SISTEM ZA PERSONALIZACIJU VIDEO TUTORIJALA ZASNOVAN NA MAŠINSKOM UČENJU
Apstrakt
Problem koji ovaj rad rešava jeste preporuka najpogodnijeg tipa tutorijala. Rad je rezultat istraživanja koje je rađeno nad studentima Fakulteta tehničkih nauka. Studenti su odgovarali na pitanja ankete, gledali video tutorijale o algoritmima sortiranja i odgovarali na pitanja testa znanja o algoritmima sortiranja. Prilikom gledanja jednog od video tutorijala praćen im je pogled na ekranu uz pomoć uređaja za praćenje pokreta očiju. Na taj način formiran je skup podataka, koji je korišćen za izgradnju modela. U modelu sa najvećom tačnošću, za pronalaženje sličnih studenata koristi se KNN algoritam. Na osnovu sličnih studenata pronalazi se najpogodniji tip tutorijala za datog studenta. Ovaj model postigao je tačnost od 75% na validacionom skupu i tačnost od 67% na testnom skupu.
Reference
[2] Mele, Maria Laura, and Stefano Federici. Gaze and eye-tracking solutions for psychological research. Cognitive processing, 2012, 13.1: 261-265.
[3] Sharafi, Zohreh, et al. Eye-tracking metrics in software engineering. In: 2015 Asia-Pacific Software Engineering Conference (APSEC). IEEE, 2015. p. 96-103.
[4] https://imotions.com/blog/7-terms-metrics-eye-tracking/ (pristupljeno u avgustu 2019.)
[5] Borys, Magdalena, and Małgorzata Plechawska-Wójcik. Eye-tracking metrics in perception and visual attention research. EJMT, 2017, 3: 11-23.
[6] Göbel, Fabian, and Henry Martin. Unsupervised Clustering of Eye Tracking Data. In: Spatial Big Data and Machine Learning in GIScience, Workshop at GIScience 2018. p. 25-28.
[7] Rousseeuw, Peter J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of computational and applied mathematics, 1987, 20: 53-65.
[8] Maaten, Laurens van der; HINTON, Geoffrey. Visualizing data using t-SNE. Journal of machine learning research, 2008, 9.Nov: 2579-2605.
[9] Moss, Felix Joseph Mercer, Roland Baddeley, and Nishan Canagarajah. Eye movements to natural images as a function of sex and personality. PLoS One, 2012, 7.11: e47870.
[10] Astrachan, Owen. Bubble sort: an archaeological algorithmic analysis. In: ACM SIGCSE Bulletin. ACM, 2003. p. 1-5.
[11] Hayfron-Acquah, J. B., Obed Appiah, and K. Riverson. . Improved Selection Sort Algorithm. International Journal of Computer Applications, 2015, 110.5.
[12] https://www.gazept.com/product/gazepoint-gp3-eye-tracker/, (pristupljeno u avgustu 2019.)
[13] https://www.gazept.com/tutorials/, (pristupljeno u avgustu 2019.)
[14] https://www.python.org/, (pristupljeno u avgustu 2019.)
[15] https://towardsdatascience.com/choosing-the-right-encoding-method-label-vs-onehot-encoder-a4434493149b, (pristupljeno u avgustu 2019.)
[16] Wold, Svante, Kim Esbensen, and Paul Geladi. Principal component analysis. Chemometrics and intelligent laboratory systems, 1987, 2.1-3: 37-52
[17] Peterson, Leif E. K-nearest neighbor. Scholarpedia, 2009, 4.2: 1883.
[18] Krafka, Kyle, et al. Eye tracking for everyone. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016. p. 2176-2184.