DUGOROČNA PROGNOZA POTROŠNJE ELEKTRIČNE ENERGIJE ZASNOVANA NA LINEARNOM MODELU

  • Kristina Polih
Ključne reči: Dugoročna prognoza potrošnje električne energije, regresioni algoritmi, kvantili, SVM, MLR

Apstrakt

Rad se bavi problemom dugoročne prog­noze potrošnje električne energije. Cilj rada jeste da se upotrebi jednostavan model i pokaže korelacija tempe­rature vazduha sa potrošnjom električne energije. Korišteni su SVM i MLR algoritmi, koji rade prognozu potrоšnje na osnovu linearnog modela, dok su za određivanje tačnosti upotrebljeni kvantili, MAPE, MSE, PLF i Winkler funkcija.

Reference

[1] J. H. Pujar, “Fuzzy Ideology based Long Term Load Forecasting”, Engineering and Technology International Journal of Computer, Electrical, Automation, Control and Information Engineering, 2010
[2] D. Ali, M. Yohanna, P. M. Ijasini, M. B. Garkida, “Application of fuzzy – Neuro to model weather parameter variability impacts on electrical load based on long-term forecasting“, Alexandria Engineering Journal, Volume 57, Issue 1, 2018, Pages 223-233, ISSN 1110-0168, 2017
[3] D. Ali, M. Yohanna, M.I. Puwu, B.M. Garkida, “Long-term load forecast modelling using a fuzzy logic approach“, Natural Science and Engineering, Volume 18, Issue 2, 2016, Pages 123-127
[4] Xu Liwen, Li Chengdong, Xie Xiuying, Zhang Guiqing, “Long-Short-Term Memory Network Based Hybrid Model for Short-Term Electrical Load Forecasting“, Information 9, no. 7: 165, 2018
[5] Tao Hong, Jason Wilson, Jingrui Xie, “Long Term Probabilistic Load Forecasting and Normalization With Hourly Information“, Ieee Transactions On Smart Grid, Vol. 5, 456-462, 2014
[6] N. Ayub, N. Javaid, S. Mujeeb, M. Zahid, W. Z. Khan, and M. U. Khattak, “Electricity Load Forecasting in Smart Grids Using Support Vector Machine“, COMSATS University Islamabad, Islamabad 44000, 2019
[7] Yasin, Z. M., Salim, N. A., Aziz, N. F. A., Ali, Y. M., & Mohamad, H, “Long-term load forecasting using grey wolf optimizer-least-squares support vector machine“, IAES International Journal of Artificial Intelligence, 2020
[8] Berry, W. D. “Understanding Regression Assumptions, Sage University Paper series on Quantitative Applications in the Social Sciences“, Newbury Park, 1993
[9] M. Pontil, A. Verri, “Properties of Support Vector Machines“, INFM, Via Dodecaneso, Genova, 1998
[10] B. Dalvi, A. Mishra, W. W. Cohen, “Hierarchical semi-supervised classification with incomplete class hierarchies“, Carnegie Mellon Uni., Uni. of Massachusetts, 193-202, 2016
[11] J. V. Mynsbrugge, “Bidding Strategies Using Price Based Unit Commitment in a Deregulated Power Market“, K.U.Leuven, 2010
[12] Tofallis, “A Better Measure of Relative Prediction Accuracy for Model Selection and Model Estimation“, 2015
[13] Hyndman, Rob J., A. B. Koehler, “Another look at measures of forecast accuracy“ IJOF, 2006
[14] Kim, Sungil, H. Kim, “A new metric of absolute percentage error for intermittent demand forecasts“, 2016
[15] Makridakis, Spyros, “Accuracy measures: theoretical and practical concerns“, IJOF, 9(4):527-529, 1993
[16] Delfs H., Knebl H., “Probabilistic Algorithms. In: Introduction to Cryptography. Information Security and Cryptography“, Springer, Berlin, Heidelberg, 2007
[17] Tilmann Gneiting, “Quantiles as optimal point forecasts, International Journal of Forecasting“, Volume 27, Issue 2, 2011, Pages 197-207
[18] Chih-Jen Lin, Jorge J. More, “Newton’s Method For Large Bound-Constrained Optimization Problems”, SIAM J. OPTIM, vol. 9, no. 4, pp. 1100–1127, 1999 Society For Industrial And Applied Mathematics
[19] https://www.entsoe.eu/data/power-stats/ (pristupljeno septembar 2021. godine) https://power.larc.nasa.gov/data-access-viewer/ (pristupljeno septembar 2021. godine)
Objavljeno
2022-02-03
Sekcija
Elektrotehničko i računarsko inženjerstvo