PRIMENA KONVOLUCIONIH NEURONSKIH MREŽA ZA DETEKCIJU BOLESTI PNEUMONIJE NAD PACIJENTIMA
Ključne reči:
Konvolucione neuronske mreže, obrada i analiza slika, klasifikacija slika
Apstrakt
U radu je prikazana primena konvolucionih neuronskih mreža u detekciji bolesti pneumonije kod pacijenata. Objašnjene su osnove neuronskih mreža i kako one funkcionišu. Detaljno je prikazan proces i tehnologije koje se koriste u obradi i analizi slika. Skup podataka, javno dostupan, sastoji se od rendgen snimaka grudnog koša i korišćen je u istraživanju. U radu su prikazane dve arhitekture konvolucionih neuronskih mreža i njihovi rezultati klasifikacije upoređeni su sa rezultatima drugih radova.
Reference
[1] Ayan, Enes, and Halil Murat Ünver. "Diagnosis of pneumonia from chest X-ray images using deep learning." 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT). Ieee, 2019.
[2] Chouhan, Vikash, et al. "A novel transfer learning based approach for pneumonia detection in chest X-ray images." Applied Sciences 10.2 (2020): 559.
[3] Sze, Vivienne, et al. "Efficient processing of deep neural networks: A tutorial and survey." Proceedings of the IEEE 105.12 (2017): 2295-2329.
[4] Sang, Jonghee, Soomyung Park, and Junwoo Lee. "Convolutional recurrent neural networks for urban sound classification using raw waveforms." 2018 26th European Signal Processing Conference (EUSIPCO). IEEE, 2018.
[5] Hijazi, Samer, Rishi Kumar, and Chris Rowen. "Using convolutional neural networks for image recognition." Cadence Design Systems Inc.: San Jose, CA, USA (2015): 1-12.
[6] Goutte, Cyril, and Eric Gaussier. "A probabilistic interpretation of precision, recall and F-score, with implication for evaluation." European conference on information retrieval. Springer, Berlin, Heidelberg, 2005.
[7] Alzubaidi, Laith, et al. "Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions." Journal of big Data 8 (2021): 1-74
[2] Chouhan, Vikash, et al. "A novel transfer learning based approach for pneumonia detection in chest X-ray images." Applied Sciences 10.2 (2020): 559.
[3] Sze, Vivienne, et al. "Efficient processing of deep neural networks: A tutorial and survey." Proceedings of the IEEE 105.12 (2017): 2295-2329.
[4] Sang, Jonghee, Soomyung Park, and Junwoo Lee. "Convolutional recurrent neural networks for urban sound classification using raw waveforms." 2018 26th European Signal Processing Conference (EUSIPCO). IEEE, 2018.
[5] Hijazi, Samer, Rishi Kumar, and Chris Rowen. "Using convolutional neural networks for image recognition." Cadence Design Systems Inc.: San Jose, CA, USA (2015): 1-12.
[6] Goutte, Cyril, and Eric Gaussier. "A probabilistic interpretation of precision, recall and F-score, with implication for evaluation." European conference on information retrieval. Springer, Berlin, Heidelberg, 2005.
[7] Alzubaidi, Laith, et al. "Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions." Journal of big Data 8 (2021): 1-74
Objavljeno
2024-03-02
Sekcija
Elektrotehničko i računarsko inženjerstvo