FOTOKATALITIČKI TRETMAN KOMUNALNE OTPADNE VODU U CILJU UKLANJANJA NESTEROIDNIH ANTIINFLAMATORNIH LEKOVA (NSAIL)
Ključne reči:
Farmaceutici, Nesteroidni antiinflamatorni lekovi, Fotokataliza, Komunalna otpadna voda
Apstrakt
U okviru ovog rada proučavano je prisustvo nesteroidnih anti-inflamatornih lekova u životnoj sredini i komunalnoj otpadnoj vodi, njihova fizičko-hemijska svojstva i mogućnosti njihovog uklanjanja, sa akcentom na fotokatalitičkim postupcima. Za potrebe rada izveden je eksperiment na uzorku komunalne otpadne vode, u okviru kog je analiziran uticaj pH vrednosti, mase fotokatalizatora i koncentracije odabranih farmaceutika – ibuprofena, ketoprofena, diklofenaka i naproksena, a zatim je izveden i eksperiment uklanjanja navedenih nesteroidnih antiinflamatornih lekova iz komunalne vode.
Reference
[1] R. B. Arthur, J. L. Bonin, L. P. Ardill, E. J. Rourk, H. H. Patterson, E. A. Stemmler, “Photocatalytic Degradation of Ibuprofen over BiOCl Nanosheets with Identification of Intermediates”, Journal of Hazardous Materials, Vol. 35, pp. 1-9, 2018.
[2] V. L. Cunningham “Characteristics of Pharmaceuticals Related to Environmental Fate”, Berlin, Springer, 2008.
[3] S. Murgolo, I. S. Moreira, C. Piccirillo, P. M. L. Castro, G. Ventrella, C. Cocozza, G. Mascolo, “Photocatalytic Degradation of Diclofenac by Hydroxyapatite-TiO2 Compsite Material: Identification of Transformation Products and Assessment of Toxicity”, Materials, Vol. 11, pp. 1-16, 2018.
[4] L. Djouadi, H. Khalaf, H. Boukhatem, H. Boutoumi, A. Kezzime, A. J. Santaballa, M. Canle, “Degradation of aqueous ketoprofen by heterogeneous photocatalysis using Bi2S3/TiO3-Montmorillonite nanocomposites under simulated solar irradiation”, Applied Clay Science, Vol. 166, pp. 27-37, 2018.
[5] L. D. Nghiem, A. I. Schäfer, M. Elimelech, “Pharmaceutical Retention Mechanisms by Nanofiltration Membranes”, Environmental Science & Technology, Vol. 39, pp. 7698-7705, 2005.
[6] A. S. Stasinakis, G. Gatidou, “Micropollutants and Aquatic Environment”, London, IWA Publishing, 2019.
[7] E. M. Cuerda-Correa, J. R. Domínguez-Vargas, D. J. Olivares-Marín, J. B. De Heredia, “On the use of carbon blacks as potential low-cost adsorbents for the removal of non-steriodal anti-inflammatory drugs from river water”, Journal of Hazardous Materials, Vol. 177, pp. 1046-1053, 2010.
[8] K. S. Varma, R. J. Tayade, K. J. Shah, P. A. Joshi, A. D. Shuklka, V. G. Gandhi, “Photocatalytic degradation of pharamceutical and pesticide compounds (PPCs) using doped TiO2 nanomaterials: A review”, Water-Energy Nexus, Vol. 3, pp. 46-61, 2020.
[9] X. Zheng, Y. Li, J. Yang, S. Cui, “Z-Scheme heterojunction Ag/NH2-MIL-125(Ti)/CdS with enhanced photocatalytic activity for ketoprofen degradation: Mechanism and intermediates”, Chemical Engineering Journal, Vol. 422, pp. 130105, 2021.
[10] Z. Long, Q. Li, T. Wie, G. Yhang, Z. Ren,“Historical development and prospects of photocatalysts for pollutant removal in water”, Journal of Hazardous Materials, Vol 395, pp. 122599, 2020.
[11] M. A. Barros, M. J. Sampaio, A. R. Ribeiro, C. G. Silva, A. M. T. Silva, J. L. Faria, “Interactions of pharmaceutical compounds in water matrices under visible-driven photocatalysis”, Journal of Environmental Chemical Engineering, Vol. 9, pp. 104747, 2020.
[12] G. Iervolino, I. Zammit, V. Vaiano, L. Rizzo, “Limitations and Prospects for Wastewater Treatment by UV and Visible-Light-Active Heterogeneous Photocatalysis: A Critical Review”, Topics in Current Chemistry, Vol. 378, pp. 1-40, 2020.
[13] C. Regmi, Y. K. Kshetri, R. P. Pandey, S. W. Lee, “Visible-light-driven S and W co-doped dendritic BiVO4 for efficient photocatalytic degradation of naproxen and its mechanistic analysis”, Molecular Catalysis, Vol. 453, pp. 149-160, 2020.
[14] E. Mugunthan, M. B. Saidutta, P. E. Jagadeeshbabu, “Photocatalytic Degradation of Diclofenac using TiO2-SnO2 Mixed Oxide Catalysts”, Environmental Technology, Vol. 40, pp. 1-26, 2017.
