EVALUACIJA PERFORMANSI KONSENZUS KLASTEROVANJA NAD HISTOPATOLOŠKIM SLIKAMA TUMORA DOJKE

  • Milica Janković
Ključne reči: Konsenzus klasterovanje, polunadgledano učenje, histopatološke slike, tumor dojke, pca

Apstrakt

U ovom radu prikazana je analiza i izdvajanje obeležja sa histopatoloških slika tumora dojke kako bi se postiglo njihovo klasterovanje na benigne i maligne uzorke. Korišćeno je šest metoda za izdvajanje obeležja, PCA metoda redukcije dimenzionalnosti, konsenzus i polunadgledano klasterovanje i adjusted rand indeks kao mera validacije klasterovanja.

Reference

[1] World Health Organization: https://www.who.int/cancer/prevention/diagnosis-screening/breast-cancer/en/
[2] F. A. Spanhol et al., "A Dataset for Breast Cancer Histopathological Image Classification", IEEE Transactions on Biomedical Engineering, str. 1455-1463, 2016.
[3] M. Macenko et al, "A Methode For Normalizing Histology Slides For Quantitive Analysis", IEEE International Symposium on Biomedical Imaging, str. 209., 2013.
[4] T. Ojala et al., "Multiresolution gray-scale and rotation invariant texture classification with local binary patterns", IEEE Trans. Pattern Anal.Mach. Intell., str. 971–987, 2002.
[5] Z. Guo et al.,, "A completed modeling of local binary pattern operator for texture classification", IEEE Trans. Image Process, str. 1657–1663, 2010.
[6] V. Heikkilin et al, "Blur insensitive texture classification using local phase quantization", Proc. 3rd Int. Conf. Image Signal Process., str. 236–243, 2008.
[7] R. Haralick et al, "Textural features for image classification", IEEE Trans. Syst. Man Cybern., str. 610-621, 1973.
[8] L. P. Coelho et al, "Structured literature image finder: extracting information from text and images in biomedical literature", New York : Springer, str.121, 2010.
[9] E. Rublee et al, "ORB: An efficient alternative to SIFT or SURF", Proc. IEEE Int. Conf. Comput. Vision, str. 2564–2571, 2011.
[10] L.N. Fred, "Data clustering using evidence accumulation", IEEE Object recognition supported by user interaction for service robots., 2002.
[11] H. Aidos, "Semi-Supervised Consensus Clustering for ECG Pathology Classification", Proc European Conf. Machine Learning and Principles and Practice of Knowledge Discovery in Databases, str. 150-164, 2015.
[12] A. Antić, "Klasifikacija histopatoloških slika tumora dojke", Diplomski rad, Novi Sad : FTN, 2018.
Objavljeno
2019-05-22
Sekcija
Elektrotehničko i računarsko inženjerstvo