила, проблем њиховог ефикасног 
рутирања постаје све актуелнији. У оквиру овог проблема, неопходно је 
узети у обзир различита реална ограничења, као што су капацитет 

возила, временски зависне брзине и меки временски оквири за 
услуживање корисника. Циљ је минимизовати укупну пређену дистанцу 
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свих возила, као и пенале који настају када се корисници услуже ван 
дефинисаних временских интервала. За решавање овог проблема, 
формулисали смо мешовити целобројни линеарни програм. Ипак, с 
обзиром на то да је проблем НП-тежак, проналажење оптималног 
решења за веће инстанце је временски изузетно захтевно. Због тога смо 

имплементирали седам метахеуристичких метода које могу пронаћи 
квалитетна решења за знатно краће време. 
 
Ове методе укључују: Методу променљивих околина, Грамзиву 
насумичну адаптивну претраживачку процедуру, Оптимизацију 
колонијом мрава (са и без локалне претраге), Оптимизацију колонијом 

пчела, Генетски алгоритам, Меметски алгоритам и модификовану 
верзију меметског алгоритма. Перформансе ових метода тестиране су на 
два скупа инстанци из литературе, а њихова релативна ефикасност је 
детаљно анализирана. 
 
Формулисали смо и две нове верзије проблема које до сада нису 

разматране у литератури, а које имају директну примену у индустрији. 
Прва верзија проширује основни проблем додавањем могућности 
делимичног допуњавања батерије за возила. За решавање ове верзије, 
претходно поменуте метахеуристичке методе су модификоване и 
прилагођене. 
 

Друга верзија проблема иде корак даље, уводећи мешовиту флоту која 
укључује комбинацију електричних возила и возила са унутрашњим 
сагоревањем, као и асиметричне дистанце које боље осликавају реалне 
услове доставе у урбаним срединама. Овај проблем је постављен у 
контексту вишекритеријумске оптимизације. Први циљ је минимизација 
дистанце коју прелазе конвенционална возила, док је други циљ 

комбинована минимизација укупне пређене дистанце и пенала за 
прекорачење временских оквира. 
 
За евалуацију ових проблема креирали смо два скупа инстанци који 
садрже информације о временски зависним брзинама, мешовитој флоти 
и асиметричним дистанцама, омогућавајући реалистичну анализу и 

тестирање. 
 
Ове иновације у области рутирања електричних возила и мешовитих 
флота отварају бројне могућности за даља истраживања, али и за 
практичну примену у индустрији. 
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Metaheuristic approaches to the green vehicle routing problem including
alternative fuel vehicles

by Luka Matijević

The finite nature of fossil fuels has led researchers to focus on alternative fuel vehi-
cles, with electric vehicles (EVs) emerging as a prominent solution. Their adoption
is increasing, especially in light of projected growth in carbon taxation policies, and
subsidies for alternative fuel usage. Consequently, many delivery companies are inte-
grating EVs into their fleets.

This shift underscores the growing significance of efficiently routing EV fleets, con-
sidering factors like vehicle capacity, time-dependent speeds, and soft time windows.
The objective is to minimize the total distance traveled by all vehicles, along with
penalties for missing time windows. To address this, we developed a mixed integer
linear program. However, due to the time-consuming nature of finding exact solutions
for this NP-hard problem, we introduced seven metaheuristic algorithms as practical
alternatives. These include General Variable Neighborhood Search, Greedy Ran-
domized Adaptive Search Procedure, Ant Colony Optimization (with and without
Local Search), Bee Colony Optimization, Genetic Algorithm, Memetic Algorithm,
and Modified Memetic Algorithm. We evaluated these methods using two sets of
benchmark instances, providing comprehensive results on their relative effectiveness.

Additionally, we formulated two novel versions of this problem with direct in-
dustrial applications, yet unexplored in literature. The first version incorporates
the option of partial battery recharging at alternative fuel stations into the problem
described earlier. We adapted the aforementioned metaheuristics for this scenario,
with some modifications that allow them to tackle this new type of problem. The
second version we introduced is more aligned with real-world conditions, adding a
heterogeneous fleet of electric and conventional vehicles and considering asymmetric
distances, which better represent urban delivery scenarios. This problem was tackled
through multi-objective optimization, aiming to minimize the total distance traveled
by conventional vehicles and the combined distance and penalty from time window
deviations for all vehicles. For this version, we also created two new sets of benchmark
instances that include time-dependent speeds and a heterogeneous vehicle fleet.

These innovations in routing electric and mixed vehicle fleets open new avenues
for research and practical applications in efficient and sustainable logistics.
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Резиме

Факултет техничких наука

Департман за опште дисциплине у техници

Доктор наука - Примењена математика

Метахеуристичке методе за проблем еколошког рутирања возила укључујући

возила на алтернативни погон

Лука Матијевић

Мотивација и основни термини

Проблем еколошког рутирања возила постаје све значајнији, посебно

због растуће забринутости у вези са емисијама гасова са ефектом стаклене

баште и њиховог утицаја на околину. Многе државе су преузеле обавезу да

смање емисије ових гасова, посебно угљен-диоксида (CO2), што се практично

манифестује кроз субвенције компанијама које инвестирају у алтернативне

изворе енергије, подршку компанијама које користе возила на алтернативни

погон, као што су електрична возила (BEV) и хибридна возила (HEV), као и

увођењем пореза на емисије CO2. Као резултат ових политика, све више

дистрибутивних компанија почиње да интегрише возила на алтернативни погон

у своје возне паркове. Осим тога, електрична возила премештају загађење из

градских подручја и смањују буку, чинећи их идеалним опцијама за испоруку

робе до крајњих потрошача.

Постоји велики број возила на алтернативни погон, укључујући електрична

возила, хибридна возила, возила на водоник, возила која користе биогорива

попут етанола или биодизела, синтетичка горива, возила на соларни погон,

течни азот, па чак и возила која користе компресовани ваздух. Сваки тип возила

поседује јединствене карактеристике које их чине више или мање погодним за

различите примене.

У фокусу ове дисертације биће електрична возила. Она се издвајају

употребом пуњивих батерија које напајају електрични мотор, уместо

традиционалног мотора на унутрашње сагоревање. Главна предност

електричних возила лежи у њиховој способности да током вожње не емитују

штетне гасове, уз знатно нижи ниво буке у поређењу са конвенционалним

возилима. Међутим, електрична возила суочавају се с одређеним

ограничењима, првенствено када је реч о капацитету батерије који директно

утиче на њихов домет. Осим тога, потребно је узети у обзир и време потребно

за пуњење батерије, што је веома значајан фактор приликом планирања рута

за путовање.

HTTP://WWW.UNIVERSITY.COM
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Проблем рутирања возила (енг. Vehicle Routing Problem - VRP) први пут је

формулисан 1959. године [61]. Због његове кључне улоге у логистици, проблем

је привукао значајну пажњу истраживача. VRP представља генерализацију

проблема трговачког путника, захтевајући одлуке о томе које возило ће

посетити којег корисника и у којем редоследу. Овај проблем спада у категорију

НП-тешких проблема [186], што значи да је проналажење оптималног решења

често неоствариво у разумном временском оквиру.

С обзиром на све веће прихватање електричних возила од стране

дистрибутивних компанија, проблем еколошког рутирања возила добија на

значају и постаје предмет све веће пажње како у академским круговима тако

и у индустрији. Еколошко рутирање возила има за циљ планирање рута

узимајући у обзир еколошке факторе транспорта, попут емисије штетних гасова

или других облика загађења. Ови проблеми се могу класификовати у три

основне категорије: проблем рутирања загађења (енг. Pollution Routing Prob-

lem - PRP), који се фокусира на смањење емисија гасова при употреби возила

на унутрашње сагоревање (енг. Internal Combustion Vehicles – ICVs); проблем

зеленог рутирања возила (енг. Green Vehicle Routing Problem - GVRP), који

разматра коришћење возила на алтернативне погоне; и проблем рутирања

возила у обрнутој логистици (енг. VRP in Reverse Logistics - VRPRL), који се

бави оптимизацијом прикупљања отпада и рециклажом. Посебан фокус ове

дисертације биће на групи проблема везаних за рутирање електричних возила

(енг. Electric Vehicle Routing Problem - EVRP), као подскупу проблема зеленог

рутирања возила.

EVRP, заједно са основним VRP-ом, припада пољу операционих

истраживања. Ова научна дисциплина се посвећује развијању метода

за побољшање процеса доношења одлука, посебно у контекстима где су

ресурси ограничени, попут ограниченог времена за извршавање метода

или ограниченог меморијског простора. Поред проблема рутирања возила,

операциона истраживања обухватају широк спектар проблема, укључујући

распоређивање задатака, проблем трговачког путника, управљање ланцем

снабдевања, теорију редова чекања, управљање залихама, као и бројне друге

изазове који се јављају у индустрији.

Оптимизациони проблеми представљају темељ операционих истраживања.

Они подразумевају идентификацију оптималних вредности за специфичан скуп

параметара с циљем остваривања дефинисаног циља, који је формулисан кроз

функцију циља. У контексту минимизације, циљ је пронаћи оне вредности

параметара које резултују најмањом могућом вредношћу функције циља.

Супротно, у процесу максимизације, траже се параметри који максимизирају

вредност функције циља. Формулација минимизационих проблема може се

извршити на следећи начин:

min
x∈S

f (x)

где је функција циља задата са f : Rn → R, a S ⊆ Rn представља скуп свих

допустивих решења. Уколико постоји тачка x∗ за коју важи

f (x∗) ≤ f (x), ∀x ∈ S

онда ту тачку називамо глобални оптимум. Са друге стране, уколико у некој

околини N (x̄) постоји тачка x∗ за коју важи
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f (x∗) ≤ f (x), ∀x ∈ N (x̄) ∩ S

тада тачку x∗ називамо локалним оптимумом у околини N (x̄).

Различити приступи решавању оптимизационих проблема могу се

класификовати у две основне категорије: тачне методе и приближне методе.

Тачне методе гарантују проналазак глобалног оптимума под условом да имају

довољно времена и ресурса за извршавање. Међу овим методама издвајају

се динамичко програмирање и мешовито целобројно линеарно програмирање

(енг. Mixed-integer linear programming – MILP). С друге стране, због ограничења

у времену које намећу тачне методе, у пракси се често користе приближне

методе. Ове методе пружају довољно добра решења у знатно краћем

временском периоду, иако не гарантују оптималност. Приближне методе

укључују хеуристичке методе, метахеуристичке методе и апроксимационе

алгоритме. Хеуристичке методе примењују специфична знања о проблему

како би што ефикасније претраживале простор решења. Метахеуристичке

методе, с друге стране, су општије природе и нису специфично дизајниране

за одређени проблем, што их чини флексибилним алатом применљивим

на широк спектар проблема. Метахеуристике често користе хеуристичке

алгоритме за унапређење својих решења, а такође се могу комбиновати и

са тачним методама, стварајући на тај начин хибридне методе. Што се тиче

апроксимационих алгоритама, они су способни да у кратком временском

периоду пруже решења са гарантованим нивоом квалитета, иако тај квалитет

можда неће бити еквивалентан оптималном решењу.

Доприноси

У овој дисертацији дефинисана су три проблема релевантна за индустрију.

Први проблем се бави рутирањем електричних возила са флексибилним

временским оквирима и временски зависним брзинама. Друга верзија

проширује овај проблем тако што омогућава делимично пуњење батерија

на станицама, како би се оптимално управљало временом и корисници

били опслужени на време. Трећа верзија представља додатно проширење,

укључујући флоту која обухвата и конвенционална возила, што одражава

најреалнији сценарио. Поред тога, разматране су асиметричне дистанце

између локација, карактеристичне за урбане средине, као и вишекритеријумска

оптимизација за овај проблем.

За први проблем предложен је математички модел. За сваки од проблема

тестирано је осам метахуристичких метода, спроведена је статистичка анализа

резултата, а методе су поређене на основу више критеријума.

Поред ових доприноса, састављена је и најкомплетнија листа

метахеуристика до сада, при чему је свака метахеуристика класификована

на основу инспирације. Такође, за тестирање треће верзије проблема било

је неопходно креирати нове инстанце, које су јавно доступне на адреси

https://www.mi.sanu.ac.rs/~luka/resources/Instances.zip. Коначно,

развијено је неколико помоћних метода (нпр. за креирање почетних решења,

додавање посета станицама или одређивање распореда полазака возила),

које могу бити корисне и у будућим алгоритмима.

https://www.mi.sanu.ac.rs/~luka/resources/Instances.zip
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Из ове дисертације произашла су два рада објављена у часописима.

Први рад, објављен у часопису YUJOR, представља прегледни рад на тему

метахеуристичких приступа еколошком рутирању возила [221], док је други рад

објављен у часопису International Journal of Industrial Engineering Computations

и бави се методом променљивих околина примењеном на проблем рутирања

електричних возила [220]. Иако није настао као део дисертације, рад [224] је

такође тематски повезан с њом.

Метахеуристичке методе

Постоји више начина класификације метахеуристика, како је описано

у литератури [91, 319]. Једна од првих класификација, представљена

од стране Birattari et al. [34], категоризује метахеуристике на основу шест

различитих критеријума:

• Праћење путање - Методе које прате путању систематично истражују

простор претраге, постепено модификујући решење, док методе које не

прате путању омогућавају велике скокове према различитим деловима

простора претраге.

• Број решења - Популационе методе истражују више решења паралелно,

у контрасту с другим метахеуристикама које у сваком моменту задржавају

и побољшавају само једно одређено решење.

• Коришћење меморије - Метахеуристике које користе меморију користе

информације о претходним решењима како би утицале на будуће правце

претраге, док метахеуристике без меморије функционишу независно од

претходних решења.

• Број структура околина - Метахеуристике са једном структуром околине

ослањају се на стални скуп правила за претраживање простора претраге,

док оне са више структура динамички бирају различите скупове правила.

• Тип функције циља - Метахеуристике са динамичким функцијама циља

прилагођавају своје критеријуме у зависности од променљивих услова,

док оне са статичким функцијама циља константно теже ка фиксном скупу

критеријума током целог процеса оптимизације.

• Инспирација - Метахеуристике инспирисане природом су алгоритми

моделовани на основу природних феномена и биолошких понашања,

док су метахеуристике које нису инспирисане природом развијене из

математичких или алгоритамских принципа, без директног ослањања на

природне процесе.
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Ниједна метахеуристика универзално не превазилази остале за све типове

проблема [362]. Примећујемо значајан раст броја нових метахеуристика које

се уводе сваке године, посебно након 2000. У оквиру овог истраживања,

успели смо да идентификујемо 540 различитих метахеуристика, које су

представљене у табели https://www.mi.sanu.ac.rs/~luka/resources/phd/
AppendixA.pdf, мада је важно напоменути да листа вероватно није комплетна.
Анализом ових метахеуристика, уочава се да је већина инспирисана

понашањем животиња, док су физички процеси други најчешћи извор

инспирације.

У наставку ће бити описане неке од метахеуристика које су од значаја за ову

дисертацију.

Метода променљивих околина

Метода променљивих околина (енг. Variable Neighborhood Search - VNS),

како је представљена у [236, 238], представља итеративну метахеуристику

која се ослања на систематично истраживање околине једног решења.

Иницијално решење се добија помоћу неког хеуристичког алгоритма, након

чега VNS методологија примењује циклус од три корака у свакој итерацији:

размрдавање, локално претраживање и померање. Размрдавање доприноси

диверзификацији претраживања, бирајући насумично ново решење x унутар

околине Nk(x), где x означава тренутно најбоље решење, чиме се избегава

заглављивање у локалном оптимуму. Локално претраживање се затим

примењује на x с циљем унапређења решења. У фази померања, упоређује се

унапређено решење x са тренутно најбољим решењем, и ако је ново решење

боље, оно постаје референтно за даљу претрагу која се ресетује на прву

околину. У супротном, прелази се на следећу околину. Број околина је

ограничен параметром kmax, док алгоритам може укључити и друге параметре

попут kmin, који означава почетну околину, или kstep, који дефинише величину

корака за прелазак на следећу околину. Постоје различите варијанте VNS-а,

неке од којих су детаљније описане у [126].

Похлепни насумично адаптивни поступак претраге

Похлепни насумично адаптивни поступак претраге (енг. Greedy Random-

ized Adaptive Search Procedure - GRASP), предложен од стране Feo and Re-

sende [93], представља ефикасну итеративну метахеуристику која се састоји од

две основне фазе: конструктивне фазе и фазе локалног претраживања. Током

конструктивне фазе, GRASP итеративно гради допустиво решење, комбинујући

похлепне принципе са елементима случајности. Ово се реализујеформирањем

ограничене листе кандидата (енг. Restricted Candidate List - RCL), која укључује

кандидате са најбољим перформансама према одабраном критеријуму, обично

функцији циља. Величина ове листе одређује се параметром α, који може

дефинисати и квалитативни праг за укључивање кандидата у RCL. Након

конструкције допустивог решења, примењује се локално претраживање с

циљем његовог додатног побољшања. Ако је резултат локалне претраге бољи

од тренутно најбољег решења, оно се ажурира и постаје нови референтни

оптимум.

https://www.mi.sanu.ac.rs/~luka/resources/phd/AppendixA.pdf
https://www.mi.sanu.ac.rs/~luka/resources/phd/AppendixA.pdf
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Оптимизација колонијом мрава

Оптимизација колонијом мрава (енг. Ant Colony Optimization - ACO) [74, 76,

77], представља метахеуристички приступ инспирисан начином на који мрави

трагају за храном. Ова метода припада групи популационих метахеуристика,

што значи да у свакој итерацији истражује више независних решења. Сваки

”мрав” у алгоритму креира своје решење итеративно, ослањајући се на

хеуристичке информације и трагове феромона остављене на путу. При

конструисању решења, за сваки потенцијални корак од тачке i до тачке j,
израчунава се вероватноћа pij (Формула 1), која зависи од вредностиферомона

τij на тој путањи и хеуристичке информације ηij, при чему су S непосећене

тачке које се могу укључити у решење. Параметри α и β служе за одређивање

релативног утицаја хеуристичких информација и феромонског трага.

pij =
τα

ij η
β
ij

∑k∈S τα
ikη

β
ik

, ∀j ∈ S (1)

Након што сваки мрав формира и оцени своје решење користећи функцију

циља, алгоритам приступа ажурирању феромонских трагова. У фази

испаравања, концентрација феромона се редукује за одређени проценат,

што се постиже применом формуле 2. Параметар ρ у овој формули

представља стопу испаравања, а P означава скуп свих тачака. Овај процес

је кључан за спречавање превремене конвергенције ка локалном оптимуму.

После фазе испаравања, следи фаза појачања феромона, где се повећава

концентрација феромона на путањама изабраних на основу резултата које су

мрави остварили. Различите стратегије могу се применити у фази појачања; на

пример, могуће је да сви мрави доприносе ажурирању феромона или да само

одабрани број мрава са најбољим решењима врши ажурирање.

τij = (1− ρ)τij, ∀i, j ∈ P (2)

Оптимизација колонијом пчела

Оптимизација колонијом пчела (енг. Bee Colony Optimization – BCO) [202,

203, 204] представља метахеуристику инспирисану понашањем пчела у

природи, посебноњиховимметодама трагања за изворима хране имеђусобном

комуникацијом. BCO метода обухвата две главне фазе у свакој итерацији:

• Лет унапред - У овом кораку, пчеле истражују простор претраге тако

што извршавају одређен број корака, у којима се решење или мења или

конструише, чиме се креирају нова комплетна или парцијална решења.

• Лет уназад - У овом кораку, пчеле деле информације о квалитету својих

решења. Свака пчела пробабилистички бира да ли ће остати лојална свом

решењу, у зависности од његовог квалитета. Ако пчела остане лојална

свом решењу, она ће почети да га промовише. С друге стране, пчеле које

нису остале лојалне свом решењу морају изабрати једно од промовисаних

решења на пробабилистички начин, при чему се квалитетнија решења

фаворизују.
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Постоје две основне верзије BCO методе:

• Конструктивни BCO - У овој верзији, свака пчела користи хеуристичке

информације како би на стохастички начин креирала комплетно решење.

• Модификациони BCO (BCOi) - У овој верзији, свака пчела већ има

комплетно решење које мења примењујући на њега одређен број корака,

чиме се креира ново решење.

Генетски и меметски алгоритми

Генетски алгоритми (енг. Genetic Algorithms – GA) [137] су алгоритми који

су засновани на принципима еволуције. Ови алгоритми користе еволутивне

механизме попут наслеђивања, мутације, селекције и укрштања. Основна

верзија алгоритма представља скуп решења у облику хромозома. У свакој

итерацији алгоритма, на хромозоме се примењују одређени оператори, као што

су:

• Кодирање и декодирање - Ова операција укључује представљање

решења у облику хромозома.

• Селекција - Селекција подразумева избор хромозома из којих ће се

креирати нове јединке. Уобичајено је да је вероватноћа избора хромозома

пропорционална квалитету решења које они представљају.

• Укрштање - Након што се одаберу одговарајући хромозоми, на њих се

примењује оператор укрштања који ствара нове хромозоме. Постоји

много врста оператора укрштања, а избор одговарајућег оператора може

имати значајан утицај на квалитет креираних решења.

• Мутација - Након оператора укрштања, на креиране јединке примењује

се оператор мутације са одређеном вероватноћом. Овај оператор благо

мења решење на насумичан начин, чиме се диверсификује популација.

• Замена јединки - Овај оператор одређује које ће јединке бити пренете у

нову генерацију.

Меметски алгоритми (енг. Memetic Algorithms – MA) представљају

модификацију генетских алгоритама која комбинује еволутивне аспекте GA са

локалном претрагом. На сваку јединку у популацији примењује се локална

претрага, чиме се потенцијално повећава квалитет целе популације.
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Проблем еколошког рутирања возила

Проблем рутирања возила (енг. Vehicle Routing Problem – VRP) представља

широко истраживан проблем у области операционих истраживања, први пут

предложен 1959. године [61]. Циљ VRP-а је да пронађе оптималне (или бар

довољно добре) руте којима ће се кретати скуп возила како би опслужили

све кориснике, узимајући у обзир ограничења специфична за сваки проблем,

која називамо атрибутима. VRP спада у класу НП-тешких проблема [186],

што га чини неподесним за решавање егзактним методама у случајевима

већих инстанци. Због тога се за решавање овог проблема најчешће користе

хеуристичке или метахеуристичке методе.

Проблем еколошког рутирања возила (енг. Green Vehicle Routing Prob-

lem – GVRP) представља надоградњу оригиналног VRP-а, с тим што додатно

узима у обзир еколошке аспекте рутирања, пре свега емисије CO2 и заштиту

животне средине. У овој дисертацији пре свега се бавимо специфичном

подкатегоријом овог проблема, која се може назвати problem rutiranja električnih

vozila (енг. Electric Vehicle Routing Problem – EVRP), иницијално предложеном

у раду [86]. Овај проблем имплицитно адресира смањење емисија CO2
коришћењем електричних возила (EV). Међутим, употреба EV носи са собом

одређена ограничења, као што су ограничен капацитет батерије (а самим тим

и домета возила), као и дуже време потребно за пуњење батерије. Након

одређене пређене дистанце, возило мора посетити станицу за пуњење (енг.

Alternative Fuel Station – AFS) и задржати се тамо одређено време. Ово време

задржавања мора се узети у обзир приликом планирања рута, како би се

корисници опслужили на време, што директно утиче на задовољство корисника.

Постоји много атрибута који се могу узети у обзир за овај проблем. У овом

делу издвојићемо само неке од најважнијих за ову дисертацију:

• Ограничење капацитета возила (C) - Може се задати у виду тежине,

запремине или броја објеката који се могу превозити у возилу.

• Асиметричност дистанци (A) - Овај атрибут описује сценарио у којем

растојање између тачке А и тачке Б није исто као растојање од тачке Б

до тачке А.

• Временски оквири (TW) - Временски оквири представљају интервале

времена у којима одређени корисници морају бити посећени. Могу

бити стриктни (тврди) и флексибилни (меки). У случају стриктних

временских оквира, посета корисника ван задатих интервала није

дозвољена. Међутим, у случају флексибилних временских оквира, посете

корисницима изван оквира су могуће, али уз одређене пенале.

• Хетерогена флота (HF) - Овај атрибут означава ситуацију у којој возила

која чине флоту могу имати различите карактеристике, као што су

капацитет или брзина. У контексту GVRP-а, овај атрибут такође може

указивати на ситуацију где нека возила користе мотор на унутрашње

сагоревање, док друга користе алтернативни погон, каошто су електрична

возила.
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• Временски зависне брзине (TD) - У реалним ситуацијама, посебно у

урбаним срединама, брзина возила није константна и зависи од више

фактора, укључујући и доба дана. TD атрибут моделује овај сценарио тако

што се сваком добу дана додељује одређени мултипликатор просечне

брзине возила.

• Парцијално пуњење батерије (PR) - Када EV посети AFS, оно не мора

обавезно напунити батерију до пуног капацитета како би се избегло

непотребно чекање. Одлука о томе колико напунити батерију при свакој

посети AFS-а додаје додатну комплексност проблему и описана је PR

атрибутом.

• Вишекритеријумска оптимизација (MO) - MO атрибут омогућава

оптимизацију више независних циљева истовремено. Овај приступ

оптимизацији познат је и као Парето-оптимизација. За разлику

од ситуације када се оптимизује само један циљ, где је потребно

пронаћи само једно најбоље решење, у случају MO трага се за скупом

најбољих Парето-оптималних решења. Свако решење из овог скупа

најквалитетније је у контексту бар једног циља.

GVRP може оптимизовати више различитих циљева, међу којима

су: минимизација утрошеног горива или енергије, минимизација емисија

штетних гасова, минимизација пенала због пропуштених временских оквира,

минимизација трошкова транспорта, минимизација броја возила, минимизација

броја возила са мотором на унутрашње сагоревање, као и многи други циљеви.

Проблем рутирања електричних возила

Први проблем који се разматра у овој дисертацији је проблем рутирања

електричних возила, који узима у обзир капацитете возила, меке временске

оквире, као и временски зависне брзине возила (TD-EVRP-STW). Сва возила

су идентична и полазе из истог депоа. Када EV посети AFS, његова батерија

пуни се до краја, те се време задржавања на AFS рачуна у зависности од

количине енергије која се може допунити и брзине пуњења задате за сва

возила. Претпоставка је да се батерија пуни линеарно. Иако ова претпоставка

није реалистична у стварним условима, ово поједностављење не утиче на

релативне перформансе метахеуристика, што је примарни фокус ове тезе.

Такође, у стварним условима, потрошња енергије зависи од више фактора, као

што су пређена дистанца, ефикасност мотора, нагиб пређеног пута, временски

услови, оптерећење возила, као и многи други. Ови фактори нису разматрани

у оквиру ове тезе, већ је проблем поједностављен претпоставком да потрошња

зависи само од пређене дистанце и просечне потрошње по јединици дистанце.

Оправдање за ово поједностављење је исто као и за претпоставку о линеарном

пуњењу батерије, тј. нема значајног утицаја на релативне перформансе

метахеуристика.

Циљ овог проблема је двострук: минимизација пређене дистанце и

минимизација пенала узрокованих опслуживањем корисника ван изабраних

временских оквира. Ова два критеријума спојена су у јединствену метрику

коришћењем пондерисане суме оба критеријума.
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Овај проблем смо формулисали као MILP, који је затим тестиран користећи

комерцијални решавач CPLEX. Као што је било очекивано, егзактном решавачу

попут CPLEX-а било је потребно доста времена да реши чак и једноставније

инстанце овог проблема, што додатно оправдава употребу метахеуристика.

Решења овог проблема представљена су као низ дупло повезаних листи,

где свака листа представља руту која одговара једном возилу. Сваки елемент

листе означава локацију коју возило треба да посети. Свака локација обухвата

четири информације: индекс корисника или станице за пуњење, време доласка

на ту локацију, време одласка са те локације и тип локације (корисник или AFS).

Уколико имамо решење у којем неко возило остане без батерије пре него

што се врати у депо, такво решење је недопустиво. Одбацивање таквих

решењаможе бити лоша стратегија, јер се тиме лишавамо многих обећавајућих

решења. Уместо тога, ако се суочимо са решењем које је недопустиво због

празне батерије, покушавамо да га поправимо тако што у руту убацујемо посете

AFS пре критичне локације. То чинимо итеративно прегледајући све позиције

у рути уназад, почевши од оне на којој је батерија постала празна. Ако је

могуће, додајемо посету AFS и прерачунавамо времена доласка и одласка за

све наредне локације. Ако то није могуће, прелазимо на претходну позицију.

Овај процес настављамо док решење не постане прихватљиво или док не

закључимо да се решење не може поправити, у ком случају га одбацујемо. Овај

алгоритам називамо FIX_SOLUTION.

За креирање почетних решења дефинисане су две хеуристике:

• INIT_SOLUTION_RANDOM - Све док постоје нераспоређени

корисници, на насумичан начин бирају се нераспоређени корисник

и возило, а затим се тај корисник додаје на крај руте изабраног

возила. Након што се сви корисници распореде, додају се посете

AFS коришћењем методе FIX_SOLUTION.

• INIT_SOLUTION - За све нераспоређене кориснике израчунава се

најбоља позиција у свим рутама на коју их је могуће додати, тако да се

одабере корисник чијим додавањем долази до најмање промене функције

циља. Тај корисник се потом додаје на пронађену позицију. Овај процес

се понавља све док постоје нераспоређени корисници. Након што су

сви корисници распоређени, додају се посете AFS користећи методу

FIX_SOLUTION.

С обзиром на то да је дозвољено да возило сачека на некој локацији

најповољнији тренутак за полазак ка следећој дестинацији, неопходно

је израчунати време доласка возила на локацију и одредити када ће

отпутовати. У ту сврху, дефинисали смо два алгоритма: CALC_SCHEDULE
и OPTIMIZE_SCHEDULE, које обично позивамо један за другим. У методу

CALC_SCHEDULE рачунамо долазак и одлазак узимајући у обзир само време

проведено у вожњи, време опслуживања корисника и време проведено на

свакој AFS. Након тога, примењујемо OPTIMIZE_SCHEDULE, који проверава
да ли је возило стигло на локацију пре почетка њеног временског оквира. Да

би се избегли пенали, ова метода мења време поласка са претходне локације,

тако да долазак на тренутну локацију буде тачно на време. Овако израчунато

време доласка и одласка није оптимално, али предложена хеуристика се брзо

извршава и као таква, погодна је за укључивање у метахеуристике.
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Као методу локалне претраге у свим метахеуристикама користимо методу

променљивог спуста (енг. Variable Neighborhood Descent – VND). VND

започиње с почетним решењем и одређеним скупом околина. Претрага почиње

од прве околине, где се покушава побољшати почетно решење. Ако се

побољшање не пронађе, прелази се на следећу околину. У сваком тренутку,

ако се пронађе побољшање, претрага се враћа на прву околину. У нашој

верзији методе користи се седам околина, од којих су четири базиране на

корисницима, а три на AFS станицама. Те околине укључују:

• N2(S) - Заснована на оператору који пребацује корисника на друго место
у истој рути.

• N3(S) - Заснована на оператору који пребацује корисника на неко место у
другој рути.

• N4(S) - Заснована на оператору који мења места два корисника унутар

исте руте.

• N5(S) - Заснована на оператору који мења места два корисника из

различитих рута.

• N6(S) - Заснована на оператору који избацује AFS из руте.

• N7(S) - Заснована на оператору који помера AFS на друго место у рути.

• N8(S) - Заснована на оператору који замењује једну AFS станицу са

другом.

Након анализе утицаја сваке од ових околина на квалитет решења,

закључено је да околине N2(S), N3(S) и N4(S) имају највећи утицај. Такође је

тестирана додатна околина N1(S, ε), заснована на оператору који мења време
одласка са локације за задату вредност ε. Међутим, због њеног малог утицаја
на квалитет решења, није даље коришћена у тестирању.

У нашем случају, VND користи принцип првог побољшања (енг. First im-

provement), који не захтева проверу свих суседа из одређене околине, већ се

претрага околине завршава чим се наиђе на прво побољшање. Избор овог

принципа извршен је због комплексности околина које се користе у VNDметоди.

У оквиру ове дисертације разматрано је осам метахеуристика за TD-EVRP-

STW.

Прва метахеуристика коришћена за решавање овог проблема је генерална

метода променљивих околина (енг. General Variable Neighborhood Search –

GVNS), која се разликује од основне верзије, описане раније, тиме што користи

VND као методу локалне претраге. У кораку размрдавања коришћене су две

околине:

• N9(S, l) - Заснована на оператору који пребацује l узастопних локација

(независно од типа локације) на другу позицију унутар исте руте.

• N10(S, l) - Заснована на оператору који пребацује l узастопних локација

(независно од типа локације) на неку позицију унутар друге руте.
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Избор околине, као и параметар l, бирају се насумично у сваком кораку

процедуре размрдавања.

Друга коришћена метахеуристика је GRASP. Наша формулација GRASP

метахеуристике прати основну верзију коју смо раније описали. Метода за

конструкцију решењафункционише на следећи начин: у првом кораку се рачуна

цена уметања сваког нераспоређеног корисника на сваку могућу позицију у

решењу. У другом кораку, бира се предефинисан број најбољих елемената за

додавање, од којих се насумично бира један. Овај поступак се понавља све док

постоје нераспоређени корисници. На крају, додају се посете AFS користећи

FIX_SOLUTION методу.

Такође смо имплементирали две верзије ACO алгоритма за TD-EVRP-STW

проблем: једну са локалном претрагом (ACOLS) и једну без локалне претраге

(ACO). Верзија која користи локалну претрагу за побољшање решења користи

VND методу.

Следећа коришћена метахеуристика је BCOi. Иницијална популација пчела

креира се коришћењем методе INIT_SOLUTION_RANDOM. Током лета

унапред, метода трансформише решење тако што извршава предвиђен број

измена над тим решењем. За наше потребе, дефинисали смо пет могућих

оператора за трансформацију решења, од којих се у сваком кораку бира

један оператор насумично. Прва четири оператора одговарају околинама

N2(S), N3(S), N4(S) и N5(S), док је пети оператор дефинисан тако да

насумично изабере једног корисника и пребаци га у нову, празну руту.

Након трансформације решења, оно се потенцијално поправља коришћењем

FIX_SOLUTION методе.

У случају GA, иницијалну популацију генеришемо тако што једну јединку

генеришемо методом INIT_SOLUTION, док све остале јединке генеришемо

коришћењем методе INIT_SOLUTION_RANDOM. Као оператор укрштања

користили смо укрштање редоследа (енг. Order Crossover – OX). Такође смо

тестирали и оператор укрштања две тачке (енг. Two-point Crossover) уз додатну

поправку решења, али су резултати били значајно лошији у односу на верзију

која користи OX, због чега овај оператор није даље разматран. Као оператор

мутације користили смо исту методу за трансформацију решења коју користи и

BCOi. У процесу селекције користили смо елитистички приступ.

MA је имплементиран на исти начин као и GA, с тим што се на све потомке

примењује локална претрага, у нашем случају VND. Такође смо дефинисали

и модификовани меметски алгоритам (MMA), где се VND примењује само на

потомка с најквалитетнијим решењем у свакој генерацији.

За тестирање наших метода користили смо инстанце предложене у [302].

Инстанце су подељене у две групе. Прва група, коју ћемо звати I1, садржи 35

мањих инстанци са до 15 корисника, док друга група (I2) садржи 56 инстанци

са по 100 корисника. Будући да ове инстанце нису оригинално намењене за

TD сценарио, додали смо податке о просечној брзини у зависности од времена

на следећи начин: цео период доставе подељен је на 13 интервала, од којих

прва два интервала имају мултипликатор брзине 0.75 (моделирајући јутарњу

гужву), наредних осам интервала има мултипликатор 1, док претпоследња

два интервала имају мултипликатор 0.8. Последњи интервал такође има

мултипликатор 1.
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Сви експерименти су извршени на лаптоп рачунару са Intel i7-10750H

процесором, 32GB RAM меморије и оперативним системом Ubuntu 20.04. Све

метахеуристике су имплементиране у C++ програмском језику. Да бисмо

показали конзистентност резултата, сваки тест је поновљен 30 пута. Као

критеријум заустављања за све метахеуристике одређено је време извршења,

које је ограничено на 5 минута за инстанце из скупа I1, односно 10 минута за

инстанце из скупа I2. Хиперпараметри за сваку од метахеуристика изабрани су

користећи iRace пакет за R програмски језик.

Резултати тестирања метахеуристика на оба скупа инстанци се могу

преузети са адресе https://www.mi.sanu.ac.rs/~luka/resources/phd/
AppendixB.pdf. Након обављених статистичких тестова, закључили смо

да се перформансе метахеуристика не разликују значајно када посматрамо

просечан квалитет решења на скупу инстанци I1. Међутим, за инстанце из скупа

I2 постоји статистички значајна разлика у перформансама метахеуристика.

GVNS и MMA су се показали као најбољи у погледу просечног квалитета

решења. Иако GRASP и MA ређе постижу најбоље резултате за поједине

инстанце, статистички тестови сугеришу да ове две метахеуристике имају

сличне перформансе као и GVNS и MMA. С друге стране, ACO, ACOLS,

BCOi и GA су имали лошије перформансе. Из тестова се може закључити

да BCOi фаворизује решења са већим бројем краћих рута. Такође можемо

закључити да GVNS и GRASP брзо конвергирају ка добром решењу, након чега

стагнирају, док је MMA-у било потребно више времена да пронађе решење

сличног квалитета или потенцијално боље решење.

Проблем рутирања електричних возила са парцијалним

пуњењем батерија

Друга верзија проблема која се разматра у овој дисертацији слична је TD-

EVRP-STW, с тим што се возилима дозвољава парцијална допуна батерије.

Другим речима, поред свих других аспеката проблема описаних у претходној

секцији, за овај проблем је неопходно одредити колико ће се дуго свако возило

задржати приликом сваке посете AFS. Ову верзију проблема означићемо са

TDPR-EVRP-STW.

У ту сврху, потребно је изменити структуру решења која је коришћена за TD-

EVRP-STW, тако што ће се сваком чвору додати додатни податак који одређује

колико се возило задржава на тој локацији. Уколико локација представља

корисника, време задржавања је унапред одређено константом задатом у самој

инстанци. Са друге стране, ако локација представља AFS, време задржавања

је флексибилно и одређује се током извршења алгоритма.

https://www.mi.sanu.ac.rs/~luka/resources/phd/AppendixB.pdf
https://www.mi.sanu.ac.rs/~luka/resources/phd/AppendixB.pdf
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Такође је потребно изменити методу за додавање посета AFS. Стратегија

која се користи унутар ове методе разликује се у зависности од типа чвора. Ако

је чвор AFS, прво се проверава колико енергије може бити допуњено, узимајући

у обзир тренутни степен напуњености и капацитет батерије. Ако возило на

посматраној станици већ пуни батерију до максималног капацитета, разматра

се додавање посете новој станици. Да би се избегло циклично посећивање

AFS, уводи се правило да наредна посета станици мора бити ближа следећој

локацији од тренутно посматране станице. Ако се таква станица не пронађе,

метода прогласи решење недопустивим. Уколико је могуће додатно допунити

батерију на тренутно посматраној станици, рачуна се колико би требало

продужити боравак на станици. Идеално је допунити батерију тако да омогући

долазак до наредне локације, плус додатних 20% капацитета, како би се

повећала вероватноћа да возило може стићи до неке станице и након посете

следећем кориснику. Ако то није могуће, батерија се пуни до максимума. Ако

чвор представља корисника, покушавамо идентификовати најближу AFS до

следеће локације која је доступна са тренутним нивоом напуњености батерије.

Ако пронађемо такву AFS, додајемо је у руту и одређујемо задржавање на

исти начин као и у претходном случају, тј. батерија се пуни довољно да

возило стигне до наредне локације, плус додатних 20% капацитета. Ако није

могуће пронаћи одговарајућу AFS, покушава се убацити станица на некој од

претходних позиција у рути. Иако овај метод може потенцијално прогласити

нека допустива решења недопустивим, у пракси се показао као добро решење

због своје једноставности, што је неопходно због честе употребе ове методе.

Метахеуристике коришћене за ову верзију проблема су исте као оне

коришћене за TD-EVRP-STW, али се користи нова структура решења и

модификована верзија методе за додавање посета AFS. Поред тога, метода

за конструкцију решења у ACO и ACOLS, као и репрезентација хромозома за

GA, MA и MMA, су благо измењени како би се прилагодили спецификацијама

проблема.

За тестирање овог проблема коришћене су исте инстанце и исто окружење

као и за претходну верзију проблема.

Резултати тестирања метахеуристика на оба скупа инстанци могу се

преузети са адресе https://www.mi.sanu.ac.rs/~luka/resources/phd/
AppendixB.pdf. На скупу I1, све метахеуристике су имале релативно сличне

перформансе, осим ACO, који је у 26 случајева имао најлошији просечан

квалитет решења, а ни у једној инстанци није имао најбољи просечан квалитет

решења. За MA и BCOi није показана статистички значајна разлика у погледу

просечног квалитета решења у односу на ACO, као ни у односу на остале

метахеуристике. Ипак, MA је имао ту предност да је током 30 извршавања

пронашао решење највишег квалитета за највећи број инстанци.

У случају инстанци из скупа I2, GVNS и MMA показали су значајно боље

перформансе у односу на остале методе. Иако статистички тестови сугеришут

временски зависних брз да између GVNS и MMA не постоји статистички

значајна разлика, приметили смо да је MMA имао најбољи просечан квалитет

решења за 36 инстанци, за разлику од GVNS-а који је то постигао за 19

инстанци.

https://www.mi.sanu.ac.rs/~luka/resources/phd/AppendixB.pdf
https://www.mi.sanu.ac.rs/~luka/resources/phd/AppendixB.pdf
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Вишекритеријумски проблем еколошког рутирања возила

Трећа верзија проблема разматрана у овој дисертацији надограђује

претходну верзију (TDPR-EVRP-STW), узимајући у обзир све већ поменуте

атрибуте као што су меки временски оквири, парцијално пуњење батерије и

временски зависне брзине. Ипак, ова верзија укључује и неколико додатних

атрибута. Прво, уводимо претпоставку о асиметричности дистанци. Такође,

за разлику од претходне две верзије проблема, ова верзија разматра флоту

возила састављену од електричних и конвенционалних возила. Ова два типа

возила морају се третирати на потпуно различит начин, пошто само електрична

возила морају посећивати AFS. Ово повећава степен комплексности проблема,

јер се за сваку руту мора одредити којим типом возила ће бити опслуживана.

Како бисмо што боље адресирали еколошки аспект проблема, определили смо

се за вишекритеријумску оптимизацију. Ову верзију проблема означавамо са

MOHF-VRP-STW.

Као први критеријум оптимизације користили смо исту функцију циља као

и за TD-EVRP-STW (O1). Као други критеријум, користили смо минимизацију

укупне дистанце коју пређу ICV (O2), како бисмо смањили емисије CO2. Може

се приметити да минимизација другог критеријума може имати одређене

последице по први критеријум, јер смањење коришћења ICV може повећати

укупну пређену дистанцу свих возила, због чешћих посета AFS. Ипак, потребно

је изабрати јединствену метрику која ће усмеравати метахеуристике. У нашем

случају, одлучили смо се за следећу формулу:

F (O1,O2) = α

(
logO1 − logOmin

1

logOmax
1 − logOmin

1

)
+ β

(
logO2 − logOmin

2

logOmax
2 − logOmin

2

)
Како бисмо тестирали перформансе метахеуристика за MOHF-VRP-STW,

модификовали смо инстанце коришћене за претходне верзије проблема.

Увели смо асиметричност дистанци и додали податке о различитим типовима

возила, као што су њихова брзина, број расположивих возила и тип мотора.

Такође, убацили смо податке о мултипликаторима просечних брзина за сваки

временски период директно у инстанце. Инстанце генерисане на основу оних

из скупа I1 означили смо са I1, док су оне генерисане на основу инстанци из

скупа I2 означене са I2.

Да бисмо представили решење овог проблема, модификовали смо

структуру представљену за TDPR-EVRP-STW, тако што решење сада састоји

од листе парова (Vi, S), где Vi означава индекс возила придруженог тој рути, док

S представља листу чворова који одговарају локацијама, са истим подацима

као и у случају TDPR-EVRP-STW.

Функција за додавање посета AFS је благо измењена у односу на ону

коришћену у TDPR-EVRP-STW. За сваку руту прво се проверава тип возила.

Уколико је возило EV, користи се исти поступак који је објашњен у одељку

везаном за TDPR-EVRP-STW. Са друге стране, ако је возило ICV, све

евентуалне посете AFS које се налазе у тој рути се избацују.

Због специфичности мешовите флоте возила, увели смо додатну околину

која је коришћена за VND:
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• N11(S) - Заснована на оператору који размењује типове возила између

две руте.

За решавање проблема MOHF-VRP-STW тестирали смо исте

метахеуристике као и за TD-EVRP-STW и TDPR-EVRP-STW. У односу на

TDPR-EVRP-STW, имплементације алгоритама за овај проблем разликују се у

коришћењу проширене структуре решења коју смо описали раније, измењеној

методи за додавање посета AFS, увођењу нове околине за VND, као и у

коришћењу архиве за складиштење Парето-оптималних решења. Такође,

метода конструкције решења за ACO и ACOLS је измењена тако да не додаје

посете AFS у руте које се опслужују са ICV. Додатно, за BCOi увели смо још

један оператор за трансформацију решења који насумично бира два возила из

решења и размењује њихове типове. У случају GA, MA и MMA, главна разлика

у односу на претходне верзије састоји се у мало измењеној репрезентацији

хромозома, као и у измењеном оператору укрштања, који узима у обзир и

типове возила.

Након спроведених тестова над инстанцама из скупа I1, приметили

смо да GVNS и ACOLS дају најбоље резултате у односу на критеријум

O1. Посматрајући метахеуристике у контексту критеријума O2, ниједна

метахеуристика се није показала знатно бољом од осталих.

Резултати тестова над инстанцама из скупа I2 за критеријум O1 показују

да је MMA остварио најбоље резултате. Након MMA, GVNS, GRASP и MA

такође су имали релативно добре резултате. ACO, ACOLS и BCOi су показали

најлошије резултате за критеријум O1. Слични резултати забележени су и за

критеријум O2. Генерално, MMA је показао боље перформансе у односу на

остале методе за седам од десет посматраних метрика, укључујући просечно,

најбоље и најлошије решење за оба критеријума, као и број коришћених возила.

Завршне напомене

Током истраживања приметили смо неколико области везаних за EVRP које

би могле добити више пажње, а које нису обухваћене овом дисертацијом. Те

области и потенцијална побољшања укључују:

• Постоји много различитих VRP атрибута који нису обухваћени овом

дисертацијом. Укључивањем више атрибута, проблем може постати

релевантнији. Ипак, потребно је опрезно додавати нове атрибуте

како проблем не би постао превише опширан и комплексан за

решавање. У таквим случајевима, разумно је очекивати да ће проблеми

специјализовани за одређени сценарио давати боље резултате од оних

који разматрају превелики број атрибута.

• Иако нелинеарно пуњење батерије и нелинеарна потрошња енергије не

утичу превише на перформансе метахеуристика, ове аспекте би требало

укључити у алгоритме како би резултати били релевантнији за индустрију.
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• У мултикритеријумској оптимизацији, промена вредности једног

критеријума може имати позитивне или негативне последице по остале

критеријуме, па би било корисно извршити анализу корелације између

различитих критеријума оптимизације.

• Инкорпорација алгоритама машинског учења може бити корисна за

решавање овог типа проблема, било кроз аутоматско ажурирање

хиперпараметара методе током њеног извршавања, било кроз

коришћење тих алгоритама за предвиђање непознатих података, чиме се

метахеуристикама пружа више информација за рад.

• Иако концепт временски зависних брзина омогућава моделирање

ситуација као што су јутарња или поподневна гужва, можемо приметити

да брзина такође може зависити и од локације, пошто се гужва не ствара

равномерно на свим локацијама у граду у исто време. Самим тим, концепт

временски и просторно зависних брзина се може разматрати у контексту

VRP.
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CHAPTER
ONE

INTRODUCTION

1.1 Motivation
Given the escalating concerns surrounding greenhouse gas (GHG) emissions and their
adverse environmental impact, numerous countries have made significant commit-
ments to curbing emission levels. These efforts often involve implementing measures
such as imposing higher taxes on emissions or providing subsidies for environmentally
friendly energy sources. Notably, carbon dioxide (CO2) represents the most prevalent
GHG, accounting for approximately 81% of total GHG emissions within the Euro-
pean Union [88]. The primary source of CO2 emissions stems from the combustion of
fossil fuels, which happens to be the dominant energy source [142] (Figure 1.1). It is
worth highlighting that the transportation sector alone contributes to approximately
26% of all GHG emissions [88], necessitating a concerted focus on adopting strategies
to reduce emissions within this sector.

Figure 1.1: Global primary energy consumption by source [289].

While CO2 emissions from Internal Combustion Vehicles (ICVs) are widely rec-
ognized, they also emit a range of other pollutants. These include Nitrogen Ox-
ides (NOx), which consist of NO and NO2, along with Volatile Organic Compounds
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(VOCs), Carbon Monoxide (CO), and Particulate Matter (PM). The particulate
matter is categorized based on size, notably those less than 10 microns (PM10) and
those smaller than 2.5 microns (PM2.5), which includes black carbon [359]. These
pollutants contribute significantly to environmental and health concerns.

According to a 2019 report by the Health Effects Institute [128], the air pollution
was the fourth leading cause of death in that year (Figure 1.2). A frequently sug-
gested remedy is the use of less polluting vehicles, such as electric vehicles. While
electric vehicles do not entirely resolve the issue globally, as much of the energy used
still originates from fossil fuels, they do help relocate pollution away from densely
populated urban areas. The combination of these benefits and the rising popularity
of electric vehicles has sparked a remarkable increase in related research. While the
first scholarly mention of electric vehicles can be traced to 1909 [58], the field has
experienced a pronounced escalation in interest and academic focus in the contempo-
rary era. An analysis of publications over the past 33 years, starting from 1990 up to
December 3rd, 2023, reveals a marked increase in papers featuring ”electric vehicle”
in their titles or keywords, particularly since 20051 (Figure 1.3). This trend is a clear
indicator of the escalating interest within the scientific community regarding electric
vehicles.

Figure 1.2: Worldwide ranking of risk factors based on the total
death count from all causes in 2019 (Source: Health Effects Institute

[128]).

Consequently, the realm of environmentally friendly logistics has gained substan-
tial attention in recent years, as stakeholders seek innovative approaches to address
the challenge of GHG emissions and air pollution in general.

Environmentally friendly logistics, commonly referred to as Green Logistics, en-
compasses the integration of environmental considerations into supply chain manage-
ment to improve the environmental performance of suppliers and customers [183].
This approach involves a range of activities aimed at reducing the environmental
impact of logistics operations. These activities encompass the measurement and eval-
uation of environmental factors associated with various distribution strategies, the

1Data obtained from https://ieeexplore.ieee.org/search/searchresult.jsp?action=
search&newsearch=true&matchBoolean=true&queryText=(%22Publication%20Title%22:
electric%20vehicle)%20OR%20(%22Author%20Keywords%22:electric%20vehicle)

https://ieeexplore.ieee.org/search/searchresult.jsp?action=search&newsearch=true&matchBoolean=true&queryText=(%22Publication%20Title%22:electric%20vehicle)%20OR%20(%22Author%20Keywords%22:electric%20vehicle)
https://ieeexplore.ieee.org/search/searchresult.jsp?action=search&newsearch=true&matchBoolean=true&queryText=(%22Publication%20Title%22:electric%20vehicle)%20OR%20(%22Author%20Keywords%22:electric%20vehicle)
https://ieeexplore.ieee.org/search/searchresult.jsp?action=search&newsearch=true&matchBoolean=true&queryText=(%22Publication%20Title%22:electric%20vehicle)%20OR%20(%22Author%20Keywords%22:electric%20vehicle)
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Figure 1.3: Number of publications per year concerning electric ve-
hicles from 1990 to 2023.

reduction of energy consumption throughout logistics activities, the minimization and
proper management of waste, and the implementation of sustainable waste treatment
practices [301]. By incorporating these principles, organizations can foster sustain-
able practices and contribute to the preservation of the environment while ensuring
efficient and effective supply chain management.

The adoption of environmental practices by a company can be influenced by a
multitude of factors. These include stakeholder pressure, environmental regulations,
company size, industry sector, geographical location, internationalization, position in
the value chain, strategic attitude, managerial attitudes and motivations, manager’s
characteristics, and human resources [119].

The proactive engagement of customers plays a vital role in driving the broader
adoption of environmentally friendly practices by companies. Customers have their
own set of expectations and preferences when it comes to green products and services.
They may specifically request products to be delivered using alternative fuel vehicles
(AFVs) or in a manner that prioritizes emissions reduction. This consumer-driven
demand acts as a compelling force, pushing suppliers to embrace sustainable solu-
tions. Acknowledging the pivotal role of consumers in green logistics can serve as
a powerful motivation for companies to implement eco-friendly measures. Notably,
home delivery is particularly important to the customers since they directly bene-
fit from this service. Consequently, efficiently routing a fleet of AFVs, particularly
within the last-mile delivery context, becomes increasingly important as it seeks to
strike a balance between the interests of both companies and customers.

However, incorporating environmentally-friendly policies in logistics often presents
a unique set of challenges, as these policies can sometimes conflict with the core
objectives of logistics itself. These conflicts are commonly known as the paradoxes of
green logistics. In a study conducted by Rodrigue, Slack, and Comtois [291], various
paradoxes have been identified, highlighting the intricate balance required between
sustainable practices and logistical efficiency:
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• Costs: Logistics primarily aims to reduce transportation costs and improve effi-
ciency, but these cost-saving strategies often conflict with environmental consid-
erations. Environmental costs, such as pollution and congestion, are typically
externalized, benefiting users and consumers while burdening the environment.
This situation presents a paradox in logistics, where cost reductions do not
necessarily equate to decreased environmental impact.

• Time / Speed: In the logistics sector, the focus on time efficiency frequently
results in a greater reliance on transportation methods that are highly polluting
and energy-inefficient, like air freight and trucking. Take electric vehicles as an
instance, while they offer the advantage of reducing local pollution, particularly
in urban settings, their extended recharging durations render them less time-
efficient. This limitation in time efficiency is a significant factor impeding their
broader adoption in the logistics industry.

