TEHNOLOŠKE OPERACIJE ZA SEPARACIJU ARSENA IZ PIJAĆE VODE
Ključne reči:
Arsen, Pijaća voda, Konvencionalne tehnologije, Alternativne tehnologije
Apstrakt
U radu je prikazan pregled tehnoloških operacija u domenu separacije arsena iz vode za piće, klasifikacija postojećih procesa, kao i izazovi koji se javljaju pri njihovoj primeni. Za uklanjanje arsena iz vode primenjuju se različite konvencionalne i unapređene tehnologije. U rezultatima rada pokazano je da se modifikacijom postojećih tehnologija, optimizacijom procesnih parametara, razvojem novih, integracijom postojećih i/ili novih tehnologija separacije može ostvariti brža i efikasnija redukcija arsena u vodi za piće, uz niže troškove održavanja opreme i redukciju generisanja toksičnog otpada.
Reference
1] Jovanović, B.M. (2011). Razvoj metoda i postupaka za uklanjanje arsena iz vode za piće, Doktorska disertacija, Građevinski fakultet, Univerzitet u Beogradu, Beograd.
[2] Kumar, R., Patel, M., Singh, P., Bundschuh, J., Pittman, Jr.C.U., Trakal, L., Mohan, D. (2019). Emerging technologies for arsenic removal from drinking water in rural and peri-urban areas: Methods, experience from, and options for Latin America, Science of the Total Environment 694: 1-21.
[3] Nikić, J. (2019). Sinteza, karakterizacija i primena sorbenata na bazi gvožđa i mangana za uklanjanje arsena iz vode, Doktorska disertacija, Prirodno-matematički fakultet u Novom Sadu, Novi Sad.
[4] Agusa, T., Fujjihara, J., Takeshita, H., Iwata, H. (2011). Individual variations in inorganic arsenic metabolism associated with as3mt genetic polymorphisms, International Journal of Molecular Science 12(4): 2351-2382.
[5] Veličković, Z. (2013). Modifikacija i primena višeslojnih ugljeničnih nanocevi za izdvajanje arsena iz vode, Doktorska disertacija, Tehnološko-metalurški fakultet u Beogradu, Beograd.
[6] Abdul, M.K.S., Jayasingheb S.S., Chandana E.P.S., Jayasumanac, C., Mangala, P., De Silva, C.S. (2015). Arsenic and human health effects: A review, Environmental Toxicology and Pharmacology 40: 828-846.
[7] Vukašinović-Pešić, V.L., Blagojević, N.Z., Rajaković, Lj.V. (2009). Comparative analysis of methods for determination of arsenic in coal and coal ash, Instrumentation Science and Technology 37: 482-498.
[8] Pap, S., Gaffney, P.P.J., Bremner, B., Turk Sekulic, M., Maletic, S., Gibb, S.W., Taggart, M.A., (2022). Enhanced phosphate removal and potential recovery from wastewater by thermo-chemically calcinated shell adsorbents. Science of The Total Environment, Vol. 814, March 2022, Article 15.
[9] Turk Sekulić, M., Bosković, N., Milanović, M., Grujić-Letić, N., Gligorić, E., Pap, S. (2019). An insight into the adsorption of three emerging pharmaceutical contaminants on multifunctional carbonous adsorbent: Mechanisms, modelling and metal coadsorption. Journal of Molecular Liquids, Vol. 284, pp. 372-382.
[10] Pap, S., Turk Sekulic, M., Bremner, B., Taggart, M.A. (2021). From molecular to large-scale phosphorous recovery from wastewater using cost-effective adsorbents: an integrated approach. Hybrid Process Technol. Water Wastewater Treat. 61-85.
[11] Mohan, D., Pittman, C.U.Jr (2007). Arsenic removal from water/wastewater using adsorbents – A critical review, Journal of Hazardous Materials 142: 1-53.
[12] Mondal, P., Majumder, C.B., Mohanty, B. (2008). Effects of adsorbent dose, its particle size, and initial arsenic concentration on the removal of arsenic, iron and manganese from simulated ground water by Fe3+ impregnated activated carbon, Journal of Hazardous Materials 150: 695-702.
[13] Oreščanin, V. (2013). Arsenic in water – Origin, toxic effects and methods of elimination, 275-276, Hrvatske vode Zagreb.
[14] Oreščanin, V., Kolar, R., Nađ, K. (2011). The electrocoagulation/advanced oxidation treatment of the groundwater used for human consumption, Journal of Environmental Science and Health, Part A. Toxic/Hazardous Substances and Environmental Engineering, 46(14): 1611-1618.
