UTICAJ NEORGANSKIH ANJONA NA FOTOKATALITIČKI TRETMAN FARMACEUTIKA
Ključne reči:
Farmaceutici, Fotokatalitička degradacija, Neorganski anjoni
Apstrakt
U okviru rada proučavan je uticaj neorganskih anjona na proces fotokatalitičke degradacije farmaceutika u vodama. Detaljno je obrađena tema prisustva neorganskih anjona u vodenoj sredini i njihovih uticaja na procese razgradnje, a zatim i mogući postupci uklanjanja farmaceutika iz vode, uz akcenat na unapređene procese oksidacije i fotokatalitički tretman. Ispitan je uticaj nitratnih, fosfatnih, sulfatnih i hloridnih jona na fotokatalitičku degradaciju naproksena, ibuprofena, ketoprofena i diklofenaka u vodi.
Reference
[1] Nguyen D.N, Manh Bui H, Nguyen H.Q. 2020. Heterogeneous photocatalysis for the removal of pharmaceutical compounds. In: Current Developments in Biotechnology and Bioengineering, ed. Varjani S, Pandey A, Tyagi R.D, Ngo H.H, Larroche C, ch. 7, 161-183. Elsevier. Amsterdam. Netherlands.
[2] Wӧhler L, Hoekstra A.Y, Heboom R.J, Brugnach M, Krol M.S. 2020. Alternative societal solutions to pharmaceuticals in the aquatic environment. Journal of Cleaner Production. Journal of Cleaner Production 277: 1-13.
[3] Khalil A.M.E, Memon F.A, Tabish T.A, Salom D, Zhang S, Butler D. 2020. Nanostructured porous graphene for efficient removal of emerging contaminants (pharmaceuticals) from water. Chemical Engineering Journal 398: 125440.
[4] Rosenfeld P.E, Feng L.G.H. 2011. Emerging Contaminants. In: Risks of Hazardous Wastes, ed. Rosenfeld P.E, Feng L.G.H, ch. 16, 215-222. William Andrew Publishing. Norwich. United States.
[5] World Health Organization. 2011. Pharmaceuticals in Drinking-water. WHO Press. Geneva. Switzerland.
[6] Khan A, Ali J. 2018. Chemical analysis of air and water. In: Bioassays Advanced Methods and Applications, ed. Häder D.P, Erzinger G.S, ch. 2, 21-39. Elsevier. Amsterdam. The Netherlands.
[7] Bharathi P.A.L. 2008. Sulfur Cycle. In: Encyclopedia of Ecology, ed. Jørgensen S.E, Fath B.D, 3424-3431. Academic Press. Cambridge. United States.
[8] Sievert S.M, Kiene R.P, Schulz-Vogt H.N. 2007. The Sulfur Cycle. Oceanography, 2 (2):117-123.
[9] Yang Q.Z, Zhou b, Liu J.W, Shen W.R, Jia X.D, He X.J, Zhao H.Z. 2021. Nitrate removal from water via self-flocculation of genetically engineered bacteria. Chemical Engineering Science 242: 116750.
[10] Dodds W.K, Whiles M.R. Nitrogen, Sulfur, Phosphorus, and other Nutrients. In: Freshwater Ecology, ed. Dodds W.K, Whiles M.R, ch. 14, 395-424. Academic Press. Cambridge. United States.
[11] Kudlek E, Dudziak M, Bohdziewicz J. 2016. Influence of Inorganic Ions and Organic Substances on the Degradation of Pharmaceutical Compound in Water Matrix. Water 8 (532).
[12] Chládková B, Evgenidou E, Kvíftek L, Panáček A, Zbořil R, Kovář P, Lambropoulou D. 2015. Adsorption and photocatalysis of nanocrystalline TiO2 particles for Reactive Red 195 removal: Effect of humic acids, anions and scavengers. Environ. Sci. Pollut. Res. 22: 16514-16524.
[13] Zhang J, Wang X, Wang J, Wang J, Ji Z. 2016. Effect of sufate ions on the crystallization and photocatalytic activity of TiO2/diatomite composite photocatalyst. Chem. Phys. Lett. 643: 53-60.
[14] Zhang X, Xiong X, Xu Y. 2016. Brookite TiO2 photocatalyzed degradation of phenol in presence of phosphate, fluoride, sulfate and borate anions. RSC Adv 6: 61830.