• Reliability: The core principle of logistics is service reliability, focusing on
timely delivery with minimal risk of damage or breakage. This emphasis often
leads logistics providers to favor transportation modes deemed most reliable,
which, paradoxically, are also the least environmentally friendly. Modes like
shipping and rail, considered less reliable in terms of punctuality and safety,
have garnered a reputation for lower customer satisfaction. Consequently, the
logistics industry predominantly revolves around air and truck shipments, de-
spite their significant environmental impact.

• Warehousing: Logistics significantly contributes to globalization and interna-
tional trade by enabling economies to minimize inventory through fast and reli-
able deliveries, reducing the need for extensive warehousing. However, this has
led to a shift where inventories are increasingly in transit, particularly on roads
and terminals, exacerbating congestion and pollution, with the environmental
and societal costs falling outside the responsibilities of logistics operators.

• E-commerce and information technologies: The advent of information
technologies has revolutionized retailing, particularly in the realm of e-commerce.
E-commerce thrives on an integrated supply chain that facilitates data inter-
change among suppliers, assembly lines, and freight forwarders. While online
transactions appear to be movement-free for customers, the distribution pro-
cesses they trigger can be more energy-intensive than traditional retail activities.
Moreover, in the realm of supply chain management, companies have the option
to enhance their operations by equipping products with radio frequency identifi-
cation technology and integrating it with blockchain technology. This advanced
approach enables more precise tracing of product origins and materials, im-
proves quality control, and simplifies information sharing [335]. However, it is
important to note that such technological integration can significantly increase
energy consumption.

Navigating these paradoxes is crucial for the successful adoption of environmentally-
friendly logistics practices. Consequently, numerous researchers in the field of opti-
mization are now dedicating their efforts to resolving these challenges. Their goal is to
strike an optimal balance between cost-effectiveness and environmental sustainability,
endeavoring to reconcile these often competing objectives.

Ultimately, setting aside environmental considerations, the finite nature of fossil
fuel reserves cannot be ignored. Projecting the lifespan of these resources is an in-
herently complex challenge; nonetheless, some projections indicate that the peak in
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global ’all-liquids’ production may occur around 2040 [177]. Beyond this point, a
decrease in production is anticipated. Researchers have concluded that without swift
and substantial reductions in global oil demand, facilitated by policy-driven initiatives
to address climate change, the limited supply of oil is poised to have increasingly pro-
found economic and political repercussions. Given this reduced availability of fossil
fuels, the importance of alternative fuel vehicles is set to rise substantially.

1.2 Alternative fuel vehicles
Alternative fuel vehicles (AFVs) represent a dynamic shift from traditional gasoline
and diesel-powered transportation, aiming to address the growing environmental and
energy security concerns associated with fossil fuels. These vehicles utilize alterna-
tive energy sources such as electricity, biofuels, natural gas, hydrogen, and others,
diverging from conventional petroleum-based fuels. The importance of AFVs lies in
their potential to reduce harmful emissions, diminish our dependence on finite oil
reserves, and foster a more sustainable and environmentally-friendly transportation
landscape. As public awareness of climate change and environmental degradation
increases, AFVs are attracting more attention. The core idea behind AFVs is to offer
the same or improved transportation capabilities while minimizing the environmen-
tal footprint and leveraging renewable or cleaner energy sources. A comprehensive
discussion on the pros and cons of various AFVs can be found in the publication by
Ghadikolaei et al. [104].

Some examples of AFVs include:

• Electric Vehicles

– Battery Electric Vehicles (BEVs): BEVs operate by using rechargeable
batteries to power an electric motor, instead of a conventional internal
combustion engine. One of the main advantages of BEVs is their zero-
emission operation, which significantly reduces their negative environmen-
tal impact. However, a major drawback of BEVs is their relatively limited
driving range and lengthy recharge time, which can hinder their practical-
ity for long-distance travel. Additional insights into this type of vehicle
are elaborated upon in references [135, 165, 299].

– Hybrid Electric Vehicles (HEVs): HEVs combine an internal combustion
engine (ICE) with an electric motor and battery system to power the
vehicle. The electric motor and battery assist the ICE, improving fuel
efficiency and reducing emissions. HEVs utilize regenerative braking to
recharge the battery by converting kinetic energy into electrical energy.
HEVs offer benefits such as reduced fuel consumption, lower emissions, and
increased driving range compared to conventional vehicles. They provide
a practical solution by combining the advantages of both conventional
and electric vehicles, making them an attractive option for those seeking
improved fuel efficiency without the limitations of pure electric vehicles.
Additional resources on HEVs are available in references [81, 82, 122, 229].

– Plug-in Hybrid Electric Vehicles (PHEVs): PHEVs operate similarly to
HEVs, combining an internal combustion engine with an electric motor
and battery system. However, what sets PHEVs apart is their larger bat-
tery capacity, allowing them to be charged from an electrical outlet. This
feature enables PHEVs to travel longer distances solely on electric power,
reducing fuel consumption and tailpipe emissions. When the battery is
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depleted, PHEVs seamlessly switch to utilizing the internal combustion
engine, offering extended driving range without the range anxiety associ-
ated with fully electric vehicles. The ability to recharge the battery from
an external power source makes PHEVs more flexible, as they can take
advantage of electricity from the grid, reducing dependence on fossil fuels.
Further information on this vehicle type is detailed in references [9, 57,
218].

– Extended-Range Electric Vehicles (EREVs): EREVs are a unique type of
electric vehicle that combines the benefits of both electric and conventional
vehicles. EREVs feature an electric motor powered by a large battery pack,
similar to Battery Electric Vehicles (BEVs). However, what sets EREVs
apart is the presence of an onboard internal combustion engine that serves
as a generator to charge the battery when its energy is depleted. This
means that EREVs can operate solely on electric power for a significant
distance, depending on the model and battery capacity. Once the battery
is depleted, the ICE kicks in to generate electricity, effectively extending
the vehicle’s range. This dual-power system eliminates the issue of range
anxiety commonly associated with fully electric vehicles. Additional re-
sources on this topic are available in references [279, 364].

– Fuel Cell Electric Vehicles (FCEVs): FCEVs are a type of electric vehicle
that use hydrogen as their primary fuel source. Unlike BEVs that store
electricity in batteries, FCEVs generate electricity through a chemical re-
action between hydrogen and oxygen in a fuel cell stack. This process
produces electricity, water vapor, and heat as byproducts, making FCEVs
an environmentally friendly transportation option. The electricity gen-
erated powers an electric motor, propelling the vehicle forward. One of
the significant advantages of FCEVs is their long driving range and quick
refueling time. Hydrogen can be refueled in a matter of minutes, similar
to traditional gasoline-powered vehicles, offering a convenient and familiar
experience for drivers. Additionally, FCEVs emit zero GHG, as the only
byproduct is water vapor. However, the widespread adoption of FCEVs
faces challenges such as the limited availability of hydrogen refueling infras-
tructure and the high cost of fuel cell technology. Despite these obstacles,
ongoing advancements and investments in hydrogen fuel cell technology
show promising potential for Fuel Cell Electric Vehicles as a clean and sus-
tainable mobility solution. Additional references on FCEVs can be found
in [249, 276, 316].

• Biofuel Vehicles

– Ethanol Flex-Fuel Vehicles (FFVs): FFVs are engineered to operate using
either ethanol, gasoline, or a mixture of both. Ethanol, a renewable fuel
source mainly extracted from crops like corn and sugarcane, blends with
gasoline to enhance the fuel’s octane rating and reduce harmful emissions
compared to gasoline alone. FFVs are equipped with an internal combus-
tion engine and a fuel system tailored to withstand the corrosive effects
of high ethanol concentrations. The use of ethanol as a fuel helps reduce
reliance on imported oil and contributes to the lowering of greenhouse gas
emissions. Nonetheless, the use of ethanol as a fuel source presents cer-
tain challenges, including questions regarding the energy efficiency of its
production process and its influence on food commodity prices. For more
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comprehensive information about this vehicle category, one can refer to
specific studies indicated in references [24, 62].

– Biodiesel Vehicles: Vehicles that utilize biodiesel as fuel harness the energy
from renewable, organic sources such as vegetable oils, animal byproducts,
or reclaimed cooking oils. Biodiesel is versatile, allowing for usage in its
entirety as B100 or in diluted forms like B5 and B20 blends, where it is
combined with conventional diesel. This eco-friendly fuel stands out for its
cleaner combustion process compared to regular diesel, significantly cut-
ting down emissions of particulates, carbon monoxide, and hydrocarbons.
However, it is worth noting that higher concentrations of biodiesel may
not be compatible with all diesel engines and might require specific alter-
ations. For a more comprehensive understanding of this subject, reference
materials [12, 97] can provide further information.

• Propane Autogas Vehicles: Propane Autogas Vehicles operate using propane,
commonly referred to as liquefied petroleum gas (LPG), as their primary fuel
source. Propane autogas is a clean-burning and domestically abundant alterna-
tive to traditional gasoline and diesel. These vehicles are fitted with specialized
fuel systems designed to handle propane’s unique properties, which is stored un-
der pressure as a liquid. When released, it vaporizes and can be used to power
an internal combustion engine. Propane autogas vehicles tend to produce fewer
GHG emissions compared to their gasoline counterparts, making them a more
environmentally friendly option. Helpful resources on the topic can be found in
[248, 260, 356].

• Synthetic Fuels: Vehicles using synthetic fuels operate on man-made fuel sources
derived from processes that transform natural gas, coal, or biomass into liq-
uid hydrocarbons. These synthetic fuels, often referred to as synfuels, aim
to replicate the energy density and combustion characteristics of traditional
petroleum-based fuels, like gasoline and diesel. The advantage of synfuels lies
in their potential for reduced greenhouse gas emissions and diminished reliance
on crude oil imports, as they can be produced from a variety of domestic re-
sources. Moreover, they can be tailored to produce fewer impurities, resulting in
cleaner combustion and reduced tailpipe emissions. While the technology and
processes behind synthetic fuel production, such as Fischer-Tropsch synthesis,
have been around for decades, economic viability and concerns over the full life-
cycle emissions of certain feedstocks (like coal) have impacted their widespread
adoption. Further information on this topic is available in references [121, 277,
278, 317].

• Dimethyl Ether Vehicles: Dimethyl Ether (DME) vehicles operate on an alter-
native fuel that presents itself as a promising eco-friendly option for the trans-
portation sector. DME is a colorless, odorless gas at room temperature but
can be easily liquefied under pressure, making its physical properties somewhat
similar to propane. Its primary appeal is its capacity to be produced from a
wide variety of renewable resources, including biogas and various organic waste
materials. As DME is oxygen-rich, it reduces the emission of nitrogen oxides
upon combustion. Despite its potential benefits, the adoption of DME as a
mainstream vehicle fuel is still in its developing stages, primarily because of the
lack of refueling infrastructure and the need for vehicle engines to be modified or
specifically designed to utilize it. Further information on this topic is available
in references [189, 267, 305].
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• Biogas Vehicles: Biogas vehicles represent an innovative approach to sustainable
transportation, harnessing the energy of biogas - a mixture of methane and car-
bon dioxide produced by the anaerobic digestion of organic matter. Common
sources of biogas include agricultural waste, manure, municipal waste, plant
material, and sewage. When purified to increase the methane content, biogas
becomes biomethane, which can be used as a vehicle fuel. Vehicles running on
biomethane benefit from reduced GHG emissions compared to those powered
by traditional fossil fuels. Additionally, using biogas aids in waste manage-
ment by converting potential pollutants into a valuable energy source. Further
information on this topic is available in references [38, 265].

• Solar Powered Vehicles: Solar powered vehicles harness the energy of the sun,
converting it into electricity through photovoltaic cells mounted on their sur-
faces, primarily on the roof. These vehicles use this electricity to power electric
motors that propel the vehicle forward. While the idea of a purely solar-powered
vehicle is attractive for its potential to achieve zero-emission transportation, in
practical terms, many solar vehicles use the solar panels to assist in charging
onboard batteries rather than as the sole power source. This is due to the lim-
ited surface area available for solar panels and the variable nature of sunlight.
Though widespread commercial viability of fully solar-powered vehicles remains
a challenge due to these limitations, integrating solar panels into electric and
hybrid vehicles to extend their range and reduce grid charging needs is see-
ing increasing interest from automotive manufacturers. Additional info on this
topic can be found in [211, 351].

• Liquid Nitrogen Vehicles: Liquid nitrogen vehicles operate by utilizing the rapid
expansion of liquid nitrogen to produce a pressurized gas that can drive a piston
or turbine, thereby generating mechanical power to propel the vehicle. When
the extremely cold liquid nitrogen is exposed to ambient temperatures, it rapidly
converts to nitrogen gas, expanding up to 700 times its liquid volume. This ex-
pansion can be channeled to perform work, much like steam in a steam engine.
One of the primary advantages of liquid nitrogen as a propellant is its environ-
mental benignity; the process emits only nitrogen, which is already the primary
component of our atmosphere. However, the energy-intensive nature of lique-
fying nitrogen - requiring significant electrical input - has been a hurdle for its
widespread adoption. Moreover, the storage and handling of cryogenic liquids
present engineering challenges. Additional insights into this vehicle type are
elaborated in references [162, 273, 375].

• Air-Powered Vehicles: Air-powered vehicles, often referred to as compressed air
vehicles (CAVs), utilize compressed air to create mechanical motion that drives
the vehicle. The principle is straightforward: air is compressed into tanks at
high pressure and, when released, this air expands, driving a piston or turbine
that in turn propels the vehicle. One of the most significant advantages of CAVs
is that they emit no pollutants during operation, as the only exhaust is clean,
cold air. Moreover, compressing air is a process that can use electricity from
renewable sources, positioning air-powered vehicles as a potential sustainable
transportation solution. However, there are challenges to overcome. The energy
density of compressed air is much lower than traditional fuels, which can limit
the range of these vehicles. Additionally, the process of compressing air is not
always efficient, especially when compared to other energy storage methods.
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Further details about this type of vehicle are available in references [89, 269,
283, 332].

1.3 Operations research
Operations Research (OR) represents a scientific methodology that utilizes sophisti-
cated analytical techniques to improve decision-making, typically within the context
of limited resources [360]. Utilizing the tools from the mathematical sciences, includ-
ing mathematical modeling, statistical analysis, and optimization techniques, OR
aims to identify the best possible solutions to complex problems involving system
operations, spanning from business enterprises to intricate networks of machinery.

At the core of OR is the field of optimization, which is concerned with finding the
best available values of some objective function given a defined domain of possible
inputs. In practical terms, optimization helps in identifying the most efficient, least
costly, or most profitable solution to a problem. OR uses a variety of optimization
algorithms to tackle problems such as scheduling (finding the best order in which
to perform a series of tasks), routing (determining the most efficient paths for mul-
tiple journeys), and resource allocation (distributing resources in the most effective
manner).

The connection between operations research and optimization is deeply rooted,
as optimization provides the mathematical foundation and tools that OR practition-
ers need to formulate and solve problems. Operations researchers develop and use
mathematical models to simulate complex systems and scenarios. These models can
be linear, nonlinear, integer, dynamic, and stochastic, each serving different types of
problems and requiring different optimization techniques.

In the business world, OR translates into a host of applications such as supply
chain management, where it helps in optimizing the flow of goods and services from
production to consumption. In logistics, it improves the delivery routes and sched-
ules, minimizing costs while maximizing efficiency. In finance, it assists in portfolio
optimization and risk management. The versatility of OR extends to public services
as well, aiding in urban planning, transportation networks, and even in healthcare
management, optimizing staff schedules and patient flows.

The incorporation of OR into green logistics manifests in various ways. It in-
cludes the development of eco-friendly vehicle routing schedules that consider fuel
consumption, emissions, and traffic patterns. In warehouse management, OR models
help in optimizing the layout and operations to reduce waste and energy usage. Sup-
ply chain management, too, benefits from OR by optimizing product flows to reduce
unnecessary transport, thus cutting down on emissions and energy expenditure.

Moreover, OR assists in strategic planning within green logistics by analyzing
trade-offs between different logistical options and their environmental impacts. For
instance, OR can help determine the viability of investing in alternative fuel vehicles
or the long-term benefits of building greener infrastructure.

The role of OR in green logistics is not only tactical but also strategic. By inte-
grating sustainability goals into mathematical models, OR provides a framework for
making decisions that support both economic and environmental objectives. It en-
hances the capacity to evaluate the full cost implications of logistics, including those
external costs related to environmental degradation and societal impacts.
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1.4 Optimization problems
Optimization problems, prevalent in both industry and theoretical science, involve
determining the most favorable values for a specific set of parameters to attain a
desired objective [266]. These problems can be viewed as an extension of decision
problems, where solutions are further evaluated using an objective function. In min-
imization scenarios, the goal is to identify a solution that yields the lowest possible
value of the objective function. Conversely, in maximization problems, the aim is to
find a solution that achieves the highest value. This approach is pivotal in optimizing
outcomes across various fields and applications.

Minimization problems can be concisely formulated as:

min
x∈S

f (x) (1.1)

Here, we define an objective function f : Rn → R, with S ⊆ Rn signifying
the entire spectrum of feasible solutions. The conversion between maximization and
minimization problems is intuitive:

max
x∈S

f (x) = −min
x∈S

(− f (x)) (1.2)

When a point x∗ fulfills:

f (x∗) ≤ f (x), ∀x ∈ S (1.3)

it is termed the global minimum or more broadly, the global optimum. Conversely,
if a neighborhood N (x̄) around x̄ exists where:

f (x∗) ≤ f (x), ∀x ∈ N (x̄) ∩ S (1.4)

the point x∗ is identified as a local minimum or local optimum within N (x̄). The
global optimum is invariably a local optimum with respect to all possible neighbor-
hoods, whereas a local optimum is not necessarily a global optimum. Figure 1.4
illustrates the distinction between the global minimum and local minima using the
example function f (x) = sin(2πx) + 1

2 sin(4πx) + 1
4 sin(8πx) − 2e−2(x−1.5)2 . The

graphical depiction clearly delineates the global minimum as the lowest point on the
curve, contrasted with the local minima, which are the lowest points in their imme-
diate vicinities.
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Figure 1.4: The difference between local minima and global mini-
mum

Typically, optimization problems are categorized into three distinct types: dis-
crete, continuous, and mixed [66]. Discrete optimization problems are characterized
by variables that assume discrete values. In contrast, continuous optimization prob-
lems involve variables that are drawn from a continuous set, often the set of all real
numbers. Mixed optimization problems present a combination of both, with certain
variables assigned discrete values and others permitted to vary continuously. It is
worth noting that some literature may classify mixed optimization problems under
the discrete category.

Discrete optimization encompasses a variety of challenging problems, including the
traveling salesman problem [219], vehicle routing [337], set cover [45], scheduling [334],
and the minimum Steiner tree [290], among others. Continuous optimization encom-
passes tasks such as maximizing differential amplifier yields, tuning shock absorber
systems in mechanics, and estimating parameters for non-linear regression models in
immunology [240]. A common thread uniting these diverse problems is their inherent
complexity. Discrete optimization problems are frequently NP-hard, and finding a
global optimum in continuous optimization typically entails exponential complexity
in the general case [103]. However, it is noteworthy that for certain global optimiza-
tion scenarios, like convex optimization problems, highly efficient polynomial-time
resolution methods exist, such as Interior point methods [39].

1.4.1 Solution methods

Solution methods for optimization problems are broadly categorized into two main
types: exact and approximate algorithms [328]. Exact algorithms are designed to de-
liver optimal solutions, albeit requiring significant time and computational resources.
On the other hand, approximate algorithms offer good estimates for solutions within
constrained time or memory, though they do not guarantee optimality. These can be
either deterministic or stochastic.
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An example of an exact approach is the Mixed Integer Linear Program (MILP),
which formulates the problem using optimization objectives and linear constraints,
which can then be solved to optimality through techniques like the cutting-plane
method [116], branch and bound [181], or branch and cut [261]. Typically, MILP
problems are solved using ready-to-use solvers, such as CPLEX2, Gurobi3, or GLPK4.
Another example of an exact approach is dynamic programming.

Under the umbrella of approximate algorithms, there are heuristic, metaheuristic,
and approximation algorithms. Heuristic algorithms are tailored to specific problems,
with constructive heuristics building up from an empty solution iteratively until com-
pletion, while improvement heuristics start with a complete solution and work towards
refining it.

Metaheuristics are general, usually iterative and stochastic methods, and can
be either constructive or improvement-based5. Their generality means they can be
adapted to a wide array of optimization problems, offering frameworks to develop
specific algorithms for each unique challenge. A subcategory within metaheuristics
are hybrid algorithms, which merge metaheuristic techniques with some exact solver.
These algorithms use metaheuristic methods to create smaller subproblems from the
original problem, which are then solved using exact methods. In certain scenarios,
these hybrid methods can approach the precision of exact methods given ample time.

Lastly, approximation algorithms form a class of heuristic algorithms that quickly
find approximate solutions with a guaranteed worst-case approximation factor. As
part of the heuristic category, they are also problem-specific, offering estimates of
solution quality within a calculable range.

It is important to clarify once again the distinction between Approximation algo-
rithms and Approximate algorithms. Approximation algorithms, a subset of heuristic
algorithms, come with a guaranteed level of solution quality. Conversely, approximate
algorithms stand in contrast to exact algorithms. These methods do not guarantee
the discovery of the optimal solution, even with ample time. Within this context,
approximation algorithms are considered a subclass of approximate algorithms. This
thesis does not delve into approximation algorithms, readers seeking more informa-
tion on this specific class of algorithms are directed to references [29, 171, 347, 358]
for a more detailed exploration.

In Figure 1.5, we showcase the previously mentioned classification of methods for
optimizational problems. Reflecting on our earlier statement that heuristic methods
are tailored to specific problems, the examples provided here are particularly chosen
with the VRP in mind. It is important to note that this classification serves more
as a guideline rather than a strict rule, as certain algorithms may fall into different
categories depending on the context. For instance, MIP-based methods are exact
when provided with sufficient time and resources. However, under constraints of time
or memory, they may be regarded as heuristic methods.

2https://www.ibm.com/products/ilog-cplex-optimization-studio
3https://www.gurobi.com/
4https://www.gnu.org/software/glpk/
5The classification presented here is just one approach; we elaborate on various alternative clas-

sification schemes in Section 2.1.

https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.gurobi.com/
https://www.gnu.org/software/glpk/
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Figure 1.5: Various approaches to solving discrete optimization prob-
lems.

1.5 The contributions of this thesis
This thesis defines three problems relevant to the industry. The first problem deals
with the routing of electric vehicles with flexible time windows and time-dependent
speeds. The second version expands on this problem by allowing partial battery charg-
ing at stations, aiming for optimal time management and ensuring timely service for
users. The third version represents an additional expansion, incorporating a fleet
that includes conventional vehicles, reflecting the most realistic scenario. Addition-
ally, asymmetric distances between locations, characteristic of urban environments,
have been considered, along with multi-criteria optimization for this problem.

For the first problem, a mathematical model has been proposed. Eight meta-
heuristic methods were tested for each problem, a statistical analysis of the results
was conducted, and the methods were compared based on multiple criteria.

In addition to these contributions, the most comprehensive list of metaheuristics
to date has been compiled, with each metaheuristic classified based on its inspiration.
Furthermore, to test the third version of the problem, it was necessary to create
new instances, which are publicly available at https://www.mi.sanu.ac.rs/~luka/
resources/Instances.zip. Finally, several auxiliary methods have been developed
(e.g., for creating initial solutions, adding visits to stations, or determining vehicle
departure schedules), which may also be useful in future algorithms.

Two papers published in journals have emerged from this thesis. The first paper,
published in the YUJOR journal, is a review article on metaheuristic approaches to
green vehicle routing problem:

https://www.mi.sanu.ac.rs/~luka/resources/Instances.zip
https://www.mi.sanu.ac.rs/~luka/resources/Instances.zip
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Matijević, Luka. “Metaheuristic Approaches for the Green Vehicle Routing Prob-
lem”. In: Yugoslav Journal of Operations Research 33.2 (2022), pp. 153–198. doi:
http://dx.doi.org/10.2298/YJOR211120016M

The second paper, published in the International Journal of Industrial Engineering
Computations, addresses the method of Variable Neighborhood Search applied to the
problem of electric vehicle routing problem:

Matijević, Luka. “General Variable Neighbourhood Search for Electric Vehicle Rout-
ing Problem with Time-dependent Speeds and Soft Time Windows”. In: Interna-
tional Journal of Industrial Engineering Computations 14 (2023), pp. 275–292. doi:
10.5267/j.ijiec.2023.2.001.

Although not derived from the thesis, the following paper is also thematically
related to it:

Matijević, Luka et al. “General VNS for asymmetric vehicle routing problem with
time and capacity constraints”. In: Computers & Operations Research 167 (2024),
p. 106630. issn: 0305-0548. doi: https://doi.org/10.1016/j.cor.2024.106630.
url: https://www.sciencedirect.com/science/article/pii/S0305054824001023

1.6 The structure of this thesis
This thesis is organized as follows:

Chapter 2 offers a comprehensive overview of metaheuristic algorithms, includ-
ing various classification schemes and commonly used local search procedures. We
delve into several metaheuristics, particularly those relevant to this thesis, in substan-
tial detail. Complementing this chapter, a comprehensive list of all identified meta-
heuristic algorithms is available in an accompanying document. This resource can
be accessed and downloaded at https://www.mi.sanu.ac.rs/~luka/resources/
phd/AppendixA.pdf. An additional valuable resource, featuring an extensive list
of various evolutionary metaheuristics, is available at https://fcampelo.github.
io/EC-Bestiary/.

In Chapter 3, we introduce the Vehicle Routing Problem and its specialized vari-
ant, the Green Vehicle Routing Problem. This chapter also provides an overview
of typical scenarios and objective functions associated with these problems. Addi-
tionally, we explore specific aspects of GVRP related to electric vehicles, such as
recharging and consumption functions. The final part of this chapter is dedicated
to a literature review of publications focusing on GVRP. Here, we offer a statistical
analysis of the common scenarios and methods employed in these studies.

The core of the thesis is presented in Chapters 4, 5, and 6, where we describe our
original contributions and findings. These chapters outlines three distinct versions
of the problem, proposes algorithms for solving them, and analyzes their hyperpa-
rameters. We also discuss the relative performance of these algorithms, supported by
empirical results. The document complementing this chapter by showcasing all the
results from our testing phase can be downloaded from https://www.mi.sanu.ac.
rs/~luka/resources/phd/AppendixB.pdf.

Finally, Chapter 7 concludes the thesis with some closing remarks and identifies
potential areas for future research, aiming to further advance the field.

https://doi.org/http://dx.doi.org/10.2298/YJOR211120016M
https://doi.org/10.5267/j.ijiec.2023.2.001
https://doi.org/https://doi.org/10.1016/j.cor.2024.106630
https://www.sciencedirect.com/science/article/pii/S0305054824001023
https://www.mi.sanu.ac.rs/~luka/resources/phd/AppendixA.pdf
https://www.mi.sanu.ac.rs/~luka/resources/phd/AppendixA.pdf
https://fcampelo.github.io/EC-Bestiary/
https://fcampelo.github.io/EC-Bestiary/
https://www.mi.sanu.ac.rs/~luka/resources/phd/AppendixB.pdf
https://www.mi.sanu.ac.rs/~luka/resources/phd/AppendixB.pdf
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1.7 Chapter conclusion
In this introductory chapter, we delve into the driving motivation behind this thesis.
We explore a range of alternative fuel vehicles, examining their respective benefits
and drawbacks. Additionally, we lay the groundwork by introducing key concepts in
green logistics and operations research, highlighting the interplay between these two
vital fields. We also define various optimization problems, referencing some of the
more renowned challenges in the field.

Our discussion extends to the diverse methodologies available to tackle these prob-
lems, differentiating between exact and approximate algorithms and categorizing the
latter into distinct groups. This foundational chapter sets the stage for a deeper
exploration of the topics at hand, establishing a comprehensive context for the thesis.
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CHAPTER
TWO

METAHEURISTICS OVERVIEW

In the vast realm of optimization and search, metaheuristics stand out as a power-
ful class of algorithms designed to find high-quality solutions to complex problems,
especially those for which traditional methods are either inapplicable or inefficient
[50, 328]. The term ’metaheuristic’ is derived from the Greek words ’meta’ meaning
’higher ’ or ’beyond’, and ’heuriskein’ meaning ’to search’ or ’to find’. Thus, meta-
heuristics can be interpreted as high-level problem-independent strategies aimed at
guiding other heuristics to produce the best possible solution within a reasonable
computation time.

Metaheuristics are particularly useful for solving combinatorial optimization prob-
lems, where the search space is enormous, and exhaustive search is computationally
expensive. These methods are characterized by their flexibility and general applica-
bility. Unlike exact algorithms, which guarantee an optimal solution, metaheuristics
provide approximate solutions, meaning that the quality of a solution can not be
guaranteed. However, in many real-world scenarios, they can rapidly yield solutions
that are ”good enough” or close to optimal.

Popular metaheuristic approaches include Genetic Algorithms, Simulated An-
nealing, Tabu Search, Ant Colony Optimization, and Particle Swarm Optimization,
among others. Most of these techniques is inspired by different natural or artificial
processes. For instance, Genetic Algorithms draw inspiration from biological evolu-
tion, while Simulated Annealing is inspired by the annealing process in metallurgy.

2.1 Classification of metaheuristics
As previously mentioned, metaheuristics serve as versatile strategies capable of identi-
fying satisfactory solutions for challenging optimization problems, even if they might
forgo guarantees of optimality. Notably, these metaheuristics possess distinct at-
tributes that allow for their classification into specific categories. Recognizing and
understanding these categorizations is crucial, as the inherent characteristics of meta-
heuristics within one category might render them more suited to particular problems
compared to those from another category.

Birattari et al. [34] pioneered one of the earliest classification frameworks for
metaheuristics, a system which laid foundational groundwork for many subsequent
classifications. Their scheme highlighted six core attributes of metaheuristics:

• Trajectory versus discontinuous methods: Trajectory methods methodically ex-
plore the solution space through a continuous path of incremental changes, while
discontinuous methods jump across different regions of the search space.
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• Population-based versus single-point search approaches: Population-based meth-
ods explore multiple solutions concurrently, whereas single-point methods iter-
atively refine a single solution.

• Memory usage versus memoryless techniques: Metaheuristics that use memory
retain and utilize past solution information to influence future search directions,
while memoryless metaheuristics operate independently of previous solutions,
making each decision without reference to past states.

• Singular versus multiple neighborhood structures: Metaheuristics with a sin-
gular neighborhood structure rely on a consistent set of rules for solution ex-
ploration, whereas those with multiple structures dynamically switch between
different rule sets.

• Dynamic versus static fitness functions: Metaheuristics with dynamic objective
functions adjust their optimization criteria in response to changing conditions,
while those with static objective functions consistently pursue a fixed set of
criteria throughout the optimization process.

• Nature-inspired versus non-nature-inspired strategies: Nature-inspired meta-
heuristics are algorithms modeled after natural phenomena and biological be-
haviors, while non-nature inspired metaheuristics are developed from mathe-
matical or algorithmic principles without direct reference to natural processes.

Other researchers have explored different attributes. For instance, the study by
Fausto et al. [91] delved into five specific attributes affecting the performance of
nature-inspired algorithms. These include:

• Exploration/exploitation mechanisms (encompassing selection mechanisms, at-
traction operators, and iteration dependencies)

• Computational complexity (considering population sorting, population-related
measurements, and variable fitness function computation)

• Memory requirements

• Parameter tuning methodologies

• Overall implementation challenges.

A comprehensive review of metaheuristic classification is further detailed in Stegherr,
Heider, and Hähner [319].

2.2 Existing metaheuristics
Over the years, a diverse array of metaheuristics has emerged, drawing inspiration
from a multitude of sources. It is important to acknowledge that according to the
no-free-lunch theorem, no single metaheuristic algorithm is universally effective for
solving all optimization problems [362]. This implies that while certain algorithms
may excel in specific problem classes, their effectiveness may diminish in other prob-
lem domains. Consequently, a diverse array of metaheuristics has evolved to address
this variability. However, this abundance of options has simultaneously made the
task of identifying the most suitable metaheuristic for a particular problem more
challenging.
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We have compiled a detailed catalog of metaheuristics, utilizing a variety of re-
sources and survey publications, notably including references [1, 340]. This compre-
hensive catalog is available in a separate document, which can be downloaded from the
following link: https://www.mi.sanu.ac.rs/~luka/resources/phd/AppendixA.pdf.
This process involved correcting inaccuracies found in these sources and incorporat-
ing numerous unlisted metaheuristics. The table from the aforementioned document
presents a detailed inventory of 540 metaheuristics, specifying their names, publica-
tion years, abbreviated list of authors, and the inspirations behind each. It is impor-
tant to acknowledge that our list may not be exhaustive. There are metaheuristics
that might have been overlooked, and some were deliberately excluded due to their
similarity to others already included. For instance, we omitted ”Reduced Variable
Neighborhood Search” because it is a variation of the ”Variable Neighborhood Search”
algorithm already listed.

The differentiation between metaheuristics can sometimes be subtle, especially
when they are technically similar yet distinct in name and presentation. For example,
many nature-inspired population-based metaheuristics share the Genetic Algorithm’s
core concepts like crossover and selection, yet are recognized as separate entities. To
address this ambiguity, we followed a straightforward criterion: if an algorithm was
introduced by its authors as a new metaheuristic, it was included in our list. It is also
worth noting that matheuristics are not part of this compilation, as they are hybrid
methods reliant on external solvers.

Figure 2.1 displays a histogram that illustrates the annual emergence of new
metaheuristics. This visual representation clearly indicates an upward trend in the
creation of new metaheuristics since the year 2000. This influx has been instrumental
in introducing innovative concepts, significantly enriching the field of metaheuristics.
However, there is a growing concern among some scholars about the proliferation of
metaheuristics that primarily offer novel metaphors rather than substantial concep-
tual advancements [14]. This trend, while highlighting the field’s dynamism, raises
questions about the depth and novelty of contributions within these new metaheuris-
tics.

Figure 2.1: Number of new metaheuristics introduced per year.

https://www.mi.sanu.ac.rs/~luka/resources/phd/AppendixA.pdf
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In our research, we organized metaheuristics into 14 distinct categories, each de-
fined by its source of inspiration. The Animal category encompasses metaheuristics
inspired by animal behaviors, while the Plant category is dedicated to those influ-
enced by plant characteristics. The Organism category includes metaheuristics in-
spired by entities not classified as animals or plants, such as fungi, bacteria, or viruses.
The Biology category encompasses metaheuristics that draw inspiration from a broad
spectrum of biological processes and concepts, without being specifically tied to any
particular organism. Human-based metaheuristics derive from human behaviors or
interactions, and the Culture category captures those influenced by specific cultural
elements like cinema or traditions. Physics encompasses metaheuristics grounded in
physical phenomena or scientific laws, and Chemistry covers metaheuristics based
on the laws of chemistry. Other categories include: Mathematics for those based on
mathematical principles, Music for those derived from music theory, Sport/Game
for those influenced by social games, games of chance, and sports. Technology
encompasses metaheuristics rooted in modern technological concepts like software
development or transportation. Geography refers to those inspired by geographical
elements, while Non-metaphor includes metaheuristics developed independently of
real-world analogies.

It is important to note that categorizing metaheuristics is not always straight-
forward. Often, a metaheuristic may blend inspirations from multiple sources, or
its categorization may be ambiguous. For instance, an algorithm inspired by the
behavior of Hitchcock’s birds could be classified under Animal due to its animalistic
influence, but also under Culture given its cinematic origin. Similarly, a zombie-based
algorithm could fall into the Organism category for its basis in fictional organisms,
while also fitting into Culture due to its roots in tradition and popular media.

Figure 2.2 presents a clear distribution of metaheuristics based on their sources of
inspiration. The most predominant category is that of animal-inspired metaheuristics,
with physics-inspired metaheuristics being the second largest category. This trend
becomes even more pronounced when examining the metaheuristics published in the
last five years, as depicted in Figure 2.3.

Figure 2.2: Distribution of metaheuristics by inspiration.
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Figure 2.3: Distribution of metaheuristics by inspiration (Last 5
years).

2.3 Local search heuristics
Local search techniques are pivotal in the realm of optimization, forming the backbone
of numerous metaheuristic strategies. Their primary function is to enhance a solution
through a process of iterative improvement, examining nearby solutions to discover
the ones of higher quality. These methods involve minor, step-by-step modifications
to the existing solution, thereby methodically traversing the solution space in pursuit
of better solutions. Two prevalent tactics employed in guiding this search process are
the first improvement and best improvement methods.

• First Improvement Strategy: In the first improvement strategy, the algo-
rithm searches through the neighboring solutions of the current state. As soon
as it identifies a neighbor that is better than the current solution (according to
the problem’s objective), it moves to that neighbor without further examining
the rest of the neighborhood. The advantage of this approach is speed: it can
rapidly traverse the solution landscape since it does not require a comprehen-
sive search of the entire neighborhood at each step. However, the downside is
that it might miss an even better solution in the neighborhood since it stops
searching after the first improvement is found.

• Best Improvement Strategy: On the other hand, the best improvement
strategy is more exhaustive in its search. Instead of settling for the first im-
provement it finds, the algorithm evaluates all neighboring solutions in the
current state’s neighborhood. It then selects the best among them (the one
that offers the most significant improvement) and moves to that state. This
strategy can be computationally more intensive, especially if the neighborhood
is large, as it requires a full exploration of all neighbors. However, it tends to
find higher-quality local optima than the first improvement strategy since it
always chooses the best available move in the neighborhood.
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In practice, the choice between first improvement and best improvement often
depends on the specific problem, its characteristics, and the computational resources
available. Some problems may benefit more from the rapid exploration of the solution
space offered by the first improvement, while others might benefit from the depth and
quality of solutions found using the best improvement strategy.

These two strategies can be effectively combined, as demonstrated in various stud-
ies. For instance, in the research presented by Karakostas, Sifaleras, and Georgiadis
[159], the choice of strategy dynamically depends on the instance size. Smaller in-
stances are tackled using the best-improvement strategy, while larger instances are ap-
proached with the first-improvement strategy. This approach leverages the strengths
of both strategies depending on the complexity of the problem at hand.

In another study by Ren et al. [286], the authors adopted a probabilistic approach
to selecting between these strategies. Initially, the best-improvement strategy is more
likely to be chosen, reflecting the higher probability of finding superior solutions in
the early stages of the algorithm. As time progresses, the likelihood shifts towards the
first-improvement strategy. This shift is based on the rationale that, over time, the
probability of discovering significantly better solutions diminishes, making it more
efficient to opt for the first-improvement strategy. This approach helps to avoid
extensive searches in local optima and enhances the overall efficiency of the algorithm
in navigating the solution space.

There exists a wide array of local search heuristics, each with its unique applica-
tions and methodologies. In our discussion, we present several foundational heuristics,
as detailed in [294]. For an in-depth exploration of these techniques and a broader
range of search methods, we highly recommend consulting this comprehensive re-
source.

• Hill Climbing (Steepest Ascent/Descent): At each step, it evaluates all
neighbors and chooses the best one as the next current solution. Ascent seeks
to maximize the objective function, while Descent seeks to minimize it.

• First-Choice Hill Climbing: A variant of hill climbing where the first im-
proving neighbor is chosen without checking all other neighbors.

• Random Walk: A local search where the algorithm picks a random neighbor
to move to in each iteration, regardless of whether it improves the solution.

• Random Restart Hill Climbing: Hill climbing that restarts from a random
position whenever it gets stuck in a local optimum.

• Gradient Descent/Ascent (for continuous spaces): Uses the gradient of
the objective function to guide the search. It is a first-order iterative optimiza-
tion algorithm for finding a local minimum (or maximum) of a differentiable
scalar function.

• Stochastic Hill Climbing: A variant of hill climbing where the next move is
not always to the best neighbor. Instead, a random neighbor is chosen with a
probability related to how much it improves the objective function.

• Iterative Deepening: Typically used in the context of search trees in artificial
intelligence and game playing. It involves a series of depth-first searches with
increasing depth limits.

• Beam Search: Again, often used in tree searches. It is a heuristic search
algorithm that explores a graph by expanding the most promising node in a
limited set or ”beam” of possibilities.
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• Bidirectional Search: Conducts two simultaneous searches: one forward from
the initial state and one backward from the goal, hoping the two searches meet
in the middle.

• Constraint Propagation: Typically used in constraint satisfaction problems.
It involves refining domains of variables based on constraints, reducing the
search space.

2.4 Review of some metaheuristics
In this section, we aim to present several metaheuristics relevant to this work in
greater detail.

2.4.1 Variable Neighborhood Search

Variable Neighborhood Search (VNS) was originally introduced by Mladenović and
Hansen [236, 238]. At its core, VNS is a straightforward but potent approach for find-
ing approximate solutions to challenging optimization issues. It systematically varies
neighborhoods to navigate the problem’s search space, grounded in three primary
principles:

• What is considered a local optimum within one neighborhood structure might
not hold that status in another structure.

• The global optimum remains a local optimum across all neighborhood struc-
tures.

• For many problems, the majority of local optima tend to be in close proximity
to one another [161].

The first point validates the use of multiple neighborhoods. The second observa-
tion suggests that if a solution is not a local optimum within a certain neighborhood,
it cannot be the global optimum. This further supports the use of diverse neigh-
borhoods. However, it does not assure that a solution identified as a local optimum
across all utilized neighborhoods is the definitive global optimum [66]. The third
point, while empirical rather than theoretical, endorses a thorough exploration of the
immediate vicinity of the local optimum. There is a significant chance of discovering
an even superior solution within that zone. If this principle does not hold true for a
particular problem, there are VNS variations available that are not heavily dependent
on this insight.

However, employing multiple neighborhoods can prompt several questions [123]:

• Neighborhood Structure Selection: This is influenced by the metrics suit-
able for the specific problem at hand.

• Neighborhood Ordering: The order should reflect an increasing distance
between the current solution x and the solutions xk within Nk(x), where k
ranges from 1 to kmax.

• Neighborhood Size: Given constraints, only neighbors with the potential to
enhance the current solution should be identified and assessed.

• Search Strategies: Options include first improvement and best improvement,
already detailed in Section 2.3.
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• Descent Approaches: If a superior solution is not found, a decision needs to
be made on accepting an ascent move, which alters the neighborhood and/or
solution.

• Exploration Directions: This dictates the sequence in which neighborhoods
are explored. In forward VNS, k progresses from 1 to kmax, while in backward
VNS, it is the opposite: from kmax down to 1.

• Search Intensity and Variety: In the realm of local search-based meta-
heuristics, strategic decisions must be made about when to delve deeper into
promising regions (intensification) and when to explore new areas (diversifica-
tion). The neighborhoods selected for these respective processes can vary and
are not bound to be identical, as demonstrated in the study by Matijević [220].

The basic VNS algorithm’s pseudocode is outlined in Algorithm 1. From this
pseudocode, it is evident that the VNS metaheuristic is structured around three
primary components:

1. Shaking Phase: This component introduces randomness into the search pro-
cess. By moving away from the current solution to a different region in the
search space, the algorithm avoids getting trapped in local optima. By system-
atically changing neighborhoods, the shaking phase ensures a diversified search.

2. Local Exploration: After the shaking phase, this component refines the solu-
tions by performing a more intensive and focused search within the neighbor-
hood of the solution obtained from the shaking phase. The goal is to find a
local optimum in the current neighborhood, which might potentially be better
than the global best known solution.

3. Decision on Movement: Based on the quality of the solution found in the
local exploration phase, this component decides whether to move to the new
solution or stay with the current one. If the new solution is better, the algorithm
updates its current position; otherwise, it might decide to shake the best-found
solution again and explore a different part of the search space.

Algorithm 1 Variable Neighborhood Search
1: procedure VNS(kmin, kmax, stopping criterion)
2: xbest ← initial_solution()
3: while stopping criterion is not met do
4: k← kmin
5: while k < kmax do
6: x′ ← SHAKE(xbest, k)
7: x′′ ← LOCAL_SEARCH(x′)
8: x ← MOVE_OR_NOT(x, x′′, k)
9: end while

10: end while
11: return xbest
12: end procedure

Figure 2.4 provides a visual depiction of the algorithm’s flow. Initially, we begin
with an initial solution, which we promptly designate as the current optimal solu-
tion, termed as Xmin. The shaking phase is then initiated within the neighborhood
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N1(xmin), symbolized by selecting a random solution X′ from the circle labeled N1.
Subsequently, we refine X′ through the local search process. However, if this fails to
uncover a better solution, the exploration advances to the next neighborhood. While
the N2 neighborhood does not yield a superior solution, the N3 neighborhood does,
leading to the discovery of a solution better than Xmin. This new solution then be-
comes our updated Xmin, and the entire procedure restarts based on this new reference
point.

Figure 2.4: Graphic representation of the VNS algorithm.

VNS has been successfully applied to a wide array of problems, encompassing
diverse areas such as the p-median problem [124], vehicle scheduling [13], berth alloca-
tion problem [167], traveling salesman problem [237], maximal covering problem [149],
patient scheduling [280], hub location problem [231], lot sizing [311], group steiner
tree problem [222], capacitated clustering problem [42], maximum diverse grouping
problem [343], hub location problem [231], healthcare management [180], graph prob-
lems [344], vehicle routing problem [224], and many others. For more information on
VNS, its variants and applications please refer to [43, 125, 126].

2.4.2 Greedy Randomized Adaptive Search Procedure

Greedy Randomized Adaptive Search Procedure (GRASP) is a simple, yet effective
metaheuristic originally proposed by Feo and Resende [93]. GRASP operates in
iterations, with each iteration consisting of two main phases:

1. Construction Phase: In this stage, a feasible solution is constructed piece-
by-piece. Instead of following a purely greedy criterion, which might quickly
lead to suboptimal solutions, GRASP adds a probabilistic element to it. Dur-
ing the solution assembly, a restricted candidate list (RCL) is formed. RCL
is constructed by selecting a subset of the best available components based on
a predefined quality criterion, thus ensuring that choices are both high-quality
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and varied. The size or quality threshold of the RCL can be adjusted, offer-
ing a trade-off between exploration (larger or looser RCL, more randomness)
and exploitation (smaller or stricter RCL, more greediness). By maintaining
this dynamic shortlist of promising options and picking from it randomly, the
RCL mechanism in GRASP encourages diverse solution construction while still
guiding the search towards promising regions of the solution space. After the
creation of RCL, a component is randomly selected from it and added to the
solution. This process continues until a complete solution is formed. The ran-
domized selection ensures diverse solutions across iterations.

2. Local Search Phase: After building a solution, GRASP refines it using local
search. Starting from the initially constructed solution, neighboring solutions
are explored to find improvements. The algorithm seeks to move from the
current solution to a better neighboring one until no further improvements can
be found, indicating a local optimum.

The algorithm repeats these two phases for a predefined number of iterations or
until a stopping criterion is met, like a time limit or a satisfactory solution quality. The
best solution encountered across all iterations is returned as the final solution. The
pseudocode for the basic GRASP is provided in Algorithm 2, with the corresponding
construction procedure presented in Algorithm 3. More information about GRASP
can be found in [288].

Algorithm 2 Greedy Randomized Adaptive Search Procedure
1: procedure GRASP(stopping criterion)
2: xbest ← NULL . f (NULL) = ∞
3: while stopping criterion is not met do
4: x ← greedy_randomized_construction() . Algorithm 3
5: x′ ← local_search(x)
6: if f (x′) < f (xbest) then
7: xbest ← x′

8: end if
9: end while

10: return xbest
11: end procedure

Algorithm 3 Basic construction procedure for GRASP
1: procedure greedy_randomized_construction
2: solution← an empty solution
3: while solution is not complete do
4: RCL← construct_RCL()
5: element← choose_element_at_random(RCL)
6: solution← solution ∪ element
7: end while
8: return solution
9: end procedure

GRASP has been effectively utilized in solving a wide range of problems, such
as portfolio optimization [27], humanitarian aid distribution [96], flowshop schedul-
ing [120], the cutting stock problem [234], the quadratic assignment problem [190], set
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packing [70], the facility location problem [246], electric bus scheduling [152], symbolic
regression [151], and numerous others.

2.4.3 Ant Colony Optimization

Ant Colony Optimization (ACO) is a metaheuristic inspired by nature, introduced by
Marco Dorigo in the early 1990s [74, 76, 77]. This algorithm draws from the collective
intelligence displayed by ants when foraging. In their natural habitats, ants lay down
chemical markers called pheromones as they move, creating pathways that fade over
time. Shorter routes between the colony and food sources allow ants to move faster,
leading to more frequent pheromone deposits. As a result, other ants are inclined
to follow paths with stronger pheromone concentrations, reinforcing these trails even
further. The ACO algorithm harnesses these principles through two primary phases:
the construction phase and the pheromone update phase. In certain instances, the
algorithm incorporates an additional phase known as the improvement phase. This
phase typically conducts a local search around the optimal solution derived during
the construction phase.

The solution construction phase is performed according to the probabilistic state
transition rule. Ants can be viewed as stochastic greedy procedures that construct a
solution in a probabilistic manner, by adding solution components to the partial so-
lution until a complete solution is obtained. This iterative process takes into account:

• Pheromone trail - that retains the characteristics of a well-generated solution,
which will guide the construction of new solutions. The pheromone trail dynam-
ically changes during the search to reflect the acquired knowledge. It represents
the memory of the entire search process.

• Heuristic information - problem-specific information further guides ants in the
construction of a solution.

Each ant stochastically constructs a solution. Starting from a randomly selected
point i, an ant chooses the next point j based on probability:

pij =
τij

∑k∈S τik
, ∀j ∈ S (2.1)

Here, S denotes the unvisited points in the search, and τij represents the pheromone
level. Pheromone values are set above zero initially, ensuring that every path has a
chance to be selected. To guard against paths becoming inaccessible due to evapo-
ration, it is important to set a minimum pheromone value, preventing values from
dropping to zero. During the construction phase, ants select their starting points at
random.

We can define an aditional heuristic to further guide the search depending on the
problem. In general, we would define heuristic values ηij = 1/dij, where dij represents
the distance between points i and j. In other words, the smaller the distance between
points i and j, the greater the heuristic value ηij will be. Therefore, we can expand
Equation (2.1) with this heuristic information:

pij =
τα

ij η
β
ij

∑k∈S τα
ikη

β
ik

, ∀j ∈ S (2.2)

where α and β are parameters that determine the relative contribution of the
pheromone value and heuristic values. If α = 0, the ACO algorithm will be similar
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to the stochastic greedy algorithm, where closer points will have a higher probability
of being selected. If β = 0, only pheromone values will guide the search, which may
lead to a rapid convergence to the local best solution.

In the pheromone update phase, the values of pheromones are updated based on
the quality of constructed solutions. This process consists of two steps:

1. Evaporation phase - the pheromone trail naturally evaporates. Each pheromone
value is reduced according to the formula:

τij = (1− ρ)τij, ∀i, j ∈ P (2.3)

where ρ ∈ [0, 1] represents the evaporation rate of the pheromone, and P is the
set of all points. The purpose of evaporation is to prevent premature conver-
gence.

2. Reinforcement phase - the pheromone trail is updated based on the generated
solutions. Multiple strategies can be applied:

• Online step-by-step update: The pheromone trail τij is updated by the ant
at every step of the solution construction.

• Online delayed update: The pheromone update is done once the ant fin-
ishes generating a complete solution. Each ant updates the pheromone
information with a value proportional to the quality of the found solution.
The better the solution, the more pheromones the ant will leave.

• Offline pheromone update: The pheromone trail is updated when all ants
have finished constructing solutions.

Algorithm 4 provides a pseudocode representation of the standard ACO utilizing
offline pheromone updates. For a deeper exploration of ACO, readers are encouraged
to consult the extensive literature on the topic, including references [75, 78, 270].

Algorithm 4 Ant Colony Optimization
1: procedure ACO(Population size N, α, β, ρ, stopping criterion)
2: τ ← Initialize pheromone trails
3: xbest ← NULL . f (NULL) = ∞
4: while stopping criterion is not met do
5: solutions← ∅
6: for i← 1 to N do
7: x ← construct_solution(τ, α, β)
8: solutions← solutions ∪ x
9: end for

10: if f (best(solutions)) < f (xbest) then
11: xbest ← best(solutions)
12: end if
13: τ ← update_pheromones(solutions, ρ)
14: end while
15: return xbest
16: end procedure

ACO has demonstrated successful application across a diverse array of challenges,
encompassing areas such as the traveling salesman problem [321], machine-part cell
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formation [192], the shortest path problem [107], academic curriculum planning [292],
virtual machine allocation and data placement optimization [306], image classifica-
tion [60], and several other domains.

2.4.4 Bee Colony Optimization

Bee Colony Optimization (BCO) is another nature-inspired metaheuristic, proposed
by Lučić and Teodorović [202, 203, 204]. The basic idea is rooted in the way honey
bees search for food sources, communicate with their hive mates about these sources,
and decide on which sources to exploit based on their quality. Beyond BCO, numer-
ous metaheuristics draw inspiration from honey bee foraging, with the Artificial Bee
Colony [157] likely being the best known. For a deeper understanding of the BCO
algorithm, its variations, and its use-cases, refer to references [65, 148, 330, 331].

The BCO utilizes a population of artificial bees, with each bee representing a
unique solution to the problem. An iteration of the BCO algorithm encompasses two
phases:

• Forward pass - In this stage, artificial bees traverse the search space, executing a
specified number of moves that either construct or enhance partial or complete
solutions, resulting in new potential solutions.

• Backward pass - In this stage, all artificial bees communicate the efficacy of their
current partial or complete solutions. After evaluating all solutions, each bee
probabilistically determines if it will remain committed to its current solution.
Bees with superior solutions are more likely to retain and promote their findings.
If a bee abandons its solution, it enters an uncommitted state and must choose
from one of the promoted solutions. This choice is probability-driven, favoring
the more promising solutions for continued exploration.

The decision of loyalty for the i− th bee is influenced by the quality of its solution
in comparison to all other solutions. The likelihood that it remains committed to its
previously created partial or complete solution can be described as follows [65]:

pk+1
i = e−

Omax−Oi
k , ∀i ∈ B (2.4)

In equation (2.4), Oi signifies the normalized value of the objective function for the
solution devised by the i-th bee. Omax is the maximum value among all normalized
values for solutions under comparison. The variable k represents the number the
forward passes (moves), while B is the set of all bees in population.