[15] Pio, I., Scarlino, A., Bloise, E., Mele, G., Santoro, O., Pastore, T., Santoro, D. (2015). Efficient removal of low-arsenic concentrations from drinking water by combined coagulation and adsorption processes, Separation and Purification Technology 147: 284-291.
[16] Wang, L., Condit, W.E., Chen, A.S.C. (2004). Technology selection and system design, US EPA Arsenic removal technology demonstration program round 1, EPA/600/R-05/001, Water Supply and Water Resources Division National Risk Management Research Laboratory, Cincinnati, Ohio.
[2] Kumar, R., Patel, M., Singh, P., Bundschuh, J., Pittman, Jr.C.U., Trakal, L., Mohan, D. (2019). Emerging technologies for arsenic removal from drinking water in rural and peri-urban areas: Methods, experience from, and options for Latin America, Science of the Total Environment 694: 1-21.
[3] Nikić, J. (2019). Sinteza, karakterizacija i primena sorbenata na bazi gvožđa i mangana za uklanjanje arsena iz vode, Doktorska disertacija, Prirodno-matematički fakultet u Novom Sadu, Novi Sad.
[4] Agusa, T., Fujjihara, J., Takeshita, H., Iwata, H. (2011). Individual variations in inorganic arsenic metabolism associated with as3mt genetic polymorphisms, International Journal of Molecular Science 12(4): 2351-2382.
[5] Veličković, Z. (2013). Modifikacija i primena višeslojnih ugljeničnih nanocevi za izdvajanje arsena iz vode, Doktorska disertacija, Tehnološko-metalurški fakultet u Beogradu, Beograd.
[6] Abdul, M.K.S., Jayasingheb S.S., Chandana E.P.S., Jayasumanac, C., Mangala, P., De Silva, C.S. (2015). Arsenic and human health effects: A review, Environmental Toxicology and Pharmacology 40: 828-846.
[7] Vukašinović-Pešić, V.L., Blagojević, N.Z., Rajaković, Lj.V. (2009). Comparative analysis of methods for determination of arsenic in coal and coal ash, Instrumentation Science and Technology 37: 482-498.
[8] Pap, S., Gaffney, P.P.J., Bremner, B., Turk Sekulic, M., Maletic, S., Gibb, S.W., Taggart, M.A., (2022). Enhanced phosphate removal and potential recovery from wastewater by thermo-chemically calcinated shell adsorbents. Science of The Total Environment, Vol. 814, March 2022, Article 15.
[9] Turk Sekulić, M., Bosković, N., Milanović, M., Grujić-Letić, N., Gligorić, E., Pap, S. (2019). An insight into the adsorption of three emerging pharmaceutical contaminants on multifunctional carbonous adsorbent: Mechanisms, modelling and metal coadsorption. Journal of Molecular Liquids, Vol. 284, pp. 372-382.
[10] Pap, S., Turk Sekulic, M., Bremner, B., Taggart, M.A. (2021). From molecular to large-scale phosphorous recovery from wastewater using cost-effective adsorbents: an integrated approach. Hybrid Process Technol. Water Wastewater Treat. 61-85.
[11] Mohan, D., Pittman, C.U.Jr (2007). Arsenic removal from water/wastewater using adsorbents – A critical review, Journal of Hazardous Materials 142: 1-53.
[12] Mondal, P., Majumder, C.B., Mohanty, B. (2008). Effects of adsorbent dose, its particle size, and initial arsenic concentration on the removal of arsenic, iron and manganese from simulated ground water by Fe3+ impregnated activated carbon, Journal of Hazardous Materials 150: 695-702.
[13] Oreščanin, V. (2013). Arsenic in water – Origin, toxic effects and methods of elimination, 275-276, Hrvatske vode Zagreb.
[14] Oreščanin, V., Kolar, R., Nađ, K. (2011). The electrocoagulation/advanced oxidation treatment of the groundwater used for human consumption, Journal of Environmental Science and Health, Part A. Toxic/Hazardous Substances and Environmental Engineering, 46(14): 1611-1618.
[15] Pio, I., Scarlino, A., Bloise, E., Mele, G., Santoro, O., Pastore, T., Santoro, D. (2015). Efficient removal of low-arsenic concentrations from drinking water by combined coagulation and adsorption processes, Separation and Purification Technology 147: 284-291.
[16] Wang, L., Condit, W.E., Chen, A.S.C. (2004). Technology selection and system design, US EPA Arsenic removal technology demonstration program round 1, EPA/600/R-05/001, Water Supply and Water Resources Division National Risk Management Research Laboratory, Cincinnati, Ohio.
Objavljeno
2022-08-08
Sekcija
Inženjerstvo tretmana i zaštite voda -- TEMPUS