[15] M. Tanveer, G. T. Guyer, G. Abbas, “Photocatalytic degradation of ibuprofen in water using TiO2 and ZnO under artificial UV and solar irradiation”, Water Environment Research, Vol. 91, pp. 822-829, 2019.
[16] M. I. Pratiwi, N. Afifah, R. Saleh, “Fe-doped ZnO Nanoparticles in Solution. Infulence of pH, Dissolution, Aggregation and Disaggregation effects”, Journal of Colloid Science and Biotechnology, Vol. 3, pp. 75-84, 2017.
[2] V. L. Cunningham “Characteristics of Pharmaceuticals Related to Environmental Fate”, Berlin, Springer, 2008.
[3] S. Murgolo, I. S. Moreira, C. Piccirillo, P. M. L. Castro, G. Ventrella, C. Cocozza, G. Mascolo, “Photocatalytic Degradation of Diclofenac by Hydroxyapatite-TiO2 Compsite Material: Identification of Transformation Products and Assessment of Toxicity”, Materials, Vol. 11, pp. 1-16, 2018.
[4] L. Djouadi, H. Khalaf, H. Boukhatem, H. Boutoumi, A. Kezzime, A. J. Santaballa, M. Canle, “Degradation of aqueous ketoprofen by heterogeneous photocatalysis using Bi2S3/TiO3-Montmorillonite nanocomposites under simulated solar irradiation”, Applied Clay Science, Vol. 166, pp. 27-37, 2018.
[5] L. D. Nghiem, A. I. Schäfer, M. Elimelech, “Pharmaceutical Retention Mechanisms by Nanofiltration Membranes”, Environmental Science & Technology, Vol. 39, pp. 7698-7705, 2005.
[6] A. S. Stasinakis, G. Gatidou, “Micropollutants and Aquatic Environment”, London, IWA Publishing, 2019.
[7] E. M. Cuerda-Correa, J. R. Domínguez-Vargas, D. J. Olivares-Marín, J. B. De Heredia, “On the use of carbon blacks as potential low-cost adsorbents for the removal of non-steriodal anti-inflammatory drugs from river water”, Journal of Hazardous Materials, Vol. 177, pp. 1046-1053, 2010.
[8] K. S. Varma, R. J. Tayade, K. J. Shah, P. A. Joshi, A. D. Shuklka, V. G. Gandhi, “Photocatalytic degradation of pharamceutical and pesticide compounds (PPCs) using doped TiO2 nanomaterials: A review”, Water-Energy Nexus, Vol. 3, pp. 46-61, 2020.
[9] X. Zheng, Y. Li, J. Yang, S. Cui, “Z-Scheme heterojunction Ag/NH2-MIL-125(Ti)/CdS with enhanced photocatalytic activity for ketoprofen degradation: Mechanism and intermediates”, Chemical Engineering Journal, Vol. 422, pp. 130105, 2021.
[10] Z. Long, Q. Li, T. Wie, G. Yhang, Z. Ren,“Historical development and prospects of photocatalysts for pollutant removal in water”, Journal of Hazardous Materials, Vol 395, pp. 122599, 2020.
[11] M. A. Barros, M. J. Sampaio, A. R. Ribeiro, C. G. Silva, A. M. T. Silva, J. L. Faria, “Interactions of pharmaceutical compounds in water matrices under visible-driven photocatalysis”, Journal of Environmental Chemical Engineering, Vol. 9, pp. 104747, 2020.
[12] G. Iervolino, I. Zammit, V. Vaiano, L. Rizzo, “Limitations and Prospects for Wastewater Treatment by UV and Visible-Light-Active Heterogeneous Photocatalysis: A Critical Review”, Topics in Current Chemistry, Vol. 378, pp. 1-40, 2020.
[13] C. Regmi, Y. K. Kshetri, R. P. Pandey, S. W. Lee, “Visible-light-driven S and W co-doped dendritic BiVO4 for efficient photocatalytic degradation of naproxen and its mechanistic analysis”, Molecular Catalysis, Vol. 453, pp. 149-160, 2020.
[14] E. Mugunthan, M. B. Saidutta, P. E. Jagadeeshbabu, “Photocatalytic Degradation of Diclofenac using TiO2-SnO2 Mixed Oxide Catalysts”, Environmental Technology, Vol. 40, pp. 1-26, 2017.
[15] M. Tanveer, G. T. Guyer, G. Abbas, “Photocatalytic degradation of ibuprofen in water using TiO2 and ZnO under artificial UV and solar irradiation”, Water Environment Research, Vol. 91, pp. 822-829, 2019.
[16] M. I. Pratiwi, N. Afifah, R. Saleh, “Fe-doped ZnO Nanoparticles in Solution. Infulence of pH, Dissolution, Aggregation and Disaggregation effects”, Journal of Colloid Science and Biotechnology, Vol. 3, pp. 75-84, 2017.
Objavljeno
2023-02-07
Sekcija
Inženjerstvo zaštite životne sredine i zaštite na radu