Bees that choose to remain loyal to their solution take on the role of recruiters. In
contrast, those who abandon their solution will select an alternative from loyal bees
based on a probability [65]:

pi =
Oi

∑R
j=1 Oj

, ∀i ∈ R (2.5)

where R is the set of loyal bees.
BCO has two main variants:

• Constructive BCO - This is BCO in its basic form. For every bee, a solution was
methodically built from the ground up using certain stochastic, problem-tailored
heuristic rules. The inherent randomness of these construction methodologies
ensured a diverse exploration of the search space.
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• Improvement-based BCO (BCOi) - BCOi, introduced by Davidović et al. [63],
deviates from the traditional BCO. Instead of constructing solutions from the
ground up, bees enhance previously generated solutions. The pseudocode for
BCOi is provided in Algorithm 5.

Algorithm 5 Bee Colony Optimization
1: procedure BCOi(Population size N, max_moves, stopping criterion)
2: bees← initialize_bees(N)
3: best_solution← f ind_best(bees)
4: while stopping criterion is not met do
5: for num_moves← 1 to max_moves do
6: for ∀b ∈ bees do . Forward pass
7: trans f orm(b, num_moves)
8: value← evaluate(b)
9: if value > evaluate(best_solution) then

10: best_solution← b
11: end if
12: end for
13: for ∀b ∈ bees do . Backward pass
14: decide_loyalty(b)
15: end for
16: recruitment(bees)
17: end for
18: end while
19: return best_solution
20: end procedure

BCO has been effectively implemented in solving a variety of problems, including
the p-center problem [63], task scheduling [64], the satisfiability problem [320], transit
network design [252], backup allocation issues [250], among many others.

2.4.5 Genetic and Memetic Algorithm

Genetic Algorithm (GA) [137] is a population-based metaheuristic that mimics the
process of natural selection (Algorithm 6). This algorithm mirrors the process of
natural evolution, leveraging principles of genetics, such as inheritance, mutation,
selection, and crossover. The basic algorithm employs a collection of potential solu-
tions (referred to as the population) for a specific problem. Each of these solutions
(chromosomes) possesses certain attributes (known as genotypes). Throughout the
algorithm’s iterations, various genetic operations can be applied:

• Encoding and decoding - The first step in a GA involves encoding the potential
solutions to the problem. Solutions, typically referred to as chromosomes, can
be represented in various ways, such as binary strings, real numbers, or even
more complex data structures.

• Selection - Selection simulates the survival of the fittest. In this phase, chromo-
somes are selected to form a new generation. The likelihood of a chromosome
being selected is often (but not always) proportional to its fitness, which is de-
termined by a fitness function. Several selection methods exist, such as roulette-
wheel selection, tournament selection, and rank-based selection. The goal is to
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give preference to the better-performing chromosomes while still retaining some
diversity.

• Crossover - Once the selection is made, the crossover operation is applied to
pairs of ’parent’ solutions, producing ’offspring’ that inherit features from both
parents. The hope is that the combination of good features from two parents
will produce an even better offspring. There are various techniques for crossover,
depending on the encoding of solutions. For instance, with binary strings, one-
point, two-point, or uniform crossovers might be applied.

• Mutation - After crossover, mutation is applied with a certain probability. This
involves making small random changes to the offspring. In a binary string
representation, mutation might flip a bit from 0 to 1 or vice versa. Mutation
introduces variability within the population, ensuring that the genetic diversity
remains high. This helps in preventing premature convergence to sub-optimal
solutions.

• Replacement - The final step of a generation involves selecting which individuals
will move to the next generation. There are different strategies for this: the
generational approach, where an entirely new generation replaces the old, or the
steady-state approach, where only a few new offspring replace old members.

Genetic algorithms have been extensively discussed in various books and articles.
For a deeper understanding, readers are encouraged to consult references [4, 7, 168,
314].
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Algorithm 6 Genetic Algorithm
1: procedure GA(Population size N, Crossover rate CR, Mutation rate MR, stop-

ping criterion)
2: Initialize a population of N individuals
3: while stopping criterion is not met do
4: for each individual in the population do
5: Evaluate its fitness
6: end for
7: Let new_population be empty
8: while size of new_population < N do
9: Select two parents based on their fitness

10: Generate a random number (r)
11: if r < CR then
12: Perform crossover on the parents to produce offspring
13: else
14: offspring = parents
15: end if
16: for each offspring do
17: Generate a random number (m)
18: if m < MR then
19: Mutate the offspring
20: end if
21: end for
22: Add offspring to new_population
23: end while
24: Replace the old population with new_population
25: end while
26: return The best solution from the final population
27: end procedure

A variation of GA called Memetic Algorithm (MA) was proposed by Moscato
[247]. The distinct aspect of MAs is the incorporation of a local search (or refinement)
step within the evolutionary cycle. This local search is sometimes viewed as an
individual learning process or the cultural transmission of knowledge. Each individual
undergoes a learning process which refines its quality. The pseudocode for the MA is
outlined in Algorithm 7. The key distinction from Algorithm 6 is evident in Line 21,
where a local search is applied to refine each offspring. For more details about MA
please refer to [251].
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Algorithm 7 Memetic Algorithm
1: procedure MA(Population size N, Crossover rate CR, Mutation rate MR, stop-

ping criterion)
2: Initialize a population of N individuals
3: while stopping criterion is not met do
4: for each individual in the population do
5: Evaluate its fitness
6: end for
7: Let new_population be empty
8: while size of new_population < N do
9: Select two parents based on their fitness

10: Generate a random number (r)
11: if r < CR then
12: Perform crossover on the parents to produce offspring
13: else
14: offspring = parents
15: end if
16: for each offspring do
17: Generate a random number (m)
18: if m < MR then
19: Mutate the offspring
20: end if
21: Refine the offspring using local search
22: end for
23: Add offspring to new_population
24: end while
25: Replace the old population with new_population
26: end while
27: return The best solution from the final population
28: end procedure

GA is one of the most widely utilized metaheuristics, applied to an extensive range
of problems. Its applications include robot path planning [179], image processing [118],
managing real-time control systems [300], job shop scheduling [209], optimizing bank
lending decisions [228], automatic design of convolutional neural networks [325], deep
reinforcement learning [304], open shops scheduling [2], and numerous other areas.
Similarly, the MA has been employed in various domains, such as optimizing multi-
layer optical films [310], healthcare routing and scheduling [69], graph coloring [239],
network topology optimization [99], job-shop scheduling [117], traffic signal optimiza-
tion [296], and many more.

2.5 Parameter tuning
Fine-tuning the parameters of a metaheuristic is crucial for optimizing its perfor-
mance, a process often referred to as parameter tuning. The effectiveness of the al-
gorithm hinges significantly on the values of these parameters. Therefore, we explore
basic methodologies for setting these parameter values in the following sections. For
an in-depth understanding of various parameter tuning strategies, the work of Joy,
Huyck, and Yang [153] offers a thorough analysis and guidance.
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2.5.1 Brute-force

Let us allocate a total time, T, for the tuning process, where each experiment takes
up a duration t. Given these parameters, we can conduct M =

⌊ T
t

⌋
experiments.

Moreover, we have a set of potential configurations, Θ, and a collection of in-
stances, I. Each configuration from Θ is evaluated N =

⌊
M
|Θ|

⌋
times. This provides

us with performance metrics µ̂(Θ1), µ̂(Θ2), . . . , µ̂(Θ|Θ|). From this, we can construct
a brute-force algorithm. We first use a distribution PI to randomly select N instances,
which we will use to test all of the given candidate configurations. From these results,
we can estimate the performance µ̂(Θi) of each candidate configuration Θi in the set
Θ, in relation to the distribution PI . Ultimately, we pick the configuration Θi that
exhibits the top performance. Details of this method can be found in Algorithm 8.

Algorithm 8 Brute-force algorithm for parameter tuning
1: procedure BRUTE_FORCE(M, Θ, PI)
2: N ←

⌊
M
|Θ|

⌋
3: A← allocate_array(|Θ|) . A stores performance estimates
4: for k← 1 to N do
5: i← sample_instance(PI)
6: for θ ∈ Θ do
7: s← run_experiment(θ, i)
8: c← evaluate(s)
9: update_mean(A[θ], c)

10: end for
11: end for
12: return arg min(A) . Returns θ with minimal value of A[θ]
13: end procedure

The brute-force method presents several limitations:

• The training set’s size must be predetermined, posing a challenge. An under-
sized set might yield inaccurate results, whereas an oversized one can generate
redundant computations.

• The required number of tests for each configuration and instance, essential for
addressing the unpredictability inherent in metaheuristics, remains ambiguous.

• Every configuration, irrespective of its potential efficacy, is allocated an equal
share of resources.

Considering these constraints, the racing approach emerges as a more viable alterna-
tive.

2.5.2 The Racing Approach

This algorithm family, initially presented in Birattari et al. [35], drew inspiration from
the Hoeffding race algorithm featured in Maron and Moore [215]. Their core principle
is the efficient allocation of resources across potential configurations. Racing algo-
rithms assess these configurations and, through statistical analysis, eliminate the less
promising ones. This approach enables the algorithm to evaluate the more promising
configurations over a wider range of instances. The general structure of the racing
algorithm is detailed in Algorithm 9.
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Algorithm 9 Brute-force algorithm for parameter tuning
1: procedure RACE(M, Θ, PI , stat_test, max_instances)
2: ESF ← 0 . Experiments so far
3: ISF ← 0 . Instances so far
4: C ← allocate_array(max_instances, |Θ|)
5: S ← Θ . Surviving configurations
6: while (ESF + |S| ≤ M) ∧ (ISF + 1 ≤ max_instances) do
7: i← sample_instance(PI)
8: ISF ← ISF + 1
9: for θ ∈ S do

10: s← run_experiment(θ, i)
11: ESF ← ESF + 1
12: C[ISF, θ]← evaluate(s)
13: end for
14: S ← drop_candidates(S , C, stat_test)
15: end while
16: return select_best_survivor(S , C)
17: end procedure

Racing algorithms can employ various statistical tests, which we categorized based
on three criteria:

• Parametric vs Nonparametric Tests: Parametric tests operate under the as-
sumption that data follows a specific distribution, whereas nonparametric tests
are not bound to any distribution assumptions. As a result, nonparametric
tests are more versatile, suitable for a broader array of problems. However,
parametric tests, given their structure, tend to be more potent, especially when
it comes to dismissing the null hypothesis.

• Blocking vs Non-blocking Design: In statistical terms, blocking involves group-
ing experiments with similar characteristics into clusters or groups. When it
comes to tuning metaheuristics, the blocking design is commonly preferred, as
suggested by Mongomery [243].

• Family-wise vs Pair-wise Tests: In the family-wise approach, the aim is to verify
if all results, regardless of their corresponding candidate, originate from the
same distribution. If a family-wise test indicates differences between candidates,
post-tests can then be conducted to compare candidates directly and determine
superiority. Conversely, pair-wise tests directly compare two candidates against
each other.

Some of the statistical tests that can be used include:

• tNo-Race - the classical paired t-test is employed as the statistical test. This
test is parametric and utilizes a blocking design. Additionally, it does not adjust
the p-value for multiple comparisons.

• tBo-Race - It mirrors the tNo-Race method, but with one notable distinction:
it applies the Bonferroni correction to adjust p-values for multiplicity.

• tHo-Race - It resembles the tNo-Race method but incorporates the multiplicity
correction suggested by Holm [138].
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• F-Race - In this method, Friedman’s two-way analysis of variance by ranks
serves as the statistical test. This test is nonparametric and employs a blocking
design with a family-wise approach. Should this test detect any statistically
significant differences in the data, it moves on to post-hoc tests. These tests
conduct pairwise comparisons of configurations to identify the most promising
one. Various methods for executing post-hoc tests are detailed in Birattari et al.
[36].

2.6 Chapter conclusion
In this chapter, we delve into the intricacies of metaheuristic algorithms. We begin
by defining the general concept of metaheuristics and outlining some well-established
classification schemes for these algorithms.We then delved into existing metaheuristic
algorithms, offering a depiction of their increasing popularity over the years. This dis-
cussion is complemented by a accompanying document containing a list of metaheuris-
tics (https://www.mi.sanu.ac.rs/~luka/resources/phd/AppendixA.pdf), which
offers an extensive compilation of metaheuristics we have identified. This list, which
we believe to be the most comprehensive to date, includes 540 entries and details the
name, publication year, authors, and source of inspiration for each metaheuristic.

We also touch upon the fundamental principles of local search methods, provid-
ing a concise overview of some key techniques. The next segment of the chapter
is dedicated to a detailed examination of specific metaheuristics that are central to
our research, such as Variable Neighborhood Search, Greedy Randomized Adaptive
Search Procedures, Ant Colony Optimization, Bee Colony Optimization, Genetic Al-
gorithms, and Memetic Algorithms.

The chapter concludes with a discussion on various strategies for hyperparameter
tuning of these methods, a crucial aspect for optimizing their performance. This com-
prehensive overview lays a solid foundation for understanding the role and potential
of metaheuristic algorithms in our research.

https://www.mi.sanu.ac.rs/~luka/resources/phd/AppendixA.pdf
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CHAPTER
THREE

GREEN VEHICLE ROUTING PROBLEM

3.1 Vehicle Routing Problem
The Vehicle Routing Problem (VRP) is a classic and fundamental optimization chal-
lenge in the field of operations research. In 1959, the VRP was introduced by Dantzig
and Ramser [61]. Subsequently, in 1964, Clarke and Wright developed the first effec-
tive heuristic for solving this problem [52]. A number of books have been written on
the topic of VRP, with notable examples including [47, 115, 336, 337].

VRP entails determining the optimal routes for a fleet of vehicles to serve a set
of customers or locations, subject to a range of constraints referred to as ’attributes’.
In Section 3.3, we delve into the attributes that should be considered when solving
the VRP, including time windows, capacity constraints, and vehicle limitations. The
problem is NP-hard, which actually means that finding an optimal solution requires
exponential time in the worst case [186]. Therefore, heuristic and metaheuristic al-
gorithms have been developed to solve the VRP efficiently in practice.

The most common objective in the VRP is to minimize the total distance traveled
by vehicles while satisfying some specified attributes, but other objective functions
can be utilized based on specific requirements and constraints. To cater to the diverse
needs of different VRP applications, objective functions can be combined or modified
accordingly. In Section 3.4, we provide an in-depth discussion of some of the common
objective functions used in the VRP.

The basic version of VRP can be formally defined as follows:

Definition 1 Let us assume that we are provided with a graph G = (V, E), where V
denotes a set of vertices that correspond to the depot and customers, and E represents
a set of edges connecting nodes from V. Each edge eij ∈ E is assigned a non-negative
value that indicates the cost of traveling from node i to node j. The objective is to
identify a set of paths (routes) starting from the depot node, such that all of the nodes
from V are visited and the total cost associated with selected edges is minimized while
adhering to all given constraints.

VRP can also be defined as a Mixed Integer Linear Program (MILP) in a following
way:

min
n

∑
i=0

n+1

∑
j=1

dijxij (3.1)

s.t.
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n+1

∑
j=1

xij = 1, 1 ≤ i ≤ n, i 6= j (3.2)

n

∑
i=0

xij =
n+1

∑
i=1

xji, 1 ≤ j ≤ n + 1, i 6= j (3.3)

1 ≤
n+1

∑
i=1

x0i ≤ M (3.4)

n

∑
i=0

xi(n+1) =
n+1

∑
i=1

x0i (3.5)

xij ∈ {0, 1} , 0 ≤ i ≤ n, 1 ≤ j ≤ n + 1 (3.6)

The presented model involves decision variables xij, which indicate that edge
(i, j) ∈ E has been selected, with dij representing the distance between vertices (nodes)
i and j. The depot node is represented by nodes 0 and n + 1, while M refers to the
maximum number of routes. The objective function, as represented by Equation
(3.1), minimizes the total distance covered by all vehicles. Constraints (3.2) ensure
that each customer is visited exactly once, while constraints (3.3) mandate that a ve-
hicle arriving at a location must leave it (excluding depot nodes). Constraints (3.4)
limit the number of routes, whereas constraints (3.5) ensure that each vehicle returns
to the depot. Finally, the constraints (3.6) are responsible for regulating the nature
of the decision variables.

The VRP arises in various transportation and logistics applications, including but
not limited to package delivery, waste collection, and public transportation. Given
its ubiquity and significance, understanding the VRP and the various techniques
for solving it is essential for practitioners and researchers in the field of operations
research.

In Figure 3.1 we present a generalized example of the VRP. The depot is de-
picted as a red rhomboid, while the unassigned customers are represented by blue
circles. Upon completion of the VRP, all customers are assigned to one of the routes,
distinguished by different colors.

Figure 3.1: An example of the VRP.
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3.2 Green Vehicle Routing Problem
The Green Vehicle Routing Problem (GVRP) is an extension of the traditional VRP
that incorporates environmental factors related to the transportation of a fleet of
vehicles. The primary focus of GVRP is to reduce the detrimental impact of trans-
portation operations on the environment, particularly with respect to CO2 emissions.

One way to address the negative environmental impact of transportation opera-
tions is by minimizing GHG emissions or fuel consumption of a fleet that is composed
of ICVs. Another approach is to use AFVs, which do not rely on petroleum-based in-
ternal combustion engines such as electric vehicles, hybrid electric vehicles, hydrogen
vehicles, and others.

The first publication to directly address the environmental impact of VRP was
authored by Bektaş and Laporte in 2011 [31]. Within their research, the Pollution
Routing Problem (PRP) was introduced as an extension of the classical VRP, ac-
counting for the fleet of ICVs, while incorporating an objective function that takes
into account not only the distance traveled, but also GHG emissions. The emission
values depend upon several factors, such as vehicle speed, load, or road gradient.
Typically, PRP is of a multi-objective nature, attempting to balance emissions with
economic costs.

In 2012, Erdoğan and Miller-Hooks published a seminal paper introducing the
term Green Vehicle Routing Problem [86]. This variant of the classic VRP seeks to
minimize the fuel consumption of a fleet of vehicles, which can include both ICVs and
AFVs. The GVRP implicitly addresses emissions concerns by assuming that using
AFVs eliminates the GHG emissions associated with routing. It should be noted
that this is a simplified perspective, as it does not account for the emissions gener-
ated during the production of AFVs or the emissions resulting from the production
of electrical energy, which is predominantly derived from burning fossil fuels [142].
Nonetheless, these issues are beyond the scope of the VRP. In their study, Erdoğan
and Miller-Hooks focused on a specialized version of GVRP, the Electric Vehicle Rout-
ing Problem (EVRP), which deals with the unique characteristics of electric vehicles,
such as their need for recharging stations and long recharging times. Customer sat-
isfaction can be negatively impacted by unplanned delays, so recharging visits must
be carefully planned. A generalized version of the EVRP is presented in Figure 3.2.
The depot is depicted as a triangle, customers as circles, and refueling stations as
rhombi. At the start of the journey, each vehicle begins with a full battery level from
the depot. As the vehicle services each customer, its battery level decreases until it
eventually needs to visit one of the recharging stations to recharge the battery.

VRP in Reverse Logistics (VRPRL), which involves the optimization of waste
collection or recycling of used materials, is sometimes classified as a variant of the
GVRP. While VRPRL is important in addressing environmental issues, we do not
consider it in this research due to its fundamental difference in the objective, which
does not directly relate to vehicle emissions, unlike the PRP and GVRP.

Figure 3.3 depicts some of the key features of the GVRP that can aid in classifi-
cation, as adapted from the publication [19]. The GVRP literature can be classified
based on two main criteria: problem characteristics or solution methodology. With
respect to problem characteristics, there are several aspects to consider:

• Types of engines: The types of engines in vehicles have distinct characteristics
that influence the problem as a whole. For instance, charging time needs to
be considered for BEVs, whereas HEVs require a determination of the point to
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Figure 3.2: An example of the EVRP.

switch from one propulsion system to another. These distinct engine types have
already been explained in Section 1.2.

• Objectives: The classical VRP primarily focuses on the economic objectives of
routing a fleet of vehicles, whereas GVRP extends the scope by incorporating
environmental objectives such as minimizing pollution and fuel consumption.
These objectives can be addressed separately or in combination. Section 3.4
presents some of the commonly considered objectives in GVRP.

• Scenarios: GVRP can be applied to various real-world scenarios. It is important
to consider that different vehicles have varying consumption rates (which are
further elaborated in Section 3.5), ranges, and recharge speeds (Section 3.6).
The number and placement of recharging stations play a significant role in the
EVRP’s efficiency and the feasibility of specific solutions. In addition, in actual
situations, recharging stations have a capacity limit, and not all chargers may be
available at any given time, resulting in some level of uncertainty. Other types
of uncertainty that may arise include the time it takes to serve a customer at
their location, traffic congestion, or roadwork.

• Attributes: The VRP and GVRP have many distinct variations, each with their
own objectives and constraints. These specific characteristics of the problem
are known as attributes, and we provided a more detailed description of many
of them in Section 3.3.

In addition to classifying publications by the characteristics of the problem, they
can also be categorized based on the methodology used to solve the problem. As
discussed in Section 1.4.1, various approaches can be employed to obtain a solution
for optimization problems, including GVRP.
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Figure 3.3: Different aspects of GVRP can be used for classification
(adapted from [19]).
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3.3 Attributes
VRP, and by extension GVRP, is a complex optimization problem that has many
attributes or unique features. These attributes describe the characteristics of the
problem and define the objectives and constraints that need to be considered in order
to solve it effectively. Some of the attributes of GVRP include the number of vehicles
available, the capacity of each vehicle, the geographical location of the customers, the
time window in which each customer needs to be serviced, and the distance between
the customers and the depot. Other attributes can also be considered depending
on the specific problem, such as vehicle speed, traffic conditions, fuel consumption,
and environmental impact. Understanding and properly defining the attributes of the
GVRP is crucial in order to develop effective solutions that can optimize vehicle routes
and minimize costs while meeting all the constraints and objectives of the problem.
In this section, we provide a detailed description of some of these attributes.

Capacity constraint

The Capacity Constraint (C) is a key element in VRP, limiting the load that a
vehicle can transport. It is typically measured in terms of maximum weight, volume,
or number of items. This factor is crucial and frequently discussed in a significant
portion of VRP literature, as it directly influences route planning and optimization.
References [25, 53, 282] are among the many that delve into this aspect, highlighting
its importance in VRP studies.

Asymmetry

Asymmetry (A) in the context of VRP refers to the scenario where the distance
or travel cost between two locations differs depending on the direction. That is,
traveling from point A to point B might not entail the same distance or cost as the
return journey from B to A. This situation often arises due to factors such as one-
way traffic systems, varying road conditions, or differential traffic flows. For more
detailed explorations of this attribute in VRP, studies and discussions can be found
in references [8, 184, 223], where various aspects and implications of asymmetry are
analyzed.

Time windows

Another important attribute of the VRP is Time Windows (TW) attribute, refer-
ring to the specific time intervals within which customers must be serviced. This
attribute is particularly important in scenarios where customers have specific deliv-
ery or pickup schedules. Failing to meet the time window constraints may result
in additional costs or penalties. Time windows can be hard or soft constraints, with
hard constraints being strictly enforced, and soft constraints allowing some flexibility.
To put it differently, if the hard time window constraints are violated, the solutions
become infeasible, while in the case of the soft time window constraints, some leeway
is allowed with a certain penalty to the objective function. Time windows are usually
defined with respect to specific events such as a customer’s availability, store opening
hours, or delivery restrictions in residential areas. This attribute became particularly
important with the rise of e-commerce as it enables customers to specify a fixed time
interval during which they can receive their shipments. Proper management of time
windows can lead to significant improvements in operational efficiency, better cus-
tomer satisfaction, and reduced transportation costs. However, it can also increase
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the complexity of the VRP, especially when there are multiple time windows to con-
sider. Some studies that focus on the TW attribute can be found in references [25,
182, 355].

Multiple depots

Another common attribute of the VRP is the presence of Multiple Depots (MD),
which refers to the scenario where there are multiple locations from which vehicles
can start and end their routes. This attribute describes scenarios where there are
several warehouses, distribution centers, or service centers, and each center has its
own fleet of vehicles. The main challenge in this attribute is to allocate the customers
to the different depots while ensuring that the vehicle routes are efficient and the
demand of each customer is met. This attribute can be further complicated by other
factors such as distance between depots, vehicle capacity, and travel time. Examples
of publications considering this attribute include [284, 298, 388].

Multiple trips

Another common attribute of the VRP is Multiple Trips (MT), which refers to the
possibility of vehicles making more than one route to serve all the customers. In
other words, a vehicle may need to return to the depot and start a new trip to serve
additional customers. This attribute is particularly useful in situations where the
capacity of a vehicle is not enough to serve all the customers in one trip, or where
the time window constraints prevent a vehicle from serving all the customers in a
single route. Multiple trips can be allowed with or without a limit, depending on the
specific problem. References [140, 263, 388] provide examples of publications that
explore this attribute.

Multiple compartments

The Multiple Compartments (MC) attribute is an important aspect of the VRP
that can be encountered in various real-world scenarios. It is an extension of the
basic VRP where each vehicle is capable of carrying multiple types of products or
goods, each requiring separate compartments or containers for transportation. This
attribute is often encountered in the transportation of hazardous materials, where
certain products cannot be mixed and must be kept separated during transportation.
This attribute is also relevant in industries such as retail, where different types of
products with varying storage requirements need to be transported. For instance,
a truck carrying frozen food items may have multiple compartments with different
temperature controls to preserve the quality of the products. The multiple compart-
ments attribute introduces new constraints and challenges to the problem, such as
the capacity of each compartment, the compatibility of the products, and the need
to handle and load/unload the products carefully. Figure 3.4 illustrates the contrast
between single-compartment and multiple-compartment vehicles and their impact
on the VRP. As depicted, if customers demand various types of products, utilizing
multiple-compartment vehicles can result in a reduced number of routes. This is be-
cause customers no longer need to be served by different vehicles for each type of
product, thereby minimizing travel time and optimizing the route planning process.
Publications that have explored this attribute are referenced in [130, 285, 313].
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Figure 3.4: The difference between single-compartment and
multiple-compartment VRP

Heterogeneous fleet

The Heterogeneous Fleet (HF) (also known as Mixed Fleet) attribute in VRP refers
to a situation where a company possesses a fleet of vehicles that have varying charac-
teristics, such as their capacity, fuel consumption, speed, and maintenance costs. In
such cases, it becomes essential to consider the distinct characteristics of each vehicle
while planning the routes, or else there might be some vehicles that remain under-
utilized or overloaded, while others might fail to complete their assigned tasks. This
attribute gains more significance in the context of GVRP, as a company might have
vehicles with different engine types, which require different treatment while planning
routes. For instance, a company having a fleet of both ICVs and BEVs may prioritize
the use of BEVs to reduce carbon tax. Additionally, the time required to recharge
the BEVs needs to be taken into account when delivering products, which is not
applicable to ICVs, rendering them non-interchangeable. The Heterogeneous Fleet
attribute is also useful when dealing with the transportation of perishable goods and
frozen food, where different types of vehicles might be needed to maintain the desired
temperature conditions. Publications that explore this attribute are referenced in
[150, 163, 324].



3.3. Attributes 45

Open routes

The Open Routes (O) attribute in the VRP refers to scenarios where a vehicle can
leave its depot, serve some customers, and return to any depot available in the net-
work, without necessarily returning to its original depot. This attribute is particularly
relevant in situations where customers are spread across multiple regions or cities,
making it impractical for vehicles to return to their original depot after serving each
customer. The open routes attribute also allows for more flexibility in route planning,
as vehicles can be assigned to any depot where there is a demand for their services,
making it easier to balance the workload between depots. However, this attribute
also increases the complexity of the problem, as it requires a more detailed analysis
of the routing options and the available depots, which can be time-consuming and
computationally intensive. References [233, 287, 293] are examples of publications
that delve into this attribute.

Pickup and Delivery

The Pickup and Delivery (PD) aspect of the VRP is centered around the transport of
items from one location to another, necessitating both collection and delivery at dis-
tinct points. Commonly seen in distribution networks, this attribute entails handling
logistics from suppliers to customers. The challenge here is not just about managing
pickup and delivery points, but also considering vehicle capacity. It is a critical com-
ponent in sectors like postal services, home delivery, and waste management, with the
objective of minimizing the total travel distance of vehicles while adhering to pickup
and delivery requirements. For detailed insights into how this attribute influences
VRP, studies in references [22, 323, 354] provide thorough analysis and discussion.

Backhauls

The Backhaul (B) attribute of the VRP refers to a scenario where a vehicle can pick
up a load on the return trip after making a delivery. In other words, the vehicle is
utilized to carry a load from the destination back to the origin, instead of returning
empty. Delivery points, also known as linehaul points, are destinations where goods
are delivered from a central distribution center. On the other hand, pickup points,
also called backhaul points, are locations from where the goods are collected and re-
turned to the distribution center. Backhaul points are serviced only after all delivery
points have been served, unless the problem formulation is a Mixed Backhauls (MB)
version where this restriction is not applied. This strategy can be particularly useful
in scenarios where the origin and destination are far apart, and it is not practical
to send another vehicle to pick up the return load. By incorporating backhauls into
the routing plan, companies can maximize the utilization of their vehicles, reduce
transportation costs, and increase their profitability. Backhauls are commonly used
in industries such as retail, food, and beverage, where vehicles deliver products to
customers and then pick up empty containers or returnable items on the way back.
Backhauls can also be useful when transporting goods between warehouses or distri-
bution centers, as it allows companies to make more efficient use of their resources.
Some publications that explore this attribute are referenced in [59, 102, 216].

Split Deliveries

The Split Deliveries (SD) attribute of VRP is a flexible variant that allows vehicles
to visit customers multiple times, which is different from the classical VRP that
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requires each customer to be visited only once. This attribute can be highly useful
when a customer requires a large order that cannot be delivered in a single trip,
or when a customer needs several deliveries for various items or at different times.
By permitting split deliveries, the VRP can optimize the routes to minimize travel
time and distance, while ensuring that all deliveries are completed on time. This
attribute provides greater flexibility in the VRP, enabling businesses to cater to the
specific needs of their customers more efficiently and cost-effectively. Examples of
publications considering this attribute include [15, 16, 312].

Flexible Deliveries

The Flexible Deliveries (FD) attribute in VRP offers a significant enhancement to
delivery flexibility by enabling customers to specify alternative delivery locations,
each associated with distinct time windows. For instance, a customer could provide
their workplace address for deliveries scheduled during work hours and their home
address for times when they are likely to be at home. This feature requires the
delivery vehicle to intelligently select the appropriate delivery location based on the
actual delivery timing. An example of a study considering this attribute is [297].

Precedence constraints

In the VRP, the Precedence Constraints (PC) attribute refers to the scenario where
certain deliveries must be made before others. These constraints arise in many real-
world applications, such as when certain products need to be delivered before others
due to their perishable nature or when the delivery of one product is dependent on
the delivery of another. The Precedence Constraints attribute of VRP can also be
utilized to depict scenarios where certain customers are given priority over others. To
satisfy these constraints, it may be necessary to adjust the order of delivery for some
of the vehicles in the fleet, or even split deliveries between multiple vehicles. Failing
to account for precedence constraints can result in costly delays and disruptions to
the supply chain. Some publications dealing with this attribute are [30, 201].

Dynamic requests

The Dynamic Requests (D) attribute in the VRP refers to the scenario where new
orders or requests may be added to the existing routes during the course of delivery.
This attribute is common in industries such as food delivery, courier services, and ride-
sharing, where new orders can be received at any time. In this situation, the VRP
algorithm needs to be flexible enough to adjust the existing routes and schedules
to accommodate the new requests. To handle dynamic requests efficiently, the VRP
algorithm needs to be integrated with a real-time tracking system that can update the
location of the delivery vehicles and the status of the orders in real-time. Examples
of publications considering this attribute include [20, 141, 129].

Time-dependent speeds

The VRP attribute called Time-dependent Speeds (TD) acknowledges that the speed
of vehicles is not constant and can vary depending on several factors such as the time
of day and location. For instance, during rush hour, vehicles may move at a lower
speed due to traffic congestion, while they may move faster during off-peak hours. By
incorporating this attribute into the VRP, planners can optimize routes that account
for the varying speed conditions, resulting in efficient deliveries and reduced travel
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time. This attribute becomes crucial, especially in urban and metropolitan areas,
where traffic conditions can be highly unpredictable and can affect the delivery pro-
cess significantly. With the implementation of time-dependent speeds, businesses can
ensure timely deliveries, reducing costs and improving customer satisfaction. Exam-
ples of publications where this attribute was considered include [200, 262, 387].

Multiple objectives

The Multiple Objectives (MO) attribute of VRP involves optimizing multiple objec-
tives at the same time, from reducing transportation costs to maximizing customer
satisfaction and reducing carbon emissions. Some of the objectives that can be con-
sidered in the context of GVRP are presented in Section 3.4. MO recognizes that
different stakeholders may have different objectives that need to be considered when
planning routes. For example, a company may prioritize reducing costs while also
aiming to reduce its carbon footprint by using electric vehicles, whereas a customer
may prioritize fast delivery times and real-time tracking. Incorporating multiple ob-
jectives into the VRP can be challenging since different objectives may conflict with
each other. However, it can lead to more comprehensive and effective route plan-
ning that considers the needs and preferences of multiple stakeholders. There are
two approaches to dealing with multiple objectives: combining them into a single
objective or using Pareto-optimization. The latter aims to find a set of solutions that
are not dominated by any other solution in terms of all the objectives considered.
In other words, a solution is Pareto-optimal if no other solution can perform better
in one objective without degrading the performance in another objective. The set of
Pareto-optimal solutions is called the Pareto frontier, and it represents the trade-offs
between different objectives. This approach enables decision-makers to evaluate the
trade-offs between objectives and make informed decisions that balance the compet-
ing objectives. While the Pareto frontier can be extensive, additional criteria such as
user preferences may be used to select the optimal solution from the Pareto frontier.
This attribute was considered in [101, 105, 242].

Partial recharge

The Partial Recharge (PR) attribute of GVRP involves optimizing the routes for
electric vehicles that have a limited driving range and require recharging. This at-
tribute recognizes that electric vehicles require more planning and management than
traditional vehicles because of the time required to recharge their batteries. Nonethe-
less, recharging a battery to its full capacity every time a vehicle visits an Alternative
Fuel Station (AFS) can be suboptimal, as it can be time-consuming, but ultimately
not necessary. Therefore, partial recharge can be allowed, which permits a vehicle
to recharge its battery to only the level needed to complete its delivery. By incor-
porating partial recharge into the GVRP, planners can ensure that the vehicles can
complete their deliveries without running out of charge, while also minimizing the to-
tal time required for recharging. This attribute is particularly relevant in urban and
metropolitan areas, where electric vehicles can have a significant impact on reducing
emissions and improving air quality. The Partial Recharge attribute requires plan-
ners to consider the capacity and location of recharging stations, as well as the time
required for recharging, to optimize the route and minimize downtime. Examples of
studies considering partial recharge include [92, 133, 208].
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Battery swapping

Battery swapping (BS) is an attribute of the GVRP that refers to the process of
exchanging a depleted battery in an BEV with a fully charged one at a designated
battery swapping station. This process enables the EV to continue its journey without
the need for a prolonged charging stop, which can save valuable time and increase
the efficiency of the EV. In the context of GVRP, the battery swapping attribute is
considered as a potential solution for mitigating the issue of limited EV driving range
and reducing the total time required for recharging or refueling, ultimately enhancing
the routing efficiency and the overall performance of the EV fleet. However, the
effectiveness of battery swapping depends on various factors, including the availability
and accessibility of swapping stations, the battery technology and compatibility, the
swapping time and cost, and the trade-offs between swapping and charging. Examples
of publications in which this attribute was examined include [191, 281].

3.4 Objective functions
In optimization, the objective function is a mathematical formula used to evaluate
the performance of solutions. It is usually defined using decision variables, which are
the values under optimization. The aim is to find the variable values that yield the
optimal performance per the objective function. Optimization problems vary, and
so do their objective functions, based on the criteria being optimized. For example,
in vehicle routing problems, common objectives might be to minimize travel time,
reduce the number of vehicles, or cut down route costs.

The selection of an objective function is pivotal, defining the optimization’s end
goal and success measurement criteria. In the context of GVRP, various objective
functions can be applied. It is important to note that these objectives can coexist and
be analyzed simultaneously through Pareto optimization. Often, they are interlinked,
meaning achieving one can affect others. For instance, lower fuel consumption might
reduce operational costs.

Most research papers use a composite objective function, combining different goals
like minimizing operational costs, fuel consumption, and time window penalties. In
many studies, the primary aim is to minimize total cost, represented by a blend of
various cost-related objectives.

Each of these considerations highlights the complexity and multi-dimensional na-
ture of setting and achieving objectives in optimization scenarios. The choice and
combination of these objectives depend on the specific nuances and demands of the
problem at hand.

Operation cost minimization

In the GVRP, the goal of minimizing Operation Cost (OC) focuses on optimizing ve-
hicle routes to reduce overall operational expenses. This includes aspects like energy
usage, vehicle acquisition, maintenance, and labor costs. By targeting these areas,
planners aim to cut down the costs of transportation services, thereby boosting busi-
ness profitability. Additionally, reducing operational costs allows GVRP operations
to offer more competitive service pricing, potentially attracting more customers. An
important byproduct of this goal is its positive environmental impact, as lower oper-
ation costs often correlate with reduced fuel consumption and greenhouse gas emis-
sions, contributing to sustainability efforts. Studies that have explored this objective
include references [90, 106, 134, 193].
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Fuel consumption minimization

The Fuel Consumption (FC) minimization objective in the VRP targets a reduction
in the fuel used by vehicles during deliveries. This is increasingly significant due to
soaring fuel prices and heightened environmental awareness. The primary benefits
include lowering operating expenses and diminishing the carbon footprint. Achieving
this involves route optimization to minimize travel distance and vehicle usage, and
considering vehicle features like fuel efficiency, payload capacity, and engine type
to further cut down fuel use. This objective is not just about reducing costs but
also about bolstering the sustainability of the transport sector. It encompasses a
broad range of energy sources beyond traditional fossil fuels, including electricity and
hydrogen, reflecting the diverse propulsion technologies in modern vehicles. Examples
of studies that considered this objective include [5, 54, 258].

Pollutant emission reduction

The Pollutant Emission reduction (PE) objective in transportation planning focuses
on lessening environmental and public health impacts by curbing atmospheric pol-
lutant emissions. This is particularly crucial in urban settings, where air quality
directly affects public health. By aiming for lower emissions, planners contribute to
both environmental sustainability and public health improvement. This goal encom-
passes a wide array of pollutants, not just those from traditional fossil fuels but also
emissions associated with alternative energy sources like electricity and hydrogen.
In addition, achieving this objective can offer financial advantages, as many regions
enforce regulations and impose fees on high-emission vehicles, incentivizing compa-
nies to adopt cleaner transportation practices. Several studies have addressed this
objective, notably references [3, 83, 341, 382].

Time windows penalty cost minimization

The Time Windows Penalty Cost (TWPC) minimization objective seeks to minimize
the total cost of exceeding the customer time windows. Delivering outside the time
window can lead to additional costs, such as lost sales or customer dissatisfaction.
By minimizing the cost of violating time windows, planners can improve the overall
quality of service, increase customer satisfaction, and reduce the overall cost of pro-
viding transportation services. This objective requires planners to consider the time
windows of all customers and optimize the routes accordingly, taking into account
the trade-off between minimizing time window violations and minimizing the total
distance traveled by vehicles. This objective was explored in [220, 255, 366].

Travel time minimization

Minimizing Travel Time (TT) decreases the total time required to complete deliv-
eries. This objective is of utmost importance when all customers need to be served
promptly, such as in medical emergencies. It is also a factor in reducing operating
costs such as fuel consumption, vehicle maintenance, and drivers’ wages, as well as
reducing the environmental impact of transportation. Achieving the Travel Time
Minimization objective requires planners to consider several factors, including vehicle
and depot capacity, traffic conditions, and the order of deliveries. This objective has
been investigated in references [33, 226, 257]].



50 Chapter 3. Green Vehicle Routing Problem

Revenue maximization

The Revenue Maximization (RM) objective in transportation route optimization is
focused on increasing the total earnings of the service provider. This is particularly
pertinent in scenarios emphasizing high profitability, like the delivery of valuable
goods. The aim here is to ensure maximum vehicle utilization and to decrease the
number of vehicles needed for all deliveries, thereby optimizing revenue generation.
Key considerations for planners include analyzing the demand for transportation
services, the pricing strategy, and the operational costs. By effectively balancing
these elements, planners can enhance revenue while satisfying customer needs and
maintaining the financial health of the service. This approach not only boosts profits
but also aligns with efficient and customer-oriented service delivery. This objective
has been investigated in studies [33, 197].

Total distance minimization

The goal of the Total Distance (TDM) minimization objective in to minimize the
total distance traveled by all vehicles. This is the most common VRP objective and
can be found in some form in most publications considering VRP. By minimizing the
total distance traveled, planners can reduce the operating costs associated with trans-
portation and increase the efficiency of the operation. Studies that have considered
this objective include [10, 132, 143, 220, 224, 352].

Number of vehicles minimization

The objective of minimizing the Number of Vehicles (NV) in delivery operations
centers on route optimization to reduce the total number of vehicles needed. This
becomes especially crucial in scenarios where vehicle availability is a constraint, or
when the costs associated with vehicle acquisition and maintenance are considerable.
By achieving this goal, operations can become more efficient and cost-effective, par-
ticularly in resource-limited settings. Studies that have integrated this objective into
VRP include [297, 318, 370].

Quality loss cost minimization

The goal of the Quality Loss Cost (QLC) minimization objective is to minimize the
overall cost that results from quality loss during the transportation process. This ob-
jective is particularly relevant for perishable goods that experience a decline in quality
over time. The goal is to reduce penalties related to quality degradation, including
product damage, spoilage, and deterioration, which can result in additional expenses
and dissatisfied customers. By minimizing quality loss costs, planners can lower the
overall cost of providing transportation services while improving customer satisfac-
tion. This objective requires careful consideration of factors such as product fragility
and perishability, as well as handling procedures and transportation conditions that
promote quality preservation. In industries such as food and pharmaceuticals, where
product quality is essential, the Quality Loss Cost Minimization objective plays a crit-
ical role in ensuring the safe and efficient transportation of goods. Example studies
incorporating this objective into VRP include [195, 391].

ICV usage minimization

The ICV Usage (ICVU) minimization objective tries to minimize the number of
routes serviced by internal combustion vehicles, such as those that use gasoline or
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diesel, and serve as many customers as possible with AFVs. By reducing the use
of ICVs, planners can decrease the amount of greenhouse gases and other pollutants
emitted, thereby decreasing their carbon tax and promoting sustainable transporta-
tion practices. This objective requires planners to consider factors such as the avail-
ability and location of alternative fuel sources, the range and capacity of electric or
hybrid vehicles, and the scheduling and routing of vehicles to ensure that ICVs are
only used when necessary. This objective was considered in a study [373].

Maximum overtime minimization

In route optimization, the Maximum Overtime (MXO) objective is defined as the
greatest deviation between a route’s duration and its set time limit. This minimization
is crucial in contexts where driver work hours are regulated to prevent overwork. By
reducing maximum overtime, planners can lower the risk of accidents due to driver
fatigue and enhance driver well-being. Additionally, it can lead to significant savings
in transportation costs, particularly in terms of reduced labor expenses. To meet this
objective, planners might need to deploy extra vehicles, revise schedules or routes for
shorter driving times, or increase vehicle capacity or speed for more efficient deliveries.
This objective was explored in study [23].

Route imbalance minimization

The Route Imbalance (RI) minimization objective attempts to balance the workload
of vehicles and drivers as much as possible. In other words, the goal is to minimize
the difference in the number of stops and distance traveled between each vehicle or
driver, ensuring that no single vehicle or driver is overloaded with work while others
are underutilized. By minimizing route imbalance, planners can improve the efficiency
and effectiveness of the transportation system, reduce delivery times and costs, and
increase the satisfaction of both customers and drivers. Studies that have explored
this objective include [94, 339].

Waiting time minimization

The Waiting Time (WT) minimization objective tries to minimize the time vehicles
have to wait before serving customers, taking into account the time windows in which
customers must be served. By minimizing the waiting time, planners can ensure that
customers receive their deliveries within their preferred time windows while preventing
vehicles from being underutilized. This objective was examined in study [44].

Recharging cost minimization

The objective of Recharging Cost (RC) minimization in GVRP is to optimize the
routes of AFVs while minimizing the expenses associated with recharging them. The
cost of recharging is influenced by factors such as the recharging technology used and
the amount of energy required. By minimizing the costs associated with recharging,
companies can reduce their overall operating costs, leading to increased profitability
and sustainability. This objective requires planners to consider factors such as the
location and availability of charging stations, types of chargers available at stations,
the capacity and range of AFVs, and the scheduling and routing of vehicles to ensure
that they can be recharged efficiently and effectively. This objective was examined in
studies [92, 208].
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Recharging time minimization

Recharging Time (RT) minimization tries to minimize the time taken for recharg-
ing AFVs. The duration of recharging depends on the charging technology, battery
capacity, and the battery’s current level. The aim of minimizing recharging time is
to increase the productivity of AFVs, which can result in faster and more frequent
deliveries. Additionally, reducing recharging time can decrease the need for more
AFVs, as a fixed number of vehicles can complete more deliveries in less time. Pro-
longed charging times can also prevent vehicles from serving customers within their
preferred time windows. Thus, minimizing recharging time is essential for efficient
and timely deliveries while maintaining customer satisfaction. This objective was
considered in [44].

Queuing time minimization

The Queuing Time (QT) minimization objective in GVRP aims to minimize the
amount of time that AFVs spend waiting in line for a recharging station or a refueling
station. Queuing time can be a significant challenge for AFVs, particularly when the
number of AFVs using a given station exceeds its capacity. By minimizing queuing
time, planners can ensure that AFVs are available for deliveries more frequently, which
can increase the efficiency of the delivery system. The objective was considered in
study [194].

3.5 Consumption models
BEVs rely solely on electric power stored in their batteries to power their propul-
sion system. The energy consumption of BEVs is influenced by a variety of factors.
The vehicle’s weight is one of the most significant factors in determining its energy
consumption, as heavier vehicles require more energy to accelerate and move. Aero-
dynamics also plays a crucial role, with a more streamlined shape reducing drag
and improving efficiency. Driving behavior, such as accelerating quickly and braking
hard, can significantly impact energy consumption. Climate conditions, such as tem-
perature and humidity, also affect BEV energy consumption, as heating and cooling
systems require energy to operate. Finally, battery characteristics, such as capacity
and chemistry, can impact BEV energy consumption and range. The energy con-
sumed by a BEV is typically measured in kilowatt-hours (kWh) per unit of distance
traveled, such as kWh per mile or kWh per kilometer.

Estimating energy consumption is a crucial step in creating a dependable route
plan. There are two main approaches to this problem [72, 363]:

1. Theoretical energy estimation: This method aims to develop a mathematical
model for predicting energy consumption by considering various factors such as
vehicle speed, cargo weight, road slope, and other related variables. It relies
on the fundamental principles and theoretical knowledge of the problem, rather
than any empirical data.

2. Empirical energy estimation: This approach involves utilizing previously col-
lected data on energy consumption to statistically forecast the energy consump-
tion of a vehicle under specific conditions. This approach often employs machine
learning techniques like regression or neural networks to make predictions based
on historical data.
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In this section, we provide a brief overview of some of the theoretical models that
are applicable in estimating the energy consumption of BEVs.

Linear consumption model

The linear consumption model is a simplistic model that assumes the average energy
consumption of a BEV is solely dependent on the distance traveled. Although this
model oversimplifies the problem and is not suitable for accurately predicting energy
consumption, it can be useful for showcasing differences between various methods
used for vehicle routing problems. By simplifying the part that has little impact on
the performance of some solution methods, such as metaheuristics, we can focus on
improving our solution approach. However, the energy estimation function can have
a considerable impact on the performance of MILP solvers.

Equation (3.7) provides the calculation formula for the Estimated Consumption
Rate (ECR) based on the Linear Consumption Model (LCM). The distance traveled
by the vehicle from customer i to customer j is denoted by the variable dij, and the
average consumption rate of the vehicle is represented by CRavg.

ECRij = dij · CRavg (3.7)

Nonlinear consumption model

Nonlinear consumption models take into account different factors in their prediction,
such as the aforementioned vehicle speed, cargo weight, road slope, etc. Several
studies have examined nonlinear consumption models, including [191, 307, 368, 378,
390].

Four primary sources of energy loss in BEVs are commonly examined in research
studies 1:

• Aerodynamic losses: Aerodynamic losses are predominantly influenced by the
driving speed of the vehicle. Such losses are determined by the relative wind
speed across the vehicle, rather than the speed over the ground. The calculation
of aerodynamic losses in a BEV is influenced by several factors such as air
density, the frontal area of the vehicle, the coefficient of drag, and the speed at
which the vehicle is traveling.

• Tire losses: The energy consumed to overcome the rolling resistance of a road
surface on the tires of a vehicle is called tire loss, and it depends on both the
weight of the vehicle and the rolling resistance of the tires.

• Drivetrain losses: The drivetrain losses are comprised of the energy losses that
are not directly controlled by the user. These losses arise due to inefficiencies
in various components, including the motor controller, the motor, the gearbox,
and other factors that affect the conversion of DC electricity from the battery
pack into useful torque at the wheels of the vehicle.

• Ancillary losses: The term ”ancillary losses” refers to the energy consumed by
all other electrical systems in the vehicle, such as cooling fans and pumps, the
radio, interior and exterior lighting, and so on.

In addition to the four losses mentioned earlier, the study conducted by Xiao et
al. [368] also examines the kinetic/potential loss. This loss considers the energy lost

1https://www.tesla.com/blog/roadster-efficiency-and-range

https://www.tesla.com/blog/roadster-efficiency-and-range
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during the conversion of chemical energy to kinetic/potential energy due to changes
in velocities and terrain heights. The authors presented a comprehensive model for
estimating energy consumption in their study, which incorporates all of these losses.

The distribution of the mentioned energy losses for an electric city bus is shown
in Figure 3.5.

Figure 3.5: Energy losses distribution of an electric city bus. (Image
source: [348])

For our purposes, the consumption model presented by Li et al. [191] would suffice
as it incorporates significant factors such as speed, load, driving distance, road angle,
among others. Therefore, we present their model in Equation (3.8).

ECRij = aij(w + lij)dij + γv2
ijdij (3.8)

where

aij = a + g sin θij + gCr cos θij (3.9)

γ =
1
2

Cd Aρ (3.10)

The vehicle acceleration is represented by the parameter a, and the gravity con-
stant is represented by the parameter g. The road angle is denoted by θij, and the
rolling resistance coefficient is represented by Cr. The weight of the empty electric
vehicle is represented by w, and lij represents the load of the vehicle. The speed of the
vehicle is denoted by vij. Additionally, the symbol Cd denotes the traction coefficient,
A represents the frontal area of the vehicle exposed to the wind, and ρ is the density
of the air. The relation of γ to the previously mentioned aerodynamic loss is evident,
and aij is associated with the tire loss.

3.6 Battery recharge models
As previously mentioned, BEVs require recharging at an AFV station once their
battery level reaches a certain point. The charging speed plays a critical role in de-
termining the duration of the vehicle’s stay at the station. Accurate estimation of this
time is essential in ensuring efficient route planning and timely customer service. In-
accurate predictions could result in missed customer time windows, additional worker
overtime pay, or running into traffic congestion during rush hour.
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In Section 3.3 we already mentioned two different policies for recharging a battery
of a BEV: full recharge and partial recharge. We have also mentioned the battery
swap strategy, which allows the vehicle to avoid long recharging times. However,
whether we consider full or partial recharge, the charging speed is a factor that we
need to consider. As with the energy consumption rate, we can differentiate between
two main groups of functions that can be used for calculating charging time: linear
charging function and non-linear charging function.

Linear charging function

The linear charging function is a straightforward function that usually relies on the
energy required for recharging (Echarge) and the charging rate (CHrate), which is de-
termined by the charging technology. It can be expressed as follows:

Tcharge = Echarge · CHrate (3.11)

It has the advantage of being simple to implement, but it fails to take into account
all factors that contribute to the charging speed.

Nonlinear charging rate

The charging process of batteries in the real-world is non-linear due to fluctuations
in terminal voltage and current. Initially, the charge level increases faster over time,
but as the battery gets closer to full charge, the rate of increase becomes lower.

Figure 3.6 illustrates the non-linear charging function in a real-world situation [136].
The graph shows the relationship between the terminal voltage (u), current (i), and
State of Charge (SoC), which is equivalent to the battery level. The charge level
initially increases linearly with time, but then becomes concave until it reaches full
charge.

Initially, the battery undergoes charging using a constant current, which leads
to a linear charging rate. Subsequently, when the SoC approaches approximately
80% of battery capacity, the charging method shifts to using constant voltage, in
order to prevent damage to the battery [136]. This results in a concave charging
rate. This approach is also called the constant current–constant voltage (CC-CV)
charging method. In a study by Saadaoui et al. [295], the authors plotted the CC-CV
method, alongside another fast-charging method called multi-stage constant current
(MSCC).
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Figure 3.6: A typical battery charging curve where the terminal
voltage is u, the current is i, and the state of charge is SoC.

(Image source: [136])

Montoya et al. [245] introduced a non-linear charging function that considers the
aforementioned characteristics of the charging process. It is defined as follows:

We can represent the charge level of a vehicle upon arrival at AFS i as qi and the
time spent charging at i as ∆i. Additionally, let oi be the charge level after the vehicle
departs from AFS i. The charging function can be written as Equation (3.12).

oi = gi(qi, ∆i) (3.12)

The authors utilized the transformation proposed by Zündorf [392] to convert this
two-dimensional function into a one-dimensional function, which was then estimated
by approximating it with piecewise linear functions, using data from [342].

3.7 Literature review

3.7.1 Review papers on the topic of GVRP

Lin et al. [198] conducted one of the initial surveys on the GVRP, which also encom-
passed the classical VRP. The survey categorized papers based on the specific version
of VRP investigated, with a focus on the most prevalent VRP attributes. The authors
examined approximately 280 papers, out of which only 28 addressed the green vari-
ant of VRP. Among those 28 papers, 11 aimed to minimize fuel consumption or CO2
emissions in VRP, while 17 were concerned with reverse logistics VRP. The study did
not include VRP with AFVs. Both heuristic and exact methods were considered in
the surveyed papers. The authors also outlined potential future directions for GVRP;
however, some of those suggestions may have become outdated since the publication
of the survey.