[15] Krivec M, Dillert R, Bahnemann D.W, Mehle A, Štrancar J, Dražić G. 2014. The nature of chlorine-inhibition of photocatalytic degradation of dichloroacetic acid in a TiO2-based microreactor. Phys. Chem. Chem. Phys. 16: 14867.
[16] Lindner M, Hirthe B, Griebler W.D, Bahnemann D.W. 1997. Solar water detoxification: Novel TiO2 powders as highly active photocatalysts. J. Solar Energy Eng. 119: 120-125.
[2] Wӧhler L, Hoekstra A.Y, Heboom R.J, Brugnach M, Krol M.S. 2020. Alternative societal solutions to pharmaceuticals in the aquatic environment. Journal of Cleaner Production. Journal of Cleaner Production 277: 1-13.
[3] Khalil A.M.E, Memon F.A, Tabish T.A, Salom D, Zhang S, Butler D. 2020. Nanostructured porous graphene for efficient removal of emerging contaminants (pharmaceuticals) from water. Chemical Engineering Journal 398: 125440.
[4] Rosenfeld P.E, Feng L.G.H. 2011. Emerging Contaminants. In: Risks of Hazardous Wastes, ed. Rosenfeld P.E, Feng L.G.H, ch. 16, 215-222. William Andrew Publishing. Norwich. United States.
[5] World Health Organization. 2011. Pharmaceuticals in Drinking-water. WHO Press. Geneva. Switzerland.
[6] Khan A, Ali J. 2018. Chemical analysis of air and water. In: Bioassays Advanced Methods and Applications, ed. Häder D.P, Erzinger G.S, ch. 2, 21-39. Elsevier. Amsterdam. The Netherlands.
[7] Bharathi P.A.L. 2008. Sulfur Cycle. In: Encyclopedia of Ecology, ed. Jørgensen S.E, Fath B.D, 3424-3431. Academic Press. Cambridge. United States.
[8] Sievert S.M, Kiene R.P, Schulz-Vogt H.N. 2007. The Sulfur Cycle. Oceanography, 2 (2):117-123.
[9] Yang Q.Z, Zhou b, Liu J.W, Shen W.R, Jia X.D, He X.J, Zhao H.Z. 2021. Nitrate removal from water via self-flocculation of genetically engineered bacteria. Chemical Engineering Science 242: 116750.
[10] Dodds W.K, Whiles M.R. Nitrogen, Sulfur, Phosphorus, and other Nutrients. In: Freshwater Ecology, ed. Dodds W.K, Whiles M.R, ch. 14, 395-424. Academic Press. Cambridge. United States.
[11] Kudlek E, Dudziak M, Bohdziewicz J. 2016. Influence of Inorganic Ions and Organic Substances on the Degradation of Pharmaceutical Compound in Water Matrix. Water 8 (532).
[12] Chládková B, Evgenidou E, Kvíftek L, Panáček A, Zbořil R, Kovář P, Lambropoulou D. 2015. Adsorption and photocatalysis of nanocrystalline TiO2 particles for Reactive Red 195 removal: Effect of humic acids, anions and scavengers. Environ. Sci. Pollut. Res. 22: 16514-16524.
[13] Zhang J, Wang X, Wang J, Wang J, Ji Z. 2016. Effect of sufate ions on the crystallization and photocatalytic activity of TiO2/diatomite composite photocatalyst. Chem. Phys. Lett. 643: 53-60.
[14] Zhang X, Xiong X, Xu Y. 2016. Brookite TiO2 photocatalyzed degradation of phenol in presence of phosphate, fluoride, sulfate and borate anions. RSC Adv 6: 61830.
[15] Krivec M, Dillert R, Bahnemann D.W, Mehle A, Štrancar J, Dražić G. 2014. The nature of chlorine-inhibition of photocatalytic degradation of dichloroacetic acid in a TiO2-based microreactor. Phys. Chem. Chem. Phys. 16: 14867.
[16] Lindner M, Hirthe B, Griebler W.D, Bahnemann D.W. 1997. Solar water detoxification: Novel TiO2 powders as highly active photocatalysts. J. Solar Energy Eng. 119: 120-125.
Objavljeno
2022-03-05
Sekcija
Inženjerstvo zaštite životne sredine i zaštite na radu