ELEKTRIČNI TRANSPORT U MXENE-CITOZAN NANOMEMBRANAMA

  • Jelena Đerić
  • Marko Radović
Ključne reči: MXene, Poliprolakton (PCL), Električna provodnost, Dvodimenzionalni nanomaterijali

Apstrakt

Ovaj rad istražuje primenu MXena, dvodimenzionalnih (2D) nanomaterijala, na polikaprola-kton (PCL) membranama u svrhu prehrambene i medicinske tehnologije. MXeni su novi 2D materijali koji se sastoje od slojeva prelaznih metalnih karbida, nitrida ili karbonitrida. PCL je biokompatibilan, biorazgradiv poliester, pogodan za medicinsku primenu. Ispitivana su električna svojstva PCL-MXene membrana pre i posle tretmana kiseonikovom plazmom. Rezultati pokazuju povećanje provodnosti nakon nanošenja MXena, što nije slučaj prilikom tretmana plazmom. Ali je primećen uticaj tretmana na električna i mehanička svojstva nanokompo-zita.

Reference

[1] Deshmukh, K., Basheer Ahamed, M., Deshmukh, R. R., Khadheer Pasha, S. K., Bhagat, P. R., & Chidambaram, K., „Biopolymer Composites With High Dielectric Performance: Interface Engineering,“ Biopolymer Composites in Electroniс, pp. 27-128, 2017. https://doi.org/10.1016/B978-0-12-809261-3.00003-6
[2] Hutmacher D. W., Schantz T., Zein I., Ng K. W., Teoh S. H. & Tan K. C., „Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling,“ Journal of Biomedical Materials Research, p. 203–216, 2001. https://doi.org/10.1002/1097-4636(200105)55:2<203::aid-jbm1007>3.0.co;2-7
[3] Lam C. X., Teoh S. H. & Hutmacher D. W.., „Comparison of the degradation of polycaprolactone and polycaprolactone–(β-tricalcium phosphate) scaffolds in alkaline medium,“ Polymer International, pp. 718-728, 2007. https://doi.org/10.1002/pi.2195
[4] Jenkins, M. J., & Harrison, K. L., „The effect of molecular weight on the crystallization kinetics of polycaprolactone“ Polymers for Advanced Technologies, p. 474–478. https://doi.org/doi:10.1002/pat.733
[5] Mondal, D., Griffith, M., & Venkatraman, S. S., „Polycaprolactone-based biomaterials for tissue engineering and drug delivery: Current scenario and challenges,“ . International Journal of Polymeric Materials and Polymeric Biomaterials, pp. 255-265, 2016. https://doi.org/10.1080/00914037.2015.1103241
[6] Sinha, V. R., Bansal, K., Kaushik, R., Kumria, R., & Trehan, A., „Poly-ϵ-caprolactone microspheres and nanospheres: an overview“ International Journal of Pharmaceutics, p. 1–23, 2004. https://doi.org/10.1016/j.ijpharm.2004.01.044
[7] Ikada, Y., & Tsuji, H., „Biodegradable polyesters for medical and ecological applications“ Macromolecular Rapid Communications, pp. 117-132, 2000. https://doi.org/10.1002/(sici)1521-3927(20000201)21:3<117::aid-marc117>3.0.co;2-x
[8] Naguib, M.; Kurtoglu, M.; Presser; V., Lu, J.; Niu, J.; Heon, M.; L., Hultman; Y, Gogotsi; Barsoum, M. W. „Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2“, Advanced Materials, pp. 4248-4253, 2011. https://doi.org/10.1002/adma.201102306
[9] B. &. G. Y. , Anasori, 2D Metal Carbides and Nitrides (MXenes), 2019.
[10] R. Garg, A. Agarwal и a. M. Agarwal1, „A review on MXene for energy storage application: effect of interlayer distance“ IOP Publishing, 2020. https://doi.org/10.1088/2053-1591/ab750d
[11] Eunji Lee, Armin VahidMohammadi, Barton C. Prorok, Young Soo Yoon, Majid Beidaghi, and Dong-Joo Kim, „Room Temperature Gas-Sensing of Two-Dimensional Titanium Carbide (MXene,“ Applied materials & interfaces, 2017 https://doi.org/10.1021/acsami.7b11055
[12] T. He, W. Liu, T. Lv, M. Ma, Z. Liu, A. Vasiliev и X. Li, „MXene/SnO2 heterojunction based chemical gas sensors,“ Sens. Actuators B Chem, 2021 https://doi.org/10.1016/j.snb.2020.129275
[13] Q. Li, Y. Li и a. W. Z. 1, „Preparation and Application of 2D MXene-Based Gas Sensors: A Review“ Chemosensors, pp. 1-40, 2021. https://doi.org/10.3390/chemosensors9080225
Objavljeno
2024-01-05
Sekcija
Biomedicinsko inženjerstvo