In their work, Park and Chae [268] provided a comprehensive review of various
approaches for addressing the GVRP using ICVs. The survey encompassed a range
of techniques, including exact algorithms, heuristics, and metaheuristics. A total of
40 publications were analyzed, with 21 of them employing metaheuristic methods
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to tackle the problem. Additionally, the authors highlighted different fuel consump-
tion models that were considered in the surveyed papers, providing a comprehensive
overview of the modeling approaches used in ICV-based GVRP.

Eglese and Bektaş offer a comprehensive overview of the GVRP in their chap-
ter [80]. They cover various aspects of GVRP, including emission models, fuel con-
sumption considerations, and time-dependent GVRP. The chapter also explores topics
such as speed optimization and multicriteria analysis within the context of GVRP.
While AFV-based GVRP is mentioned, the chapter does not delve into a detailed
review of this particular aspect. Nonetheless, the chapter provides valuable insights
into the fundamental concepts and key elements of GVRP.

Another study, performed by Zhang et al. [383], presents a comprehensive anal-
ysis of swarm intelligence algorithms applied in the context of green logistics. The
authors surveyed a total of 115 papers published between 1995 and 2014, exploring
various problems within the domain of green logistics. While papers related to Vehicle
Routing Problem (VRP) were relatively scarce, they were mainly focused on reverse
logistics. Notably, papers specifically addressing PRP or VRP with AFVs were not
included in the review.

In their survey, Marrekchi, Besbes, and Dhouib [217] conducted an examination
of the ICV-based version of the GVRP. The authors focused on differentiating be-
tween exact, heuristic, and metaheuristic solution methodologies, providing notable
examples for each of these commonly employed algorithmic approaches.

Erdelić and Carić [85] conducted an extensive analysis of EVRP. The authors
provided a detailed examination of the fundamental characteristics and applications
of EVRP, encompassing various energy consumption models. They explored different
variations of EVRP, offering relevant examples from the existing literature. The sur-
vey encompassed a wide range of solution methodologies, including exact, heuristic,
metaheuristic, and hybrid approaches. For each reviewed paper, the authors pre-
sented the problem variant, solution approach, and evaluated instances, accompanied
by concise descriptions. Additionally, the study discussed potential avenues for fu-
ture research in this domain, highlighting areas where further investigation could be
valuable.

In the work by Konstantakopoulos, Gayialis, and Kechagias [166], authors pro-
vided an overview of the VRP in its various forms. Among the different versions of
VRP, GVRP was addressed as a distinct subsection. The authors reviewed a limited
number of papers concerning GVRP, five in total.

Moghdani et al. [241] examined a total of 309 papers that are relevant to the
GVRP. The reviewed papers were analyzed and categorized based on various aspects
such as problem classification, GVRP variant, uncertainty, solution methodology, ob-
jective function, and sustainability considerations. While not all reviewed papers were
explicitly mentioned, those that were mentioned often received limited description.
The study concluded by identifying several promising research directions that can
shape the future of GVRP.

Ferreira, Steiner, and Canciglieri Junior [95] examined 76 papers published be-
tween 2012 and 2018 focused on the multi-objective version of the GVRP. The re-
view primarily focused on conducting a bibliometric analysis of papers related to
ICV-based GVRP, including studies on PRP, GVRP, and reverse logistics. However,
papers specifically related to AFV-based GVRP were not included in the analysis.

In their comprehensive literature review, Asghari and Mirzapour Al-e-hashem [19]
conducted an extensive analysis of the GVRP from 2000 to 2020. The review encom-
passes a total of 313 papers, which were examined and classified. The classification
was based on the type of vehicle engine and further categorized according to various
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attributes of the VRP and the methodologies employed. Moreover, the authors offer
valuable insights into potential future research directions and identify existing gaps
in the literature, highlighting areas where further investigation is warranted.

3.7.2 Metaheuristics for GVRP

In this section, we provide a literature review organized into subsections, each focusing
on a specific metaheuristic as used in various publications. This review builds upon
our prior work [221], and has been expanded to encompass additional publications
that were not included previously.

Simulated Annealing

In the study conducted by Felipe et al. [92], the focus was on the Electric Vehicle Rout-
ing Problem incorporating multiple recharging technologies and partial recharges.
This problem involves the consideration of various technologies to recharge a vehi-
cle’s battery, each with its own recharge time and associated cost. Typically, reducing
the recharge time results in an increase in cost. Moreover, it is not mandatory to
fully recharge the battery, allowing for a reduction in the time required to service
customers. To address this problem, the authors implemented SA as well as several
other heuristic methods based on local search. By conducting tests on diverse sets of
instances, the researchers concluded that SA outperformed deterministic local search
methods, particularly on larger instances featuring over 200 customers.

In the study conducted by Küçükoğlu et al. [173], SA was employed to address
the Green Vehicle Routing Problem with Time Windows. The main objectives of
this problem were to minimize fuel consumption and CO2 emissions. The problem
formulation involved a MILP approach; however, an exact solver was not employed
due to its inefficiency for larger problem sizes, as concluded by the authors. To
construct an initial solution for SA, the algorithm utilized Solomon’s time-oriented
nearest neighbor algorithm [315]. A notable feature of the proposed algorithm referred
to as Memory Structure Adapted Simulated Annealing (MSA-SA), was the storage
of objective function values in a special memory structure whenever a new route
was generated. This approach helped to avoid redundant evaluations of the same
route. Through experimentation on various test instances, MSA-SA demonstrated its
ability to achieve near-optimal solutions for medium and large problem sizes within
a relatively short time frame.

Xiao and Konak [367] conducted a study using SA to mitigate the CO2 emissions
generated by a fleet of homogeneous vehicles. Their research incorporated soft time
windows, wherein penalties were imposed for missing deadlines, while early arrivals
were encouraged to enhance customer satisfaction. The authors also took into account
the TD attribute of the VRP. The main objective of their study was to minimize CO2
emissions, which were estimated using established models available in the literature.
Additionally, the authors considered several secondary objectives in a hierarchical
manner, including customer satisfaction level, total route time, and total route dis-
tance. To tackle this complex problem, the researchers presented a MILP formulation
and utilized the SA metaheuristic as an effective solution approach.

In their publication, Yu et al. [376] delved into the application of SA in the context
of the VRP, specifically focusing on the hybrid vehicle routing problem (HVRP). The
HVRP serves as an extension to the GVRP since hybrid vehicles possess the capa-
bility to switch between electrical energy and fossil fuel as their primary propulsion
mode during the course of their routes. The problem considers two types of stations:
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electric stations and fuel stations, with vehicles having the flexibility to visit these
stations multiple times. To obtain an initial solution, the authors employed the Near-
est Neighbor Algorithm (NN) [114], which starts with a single customer and, at each
step, the nearest customer to the current one is included in the route. During each
iteration, the algorithm explored one of five predefined neighborhoods, chosen ran-
domly with a probability of 1

5 . To circumvent the risk of local optima, the algorithm
incorporated the restart strategy.

In their research, Karagul et al. [158] conducted a study on the GVRP with the
primary objective of minimizing both the total CO2 emissions and the total distance
traveled. Three mathematical models were examined, drawing inspiration from the
model presented in [164, 369]. These models varied mainly in the formulation of the
objective function, with one model derived from [83], and the other two proposed by
the authors themselves [158]. To tackle the formulated problems, a basic version of
SA was utilized. The algorithm’s performance was evaluated using instances from
the Capacitated Vehicle Routing Problem (CVRP) dataset provided in [21, 51]. The
experimental evaluations concluded that the approach employing a convex composi-
tion of objectives demonstrated superior performance compared to other approaches
in general.

Normasari et al. [256] also delved into the utilization of AFVs for the CVRP.
The main objective was to minimize the total distance traveled by all vehicles. To
address this, the researchers proposed a MILP formulation, which was tested using the
CPLEX commercial solver. However, due to the computational challenges associated
with exact solvers when dealing with larger instances, the authors also introduced
an alternative approach using SA. In their problem representation, the researchers
included a depot node, customer nodes, AFS nodes, and a set of dummy nodes.
Dummy nodes were introduced to overcome the constraint that prohibits visiting the
same node more than once, as the vehicles needed to be able to visit AFSs multiple
times. The initial solution was generated using the NN algorithm. Four distinct
neighborhood structures were utilized: swap, insert, insertAFS, and deleteAFS. To
optimize the SA approach, the parameters were tuned using a subset of benchmark
instances from [86]. Additionally, the authors conducted a sensitivity analysis to
assess how variations in different parameters affected the objective function’s value
and the required number of vehicles.

Tabu search

The paper by Kwon, Choi, and Lee [176] focuses on the heterogeneous fleet CVRP,
aiming to minimize the overall cost, which includes the carbon trading cost. The car-
bon trading cost represents the expense incurred by companies for emitting a certain
amount of CO2 and is directly related to the deviation between actual emissions and
a predefined upper limit. If the emissions surpass the limit, companies must purchase
additional emission rights, resulting in increased transport costs. The authors pre-
sented a mathematical model for this problem and proposed a TS metaheuristic. The
initial solution is constructed by assigning the customer with the highest demand to
the vehicle with the largest capacity. If the partial solution is infeasible, the customer
is reassigned to the vehicle with the second-highest capacity, and so on. The initial
solution is further enhanced using the 3-opt heuristic proposed in [199]. The tabu list
size is determined dynamically using a tabu term rule [108]. Three different neigh-
borhood structures were evaluated in TS algorithm: insert, swap, and hybrid (which
randomly selects the insert or swap operator in each iteration). Experimental results
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demonstrate that the TS algorithm with the hybrid neighborhood structure, yields
the best outcomes.

In the study conducted by Úbeda et al. [341], an additional example of GVRP
with capacity constraints focusing on minimizing CO2 emissions using TS is presented.
The CO2 emissions of a vehicle are calculated by considering the fuel consumption
associated with the vehicle’s mass and load. The researchers applied the basic version
of TS to seven real-world instances and observed that, in certain cases, it success-
fully reduced CO2 emissions compared to TS optimization aiming to minimize total
distance. However, limited information is provided regarding implementation details,
particularly regarding the specific set of operators used to generate neighborhoods,
which is not explicitly mentioned.

In their work, Niu et al. [254] addressed a green open CVRP with time windows,
aiming to minimize both CO2 emission costs and driver wage costs simultaneously. To
approximate the CO2 emission costs, they employed a comprehensive modal emission
model (CMEM) proposed in [26]. The problem formulation also considered variable
vehicle speeds throughout the trips. A mathematical model was developed, and a
TS approach was utilized to generate high-quality solutions. For the initialization
of the TS algorithm, a modified NN was employed. In each iteration, four different
neighborhood operators were utilized to generate a set of neighboring solutions. A
speed improvement strategy based on [170] was employed to determine the optimal
speed and departure time for each route. The researchers analyzed various real-world
scenarios, including traffic congestion, different vehicle types, diverse objectives, and
the impact of empty kilometers.

Variable neighborhood search

Bruglieri et al. [44] addressed a variant of EVRP with time windows and partial
battery recharge. Their objective was to simultaneously minimize the number of
BEVs, total travel time, total recharging time, and total waiting time. To tackle
this problem, the researchers proposed a mathematical model that was subsequently
solved using a technique called Variable Neighborhood Branching (VNB) [127]. VNB
is a matheuristic inspired by VNS and specifically designed for solving 0-1 Mixed
Integer Programming problems. The VNB approach demonstrated success in finding
high-quality solutions for the EVRP with TW within a reasonable computational
time frame.

The paper by Yavuz and Çapar [373] examined an uncapacitated variant of VRP
that involves a fleet with heterogeneous vehicles (including both AFVs and ICVs),
multiple trips, and limited trip durations. This problem differs from traditional
delivery-focused VRPs as the vehicles also provide specific services, allowing them
to spend time serving customers. Vehicles can be fully recharged at any AFS or par-
tially recharged on-site while serving a customer. The paper presents four different
objectives for the problem: minimizing total distance traveled, minimizing total CO2
emissions, minimizing fuel costs, and minimizing total distance traveled by ICVs. To
address this problem, the authors propose the use of a VNS algorithm, which uti-
lizes a set of five different neighborhoods derived from [144, 329]. The customers are
grouped and then optimized based on the aforementioned objectives. Additionally,
the VNS algorithm is adapted to support Pareto optimization for the proposed prob-
lem. Experimental results demonstrate that incorporating on-site partial recharges
significantly improves overall performance while increasing the number of AFSs has
a smaller impact. Consequently, the proposed model with on-site recharges is more
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likely to be adopted by larger companies whenever feasible, given its superior perfor-
mance.

The research conducted by Affi, Derbel, and Jarboui [5] focuses on the GVRP
which utilizes a fleet of AFVs, with the primary objective of minimizing the total
energy cost. To tackle this problem, the authors propose a VNS algorithm that in-
corporates a set of 9 different neighborhood structures categorized into three types:
customer neighborhoods, AFS neighborhoods, and node neighborhoods (which consider
both customer and AFS nodes). The shaking step of the algorithm generates a ran-
dom solution using only the set of node neighborhood structures. In each iteration of
the shaking step, a neighborhood structure is selected at random. In the subsequent
improvement step, the authors employ Variable Neighborhood Descent (VND) as a
local search procedure, considering only the customer and AFS neighborhoods. No-
tably, unlike the classical VNS approach where the shaking step precedes the local
search step, the proposed version by Affi et al. reverses this order. Consequently, the
shaking step only accepts a solution if it improves upon the incumbent solution. To
evaluate the algorithm’s performance, benchmark instances from [86] were employed.
The proposed method was then compared to solutions put forward in [86, 244, 302,
303]. The experimental results indicate that the proposed algorithm either outper-
forms other methods in terms of the best-found solution or achieves a comparable
solution to some of the alternative approaches.

The paper by Ren et al. [286] focuses on investigating a GVRP with TW and
HF. This problem variant introduces BEVs into a fleet consisting of homogeneous
ICVs. The objective is to minimize both the total delay time and five different types
of pollutant emissions simultaneously. Delay time pertains to the observation that
the satisfaction of a customer decreases as the vehicle arrives later, even if the arrival
time falls within the specified time window. In this problem, instead of recharging
BEVs at AFSs, they are required to return to the depot for recharging. The authors
propose a mathematical model, together with a VNS algorithm to find a good solu-
tion in reasonable amount of time. The shaking step of the algorithm employs two
neighborhood operators: 1-1 exchange and 1-0 shift. The local search procedure is
based on the VND approach, which utilizes nine different neighborhood operators.
These operators include one that changes the vehicle type, four intra-route opera-
tors for exchanging or moving customers within a single route, and four inter-route
operators for exchanging or moving customers between two routes. The proposed
algorithm demonstrates satisfactory performance in terms of both objectives.

In their research, Yilmaz and Kalayci [374] tackled the EVRP with Simultaneous
Pickup and Delivery, aiming to reduce the total distance traveled by electric vehicles.
They developed a mathematical model for the problem and crafted a unique set of
instances using the dataset from [302], modifying original demands to include pickup
and delivery requirements. The study involved extensive testing of various neighbor-
hood structures and five variants of the VNS, with the Clark and Wright Savings
Algorithm (CW) [52] utilized for initial solution generation. Their computational
experiments highlighted the critical role of neighborhood structures, solution meth-
ods, and neighborhood change steps in efficiently discovering high-quality solutions
by navigating through different neighbors in the search space.
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(Adaptive) large neighborhood search

The paper by Goeke and Schneider [111] addresses a CVRP with time windows and a
heterogeneous fleet, including BEVs. They propose a mathematical model that con-
siders three objectives: minimizing total travel distance, minimizing vehicle propul-
sion and labor costs, and minimizing battery replacement costs. To tackle this prob-
lem, they develop an ALNS algorithm. The algorithm allows for the construction of
infeasible solutions but penalizes them in the objective function. The paper provides
a detailed description of the destroy and repair procedures used in ALNS. Destroy-
ing entails removing customers from a dynamically selected interval, as experiments
indicate that the choice and size of this interval significantly impact solution quality.
Additionally, a local search method is introduced to intensify the search in promis-
ing areas. To overcome local optima, the algorithm employs a SA-based criterion
for solution acceptance, which allows worse solutions to be accepted with a certain
probability. The modified ALNS algorithm proves effective in finding satisfactory
solutions within a reasonable timeframe, as demonstrated on a set of 56 benchmark
instances from [302].

The EVRP with known TW and PR was addressed by Keskin and Çatay [160].
They introduced a mathematical model and utilized the ALNS algorithm with the
objective of minimizing the total distance traveled. The acceptance criterion in the
algorithm is SA-based. Two groups of destroy and repair procedures are employed:
customer-based and AFS-based. To evaluate the effectiveness of their approach, the
authors conducted experiments using a set of instances from [302]. The results demon-
strated notable improvements over four of the best-known solutions, highlighting the
positive impact of partial recharge on the overall solution quality.

The paper by Hiermann et al. [134] investigates a VRP with time windows and
electric vehicles, featuring a heterogeneous fleet. In this scenario, the company leases
vehicles at varying prices, each with its own load capacity, energy capacity, and
acquisition cost. The objective is to minimize both the total cost of travel and the
total acquisition cost of vehicles. During visits to an AFS, vehicles are fully recharged.
To tackle this problem, the authors propose an ALNS approach, which incorporates
a local search and a labeling procedure to enhance the solution quality. The ALNS
employs a range of operators for both the destroy and repair procedures. In each
iteration, an operator is selected based on the roulette wheel strategy, considering the
weights assigned to each operator. These weights are dynamically adjusted to better
suit the characteristics of the specific instance. Experimental evaluations conducted
on a set of benchmark instances demonstrate the ALNS’s capability to discover high-
quality solutions within a reasonable computational time.

The research conducted by Macrina et al. [207] addresses a VRP with time win-
dows, a heterogeneous fleet, and partial recharges. The fleet comprises both conven-
tional vehicles and electric vehicles, and the objective is to minimize the overall cost,
which includes fuel and electricity costs. To tackle this problem, the authors pro-
pose a matheuristic approach that combines a hybrid version of Large Neighborhood
Search (LNS) introduced by Shaw [309] and the optimization solver CPLEX. The
method follows a two-step process: first, an initial feasible solution is generated using
CPLEX, and then random removal and insertion operators are applied to refine the
current solution. Through experimental evaluation, it was observed that this com-
bined method achieves optimal solutions more efficiently than using CPLEX alone,
particularly for smaller problem instances.

The study conducted by Yu et al. [377] focuses on a GVRP with time windows,
aiming to minimize carbon emissions. The authors specifically address the challenge
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of solving large-scale instances with over 500 customers, which are difficult to opti-
mize perfectly. To tackle this issue, they employ the ALNS method and introduce
two novel operators: the Forward Load Removal Heuristic as a destroy operator and
the Fast Insertion Method as a repair operator. The Forward Load Removal Heuris-
tic capitalizes on the observation that carbon emissions correlate with the distance
between customers and the vehicle load. Based on this insight, it is advantageous to
serve high-demand customers earlier in the tour, thereby reducing the vehicle load and
subsequently lowering CO2 emissions. Consequently, the proposed operator removes
customers with high demands who are served later in the tour (or earlier in the case
of pickups instead of deliveries). The Fast Insertion Method aims to streamline the
feasibility verification process after inserting a customer by leveraging the fact that,
in certain scenarios, not all subsequent customers need to be checked to determine
feasibility. By exploiting this property, the method reduces the complexity associated
with assessing solution feasibility. Computational experiments were conducted on two
benchmark datasets, each containing up to 1000 customers. The proposed approach,
featuring the new destroy and repair operators, exhibited an average improvement of
8.49% compared to the classical ALNS method.

Ant Colony Optimization

The research conducted by Mavrovouniotis, Ellinas, and Polycarpou [225] focuses on
the application of the ACO algorithm to the EVRP. The objective is to minimize the
total operation time of a fleet of electric vehicles. In this study, each ant represents
a complete solution for the EVRP, and during the construction phase, careful con-
sideration is given to ensuring that sufficient energy remains for the vehicles to visit
charging stations. The pheromone update policy employed in this approach follows
the principles of the MAX-MIN Ant System (MMAS) introduced by Stützle and
Hoos [322]. This policy governs how pheromone values are adjusted based on the
quality of solutions found by the ants.

Building upon their previous work [225], Mavrovouniotis et al. [226] propose a par-
allelization method for further enhancing the algorithm’s performance. The method
involves multiple independent colonies that communicate with each other using a non-
parametric migration policy. This parallelization technique was evaluated on a set of
three instances. The results demonstrate that parallelization improves solution qual-
ity compared to the sequential version of the algorithm. However, the non-parametric
migration policy did not have a significant impact on solution quality. This outcome
suggests that sharing the best-found solution among parallel colonies leads to conver-
gence toward the same part of the search space.

The research conducted by Zhang, Gajpal, and Appadoo [380] focuses on the
CVRP with AFVs. The authors propose two approaches to tackle this problem:
the two-phase heuristic and the Ant Colony System (ACS). The two-phase heuris-
tic approach involves solving the Traveling Salesman Problem (TSP) version of the
problem using the NN. After obtaining a TSP solution, visits to AFSs and the depot
are inserted into the solution, effectively transforming it into a solution for the initial
CVRP problem. Similarly, the proposed ACS method follows a similar approach in
generating new solutions. TSP solutions are generated based on pheromone intensity
and saving value. Then, visits to the depot and AFSs are inserted into the solutions.
This allows the ACS method to effectively address the CVRP with AFVs. Both
algorithms were tested on a set of randomly generated instances. As anticipated,
the ACS method outperformed the two-phase heuristic in terms of solution quality,
demonstrating its effectiveness in finding improved solutions for the problem at hand.



64 Chapter 3. Green Vehicle Routing Problem

In their research, Li, Soleimani, and Zohal [197] focus on the Multi-Depot GVRP.
The authors propose a comprehensive model that considers four distinct objectives:
1) maximizing revenue, 2) minimizing costs, 3) reducing travel time, and 4) minimiz-
ing CO2 emissions. To tackle this complex problem, the authors proposed an ACO
metaheuristic as a solution method. In the ACO algorithm, the pheromone update
strategy employed is the Ant-Weight Strategy (AWS), which is derived from [264].

The Multi-Depot GVRP is also investigated in a study by Zhang et al. [382].
The primary objective considered in their work is to minimize the total distance
traveled by a fleet of AFVs. In their approach, Zhang et al. [382] initially assign each
customer to its nearest depot. Subsequently, they apply an ACS to solve multiple
single-depot GVRP. By decomposing the multi-depot problem into a series of single-
depot problems, the authors effectively address the challenges posed by the multi-
depot scenario. To evaluate the proposed method, the authors conduct experiments
using a set of 48 instances. The results demonstrate satisfactory performance and
validate the effectiveness of their approach. Building upon this idea, Zhang et al.
[384] further expands the research in this domain.

In the study conducted by Bhattacharjee et al. [33], a multi-depot heterogeneous
fleet GVRP is addressed. The problem aims to optimize four objectives: 1) maxi-
mizing revenue, 2) minimizing costs, 3) reducing travel time, and 4) lowering CO2
emissions, similar to the objectives considered in [197]. The algorithm proposed in
[33] shares several similarities with the approach presented in [196]. It also incorpo-
rates clustering as its initial step, where the k-nearest neighbors algorithm [169, 386] is
utilized to assign each depot to its nearest customers. However, the exact utilization
of the clustering results within the algorithm is not explicitly clarified in the original
paper. It is assumed by the author of this thesis that, similar to related work such
as [196], the subsequent step involves employing ACO to solve single-depot VRP for
each cluster in parallel.

The paper by Li et al. [194] explores the application of distribution sharing with
electric vehicles. Distribution sharing involves the collaboration of multiple compa-
nies to combine their distribution needs and resources, aiming to reduce costs and
minimize environmental impact. This particular problem variant focuses on multiple
depots with time and capacity constraints. The objective is to minimize the overall
cost, encompassing factors such as electricity expenses and environmental costs. To
address this problem, the authors propose the utilization of ACO. The algorithm is
designed to find efficient solutions considering both separate distribution models and
distribution sharing models. Various scenarios are examined, including different elec-
tricity prices and carbon taxes. The experimental results indicate that employing the
distribution sharing model, coupled with higher carbon taxes, leads to a reduction
in CO2 emissions. Conversely, lower electricity prices are found to increase the total
CO2 emissions. Notably, an increase in carbon taxes results in a significant rise in
the overall cost. Therefore, it is crucial to carefully balance the positive and negative
effects of such measures.

Genetic algorithms

The paper authored by Ayadi et al. [23] explores the VRP with multiple trips, with
a focus on minimizing total CO2 emissions and reducing the maximum overtime of
vehicles. The maximum overtime represents the largest difference between the time
limit and the actual duration of each route. To address this problem, the authors
propose a modified version of a GA. In each iteration of the algorithm, genetic op-
erators are employed to generate new solutions, which are subsequently enhanced
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using local search techniques (similar to MA). If these new solutions exhibit superior
quality compared to the worst solutions in the population, they replace those solu-
tions. Through experimental evaluations, the results demonstrate that this algorithm
is capable of discovering high-quality solutions in terms of emissions, albeit with a
potential sacrifice in terms of distance.

The research conducted by Adiba, Aahmed, and Youssef [3] focuses on addressing
a CVRP with the objective of minimizing emissions. The approach involves creating
an emission matrix using the methodology outlined in [131]. Solutions are represented
as arrays of integers, with each integer corresponding to a specific customer, while the
value zero serves as a delimiter to separate different routes. To generate the initial
population, emphasis is placed on ensuring that each individual represents a feasible
solution. The selection of individuals for crossover is performed using a roulette wheel
strategy, with a bias toward the best solutions. A partially-mapped crossover operator
is then applied to create new individuals. Swap mutation is employed as a means of
introducing diversity. Additionally, the algorithm incorporates an elitism strategy to
preserve the best solutions during the evolution process. The proposed algorithm is
evaluated using a small set of instances, yielding promising results.

The study conducted by Hsueh [139] focuses on GVRP that incorporates stochas-
tic traffic speeds and a heterogeneous fleet. To account for various road conditions
and gradients that can impact vehicle speeds, the paths between customers are di-
vided into segments. As it is difficult to precisely predict traffic conditions for each
segment, the speed is treated as a random variable. The objective of the problem
is to simultaneously minimize the total cost, including both emissions and fuel con-
sumption costs. The authors propose a mathematical model to capture the problem’s
complexities and provide a solution approach using a genetic algorithm. In the pro-
posed genetic algorithm, solutions are represented by two chromosomes. The first
chromosome determines the order in which customers are visited, while the second
chromosome indicates the index of the last visited customer in the first chromosome
for each vehicle. These chromosomes consist of genes that represent specific elements
of the solution. The tournament method is employed for the selection process, and
the crossover operator selects two random points in the parent chromosomes and ex-
changes the segments between these points. However, this approach may result in
children visiting the same customer multiple times. To address this issue, a map-
ping set derived from the exchanged segments of the parents is used to correct any
duplications. Two mutation operators are applied in the algorithm. The exchange
operator swaps the positions of two randomly selected genes within a chromosome,
while the insert operator removes a randomly chosen gene from one position and
inserts it elsewhere in the chromosome.

In their work, Tunga, Bhaumik, and Kar [339] examined a CVRP with two pri-
mary objectives: minimizing energy consumption and balancing the load across routes
to achieve a more even distribution among vehicles. To address this bi-objective op-
timization problem, the authors proposed a genetic algorithm that incorporates the
Pareto ranking scheme. The genetic algorithm introduced in the study utilizes two
tournament selection processes. These selections randomly choose two pairs of chro-
mosomes and conduct tournaments for each pair. The winners from both tournaments
are then chosen for crossover, which helps combine favorable characteristics from the
selected chromosomes. The authors employed a greedy crossover operator inspired by
the work of Ismkhan and Zamanifar [145], while mutation is performed using the 2-opt
operator. Experimental evaluations conducted with this algorithm indicate its ability
to generate a quality set of Pareto-optimal solutions, offering a range of trade-offs
between the two objectives of energy consumption and route imbalance.
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In their research, Cooray and Rupasinghe [54] examined a variant of the CVRP
with a primary focus on minimizing energy consumption. To address this problem,
the authors proposed a basic GA. However, their notable contribution lies in lever-
aging machine learning techniques to tune the algorithm’s parameters, including the
mutation rate, number of generations, and population size. The authors employed the
k-means algorithm [206] to cluster the problem instances based on total demand and
the number of customers. Each cluster corresponds to different sets of parameters,
allowing for customization according to the characteristics of the instances. By using
the Freedman test [98], the authors successfully demonstrated that different muta-
tion rates yield varying means of minimized energy consumption. This approach was
tested on a collection of 100 instances sourced from CVRPLib2, a widely recognized
benchmark library for CVRP.

In their study, Costa et al. [55] employed a genetic algorithm to address the
minimization of CO2 emissions per route in a basic formulation of the CVRP. The
algorithm begins by generating the initial population through a combination of con-
struction heuristics and random solutions. Specifically, the first three individuals are
created using well-known construction heuristics such as the NN, CW, and Random
Insertion. The remaining individuals are randomly generated. Notably, individuals
with the same fitness value, even if they encode different solutions, are not allowed
in the population. The algorithm incorporates two mutation operators, namely, the
2-Opt and 3-Opt operators. During each step, one of these operators is selected
at random, with a predefined probability. To select parents for crossover, a binary
tournament selection mechanism is employed. A new offspring replaces an existing
individual only if it demonstrates a better fitness value. The algorithm terminates
when it reaches a predefined number of successful offspring or a predefined number
of unsuccessful offspring without improving the current best solution. Upon termi-
nation, the procedure is restarted using the partial replacement procedure proposed
by Cheung, Langevin, and Villeneuve [49]. This restart occurs for a total of R times,
providing additional opportunities to enhance the quality of the solutions.

In their study, Hiermann et al. [133] examined the VRP with time windows and
a heterogeneous fleet. The fleet consisted of three classes of vehicles: conventional,
hybrid, and electric vehicles, with each class encompassing multiple vehicle types dis-
tinguished by capacity, consumption, or battery capacity. The primary objective was
to minimize the total cost, which included fixed costs such as vehicle acquisition and
maintenance, as well as variable costs like fuel consumption. The representation of
routes in this study involved sequences of customers without considering the presence
of recharging stations. Route evaluation was conducted in two levels. In the first
level, recharging stations were dynamically inserted into routes for BEVs and HEVs
using dynamic programming techniques. In the second level, additional optimization
was performed to optimize the partial recharge time and engine mode for HEVs. To
address this optimization task, the authors proposed two greedy policies. To obtain
the routes, the authors employed a genetic algorithm inspired by the work of Vidal
et al. [349, 350]. Although the original authors referred to this algorithm as a hybrid
due to the inclusion of several non-standard operators based on local search, it does
not qualify as a hybrid metaheuristic since it does not combine two distinct meta-
heuristics. The study included extensive testing and sensitivity analysis, providing
comprehensive insights into the proposed algorithm’s performance. Moreover, the
authors introduced a new set of benchmark instances to facilitate further research
and evaluation in the field.

2http://vrp.galgos.inf.puc-rio.br/index.php/en/

http://vrp.galgos.inf.puc-rio.br/index.php/en/
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In their research, Hien, Dao, and Binh [132] delves into the basic version of the
EVRP, with the goal of minimizing the overall distance traversed by the fleet of
EVs. To achieve this, they introduced the Greedy Search Algorithm (GSA), a tech-
nique that clusters customers into manageable subroutes. These subroutes are then
optimized using a local search method, with necessary stops at AFSs incorporated
strategically. Additionally, the authors developed a hybrid methodology that syn-
ergizes GSA with GA. In this approach, GSA plays a crucial role in generating the
initial population, setting the stage for further refinement through GA.

Particle Swarm Optimization

The study conducted by Kumar et al. [174] aimed to optimize both the production
routing and pollution routing problems. The combined problem focused on a sce-
nario where a factory aimed to optimize its production process and efficiently deliver
products to customers, considering that each customer had a limited-capacity stor-
age unit. The authors proposed a bi-objective model that encompassed two primary
objectives. The first objective involved minimizing the total operational cost, which
included factors such as production costs, storage costs, distribution expenses, and
more. The second objective aimed to minimize overall emissions by reducing fuel
consumption. Additionally, the problem formulation incorporated time window con-
straints. To address this problem, the authors formulated a mathematical model and
introduced a metaheuristic approach known as the Self Learning PSO (SL-PSO),
initially proposed by Li et al. in 2011 [188]. Additionally, the authors applied the
non-dominated sorting genetic algorithm-II (NSGA-II) [67] to the problem to as-
sess the efficiency of SL-PSO. By comparing the Pareto fronts obtained by these two
algorithms on a set of instances, the authors concluded that SL-PSO consistently
outperformed NSGA-II.

The research by Norouzi, Sadegh-Amalnick, and Tavakkoli-Moghaddam [257]
delves into a time-dependent version of the GVRP. In this model, travel times be-
tween customers are not static but vary depending on both the distance and the
specific time of day. The study primarily aims to minimize total travel time, while
also giving importance to reducing fuel consumption and carbon emissions. To tackle
this issue, the researchers introduce an adapted multi-objective PSO algorithm. This
innovative approach concurrently optimizes both travel time and fuel consumption,
factoring in the dynamic nature of travel times. By incorporating time-dependent
factors into the optimization, the algorithm is designed to efficiently reduce overall
travel time and minimize environmental impacts in terms of fuel usage and emissions.
This dual-focus approach presents a more holistic solution to the challenges posed by
time-dependent GVRP.

The work conducted by Poonthalir and Nadarajan [274] focuses on a specific vari-
ant of the GVRP where the vehicle speed is considered as a variable, simulated using
the triangular distribution. The study addresses two distinct objectives: minimiz-
ing the route cost and minimizing fuel consumption. To tackle this problem, the
authors propose a PSO based approach. The initial population is generated using
the NN heuristic. The algorithm incorporates various time-varying parameters when
updating the particle velocities. These parameters, including inertia, cognitive accel-
eration coefficient, and social acceleration coefficient, dynamically change over time
to enhance global search and convergence performance. Additionally, the algorithm
integrates a greedy mutation operator, as proposed by Poonthalir, Nadarajan, and
Geetha [275], to prevent getting trapped in local optima. This operator aids in di-
versifying the search process and exploring alternative solutions. To evaluate the
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proposed approach, the experiments are conducted on a set of benchmark instances
obtained from [86]. The results demonstrate that the proposed algorithm outper-
forms the previously best-known solution presented by Montoya et al. [244], leading
to improved expected fuel consumption.

In the study conducted by Wang et al. [353], a multi-depot VRP is investigated,
considering transportation resource sharing, time-dependent speeds, and time win-
dows. The research addresses the simultaneous optimization of two objectives: mini-
mizing the total CO2 emissions and reducing the operating cost. The operating cost
encompasses transportation costs, vehicle maintenance costs, and additional customer
satisfaction costs incurred due to late arrivals. To tackle this problem, the authors
propose a multi-objective PSO algorithm known as MLPSO. The MLPSO is com-
bined with the CW and the Sweep Algorithm, both widely recognized in the VRP
literature. The proposed approach is evaluated against pure MLPSO and NSGA-
II using a modified set of PRP benchmark instances. The results indicate that the
proposed approach outperforms the other methods in terms of both emissions and dis-
tance, providing improved solutions for the multi-depot VRP with resource sharing,
time-dependent speeds, and time windows.

Other metaheuristics

In their paper, Micale et al. [230] explore an asymmetric version of the GVRP that
incorporates time windows, variable delivery times, and vehicle dimensions. The
inclusion of variable delivery times acknowledges the influence of various factors,
such as vehicle type, road conditions, traffic, and weather, on the actual time required
for deliveries. Additionally, the consideration of vehicle dimensions accounts for the
limitations imposed by certain customers that may not be serviceable by vehicles of a
particular size. To find a set of feasible solutions for this problem, the authors employ
the Firefly algorithm (FA), initially proposed by Yang (2009) [371, 372]. The FA is
adapted by introducing an elitism procedure that aims to preserve promising solutions
and prevent the loss of a firefly queen. The objective at this stage is to select a subset
of vehicles from the initial fleet while solely considering the total distance traveled.
Subsequently, the authors employ the Technique for Order Preference by Similarity to
Ideal Solution (TOPSIS) method [178] to incorporate economic and environmental
factors. By evaluating the set of feasible solutions generated by the FA, the TOPSIS
method selects the best solution based on multiple evaluation criteria, including total
distances, utilization coefficient, carbon footprint, and fuel consumption. Following
a comprehensive numerical analysis, the authors conclude that the quality of the
solutions provided by their approach is closely linked to the configuration of the
initial fleet.

The research conducted by Macrina et al. [208] focuses on a GVRP that involves
a heterogeneous fleet, time windows, and partial recharge capabilities. The fleet
consists of both BEVs and ICVs. The primary objective of the study is to minimize
the total cost associated with recharging, routing, and activating the electric vehicles
while also considering pollution emissions, which must be kept below a predefined
threshold. To tackle this problem, the authors propose the utilization of the Iterated
Local Search (ILS) algorithm. The ILS algorithm is employed to discover a set of
optimized routes for two clusters of customers, where one cluster is served by BEVs
and the other by ICVs. By applying the ILS algorithm, the researchers aim to find
efficient and effective routing solutions for the given problem. In order to evaluate
the performance of their approach, the authors conduct experimental analyses using
a modified set of benchmark instances originally proposed by Solomon [315].
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The paper authored by Andelmin and Bartolini [10] focuses on the utilization
of BEVs in the context of VRP. The main objective of the study is to identify a
collection of routes that minimize the total distance traveled. To achieve this goal,
the authors introduce the Multi-start Local Search (MSLS) method, which builds
upon the multigraph reformulation proposed by Andelmin and Bartolini [11]. The
problem is represented on a multigraph by assigning nodes to all customers and the
depot, while arcs symbolize refuel paths. A refuel path connects two nodes, such
as node i and node j, and encompasses a sequence of consecutive AFSs between
them. This reformulation aims to eliminate the need for explicitly modeling AFSs
as distinct node types, as often observed in the literature. The proposed MSLS
algorithm consists of two distinct phases. The first phase employs fast constructive
operators, while the subsequent phase enhances these solutions using a broader range
of operators to refine the results obtained in the first phase. This two-phase approach
allows for a more comprehensive exploration of the solution space and promotes the
discovery of high-quality solutions. To evaluate the effectiveness of the algorithm,
the authors conducted experiments on two different sets of instances, sourced from
[11] and [86]. These instances serve as standardized problem scenarios and provide a
basis for performance comparison and analysis.

In their study, Peng et al. [272] focused on the EVRP with the objective of mini-
mizing the total distance traveled while adhering to a maximum traveling time con-
straint. To tackle this problem, they proposed a memetic algorithm that incorporates
an adaptive local search procedure in a local improvement phase. To generate the
initial population, the authors employed the k-Pseudo Greedy method [92]. The adap-
tive local search utilized reinforcement learning to select moves from a set of eight
predefined neighborhoods, enhancing the exploration and exploitation capabilities of
the algorithm. Moreover, a backbone-based crossover operator was devised to combine
genetic material from parent solutions, while the longest-common-subsequence-based
population updating strategy [48] was used to update the population effectively. To
evaluate the performance of their proposed algorithm, the authors compared it with
several other algorithms from the existing literature, including the approaches pre-
sented in [302] and [10]. By conducting these comparisons, the researchers were able
to demonstrate the effectiveness and competitiveness of their memetic algorithm.

In their study, Giallanza and Puma [106] focused on a GVRP within a three-
echelon supply chain, where customer demands were uncertain. They aimed to min-
imize both the total cost of transport and CO2 emissions. To tackle this problem,
they utilized the NSGA-II algorithm, a popular method for multi-objective optimiza-
tion. This allowed them to find a set of solutions that strike a balance between
cost and emissions, providing valuable insights for decision-making in supply chain
management.

In their research, Zulvia, Kuo, and Nugroho [391] investigated the multi-objective
GVRP with a focus on perishable goods delivery. They considered four key objectives:
operational cost, deterioration cost, carbon emissions, and service level. Deterioration
cost accounted for quality loss over time, while service level measured timely deliveries
within customer time windows. To tackle this problem, they employed the Gradient
Evolution (GE) algorithm [175]. GE represents solutions as vectors and explores
the search space using three operators: vector updating, jumping, and refreshing.
The algorithm’s effectiveness was demonstrated through testing on a real-world case
involving a fruit delivery company.

In their study, Utama, Fitria, and Garside [345] addressed the GVRP with time
windows, aiming to minimize the total cost, which encompasses fuel costs and late
fees. To achieve this objective, they employed the Artificial Bee Colony (ABC)
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algorithm. ABC, initially proposed by Karaboga and Basturk [156, 157], is inspired
by the behavior of bees. The algorithm distinguishes three groups of bees: employed
bees, onlookers, and scouts. Employed bees revisit previously discovered food sources,
onlookers observe and select food sources based on the information exchanged by
employed bees, and scouts explore new potential food sources randomly. Through
the application of the ABC algorithm, superior quality solutions were obtained in
comparison to the NN algorithm.

The research conducted by Niu et al. [255] investigated the GVRP with stochastic
demand. In this variant, the demand of each customer is unknown until a vehicle
reaches that customer. If a vehicle cannot fulfill a customer’s demand, it must return
to the depot for replenishment. The study aimed to minimize two objectives simulta-
neously: total cost, which includes fuel emission costs, and customer dissatisfaction,
measured by time window violations. To address this problem, the authors proposed
a membrane-inspired multi-objective algorithm (MIMOA). The algorithm consists of
three subsystems: two operation subsystems and one control subsystem. The oper-
ation subsystems utilize a multi-objective evolutionary algorithm with clustering to
search for solutions and transmit them to the control subsystem. The control subsys-
tem guides the evolutionary directions of the operation subsystems. The performance
of MIMOA was compared to that of NSGA-II and the skin membrane guided multi-
objective membrane algorithm (SMG-MOMA) [385] on a set of 10 instances, yielding
successful outcomes.

In their research, Woller, Kozák, and Kulich [361] delved into a basic version of the
EVRP, with their primary aim being to minimize the cumulative distance traversed
by the entire fleet. They developed a MILP model for this purpose and employed the
GRASP to find effective solutions within a practical timeframe.

In their study, Xu et al. [370] addressed the Electric Vehicle Routing Problem
with the complexities of simultaneous pickup and delivery, time windows, and the in-
tricate dynamics of non-linear charging and load-dependent consumption functions.
Their objective was to minimize both the number of electric vehicles used and the
total working time of the EV fleet. To achieve this, they formulated a MILP model
and employed an ALNS metaheuristic to effectively identify optimal solutions within
a feasible timeframe. The authors notably contributed four novel or enhanced op-
erators specifically designed to navigate the challenges of non-linear charging and
load-dependent discharging in EVRP scenarios.

In their publication, Xiao et al. [365] examined the EVRP with time windows and
mixed backhauls, focusing on reducing the total distance covered by all vehicles. They
introduced a diversity-enhanced memetic algorithm, incorporating three innovative
operators: genetic operators with an adaptive selection mechanism, a selection op-
erator based on similarity degree, and modification operators for tabu search. Their
experimental evaluation, which included 54 newly created instances and two classic
benchmarks, demonstrated the algorithm’s effectiveness in solving this specific variant
of the EVRP.

Hybrid metaheuristics

In their research, Elbouzekri, Elhassania, and Alaoui [83] investigated a unique ver-
sion of the Generalized Vehicle Routing Problem (GVRP) focused on estimating and
minimizing CO2 emissions rather than relying on alternative fuel vehicles. Instead
of using a traditional objective function, the algorithm approximated emissions for
each node pair and incorporated this information into its objective. The authors pro-
posed an integer linear programming model and a Hybrid ACS (HACS) to address
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the problem. The HACS algorithm consisted of three phases: route construction,
pheromone update, and hybridization. The first two phases followed a classical ACS
approach, and the hybridization phase incorporated the LNS metaheuristic to further
refine the solution. Since no benchmark instances existed for this problem variant,
the algorithm was evaluated on 10 randomly generated instances with varying num-
bers of customers. The experiments were also repeated using the traditional objective
function that aimed to minimize total distance traveled. The results showed an in-
crease in total distance when using the emission-based objective function, challenging
the assumption of equivalence between the two objectives.

Schneider, Stenger, and Goeke [302] proposed a hybrid algorithm that combines
TS and VNS for the CVRP with Time Windows specifically tailored for BEVs. This
algorithm is primarily a VNS approach with TS employed as a local search procedure.
The acceptance criterion utilized is based on SA. During the search process, infea-
sible solutions are permitted but penalized in the objective function. The shaking
step employs neighborhoods based on the cyclic-exchange operator [333]. To evaluate
the algorithm’s performance, two sets of instances for that problem were introduced,
comprising 56 large instances and 36 small instances, which were derived from in-
stances in [315]. The algorithm’s parameters were fine-tuned using a subset of 10
large instances. Additionally, the algorithm was tested on benchmark instances for
three different problems: Multidepot VRP with Interdepot Routes, GVRP, and VRP
with Time Windows. In each case, the algorithm demonstrated promising results
within a short computational time.

Jabir, Panicker, and Sridharan [147] examined a multi-objective variant of the
CVRP with multiple depots. The objective of this problem was to minimize both
CO2 emissions and the total distribution cost. The authors employed a two-step
approach, starting with the ACO algorithm to generate a set of Pareto-optimal so-
lutions. Subsequently, the VNS was applied to this set of solutions. The proposed
approach was evaluated using a collection of randomly generated instances. The
results revealed that minimizing the cost does not necessarily lead to reduced emis-
sions. However, the algorithm was not compared to other existing methods, making
it difficult to assess its effectiveness in comparison to alternative approaches.

In the study conducted by Ene et al. [84], a GVRP with a heterogeneous fleet and
time windows was examined. The primary goal was to minimize fuel consumption
while determining the optimal composition of the fleet. To address this problem, the
authors proposed a hybrid metaheuristic that combines SA and TS. The effectiveness
of this approach was assessed across various problem variations, including CVRP,
VRP with TW, GVRP, and GVRP with TW. The algorithm consistently achieved
favorable solutions in terms of fuel consumption, distance, and computational time
across all tested problem instances.

In a study conducted by Suzuki [326], the combined usage of SA and TS is exem-
plified. The focus of the research is on the CVRP, with the objective of minimizing
total fuel consumption. Recognizing that fuel consumption is directly influenced by
route distance and vehicle payload, the problem is formulated as a bi-objective model.
The inter-customer distances are adjusted to account for various factors impacting
fuel consumption, including vehicle speed, road gradient, and congestion. It is im-
portant to note that reducing the distance traveled does not necessarily guarantee
a reduction in emissions and fuel consumption [83]. Nevertheless, the assumption
made in [326] suggests that the optimal solution likely resides within the Pareto front
when considering payload and distance as minimization objectives. The proposed
methodology consists of two steps. In the initial step, the SA algorithm is employed
to approximate the Pareto front. Subsequently, a modified version of TS is applied
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to each solution within the Pareto front, focusing solely on neighborhoods close to
the frontier. Through this approach, the author successfully obtained solutions with
reduced fuel consumption compared to the conventional single-objective formulation
of the problem.

The research conducted by Jabir, Panicker, and Sridharan [146] explores a multi-
depot variation of the VRP. The study investigates three distinct models that address
different aspects of the problem. The first model focuses on minimizing the economic
cost, which aligns with the conventional Multi-Depot VRP. The second model aims
to minimize the overall emissions, while the third model seeks to strike a balance
between economic cost and emissions by simultaneously minimizing both factors. To
tackle this problem, the authors propose two metaheuristic algorithms: ACO and a
hybrid approach combining ACO with VNS. In the hybrid approach, after each ant
constructs its solution, a VNS procedure is applied to enhance the quality of the
solution. Following the completion of VNS, the global pheromone matrix is updated.
Comparative analysis revealed that the hybridized version outperformed the pure
ACO method, particularly for larger problem instances.

The problem of time-dependent vehicle routing and scheduling, with the objec-
tive of minimizing CO2 emissions, was explored by Xiao and Konak [366], building
upon the work of Xiao and Konak [367]. The study focused on a scenario involving
a fleet of heterogeneous vehicles and soft time windows, where tardiness incurred
penalties in the form of a tardiness penalty in the objective function. To address this
problem, the authors proposed a MILP model, which could be optimally solved by
commercial solvers but was limited to small-scale instances. For larger instances, a
hybrid approach combining a genetic algorithm and dynamic programming (DP) was
introduced. The problem was divided into two parts: determining optimal routes
for the vehicles and scheduling the travel between specific customers for each vehi-
cle. For the scheduling aspect, a dynamic programming formulation was presented
to identify the best schedule given a set of routes. The original problem was solved
using a genetic algorithm focused solely on the routing component, with DP serving
as a subroutine to determine the optimal schedule for each solution. The proposed
approach was evaluated on 30 small-sized instances and 14 benchmark instances of
the CVRP, yielding successful outcomes.

The study conducted by Zhang et al. [381] focuses on the EVRP. The algorithm
devised in the research initially determines the electric energy consumption based on
factors such as vehicle weight, speed, distance, and motor efficiency. Subsequently,
the estimation of indirect CO2 emissions is performed, which corresponds to the
emissions resulting from electrical energy production in coal-based power plants and
is proportional to the energy utilized by the BEV from the battery. Armed with this
information, the authors formulated the problem as a MILP model and applied the
ACO algorithm. To further enhance solution quality, ACO was hybridized with the
Iterated Local Search algorithm. The pheromone matrix is updated following the
elitist rule, allowing only a set of ants that have found the best solutions thus far to
update the trail. Additionally, the paper introduces an ALNS for solving the EVRP
at hand. The algorithms were tested on a set of generated instances, demonstrating
that ACO produced solutions close to optimality, with an average gap of 3.20%. In
comparison to MILP and ALNS, ACO exhibited superior performance.

Li et al. [196] proposed a two-stage algorithm to tackle the Multi-Depot GVRP
with time windows. The algorithm aims to optimize multiple objectives simulta-
neously, including fuel consumption, carbon emissions, and other associated costs.
In the first stage, the algorithm employs the Improved Balanced K-means Algorithm
(IBKA) to cluster customers into groups, effectively dividing the problem into smaller
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subproblems. Subsequently, in the second stage, a hybrid ACO approach is employed
to address these subproblems, with the inclusion of VNS as a local search strategy.
By combining these techniques, the algorithm strives to find high-quality solutions
for the problem.

Li, Lim, and Tseng [195] introduced a variant of the GVRP with time windows
that specifically addresses the requirements of cold chain logistics. In this context,
refrigerated vehicles consume more fuel compared to regular vehicles due to the need
to maintain low temperatures, resulting in increased GHG emissions. The objective
of the problem is to minimize the overall cost, which encompasses various factors such
as GHG emission costs (either CO2 emissions only or all GHG types), penalties for
time window violations, product freshness, quality loss, vehicle operating costs (e.g.,
maintenance and personnel), and energy costs. To address this problem, the authors
proposed a modified version of the PSO algorithm (MPSO). MPSO incorporates
TS as an intensification method to enhance its search capabilities. For comparison
purposes, a standard PSO algorithm was also implemented, but the MPSO algorithm
outperformed it in terms of solution quality. In addition, the study highlighted that
considering all GHG emissions instead of solely focusing on CO2 leads to solutions
with improved overall cost performance.

The work by Wang and Lu [352] addresses the GVRP with a fleet of AFVs. To
tackle this problem, the authors propose a hybrid algorithm that combines a MA
with a competition mechanism and VNS. The proposed method in [352] represents
solutions as permutation arrays of customers and AFVs, treating the problem as a
TSP. These arrays are then decoded into instances of the GVRP. The initialization
of solutions in the population begins with the k-nearest neighbors algorithm, starting
from a randomly chosen point for each individual. To enhance the intensification
process, the MA is hybridized with a VNS algorithm that employs a SA based accep-
tance criterion. In a competition search conducted by the authors, a specific number
of solutions are selected from the population based on their quality. These selected
solutions undergo further improvement through intensification procedures followed
by a series of adjustments for customers and AFVs. The competitive search allocates
more computational resources to the most promising solutions. Once the adjust-
ments are completed, a crossover operator is applied. By combining the Memetic
Algorithm with VNS and the competition mechanism, the proposed method offers a
promising approach for solving the GVRP with a fleet of AFVs, allowing for effective
optimization of the routing problem with environmental considerations.

The research conducted by Zhang et al. [384] focuses on the GVRP involving AFVs
and multiple depots. The study proposes two algorithms: the Partition-Based Algo-
rithm (PBA) and the Two-stage ACS (TSACS). The PBA algorithm adopts a parti-
tioning strategy to divide customers into two categories: borderline customers, located
approximately between two depots, and non-borderline customers. Non-borderline
customers are automatically assigned to their nearest depot, and GVRP routes are
generated for each depot. Subsequently, borderline customers are inserted into ex-
isting routes using the cheapest insertion criteria. Local search techniques are then
employed to optimize the solution further and eliminate redundant nodes. On the
other hand, the TSACS algorithm utilizes two types of ants: depot-ants responsible
for assigning customers to depots and route-ants for generating routes. After the
depot-ants allocate customers to depots and the route-ants generate routes, a vari-
able neighborhood scheme is applied to enhance the solution’s quality. This scheme
bears resemblance to the variable neighborhood search algorithm, with the distinc-
tion that the neighborhood size in the perturbation (shaking) step is not dynamically
determined. Finally, an additional local search phase is performed, incorporating
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redundancy removal and relocation operators. Numerical evaluations demonstrate
that the TSACS algorithm surpasses the PBA algorithm in terms of solution quality.
Moreover, TSACS exhibits superior average speed compared to CPLEX.

The work conducted by Zhen et al. [389] focuses on the VPR with HEVs. As HEVs
possess the capability to operate in two modes, utilizing both gasoline and electrical
energy, it becomes crucial to determine the optimal mode for each segment of the
vehicle’s route in order to minimize the overall energy consumption cost. To address
this problem, the authors propose a PSO algorithm with VNS employed as a local
search method. Additionally, the paper introduces a labeling procedure responsible
for assigning a vehicle mode to each route segment and evaluating the solution quality.
The proposed approach is evaluated on three sets of instances: small, medium, and
large-scale. For small-scale instances, the algorithm consistently achieves optimal
solutions. Additionally, it demonstrates success in finding good solutions for a subset
of the large-scale instances, indicating its effectiveness in handling real-world VRP
scenarios with HEVs.

In their research, Li et al. [193] explored the optimization of a fleet of Plug-In
Hybrid Electric Vehicles with the flexibility to refuel at either gas stations or AFS.
The study aimed to minimize total transportation costs while adhering to constraints
on the number of routes and the maximum duration of each trip. To model this prob-
lem, the authors employed a MILP framework and introduced a hybrid metaheuristic
approach for efficient solution finding. This advanced hybrid method combines a
memetic algorithm, a Sequential VND (utilizing five neighborhood structures), and
an enhanced 2-opt method. The VND is specifically applied to refine the best indi-
vidual in each generation. The proposed approach demonstrated good precision and
robustness in performance.

