ANALIZA RAZVOJA SEKTORA FOTONAPONSKIH TEHNOLOGIJA U SVETU
Ključne reči:
Obnovljivi izvori energije, fotonaponske tehnologije, električna energija, životna sredina
Apstrakt
U radu su dati opis i podela fotonaponskih tehnologija prema generacijama solarnih ćelija. Takođe, analiziran je istorijski razvoj fotonaponskih tehnologija sa aspekta korišćenih materijala, efikasnosti i cene. Na kraju, dat je prikaz zastupljenosti ovih tehnologija na maloj i velikoj skali.
Reference
[1] Dragana Štrbac. 2020/2021. Savremeni materijali u energetici.
[2] https://www.tindosolar.com.au/learn-more/poly-vs-mono-crystalline/ pristupljeno 17.5.2022.
[3] S. Ishizuka, A. Yamada, K. Matsubara, P. Fons, K. Sakurai, S. Niki. 2010. Development of high-efficiency flexible Cu(In,Ga)Se2 solar cells: A study of alkali doping effects on CIS, CIGS, and CGS using alkali-silicate glass thin layers. Current applied physics (10): 154-156.
[4] S. Ruhle, 2016. Tabulated values of the Shockley-Queisser limit for single junction solar cells. Solar Energy 130 (2016): 139-147
[5] https://www.pv-magazine.com/2018/02/23/unique-properties-of-organic-polymer-solar-cells-expected-to-open-niche-market-opportunities/v pristupljeno 16.3.2022.
[6] Yu P, Chang C.H, Chiu C.H, Yang C.S, Yu J.C, Kuo H.C, Hsu S.H, Chang Y.C, 2009. Efficiency Enhancement of GaAs Photovoltaics Employing Antireflective Indium Tin Oxide Nanocolumns. Advanced Materials 21 (16): 1618-1621.
[7] Bayod-Rujula A.A. 2009. Photovoltaic systems. Prensas de la Universidad de Zaragoza, Saragosa, Španija.
[8] Frydrychowicz–Jastrzębska G, Bugala A. 2016. CIS, CIGS and CIBS thin film solar cells and possibilities of their application in BIPV. Computer Applications in Electrical Engineering 14 (): 364-377.
[9] Erhenfreund P, Cox N, Foing B, 2006. FULLERENES AND RELATED CARBON COMPOUNDS IN INTERSTELLAR ENVIRONMENTS. In: Natural fullerenes and related structures of elemental carbon, ed. Rietmeijer F.J.M, ch 4, 53-69. Springer, Dordeht, Holandija.
[10] https://www.sigmaaldrich.com/RS/en/technical-documents/technical-article/materials-science-and-engineering/microelectronics-and-nanoelectronics/fullerenes pristupljeno 17.9.2021.
[11] [89]Fraas L.M. 2014. Low-Cost Solar Electric Power. Springer International Publishing, Bazel, Švajcarska.
[12] Moinudeen G. K, Ahmad F, Kumar D, Al-Douri Y, Ahmad S, 2017. IoT Applications in Future Foreseen Guided by Engineered Nanomaterials and Printed Intelligence Technologies a Technology Review. International Journal of Internet of Things 6 (3): 106-148.
[13] Ojo A.A, Cranton W.M, Dharmadasa I.M, 2018. Photovoltaic Solar Cells: Materials, Concepts and Devices. In: Next Generation Multilayer Graded Bandgap Solar Cells, ed. Ojo A.A, Cranton W.M, Dharmadasa I.M, ch 2, 17-40. Springer, Dordeht, Holandija.
[14] Shubbak M.H, 2019. Advances in solar photovoltaics: Technology review and patent trends. Renewable and Sustainable Energy Reviews 115
[15] Yamaguchi M, Dimroth F, Geisz J.F, Ekins-Daukes N.J, 2021. Multi-junction solar cells paving the way for super high-efficiency. Journal of Applied Physics 129 (24): 137-152.
[16] Lamanna E, Matteocci F, Calabro E, Serenelli L, Salza E, Martini L, Menchini F, Izzi M, Agresti A, Pescetelli S, Bellani S, del Rio Castillo A. E, Bonaccorso F, Tucci M, di Carlo A, 2020. Mechanically Stacked, Two-Terminal Graphene-Based Perovskite/Silicon Tandem Solar Cell with Efficiency over 26%. Joule 4 (1): 865-881.
[17] Richter A, Muller R, Benick J, Feldmann F, Steinhauser B, Reichel C, Fell A, Bivour M, Hermle M, Glunz S.W, 2021. Design rules for high-efficiency both-sidescontacted silicon solar cells with balanced charge carrier transport and recombination losses. Nature energy 6 (4): 429-438.
[18] Swanson R.M. 2006. A Vision for Crystalline Silicon Photovoltaics. Progress in Photovoltaics: Research and Application 14 (5): 443-453.
