FREKVENCIJSKO KODOVANJE VIBROTAKTILNE POVRATNE SPREGE
Ključne reči:
Haptički interfejs, Vibrotaktilna povratna sprega, Vibromotori
Apstrakt
U ovom radu objašnjen je značaj haptičke povratne sprege zasnovane na vibrotaktilnoj senzornoj supstituciji kao i princip njenog funkcionisanja. Urađen je eksperiment sa 10 ispitanika koji su imali zadatak da nauče da razlikuju osam nivoa aktivacije vibromotora, postavljenih na podlakticu ispitanika. Prije početka eksperimenta, nakon serije pilot testova, definisana je frekvencijska šema kodiranja nivoa za aktivaciju vibromotora. Eksperiment se sastojao od tri faze: faze upoznavanja, faze učenja i test faze. Nakon test faze analizirana je uspješnost ispitanika u razlikovanju nivoa u zavisnosti od dobijenih vrijednosti mjera kvaliteta.
Reference
[1] O’malley, M.K. and Gupta, A., 2008. Haptic interfaces. HCI beyond the GUI: Design for Haptic, Speech, Olfactory, and other nontraditional Interfaces, pp.25-64.
[2] Cholewiak, R.W. and Collins, A.A., 1991. Sensory and physiological bases of touch. The psychology of touch, pp.23-60.
[3] Meech, J.F. and Solomonides, A.E., 1996. User requirements when interacting with virtual objects.
[4] Stepp, C.E. and Matsuoka, Y., 2011. Object manipulation improvements due to single session training outweigh the differences among stimulation sites during vibrotactile feedback. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 19(6), pp.677-685.
[5] Witteveen, H.J., Rietman, H.S. and Veltink, P.H., 2015. Vibrotactile grasping force and hand aperture feedback for myoelectric forearm prosthesis users. Prosthetics and orthotics international, 39(3), pp.204-212.
[6] Guemann, M., Bouvier, S., Halgand, C., Paclet, F., Borrini, L., Ricard, D., Lapeyre, E., Cattaert, D. and de Rugy, A., 2019. Effect of vibration characteristics and vibror arrangement on the tactile perception of the upper arm in healthy subjects and upper limb amputees. Journal of neuroengineering and rehabilitation, 16(1), p.138.
[7] Schmidt, R.F., 1981. Somatovisceral sensibility. In Fundamentals of sensory physiology (pp. 81-125). Springer, Berlin, Heidelberg.
[8] Kaczmarek, K.A., Webster, J.G., Bach-y-Rita, P. and Tompkins, W.J., 1991. Electrotactile and vibrotactile displays for sensory substitution systems. IEEE transac-tions on biomedical engineering, 38(1), pp.1-16.
[9] Cipriani, C., D’Alonzo, M. and Carrozza, M.C., 2011. A miniature vibrotactile sensory substitution device for multifingered hand prosthetics. IEEE transactions on biomedical engineering, 59(2), pp.400-408.
[10] Jones, L.A. and Sarter, N.B., 2008. Tactile displays: Guidance for their design and application. Human factors, 50(1), pp.90-111.
[11] Pylatiuk, C., Kargov, A. and Schulz, S., 2006. Design and evaluation of a low-cost force feedback system for myoelectric prosthetic hands. JPO: Journal of Prosthetics and Orthotics, 18(2), pp.57-61.
[12] Chatterjee, A., Chaubey, P., Martin, J. and Thakor, N., 2008. Testing a prosthetic haptic feedback simulator with an interactive force matching task. JPO: Journal of Prosthetics and Orthotics, 20(2), pp.27-34.
[13] Stepp, C.E. and Matsuoka, Y., 2011. Vibrotactile sensory substitution for object manipulation: amplitude versus pulse train frequency modulation. IEEE Transac-tions on Neural Systems and Rehabilitation Engineering, 20(1), pp.31-37.
[2] Cholewiak, R.W. and Collins, A.A., 1991. Sensory and physiological bases of touch. The psychology of touch, pp.23-60.
[3] Meech, J.F. and Solomonides, A.E., 1996. User requirements when interacting with virtual objects.
[4] Stepp, C.E. and Matsuoka, Y., 2011. Object manipulation improvements due to single session training outweigh the differences among stimulation sites during vibrotactile feedback. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 19(6), pp.677-685.
[5] Witteveen, H.J., Rietman, H.S. and Veltink, P.H., 2015. Vibrotactile grasping force and hand aperture feedback for myoelectric forearm prosthesis users. Prosthetics and orthotics international, 39(3), pp.204-212.
[6] Guemann, M., Bouvier, S., Halgand, C., Paclet, F., Borrini, L., Ricard, D., Lapeyre, E., Cattaert, D. and de Rugy, A., 2019. Effect of vibration characteristics and vibror arrangement on the tactile perception of the upper arm in healthy subjects and upper limb amputees. Journal of neuroengineering and rehabilitation, 16(1), p.138.
[7] Schmidt, R.F., 1981. Somatovisceral sensibility. In Fundamentals of sensory physiology (pp. 81-125). Springer, Berlin, Heidelberg.
[8] Kaczmarek, K.A., Webster, J.G., Bach-y-Rita, P. and Tompkins, W.J., 1991. Electrotactile and vibrotactile displays for sensory substitution systems. IEEE transac-tions on biomedical engineering, 38(1), pp.1-16.
[9] Cipriani, C., D’Alonzo, M. and Carrozza, M.C., 2011. A miniature vibrotactile sensory substitution device for multifingered hand prosthetics. IEEE transactions on biomedical engineering, 59(2), pp.400-408.
[10] Jones, L.A. and Sarter, N.B., 2008. Tactile displays: Guidance for their design and application. Human factors, 50(1), pp.90-111.
[11] Pylatiuk, C., Kargov, A. and Schulz, S., 2006. Design and evaluation of a low-cost force feedback system for myoelectric prosthetic hands. JPO: Journal of Prosthetics and Orthotics, 18(2), pp.57-61.
[12] Chatterjee, A., Chaubey, P., Martin, J. and Thakor, N., 2008. Testing a prosthetic haptic feedback simulator with an interactive force matching task. JPO: Journal of Prosthetics and Orthotics, 20(2), pp.27-34.
[13] Stepp, C.E. and Matsuoka, Y., 2011. Vibrotactile sensory substitution for object manipulation: amplitude versus pulse train frequency modulation. IEEE Transac-tions on Neural Systems and Rehabilitation Engineering, 20(1), pp.31-37.
Objavljeno
2020-12-25
Sekcija
Elektrotehničko i računarsko inženjerstvo