The multi-depot GVRP is investigated by Peng et al. [271] with the goal of min-
imizing the total cost, which includes the cost of CO2 emissions. The problem is
formulated as the MILP model and solved using the CPLEX solver. The authors also
propose a hybrid evolutionary algorithm that combines an evolutionary algorithm
with VNS. In this approach, VNS is used to enhance the search process in promising
areas.

In their work, Utama et al. [346] proposed a hybrid approach based on the But-
terfly Optimization Algorithm (BOA) for addressing the GVRP. The objective of the
GVRP is to minimize the total cost, encompassing emission costs, fuel consumption,
and vehicle usage costs. BOA is a metaheuristic method introduced by Arora and
Singh [17], which leverages fragrance as a means of communication between butter-
flies (agents). The fragrance represents the quality of a solution and can attract other
butterflies towards it. To tackle the GVRP, the authors combined BOA with the TS
algorithm from the study conducted by Poonthalir and Nadarajan [274]. Specifi-
cally, TS updates 10% of the initial butterfly population. Additionally, a local search
method is employed in each iteration to enhance the solution quality. The proposed
approach was compared to several other metaheuristics, demonstrating superior re-
sults in terms of solution quality, albeit with potentially longer computation times.

In their research, Dewi and Utama [71] investigated the application of the Hybrid
Whale Optimization Algorithm (HWOA) to address the GVRP. The primary objec-
tive was to minimize the overall cost, encompassing fuel expenses and emission costs.
HWOA combines the whale optimization algorithm (WOA) proposed by Mirjalili and
Lewis [235] with TS and local search techniques. WOA is inspired by the behaviors
exhibited by whales, such as encircling prey, bubble-net attacking method (exploita-
tion phase), and search for prey (exploration phase). The proposed approach was
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compared to several other metaheuristics, including TS, SA, ACO, PSO, GA, and
WOA, to assess its effectiveness and performance.

In a study conducted by Olgun, Koç, and Altıparmak [258], a variant of GVRP
with simultaneous pickup and delivery is examined. The primary objective is to
minimize fuel consumption for a fleet composed of conventional vehicles. To obtain
high-quality solutions, the authors propose a hyper-heuristic based on ILS and VND.

In their study, Sadati and Çatay [298] investigated a Multi-Depot version of the
GVRP, specifically focusing on the use of AFVs. Their primary aim was to reduce
the cumulative distance covered by all AFVs. To address this, the researchers devel-
oped a MILP model. Moreover, they introduced an innovative hybrid metaheuristic
approach, combining VNS and TS, to solve the problem with greater efficiency.

In the research conducted by Ferreira and Steiner [94], they investigated an asym-
metric bi-objective variant of the GVRP. The study aimed to minimize two objec-
tives: total CO2 emissions and route disbalance. To address this problem, several
metaheuristics were proposed. The first algorithm was NSGA-II, developed by Deb
et al. [68], followed by a multi-objective Particle Swarm Optimization (MO-PSO) algo-
rithm. Additionally, two hybrid algorithms were introduced: one that combined CW
with NSGA-II (CWNSGA-II), and another that combined CW, TS, and NSGA-II
(CWTSNSGA-II). These four algorithms were evaluated using a case study involving
newspaper distribution. The results indicated that CWNSGA-II and CWTSNSGA-II
outperformed NSGA-II and MO-PSO in terms of solution quality.

In their insightful study, Sadati, Akbari, and Çatay [297] investigated a variant of
the EVRP characterized by flexible delivery options. This version allows customers
to choose from multiple alternative delivery locations, each with its preferred time
window. The study aimed to minimize both the total distance covered by the fleet
and the number of vehicles in use. To address these objectives, the authors developed
a MILP model and introduced a strategic combination of VNS and TS. Addition-
ally, they created a new set of instances specifically tailored to this flexible delivery
scenario.

In their study, Farahani, Zegordi, and Kashan [90] analyzed a diverse fleet compris-
ing both autonomous electric vehicles and traditional vehicles, factoring in constraints
like time windows and multiple compartments. The research aimed at minimizing to-
tal operational costs, which include overloading, fuel consumption, and driver costs
for conventional vehicles, as well as charging expenses for autonomous electric ve-
hicles. The authors developed a MILP model and introduced an innovative hybrid
algorithm that merges LNS with VNS. This algorithm incorporates various neighbor-
hood structures, including customer and charging station adjustments, vehicle type
modifications, and a mechanism to address loading constraints. The findings revealed
that integrating autonomous vehicles into the fleet significantly reduces operational
costs in vehicle routing problems.

In a study by Stamadianos et al. [318], authors explored the close-open EVRP,
where electric vehicles have the option to conclude their routes at either an AFS or a
depot. The research aimed at minimizing both energy consumption and the number
of vehicles used. To achieve this, the authors introduced a hybrid metaheuristic
approach. This method begins with a GRASP-like construction technique to generate
initial solutions. Subsequently, it employs a synergy of VNS and SA acceptance
criteria to enhance these solutions further.
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3.7.3 Statistics

In this review, we analyzed a comprehensive collection of 72 studies spanning a decade,
from 2013 to 2023. The green vehicle routing problems addressed in these papers
are broadly classified into two distinct categories: ICV-based and AFV-based. It
is important to note that the ICV-based GVRP category encompasses all problems
that exclusively involve ICVs, with at least one objective centered on minimizing
GHG emissions or reducing fuel consumption. Conversely, the AFV-based category
focuses on problems where at least a part of the fleet is made of AFVs. A total of
48.6% of the reviewed publications focus on AFVs, while the remaining 51.4% address
ICVs.

Table 3.1 provides a comprehensive overview of the attributes associated with
each ICV-based problem, along with the methods employed to address these prob-
lems. Figure 3.7 presents a visual representation of the number of ICV-based pa-
pers corresponding to various VRP attributes, as well as a pie chart that illustrates
the distribution of metaheuristics utilized in these studies. It is important to note
that if a paper utilizes a hybrid metaheuristic approach, it is attributed to each of
the constituent metaheuristics. The figure exclusively showcases metaheuristic ap-
proaches, omitting mathematical models. This figure reveals a predominant focus
on capacitated versions of VRP in the literature. A prevalent trend observed is the
simultaneous optimization of multiple objectives, most notably the dual focus on min-
imizing GHG emissions and economic costs. While attributes such as TW, MD, and
HF have garnered considerable attention, attributes like MT and A remain relatively
underexplored in the existing body of work.
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Table 3.1: Overview of ICV-Based publications

Publication Attributes MethodsC TW MD MT HF MO A

Adiba, Aahmed, and Youssef [3] X GA
Ayadi et al. [23] X X GA
Bhattacharjee et al. [33] X X X X ACO
Cooray and Rupasinghe [54] X GA
Costa et al. [55] X GA
Dewi and Utama [71] X HWOA
Elbouzekri, Elhassania, and Alaoui [83] X ACS-LNS
Ene et al. [84] X X X SA-TS

Ferreira and Steiner [94] X X X
NSGA-II, PSO,
CWNSGA-II, CWTSNSGA-II

Giallanza and Puma [106] X X X NSGA-II
Hsueh [139] X X GA
Jabir, Panicker, and Sridharan [147] X X X ACO-VNS
Jabir, Panicker, and Sridharan [146] X X X ACO-VNS, LINGO
Karagul et al. [158] X SA
Küçükoğlu et al. [173] X X SA
Kumar et al. [174] X X X PSO, NSGA-II
Kwon, Choi, and Lee [176] X X TS
Li, Soleimani, and Zohal [197] X X X ACO
Li et al. [196] X X X ACO-VNS
Li, Lim, and Tseng [195] X X X PSO-TS
Micale et al. [230] X X X X FA
Niu et al. [254] X X TS
Niu et al. [255] X X X MIMOA
Norouzi, Sadegh-Amalnick, and Tavakkoli-Moghaddam [257] X X PSO
Olgun, Koç, and Altıparmak [258] X ILS-VNS
Peng et al. [271] X X EA-VNS, CPLEX
Poonthalir and Nadarajan [274] X X PSO
Suzuki [326] X X SA-TS
Tunga, Bhaumik, and Kar [339] X X GA
Úbeda et al. [341] X TS
Utama et al. [346] X BOA
Utama, Fitria, and Garside [345] X X ABC
Wang et al. [353] X X X PSO
Xiao and Konak [367] X X SA, CPLEX
Xiao and Konak [366] X X X DP-GA, CPLEX
Yu et al. [377] X X ALNS, CPLEX
Zulvia, Kuo, and Nugroho [391] X X X GE

Figure 3.7: Graphical overview of attributes and methods in ICV-
Based GVRP publications.

Table 3.2 provides a detailed summary of AFV-based GVRP, analogous to the one
for publications considering ICV-based GVRP. Figure 3.8 displays both the frequency
of each attribute’s consideration in the papers and the proportion of metaheuristic
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approaches utilized. In line with the trends observed in ICV-based GVRP research,
the capacitated version of VRP remains a primary focus. However, a notable diver-
gence is observed in the lesser prominence of the MO attribute in AFV-based studies.
This difference is likely attributable to the inherent GHG reduction benefits of using
AFVs. The pie chart further reveals a distinct trend in methodological preferences
for AFV-based problems: VNS and ALNS are more prevalent, while GA and TS see
reduced usage compared to their usage in ICV-based GVRP.

Table 3.2: Overview of AFV-Based publications

Publication Attributes MethodsC TW MD HF MO PR

Affi, Derbel, and Jarboui [5] X GVNS
Andelmin and Bartolini [10] X MSLS
Bruglieri et al. [44] X X VNB, CPLEX
Farahani, Zegordi, and Kashan [90] X X LNS-VNS
Felipe et al. [92] X X X SA, CPLEX
Goeke and Schneider [111] X X X ALNS
Hien, Dao, and Binh [132] X GA
Hiermann et al. [134] X X X ALNS, CPLEX
Hiermann et al. [133] X X X X GA
Keskin and Çatay [160] X X X ALNS, CPLEX
Li et al. [194] X X ACO
Li et al. [193] X MA-VND
Macrina et al. [207] X X X X LNS, CPLEX
Macrina et al. [208] X X X X ILS, CPLEX
Mavrovouniotis, Ellinas, and Polycarpou [225] X ACO
Mavrovouniotis et al. [226] X ACO
Normasari et al. [256] X SA, CPLEX
Peng et al. [272] MA
Ren et al. [286] X X X X VNS
Sadati and Çatay [298] X X VNS-TS
Sadati, Akbari, and Çatay [297] X X VNS-TS
Schneider, Stenger, and Goeke [302] X X VNS-TS, CPLEX
Stamadianos et al. [318] X VNS-SA
Yu et al. [376] X SA
Wang and Lu [352] X MA-VNS
Woller, Kozák, and Kulich [361] X GRASP
Xiao et al. [365] X X MA
Xu et al. [370] X X ALNS
Yavuz and Çapar [373] X X X VNS, CPLEX
Yilmaz and Kalayci [374] X VNS
Zhang et al. [381] X ACO-ILS, ALNS, CPLEX
Zhang, Gajpal, and Appadoo [380] X ACS, CPLEX
Zhang et al. [382] X X ACS
Zhang et al. [384] X X ACS, PBA, CPLEX
Zhen et al. [389] X PSO, CPLEX
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Figure 3.8: Graphical overview of attributes and methods in AFV-
Based GVRP publications.

Figure 3.9 presents a comprehensive summary across all reviewed publications
dealing with GVRP, revealing that attributes such as TW, MD, and HF are the most
researched in GVRP studies. This trend suggests their significant practical relevance
for numerous delivery companies. The analysis indicates that ACO and VNS are the
predominant metaheuristics in GVRP research, closely followed by SA, TS, GA, and
LNS/ALNS. It is worth noting that ACO and VNS are popular solutions for both
ICV-based and AFV-based problems.

Figure 3.9: Graphical overview of attributes and methods in all
GVRP publications.

Table 3.3 offers a detailed enumeration of the objectives targeted in each re-
viewed publication. These objectives were either amalgamated into a singular goal
or addressed individually using multi-objective optimization techniques. Figure 3.10
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illustrates the frequency of each objective across the reviewed papers, examining ICV-
based and AFV-based problems both individually and collectively. From this figure,
it is evident that the most prevalent objectives in GVRP research are PE, FC, OC,
and TD. Notably, TD appears significantly more frequently in studies focusing on
AFV-based problems.

Table 3.3: Summary of objectives addressed in each research paper

ICV-based AFV-based

Publication Objectives Publication Objectives

Adiba, Aahmed, and Youssef [3] PE Affi, Derbel, and Jarboui [5] FC
Ayadi et al. [23] PE, MXO Andelmin and Bartolini [10] TDM
Bhattacharjee et al. [33] RM, TT, PE, OC Bruglieri et al. [44] NT, TT, RT, WT
Cooray and Rupasinghe [54] FC Farahani, Zegordi, and Kashan [90] OC
Costa et al. [55] PE Felipe et al. [92] RC
Dewi and Utama [71] FC, PE, OC Goeke and Schneider [111] TDM, OC, FC
Elbouzekri, Elhassania, and Alaoui [83] PE Hien, Dao, and Binh [132] TDM
Ene et al. [84] FC Hiermann et al. [134] OC
Ferreira and Steiner [94] PE, RI Hiermann et al. [133] FC, OC
Giallanza and Puma [106] OC, PE Keskin and Çatay [160] TDM
Hsueh [139] FC, PE, OC Li et al. [194] OC, TWPC, FC, PE, QT
Jabir, Panicker, and Sridharan [147] PE, OC, FC Li et al. [193] OC
Jabir, Panicker, and Sridharan [146] PE, TD, NT Macrina et al. [207] FC
Küçükoğlu et al. [173] FC, PE Macrina et al. [208] OC, EC, RC
Karagul et al. [158] PE, TD Mavrovouniotis, Ellinas, and Polycarpou [225] TT
Kumar et al. [174] OC, FC, TWPC Mavrovouniotis et al. [226] TT
Kwon, Choi, and Lee [176] OC, PE Normasari et al. [256] TD
Li, Lim, and Tseng [195] PE, TWPC, OC, QLC, FC Peng et al. [272] TD
Li, Soleimani, and Zohal [197] PE, TT, OC, RM Ren et al. [286] PE, TWPC
Li et al. [196] FC, PE, OC Sadati and Çatay [298] TD
Micale et al. [230] TD, PE, FC Sadati, Akbari, and Çatay [297] TD, NV
Niu et al. [254] PE, OC Schneider, Stenger, and Goeke [302] NT, TD
Niu et al. [255] TWPC, OC Stamadianos et al. [318] FC, NV
Norouzi, Sadegh-Amalnick, and Tavakkoli-Moghaddam [257] TT, FC Yu et al. [376] OC
Olgun, Koç, and Altıparmak [258] FC Wang and Lu [352] TD
Peng et al. [271] FC, PE, OC Woller, Kozák, and Kulich [361] TD
Poonthalir and Nadarajan [274] FC, OC Xiao et al. [365] TD
Suzuki [326] FC Xu et al. [370] TT, NV
Tunga, Bhaumik, and Kar [339] FC, RI Yavuz and Çapar [373] TD, PE, FC, ICVU
Úbeda et al. [341] PE Yilmaz and Kalayci [374] TD
Utama et al. [346] EC, FC, OC Zhang et al. [381] PE
Utama, Fitria, and Garside [345] FC, TWPC Zhang, Gajpal, and Appadoo [380] TD
Wang et al. [353] PE, TWPC, OC Zhang et al. [382] PE
Xiao and Konak [367] PE, TWPC, TT, TD Zhang et al. [384] PE
Xiao and Konak [366] PE, TWPC Zhen et al. [389] FC
Yu et al. [377] PE
Zulvia, Kuo, and Nugroho [391] OC, QLC, PE, TWPC
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Figure 3.10: Bar charts depicting objectives addressed in GVRP-
related publications.

3.8 Chapter conclusion
In this chapter, we focus on the central theme of this thesis - the Green Vehicle
Routing Problem. We initiate the discussion by exploring the fundamentals of the
Vehicle Routing Problem, including the presentation of a MILP model and a graphical
illustration of the problem. This sets the stage for a deeper dive into the GVRP, where
we examine three distinct variations of the problem.

Particularly relevant to this thesis is the Electric Vehicle Routing Problem, which
we explore as a subset of one of these GVRP categories. As the chapter progresses,
we delve into various scenarios (or attributes) of the GVRP, highlighting some of the
most prevalent ones. We then shift our focus to the potential objectives that can be
integrated into the GVRP framework.

The chapter includes an overview of different energy consumption and recharging
models for electric vehicles, an aspect crucial to understanding and solving the GVRP
effectively. This comprehensive exploration lays a robust foundation for addressing
the complexities of green vehicle routing in the context of this thesis.
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Finally, we offer a thorough literature review on the GVRP, intentionally exclud-
ing publications focused on reverse logistics due to their irrelevance to this thesis. Our
review encompasses a total of 72 publications specifically pertaining to the GVRP.
Additionally, we analyze existing survey papers on the topic, elucidating the distinc-
tions among them. To provide a comprehensive overview, we also include statistics
related to the attributes, methods, and objectives discussed in these reviewed papers,
painting a detailed picture of the current state of research in the field of GVRP.
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CHAPTER
FOUR

ELECTRIC VEHICLE ROUTING PROBLEM

4.1 Problem definition
Let us consider a distribution company equipped with a fleet of uniform electric ve-
hicles. Daily, this firm faces numerous delivery requests from its clientele, aiming to
meet these demands efficiently. Customers specify both the quantity of goods and
a preferred delivery timeframe. While dispatching, the firm ensures no vehicle is
overloaded beyond its capacity. Given the limited range of EVs, occasional stops at
refueling stations are inevitable. Unlike internal combustion vehicles, EVs take longer
to recharge, requiring strategic scheduling to ensure timely deliveries. Deliveries out-
side a customer’s preferred window risk diminishing client satisfaction, leading them
to seek services elsewhere. Both early and late arrivals present challenges. Some
suggest making vehicles wait to align with the start of the delivery window, but
this can jeopardize punctuality for subsequent deliveries. Hence, our model permits
early arrivals, albeit with penalties. Late arrivals are also permitted with penalties.
Moreover, real-life refueling stations can only service a limited number of EVs simul-
taneously and offer varied charging speeds and prices due to differing technologies.
In our study, we have simplified several real-world characteristics that can influence
EVRP. We have assumed that refueling stations can accommodate an infinite num-
ber of vehicles and have a uniform recharging rate. While factors like road gradient,
vehicle weight, and distance typically result in nonlinear energy consumption models
(detailed in Section 3.5), we have not treated consumption as a direct proportion
of distance for this study. Our rationale is to prioritize the development of robust
metaheuristic methods that can quickly yield satisfactory results. Similarly, though
real-world charging rates vary based on battery levels, we have represented them lin-
early. Incorporating the true nonlinear characteristics into our metaheuristic would
not alter our algorithm’s structure. We have also presumed that EVs recharge to full
capacity whenever they stop. However, simply considering distances between nodes
falls short in real-world scenarios. A critical limitation is the assumption that vehicle
speed remains constant throughout the day, which is particularly unrealistic in ur-
ban settings. Factors like construction work and rush hour traffic significantly alter
the average vehicle speed. While some of these external influences are unpredictable,
others, like traffic volume variations by hour, can be anticipated and factored in using
traffic counter data. A study by Cardelino [46] has already explored hourly traffic
volume variations. To account for varying road conditions and traffic patterns, we
have divided the entire service timeframe into smaller segments, each having its aver-
age travel speed. This segmentation ensures that fluctuating speeds, affecting timely
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deliveries, are considered. Incorporating AFS visits, soft time windows for early and
late deliveries, vehicle scheduling, and time-dependent speeds into the VRP results
in a highly complex problem. Achieving optimal solutions is extremely challenging
except for very small instances.

A more formal definition of EVRP is given in Definition 2.

Definition 2 Given a weighted graph Ĝ = (N̂, A, d) where vertices N̂ = {D}∪V ∪ F
represent a central depot (D), customer locations (V) with specified goods demand
and delivery time windows, and refueling stations (F) for electric vehicles, and where
the edges A represent roads between two vertices, and the function d assigns the
travel distance to the edges, the objective is to determine optimal paths for a fleet
of m uniform-capacity EVs. These paths should originate and conclude at the depot,
ensure each customer is visited exactly once, adhere to vehicle capacity and EV battery
constraints, respect customer time windows while minimizing penalties for early or
late deliveries (calculated by some function P), and incorporate refueling stops as
necessary. The duration a vehicle must remain at an AFS depends on the amount
of energy it requires for recharging and the recharging rate g. The energy a vehicle
consumes when traveling from one location to another depends on the distance between
the locations and the vehicle’s consumption rate h. The average speed a vehicle
can achieve at any given time is influenced by factors such as traffic volume, street
congestion, weather conditions, etc. To improve the optimization process, this data
on average speed should be estimated in advance and provided as part of the instance
data.

Henceforth, we designate this problem as the Time-Dependent Electric Vehicle
Routing Problem with Soft Time Windows (TD-EVRP-STW).

4.2 Mathematical model
The TD-EVRP-STW problem is structured as a directed graph G = (N, A). Here,
V represents customers, F stands for refueling stations, and D indicates the depot.
Given that refueling stations might see multiple visits, we introduce dummy nodes
(denoted as F′) by replicating entries from (F). Therefore, N encompasses the depot,
customers, and refueling stations as N = {D} ∪V ∪ F′ ∪ {D′}, with the depot dupli-
cated (D′) to distinguish each route’s start and end. Arcs A in the graph link these
vertices as A = {(i, j) | i, j ∈ N, i 6= j}, with their weights signifying distances.

Delivery time is chunked into intervals, each with its unique start, end, and average
speed, reflecting real-world speed fluctuations due to traffic or other factors. The
time to cover each arc considers these intervals, making the model more dynamic and
realistic.

Customers come with specific demands and time windows, with penalties imposed
for early or late arrivals to maintain service satisfaction. Vehicles are uniform in
capacity, consumption rate, and speed per time interval. While each customer’s
service time is defined as si, i ∈ V, refueling service time adjusts based on battery
level and refueling rate. Only full battery recharges are factored in.

Our MILP formulation, as presented in our work [220] and influenced by works
like [302] and [379], adopts their naming conventions. A comprehensive list of symbols
and their explanations can be found in Table 4.1 and Table 4.2.
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Table 4.1: Parameter definitions

Symbol Meaning

0, N + 1 Depots
F Recharging stations set
F′ Replicated nodes from F (Dummy nodes)
F′0 Nodes in F′ with the depot node 0, i.e., F′ ∪ 0
V Customer set V = {1, ..., N}
V0 Customers and depot: V0 = V ∪ {0}
V ′ Customers combined with recharging stations: V ′ = V ∪ F′

V ′0 Customers, recharging stations, and depot 0: V ′0 = V ′ ∪ {0}

V ′N+1
Customers, recharging stations, and depot (N + 1):
V ′N+1 = V ′ ∪ {N + 1}

V ′0,N+1
Customers, recharging stations, with depots 0 and (N + 1):
V ′0,N+1 = V ′ ∪ {0} ∪ {N + 1}

K Time intervals set
ψk Start of time interval k
υk End of time interval k
Lk The speed of the vehicle within the time interval k ∈ K.
c1, c2 Objective function coefficients
dij Distance between node i and node j
tijk Travel time from node i to node j in interval k
C Vehicle’s max capacity
g Rate of recharging
h Vehicle’s consumption rate
Q Max battery capacity
qi Node i demand (0 if i /∈ V)
si Service time at node i (0 if i /∈ V)
ei Time window start for node i
li Time window end for node i
α Early arrival penalty coefficient
β Late arrival penalty coefficient
M A large constant (upper bound)

Table 4.2: Decision variables

Symbol Meaning

xij Binary variable indicating that arc (i, j) is used
zijk Binary variable indicating that arc (i, j) is used in time interval k
τi Arrival time at node i
φi Departure time from node i
ui Remaining cargo upon arriving at node i
yi Remaining battery upon arriving at node i
ϕijk Distance traveled from node i to node j during interval k
µi Early arrival penalty at node i
ηi Late arrival penalty at node i
pi Total penalty at node i1
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We are now ready to formulate model of the considered TD-EVRP-STW as:

min

c1 ∑
i∈V′0

∑
j∈V′N+1,i 6=j

dijxij + c2 ∑
i∈V

pi

 (4.1)

s.t.

∑
j∈V′N+1, i 6=j

xij = 1 , ∀i ∈ V (4.2)

∑
j∈V′N+1, i 6=j

xij ≤ 1 , ∀i ∈ F′ (4.3)

∑
i∈V′N+1, i 6=j

xji − ∑
i∈V′0 , i 6=j

xij = 0 , ∀j ∈ V ′ (4.4)

τi + ∑
k∈K

tijk + si − l0(1− xij) ≤ τj , ∀i ∈ V0, ∀j ∈ V ′N+1, i 6= j (4.5)

τi + ∑
k∈K

tijk + g(Q− yi)− (l0 + gQ)(1− xij) ≤ τj, ∀i ∈ F′, ∀j ∈ V ′N+1, i 6= j (4.6)

µi = max(0, ei − τi) , ∀i ∈ V (4.7)

ηi = max(0, τi − li) , ∀i ∈ V (4.8)

pi = αµi + βηi , ∀i ∈ V (4.9)

0 ≤ uj ≤ ui − qixij + C(1− xij) , ∀i ∈ V ′0, ∀j ∈ V ′N+1, i 6= j (4.10)

0 ≤ u0 ≤ C (4.11)

0 ≤ yj ≤ yi − (h · dij)xij + Q(1− xij), ∀i ∈ V, ∀j ∈ V ′N+1, i 6= j (4.12)

0 ≤ yj ≤ Q− (h · dij)xij, ∀i ∈ F′0, ∀j ∈ V ′N+1, i 6= j (4.13)

dij · xij = ∑
k∈K

ϕijk, ∀i ∈ V ′0, ∀j ∈ V ′N+1, i 6= j (4.14)

φi ≥ τi + si, ∀i ∈ V ′0,N+1 (4.15)

φi ≥ τi + g(Q− yi), ∀i ∈ F′ (4.16)

xij − zijk ≥ 0, ∀i ∈ V ′0, ∀j ∈ V ′N+1, ∀k ∈ K (4.17)

1This is a dependent variable of µi and ηi, introduced solely for the sake of simplicity in the model.
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∑
k∈K

zijk ≥ xij, ∀i ∈ V ′0, ∀j ∈ V ′N+1 (4.18)

ϕijk − dij · zijk ≤ 0, ∀i ∈ V ′0, ∀j ∈ V ′N+1, ∀k ∈ K (4.19)

zijk −M · ϕijk ≤ 0, ∀i ∈ V ′0, ∀j ∈ V ′N+1, ∀k ∈ K (4.20)

tijk =
ϕijk

Lk
, ∀i ∈ V ′0, ∀j ∈ V ′N+1, ∀k ∈ K (4.21)

tijk ≤ υk − ψk, ∀i ∈ V ′0, ∀j ∈ V ′N+1, ∀k ∈ K (4.22)

φi + tijk ≤ υk + υN+1(1− zijk), ∀i ∈ V ′0, ∀j ∈ V ′N+1, ∀k ∈ K (4.23)

ψk + tijk ≤ τj + υN+1(1− zijk)∀i ∈ V ′0, ∀j ∈ V ′N+1, ∀k ∈ K (4.24)

φi + ∑
k∈K

tijk ≤ τj + υN+1(1− xij)∀i ∈ V ′0, ∀j ∈ V ′N+1 (4.25)

xij ∈ {0, 1}, i ∈ V ′0, j ∈ V ′N+1 (4.26)

zijk ∈ {0, 1}, ∀i ∈ V ′0, ∀j ∈ V ′N+1, ∀k ∈ K (4.27)

τi, φi, ui, yi, µi, ηi, pi ≥ 0, ∀i ∈ V ′0,N+1 (4.28)

ϕijk ≥ 0, ∀i ∈ V ′0, ∀j ∈ V ′N+1, ∀k ∈ K (4.29)

The objective function (referenced in (4.1)) has two primary goals: first, to re-
duce the overall distance covered by all vehicles and second, to lessen the penalties
incurred from missing the customers’ time windows (i.e., arriving at customer loca-
tions either early or late). The balance between these two objectives is maintained
by the constants c1 and c2, that are given as the input parameters.

The constraints outlined in (4.2) dictate that every customer must be serviced
once and only once. Additionally, (4.3) specify that dummy nodes, which represent
refueling stations, can be approached maximum one time.

For the continuity of every route, (4.4) state that all nodes, barring the depot,
should possess an equal count of incoming and outgoing arcs. The constraints in
(4.5) set the arrival times for every node, ensuring the time-appropriateness of arcs
departing from the depot and customer locations. Similarly, (4.6) ensure the same
for arcs that originate from refueling stations.

Constraints (4.7), (4.8), and (4.9) are tasked with computing the penalties for
missing the time windows at individual nodes (essentially computing the value of the
function P mentioned in Definition 2). Given that this penalty is factored into the
objective function’s minimization, the max function can be straightforwardly depicted
through a series of linear constraints, as seen in (4.30), without the need to introduce
fresh variables.

y = max(x1, x2, ..., xn)⇔ y ≥ xi, ∀i = 1, ..., n (4.30)
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Bear in mind that this transformation is effective only when the objective function
aims to minimize y. For a broader approach to linearization, see [18].

Constraints (4.10) and (4.11) ascertain that there is ample cargo to meet every
customer’s demand. The provisions in (4.12) and (4.13) ensure the vehicle’s battery
does not deplete during deliveries.

In (4.14), it is mandated that the distance traversed across all periods should
match the distance between nodes i and j, provided the arc (i, j) is utilized. The
next set of constraints, (4.15), establish the departure timings from customers and
the depot, considering both service and arrival times. In a similar vein, (4.16) set out
the exit time from fueling stations.

Constraints (4.17) and (4.18) bridge the variables x and z. They mandate that
for any arc (i, j) to be traveled, it must correlate with at least one period. Conversely,
in the absence of any traveled arc, no periods should be linked.

As per (4.19), the distance journeyed within any given period should not surpass
the arc’s full span if the arc (i, j) is in use. The stipulations in (4.20) confirm that if
an arc is in play during a period k, the distance covered therein must be non-zero.

Constraints (4.21) spell out the time taken in each interval, while (4.22) cap this
duration, ensuring it does not go beyond the period’s length. (4.23) then adjust this
time, taking the vehicle’s departure time into account.

(4.24) see to it that the cumulative travel time within a specific period, combined
with the period’s start, does not overstep the subsequent node’s arrival time. Mean-
while, (4.25) set a ceiling on the total travel time, combining the departure from node
i and all periods, ensuring it remains below or equals the arrival at node j.

Lastly, constraints from (4.26) to (4.29) lay out the characteristics of the decision
variables.

Given the high complexity of the proposed model, with N((K + 1)N + 7) variables
and N(2F′ + 5N + 2V + 12) + F′ + 9KN2 + 3V − 5 constraints, it is reasonable to
expect that approximate approaches, such as metaheuristics, will be better suited for
tackling this problem.

4.3 Test instances
There are not many benchmark instances for evaluating EVRP. The first set of in-
stances was introduced together with EVRP itself, by Erdoğan and Miller-Hooks [86].
This set contains 52 instances, each instance containing coordinates of customers and
AFSs, together with additional information like the number of vehicles, average ve-
locity, vehicle capacity, battery capacity, etc. The distance between nodes can be cal-
culated using their coordinates by applying the Euclidean distance formula. Building
on instances proposed by Solomon [315], Schneider, Stenger, and Goeke [302] intro-
duced a set of 86 instances, with additional information concerning time windows and
service time. Another dataset was proposed by Andelmin and Bartolini [11], which
contains 40 instances, each with coordinates for customers and AFSs, but without
any additional information about vehicles. Koç and Karaoglan [164] proposed 52 in-
stances, in the same format as the instances from [86]. In a preprint by Goeke [110],
92 instances were introduced. They were in a similar format as those from [86] and
[164] but with additional information about service time and time windows for each
customer. Another 25 instances were introduced by Mavrovouniotis et al. [227], but
these instances do not accommodate time windows.

For the purposes of developing and testing our algorithms, we utilized the in-
stances presented in [302]. To facilitate a structured approach to experimentation,
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the dataset’s instances are methodically segregated into two distinct groups based on
the size and complexity of each instance. The initial group encompasses 35 instances,
each with a size catering to a maximum of 15 customers. We refer to this subset of in-
stances as I1. On the other hand, the latter group comprises 56 larger instances, each
with 100 customers. We refer to this subset as I2. This division is crucial to ensuring
precise evaluation and comparison of performance across varied instance sizes.

For our research, we divided the day into five distinct periods, each marked by a
comparable level of traffic volume:

• Early Morning (12 AM to 6 AM): During these off-peak hours, roads are typi-
cally less crowded, and traffic flow is smooth, resulting in higher average vehicle
speeds.

• Morning Rush Hour (6 AM to 9 AM): As people commute to work and schools,
traffic volume increases significantly, leading to lower average vehicle speeds.
Depending on the city, these hours can see some of the lowest speeds of the day.

• Mid-Day (9 AM to 5 PM): There is usually a slight increase in speed during
these hours as the morning rush subsides. However, lunchtime activities can
still cause moderate traffic in some areas.

• Afternoon Rush Hour (5 PM to 7 PM): This is another period of heavy traffic
as people return from work and school. The average speed during this time is
typically lower, similar to the morning rush hour.

• Evening (7 PM to 12 AM): As activities wind down, the traffic volume decreases
and average vehicle speeds increase again.

This segmentation aimed to approximate peak traffic hours. It is necessary to
recognize that this classification primarily reflects typical weekday traffic patterns,
with weekend volumes potentially differing significantly.

While this approach to segmentation is quite simplified, it proved to be adequate
for the purposes of evaluating our methods. A more nuanced and accurate division
could be achieved by analyzing historical traffic data specific to an area. However, it
is out of the scope of this work.

In our study, we examined a scenario involving a goods transportation company
based in Belgrade, which operates from 7 AM to 8 PM, totaling 13 hours of daily
operation. To simulate this, we divided the delivery period into 13 equal subintervals
in our models, each characterized by a distinct speed multiplier. These multipliers
are inversely related to traffic volume, as per the day division discussed earlier: the
first two intervals have a multiplier of 0.75, indicating higher traffic; the next eight
intervals are set at a multiplier of 1, signifying normal traffic conditions; the following
two intervals have a multiplier of 0.8, again indicating higher traffic; and the final
interval returns to a multiplier of 1, reflecting regular traffic.

4.4 Solution representation
In our TD-EVRP-STW, the solution, denoted as S, is visualized as an array made up
of doubly linked lists. Each of these lists corresponds to a vehicle, labeled as Ha for
a ranging from 1 to m. Within these lists, every element signifies a customer and is
characterized by a four-component sequence, Sab, which represents the b-th location
visited by the a-th vehicle. This sequence includes:
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• Sindex
ab : Designates the index of a customer, depot, or recharging station repre-

sented by node Sab.

• Sarrival
ab and Sdeparture

ab : Indicate the times of arrival and departure at the node
Sab.

• Stype
ab : Specifies the node’s nature, distinguishing between a depot, customer, or

recharging station.

The order of nodes within each list showcases the route’s traversal sequence. For
a comprehensive visualization of our solution’s design, refer to Figure 4.1.

Figure 4.1: Representation of a solution

4.5 Solution feasibility
Combinatorial optimization problems often have a large search space of potential solu-
tions, but not all of these solutions satisfy the predefined constraints or criteria of the
problem. A solution is deemed ”feasible” if it adheres to all such constraints, making
it a valid candidate for consideration. Conversely, ”infeasible” solutions violate one or
more constraints and are typically discarded or repaired. Ensuring feasibility while
navigating the search space efficiently is a central challenge in many optimization
algorithms.

In the context of EVRP presented in Section 4.1, a solution can be infeasible for
two main reasons:

1. The load of one or more vehicles exceeds its capacity.

2. The battery of one or more vehicles was depleted during the trip.

Checking and fixing the feasibility of a solution that violates the first constraint is
relatively straightforward. By removing some customers from the problematic route
and reinserting them into another, less congested route, a feasible solution can be
achieved. However, even though it may be important to fix such solutions while
trying to generate initial feasible solutions, our empirical analysis suggests that it
is more effective to outright dismiss such solutions whenever possible, for example,
during the local search.

On the other hand, solutions that are infeasible because of the second reason
have to be fixed, as discarding them would deprive us of too many promising solu-
tions. However, addressing infeasibilities tied to the battery level constraint can be
somewhat more intricate than rectifying those related to capacity or customer limit
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constraints. Therefore, we propose Algorithm 10 for fixing the infeasibility of such
solutions, by adding AFSs wherever necessary.

In this algorithm, we traverse every node for each vehicle, adjusting the current
battery level based on the node’s type. Specifically, if a node signifies a refueling
station, we replenish the battery to its full capacity (Line 8). Otherwise, we deduct
the energy expended from the battery (Line 10). Should the battery’s current level
be insufficient to reach the upcoming customer, we contemplate the addition of a
refueling station to rectify the shortfall (Lines 12-24). At every juncture, our objective
is to pinpoint the optimal station for insertion at the current position (Line 14). If
station insertion is not feasible (Line 15), meaning the battery does not have enough
charge to access any stations, we regress to the preceding node and evaluate station
placement there. When a station is successfully integrated, we recalibrate battery
levels and resume the algorithm from this freshly incorporated station (Line 23). In
the worst-case scenario, the algorithm has a complexity of O(N2

R ), where N represents
the total number of nodes and R denotes the number of routes in the solution.

Algorithm 10 The algorithm for fixing the feasibility of a solution
1: procedure FIX_SOLUTION(Solution S)
2: for ∀ vehicle ∈ S do
3: battery← BATTERY_CAPACITY;
4: for j = 1 to size(S[vehicle]) do
5: spent← calculate consumption between nodes j and (j− 1);
6: if battery ≥ spent then
7: if Node j is a refueling station then
8: battery← BATTERY_CAPACITY;
9: else

10: battery← battery− spent;
11: end if
12: else
13: for k = j downto 1 do
14: station←Find the best station to add at position k;
15: if No station can be added then
16: battery← battery+ consumption from nodes k and (k− 1);
17: else
18: Insert station at position k in S;
19: break;
20: end if
21: end for
22: battery← recalculate battery level;
23: j← k;
24: end if
25: end for
26: end for
27: return S
28: end procedure

4.6 Solution construction
Metaheuristics are high-level algorithms designed to tackle complex optimization
problems by providing a general strategy to find optimal or near-optimal solutions.
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These algorithms typically start their search from a specified initial solution. In some
cases, such as with Simulated Annealing or Variable Neighborhood Search, the al-
gorithm operates on a single solution at a time, requiring just one initial point to
start. In other cases, like with Genetic Algorithms or Particle Swarm Optimization,
the algorithm works with a set of solutions, necessitating multiple initial solutions
to create an initial population. The choice of the initial solution or solutions is cru-
cial. If chosen wisely, it can bring the algorithm closer to the optimal region of
the search space, allowing for faster convergence and higher-quality solutions. More-
over, a strategically chosen initial solution can help the algorithm avoid regions with
many local optima, which are solutions better than their immediate neighbors but
not necessarily the best overall. This ensures the algorithm does not get trapped in
suboptimal regions and has a better chance of finding the global optimum. So, while
metaheuristics inherently possess the capability to explore and exploit a problem’s
search space, commencing from a favorable initial position significantly amplifies their
performance and efficiency.

In this section, we introduce two distinct strategies to create initial solutions. The
first strategy involves randomly allocating customers to vehicles. After this assign-
ment, we modify the solution by incorporating trips to refueling stations whenever
necessary. While the randomness of this method may be suitable for algorithms that
work on a population of solutions, it may not be refined enough for those that focus
on a single solution. The method’s pseudocode can be found in Algorithm 11. In this
algorithm, we begin by incorporating the depot node into each route (Line 2) and
populating the set of unassigned customers (A) with all available customers (Line 3).
As we proceed, for any remaining unassigned customers, we randomly select a cus-
tomer from this set (Line 5) and then pick a route at random (Line 6). If the selected
route is already at its customer capacity, we bypass that cycle (Lines 7- 9). If not,
the chosen customer is appended to the route’s end (Line 10) and is subsequently
removed from the unassigned set (Line 11). The algorithm cannot get stuck in an
infinite loop, as it will eventually find a route where adding a customer is possible.
However, it may be useful to exclude fully occupied routes from consideration in
Line 6. Ultimately, we refine the solution by scheduling visits to AFSs (Line 13),
leveraging the method outlined in Algorithm 10. Although the main algorithm has a
complexity of O(N)2, the solution refinement method (Line 13) has a complexity of
O(N2

R ), as discussed earlier. Consequently, the overall complexity of the algorithm is
O(N2

R ).
2More specifically, the complexity is O(|V|), where |V| represents the number of customers. How-

ever, since |V| ≤ N, where N is the total number of nodes, we can consider the complexity to be
O(N).
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Algorithm 11 The algorithm for generating the initial solution
1: procedure INIT_SOLUTION_RANDOM(Instance data D, customer_limit)
2: S← initialize the solution by adding depot instances to each route
3: A← set of all customers
4: while A 6= ∅ do
5: C ← randomCustomer(A)
6: vehicle← randomVehicle()
7: if size(S[vehicle]) ≥ customer_limit then
8: continue
9: end if

10: add customer C to S[vehicle]
11: A← A \ C
12: end while
13: S← FIX_SOLUTION(S)
14: return S
15: end procedure

In Algorithm 12 we present our greedy approach to generating an initial solution,
inspired by the procedure presented in [379]. Same as in Algorithm 11, two depot
instances are incorporated into every vehicle, symbolizing the starting and concluding
points of each route (Line 2). We also set up a collection of customers who are yet
to be designated to any vehicle (Line 3). Following this, we determine the optimal
placement in terms of the least increase to the objective function value for each
of these unassigned customers (Line 7), bearing in mind the maximum number of
customers per route. This limit of customers per route was introduced to methods for
generating initial solutions to create more balanced routes, as the empirical evidence
suggests that more balanced initial solutions typically enhance the performance of
our metaheuristics. We then include the customer that has the minimal impact on
the objective function into the solution at this ideal position (Line 12), subsequently
removing them from the pool of unassigned customers (Line 13). This process is
repeated until every customer is allocated. Finally, the solution undergoes a feasibility
check, with essential refueling stops being integrated as required (Line 15). The
complexity of this algorithm is O(|V|2), where |V| is the number of customers.
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Algorithm 12 The algorithm for generating the initial solution
1: procedure INIT_SOLUTION(Instance data D, customer_limit)
2: S← initialize the solution by adding depot instances to each vehicle
3: A← set of all customers
4: while A 6= ∅ do
5: best_customer ← −1
6: for ∀customer ∈ A do
7: Calculate the best position of customer in S
8: if customer is better than best_customer then
9: best_customer ← customer

10: end if
11: end for
12: Insert the best_customer into the best position in S
13: A← A \ {best_customer}
14: end while
15: S← FIX_SOLUTION(S)
16: return S
17: end procedure

4.7 Determining a schedule
To reduce the penalty cost of a solution, it is crucial to ascertain the arrival and
departure times for every node. We outline our scheduling method in Algorithm 13.
Notably, this algorithm is not designed to find the absolute best scheduling but aims
to quickly and deterministically find a high-quality schedule. Pursuing an optimal
schedule would significantly complicate the problem due to the expansive search space.
Empirical findings suggest that our proposed algorithm typically yields satisfactory
results.

The essence of our methodology is quite straightforward. For every route, we
navigate through each node (which can be either a depot, customer or an AFS),
determining their respective arrival and departure times. Deriving a node’s arrival
time is simple: it is the sum of the preceding node’s departure time and the transit
duration between the two nodes (Line 7). An exception is made for the depot node
at each route’s inception, where the arrival time is designated as zero (Line 5). Travel
time is calculated by considering the distance between two nodes, the average vehicle
speed (provided as a parameter), and speed multipliers corresponding to different
time intervals. The vehicle is not required to cover the entire distance within a
single interval, therefore, if a new interval begins while the vehicle is en route, the
multiplier for the subsequent time interval is immediately applied to the remaining
distance. Regarding a node’s departure time, we define it as the sum of the arrival
time and the service time (Line 8). For customers, this service time is predefined,
whereas for AFSs, it is calculated based on the required energy and the recharge rate,
which is provided as a parameter. The complexity of Algorithm 13 is O(N), where
N is the total number of nodes across all routes.
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Algorithm 13 The algorithm for calculating a schedule for a given solution
1: procedure CALC_SCHEDULE(Solution S)
2: num_routes← number of routes in S
3: for i = 1 to num_routes do
4: num_nodes← number of nodes in route Si
5: Si0 ← 0 . Depot instance
6: for j = 2 to num_nodes do
7: Sarrival

ij ← Sdeparture
i(j−1) + travel_time(Si(j−1), Sij)

8: Sdeparture
ij ← Sarrival

ij + service_time(Sij)
9: end for

10: end for
11: return S
12: end procedure

In Algorithm 14, we provide a deterministic method for optimizing the schedule
after it has been calculated by CALC_SCHEDULE algorithm. The process involves
examining each node of every route to determine if the vehicle arrived at the cus-
tomer’s location earlier than expected (Line 5). If this is the case, then it indicates
room for improvement, so we add di f f to the departure time of the previous node
(Line 7), thus eliminating the penalty for arriving early. We then need to fix arrival
and departure times for all of the following nodes, taking into account node types.
The worst-case complexity of this algorithm is O(N), where N is the number of nodes
in the solution.

Algorithm 14 The algorithm for optimizing the schedule for a given solution
1: procedure OPTIMIZE_SCHEDULE(Solution S)
2: R← number of routes in S
3: for i = 1 to R do
4: for ∀node ∈ S[i] do
5: di f f ← ready_time(node)− arrival_time(node)
6: if di f f > 0 then
7: Sdeparture

i,node ← Sdeparture
i,node + di f f

8: Fix arrival and departure times of all subsequent nodes
9: end if

10: end for
11: end for
12: return S
13: end procedure

4.8 Neighborhood structures
The selection of appropriate neighborhoods for both local search and shaking pro-
cesses significantly influences an algorithm’s effectiveness. In our study, we pinpointed
ten distinct neighborhood configurations, with some of them already have been dis-
cussed in [5]. In the literature, VRP neighborhoods are commonly categorized as
inter-route or intra-route. Intra-route neighborhoods involve modifications within
a single route, while inter-route neighborhoods involve changes that affect multiple
routes simultaneously. Additionally, it is helpful to classify neighborhoods based on
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the types of nodes involved: customer-based neighborhoods modify nodes repre-
senting customers, AFS-based neighborhoods modify nodes representing AFSs, and
combined neighborhoods modify any type of node, regardless of its type.

• N1(S, ε): Intra-route customer-based neighborhood that adjusts a customer’s
departure time by a factor of ε, either increasing or decreasing it. In the worst-
case scenario, this neighborhood has O(|V|+ |F|) neighbors.

• N2(S): Transfers a customer within the same route to a different position (Fig-
ure 4.2). In the worst-case scenario, this neighborhood has O(|V|2) neighbors.

Figure 4.2: Illustration of the N2(S) neighborhood structure

• N3(S): Inter-route customer-based neighborhood that relocates a customer to
a different route (Figure 4.3). In the worst-case scenario, this neighborhood has
O(|V|2) neighbors.

Figure 4.3: Illustration of the N3(S) neighborhood structure

• N4(S): Intra-route customer-based neighborhood that exchanges the spots of
two customers within a single route (Figure 4.4). In the worst-case scenario,
this neighborhood has O(|V|2) neighbors.

Figure 4.4: Illustration of the N4(S) neighborhood structure

• N5(S): Inter-route customer-based neighborhood that switches the places of
two customers between two different routes (Figure 4.5). In the worst-case
scenario, this neighborhood has O(|V|2) neighbors.

Figure 4.5: Illustration of the N5(S) neighborhood structure

• N6(S): Intra-route AFS-based neighborhood that excludes a refueling station
from its current route (Figure 4.6). In the worst-case scenario, this neighbor-
hood has O(|F|) neighbors.
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Figure 4.6: Illustration of the N6(S) neighborhood structure

• N7(S): Intra-route AFS-based neighborhood that shifts a refueling station to
a different spot within its route (Figure 4.7). In the worst-case scenario, this
neighborhood has O(|F| ∗ (|V|+ |F|)) neighbors.

Figure 4.7: Illustration of the N7(S) neighborhood structure

• N8(S): Intra-route AFS-based neighborhood that substitutes one refueling sta-
tion with another (Figure 4.8). In the worst-case scenario, this neighborhood
has O(|F|2) neighbors.

Figure 4.8: Illustration of the N8(S) neighborhood structure

• N9(S, k): Intra-route combined neighborhood that relocates a sequence of k
nodes within their current route (Figure 4.9). In the worst-case scenario, this
neighborhood has O(|V|2) neighbors.

Figure 4.9: Illustration of the N9(S) neighborhood structure

• N10(S, k): Inter-route combined neighborhood that moves a group of k nodes
to an entirely different route (Figure 4.10). In the worst-case scenario, this
neighborhood has O(|V|2) neighbors.

Figure 4.10: Illustration of the N10(S) neighborhood structure

As we can see, many neighborhoods have O(V2) neighbors in the worst-case sce-
nario. However, the number of neighbors in inter-route neighborhoods is most often
larger than in intra-route neighborhoods. Additionally, evaluating intra-route neigh-
bors is faster than evaluating inter-route neighbors, as we only need to recalculate
the schedule for one route instead of two.
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4.9 Local search procedure
Many different local search methods can be applied to the VRP, and by extention
to EVRP. A few studies that discuss local search methods for VRP can be found in
references [40, 100]. While a comparison of these local search methods is not covered
in this work, it offers a promising avenue for subsequent research.

For our purposes, we employ the Variable Neighborhood Descent as the local
search technique within each metaheuristic that utilizes local search. The main idea
behind VND is that a local minimum with respect to one neighborhood structure
might not be a local minimum for another. Thus, by systematically changing the
neighborhood and diving deep into each one, the algorithm can escape local optima
and potentially discover better solutions. The VND procedure begins with an initial
solution and a predetermined set of neighborhood structures. It explores the first
neighborhood, seeking for improvements using a descent method. If a better solution
is found, the search reverts to the first neighborhood and continues. If no improvement
is detected within a particular neighborhood, the algorithm transitions to the next
neighborhood structure. This process repeats until no improvements can be found in
any of the neighborhoods, at which point the algorithm terminates.

The neighborhood structures employed in VND are detailed in Section 4.8. How-
ever, we do not make use of all these structures. We excluded the node-based neigh-
borhoods (N9(S) and N10(S)) since they often overlap with the neighbors explored
by earlier structures, leading to unnecessary redundancy. Such repetitive evaluations
can hinder the efficiency of the method. Consequently, our focus is on measuring the
impact of the initial eight neighborhoods (N1(S, ε) - N8(S)) exclusively. To conduct
our testing, we set the value of ε = 5. This decision is made using the iRace3 package
for the R programming language, and we allocated a budget for 2000 tests. To ana-
lyze the gathered data, we employed a gradient boosting regressor from the Extreme
Gradient Boosting (XGBoost) library in the Python programming language. More
details on this can be found in the official XGBoost documentation4.

Figure 4.11: Relative influences of each neighborhood structure
tested.

3https://cran.r-project.org/web/packages/irace/index.html
4https://xgboost.readthedocs.io

https://cran.r-project.org/web/packages/irace/index.html
https://xgboost.readthedocs.io
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Figure 4.11 illustrates the relative impact of each neighborhood structure incor-
porated in the local search phase, as calculated by the XGBoost regressor. It is
important to recognize that the selection of neighborhood structures is not the sole
determinant of VND procedure’s efficacy. The sequence in which these structures are
applied can noticeably influence the quality of solutions. However, this aspect was
not delved into in our study. From Figure 4.11, we observe that the most influen-
tial neighborhood structures for the algorithm’s performance are N2 and N3, which
are centered around customers. This prominence was anticipated, particularly for
N3, as it uniquely alters the customer count in a vehicle. While N4 also focuses on
customers and significantly affects solution quality, its relative impact is lesser since
its effect can be mirrored by N2. Actions like omitting a refueling station visit (N6)
or substituting one recharging station with another (N8) moderately affect solution
quality. In contrast, adjusting the recharging station’s visitation order (N7) offers
limited influence, likely because it often leads to infeasible solutions. It is interest-
ing that swapping customers between two vehicles (N5) does not significantly affect
solution quality, possibly due to the influence of the N3 structure. Notably, the N1
structure provided negligible enhancement to the solution’s quality. The likely reason
is the efficiency of the scheduling procedure outlined in Algorithm 13, coupled with
the optimization approach in Algorithm 14. Given its minimal contribution and high
computational demand for larger instances, we opted to exclude this neighborhood
from VND entirely.

With all of this in mind, we present the pseudocode for our VND method in
Algorithm 15. Considering the fact that proposed neighborhood for our problem are
rather complex, we utilized the first improvement neighborhood search strategy.

Algorithm 15 Variable neighborhood descent
1: procedure VND(Solution S, Set of neighborhoods N )
2: i← 2
3: while i ≤ 8 do
4: improved← LS(Ni, S, S′) . LS is the local search in neighborhood Ni
5: if improved then
6: S← S′

7: i← 2
8: continue
9: else

10: i← i + 1
11: end if
12: end while
13: return S
14: end procedure

In Algorithm 16, we outline the general structure of our local search procedure.
This procedure takes a neighborhood structure as its input parameter, along with
the incumbent solution and a structure to store an improved solution if found. The
procedure returns True if an improvement is found, and False otherwise.

The procedure iterates over all neighbors of the solution S within the neighbor-
hood structure Ni. For each neighbor, the schedule is recalculated and optimized
before evaluation. It should be noted that in our pseudocode, we call the methods
CALC_SCHEDULE and OPTIMIZE_SCHEDULE on the entire solution for clar-
ity. In practice, only the routes that have undergone changes need their schedules
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recalculated. Specifically, for intra-route neighbors, only one route’s schedule needs
recalculating, while for inter-route neighbors, the schedules for two routes must be
recalculated.