[19] https://www.ysgsolar.com/blog/15-largest-solar-farms-world-2021-ysg-solar pristupljeno 26.9.2021.
[20] https://pressoffice.sunroof.se/99367-the-first-house-in-poland-with-a-completely-solar-roof-has-recently-been-completed-making-it-the-most-ecological-roof-in-the-country pristupljeno 29.9.2021.
[2] https://www.tindosolar.com.au/learn-more/poly-vs-mono-crystalline/ pristupljeno 17.5.2022.
[3] S. Ishizuka, A. Yamada, K. Matsubara, P. Fons, K. Sakurai, S. Niki. 2010. Development of high-efficiency flexible Cu(In,Ga)Se2 solar cells: A study of alkali doping effects on CIS, CIGS, and CGS using alkali-silicate glass thin layers. Current applied physics (10): 154-156.
[4] S. Ruhle, 2016. Tabulated values of the Shockley-Queisser limit for single junction solar cells. Solar Energy 130 (2016): 139-147
[5] https://www.pv-magazine.com/2018/02/23/unique-properties-of-organic-polymer-solar-cells-expected-to-open-niche-market-opportunities/v pristupljeno 16.3.2022.
[6] Yu P, Chang C.H, Chiu C.H, Yang C.S, Yu J.C, Kuo H.C, Hsu S.H, Chang Y.C, 2009. Efficiency Enhancement of GaAs Photovoltaics Employing Antireflective Indium Tin Oxide Nanocolumns. Advanced Materials 21 (16): 1618-1621.
[7] Bayod-Rujula A.A. 2009. Photovoltaic systems. Prensas de la Universidad de Zaragoza, Saragosa, Španija.
[8] Frydrychowicz–Jastrzębska G, Bugala A. 2016. CIS, CIGS and CIBS thin film solar cells and possibilities of their application in BIPV. Computer Applications in Electrical Engineering 14 (): 364-377.
[9] Erhenfreund P, Cox N, Foing B, 2006. FULLERENES AND RELATED CARBON COMPOUNDS IN INTERSTELLAR ENVIRONMENTS. In: Natural fullerenes and related structures of elemental carbon, ed. Rietmeijer F.J.M, ch 4, 53-69. Springer, Dordeht, Holandija.
[10] https://www.sigmaaldrich.com/RS/en/technical-documents/technical-article/materials-science-and-engineering/microelectronics-and-nanoelectronics/fullerenes pristupljeno 17.9.2021.
[11] [89]Fraas L.M. 2014. Low-Cost Solar Electric Power. Springer International Publishing, Bazel, Švajcarska.
[12] Moinudeen G. K, Ahmad F, Kumar D, Al-Douri Y, Ahmad S, 2017. IoT Applications in Future Foreseen Guided by Engineered Nanomaterials and Printed Intelligence Technologies a Technology Review. International Journal of Internet of Things 6 (3): 106-148.
[13] Ojo A.A, Cranton W.M, Dharmadasa I.M, 2018. Photovoltaic Solar Cells: Materials, Concepts and Devices. In: Next Generation Multilayer Graded Bandgap Solar Cells, ed. Ojo A.A, Cranton W.M, Dharmadasa I.M, ch 2, 17-40. Springer, Dordeht, Holandija.
[14] Shubbak M.H, 2019. Advances in solar photovoltaics: Technology review and patent trends. Renewable and Sustainable Energy Reviews 115
[15] Yamaguchi M, Dimroth F, Geisz J.F, Ekins-Daukes N.J, 2021. Multi-junction solar cells paving the way for super high-efficiency. Journal of Applied Physics 129 (24): 137-152.
[16] Lamanna E, Matteocci F, Calabro E, Serenelli L, Salza E, Martini L, Menchini F, Izzi M, Agresti A, Pescetelli S, Bellani S, del Rio Castillo A. E, Bonaccorso F, Tucci M, di Carlo A, 2020. Mechanically Stacked, Two-Terminal Graphene-Based Perovskite/Silicon Tandem Solar Cell with Efficiency over 26%. Joule 4 (1): 865-881.
[17] Richter A, Muller R, Benick J, Feldmann F, Steinhauser B, Reichel C, Fell A, Bivour M, Hermle M, Glunz S.W, 2021. Design rules for high-efficiency both-sidescontacted silicon solar cells with balanced charge carrier transport and recombination losses. Nature energy 6 (4): 429-438.
[18] Swanson R.M. 2006. A Vision for Crystalline Silicon Photovoltaics. Progress in Photovoltaics: Research and Application 14 (5): 443-453.
[19] https://www.ysgsolar.com/blog/15-largest-solar-farms-world-2021-ysg-solar pristupljeno 26.9.2021.
[20] https://pressoffice.sunroof.se/99367-the-first-house-in-poland-with-a-completely-solar-roof-has-recently-been-completed-making-it-the-most-ecological-roof-in-the-country pristupljeno 29.9.2021.
Objavljeno
2022-10-07
Sekcija
Čiste energetske tehnologije