Algorithm 16 Local search procedure
1: procedure LS(Neighborhood structure Ni, incumbent solution S, improved so-

lution S′)
2: for ∀ neighbours Sn ∈ Ni(S) do
3: Sn ← CALC_SCHEDULE(Sn)
4: Sn ← OPTIMIZE_SCHEDULE(Sn)
5: if f (Sn) < f (S) then
6: S′ ← Sn
7: return True
8: end if
9: end for

10: return False
11: end procedure

4.10 VNS
Certain foundational elements need to be established before we can effectively outline
our VNS algorithm. Foremost among these is the shaking procedure, a pivotal com-
ponent that plays a determinative role in how our algorithm functions and evolves.

In the traditional VNS algorithm, the shaking procedure identifies a random neigh-
boring solution that’s precisely k units distant from the current best or incumbent so-
lution. However, our adaptation deviates from this convention. Our shaking method
seeks out a neighbor that is distanced at least k units from the incumbent, not strictly
k. This nuanced change, when put to the test, empirically demonstrated improved
solution quality. After thorough evaluations and testing, we selected two specific
neighborhood structures from those discussed in Section 4.8 (N9 and N10) to incor-
porate into our shaking procedure. During each cycle of the algorithm, one of them
is stochastically selected and applied to the current solution. Our shaking proce-
dure is laid out in Algorithm 17. Navigating the core loop of the algorithm (from
Lines 4 to 12), one first encounters the stochastic selection of a neighborhood struc-
ture (Line 5), followed by determining the size of that neighborhood (Line 6). This
size is bound by the threshold lmax. Subsequently, the incumbent solution undergoes
a transformation, leveraging the selected neighborhood type and its size (as seen in
Lines 9 and 11).
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Algorithm 17 Shaking
1: procedure SHAKE(Solution S, k, lmax)
2: i← 0
3: S′ ← S
4: for i = 1 to k do
5: p← random integer between 0 and 1
6: l ← random integer between 1 and lmax
7: switch (p) do
8: case 0 :
9: S′ ← random neighbor from N9(S′, l)

10: case 1 :
11: S′ ← random neighbor from N10(S′, l)
12: end for
13: return S′

14: end procedure

In most instances, the shaking procedure generates a feasible solution. However,
in the rare event that it yields a solution which the FIX_SOLUTION method cannot
repair (specifically, when it fails to add a necessary AFS visit to address insufficient
battery charge) the solution is discarded, and the shaking procedure is repeated.

Since the main loop of the algorithm executes k times and the minimum alteration
to the solution is 1, it is likely that the resulting solution will typically be at least k
units away from the incumbent solution. However, there exists a small possibility that
the selected transformation may be the inverse of a prior one, effectively nullifying
its impact. Given that the size of each transformation has a probability lmax−1

lmax
of

being greater than 1, the resulting solution will usually have a distance greater than
or equal to k. Nevertheless, because the probability of this not occurring is quite low,
we do not specifically verify that the distance meets or exceeds k, instead, we simply
accept the new solution.

In Algorithm 18, we outline the structure of our General Variable Neighborhood
Search (GVNS) algorithm. The input parameters encompass the problem instance, a
neighborhood set used in VND, along with the standard VNS parameters: kmin, kstep,
and kmax. These parameters control the number of transformations in the shaking
process. Additionally, we introduce an extra parameter for shaking, represented as
lmax. As for the termination criterion, we have opted for the maximum allowable CPU
time. It should also be noted that the function f assesses the quality of a solution by
calculating the value of the objective function.

The procedure starts by constructing an initial solution, using the method illus-
trated in Algorithm 12 (as seen in Line 2). Keep in mind that the FIX_SOLUTION
method may not always resolve issues related to battery charge, especially if the so-
lution involves two subsequent locations being so distant that adding a visit to an
AFS does not rectify the problem. Additionally, if the solution is infeasible due to
exceeding capacity constraints, it cannot be corrected using the FIX_SOLUTION
method. In such cases, this method can be skipped altogether to save time. If the
solution turns out to be infeasible, it undergoes the shaking process until feasibility is
attained (Lines 3-6). While this step might seem redundant, considering that VND
could potentially pinpoint a feasible solution during its local search, our empirical
results revealed enhanced performance using this approach.

After initializing the solution, we calculate the schedule using Algorithm 13 and
then optimize it with Algorithm 14. As a reminder, these methods adjust specific
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fields within the solution structure, corresponding to departure and arrival times at
each location. Our aim then shifts to refining the initial solution, which is achieved
by applying VND (Line 9). Within the core loop of the algorithm, we engage the
shaking process on the current best solution, resulting in a fresh, perturbed solution.
Given that this new solution might not be feasible, the shaking step is reiterated
until a feasible solution emerges. Although it is highly unlikely, there is a chance
the algorithm may fail to find a feasible solution within the allotted time. Therefore,
we check whether the stopping criterion is met after each attempt. Once a feasible
solution is found, the schedule is reconfigured, and then VND is applied to the updated
solution. Should the VND-processed solution yield a superior objective function value
in comparison to the best recorded solution, it is embraced as the new best solution
(Line 23), and concurrently, the parameter k is reset to kmin (as illustrated in Line 24).
Otherwise, k is incremented by the kstep value (Line 26).

Algorithm 18 General variable neighborhood search
1: procedure GVNS(Instance data D, Set of neighborhoods N , kmin, kstep, kmax,

lmax, vndlimit)
2: S← INIT_SOLUTION(D)
3: while S is infeasible do
4: S← SHAKE(S, 1, lmax)
5: S← FIX_SOLUTION(S)
6: end while
7: S← CALC_SCHEDULE(S)
8: S← OPTIMIZE_SCHEDULE(S)
9: S← VND(S,N , vndlimit)

10: while the stopping criterion is not met do
11: k← kmin
12: while k ≤ kmax ∧ the stopping criterion is not met do
13: S′ ← SHAKE(S, k, lmax)
14: S′ ← FIX_SOLUTION(S′)
15: while S′ is infeasible and the stopping criterion is not met do
16: S′ ← SHAKE(S, k, lmax)
17: S′ ← FIX_SOLUTION(S′)
18: end while
19: S′ ← CALC_SCHEDULE(S′)
20: S′ ← OPTIMIZE_SCHEDULE(S)
21: S′′ ← VND(S′,N , vndlimit)
22: if f (S′′) < f (S) then
23: S← S′′

24: k← kmin
25: else
26: k← k + kstep
27: end if
28: end while
29: end while
30: end procedure

4.10.1 Hyperparameter analysis

Our GVNS algorithm has five hyperparameters:
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• kmin - This hyperparameter controls the minimum number of steps involved in
the shaking procedure.

• kstep - This refers to the hyperparameter that controls how much the shaking
procedure’s steps increase in each iteration.

• kmax - This hyperparameter controls the maximum number of steps involved in
the shaking procedure.

• lmax - This hyperparameter controls the maximum step size during each phase
of the shaking process.

• vndlimit - Hyperparameter manages the time constraint for each invocation of
the VND procedure, measured in seconds. Upon reaching this threshold, the
VND process concludes, yielding the best solution discovered thus far. This
parameter is particularly crucial for larger instances where VND may require
extensive time to finalize, as it incrementally refines the current solution. This
gradual improvement process risks the algorithm becoming entrenched in a local
optimum.

To accurately assess the relative significance of our hyperparameters, we initially
employ a Random Forest regressor, which is well-suited for capturing complex rela-
tionships in the data. This regressor uses hyperparameter values as inputs and the
observed solution quality as output. Following this, we undertake a sensitivity anal-
ysis via permutation feature importance. This method quantifies the importance of
a feature by measuring the reduction in the model’s performance when the values of
that feature are randomly permuted [41].

Figure 4.12 illustrates the relative impact of each hyperparameter, measured us-
ing the mean decrease of impurity metric [41]. This metric is a staple in tree-based
machine learning models such as decision trees, random forests, and gradient boosting
machines, and it is instrumental in assessing the significance of individual features
within the model. The figure clearly highlights that hyperparameters kmin and kmax,
along with lmax, are particularly influential. The prominence of lmax is attributed to
its role in defining the magnitude of each step in the shaking process, thereby jointly
determining the neighborhood size with kmin and kmax. Conversely, the vndlimit hy-
perparameter exhibits minimal impact on the solution quality. This aligns with ex-
pectations, especially for smaller instances where the VND tends to complete rapidly
without ever reaching the time threshold set by vndlimit.
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Figure 4.12: Relative importance of GVNS hyperparameters for
dataset I1

While understanding the relative importance of hyperparameters provides valu-
able insights into which ones warrant more careful tuning, this alone does not reveal
the nature of their correlation with the achieved solution quality. To delve deeper
into this relationship, we used Partial Dependence Plots (PDPs) for the instance
r202C15 from dataset I1, as seen in Figure 4.13. PDPs show the connection between
the target function (solution quality, in our context) and selected target features (hy-
perparameters), while accounting for the effects of other features. Essentially, PDPs
clarify whether the relationship between the target and a feature is linear, monotonic,
or of a more intricate nature.

The insights from Figure 4.13 complement our findings from Figure 4.12. The
more pronounced variations in solution quality within these plots suggest that the
corresponding hyperparameter exerts a significant impact on the solution’s quality.
Moreover, these plots offer a general understanding of how these hyperparameters
influence the outcome. For instance, it is observable that excessively increasing kmin
could negatively affect solution quality, whereas setting the kmax hyperparameter
around 15 appears to yield optimal performance. However, it is crucial to interpret
these findings cautiously, as they represent optimal hyperparameter values for a single
instance rather than for the entire dataset. Hence, a more comprehensive analysis is
necessary to identify the best hyperparameter settings across all dataset instances.
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Figure 4.13: Impact of GVNS hyperparameters on the performance
on instance r202C15

In Figure 4.14, we showcase a similar analysis for the dataset I2 with larger in-
stances. This figure reveals a stark contrast in the relative impact of hyperparame-
ters compared to the smaller instances. Most notably, the vndlimit hyperparameter
emerges as the most influential for I2, a significant shift from its minimal impact ob-
served in the I1 dataset. This change can be attributed to the extended duration that
VND often requires for larger instances, making the execution time limit a critical
factor.

Additional exploration is provided in Figure 4.15, where we present PDPs for
instance c101_21 from the I2 dataset. These plots distinctly illustrate that extending
the VND time limit enhances solution quality, as evidenced by a reduction in the
objective function. Additionally, the plots indicate a detrimental effect on solution
quality with an increase in the kmin hyperparameter, underlining its nuanced influence
in the context of larger instances.
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Figure 4.14: Relative importance of GVNS hyperparameters for
dataset I2

Figure 4.15: Impact of GVNS hyperparameters on the performance
on instance c101_21

4.11 GRASP
Our GRASP algorithm follows the straightforward steps presented in Algorithm 2.
The primary component we need to clarify here is our greedy randomized construction
procedure, which is detailed in Algorithm 19.
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To begin with, our method takes in a set of customer locations, marked as C,
along with the RCL_LIMIT parameter. This parameter plays a crucial role in the
stochastic nature of the method by dictating the upper limit of top candidates that
we evaluate at each stage.

The process begins by creating an empty solution, designated as S (Line 2). A new
array is generated during every iteration (Line 5), which stores the costs of integrating
each unassigned customer to potential route positions, expressed as ordered triplets.
The route positions are essentially ordered pairs consisting of a route index and a
position within the route. Once these costs are fully computed, the array is sorted in
ascending order based on cost (Line 12). To further clarify, we evaluate all unassigned
customers against every position within the solution, not merely the positions at the
end of each route.

Subsequently, we determine the size of the Restricted Candidate List (RCL),
which is the smaller of the values RCL_LIMIT and the size of the cost_array
(Line 14). Then, the initial RCL_SIZE elements are extracted to shape the RCL
(Line 14). A random selection is made from this RCL (Line 15) and the result is stored
in the structure chosen, which is an ordered triplet consisting of {customer, position, cost}.
The chosen customer is then incorporated into the partial solution (Line 17). This
customer is then categorized as assigned and removed from the set of unassigned
customers (Line 18).

This iterative process continues until every customer finds its placement. Finally,
the solution is fixed by including visits to AFSs, as detailed in Algorithm 10 (Line 20).

Algorithm 19 Greedy Randomized Construction procedure
1: procedure greedy_randomized_construction(V, RCL_LIMIT)
2: S← create an empty solution
3: Vtemp ← V
4: while Vtemp 6= ∅ do
5: cost_array← empty array
6: for ∀customer ∈ Vtemp do
7: for ∀position ∈ S do
8: cost← cost of adding customer at position in S
9: Add {customer, position, cost} to the cost_array

10: end for
11: end for
12: Sort cost_array by cost ascending
13: RCL_SIZE← min(RCL_LIMIT, size o f cost_array)
14: RCL← first RCL_SIZE elements from cost_array
15: r ← random(1, RCL_SIZE)
16: chosen← get element from RCL at position r
17: Add chosen.customer to chosen.position in S
18: Vtemp \ chosen.customer
19: end while
20: S← FIX_SOLUTION(S)
21: return S
22: end procedure

4.11.1 Hyperparameter analysis

Our GRASP algorithm has two hyperparameters:
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• rcllimit - Hyperparameter controlling the size of the RCL list.

• vndlimit - Hyperparameter managing the time constraint for each invocation of
the VND procedure, measured in seconds.

Leveraging the Random Forest regressor alongside permutation feature impor-
tance, we have determined the relative impact of GRASP hyperparameters, the de-
tails of which are depicted in Figure 4.16. Mirroring our observations with GVNS,
the hyperparameter vndlimit showed negligible effect on the algorithm’s performance.
This phenomenon is further illustrated in Figure 4.17, where we present Partial De-
pendence Plots (PDPs) for the instance r202C15, offering a visual confirmation of the
minimal influence of vndlimit. On the other hand, RCLlimit had a significantly greater
influence, with the most favorable values for this parameter ranging between 3 and
7.

Figure 4.16: Relative importance of GRASP hyperparameters for
dataset I1

Figure 4.17: Impact of GRASP hyperparameters on the performance
on instance r202C15
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Likewise, Figure 4.18 demonstrates the relative impact of the two GRASP hyper-
parameters as tested on instances from dataset I2. Interestingly, both hyperparame-
ters exerted roughly the same influence on the quality of the solution. Complementing
this, Figure 4.19 offers PDPs for the instance c101_21, providing a deeper insight
into their effects. From this figure, it is evident that for the c101_21 instance, the
method preferred lower values for the RCLlimit hyperparameter, and that increasing
the VNDlimit resulted in higher quality solutions.

Figure 4.18: Relative importance of GRASP hyperparameters for
dataset I2

Figure 4.19: Impact of GRASP hyperparameters on the performance
on instance c101_21

4.12 ACO
We have designed our ACO algorithm to closely adhere to the basic algorithm that
is outlined in Algorithm 4.

We commence by setting the pheromone values, drawing upon the initial solu-
tion produced by Algorithm 12. Once the crafted solution undergoes evaluation, we
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calibrate the initial pheromone levels to be the reciprocal of f (Sinit), where Sinit rep-
resents the generated solution. This methodology takes its cue from the strategy
outlined in [154], with its accompanying pseudocode clarified in Algorithm 20.

We employ the offline pheromone update mechanism to reinforce the pheromones.
Specifically, only the best solution in the current generation is used to strengthen
the pheromone trail. If an arc is incorporated within the best solution, then its
pheromone trail is augmented by 1

f (Sbest)
, where Sbest represents the best solution. For

heuristic insights, we have used the distance metrics between locations.

Algorithm 20 Procedure for initializing pheromone values
1: procedure init_pheromones(Instance data D)
2: S← INIT_SOLUTION(D)
3: val ← 1/ f (S)
4: Set all pheromone values to val
5: end procedure

The method presented in Algorithm 21 is used to systematically construct a solu-
tion for each ant. This method is employed in Line 7 of Algorithm 4, with additional
parameters specific to the problem, primarily the set of customers V and the set of
AFSs F. The process begins by initializing an empty solution S (Line 2). For each
iteration, the algorithm first identifies all available positions in the current solution
S (Line 5). It is important to note that only positions at the end of each route
are considered. The rationale behind this approach is that earlier positions have al-
ready been evaluated when adding previous elements to the solution. Although the
stochastic nature of this method means that checking previous positions would not
be redundant, doing so would significantly slow down the creation of solutions by
increasing the number of neighbors to be checked. Additionally, it would increase the
likelihood of the method generating new solutions in a deterministic, greedy manner,
as elements with a higher probability of being placed in certain positions would have
multiple opportunities to be placed there. This contrasts with our approach in the
GRASP construction phase (Algorithm 19), where we achieved better results by eval-
uating all unassigned customers against every position in the route, not just at the
ends of the routes. With the aforementioned positions in hand, the next objective is
to determine all feasible moves (Line 6), which are essentially combinations of adding
specific customers to particular positions. To help in this, the algorithm employs
the GET_MOVES function, which uses the calculated list of available positions, the
unassigned customers from set C, and the current state of the solution S, to return
a set of ordered pairs associated with potential moves, where the first element in
each pair represents a position in the solution, and the second represents the node
(customer or AFS) that could be inserted at that position. Once the potential moves
are identified, the algorithm calculates the probability for each move using a specified
formula (Line 10), ensuring that the solution construction is not deterministic and has
a degree of randomness. This stochastic nature of move selection allows for diverse
solution exploration. Based on these probabilities, a move is selected (Line 11), and
the associated node is added to the solution at the designated position. If the inserted
node represents a customer, that customer is then marked as assigned, removing them
from further consideration in set C (Line 12). The loop continues until all customers
are assigned. Upon completion, the fully constructed solution S is returned, marking
the successful creation of a solution for the ant.

Procedure for finding a set of potential moves based on a set of available positions
in the solution is presented in Algorithm 22. To start, the algorithm creates an empty
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Algorithm 21 Procedure for constructing solutions
1: procedure construct_solution(Customers V, AFSs F, α, β, τ)
2: S← empty solution
3: Vtemp ← V
4: while Vtemp 6= ∅ do
5: positions← get all available positions in S
6: list_o f _moves← GET_MOVES(positions, Vtemp, S, F)
7: if list_o f _moves is empty then
8: continue from line 2
9: end if

10: Calculate probabilities for each move using equation the (2.2)
11: move← choose one move based on calculated probabilities
12: Perform the move by adding move.node at move.position to S
13: if move.noderepresentsacustomer then
14: Vtemp \move.node
15: end if
16: end while
17: return S
18: end procedure

set called moves intended to hold pairs of positions and nodes (customers or stations)
(Line 2). Given a set of positions, a set of available customers, and the set of AFSs,
the main loop begins by iterating over each position, denoted as pos. Within this
loop, another nested loop assesses every available customer, denoted as a.

Two primary constraints guide the addition of customers to the solution:

• The solution should not exceed the given capacity. If adding customer a at
position pos would breach this capacity constraint, the algorithm continues to
the next available customer without adding this one (Line 6).

• After visiting a customer, there must be a station reachable with the remaining
battery level (keep in mind that the depot is also considered an AFS). If no
station can be accessed after visiting customer a, then this customer is not
considered for this position (Line 9). This constraint significantly reduces the
likelihood of the solution becoming infeasible due to a lack of battery charge, as
a vehicle can always reach the next AFS. In the unlikely event that an infeasible
solution is generated, we can simply discard the partial solution and start over
from the beginning (Line 8, Algorithm 21).

Whenever a move is deemed feasible by meeting both constraints, the algorithm
pairs the current position pos with customer a and adds this pair to the moves set
(Line 11). If, after considering all available customers for a specific position, no
customers were added to moves, the algorithm then identifies all reachable stations
from the current position (Lines 13-18). Each of these stations is paired with the
current position pos and added to the moves set. This ensures that if no feasible
customer can be visited from a position, the algorithm considers possible stations.
By the end of this process, the moves set is populated with all valid moves the ant
can make from the provided positions, ensuring a comprehensive set of possibilities
for solution construction.

Beyond the basic ACO algorithm, we also developed Ant Colony Optimization
with Local Search (ACOLS). This enhanced version invokes the VND procedure on
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Algorithm 22 Procedure for finding a set of potential moves based on a set of
available positions in the solution

1: procedure get_moves(positions, available, S, F)
2: moves← empty set o pairs
3: for ∀pos ∈ positions do
4: for ∀a ∈ available do
5: if adding a to S as position pos violates capacity constraint then
6: continue
7: end if
8: if no station can be reached after visiting a then
9: continue

10: end if
11: moves← moves ∪ {(pos, a)}
12: end for
13: if no customers have been added to moves for pos then
14: stations← find stations from F that can be visited from pos
15: for s ∈ stations do
16: moves← moves ∪ {(pos, s)}
17: end for
18: end if
19: end for
20: return moves
21: end procedure

each ant’s solution following the completion of the construction phase. Although
applying VND to every solution may appear computationally expensive, this issue is
mitigated by the vndlimit hyperparameter, which controls the amount of time spent
on each solution. While it might be a viable strategy to apply VND to only a subset
of solutions, or even just a single solution, this approach was not explored in this
thesis and warrants further investigation.

4.12.1 Hyperparameter analysis

The basic version of the our ACO algorithm is characterized by four key hyperpa-
rameters:

• population size - The number of artificial ants employed in each iteration by
the ACO algorithm.

• α - The hyperparameter governing the relative influence of pheromone values
during the construction phase, as outlined in Section 2.4.3.

• β - The hyperparameter governing the relative influence of heuristic values
during the construction phase, as outlined in Section 2.4.3.

• ρ - The hyperparameter responsible for regulating the evaporation rate in the
ACO algorithm.

In addition to these four, ACOLS features an extra hyperparameter:

• vndlimit - Hyperparameter managing the time constraint for each invocation of
the VND procedure, measured in seconds.
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Employing the Random Forest regressor in conjunction with permutation feature
importance, we estimated the relative significance of hyperparameters for both ACO
and ACOLS.

Figure 4.20 details the relative impact of each hyperparameter, while Figure 4.21
showcases the PDPs for the instance r202C15. These figures reveal that the most sig-
nificant positive influence on the quality of the solutions was exerted by the population
size. The evaporation rate also had a considerable impact, though not uniformly pos-
itive. This outcome for the evaporation rate aligns with our expectations, given that
we tested a much broader range of values than typically used in ACO algorithms.
Specifically, we explored values for ρ up to 0.9, which essentially reduced our ACO
algorithm to being marginally better than a random search, as the majority of the
pheromone values would be lost after each iteration.

Figure 4.20: Relative importance of ACO hyperparameters for
dataset I1
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Figure 4.21: Impact of ACO hyperparameters on the performance
on instance r202C15

In the case of ACOLS, Figure 4.22 illustrates the relative influence of hyperpa-
rameters for the I1 dataset, while Figure 4.23 displays the PDPs for the instance
r202C15. Mirroring the findings from ACO, the ρ hyperparameter was found to have
a detrimental effect on the quality of the solutions obtained. The population size re-
mained a critical factor, however, as indicated in Figure 4.23, there is a point beyond
which increasing the number of ants ceases to be advantageous. This is likely due to
the time consumption during the local search phase performed by each ant, especially
when exploring less promising solution candidates. Notably, the hyperparameters α
and β exhibited a significantly greater impact in ACOLS compared to their influence
in the ACO algorithm.



4.12. ACO 115

Figure 4.22: Relative importance of ACOLS hyperparameters for
dataset I1

Figure 4.23: Impact of ACOLS hyperparameters on the performance
on instance r202C15

This analysis was replicated for instances from the I2 dataset for both ACO and
ACOLS. For the ACO algorithm, Figure 4.24 delineates the relative impact of each
hyperparameter, and Figure 4.25 presents the PDPs for the instance c101_21. In this
scenario, the α hyperparameter emerged as the most positively influential, indicating
that pheromone values play a critical role in larger instances. Notably, the population
size had a reduced impact in comparison to the smaller instances.
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Figure 4.24: Relative importance of ACO hyperparameters for
dataset I2

Figure 4.25: Impact of ACO hyperparameters on the performance
on instance c101_21

Turning to the ACOLS algorithm, Figure 4.26 illustrates the relative influence of
its hyperparameters on the instance set I2, with Figure 4.27 offering the PDPs for
instance c101_21. Here, all hyperparameters demonstrated significant influence. The
β hyperparameter, in particular, showed a decline in solution quality with increasing
values, suggesting that heuristic information might be less pivotal in navigating the
search for larger instances. An interesting observation was that the algorithm achieved
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optimal performance at ρ = 0.5 for the c101_21 instance, highlighting a unique
characteristic in the behavior of ACOLS in this context.

Figure 4.26: Relative importance of ACOLS hyperparameters for
dataset I2

Figure 4.27: Impact of ACOLS hyperparameters on the performance
on instance c101_21

4.13 BCO
For our purposes, we have opted to use the improving version of BCO (BCOi) de-
scribed in Section 2.4.4. BCO has seen limited application in the field of VRP, with
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only a few publications, specifically [205, 214, 253], addressing its use. To the best of
our knowledge, BCOi has not yet been applied to EVRP. Our implementation closely
follows the steps outlined in Algorithm 5. There are a few implementation details
that are specific to our problem.

The method starts by creating the initial population of bees, using the method
described in Algorithm 11. Following this initialization, the algorithm’s primary loop
starts, successively executing forward and backward passes.

In the forward pass, we call the procedure that transforms the current solution
by applying a predefined number of changes to it. There are several possible types of
transformational moves which the method can utilize to change the current solution,
most of them corresponding to the neighborhood structures outlined in Section 4.8.
The specific transformations available are:

• M1(S) - Select a single customer at random and relocate them to a different
position within the same route (corresponds to N2(S)).

• M2(S) - Select a single customer at random and relocate them to a different
route, placing them at a random position (corresponds to N3(S)).

• M3(S) - Select two customers at random in the same route and swap their
positions (corresponds to N4(S))

• M4(S) - Select two customers from different routes at random and swap their
positions (corresponds to N5(S))

• M5(S) - Randomly choose a customer and transfer it to an empty route, pro-
vided the maximum number of routes has not been exceeded.

Algorithm 23 presents the method to transform the given solution. To begin
with, the algorithm runs a loop for a specified number of iterations (num_moves).
In each iteration, it selects a transformation function randomly from the list of pro-
vided moves and applies it to S (Lines 3-5). After applying all the transformations,
the algorithm adds the visits to AFSs to the solution. If the solution remains infea-
sible after this step, the algorithm undoes all the transformations and retraces the
transformational moves, essentially repeating the process (Lines 8-15). To avoid the
algorithm getting stuck in an infinite loop, we monitor the number of times we revert
the transformed solution back to its original state, tracking this count in the variable
tries. If tries reaches a predefined limit, the method will return the original, un-
changed solution (Line 12). In our implementation, this limit, TRIES_LIMIT, is set
to 100. If a feasible solution is achieved, the algorithm attempts additional refinement
by removing any redundant visits to AFSs (Line 16). It then calculates a schedule for
S using the CALC_SCHEDULE function (Algorithm 13) and optimizes it using the
OPTIMIZE_SCHEDULE function (Algorithm 14). It is important to distinguish
between the num_moves parameter in this algorithm and the max_moves parameter
referenced in Algorithm 5 (See Line 7). While num_moves sets the extent of a single
transformation, max_moves defines the total number of such transformations to be
carried out within each iteration.

During the backward phase, each bee has to decide whether it wants to stick to its
current solution or opt for a solution offered by another bee. This decision is based on
Equation (2.4), while the process of recruiting new solutions follows Equation (2.5).
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Algorithm 23 Procedure for transforming the current solution
1: procedure transform_solution(S, num_moves, moves)
2: tries← 1
3: for i = 1 to num_moves do
4: mode← random integer between 1 and size(moves)
5: S← moves[mode](S)
6: end for
7: FIX_SOLUTION(S)
8: if S is not feasible then . Solution could not be fixed
9: Revert all changes to S

10: tries← tries + 1
11: if tries ≥ TRIES_LIMIT then
12: return S
13: end if
14: Continue from line 3
15: end if
16: Remove unnecessary visits to AFSs in S
17: CALC_SCHEDULE(S)
18: OPTIMIZE_SCHEDULE(S)
19: return S
20: end procedure

4.13.1 Hyperparameter analysis

Our BCO algorithm has two hyperparameters:

• population size - The number of artificial bees employed in each iteration by
the BCO algorithm.

• max_moves - The maximum number of transformational moves in the forward
pass of the algorithm.

Figure 4.28 clarifies the relative influence of each hyperparameter, complemented
by Figure 4.29 which displays the PDPs for the instance r202C15. These figures
highlight the crucial importance of selecting the optimal number of moves over deter-
mining the precise population size for this algorithm, the conclusion also confirmed
by Maksimović and Davidović [210]. It is interesting to note that Figure 4.29 in-
dicates that lower values for both hyperparameters are more favorable compared to
higher ones. A similar trend was observed for instances from dataset I2, as depicted in
Figure 4.30 and Figure 4.31. However, for the instance c101_21, a somewhat larger
population size proved to be more preferable.
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Figure 4.28: Relative importance of BCO hyperparameters for
dataset I1

Figure 4.29: Impact of BCO hyperparameters on the performance
on instance r202C15
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Figure 4.30: Relative importance of BCO hyperparameters for
dataset I2

Figure 4.31: Impact of BCO hyperparameters on the performance
on instance c101_21

4.14 GA and MA
The genetic algorithm, known for its versatility, includes various forms based on the
specific genetic operators it integrates. In our method, we initiate the process by
generating an initial population of solutions. For crafting a single solution, we utilize
Algorithm 12, while the rest of the population is created through Algorithm 11.
This approach leverages the strengths of both algorithms: Algorithm 12 is adept at
providing a robust initial solution, and Algorithm 11 introduces a range of diversity
into the population.

Figure 4.32 illustrates a transformation from our solution structure described in
Section 4.4 to a chromosome for genetic algorithm. Distinct color groupings (blue,
green, and orange) denote individual routes taken by separate vehicles. Within this
chromosome, special markers, numbered as ”0”, delineate the end of one vehicle’s
route and the start of another’s. For instance, the sequence ”1 5 6” between two
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zeros signifies the first vehicle’s route, visiting customers 1, 5, and 6 consecutively.
This compact representation is better suited for the crossover operation in genetic
algorithms than our standard solution representation.

Figure 4.32: Representation of a chromosome

Numerous crossover operators are documented in literature, such as Single-point
Crossover [137], Multi-point Crossover [112], Uniform Crossover [327], Partially Matched
Crossover [113], Cycle Crossover [259], Edge Recombination Crossover [357], among
others.

For this research, we explored the capabilities of two crossover methods: Two-
point Crossover (TPX) and Order Crossover (OX) [87].

Two-point crossover is a specific instance of Multi-point crossover. In this method,
two points are selected on the parent chromosomes, and everything between these
points is exchanged, resulting in two offspring. Although this approach may not be
suitable for problems based on permutations, as it can produce offspring with redun-
dant or missing elements, we wanted to investigate whether its inherent randomness
might improve or hinder the algorithm’s effectiveness. This additional randomness
occurs because the offspring must be corrected after creation by removing any dupli-
cate customers and then randomly placing absent customers within the solution, or
by removing or adding some depot visits to reduce or increase the route count.

Order Crossover is a specialized crossover technique that is primarily used for
permutation-based problems in genetic algorithms. One of the most popular appli-
cations of this technique is for solving the Traveling Salesman Problem. The main
idea behind OX is to preserve the relative order of genes (or elements) from the par-
ent chromosomes while creating offspring that are valid permutations. To apply OX,
two crossover points are randomly chosen on the parent chromosomes. The section
between these points in one parent is directly copied to the offspring. To complete
the offspring, genes from the second parent are considered in their order of appear-
ance, but only if they are not already present in the offspring. This guarantees that
the offspring inherits genes from both parents while maintaining the gene’s relative
ordering and producing valid permutations. Since depot visits (designated as 0) are
also being copied, it is possible that the number of routes in the new solution may
exceed the available number of vehicles. In such cases, we remove some depot visits
from the chromosomes, merging the shortest routes to resolve the issue. The example
of OX is presented in Figure 4.33.
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Figure 4.33: A diagram illustrating the OX crossover operator.

Both operators underwent testing across both instance sets described in Sec-
tion 4.3, utilizing hyperparameters identified by iRace with an identical budget allo-
cated for each algorithm. Within the I1 instance set, TPX marginally surpassed OX
concerning the average solution quality. Specifically, TPX outperformed OX in 17 in-
stances, with differences ranging from a minimum of 0.25% to a maximum of 6.48%,
and an average difference of 1.98%. In contrast, both operators achieved identical
results in 11 instances, while TPX fell short in 8 instances, registering differences
between 0.05% and 8.47%, and an average shortfall of 2.54%. Figure 4.34 showcases
both the Q-Q plot and a histogram illustrating the differences. An assessment of this
figure highlights a deviation from a normal distribution for the differences, a finding
further endorsed by the Shapiro–Wilk test. Consequently, to determine any statisti-
cally significant discrepancies between the two algorithms, we employed the Wilcoxon
signed-rank test, which operates without the presupposition of normality and assesses
the significance of variations between two paired groups. Based on this test, at a
conventional significance threshold of 0.05, the p-value stood at 0.109, indicating no
statistically significant difference between the two algorithms.

Figure 4.34: Distribution of differences for TPX and OX presented
as: a) Q-Q plot, b) Histogram

Conversely, upon evaluating the operator on the set of larger instances (I2), OX
decidedly outperformed TPX. OX achieved superior solutions in all 56 instances. The
performance enhancements ranged from a minimal improvement of 17.34% to a peak
of 74.49%, with an average improvement of 51.40%. Given this clear disparity in
outcomes, we deemed additional statistical tests redundant.

In our mutation procedure, each individual in the population has a chance to
undergo mutation based on a specified probability termed the mutation_rate. The
procedure operates by iterating over each individual and generating a random number
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between 0 and 1. If this number is less than or equal to the mutation_rate, the individ-
ual is selected for mutation. The extent of this mutation is determined by a randomly
chosen integer, trans f ormation_size, which can be between 1 and 3. Once selected,
the TRANSFORM function is invoked to mutate the individual based on the defined
trans f ormation_size. We considered two functions as the TRANSFORM function:
the SHAKING procedure described in Algorithm 17, and the TRANSFORM_SO-
LUTION procedure described in Algorithm 23. We tested these two variations on a
subset of instances from I2, but did not find any statistically significant difference. As
a result, we have decided to use the TRANSFORM_SOLUTION function in all fu-
ture experiments. After considering every individual in the population for mutation,
the procedure is completed. This procedure is described in Algorithm 24.

Algorithm 24 Mutation procedure
1: procedure mutation(population, mutation_rate)
2: for ∀individual ∈ population do
3: r ← random number in range [0, 1]
4: if r ≤ mutation_rate then
5: trans f ormation_size← random integer in range [1, 3]
6: TRANSFORM(individual, trans f ormation_size)
7: end if
8: end for
9: end procedure

In our version of the algorithm, we replace the crossover rate hyperparameter
from Algorithm 6 with the number of offspring hyperparameter. This new param-
eter dictates the number of offspring generated through crossover. During each
step, two parents are selected using the Roulette wheel selection. This process is
repeated number o f o f f spring

2 times to produce the predetermined number of offspring,
which are subsequently incorporated into the original population. Selection adopts
an elitist approach. After incorporating the offspring into the population, only the
top population size individuals advance to the subsequent generation.

Our memetic algorithm aligns with the GA in terms of selection, mutation, and
crossover operations. However, it distinguishes itself by incorporating the VND as its
local search procedure.

In addition, we also propose another algorithm for solving our problem, that we
call the Modified Memetic Algorithm (MMA). The MMA represents an adaptation
of the traditional Memetic Algorithm. Both algorithms combine elements of genetic
algorithms with local search procedures, which allows them to harness the explorative
powers of genetic algorithms and the exploitative strengths of local searches. This
hybrid approach offers a balance between global exploration of the solution space and
local refinement.

However, the distinction between MMA and classic MA lies in their local search
application. In traditional MA, local search is typically applied uniformly across
selected individuals or a significant portion of the population. This ensures that not
only the best solutions but also other potential solutions in the population undergo
refinement, allowing for diverse exploration and exploitation.

In contrast, the MMA is more selective in its approach. It applies the local search
procedure exclusively to the offspring with the best solution in each generation. By
focusing solely on the most promising solution in each generation, MMA emphasizes
intensive refinement of the best solutions over the exploration of the broader solution
landscape. This approach might speed up convergence to a high-quality solution, but
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there is a trade-off—it could also potentially risk getting trapped in local optima if
the broader population’s diversity is not maintained. In essence, while classic MA
maintains a broader exploration and exploitation balance, MMA leans more towards
intensive exploitation of the top-performing solutions.

4.14.1 Hyperparameter analysis

Our implementation of the GA is configured with three key hyperparameters:

• Population size - The hyperparameter that specifies the size of the population
in terms of the number of individuals.

• Number o f o f f spring - The hyperparameter that dictates the number of new
offspring generated in each generation.

• Mutation rate - The hyperparameter that sets the likelihood of the mutation
operator being applied to an individual.

For the MA and MMA algorithms, there is an additional hyperparameter:

• vndlimit - Hyperparameter managing the time constraint for each invocation of
the VND procedure, measured in seconds.

It should be emphasized that our assessment of the relative influence of hyperparam-
eters was specifically conducted on versions of GA, MA, and MMA that utilize the
order crossover operator.

The relative impact of each GA hyperparameter on instances from dataset I1 is
depicted in Figure 4.35. Additionally, Figure 4.36 presents PDPs that illustrate the
performance of GA on the instance r202C15 across various hyperparameter values.
From the insights obtained from these figures, it is evident that the number of offspring
is the most influential hyperparameter, with an increase in offspring correlating to
improved solution quality. In comparison, the population size and the mutation rate
exerted a relatively lesser impact. Upon examining instances from dataset I2, as
illustrated in Figures 4.37 and 4.38, the number of offspring continued to be the
most influential hyperparameter. However, in this case, the population size and the
mutation rate assumed a more prominent role. Interestingly, elevating these two
parameters tended to diminish the quality of the solutions.

Figure 4.35: Relative importance of GA hyperparameters for dataset
I1
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Figure 4.36: Impact of GA hyperparameters on the performance on
instance r202C15

Figure 4.37: Relative importance of GA hyperparameters for dataset
I2
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Figure 4.38: Impact of GA hyperparameters on the performance on
instance c101_21

For the MA algorithm, a similar analysis was conducted, with the relative influ-
ence of hyperparameters on instances from dataset I1 depicted in Figure 4.39 and the
corresponding PDPs shown in Figure 4.40. The outcomes here contrast significantly
with those for GA as nearly all hyperparameters, except vndlimit, exhibited a sub-
stantial impact. The findings for MA on instances from dataset I2 are particularly
interesting (Figures 4.41 and 4.42). The population size emerged as the sole signifi-
cantly influential parameter, where its increase led to inferior solution quality. It is
worth noting that the situation becomes even more interesting due to the fact that,
unlike in the cases of GVNS, GRASP, and ACOLS, where an increased VND limit
generally improved solution quality, for MA, a higher VND limit adversely affected
solution outcomes. This likely stems from the fact that the population size in MA
can be quite substantial, and conducting VND on each solution with an extended
time limit may result in considerable time spent exploring less promising solutions.
In contrast, while ACOLS may also involve a large number of ants, it tends to benefit
from prolonged VND runs. This difference can be attributed to the GA component
of MA, which appears more effective in steering the search towards optimal solutions
independently, as compared to the guidance provided by ACO, at least in the context
of our specific problem.
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Figure 4.39: Relative importance of MA hyperparameters for dataset
I1

Figure 4.40: Impact of MA hyperparameters on the performance on
instance r202C15
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Figure 4.41: Relative importance of MA hyperparameters for dataset
I2

Figure 4.42: Impact of MA hyperparameters on the performance on
instance c101_21

MMA demonstrated a hyperparameter influence pattern similar to MA for in-
stances from dataset I1, as depicted in Figures 4.43 and 4.44. However, when eval-
uated against instances from dataset I2 (presented in Figures 4.45 and 4.46), the
number of offspring assumed a more pivotal role in MMA compared to MA, with a
higher count correlating to improved solution quality. Additionally, similar to the
trends observed in GVNS, GRASP, and ACOLS, increasing the vndlimit in MMA
positively influenced the quality of the solutions.
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Figure 4.43: Relative importance of MMA hyperparameters for
dataset I1

Figure 4.44: Impact of MMA hyperparameters on the performance
on instance r202C15
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Figure 4.45: Relative importance of MMA hyperparameters for
dataset I2

Figure 4.46: Impact of MMA hyperparameters on the performance
on instance c101_21

4.15 Experimental evaluation

4.15.1 MILP performance

In order to evaluate the effectiveness of our MILP formulation, as outlined in Sec-
tion 4.2, we employed the CPLEX 20.1.0 commercial solver. A time constraint of
60 minutes was imposed for each test. As detailed in Section 4.2, our MILP model
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necessitates the creation of ’dummy’ nodes to represent refueling stations. This is
achieved by duplicating existing station nodes, thereby enabling multiple visits to
these stations. The replication frequency of these station nodes is a critical param-
eter; setting it too low might exclude potentially high-quality solutions by rendering
them infeasible [1], whereas too high a frequency can significantly escalate the com-
plexity of the model. For our experiments, we replicated station nodes threefold for
instances with up to 10 customers, and sixfold for those with 15 customers. These
replication rates were determined through experimental trials and yielded the most
favorable outcomes.

The results derived from dataset I1 are showcased in Table 4.3. However, the
instances from dataset I2 presented a formidable challenge for CPLEX, as it failed to
identify a first feasible solution within a reasonable timeframe. This difficulty may
stem from our model’s reliance on Miller–Tucker–Zemlin (MTZ) inequalities [232].
While MTZ inequalities are advantageous due to their limited quantity, they also
tend to produce weaker continuous relaxations, resulting in less tightly constrained
models [73].

4.15.2 Experimental setup

The experiments were carried out on a personal laptop equipped with an Intel i7-
10750H processor and 32GB of RAM, running the Ubuntu 20.04 operating system.
We developed all proposed algorithms using the C++ programming language and
compiled them using the GCC 9.4.0 compiler with the O3 optimization flag for en-
hanced performance. To ensure the reliability of our results, each test was conducted
30 times, demonstrating the consistency of the outcomes.

For the instance set I1, we imposed a five-minute time limit per method during
testing. In contrast, for the instance set I2, the time limit was extended to ten
minutes, accommodating their increased complexity. The selection of hyperparameter
values for each method was done with precision and consideration, and these values
will be detailed in the following section. This structured approach to testing and
parameterization ensures a robust and comprehensive evaluation of the algorithms.

4.15.3 Hyperparameters tuning

To identify optimal values for our algorithms, we employed the iRace5 package within
the R programming language. Each algorithm was allocated a budget of 1000 exper-
iments for every dataset. The resulting values for GVNS, GRASP, ACO, ACOLS,
BCOi, GA, MA, and MMA are presented in Tables 4.4 through 4.11, respectively.
The third row of each table lists the range of possible values for each hyperparam-
eter from which iRace could make selections. The fourth and fifth rows detail the
best-performing hyperparameter values identified for datasets I1 and I2, respectively.
These determined values were then consistently used for all further testing of the
algorithms.

4.15.4 Overall comparison

In Table 4.12, we present the average solution quality for each algorithm across a range
of instances from the dataset I1, with the top-performing results for each instance
highlighted in bold. In the bottom row, we display the number of times each algorithm
surpassed the others in terms of average solution quality. The comprehensive results

5https://cran.r-project.org/web/packages/irace/index.html

https://cran.r-project.org/web/packages/irace/index.html
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Table 4.3: Results obtained by CPLEX commercial solver using the
model described in Section 4.2.

Instance C A Results
Objective Gap (%) Time (s)

c101C10 10 5 401.5689 28.1 3600
c101C5 5 3 247.1497 0 9.37
c103C15 15 5 242.6993 38.3 3600
c103C5 5 2 165.6667 0 0.69
c104C10 10 4 279.9331 3.58 3600
c106C15 15 3 275.1332 0 239.73
c202C10 10 5 243.2035 0 444.9
c202C15 15 5 376.7893 12.02 3600
c205C10 10 3 228.2812 0 21.97
c206C5 5 4 236.579 0 85.3
c208C15 15 4 300.5485 0.04 3600
c208C5 5 3 158.4807 0 203.6
r102C10 10 4 256.0954 9.89 3600
r102C15 15 8 456.0582 44.13 3600
r103C10 10 3 175.3568 0 1251.41
r104C5 5 3 136.6897 0 9.32
r105C15 15 6 365.8703 33.41 3600
r105C5 5 3 156.0821 0 13.88
r201C10 10 4 222.4339 0 2597.21
r202C15 15 6 362.6361 28.37 3600
r202C5 5 3 128.7771 0 5.66
r203C10 10 5 218.2135 0 1996.53
r203C5 5 4 179.0559 0 140.95
r209C15 15 5 293.2004 12.29 3600
rc102C10 10 4 423.5102 8.29 3600
rc103C15 15 5 415.1275 42.93 3600
rc105C5 5 4 238.0522 3.19 3600
rc108C10 10 4 345.9273 12.34 3600
rc108C15 10 5 396.9885 21.98 3600
rc108C5 5 4 253.9307 12.31 3600
rc201C10 10 4 310.0573 0 729.84
rc202C15 15 5 391.6175 30.25 3600
rc204C15 15 7 310.8969 22.52 3600
rc204C5 5 4 176.394 0 534.11
rc205C10 10 4 325.9774 0 3118.21
rc208C5 5 3 167.9835 0 337.36

Table 4.4: The best-found values for each GVNS hyperparameter.

Hyperparameters

kmin kstep kmax lmax vndlimit

Interval [1, 5] [1,3] [6, 30] [3,6] [1, 9]
I1 3 3 20 5 8
I2 1 2 12 5 7
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Table 4.5: The best-found values for each GRASP hyperparameter.

Hyperparameters

rcllimit vndlimit

Interval [2, 9] [1, 9]
I1 6 3
I2 3 9

Table 4.6: The best-found values for each ACO hyperparameter.

Hyperparameters

population size α β ρ

Interval [5, 40] [1, 4] [1, 4] {0.1, 0.2, … , 0.9}
I1 33 1 3 0.2
I2 34 4 1 0.1

Table 4.7: The best-found values for each ACOLS hyperparameter.

Hyperparameters

population size α β ρ vndlimit

Interval [5, 40] [1, 4] [1, 4] {0.1, 0.15, 0.2, 0.25, 0.3} [1, 9]
I1 10 1 4 0.1 5
I2 34 2 1 0.25 3

Table 4.8: The best-found values for each BCO hyperparameter.

Hyperparameters

max_moves population size

Interval [3, 10] [5, 40]
I1 3 33
I2 3 11

Table 4.9: The best-found values for each GA hyperparameter.

Hyperparameters

population size Number o f o f f spring Mutation rate

Interval [5, 40] [2, 20] {0.1, 0.2, 0.3}
I1 16 20 0.1
I2 6 10 0.1

Table 4.10: The best-found values for each MA hyperparameter.

Hyperparameters

population size Number o f o f f spring Mutation rate vndlimit

Interval [5, 40] [2, 10] {0.1, 0.2, 0.3} [1, 9]
I1 25 17 0.3 4
I2 6 3 0.1 7
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Table 4.11: The best-found values for each MMA hyperparameter.

Hyperparameters

population size Number o f o f f spring Mutation rate vndlimit

Interval [5, 40] [2, 10] {0.1, 0.2, 0.3} [1, 9]
I1 18 17 0.3 3
I2 5 13 0.1 8

for all algorithms, encompassing all metrics, are detailed in an external document pro-
vided at https://www.mi.sanu.ac.rs/~luka/resources/phd/AppendixB.pdf. To
ascertain whether the differences in performance among these algorithms are statisti-
cally significant, it was necessary to evaluate the feasibility of conducting an ANOVA
analysis. ANOVA requires three key conditions to be valid [213]:

• The data should be normally distributed.

• The variances across groups should be equal.

• Each sample must be collected independently from the other samples. In our
case, this assumption is met by default.

To verify the first two conditions, we employed the Shapiro-Wilk test [308] to
check for normal distribution of each algorithm’s results and the Levene’s test [187] to
examine the equality of variances across algorithms. The Shapiro-Wilk test yielded
p-values below 0.05 for certain algorithms (ACO, ACOLS, and BCOi), suggesting
their data do not adhere to a normal distribution. Additionally, the Levene’s test
produced a significantly low p-value, further indicating unequal variances among the
algorithms. These findings imply that the criteria for a traditional ANOVA are not
satisfied.

Consequently, we opted for the Kruskal-Wallis test [172], a non-parametric alter-
native that does not assume normal distribution. This test is suitable for determining
statistically significant differences between two or more groups on a continuous or or-
dinal dependent variable. The Kruskal-Wallis test yielded a p-value of approximately
0.119, exceeding the conventional threshold of 0.05. This indicates that the perfor-
mance differences among the algorithms, when evaluated on instances from dataset
I1, are not statistically significant.

In Table 4.13, we provide a comprehensive overview of each algorithm’s perfor-
mance across a variety of metrics. The table details the number of instances in which
each algorithm achieved the best value for a given metric. It is important to note that
in cases where two or more algorithms attained the same optimal value, this achieve-
ment is attributed to each of those algorithms. This table reflects a similar pattern
observed in the comparison of average solution quality, where no single metaheuris-
tic consistently outperforms the others across any specific metric. This suggests a
balanced competitive landscape, with no definitive leader emerging in any particular
performance category.

In the case of smaller test instances, we evaluated our metaheuristic approaches
against the results produced by CPLEX, rounding all outcomes to two decimal places.
Instances where CPLEX surpassed other methods are detailed in Table 4.14, includ-
ing the percentage differences in solution quality. We omitted 17 cases from this
table where CPLEX achieved the same solution quality as some other method. Con-
versely, Table 4.15 showcases instances where metaheuristic methods outperformed

https://www.mi.sanu.ac.rs/~luka/resources/phd/AppendixB.pdf
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Table 4.12: Results for all metaheuristics on the instance set I1.

Instance C A Metaheuristics
GVNS GRASP ACO ACOLS BCOi GA MA MMA

c101C10 10 5 385.31 401.13 449.37 412.33 479.91 397.92 396.23 396.58
c101C5 5 3 247.15 250.04 259.73 247.15 254.23 249.17 247.15 248.59
c103C15 15 5 356.52 371.8 460.68 371.8 605.77 381.08 366.17 372.7
c103C5 5 2 165.67 479.05 165.67 873.81 173.6 165.67 322.36 323.87
c104C10 10 4 304.03 295.55 373.99 273.93 348.24 273.93 323.49 357.09
c106C15 15 3 277.51 275.83 365.37 275.13 487.69 301.83 275.13 281.89
c202C10 10 5 251.94 264.46 309.71 251.94 351.51 258.53 251.94 253.76
c202C15 15 5 373.25 369.56 512.54 378.45 623.89 380.3 369.61 369.56
c205C10 10 3 228.28 228.28 322.97 228.28 365.49 232.95 228.28 228.28
c206C5 5 4 236.21 241.49 258.04 239.94 237.4 236.21 236.21 236.21
c208C15 15 4 300.55 300.55 478.34 300.55 600.77 317.52 300.55 300.55
c208C5 5 3 158.48 205.0 210.19 195.7 213.74 158.48 158.48 158.48
r102C10 10 4 270.24 267.56 298.14 270.49 327.01 250.14 267.56 272.16
r102C15 15 8 438.67 539.29 476.85 459.57 546.21 405.94 539.24 521.9
r103C10 10 3 175.36 175.36 209.45 175.36 197.79 182.88 175.36 182.12
r104C5 5 3 136.69 136.69 137.01 136.69 137.23 136.69 136.69 136.69
r105C15 15 6 353.4 407.93 434.11 382.47 531.84 346.61 384.93 337.04
r105C5 5 3 181.02 172.45 195.31 169.03 163.46 156.08 161.6 158.11
r201C10 10 4 222.43 222.43 260.0 222.43 274.59 222.43 222.43 222.43
r202C15 15 6 380.24 359.84 577.37 381.64 623.74 384.84 351.87 350.72
r202C5 5 3 142.65 147.12 157.55 142.65 152.93 142.65 142.65 142.65
r203C10 10 5 232.68 232.68 307.88 232.68 342.73 233.44 232.68 232.68
r203C5 5 4 179.06 201.78 227.94 195.34 196.81 184.03 179.06 179.06
r209C15 15 5 307.68 347.07 456.3 334.15 536.89 307.83 307.68 307.68
rc102C10 10 4 455.09 465.48 486.37 461.15 479.25 450.87 450.47 450.47
rc103C15 15 5 426.98 426.21 476.33 513.04 604.68 399.92 486.51 560.1
rc105C5 5 4 273.34 276.17 237.25 278.38 231.22 227.0 259.43 275.23
rc108C10 10 4 400.0 398.8 417.8 464.96 429.12 348.89 438.67 449.48
rc108C15 10 5 421.02 467.44 512.09 505.41 678.98 383.83 514.22 556.82
rc108C5 5 4 399.07 399.07 271.74 341.02 268.1 253.93 370.04 388.81
rc201C10 10 4 310.06 310.06 369.73 310.06 378.69 310.06 310.06 310.06
rc202C15 15 5 397.2 445.12 532.11 416.59 680.99 433.98 405.87 403.68
rc204C15 15 7 351.24 353.22 554.22 353.85 619.69 340.54 319.93 315.46
rc204C5 5 4 176.39 185.16 187.69 178.61 185.64 177.22 176.39 178.61
rc205C10 10 4 357.13 344.95 446.84 460.58 449.8 329.75 364.92 396.08
rc208C5 5 3 167.98 203.94 190.47 168.93 196.53 167.98 168.79 167.98
Count best 20 8 1 12 0 18 17 17

Table 4.13: Performance comparison of metaheuristics for TD-
EVRP-STW across various metrics (Dataset I1).

Metric Method

GVNS GRASP ACO ACOLS BCOi GA MA MMA

Average solution quality 20 8 1 12 0 18 17 17
Best-found solution 30 16 1 26 6 24 33 28
Worst-found solution 20 9 1 13 0 18 20 17
Penalty 17 17 27 17 26 24 17 18
Average route duration 1 2 6 0 27 2 0 0
Maximum route duration 6 16 17 10 14 18 11 15
Number of routes 29 12 3 20 3 17 28 25
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CPLEX. It is worth noting that these tables reflect the best solutions found across all
30 runs of the metaheuristic algorithms. The scenario remains similar when consid-
ering average solution quality, with CPLEX leading in 10 instances, underperforming
in 11, and matching solution quality in 15 cases. Given the time constraints (five
minutes for metaheuristic methods versus one hour for CPLEX) these results suggest
that metaheuristic algorithms are quite effective. Additionally, the superiority of the
metaheuristic approach becomes even more evident in larger instances, where CPLEX
failed to find even the first feasible solution.

Table 4.14: Instances where CPLEX was the best excluding ties with
the second best

Instance CPLEX Value Second Best Value Second Best Algorithm(s) Difference
c103C15 242.70 348.54 GVNS 30.37%
c202C10 243.20 251.94 GVNS, ACOLS, MA, MMA 3.47%
r202C5 128.78 142.65 GVNS, GRASP, ACOLS, BCOi, GA, MA, MMA 9.72%
r203C10 218.21 232.68 GVNS, GRASP, ACOLS, GA, MA, MMA 6.22%
r209C15 293.20 307.68 GVNS, ACOLS, GA, MA, MMA 4.71%
rc102C10 423.51 450.47 GVNS, GRASP, ACOLS, BCOi, GA, MA, MMA 5.98%
rc202C15 391.62 397.20 GVNS, MA, MMA 1.40%
rc204C15 310.90 315.46 MA, MMA 1.45%

Table 4.15: Instances where CPLEX was outperformed by other
algorithms

Instance CPLEX Value Best Non-CPLEX Value Best Non-CPLEX Algorithm Difference
c101C10 401.57 385.31 GVNS, ACOLS, MA, MMA -4.05%
c104C10 279.93 273.93 ACOLS, GRASP, ACOLS, GA, MA, MMA -2.14%
c202C15 376.79 369.56 GVNS, GRASP, ACOLS, GA, MA, MMA -1.92%
c206C5 236.58 236.21 GVNS, ACOLS, GA, MA, MMA -0.16%
r102C10 256.10 249.19 GVNS, GRASP, ACOLS, GA, MA -2.70%
r102C15 456.06 397.99 GVNS -12.73%
r105C15 365.87 323.79 GVNS -11.51%
r202C15 362.64 347.21 MA, MMA -4.25%
rc103C15 415.13 397.67 GVNS, GRASP, ACOLS, MA, MMA -4.21%
rc105C5 238.05 227.00 BCOi, GA, MA -4.64%
rc108C15 396.99 369.55 GVNS, GRASP, ACOLS, MA -6.91%

In Table 4.16, we showcase the average solution quality of each algorithm across
various instances from the dataset I2. Values highlighted in bold indicate the top
performance among all algorithms for a given instance. Analysis of this table reveals
that the GVNS algorithm consistently achieved the highest solution quality, leading
in 29 instances. It is closely followed by MMA, which secured the best results in 20
instances. The MA and GRASP algorithms, while competitive, were comparatively
less successful in achieving the top spot, securing the best solution in 4 and 3 instances,
respectively.

To assess whether there are statistically significant differences among the algo-
rithms, our analysis begins with the Shapiro-Wilk test, applied to each algorithm’s
results to evaluate the normality of their distributions. The outcomes of this test
reveal that the algorithms GVNS, GRASP, ACO, BCOi, GA, and MA do not con-
form to a normal distribution. In contrast, the results for ACOLS and MMA align
more closely with a normal distribution. This divergence from normality in several
algorithms suggests that the prerequisites for conducting a conventional ANOVA are
not satisfied.

Consequently, we turn our attention to a non-parametric alternative, namely
the Kruskal-Wallis test. This test is particularly fitting as it does not rely on the
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Table 4.16: Results for TD-EVRP-STW obtained on the instance
set I2.

Instance C A Value
GVNS GRASP ACO ACOLS BCOi GA MA MMA

c101_21 100 21 1398.52 1965.53 9750.78 4264.11 8085.37 1978.9 1681.72 1342.4
c102_21 100 21 1288.67 1614.33 6668.71 3403.06 5788.21 1863.19 1523.02 1314.18
c103_21 100 21 1217.04 1484.72 4296.01 2967.35 4755.04 1776.04 1514.5 1275.14
c104_21 100 21 1172.94 1320.1 3216.92 2598.31 4258.82 1508.9 1231.57 1173.17
c105_21 100 21 1356.9 1664.26 7833.56 3658.4 7100.96 1894.01 1474.51 1358.14
c106_21 100 21 1274.24 1584.87 6252.16 3380.82 6439.67 1775.53 1434.86 1335.62
c107_21 100 21 1174.64 1550.86 6331.87 3162.13 6609.96 1761.08 1396.84 1336.93
c108_21 100 21 1164.35 1438.37 4984.24 3059.58 5605.57 1662.59 1326.15 1308.36
c109_21 100 21 1144.19 1333.11 3969.14 2820.16 4922.45 1608.73 1401.04 1238.89
c201_21 100 21 1029.94 1096.08 16532.46 3577.55 6892.61 1570.31 1365.1 1174.7
c202_21 100 21 1009.1 1090.49 9208.88 3040.07 4988.78 1509.53 1231.18 1087
c203_21 100 21 1035.19 1064.7 4622.01 2791.45 4482.58 1435.02 1116.07 1061.55
c204_21 100 21 1006.27 1022.79 3431.11 2541.96 3987.69 1324.9 1052.14 1005.81
c205_21 100 21 1055.63 1115.19 11863.45 3064.64 6007.85 1426.51 1182.13 1165.98
c206_21 100 21 1018.77 1127.59 8844.86 2975.73 5196.69 1397.39 1234.86 1122.22
c207_21 100 21 1038.21 1114.9 6649.66 2874.04 4750.37 1321.94 1236.52 1085.72
c208_21 100 21 1007.64 1113.1 6780.33 2811.37 4861.4 1327.02 1252.16 1083.48
r101_21 100 21 1855.86 2137.73 5289.69 3733.9 4969.5 2135.9 1945.79 1796.81
r102_21 100 21 1730.98 1862.49 4274.61 3292.63 4357.63 1929.85 1790.05 1647.96
r103_21 100 21 1553.79 1603.01 3745.98 2851.69 3856.42 1743.02 1557.31 1470.93
r104_21 100 21 1286.6 1342.15 2877.23 2453.63 3466.14 1516.37 1327.47 1373
r105_21 100 21 1676.42 1779.99 4433.89 3326.81 4482.85 1883.3 1753.99 1631.73
r106_21 100 21 1568.45 1659.83 3916.88 2962.04 4069.58 1780.22 1567.92 1566.06
r107_21 100 21 1423.25 1502.42 3159.36 2723.56 3668.11 1688.25 1410.08 1442.94
r108_21 100 21 1317.02 1331.48 3143.9 2613.72 3382.82 1474.45 1277.37 1295.67
r109_21 100 21 1521.86 1528.56 3268.92 2818.52 3906.53 1690.4 1511.39 1444.34
r110_21 100 21 1342.52 1379.79 2915.06 2511.39 3540.85 1528.91 1361.38 1375.01
r111_21 100 21 1341.27 1436.63 2956.94 2531.26 3557.94 1582.46 1378.18 1463.41
r112_21 100 21 1298.21 1319.3 2772.27 2375.66 3263.3 1467.38 1284.05 1283.44
r201_21 100 21 1298.3 1360.29 9188.95 2832.02 4076.65 1471.91 1335.95 1622.56
r202_21 100 21 1183.33 1238.73 6831.98 2502.23 3645.91 1351.47 1215.06 1328.25
r203_21 100 21 1130.49 1118.48 4009.43 2318.25 3397.04 1275.55 1120.35 1063.43
r204_21 100 21 989.73 1002.74 3263.97 1976.21 2942.22 1200.28 1003.8 984.35
r205_21 100 21 1193.47 1209.56 6196.51 2457.84 3693.02 1316.65 1191.93 1254.08
r206_21 100 21 1124.19 1145.22 4281.01 2461.1 3518.2 1307.75 1168.62 1200.59
r207_21 100 21 1026.1 1057.2 3629.04 2077.4 3157.88 1239.05 1054.14 1033.08
r208_21 100 21 1041.01 981.11 3071.61 1913.41 2800.78 1208.54 1024.9 996.12
r209_21 100 21 1145.16 1120.53 4094.65 2393.74 3426.64 1279.5 1136.62 1252.71
r210_21 100 21 1111.36 1119.55 3848.74 2419.17 3402.6 1264.38 1098.92 1096.46
r211_21 100 21 964.85 1063.75 3439.86 2153.35 2851.4 1201.12 1047.07 1046.74
rc101_21 100 21 2013.8 2176.51 5584.32 3943.16 5852.98 2244.7 2159.93 2040.86
rc102_21 100 21 1994.2 1998.45 4725.28 3638.03 5369.58 2181.04 1941.02 1826.31
rc103_21 100 21 1825.17 1827.44 4375.07 3331.43 4899.39 2018.25 1767.09 1621.43
rc104_21 100 21 1695.11 1702.19 3729.14 3077.9 4512.52 1765.64 1488.88 1476.75
rc105_21 100 21 1949.79 1965.76 4720.27 3419.8 5321.63 2108.41 1932.1 1740.49
rc106_21 100 21 1760.9 1919.35 4664.7 3630.67 5194.9 2035.84 1802.99 1713.77
rc107_21 100 21 1611.65 1766.19 3969.32 3187.4 4698.42 1830.97 1604.11 1488.94
rc108_21 100 21 1668.58 1743.76 3696.77 2989.64 4510.1 1857.97 1568.43 1457.14
rc201_21 100 21 1618.54 1639.38 9754.37 3737.58 5394.11 1759.15 1642.03 1633.31
rc202_21 100 21 1545.23 1501.56 7415.01 3235.27 4751.73 1589.22 1488.77 1565.08
rc203_21 100 21 1245.04 1349.18 4803.52 2958.78 4386.65 1472.15 1325.35 1404.95
rc204_21 100 21 1184.96 1214.43 3763.28 2579.8 3846 1457.33 1209.11 1148.66
rc205_21 100 21 1415.37 1467.57 6286.59 3266.2 4867.6 1618.84 1502.6 1464.91
rc206_21 100 21 1441.6 1411.53 6649.22 3269.32 4756.54 1547.73 1438.78 1561.74
rc207_21 100 21 1211.6 1322.35 4734.6 3120.88 4220.85 1437.93 1310.05 1271.28
rc208_21 100 21 1085.55 1203.04 3706.53 2770.57 3575.27 1398.79 1246.43 1181.17
Count best 29 3 0 0 0 0 4 20
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assumption of normal distribution and is designed to identify statistically signifi-
cant differences across two or more independent groups on a continuous or ordi-
nal dependent variable. The Kruskal-Wallis test yielded a highly significant result
(p-value < 0.0001), indicating pronounced differences among the algorithms.

Given that the Kruskal-Wallis test establishes the presence of differences but
does not pinpoint their specific locations, we typically follow up with post-hoc tests.
These tests help in discerning which exact pairs of algorithms differ significantly. A
commonly employed post-hoc test following the Kruskal-Wallis are Dunn’s test [79]
or Mann-Whitney U test [212], which are used to further investigate and clarify these
differences.

In the realm of multiple statistical testing, the likelihood of encountering at least
one false positive, or type I error6, escalates with the number of tests conducted.
This cumulative error probability is termed the familywise error rate (FWER)7. To
mitigate the FWER, various correction strategies are employed. These strategies are
designed to adjust the p-values from individual tests, taking into consideration the
total number of comparisons. The primary objective is to diminish the chance of
mistakenly identifying a significant difference when, in fact, it is merely a product of
random variability.

A well-known method for this adjustment is the Bonferroni correction [37], which
is notably conservative. It adjusts the p-values by multiplying them with the number
of comparisons, or alternatively, by dividing the significance threshold (commonly
0.05) by the number of comparisons. This approach is effective in ensuring that the
FWER does not exceed the set threshold, such as 0.05.

However, the Bonferroni method can be excessively inflexible, particularly with a
substantial number of comparisons, potentially leading to an increased risk of type II
errors, where genuine differences are overlooked. Consequently, alternative methods,
like the Holm-Bonferroni procedure [138] or the False Discovery Rate (FDR) [32]
controlling methods, are often favored. These approaches strive to strike a balance
between minimizing type I and type II errors.

In our analysis, we have opted to utilize Mann-Whitney U tests, together with
FDR correction, to provide a more nuanced interpretation of the data. The obtained
results are presented in Figure 4.47. This figure reveals that a significant number
of these pairs exhibit statistically significant differences. However, certain algorithm
pairs, such as ACO and BCOi, do not demonstrate a statistically notable distinction
in performance. While this specific pair might not be of primary interest due to
their overall lesser performance, the absence of significant differences between more
proficient algorithms like GVNS, GRASP, MA, and MMA is particularly noteworthy.

Despite these observations, it is prudent to interpret these results cautiously. For
instance, our in-depth comparative analysis in Section 4.15.6, which focused on MA
and MMA, highlighted MMA’s superior performance in numerous aspects when eval-
uated independently. This disparity suggests that the apparent lack of difference
between MA and MMA, as indicated in Figure 4.47, could potentially be a Type II
error. Such an error might arise as a consequence of the corrections applied follow-
ing the post-hoc test, underscoring the need for a nuanced understanding of these
findings.

6For a better understanding of Type I and Type II errors, please refer to Akobeng [6].
7For a more comprehensive understanding of the family-wise error rate, please see references [185,

338].
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Figure 4.47: Heatmap of pairwise comparisons for TD-EVRP-STW
on the instances from I2 dataset (Mann-Whitney U test with FDR

correction)

Given our suspicion that the outcomes of the Mann-Whitney U tests for MA
may be influenced by a Type II error, coupled with the observation that GRASP
demonstrates performance comparable to MA, it is logical to undertake a separate,
focused comparison between GVNS and GRASP. This tailored analysis will enable us
to scrutinize their performances in greater detail, providing a clearer understanding
of their relative strengths and weaknesses.

In our detailed comparison between GVNS and GRASP, focusing on dataset I2,
we find that GVNS surpasses GRASP in average solution quality in 51 instances.
The respective average, minimum, and maximum margins of superiority for GVNS
are 8.43%, 0.12%, and 40.54%. Conversely, GRASP outshines GVNS in 5 instances,
with the differences averaging at 2.88%, and ranging from a minimum of 1.07% to
a maximum of 6.1%. These distinctions are clearly depicted in Figure 4.48, which
illustrates the average solution quality achieved by each algorithm across individual
instances. Here, instances plotted above the line indicate where GVNS has an edge
over GRASP in terms of average solution quality across 30 runs.

Notably, despite the Mann-Whitney U test with FDR correction indicating no
significant performance discrepancy between these algorithms, the Wilcoxon signed-
rank test tells a different story, revealing a substantial difference with a p-value smaller
than 0.0001. Moreover, GVNS consistently outperforms GRASP in all 56 instances
concerning the best-found solutions, boasting an average advantage of 12.81%, and
reaching up to 41.91%. The scenario changes slightly when examining the worst-
found solutions; GVNS excels in 22 cases, while GRASP leads in 34 instances. It is
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also observed that solutions derived from GVNS generally incur a higher penalty and
longer average route durations, which aligns with its tendency to favor fewer number
of routes.

Overall, this analysis underscores GVNS’s frequent superiority over GRASP. It
also strengthens the hypothesis that the lack of significant difference reported by the
Mann-Whitney U test might indeed be a Type II error. Nonetheless, while GVNS
exhibits a discernible edge in solution quality over GRASP, this advantage is not as
pronounced as its superiority over other algorithms like ACO, ACOLS, and BCOi.

Figure 4.48: GVNS vs GRASP performance in terms of average
solution quality on instances from I2

In our final analysis, we turned our focus to the two top-performing algorithms:
GVNS and MMA. Employing the Wilcoxon signed-rank test for a comparative assess-
ment in terms of average solution quality, we corroborated our previous observation
that these algorithms are closely matched in performance, with no significant differ-
ences between them. However, a notable divergence was identified when examining
the best-found solutions across all 30 runs: GVNS consistently outperformed MMA in
this regard. Additionally, GVNS demonstrated a inclination for generating solutions
involving fewer routes.

This finding is particularly relevant in scenarios where the availability of vehicles
is a critical constraint. In such cases, GVNS emerges as the potentially more ad-
vantageous choice due to its efficiency in route utilization. Outside of this specific
context, both algorithms exhibit comparable levels of performance, making either a
viable option depending on the specific requirements of the task at hand.

In Table 4.17, we provide a comprehensive analysis of the performance of various
metaheuristics across multiple metrics, detailing the frequency with which each al-
gorithm outshines its counterparts for specific metrics. This side-by-side comparison
effectively illuminates the unique strengths and capabilities of each algorithm within
diverse evaluative criteria. Notably, GVNS demonstrates superior performance in
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Table 4.17: Performance comparison of TD-EVRP-STW meta-
heuristics across various metrics (Dataset I2).

Metric Method

GVNS GRASP ACO ACOLS BCOi GA MA MMA

Average solution quality 29 3 0 0 0 0 4 20
Best-found solution 42 0 0 0 0 0 0 14
Worst-found solution 13 14 0 0 0 0 8 21
Penalty 7 17 0 0 0 20 19 13
Average route duration 0 0 0 0 56 0 0 0
Maximum route duration 11 10 1 0 1 6 23 8
Number of routes 41 2 0 0 0 0 3 10

three distinct metrics, standing out from other metaheuristics. However, it is crucial
to recognize that GVNS’s higher frequency of outperformance does not necessarily
imply a statistically significant superiority over others, as exemplified in the GVNS
versus MMA comparison for average solution quality.

A particularly intriguing observation is BCOi’s dominance in the average route
duration metric. This can be attributed to BCOi’s tendency to opt for solutions
involving a greater number of routes, thereby reducing the average duration per
route. As the matter of fact, BCOi consistently generated the highest route count
in every test instance, a strategy that distinctly influenced its performance in this
specific metric.

Figure 4.49 illustrates the convergence patterns of various algorithms towards
their best-found solutions, using the r101_21 instance as an example. This graph
suggests that the previously set time limit of 600 seconds may not be necessary since
most algorithms appear to converge within approximately 200 seconds. To provide
a clearer comparison of the algorithms’ performance in this early convergence phase,
Figure 4.50 has been adjusted. Here, the maximum y-axis value is set to 10000,
focusing exclusively on the algorithms’ behavior during the initial 200 seconds of
execution. This adjustment more effectively highlights the distinctions among the
algorithms.

Observations from Figures 4.49 and 4.50 reveal that both GVNS and GRASP
rapidly converge to a robust solution, showing minimal improvement thereafter. In
contrast, MMA takes the full 200 seconds to achieve what GVNS accomplishes in
about 25 seconds. Although these findings are based on a single instance, similar
patterns have been noted across other instances, underscoring the consistent behavior
of these algorithms.



4.15. Experimental evaluation 143

Figure 4.49: An illustration depicting the convergence of TD-EVRP-
STW algorithms over a 600-second period (Instance: r101_21)

Figure 4.50: An illustration depicting the convergence of TD-EVRP-
STW algorithms over a 200-second period (Instance: r101_21)

Based on our analysis in this section, we can draw several key conclusions. Firstly,
for the smaller-sized instances from dataset I1, no single algorithm demonstrated a
clear advantage over the others. However, this does not preclude the selection of
certain metaheuristics that frequently outperformed others in specific metrics, par-
ticularly when aligned with specific objectives.

Turning our attention to the results from the larger dataset I2, GVNS and MMA
stand out as the leading methods, with GRASP and MA following closely behind.
While the difference between performances of these two pairs of algorithms is not
definitive, empirical evidence slightly favors GVNS and MMA. GA, on the other
hand, delivered moderately inferior results compared to GRASP and MA but was
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still generally effective. In contrast, algorithms like ACO, ACOLS, and BCOi did not
manage to match the performance level of the aforementioned metaheuristics. In the
following two sections, we delve deeper into comparing similar versions of algorithms
to better understand their strengths and weaknesses. Specifically, we compare ACO
to ACOLS, and MA to MMA.

4.15.5 ACO and ACOLS comparison

In this section, we conduct a comparative analysis of the outcomes achieved by the
basic version of ACO against those obtained by the ACOLS on datasets I1 and I2.

In the assessment carried out on dataset I1, ACOLS demonstrated superior per-
formance to ACO in 30 instances, while lagging behind in 6 instances, based on
the average solution quality across 30 iterations (See supplementary material https:
//www.mi.sanu.ac.rs/~luka/resources/phd/AppendixB.pdf). In scenarios where
ACOLS outshone ACO, it registered an average enhancement in solution quality of
21.21%, with the variation in performance ranging from a minimal increase of 0.23%
to a maximum of 59.15%. Conversely, in the cases where ACO exceeded ACOLS, the
average improvement in solution quality reached 82.06%, with the differential span-
ning from 3.07% to an extensive 427.44%. Notably, this substantial leap in ACO’s
performance over ACOLS can be largely attributed to an exceptional outlier instance
(c103C5). To validate the statistical significance of this performance discrepancy,
a Wilcoxon signed-rank test was conducted, resulting in a p-value < 0.001, which
decisively affirms the statistical relevance of the observed differences between the two
algorithms. The disparity in performance between the two algorithms is further illus-
trated in Figure 4.51. This figure presents a scatter plot where each dot symbolizes
an individual input instance, positioned according to its respective results from ACO
and ACOLS. A key feature of this plot is the diagonal red dashed line, which serves as
a visual benchmark for comparison. Points that fall below this line signify instances
where ACOLS achieves superior results, evidenced by lower values compared to those
of ACO.

https://www.mi.sanu.ac.rs/~luka/resources/phd/AppendixB.pdf
https://www.mi.sanu.ac.rs/~luka/resources/phd/AppendixB.pdf
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Figure 4.51: ACO vs ACOLS performance in terms of average solu-
tion quality on instances from I1

The pattern of ACOLS outperforming ACO is also evident in the analysis of the
best-found solutions across all runs for both algorithms. ACOLS delivered superior
results in 33 instances, underperformed in 2, and achieved the same best-found solu-
tion as ACO once. The average improvement in the best-found solution quality where
ACOLS excelled was 22.25%, with the highest and lowest differences being 55.79%
and 0.23%, respectively. In scenarios where ACO outshone ACOLS, the greatest
difference observed was 19.67%, and the smallest was 8.87%.

Regarding the worst-found solutions, ACOLS again outperformed ACO, albeit by
a narrower margin, finding better solutions in 27 instances against 9 instances where
it fared worse. Notably, in terms of penalties, ACOLS was less efficient, incurring
higher penalties in 17 instances, lower in 5, and matching ACO (often zero) in 14
instances. Moreover, ACOLS tended to result in longer route durations, with an
average increase of 30.07% in 32 out of 36 cases. This trend also extended to the
longest routes, which were typically longer in ACOLS, possibly explaining the higher
average penalties.

In terms of vehicle usage, ACOLS generally favored solutions involving fewer
routes, thus leading to longer routes. Specifically, it found solutions with fewer routes
in 32 instances (an average reduction of 70.6%), while producing the same number of
routes as ACO in 4 instances.

These results are visually represented in Figure 4.52 through scatter plots, illus-
trating the best-found solutions, worst-found solutions, average route duration, and
average route count.
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Figure 4.52: Comparative scatter plots showcasing various perfor-
mance metrics for ACO and ACOLS on instances from I1

In the comparison between ACO and ACOLS on the larger instance set I2, the
performance disparity is starkly apparent. ACOLS exceeded ACO in all 56 instances,
boasting an average improvement in solution quality of 78.77%, with the range of
improvement spanning from 15.98% to 362.11%. This significant difference is evident
in Figure 4.53. Further validation through the Wilcoxon signed-rank test confirmed
the statistical significance of this disparity, yielding a p-value < 0.0001.

Although the average route duration typically remains longer with ACOLS com-
pared to ACO (in 43 out of 56 cases), ACOLS demonstrates a substantially lower
average penalty. Specifically, the penalty for solutions derived from ACO is, on aver-
age, 3520.23% higher, reaching up to an astonishing 18645.88% in the most extreme
cases.

Figure 4.54 visually presents a comparative analysis of these two algorithms across
various parameters, including the best-found solution, the worst-found solution, av-
erage route duration, and route count.



4.15. Experimental evaluation 147

Figure 4.53: ACO vs ACOLS performance in terms of average solu-
tion quality on instances from I2

Figure 4.54: Comparative scatter plots showcasing various perfor-
mance metrics for ACO and ACOLS on instances from I2
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4.15.6 MA vs MMA comparison

In this section, we conduct a comparative analysis of the MA and MMA results to
determine if reducing the frequency of VND calls yields any advantages in terms of
solution quality.

In the evaluation using instances from dataset I1, MA demonstrated slightly supe-
rior performance compared to MMA. Specifically, it outperformed MMA in 16 cases
(with an average improvement in solution quality of 4.3%, and the minimum and
maximum improvements at 0.09% and 15.13%, respectively), underperformed in 8
cases (with an average decline in solution quality of 2.81%, and the minimum and
maximum declines at 0.01% and 14.2%, respectively), and achieved identical results
in 12 instances. These outcomes are clearly presented in Figure 4.55. Applying the
Wilcoxon signed-rank test at a 0.05 significance level, we concluded that the perfor-
mance difference between these two algorithms is statistically significant in terms of
average solution quality, as indicated by a p-value of 0.0397.

In the context of the best-found solution, a statistically significant performance
disparity was also observed. On average, the best-found solution quality improved
by 11.93% when using MA, with a maximum improvement of 26.83%. However, no
statistically significant differences were found in terms of the worst-found solutions,
average penalties, route count, or the average and maximum route duration.

Figure 4.55: MA vs MMA performance in terms of average solution
quality on instances from I1

In testing on instances from dataset I2, MMA generally surpassed MA. Specif-
ically, MMA outperformed MA in 43 instances, achieving an average improvement
in solution quality of 6.93%, with the minimum and maximum differences at 0.03%
and 25.28%, respectively. Conversely, MMA underperformed in 13 instances, with
an average decrease in solution quality of 6.38%, and the minimum and maximum
decreases at 1% and 21.45%, respectively. The results for each instance are detailed



4.15. Experimental evaluation 149

in Figure 4.56. Through the Wilcoxon signed-rank test, we confirmed a statistically
significant difference in average solution quality between the two algorithms, with a
p-value < 0.001.

Regarding the best-found solutions, MMA’s superiority over MA was even more
pronounced. MMA excelled in 46 instances, with an average, minimum, and maxi-
mum improvement in the best-found solution quality of 5.91%, 0.43%, and 23.46%,
respectively. Although MMA’s worst-found solution was superior in 32 instances com-
pared to MA, the Wilcoxon signed-rank test yielded a p-value of 0.4628. Therefore,
at the standard significance level of 0.05, we must reject the hypothesis of a statis-
tically significant difference between the two algorithms in terms of the worst-found
solution. Interestingly, the penalties were typically lower in solutions generated by
MA (in 42 instances, with 4 instances matching MMA’s values), suggesting that while
MMA is more effective in minimizing total distance, MA performs better in terms
of penalty reduction. Additionally, the average route duration was often shorter
in MA’s solutions, though this difference was not statistically significant. However,
MMA frequently found solutions with a lower route count (in 37 instances). The
comparative performance of MA and MMA across different metrics, including the
best-found solution, worst-found solution, average route duration, and average route
count, is illustrated in Figure 4.57.

Figure 4.56: MA vs MMA performance in terms of average solution
quality on instances from I2
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Figure 4.57: Comparative scatter plots showcasing various perfor-
mance metrics for MA and MMA on instances from I2

4.16 Chapter conclusion
In this chapter, we present our research findings on the Electric Vehicle Routing
Problem with soft time windows and time-dependent speeds. We first formulate the
problem as a MILP, followed by a detailed presentation of metaheuristic algorithms
developed for solving this version of the problem. Our discussion includes algorithms
for generating initial solutions, adjusting route feasibility with additional AFS visits,
and the structure of these solutions.

Moreover, we elaborate on algorithms designed for calculating and refining vehicle
schedules. We delve into the neighborhood structures integral to some of our methods
and describe the VND algorithm, which served as our primary local search procedure.

A significant part of our analysis focuses on the hyperparameters of each algo-
rithm, pinpointing those that are most critical. We present the results of our exten-
sive testing, pinpointing the most effective methods for all three GVRP variants. Our
analysis includes a statistical examination of the test results across various metrics
to identify any significant differences.

To ensure clarity and enhance comprehension, we employ graphical representa-
tions alongside our written findings, allowing for a more intuitive understanding of
the results and their implications.
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CHAPTER
FIVE

ELECTRIC VEHICLE ROUTING PROBLEM WITH PARTIAL
RECHARGE

5.1 Problem definition
In this section, we explore a problem closely related to the one discussed in Section 4.1.
The primary distinction lies in the battery charging strategy of electric vehicles. In
our previously outlined problem, a fundamental assumption was made: every time
electric vehicles dock at an AFS, they recharge their batteries to the fullest extent
possible. This implies that vehicles are always geared up to their maximum energy
potential before setting off again, regardless of their next journey’s length.

On the other hand, the current problem variation introduces a more flexible ap-
proach to recharging. Instead of a full battery top-up, vehicles are given the liberty to
partially recharge based on their immediate energy requirements. This nuanced strat-
egy stems from a practical observation: if vehicles are allowed to recharge only the
exact amount of energy they need to comfortably reach their subsequent destination,
it could potentially lead to more efficient route planning.

The benefits of this revised approach are multifaceted. For one, it can eliminate
the superfluous waiting time at AFSs for vehicles that do not necessarily need a full
battery charge. This time-saving can result in optimized route plans, which in turn
can have two-fold advantages: firstly, it can abbreviate the overall time taken for
deliveries, ensuring goods reach their destination faster. Secondly, with more efficient
route planning, vehicles might find it feasible to cater to a larger number of customers,
especially tending to those who have specific time windows for delivery. Such a
tailored approach could greatly enhance customer satisfaction rates and operational
efficiency.

Nevertheless, while this method undeniably offers several advantages, it also brings
with it increased challenges to the problem at hand. Specifically, determining the
precise amount of energy to recharge every time a vehicle stops at an AFS becomes
a significant challenge. This added layer of complexity requires careful consideration
and planning, as it necessitates a fine balance between optimizing routes and ensuring
that vehicles have sufficient energy for their journeys.

Moving forward, this problem will be known as the Time-Dependent Partial
Recharge Electric Vehicle Routing Problem with Soft Time Windows (TDPR-EVRP-
STW).
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5.2 Solution representation
The solution structure for TDPR-EVRP-STW, closely mirrors that of TD-EVRP-
STW, as detailed in Section 4.4. Yet, in this context, Sab encompasses an additional
component:

• Sstay
ab : In the standard TD-EVRP-STW, the duration a vehicle spends at each

location can be readily determined. At customer locations, this duration is
predefined and provided within the instance data, whereas at AFS locations,
it corresponds to the time required to fully recharge the battery. However, the
TDPR-EVRP-STW variant introduces a nuance. While the service time at a
customer’s location remains predefined, the refueling duration at an AFS can
vary from a brief moment up to the full battery recharge time. Consequently,
recording the exact time spent at each AFS becomes essential for this problem
variant, as it directly influences the remaining battery charge at any given
moment.

5.3 Solution feasibility
In order to add AFS visits to a solution, we apply the FIX_ROUTE method described
in Algorithm 25 to each route of that solution.

The procedure initiates by identifying a point within the route that is beyond the
reach of the current battery capacity (as seen at Line 2). Should there be no such
point, the solution is considered viable and the procedure is concluded. If, however,
such a point is found, the procedure then proceeds into its primary loop (spanning
Lines 3-32). Within the main loop of the algorithm, we conduct a reverse examination
of all locations, commencing from the identified infeasible spot and moving towards
the start of the route. The strategy we employ at each specific waypoint is dependent
upon the type of that location, leading us to adopt one of two distinct approaches.
When examining a position that corresponds to an AFS, our initial step is to deter-
mine the potential additional charge that can be administered at this station, taking
into consideration the present state of the battery’s charge and the vehicle’s maxi-
mum battery capacity (referenced in Line 6). If the vehicle is receiving a full recharge
at the specified AFS, we must consider integrating an additional AFS into the route
(mentioned in Line 8). To prevent a perpetual cycle of adding stations without end,
we apply a rule: any new AFS to be incorporated should be nearer to the subse-
quent point on the route than the current AFS. Should there be no AFS that meets
this criterion, the algorithm acknowledges its inability to rectify the route, thereby
concluding the process (as stated in Line 10). If the vehicle can receive additional
charging at the current AFS (Lines 15-19), we forgo the addition of another AFS and
instead extend the charging duration. While calculating the required charge for the
vehicle, we factor in the existing battery level and the additional charge necessary
to render the route viable. Ideally, our aim is to replenish the battery sufficiently
to not only reach the upcoming position but also to add an extra 20% of the bat-
tery’s capacity. This additional charge enhances the probability that the vehicle will
have enough power to reach the subsequent position as well. In instances where this
approach is not feasible, we opt to fully charge the vehicle to its maximum battery
capacity.

In the alternative case, where the current node is a customer location, our initial
step is to identify the AFS nearest to the subsequent position in the route that
is accessible with the existing battery charge (Line 21). Subsequently, this AFS
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is integrated into the route, and charging times are allocated in accordance with
the previously outlined strategy. If a suitable AFS is not available, we backtrack
to the preceding stop in the journey with the aim of recalibrating the route. This
recalibration may enable us to approach the current customer stop with a greater
battery reserve, thereby increasing the likelihood of locating an accessible AFS.

The process continues until there are no infeasible positions in the route, or until
the method concludes it can not fix the route in this way. Although this method is
not infallible, potentially labeling certain routes as unfeasible when more advanced
techniques could rectify them, its simplicity is beneficial given its frequent application.
Despite the risk of overlooking some viable solutions, this method is designed to avoid
imposing excessive computational demands.

The worst-case time complexity of this algorithm is O(n2), where n represents
the number of nodes in the route.

Algorithm 25 Procedure for adding visits to AFSs to a route
1: procedure fix_route(route)
2: in f easible← find the position in route that breaks battery level constraint
3: while ∃ in f easible do
4: for ∀ location from the in f easible to the start of the route do
5: if current node is AFS then
6: canBeRecharged← Calculate potential recharge
7: if canBeRecharged = 0 then
8: Find the best AFS to add
9: if No AFS is found then

10: return Failure to fix the route
11: end if
12: Determine how much to charge
13: Insert AFS into route with calculated charging time
14: break
15: else
16: Determine how much to charge
17: Update charging time of the current node
18: break
19: end if
20: else . Current node is customer
21: a f s← find closest AFS to current customer
22: Calculate energy needed to reach a f s
23: if battery is insufficient to reach a f s then
24: continue
25: end if
26: Determine required recharge amount at the a f s
27: Insert AFS into route with calculated charging time
28: break
29: end if
30: end for
31: Update in f easible for next iteration
32: end while
33: return route
34: end procedure



154 Chapter 5. Electric Vehicle Routing Problem with Partial Recharge

5.4 Metaheuristics
In addressing the TDPR-EVRP-STW, we examined the foundational algorithms pre-
viously introduced in Section 4. While the core principles of the algorithms remain
largely consistent with the foundational work we have presented, they are adapted
to tackle the unique challenges presented by the TDPR-EVRP-STW. This complex
problem demands a nuanced approach to solution representation and the strategic in-
sertion of AFS into existing routes. This distinction in solution representation, which
is previously elaborated in Section 5.2, involves a more intricate data structure that
allows for dynamic adjustments in vehicle recharge times to accommodate for the PR
attribute of this problem.

Additionally, the insertion of AFS is executed with a tailored method, described
in Section 5.3. This method is not merely a matter of adding stops for recharging
but requires a careful consideration of the vehicle’s remaining charge to ensure that
the addition of any AFS is both logical and practical within the route’s timeline.

Unless we specify additional modifications, it is safe to assume that the algorithms
used for the TDPR-EVRP-STW are variations of those we described earlier, modified
only in their solution representation and the AFS integration method.

One of the methods that require some additional modification is our ACO algo-
rithm and by extension ACOLS. More precisely, in the solution construction phase,
after an AFS is chosen to be added to the partial solution, we need to determine
the charging time at that AFS. This is done by utilizing the CALCULATE_STA-
TION_STAY method, outlined in Algorithm 26.

In this method, we start by identifying the final node within the route (refer to
Line 2). Subsequently, we compute the remaining battery charge at this node (see
Line 3), followed by an estimation of the energy required to travel from this node
to the specified AFS (Line 4). Should the current battery charge be insufficient to
reach the targeted AFS, the function will yield a designated error return indicator
(as noted in Line 6).

The collection of unvisited customers signifies those who have yet to be included
in the current solution. In scenarios where this collection is empty, the strategy shifts
to recharging the vehicle minimally, ensuring it possesses just enough power to safely
return to the depot (addressed in Lines 8-11).

Conversely, when there are customers yet to be visited, the strategy adapts. We
look for a customer positioned beyond the specified AFS, one that lies within the range
of the current battery capacity. Additionally, we aim to identify another AFS that is
reachable post-visit to this customer with the available battery charge (Line 13). The
goal is to charge the battery sufficiently to ensure travel to this next AFS is possible.
This guarantees the presence of at least one subsequent reachable point in the route,
thereby maintaining the feasibility of the proposed solution.

In the GA, MA, and MMA, we employ a nuanced variation in chromosome repre-
sentation compared to what is described in Section 4.14. Rather than using a simple
vector of integers to signify the indices of nodes, chromosomes are encoded as a se-
quence of pairs; the first component of each pair signifies the node index, and the
second denotes the duration of stay at that node. Apart from this distinction in
chromosome structure, all other elements of these algorithms are consistent with the
original description.
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Algorithm 26 Procedure for calculating recharge time at an AFS
1: procedure CALCULATE_STATION_STAY(route, a f s,

unvisited_customers)
2: node← get the last node in route
3: battery← calculate battery level at node
4: cost← calculate energy consumption when traveling from node to a f s
5: if (battery− cost) < 0 then
6: return −1 . Predefined failure indicator
7: end if
8: if size(unvisited_customers) = 0 then
9: consumption← calculate consumption between a f s and depot node

10: return (consumption− (battery− cost))/REFUELING_RATE
11: end if
12: for ∀customer ∈ unvisited_customers do
13: station← find a station that can be visited after customer
14: if no station can be visited after customer then
15: continue
16: end if
17: C ← calculate consumption between a f s and station through customer
18: return (C− (battery− cost))/REFUELING_RATE
19: end for
20: end procedure

5.5 Experimental evaluation

5.5.1 Experimental setup

The experimental framework for this specific version of the problem mirrored the
setup outlined in Section 4.15.2. Although, in theory, the optimal hyperparameter
values for this version could differ from those identified as optimal for TD-EVRP-
STW, our empirical analysis indicated that the hyperparameter values detailed in
Section 4.15.3 were also effective in this context. Consequently, these values were
retained for all subsequent testing phases.

5.5.2 Overall comparison

In Table 5.1, we showcase a comparative analysis of the average solution quality,
derived from thirty iterations of each algorithm applied to instances from dataset I1.
The values highlighted in bold indicate the superior average solution achieved across
all evaluated algorithms. The comprehensive results for all algorithms, encompassing
all metrics, are detailed in tables available for download at https://www.mi.sanu.
ac.rs/~luka/resources/phd/AppendixB.pdf.

To assess if the performance differences between our algorithms are statistically
significant, we initially verified their eligibility for ANOVA by employing the Shapiro-
Wilk and Levene’s tests. These tests aimed to check the normality of each algorithm’s
results and the homogeneity of variances across them. However, since the prerequisites
for ANOVA were not fulfilled, we opted for the Kruskal-Wallis test. This test yielded
a p-value 0.01, leading us to confirm the presence of significant performance variations
among the algorithms.

https://www.mi.sanu.ac.rs/~luka/resources/phd/AppendixB.pdf
https://www.mi.sanu.ac.rs/~luka/resources/phd/AppendixB.pdf


156 Chapter 5. Electric Vehicle Routing Problem with Partial Recharge

Table 5.1: Results for all TDPR-EVRP-STW metaheuristics on the
instance set I1.

Instance C A Metaheuristics
GVNS GRASP ACO ACOLS BCOi GA MA MMA

c101C10 10 5 374.95 367.79 595.62 405.82 473.23 411.66 511.83 382.99
c101C5 5 3 263.59 236.34 290.6 234.82 249.44 243.28 532.7 234.82
c103C15 15 5 367.68 414.28 818.52 365.89 609.52 416.66 487.32 383.93
c103C5 5 2 165.67 635.75 170.79 557.4 167.17 161.26 1000.37 161.26
c104C10 10 4 290.56 298.12 425.57 332.07 317.38 279.33 263.9 268.71
c106C15 15 3 267.81 281.28 676.13 286.83 491.38 328.92 301.19 384.76
c202C10 10 5 265.48 264.4 485.29 244.88 339.92 257.98 239.88 248.66
c202C15 15 5 421.53 387.17 845.88 409.18 627.95 405.06 377.08 384.44
c205C10 10 3 247.25 228.28 453.8 241.25 348.49 267.83 235.63 228.27
c206C5 5 4 227.48 233.94 278.83 219.34 243.37 239.05 423.8 219.34
c208C15 15 4 309.82 315.31 644.87 382.69 594.67 315.45 297.87 306.39
c208C5 5 3 158.48 205 216.54 197.11 203.73 158.48 158.37 160.44
r102C10 10 4 296.71 288.4 387.65 291.43 308.27 262.93 273.84 292.84
r102C15 15 8 555.18 569.14 722.06 459.05 532.13 429.24 502.81 447.89
r103C10 10 3 158.16 160.02 315.58 176.86 213.02 201.46 160.52 177.21
r104C5 5 3 136.69 136.69 140.23 140.93 136.72 136.59 139.31 136.69
r105C15 15 6 376.52 430.97 764.88 386.79 501.64 378.63 450.32 340.56
r105C5 5 3 175.19 224.1 207.14 173.11 177.83 169.31 184.58 171.42
r201C10 10 4 220 205.86 358.72 247.47 272.5 246.55 223.69 215.02
r202C15 15 6 364.19 371.26 709.52 389.93 568.78 401.42 347.15 349.1
r202C5 5 3 141.03 157.5 166.98 141.22 142.01 140.49 143.92 128.78
r203C10 10 5 259.27 262.42 400.18 279.26 285.65 241.67 230.63 232.05
r203C5 5 4 197.66 200.73 237.47 194.05 199.83 196.18 183.88 179
r209C15 15 5 298.38 301.03 689.45 359.86 476.44 360.7 285.2 291.22
rc102C10 10 4 436.82 436.98 517.41 429.89 464.6 428.46 495.6 430.4
rc103C15 15 5 469.38 520.42 640.15 452.19 584.77 400.65 488.73 446.69
rc105C5 5 4 257.81 287.14 256.91 263.08 243.15 239.04 275.52 268.17
rc108C10 10 4 474.38 394.27 446.85 432.17 428.03 394.7 535.13 529.68
rc108C15 10 5 423.42 400.32 748.47 466.96 614.64 455.62 482.81 396.97
rc108C5 5 4 366.82 344.44 315.15 625.95 300.01 300.27 293.75 321.61
rc201C10 10 4 308.56 304.39 468.66 308.93 375.79 309.6 442.25 304.33
rc202C15 15 5 415.1 419.38 771.45 463.37 643.71 437.51 426.77 426.13
rc204C15 15 7 371.12 372.98 655.91 405.24 433.11 362.02 337.96 326.49
rc204C5 5 4 183.72 184.13 191.2 227.68 180.06 175.71 220.53 172.31
rc205C10 10 4 346.14 354.68 490.82 374.45 395.65 363.39 540.04 360.61
rc208C5 5 3 181.24 196.55 202.44 170.71 178.64 167.98 162.81 167.97
Count best 4 3 0 3 0 8 10 11
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Table 5.2: Performance comparison of TDPR-EVRP-STW meta-
heuristics across various metrics (Dataset I1).

Metric Method
GVNS GRASP ACO ACOLS BCOi GA MA MMA

Average solution quality 4 3 0 3 0 8 10 11
Best-found solution 6 7 0 3 1 2 28 6
Worst-found solution 6 4 0 2 1 12 8 12
Penalty 19 15 13 12 21 31 6 17
Average route duration 3 4 11 0 17 0 0 1
Maximum route duration 18 17 4 14 8 18 12 13
Number of routes 11 0 0 2 0 4 31 11

Subsequently, we conducted Mann-Whitney U tests, complemented by FDR cor-
rection, to pinpoint specific algorithms that exhibited distinct performances. Fig-
ure 5.1 displays these findings. Interestingly, while most algorithms showed similar
effectiveness, the ACO stood out, demonstrating notable differences in performance
when compared to the majority, except for BCOi and MA. Notably, the ACO algo-
rithm frequently delivered the worst average solution quality, underperforming in 26
out of 36 instances. However, its distinct performance did not emerge as a particularly
remarkable aspect of our study.

Figure 5.1: Heatmap of pairwise comparisons of TDPR-EVRP-STW
algorithms for I1 dataset (Mann-Whitney U test with FDR correction)

In Table 5.2, we offer a detailed breakdown of our algorithms’ performance across
various metrics. For each metric, the table indicates the number of instances in which
a specific algorithm surpassed all others in effectiveness.

In Table 5.3, we showcase the outcomes of the proposed algorithms, focusing on
the average solution quality achieved for instances within dataset I2.

Given that the data outlined in Table 5.3 did not satisfy the criteria for conducting
ANOVA, we opted for the Kruskal-Wallis test instead. The test yielded a p-value <
0.0001, leading us to conclude that there is a statistically significant difference among
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Table 5.3: Results for TDPR-EVRP-STW obtained on the instance
set I2.

Instance C A Value
GVNS GRASP ACO ACOLS BCOi GA MA MMA

c101_21 100 21 1725.4 1967.57 18404.84 5884.31 7508.52 2286.64 1968.39 1425.37
c102_21 100 21 1596.69 1690.59 13079.81 5168.16 5676.94 2115.56 1766.97 1301.88
c103_21 100 21 1555.91 1633.22 8799.49 4093.41 4785.92 1954.08 1758.56 1273.47
c104_21 100 21 1450.49 1523.92 5123.53 3594.52 4324.33 1702.52 1328.32 1174.17
c105_21 100 21 1494.98 1779.02 16226.69 5195.15 6694.43 2088.6 1983.55 1452.56
c106_21 100 21 1507.06 1702.55 14228.96 5027.91 5996.66 2040.51 1886.75 1381.99
c107_21 100 21 1484.23 1683.96 14087.29 5131.79 6028.31 1962.65 1743.57 1303.6
c108_21 100 21 1564.1 1629.69 11612.77 4985.79 5462.89 1872.58 1671.02 1268.24
c109_21 100 21 1355.7 1542.92 8650.05 4279.54 4965.35 1786.83 1805.17 1164.75
c201_21 100 21 1423.71 1463.71 23990.48 4874.2 5870.55 1704.62 1746.81 1123.97
c202_21 100 21 1386.15 1410.59 13470.17 4602.75 4782.19 1543.81 1671.93 1099.12
c203_21 100 21 1265.13 1376.38 7676.74 3770.33 4512.77 1567.53 1521.1 1055.16
c204_21 100 21 1238.87 1277.31 4792.96 3502.36 3926.94 1390.15 1188.97 1049.69
c205_21 100 21 1398.87 1440.62 20394.67 4723.4 5290.35 1539.26 1676.97 1196.42
c206_21 100 21 1452.98 1454.76 15463 4944.68 4727.31 1402.26 1634.4 1155.25
c207_21 100 21 1387.47 1390.33 12643.52 4288.43 4647.45 1426.71 1598.87 1076.9
c208_21 100 21 1439.81 2249.11 11227.08 4446.96 4685.66 1386.74 1584.42 1064.99
r101_21 100 21 2481.16 2390.91 7634.29 4399.03 5316 2478.94 2478.03 1923.23
r102_21 100 21 2356.55 2038.19 6120.34 4056.38 4691.6 2295.95 2320.75 1800.77
r103_21 100 21 1804.71 1812.42 5047.06 3540.02 4172 2104.93 2177.99 1609.85
r104_21 100 21 1543.97 1580.9 3934.73 3103.28 3814.47 1860.78 1724.71 1375.44
r105_21 100 21 1980.19 1986.01 6347.82 3849.73 4743.34 2300.66 2308.82 1788.34
r106_21 100 21 1755.86 1820.25 5378.69 3679.5 4360.41 2125.48 2175.73 1631.86
r107_21 100 21 1622.3 1667.12 4367.68 3171.71 3939.92 1960.04 1974.88 1464.48
r108_21 100 21 1659.99 1567.41 3777.63 3148.2 3842.15 1803.75 1896.34 1333.39
r109_21 100 21 1633.74 1686.55 4785.61 3265.71 4165.72 2017.84 2125.52 1524.24
r110_21 100 21 1547.18 1570.44 3930.24 3068.24 3763.82 1887.01 1971.54 1395.67
r111_21 100 21 1579.15 1591.72 4002.72 3263.61 3794.43 1905.17 1960.6 1358.38
r112_21 100 21 1566.66 1517.13 3430 2996.42 3609.79 1801.97 1876.42 1337.33
r201_21 100 21 1354.63 1460.73 9109.1 3618.1 3945.04 1514.42 1617.57 1476.82
r202_21 100 21 1197.12 1368.33 7293.41 3451.05 3691.79 1403.09 1386.42 1644.51
r203_21 100 21 1141.68 1250.58 5644.23 3099.28 3486.49 1324.14 1358.04 1179.42
r204_21 100 21 977.72 1142.21 4344.18 2577.75 3091.49 1251.32 1049.85 1168.16
r205_21 100 21 1251.36 1341.63 7204.62 3406.71 3704.34 1373.46 1416.86 1321.24
r206_21 100 21 1158.78 1284.37 6530.5 3175.31 3556.3 1363.17 1472.6 1283.62
r207_21 100 21 995.39 1219.77 5426.24 2916.46 3279.66 1255.59 1137.23 1099.87
r208_21 100 21 969.62 1149.34 3906.2 2528.71 2932.52 1230.26 1097.95 1003.38
r209_21 100 21 1155.3 1275.85 6196.48 3003.66 3500.81 1321.15 1370.6 1248.08
r210_21 100 21 1074.74 1257.83 6044.9 3036.6 3448.61 1307.52 1276.63 1292.63
r211_21 100 21 1016.09 1215.59 4728.86 2821.15 2989.32 1252.71 1188.34 1026.7
rc101_21 100 21 2129.64 2398.53 7120.9 5032.09 6183.92 2757.4 2780.47 2192.01
rc102_21 100 21 2013.97 2215.32 6041.88 4618.89 5834.21 2573.19 2464.05 2059.87
rc103_21 100 21 1874.88 2079.65 5449.87 4240.15 5610.2 2316.86 2430.5 1761.22
rc104_21 100 21 1827.82 1984.4 4667.72 3994.76 5247.86 2158.96 2009.18 1609.19
rc105_21 100 21 2108.15 2246.12 6004.72 4561.53 5877.65 2530.66 2594.22 1909.58
rc106_21 100 21 2014.35 2104.15 5789.62 4462.33 5785.44 2360.43 2577.03 1789.5
rc107_21 100 21 1725.66 2022.34 4728.82 3917.8 5211.24 2356.66 2187.47 1617.22
rc108_21 100 21 1795.84 1967.27 4442.52 3859.3 5095.93 2185.75 2204.76 1634.98
rc201_21 100 21 1620.68 1741.42 11604.5 5043.25 5233.7 1846.1 2051.55 1879.23
rc202_21 100 21 1462.91 1629.89 9207.9 4429.39 4745.96 1662.07 1718.93 1666.89
rc203_21 100 21 1305.03 1472.08 7290.6 3806.97 4421.27 1581.25 1588.93 1462.24
rc204_21 100 21 1373.49 1394.24 4686.12 3514.07 3915.11 1473.11 1234.75 1362.74
rc205_21 100 21 1490.25 1618.61 9054.15 4332.52 4785.62 1678.2 1859.9 1618.51
rc206_21 100 21 1515.85 1578.51 8771.81 4360.65 4754.36 1640.36 1707.7 1557.2
rc207_21 100 21 1383.18 1472.28 6873.72 3714.88 4305.31 1556.92 1586.6 1391.57
rc208_21 100 21 1360.65 1450.69 4510.55 3502.27 3711.72 1439.74 1452.4 1169.12
Count best 19 0 0 0 0 0 1 36
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the algorithms. To pinpoint the specific algorithms that differ from one another, we
conducted pairwise Mann-Whitney U tests with FDR correction for each algorithm
pair. The outcomes of these tests are illustrated in Figure 5.2.

Figure 5.2: Heatmap of pairwise comparisons of TDPR-EVRP-STW
algorithms for I2 dataset (Mann-Whitney U test with FDR correction)

As observed from the figure, nearly all algorithms exhibit statistically significant
performance differences when compared to their counterparts. The notable exception
is the pair of GA and MA, which demonstrated similar levels of performance, setting
them apart from the general trend identified among the other algorithms.

In Figure 5.3, we showcase a boxplot that illustrates the average solution qual-
ity performance of each algorithm over all instances from I2. Complementing this,
Figure 5.4 features a line plot where each algorithm is represented by a distinct line,
tracing the average solution quality achieved in each instance. From the boxplot
in Figure 5.3, it is evident that ACO, ACOLS, and BCOi underperformed relative
to their counterparts. To facilitate a more nuanced comparison among the higher-
performing algorithms, we have excluded these three from our analysis, as demon-
strated in Figure 5.5.

The refined comparison in Figure 5.5 reveals that MMA exhibits the lowest median
value, suggesting its superiority in tackling the TDPR-EVRP-STW. Consequently,
MMA emerges as a highly recommended choice for this specific application.
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Figure 5.3: Boxplot of Algorithm Performances

Figure 5.4: Performance of Algorithms Across Instances
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Table 5.4: Performance comparison of TDPR-EVRP-STW meta-
heuristics across various metrics (Dataset I2).

Metric Method
GVNS GRASP ACO ACOLS BCOi GA MA MMA

Average solution quality 19 0 0 0 0 0 1 36
Best-found solution 9 0 0 0 0 0 1 46
Worst-found solution 18 6 0 0 0 1 1 30
Penalty 6 17 0 0 0 9 34 11
Average route duration 0 0 0 1 31 0 24 0
Maximum route duration 18 9 0 0 1 3 16 11
Number of routes 8 2 0 0 0 0 0 47

Figure 5.5: Boxplot of Algorithm Performances (Excluding ACO,
ACOLS, BCOi)

In Table 5.4, we present an analysis of the performance of our algorithms across
a range of key metrics. For each metric, the table enumerates the instances where
a particular algorithm outperformed its counterparts, thereby highlighting its rela-
tive effectiveness. This comprehensive overview provides valuable insights into the
strengths of each algorithm within different performance parameters.

Similar to the previous version of the problem, here we focus on examining the
convergence speed of various algorithms. Consistent with our earlier observations,
the most significant advancements occur within the first 200 seconds. To effectively
present our findings for this critical time frame, we have chosen to limit the y-axis to
10000. This approach allows for a clearer visual distinction between the methods. Our
analysis is based on the results from the r101_21 instance, as depicted in Figure 5.6.

From this figure, we observe that GVNS achieves rapid convergence. However,
in this scenario, MMA demonstrates even better performance, matching the solution
quality of GVNS in approximately 100 seconds and subsequently surpassing it. This
aligns with our previous findings where MMA generally outperformed other methods,
reinforcing its efficiency and effectiveness in solving the problem at hand.
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Figure 5.6: An illustration of TDPR-EVRP-STW algorithms con-
vergence over 200s (Instance r101_21)

In conclusion, our assessment of algorithms for the TDPR-EVRP-STW yields
significant insights. Upon evaluation on the smaller instance set I1, no algorithm
distinctly outperformed the others, as most demonstrated comparable efficacy, with
the notable exception of ACO, which lagged in performance. However, when applied
to the larger instance set I2, MMA distinguished itself as the most effective algorithm
for this specific problem, underscoring its suitability for more complex scenarios. As
with the previous problem, we now examine ACO and ACOLS in greater detail, as
well as compare MA and MMA.

5.5.3 ACO and ACOLS comparison

Mirroring the approach taken for TD-EVRP-STW, we now proceed to compare the
performance of the ACO and ACOLS algorithms.

In the comparison using dataset I1, ACOLS surpassed ACO in 31 instances, with
the differences in solution quality averaging at 54.85%, and ranging from a minimum
of 3.4% to a maximum of 135.72%. Conversely, ACO excelled over ACOLS in 5 in-
stances, where the differences in solution quality averaged 69.39%, with a minimum
of 0.5% and a maximum of 226.37%. Figure 5.7 graphically represents the average
solution quality achieved for each instance (indicated by dots), where dots below the
line signify instances where ACOLS was superior to ACO, and those above the line
indicate the opposite. The results of the Wilcoxon signed-rank test reveal a statis-
tically significant difference in average solution quality between the two algorithms,
evidenced by a p-value < 0.0001.
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Figure 5.7: ACO vs ACOLS performance in terms of average solution
quality on instances from I1

Regarding the best-found solutions, ACOLS outshined ACO in 34 instances (with
average, minimum, and maximum differences in solution quality at 44.81%, 0.87%,
and 116.99%, respectively) and matched ACO’s performance in one instance. In the
sole instance where ACO had a better best-found solution than ACOLS, the difference
was marginal, at approximately 0.85%. Additionally, ACOLS was superior in terms
of the worst-found solution in 28 instances, while it lagged behind in 8 instances.

As with the TD-EVRP-STW version of the problem, penalties, average and max-
imum route duration were lower in solutions produced by ACO. However, ACOLS
tended to yield solutions with fewer routes. The detailed results for each instance, cov-
ering best-found solutions, worst-found solutions, average route duration, and route
counts, are showcased in Figure 5.8.
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Figure 5.8: Comparative scatter plots showcasing various perfor-
mance metrics for ACO and ACOLS on instances from I1

In the analysis conducted on dataset I2, ACOLS consistently outperformed ACO
in all 56 instances. The average improvement in solution quality was a remarkable
95.82%, with the minimum and maximum differences being 14.47% and 392.19%,
respectively. Figure 5.9 visually details the average solution quality for each instance.

Moreover, ACOLS demonstrated a significant edge over ACO across all 56 in-
stances in terms of best-found solutions, worst-found solutions, average penalties,
and route count. While there was no statistically significant difference in average
route duration between the two algorithms, ACOLS surpassed ACO in terms of max-
imum route duration in 49 out of the 56 cases. Figure 5.10 illustrates the results for
these various metrics, providing a comprehensive comparison between ACOLS and
ACO.
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Figure 5.9: ACO vs ACOLS performance in terms of average solution
quality on instances from I2

Figure 5.10: Comparative scatter plots showcasing various perfor-
mance metrics for ACO and ACOLS on instances from I2
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5.5.4 MA vs MMA comparison

In this section, we conduct a comparative analysis of our MA and MMA algorithms
across both datasets.

In the assessment conducted using dataset I1, our analysis revealed that MMA
outperformed MA in 23 instances. The differences in solution quality for these cases
averaged 45.8%, with a range spanning from a minimum of 0.15% to a maximum of
520.35%. On the other hand, MMA delivered inferior solutions compared to MA in 13
instances, with an average difference in solution quality of 5.59%, and the variations
ranging between 0.56% and 27.75%. Employing the Wilcoxon signed-rank test at
a significance level of 0.05, we determined that the performance disparity between
these two algorithms is statistically significant, as indicated by a p-value p < 0.01.
The specific results for each instance, showcasing this comparative performance, are
detailed in Figure 5.11.

Figure 5.11: MA vs MMA performance in terms of average solution
quality on instances from I1

In the context of the best-found solutions, MA actually demonstrated greater
success than MMA. Specifically, MA yielded better best-found solutions in 27 in-
stances, equal quality solutions in 4 instances, and inferior solutions in 5 instances.
However, it is important to note the disparity in the magnitude of improvements:
where MA surpassed MMA, the average improvement in solution quality was 3.56%,
whereas in instances where MMA excelled, the average improvement was a significant
58.31%. This suggests that while MA frequently outperformed MMA, the degree of
improvement by MMA in its favorable cases was considerably more substantial.

Regarding the worst-found solutions, MMA showcased superior performance, pro-
ducing better solutions in 23 instances and falling short in 13. The average difference
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in solution quality was notably higher at 109.36% in cases where MMA surpassed
MA, compared to a 7.05% improvement when MA outperformed MMA.

A similar pattern was observed in terms of average penalties, with MMA achieving
solutions with lower penalties in 27 instances, the same in 5 instances, and higher
in 4 instances. Intriguingly, MA typically found solutions with a lower route count,
indicating a different strategic approach.

When evaluating the average and maximum route duration, we found no sta-
tistically significant differences between the performance of these two methods. The
comparative performance of MA and MMA across these metrics, including best-found
solutions, worst-found solutions, average penalties, and route counts, is depicted in
Figure 5.12.

Figure 5.12: Comparative scatter plots showcasing various perfor-
mance metrics for MA and MMA on instances from I1

In the evaluation using instances from dataset I2, MMA demonstrated superior
performance to MA in 52 instances, while it lagged behind in 4 instances. The average
difference in solution quality also favored MMA. Specifically, in scenarios where MMA
outperformed MA, the average improvement was 29.11%, with the minimum and
maximum differences at 3.12% and 55.41%, respectively. In contrast, where MA
surpassed MMA, the average improvement was 10.38%, with a range from 1.25% to
18.62%.

Further reinforcing these findings, statistical tests were conducted, which con-
firmed a statistically significant difference in the performance of these two algorithms
in terms of average solution quality, evidenced by a p-value p < 0.0001. The detailed
performance comparison of these two algorithms for each instance is illustrated in
Figure 5.13.
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Figure 5.13: MA vs MMA performance in terms of average solution
quality on instances from I2

MMA also excelled over MA in terms of best-found solutions, worst-found solu-
tions, and route count. However, MA outshone MMA when it came to average route
duration, maximum route duration, and penalties. The comprehensive comparison
of MA and MMA across these various metrics is depicted in Figure 5.14.
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Figure 5.14: Comparative scatter plots showcasing various perfor-
mance metrics for MA and MMA on instances from I2

5.6 Chapter conclusion
In this chapter, we build upon the problem introduced in Chapter 4 by incorporating
partial vehicle recharging. We evaluated eight metaheuristics and conducted a statis-
tical analysis to identify the top performers based on various metrics. The results are
clearly presented, accompanied by visual aids to help the reader interpret the data
effectively.





171

CHAPTER
SIX

MULTI-OBJECTIVE GREEN VEHICLE ROUTING
PROBLEM

6.1 Problem definition
In our third problem iteration, we delve deeper into the complexities of VRP, incor-
porating more attributes as detailed in Section 3.3. This version not only retains all
constraints from the problem outlined in Section 5.1 — including features like partial
recharge, soft time windows, and time-variable speeds — but also introduces new
dimensions. We refer to this version of the problem as Multi-Objective Heterogeneous
Fleet Vehicle Routing Problem with Soft Time Windows (MOHF-VRP-STW)

One significant addition is the consideration of asymmetrical distances. This
means the distance from location i to location j does not necessarily mirror the dis-
tance from j to i. Such a feature is particularly crucial in urban settings riddled with
one-way streets, adding a layer of realism to the problem-solving.

Moreover, we now contemplate a diverse fleet, comprising of both ICVs and AFVs.
It is a more grounded perspective as delivery companies are likelier to operate with
mixed fleets, having a combination of ICVs and AFVs, rather than relying solely on
AFVs. Such a blend not only extends our reach, serving customers that might be
beyond the tether of battery-restricted AFVs, but it also optimizes the potential of
serving more customers within their favored time slots.

However, the integration of a mixed fleet also ushers in added complexity. It neces-
sitates discerning the optimal vehicle for each route, a task that demands meticulous
strategizing.

To truly capture the intricacies of this scenario, a multi-objective optimization is
warranted. A singular focus on distance or penalties would inadvertently sideline the
inherent disparities between ICVs and AFVs. Consequently, our approach will simul-
taneously juggle two objectives: one that emphasizes the weighted sum of distances
and penalties, akin to the previous problem, and another that aims to curtail the
total distance covered by ICVs. The essence behind this dual-focus is understanding
that reducing ICV distances might inadvertently stretch the overall distance due to a
heightened reliance on AFVs and subsequent increased AFS visits. Striking the right
balance between these objectives becomes paramount.

6.2 Objective functions
As mentioned earlier, for this version of the problem, two objectives were evaluated
independently:
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• O1 - This objective, previously applied to EVRP and EVRP-PR, comprises a
weighted sum of the aggregate distance traversed by all vehicles, along with
penalties incurred for any time windows that were not met. The formula for
this objective is presented in Equation (4.1).

• O2 - This objective seeks to reduce the overall distance traveled by ICVs, which
consequently lowers the emissions generated by the vehicles during customer
service.

Although the two objectives are assessed independently, it is crucial to establish a
primary metric to steer the metaheuristic algorithms effectively. For instance, in the
GVNS algorithm, we must identify a criterion to decide when a new solution surpasses
the current one. Opting for either of the individual objectives as this primary metric
might skew the metaheuristic’s search, resulting in a suboptimal pareto frontier. To
circumvent this, a more balanced strategy is to amalgamate the two objectives, such
as through a weighted sum, an approach we have adopted in our research.

Nonetheless, it is important to note that these two objective functions inherently
yield values within vastly different ranges. This discrepancy primarily arises due to
the penalty component of O1. Consequently, it becomes imperative to normalize
these objectives, ensuring that the influence of O1 does not overshadow that of O2.
To achieve this normalization, we adopted the Min-Max Scaling technique, which is
outlined by the formula presented in Equation (6.1).

Xscaled =
X− Xmin

Xmax − Xmin
(6.1)

In our scenario, we established the minimum value (Xmin) as 1 for both objec-
tives, and the maximum value (Xmax) corresponds to the objective value of the initial
solution for each respective objective. Consequently, the scaled value may exceed 1 if
the initial solution outperforms the value undergoing scaling. However, this does not
pose an issue within the context of our study.

However, it is not sufficient to merely scale the objectives because their rates of
growth are disparate, primarily due to the penalty component of O1. Take, for in-
stance, an initial penalty of 50,000, which is plausible when the routes have not been
refined. Under these circumstances, a reduction of 100 in the penalty during subse-
quent iterations might be negligible, causing the algorithm to bias towards objective
O2. This happens because smaller fluctuations in O2 would exert a more pronounced
influence given its initially lower value. To mitigate this imbalance, we first apply a
logarithmic transformation to each objective, which normalizes their rates of growth.
After this transformation, we implement Min-Max Scaling. Finally, we aggregate the
outcomes using a weighted sum, as delineated in Equation (6.2), to derive a composite
metric for evaluation.

F (O1,O2) = α

(
logO1 − logOmin

1

logOmax
1 − logOmin

1

)
+ β

(
logO2 − logOmin

2

logOmax
2 − logOmin

2

)
(6.2)

6.3 Test instances
To effectively evaluate the MOHF-VRP-STW, it was necessary to develop new sets
of instances, building upon those outlined in Section 4.3. We crafted two distinct
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sets: I1, derived from the I1 set, and I2, modeled on the I2 set. These newly cre-
ated instances are available for download at www.mi.sanu.ac.rs/~luka/resources/
Instances.zip.

Listing 6.1 provides a sample instance to illustrate its format and structure. The
initial section details node information, beginning with a unique string ID. The type of
each node is categorized as ’d’ for depot, ’f’ for AFSs, and ’c’ for customers. Following
this, we specify the node’s demand, which indicates the quantity of goods required,
a detail pertinent only to customer nodes.

The next set of data relates to time windows: ’ReadyTime’ marks the start, and
’DueTime’ the end of this window. We then include ’ServiceTime’, the duration a
vehicle is expected to spend at a node. This is applicable only to customer nodes;
for AFS nodes, the service time is set to zero since the duration spent at these nodes
dynamically depends on the charging time.

Finally, we provide information on AFS capacity, defining the number of vehicles
that can be charged simultaneously at an AFS. Although this detail does not play
a crucial role in our current study, it has been incorporated for the benefit of future
research.

In the subsequent section, we detail the distances between each node pair. No-
tably, these distances are asymmetric, meaning the distance from node A to node B
may differ from the distance from node B to node A. We determined these distances
through a two-step process. Firstly, we calculated the distances based on the coordi-
nates given in the original instance, using the Euclidean distance formula. Following
this, we introduced an element of randomness: a number is generated between 0 and
1 using a uniform distribution. If this number is less than 0.33, we then adjust the
calculated distance by multiplying it with a randomly generated multiplier. This
multiplier falls within the range of 0.8 to 1.2 and is also determined using a uniform
distribution.

The following section of our instance provides comprehensive information about
the available vehicles. This includes several key parameters for each vehicle: ID, type
of engine, battery capacity, load capacity, consumption rate, recharging rate, average
velocity, and the total number of available vehicles of that type. It is important to
note that fields marked with ’N/A’ indicate that certain information is not applicable
to a specific vehicle type. For instance, battery capacity is a parameter that does not
apply to ICVs.

The final section of focuses on time-dependent speed data. Here, we outline each
time interval, specifying its start and end times, along with an associated multiplier
for that interval. This multiplier is employed to adjust the average speed designated
for each specific vehicle type. The methodology for creating these intervals aligns with
the approach detailed in Section 4.3, ensuring consistency with previous versions of
the problem.

1 NODE SECTION
2 ID Type demand ReadyTime DueTime ServiceTime AfsCapacity
3 D0 d 0.0 0.0 1236.0 0.0 N/A
4 S0 f 0.0 0.0 1236.0 0.0 3
5 S5 f 0.0 0.0 1236.0 0.0 4
6 S15 f 0.0 0.0 1236.0 0.0 3
7 C30 c 10.0 355.0 407.0 90.0 N/A
8 C12 c 20.0 176.0 228.0 90.0 N/A
9 C100 c 20.0 744.0 798.0 90.0 N/A

10 C85 c 30.0 737.0 809.0 90.0 N/A
11 C64 c 10.0 263.0 325.0 90.0 N/A
12 NODE SECTION END

www.mi.sanu.ac.rs/~luka/resources/Instances.zip
www.mi.sanu.ac.rs/~luka/resources/Instances.zip
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13

14 DISTANCE SECTION
15 Nodes D0 S0 S5 S15 C30 C12 C100 C85 C64
16 D0 0.0 0.0 41.13 24.02 20.61 31.98 38.07 29.73 24.30
17 S0 0.0 0.0 35.17 24.02 21.34 36.11 38.07 29.73 21.54
18 S5 35.17 35.17 0.0 8.54 31.01 6.08 24.02 49.42 56.61
19 S15 20.83 24.02 58.54 0.0 32.68 70.06 65.79 37.14 9.41
20 C30 20.01 20.61 31.01 34.66 0.0 30.41 48.80 44.71 33.08
21 C12 38.07 38.07 7.20 70.82 30.41 0.0 32.02 49.73 59.61
22 C100 38.07 41.78 25.01 61.13 44.75 30.0 0.0 28.17 55.44
23 C85 32.42 29.73 51.34 48.97 54.05 57.89 30.38 0.0 31.54
24 C64 21.54 21.54 56.61 10.95 31.84 59.61 46.11 36.05 0.0
25 DISTANCE SECTION END
26

27 VEHICLE SECTION
28 ID Type Battery_capacity Load_capacity Consumption_rate

↪→ Recharging_rate Velocity Number
29 V1 AFV 77.75 200.0 1.0 3.47 1.0 1
30 V2 ICV N/A 200 N/A N/A 1 4
31 VEHICLE SECTION END
32

33 SPEED INTERVAL SECTION
34 Start End Multiplicator
35 0 206.0 0.75
36 206.0 1030.0 1
37 1030.0 1236.0 0.8
38 1236.0 1236.0 1
39 SPEED INTERVAL SECTION END

Listing 6.1: Example MOHF-VRP-STW Instance

6.4 Solution representation
The solution structure employed for this version of the problem mirrors that of the
TDPR-EVRP-STW outlined in Section 5.2, with a notable distinction being that each
route is tagged with specific vehicle information that serves the customers within.
Specifically, routes are not merely structured as doubly linked lists comprising nodes
that match customers, AFS, and depot. Instead, a route is encapsulated as an ordered
pair (Ha, S), where Ha denotes the vehicle index assigned to the a− th route, and S
is a doubly linked list detailing the nodes. Each node within the list is defined by
a five-part sequence: the index, arrival and departure times, node type, and waiting
time. This added layer of vehicle information allows for clear differentiation between
EVs and ICVs, enabling us to apply the appropriate treatment for each route type.

6.5 Solution feasibility
In contrast to the previous two versions of the problem, in this version, we only need
to include visits to AFSs on certain routes to address the battery depletion-related
feasibility issues. As a result, the FIX_SOLUTION approach is slightly different and
is outlined in Algorithm 27. In addressing this version of the problem, which involves
partial recharging, the procedure invoked at line 4 aligns with the one outlined in
Algorithm 25.
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Algorithm 27 Procedure for adding visits to AFSs into solution when dealing with
HF scenario

1: procedure FIX_SOLUTION_HF(Solution S)
2: for ∀route ∈ S do
3: if vehicle assigned to route is AFV then
4: FIX_ROUTE(route)
5: else if vehicle assigned to route is ICV then
6: Remove all AFS visits from route
7: end if
8: end for
9: return S

10: end procedure

6.6 Neighborhood structures
We introduce an additional neighborhood structure in this version of the problem, in
addition to those described in Section 4.8. The purpose of the additional neighbor-
hood structure is to enhance the search space exploration by allowing the algorithm to
consider various permutations of vehicle-to-route assignments. This becomes impor-
tant in instances where a fleet consists of diverse vehicle types, each with potentially
unique characteristics such as capacity, range, refueling or recharging times, costs
associated with their operation, or in our case engine types.

• N11(S): Swaps the vehicle types for two different routes.

Incorporating the newly defined neighborhood structure, we can refine our VND
for this particular problem to systematically explore neighborhoods N2 through N8,
in addition to N11. This expanded search pattern allows for a more comprehensive
examination of potential solutions within our optimization framework.

As a reminder, we have excluded neighborhood structure N1 from our considera-
tion due to its suboptimal performance. Moreover, it is worth noting that neighbor-
hoods N9 and N10 are exclusively utilized during the shaking process of the GVNS
method.

6.7 Pareto-front representation
In the realm of multi-objective optimization, maintaining a record of Pareto-optimal
solutions is essential. These are solutions that are not dominated by any other solution
in the solution space. Determining whether one solution is dominated by another
involves comparing multiple objective values. Let us consider two solutions, A and
B, each with N objectives f1, f2, · · · , fN. Solution A dominates solution B if and only
if both of the following conditions are met:

• No worse in all objectives: For each objective fi, A is no worse than B.
Formally, fi(A) ≤ fi(B), ∀i ∈ {1, 2, · · · , N}

• Better in at least one objective: There exists at least one objective f j
where A is strictly better than B. Formally, ∃j ∈ {1, 2, · · · , N}, f j(A) < f j(B)

Thus, the concept of dominance can be mathematically formulated as follows:
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A dominates B ⇐⇒ (∀i ∈ {1, 2, . . . , n}, fi(A) ≤ fi(B))
and (∃j ∈ {1, 2, . . . , n}, f j(A) < f j(B)) (6.3)

To facilitate this, we maintained an archive of all non-dominated solutions, es-
sentially an unordered set of such solutions. In each algorithm we tested, whenever
a new solution is generated and evaluated at any stage of the algorithm, it is com-
pared against the solutions in the archive. This comparison is conducted using the
method outlined in the pseudocode presented in Algorithm 28. In this algorithm,
the initial step involves verifying whether the archive of Pareto-optimal solutions is
empty. If it is, the new solution is immediately added as Pareto-optimal (Line 3).
Conversely, if the archive contains existing solutions, we systematically examine each
one. Should any of these archived solutions dominate the new one, the procedure
terminates without any modifications to the archive (Line 9). However, if an exist-
ing solution is found to be dominated by the new one, it is placed into a temporary
collection, which aggregates all such dominated solutions from the archive (Line 12).
Once all solutions in the archive have been assessed, those in the temporary collection
(i.e., those dominated by the new solution) are removed from the archive (Line 15).
Subsequently, the new solution is added to the archive (Line 16).

Algorithm 28 Procedure for updating the archive of pareto-optimal solutions
1: procedure UPDATE_ARCHIVE(Archive A, Solution x)
2: if A = ∅ then
3: A← {x}
4: return
5: end if
6: dominatedByNew← ∅
7: for ∀solution ∈ A do
8: if solution dominates x then
9: return

10: end if
11: if x dominates solution then
12: dominatedByNew← dominatedByNew ∪ {solution }
13: end if
14: end for
15: A← A \ dominatedByNew
16: A← A ∪ {x}
17: return
18: end procedure

6.8 Metaheuristics
The metaheuristic approaches employed for the MOHF-VRP-STW are consistent
with the methods described in Section 4. This adherence ensures a foundational con-
tinuity in the methodologies applied across different problem versions. MOHF-VRP-
STW, much like TDPR-EVRP-STW discussed earlier, considers the critical aspect of
partial recharge. This consideration is crucial in addressing the range limitations and
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charging dynamics unique to electric vehicles. Consequently, all the nuanced adapta-
tions and specific strategies that were detailed in Section 5 for handling the partial
recharge attribute remain relevant and are integrated into this problem version.

Moreover, the problem’s complexity is augmented by the introduction of a hetero-
geneous fleet. This addition implies a diversity in the capabilities and characteristics
of the vehicles used, mainly in the context of vehicle engine type, but can also include
their range, charging speed, or cargo capacity. Such diversity necessitates a more
intricate approach in the algorithmic design to effectively manage the varying con-
straints and potentials of each vehicle type. To accommodate these considerations,
we have adopted a modified the solution structure, elaborated upon in Section 6.4.
Additionally, to effectively manage the diversity of vehicle types, we introduced a
new neighborhood structure, detailed in Section 6.6, and integrated it into the VND
process.

The transition to a multi-objective optimization framework adds a significant
layer of intricacy to the problem. In contrast to single-objective optimization, which
focuses on maximizing or minimizing a single metric, multi-objective optimization
within the MOHF-VRP-STW context demands the simultaneous consideration of two
objectives that may be in conflict. To strike an optimal balance between these goals,
it is essential to construct a Pareto-front comprising all non-dominated solutions.

Consequently, each metaheuristic is equipped with a specialized structure, as de-
tailed in Section 6.7, to meticulously track these solutions. This approach is ex-
haustive: every new solution generated, whether during the VND procedure, the
construction phase ACO, or following the creation of new offspring in GA, MA, and
MMA, is evaluated against the solutions in the Pareto-optimal archive. It is crucial
to emphasize that this evaluation is not limited to solutions deemed as the current
best but extends to all new solutions.

While this might appear to be a substantial computational burden, the process
is relatively efficient, typically operating in O(n) time complexity, where n repre-
sents the number of solutions in the archive, which is usually not particulary high.
This efficiency is vital for assembling the most comprehensive and optimal Pareto-
front possible. It is important to recognize that not all Pareto-front members would
necessarily be identified as the best new solution at any given step. Hence, this thor-
ough approach is indispensable for identifying the truly optimal solutions across the
multi-objective landscape.

The modifications outlined above are applicable to all the metaheuristics under
consideration. However, there are additional adjustments that are specific to some
particular algorithms.

In particular, for the ACO and ACOLS algorithms, we had to reconsider the
method of selecting the next customer to be incorporated into the partial solution.
Initially, to address the challenge posed by different vehicle types, we introduced a
secondary set of pheromone values, aimed at capturing the associations between each
customer and vehicle type. However, this strategy was re-evaluated following pre-
liminary testing with instances from both I1 and I2 datasets. We eventually shifted
away from this method, as we observed significantly improved results by simply imple-
menting a local search within the N11(S) neighborhood structure post-construction
phase. It is noteworthy that this additional local search step was integrated only in
ACO, as including it in ACOLS would result in redundancy. Nonetheless, we had to
modify the selection process for potential neighbors in both the ACO and ACOLS
algorithms. The details of this revised procedure are outlined in Algorithm 29. The
key distinction between Algorithm 22 and Algorithm 29 lies in Lines 8 and 16. When
the position under scrutiny is on a route served by an ICV, it becomes unnecessary
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to verify the vehicle’s ability to reach the next station. Likewise, incorporating visits
to AFSs as potential moves is redundant for routes specifically handled by ICVs.

Algorithm 29 Procedure for finding a set of potential moves based on a set of
available positions in the solution, while considering different vehicle types

1: procedure get_moves(positions, available, S)
2: moves← empty set o pairs
3: for ∀pos ∈ positions do
4: for ∀a ∈ available do
5: if adding a to S as position pos violates capacity constraint then
6: continue
7: end if
8: if pos is a part of the route served by EV then
9: if no station can be reached after visiting a then

10: continue
11: end if
12: end if
13: moves← moves ∪ {(pos, a)}
14: end for
15: if no customers have been added to moves for pos then
16: if pos is a part of the route served by EV then
17: stations← find stations that can be visited from pos
18: for s ∈ stations do
19: moves← moves ∪ {(pos, s)}
20: end for
21: end if
22: end if
23: end for
24: end procedure

The version of BCO adapted for this problem closely resembles the approach
utilized for TDPR-EVRP-STW. However, it integrates an additional type of move
into its TRANSFORM_SOLUTION procedure:

• M6(S) - Randomly selects two vehicles of different types and swaps their re-
spective types.

For GA, MA, and MMA, the primary deviation from their previous iterations lies
in the chromosome representation and the crossover operator.

The chromosome structure for MOHF-VRP-STW closely aligns with the one de-
scribed in Section 5.4, where it is encoded as a sequence of pairs. In each pair, the
first element represents the node index, while the second indicates the duration of the
stop at that node. However, this problem introduces an additional layer of complexity
with vehicle types. Consequently, the chromosome for this version includes a second
list that specifies the vehicle types. In essence, at any given index i, this list identifies
the vehicle type assigned to service the i-th route. This arrangement facilitates the
application of the crossover operator not only to the sequence of customers but also to
the vehicle types, thereby accommodating the unique requirements of this problem.

In terms of the crossover mechanism, we continue to employ the OX operator on
the sequence of customers, as detailed in Section 4.14. However, for assigning vehicle
types to the offspring, we have adapted the OX operator in the following manner.
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Initially, we randomly select two points within the vehicle type list of the first chro-
mosome. The segment delineated by these points is then directly transferred to the
offspring, retaining its original position from the parent chromosome. Subsequently,
we populate the remaining positions in the offspring with values from the second
chromosome, deliberately omitting those that appear in the transferred segment. To
account for any repetition of vehicle types within this segment, we omit the first n
occurrences of a vehicle type in the second chromosome if it appears n times in the
interval. For instance, if AFVs are assigned to two routes within the chosen segment,
we skip the first two occurrences of AFV routes from the second chromosome. This
process is visually depicted in Figure 6.1. All other aspects of the GA, MA, and MMA
algorithms are in line with the methodologies outlined in Sections 4.14 and 5.4.

Figure 6.1: Modified OX operator applied to the vehicle type part
of the chromosome

6.9 Experimental evaluation

6.9.1 Experimental setup

The experimental arrangement for this iteration of the problem mirrored the setup
described in Section 4.15.2. Our empirical analysis indicated that the hyperparameter
values identified in Section 4.15.3 were equally effective for this version of the problem,
leading us to adopt these values for all subsequent tests.

To maintain an unbiased approach, we set both the α and β parameters to 0.5.
This ensured that no specific objective was given undue precedence over another. A
thorough examination and analysis of the α and β values, exploring their broader
implications and optimal configurations, will be presented in the upcoming section.

6.9.2 Objective function constants

In this section, we explore the impact of varying α and β values within our compos-
ite evaluation metric (Equation (6.2)) on the resulting Pareto-front. Our hypothesis
is that increasing α will yield Pareto-fronts more adept at uncovering superior so-
lutions for objective O1. Conversely, elevating β should lead to Pareto-fronts that
preferentially identify solutions excelling in objective O2.

To validate our hypothesis, we conducted experiments with five distinct α and β
ratios, employing the GVNS as our preferred method. It is important to acknowl-
edge that the choice of method can potentially sway our findings. Our observations
revealed that certain methods typically generate Pareto-fronts with a higher quantity
of solutions compared to others. However, this does not necessarily imply superior
Pareto-frontiers, as some of these solutions may be very similar, diminishing the
practical value of having additional solutions.

We selected the following ratios for detailed examination:
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• 3:7 (α = 0.3, β = 0.7): This configuration significantly prioritizes objective O2.

• 4:6 (α = 0.4, β = 0.6): Here, the metric shows a mild preference for objective
O2.

• 5:5 (α = 0.5, β = 0.5): This balanced ratio equally weights both objectives,
showing no preference.

• 6:4 (α = 0.6, β = 0.4): In this case, the metric is slightly inclined towards
objective O1.

• 7:3 (α = 0.7, β = 0.3): This ratio strongly emphasizes objective O1.

In most scenarios, our observations aligned with the anticipated outcomes, as
depicted in Figure 6.2 using the r101_21 example instance. Nevertheless, certain
instances revealed unexpected results, with some ratios performing notably better or
worse than anticipated. For instance, Figure 6.3 illustrates the Pareto-frontiers for
various ratios on the r105_21 instance. Here, the 7:3 ratio notably underperformed,
consistently yielding solutions that were dominated by those discovered using other
ratios. While not as stark, the 4:6 ratio was also notably outclassed by the 5:5 ratio.
Interestingly, we often found the 5:5 ratio to be the most effective, potentially because
its unbiased approach towards both objectives allows it to uncover a broader range of
high-quality solutions. When a method favors one objective, it may converge towards
a segment of the search space where it becomes challenging to find viable solutions
for the other objective.

Figure 6.2: An illustration of Pareto-fronts: comparative analysis
using varied ratios of importance for objectives in instance r101_21.
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Figure 6.3: An illustration of Pareto-fronts: comparative analysis
using varied ratios of importance for objectives in instance r105_21.

6.9.3 Overall comparison

In Table 6.1, we present a comparative analysis focused on the average solution quality
for objectives O1 and O2. This analysis is based on thirty iterations of each algo-
rithm applied to instances from the dataset I1. Values emboldened within the table
signify the highest average solution quality achieved among all evaluated algorithms,
specifically in relation to each respective objective. The comprehensive results for
all algorithms, encompassing all metrics, are detailed in the document provided at
https://www.mi.sanu.ac.rs/~luka/resources/phd/AppendixB.pdf.

https://www.mi.sanu.ac.rs/~luka/resources/phd/AppendixB.pdf
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To ascertain the presence of statistically significant differences in the performance
of our algorithms, we conducted the Kruskal-Wallis test on the average solution qual-
ity relative to objectives O1 and O2. This decision was prompted by the failure
to meet the necessary conditions for conducting ANOVA on these objectives. The
Kruskal-Wallis test yielded a p-value p < 0.0001 for objective O1 and p < 0.001
for objective O2. Based on these results, we can confidently conclude that there are
statistically significant differences in the performances of our algorithms with respect
to both objectives. Consequently, we executed a series of Mann-Whitney U tests,
applying FDR correction to each pair of algorithms, while distinctly analyzing each
objective. The outcomes of these comprehensive tests are systematically illustrated
in Figure 6.4. The heatmap on the left displays the results corresponding to objective
O1, whereas the heatmap on the right is dedicated to showcasing the results for ob-
jective O2. From the insights obtained from this figure, it is evident that in relation
to objective O1, the algorithms GVNS and ACOLS displayed the most pronounced
differences when compared to the others, yet their performances were notably similar
to each other. In the context of objective O2, the disparities among the algorithms
were generally less marked, with ACO being the notable exception that deviated from
this trend.

Figure 6.4: Heatmap of pairwise comparisons of MOHF-VRP-STW
algorithms for I1 dataset (Mann-Whitney U test with FDR correction)

Figure 6.5, which illustrates the performance of our methods with respect to
objective O1, indicates that GVNS and ACOLS have superior performance compared
to other methods. It is also notable that while the median values of GRASP, BCOi,
GA, MA, and MMA are somewhat on par with those of GVNS and ACOLS, these
methods exhibited a greater number of outliers where the average solution quality
significantly deteriorated. Intriguingly, for this particular problem, ACO and ACOLS
demonstrated commendable performance, a notable deviation from their typically less
impressive results in previous versions of the problem. Regarding objective O2, no
method stood out as significantly superior, although ACO did yield somewhat lower-
quality solutions for this specific objective.
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Table 6.2: Performance comparison of MOHF-VRP-STW meta-
heuristics across various metrics (Dataset I1).

Metric Method
GVNS GRASP ACO ACOLS BCOi GA MA MMA

Average solution quality (O1) 13 1 1 8 0 5 6 3
Best-found solution (O1) 20 0 1 15 0 1 12 12
Worst-found solution (O1) 16 3 2 9 0 5 7 5
Average solution quality (O2) 3 16 0 3 11 0 11 2
Best-found solution (O2) 11 13 4 8 18 13 21 17
Worst-found solution (O2) 2 25 0 4 12 1 11 5
Penalty 20 12 11 14 3 15 8 9
Average route duration 2 6 7 3 15 2 2 0
Maximum route duration 14 14 7 11 5 11 8 6
Number of routes 8 15 0 10 12 1 20 6

Figure 6.5: Boxplot of algorithm performances for the objective O1

In Table 6.2, we provide an analysis of our algorithms’ performance across a spec-
trum of metrics. The table enumerates the instances where each algorithm excelled
beyond its counterparts in terms of effectiveness for each specified metric.

In Table 6.3, we conduct a detailed comparative analysis of the average solution
quality pertaining to objectives O1 and O2. This examination is grounded in thirty
iterations of each algorithm, as applied to instances from the dataset I2. Within the
table, values highlighted in bold represent the pinnacle of average solution quality
achieved by any of the evaluated algorithms, corresponding to each objective in focus.
This approach provides a clear and concise example for algorithmic performance
relative to the specified objectives.
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To assess the existence of statistically significant performance differences among
our methods on instances from dataset I2 concerning both objectives, we initially
evaluated the suitability of conducting ANOVA. However, due to the failure to meet
ANOVA’s requisite conditions, we instead opted for the Kruskal-Wallis test, focus-
ing on the average solution quality for both objectives. Regarding objective O1, the
Kruskal-Wallis test yielded a p-value lesser than 0.0001, providing compelling evi-
dence of a statistically significant disparity in the performance of our methods. A
similar pattern emerged for objective O2, where the p-value was an equally significant
p < 0.0001. Subsequently, we conducted a series of Mann-Whitney U tests, incorpo-
rating FDR correction for each algorithmic pairing. The outcomes of these analyses
are displayed in Figure 6.6. Here, the heatmap on the left delineates the results per-
taining to objective O1, while the heatmap on the right elucidates the findings related
to objective O2. This figure reveals that for objective O1, each algorithm exhibited
statistically significant differences in performance compared to all others. When con-
sidering objective O2, a similar pattern emerged, with most methods demonstrating
distinct statistical variations in their performance. The only exception was observed
between MA and GA, which showed comparable levels of performance to each other.

Figure 6.6: Heatmap of pairwise comparisons of MOHF-VRP-STW
algorithms for I2 dataset (Mann-Whitney U test with FDR correction)

To ascertain the top-performing algorithm, we closely examined Figures 6.7 and 6.8.
Figure 6.7 focuses on algorithm performance with respect to objective O1. Here, we
excluded ACO, ACOLS, and BCOi due to their significantly lower solution qual-
ity, enhancing the visibility of the distinctions among the more effective algorithms.
The insights from Figure 6.7 indicate that for objective O1, MMA was the standout
performer, surpassing other algorithms, with GVNS, GRASP, and MA also demon-
strating strong performances.

Turning to objective O2, the performance evaluations of the algorithms are show-
cased in Figure 6.8. Similar to the findings for objective O1, the results here also un-
derscore MMA’s superior performance, consistently outshining the other algorithms.
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Figure 6.7: Boxplot of algorithm performances for the objective O1,
with ACO, ACOLS, and BCOi excluded

Figure 6.8: Boxplot of algorithm performances for the objective O2

Table 6.4 presents a detailed analysis of the performance of our algorithms across
various metrics. This table systematically details the number of instances in which
each algorithm surpassed its counterparts in effectiveness, specific to each metric.
From this comprehensive overview, it is evident that MMA surpassed other meta-
heuristics in 7 out of the 10 evaluated metrics.

Figures 6.9, 6.10, and 6.11 showcase illustrations of Pareto-fronts across three
distinct instances, using various methods. These visual representations bolster our
initial finding that the MMA method surpasses others in performance, consistently
exhibiting superior Pareto-fronts.
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Table 6.4: Performance comparison of MOHF-VRP-STW meta-
heuristics across various metrics (Dataset I2).

Metric Method
GVNS GRASP ACO ACOLS BCOi GA MA MMA

Average solution quality (O1) 9 0 0 0 0 0 0 47
Best-found solution (O1) 6 2 0 0 0 0 0 50
Worst-found solution (O1) 7 7 0 0 0 0 0 42
Average solution quality (O2) 1 0 0 0 0 0 0 55
Best-found solution (O2) 0 0 0 0 0 0 0 56
Worst-found solution (O2) 7 0 0 0 0 1 0 48
Penalty 23 13 0 0 0 0 21 17
Average route duration 0 0 0 0 56 0 0 0
Maximum route duration 15 22 0 0 3 0 10 6
Number of routes 9 5 0 0 0 0 0 43

Figure 6.9: An illustration of Pareto-fronts: comparative analysis
using different metaheuristics in instance r101_21.
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Figure 6.10: An illustration of Pareto-fronts: comparative analysis
using different metaheuristics in instance r202_21.

Figure 6.11: An illustration of Pareto-fronts: comparative analysis
using different metaheuristics in instance rc103_21.

In conclusion, when applied to smaller instances, GVNS and ACOLS demon-
strated superior performance over other methods with respect to objective O1. How-
ever, for objective O2, there was no distinctly dominant performer in these smaller
instances. In contrast, on larger instances, MMA consistently excelled, outshining
other metaheuristics across both objectives.

6.9.4 ACO and ACOLS comparison

In the dataset I1 comparison, ACOLS demonstrated superior performance over ACO
in achieving both objectives. Specifically, for objective O1, ACOLS achieved a more
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favorable average solution in 31 instances, exhibiting an average improvement of
30.53%, a minimum of 5.82%, and a maximum of 66.59%. Conversely, in 5 instances,
ACOLS lagged behind, with the solution quality differing by an average of 9.49%,
a minimum of 1.8%, and a maximum of 28.15%. These findings are illustrated in
Figure 6.12. Regarding objective O2, ACOLS surpassed ACO in 33 cases, marking
an average enhancement of 71.47%, with the minimum and maximum improvements
being 7.99% and 191.32%, respectively. In contrast, ACOLS underperformed in 3
cases, with solution quality differences of 10.04% on average, and ranging from 6.23%
to 13.89%. Additionally, ACOLS outshone ACO in terms of the best and worst
solutions found, as well as in route count efficiency. However, in terms of penalties,
no statistically significant differences were observed. The comparative performance
of MA and MMA across various metrics is detailed in Figure 6.13.

Figure 6.12: ACO vs ACOLS performance in terms of average solu-
tion quality on instances from I1
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Figure 6.13: Comparative scatter plots showcasing various perfor-
mance metrics for ACO and ACOLS on instances from I1

In the dataset I2 evaluation, ACOLS significantly exceeded ACO’s performance
with respect to objective O1, achieving consistent superiority across all instances. The
data revealed an impressive average difference of 234.24%, with the variances ranging
from a minimum of 39.35% to a maximum of 953.36%. These results are clearly
depicted in Figure 6.14. Regarding objective O2, ACOLS once again outperformed
ACO, though the margin was more moderate compared to O1. Specifically, in 54
instances, ACOLS’s performance lead was marked by an average difference of 62.63%,
a minimum of 3.23%, and a maximum of 142.39%. Notably, for both objectives, the
differences were not only apparent but also statistically significant, as confirmed by
the Wilcoxon signed-rank test with a significance level of 0.05. Additionally, ACOLS
demonstrated superior results over ACO in all other assessed metrics, as elaborated
in Figure 6.15.
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Figure 6.14: ACO vs ACOLS performance in terms of average solu-
tion quality on instances from I2
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Figure 6.15: Comparative scatter plots showcasing various perfor-
mance metrics for ACO and ACOLS on instances from I2

6.9.5 MA vs MMA comparison

In this section, we delve into an extensive comparative analysis between the MA and
the MMA. Our focus will be to rigorously evaluate and contrast the performances of
these two algorithms across the both datasets.

In the analysis of instances from dataset I1, MMA demonstrated superior perfor-
mance to MA in 22 instances, with the differences in average solution quality across
30 runs being quite notable: an average improvement of 29.33%, a minimum of 0.77%,
and a maximum of 130.12%. Conversely, in the 14 instances where MA outperformed
MMA, the improvements were more modest, with an average of 2.27%, and ranging
from a minimum of 0.11% to a maximum of 6.56%. This indicates that not only did
MMA achieve better average solutions in more instances than MA, but also the extent
of improvement was significantly larger when MMA outperformed MA compared to
the reverse. A Wilcoxon signed-rank test, conducted at a significance level of 0.05,
further substantiated these findings, revealing a statistically significant difference in
performance between the two algorithms in terms of average solution quality, as in-
dicated by a p-value < 0.01. The comparative average solution qualities obtained by
both algorithms are illustrated in Figure 6.16.
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Figure 6.16: MA vs MMA performance in terms of average solution
quality on instances from I1

In the comparative analysis of MA and MMA focusing on the best-found and
worst-found solutions, no statistically significant differences were observed. However,
a notable variance emerged in the penalties of the solutions obtained. MMA surpassed
MA in 23 instances, fell short in 6, and matched the penalty value in 7. Conversely,
MA typically generated solutions with a lower route count, averaging around a 12.7%
reduction. A particularly interesting finding was in the context of objective O2, where
MA outperformed MMA in 32 instances, with average, minimum, and maximum dif-
ferences of 101.17%, 1.16%, and 968.55%, respectively. This observation is intriguing,
considering both algorithms were assigned the same objective weights (α = 0.5 and
β = 0.5 in Equation (6.2)), yet it appears that MMA favored objective O1, while MA
showed a preference for objective O2. The performance of these two algorithms across
various metrics, including the distance traveled by ICVs, which relates to objective
O2, is detailed in Figure 6.17.
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Figure 6.17: Comparative scatter plots showcasing various perfor-
mance metrics for MA and MMA on instances from I1

In the evaluation using dataset I2, MMA consistently outperformed MA in rela-
tion to both objectives O1 and O2, across all instances. Specifically, for objective O1,
MMA’s performance advantage was marked, with an average improvement of 25.14%,
a minimum of 4.02%, and a maximum of 49.97%. For objective O2, the difference
was even more pronounced, with average, minimum, and maximum improvements of
569.63%, 34.33%, and 4967.33%, respectively. Additionally, MMA excelled over MA
in terms of best-found and worst-found solutions, as well as in route count. Con-
versely, MA managed to outperform MMA in terms of penalties and average route
duration. Figure 6.18 illustrates the comparative performance of both algorithms
across all instances with respect to objective O1, while Figure 6.19 showcases their
performance across other metrics.
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Figure 6.18: MA vs MMA performance in terms of average solution
quality on instances from O2

Figure 6.19: Comparative scatter plots showcasing various perfor-
mance metrics for MA and MMA on instances from O2
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6.10 Chapter conclusion
In this chapter, we present the final stage of our research, focusing on an extension of
the problem addressed in Chapter 5. Specifically, this version considers a mixed fleet
of both EVs and ICVs, along with asymmetric distances. The study adopts a multi-
objective optimization approach, taking into account two simultaneous objectives.

As in previous cases, eight metaheuristics were considered. To evaluate their
performance, two new sets of instances were created. The results were statistically
analyzed, with MMA and GVNS yielding the best outcomes.
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CHAPTER
SEVEN

CONCLUSION

7.1 Summary
Inspired by the increasing prevalence of electric vehicles globally, we delved into the
vehicle routing problem tailored for this category of vehicles. Our belief is that this
problem will gain greater relevance in the coming years. To ensure our research has
practical industry applications, we focused on common delivery scenarios, particularly
last-mile delivery in urban settings. Given the complexity of this problem – it falls
into the category of NP-hard problems and is too challenging to solve exactly for
larger real-world instances with numerous customers – we turned to metaheuristic
algorithms. These algorithms are adept at finding high-quality solutions within a
feasible timeframe, although they do not provide a guarantee of optimality.

The main contributions of this thesis include (Also illustrated in Figure 7.1):

• We have identified and defined three industry-relevant problems that, until now,
have not been addressed in existing literature.

• We developed a MILP model specifically tailored for the electric vehicle routing
problem, incorporating time-dependent speeds and soft time windows.

• We have compiled an exhaustive list of existing metaheuristics, surpassing the
comprehensiveness of any similar compilations currently available in the litera-
ture.

• We have developed two novel sets of instances that feature asymmetric dis-
tances, a two different vehicle types (ICVs and EVs), time-dependent speeds,
and varying capacities of AFS. These innovative instances are designed to serve
as comprehensive benchmarks for future assessments of diverse methods applied
to VRP scenarios that take these specific attributes into account.

• We have developed eight metaheuristic methods designed to address these three
variations of the problem. These methods were rigorously tested: for the first
two versions, we utilized benchmark instance sets available in the literature,
and for the third version, we employed our uniquely created set of instances. A
thorough statistical analysis was conducted to evaluate the performance of these
methods, with a focus on determining the most effective approaches relative to
the size of the instance and the corresponding complexity of the problem.
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• We conducted a detailed analysis of the hyperparameters in metaheuristic algo-
rithms, successfully identifying those with the most significant influence in the
context of these problems.

• We developed an effective heuristic for generating initial solutions, which demon-
strated considerable success. Additionally, we crafted heuristics specifically
designed to optimize vehicle schedules, minimizing penalties associated with
missing designated time windows.

Figure 7.1: The contributions of this thesis

From our comprehensive testing, we concluded that for smaller instances, the
performance disparity among algorithms was generally narrower compared to larger
instances. For instance, in the cases of TD-EVRP-STW and TDPR-EVRP-STW,
no single algorithm consistently outperformed the others. It is possible that the
results might have differed with a shorter time limit, however, we determined that
a 5-minute time limit was a reasonable duration for running our algorithms, within
which no significant performance differences were observed.

In the MO-EVRP-STW scenario, GVNS and ACOLS showed slightly superior
performance in achieving one objective (minimizing the sum of the total distance
traveled and the penalty from missed time windows). Yet, when it came to the other
objective (minimizing the distance traveled by ICVs), we again noticed no notable
differences between the algorithms.

However, these findings were not particularly surprising as most of the instances
were small enough to be solved optimality using the CPLEX commercial solver. This
underlines that while our methods are effective, their advantages become more appar-
ent in handling larger, more complex instances where exact solutions are not feasible
within a limited time.
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The most significant differences between the algorithms emerged during tests on
larger instances, specifically those with 100 customers and 21 AFSs. In these sce-
narios, our modified Memetic Algorithm generally yielded the best results, closely
followed by the GVNS. For the TD-EVRP-STW, MMA and GVNS demonstrated
similar levels of performance, but GVNS reached the optimal solution more rapidly.
Interestingly, we noted that GVNS often favored solutions with fewer routes, an ad-
vantage in situations where fleet size is a critical constraint.

In the TDPR-EVRP-STW scenario, MMA once again stood out for its supe-
rior performance, clearly distinguishing itself from other algorithms. In the multi-
objective version of the problem, MMA continued to outperform other algorithms,
with GVNS coming in as a close second. The dominance of MMA was even more
pronounced in achieving objective O2, where it found the best solution in all but one
instance, underlining its efficacy in handling the complexities of larger-scale problems.

7.2 Future work
There are numerous exciting prospects for future research, each offering a valuable
chance to either broaden the scope of application for the problem at hand or discover
more effective methods for solving it. These potential areas include, but are not
limited to:

• While our study aimed to include a comprehensive range of VRP attributes rel-
evant to last-mile delivery, it is important to recognize that different scenarios
might prioritize various other attributes. For instance, the Multi-Compartment
attribute is particularly crucial in industries like food delivery, where main-
taining distinct temperatures for various products is essential. Similarly, the
Multi-Trip attribute gains significance in scenarios involving dynamic requests,
necessitating mid-route returns to the depot. Although there is an allure in
attempting to amalgamate all these attributes into a single, rich VRP to encap-
sulate a wide array of realistic situations, caution is advised. Such a generalized
version of the problem can become exceedingly complex to optimize. In many
cases, solutions tailored to specific problems may yield more efficient and effec-
tive outcomes.

• There remains a vast array of unexplored metaheuristics in the field (along
with those in forests, oceans, and the air). While it is impractical to test
every metaheuristic approach for each specific problem, experimenting with
some renowned methods, such as the Gray Wolf Optimizer, Bat Algorithm, or
Spotted Hyena Optimizer, could potentially lead to satisfactory outcomes.

• As previously mentioned, the charging of an electric vehicle’s battery in real-
world scenarios is not linear. Although incorporating this non-linearity into our
methods is straightforward, it would be interesting to compare the quality of
solutions derived under these realistic conditions with those from our idealized
scenario.

• Much like the previous point, the energy consumption model of electric vehicles
is not a straightforward linear process. It varies based on multiple factors,
including the vehicle’s load, road inclination, speed, etc. Implementing this non-
linear aspect into our methods, as in the previous case, is feasible. The use of
different consumption functions could lead to varied outcomes, such as the need
for an EV to stop for charging at an AFS either earlier or later than predicted
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in our idealized model. By examining several functions and comparing these
results with real-world data, we can gain valuable insights into which model
most accurately predicts energy consumption. This, in turn, would lead to the
development of more practical and reliable methods for managing EV energy
use.

• As outlined in Section 3.4, a variety of objectives can be taken into account
while optimizing the routes of EVs and ICVs. By strategically guiding our
metaheuristics with a single objective while simultaneously assessing multiple
objectives, we could potentially uncover the correlations among these objectives.
This approach might provide a deeper understanding of how optimizing for
one aspect influences the others, offering a more holistic perspective in route
optimization.

• In our idealized model, we assume that each AFS is equipped with an unlimited
number of chargers, all employing identical charging technology. However, this
scenario is quite far from reality. In actuality, each AFS has a finite number
of charging stations, potentially featuring varying charging technologies and
speeds. Consequently, EVs need to consider the availability of these chargers.
When AFSs are owned by the delivery company, this information is readily
accessible to all vehicles. However, the situation becomes more complex with
public AFSs, where predicting charger availability is challenging. While we have
not yet implemented and tested this more realistic scenario, in the creation of
our new instance sets I1 and I2, we incorporated data regarding the number
of chargers at each AFS. It is vital for future research to delve deeper into
this scenario, exploring the intricacies and potential strategies for effectively
managing EV charging in a setting with limited and varied charging resources.

• In recent years, the application of Artificial Intelligence (AI) across diverse
problem domains has been a growing trend. Consequently, it is worthwhile to
explore leveraging the capabilities of AI in two potential ways:

– We can enhance metaheuristic methods by integrating Machine Learning
(ML) principles, creating methods known as Learnheuristics. These hy-
brid methods are gaining popularity, yet many metaheuristics have yet
to fully harness the capabilities of ML. For instance, ML can be applied
to dynamically adjust hyperparameters, or reinforcement learning could
be employed to select the most effective neighborhoods for local search in
each iteration. Such integration has the potential not only to boost the
efficiency of our methods but also to reduce the necessity for meticulous
tuning, thereby streamlining the optimization process.Learnheuristics have
demonstrated promising results, as evidenced in studies [28, 56, 155].

– AI can be leveraged to forecast information that is typically challenging
to ascertain. For example, AI could potentially predict the availability of
charging stations, a key factor previously mentioned. Similarly, it could be
used to estimate energy consumption, average vehicle speed at any given
time, or even anticipate the volume of additional requests in dynamic sce-
narios. Incorporating AI in this manner allows metaheuristics to utilize
more realistic and accurate data, resulting in solutions that are more ap-
plicable in real-world contexts.

• Our observations from testing various methods revealed that those incorporat-
ing local search generally outperformed those without it. Specifically, ACOLS
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showed superior results compared to ACO, and both MA and MMA were more
effective than GA. This pattern strongly suggests that local search is a criti-
cal component of our methodologies. Given its apparent importance, it would
be beneficial to explore different local search techniques in this context. One
such promising method to consider is the Path Relinking algorithm [109], which
could potentially enhance the performance of our approaches even further.

• The concept of time-dependent speeds enables us to simulate varying traffic
conditions at different times of the day. However, there is potential to expand
this concept further. The average speed achievable by a vehicle depends not
just on the time of day but also on its location. For instance, traffic patterns
in tourist areas and business districts of a city may differ significantly. Conse-
quently, the TD attribute could be evolved into a more comprehensive model:
Time and Place Dependent Speeds. This approach would incorporate both spa-
tial and temporal factors, offering a more nuanced and accurate representation
of speed variations based on time and specific urban locations.
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