

UNIVERSITY OF NOVI SAD

FACULTY OF TECHNICAL SCIENCES

Приступ спецификацији и

генерисању производних процеса

заснован на инжењерству вођеном

моделима

A Model-Driven Approach to the

Production Process Specification and

Generation

Ph.D. Thesis

Supervisors: Ph.D. Candidate:

Dr. Vladimir Dimitrieski, Assistant Professor Marko Vještica

Dr. Ivan Luković, Full Professor

Novi Sad, 2023

Marko Vještica: A Model-Driven Approach to the Production Process Specification and

Generation, © 2023

Serbian Title:

Приступ спецификацији и генерисању производних процеса заснован на инжењерству

вођеном моделима

Supervisors:

Dr. Vladimir Dimitrieski, Assistant Professor

Dr. Ivan Luković, Full Professor

Location:

Novi Sad

Date:

2023

УНИВЕРЗИТЕТ У НОВОМ САДУ ОБРАЗАЦ – 5а

ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА

КЉУЧНA ДОКУМЕНТАЦИЈСКА ИНФОРМАЦИЈА1

Врста рада: Докторска дисертација

Име и презиме

аутора:
Марко Вјештица

Ментори (титула,

име, презиме, звање,

институција)

др Владимир Димитриески, доцент, Универзитет у Новом Саду,

Факултет техничких наука

др Иван Луковић, редовни професор, Универзитет у Београду, Факултет

организационих наука

Наслов рада:
Приступ спецификацији и генерисању производних процеса заснован на
инжењерству вођеном моделима

Језик публикације

(писмо):
енглески

Физички опис рада:

Унети број:

Страница 253
Поглавља 10

Референци 265

Табела 8

Слика 51

Листинзи 21

Графикона 2

Прилога 1

Научна област: Електротехничко и рачунарско инжењерство

Ужа научна област

(научна дисциплина):
Примењене рачунарске науке и информатика

Кључне речи /

предметна

одредница:

Моделовање производних процеса; Извршавање процеса; Индустрија

4.0; Наменски језици; Трансформације модела; Инжењерство вођено

моделима

Резиме на језику

рада:

У овој дисертацији представљен је приступ спецификацији и генерисању

производних процеса заснован на инжењерству вођеном моделима, у

циљу повећања флексибилности постројења у фабрикама и ефикаснијег

разрешавања изазова који се појављују у ери Индустрије 4.0. За потребе

формалне спецификације производних процеса и њихових варијација у

амбијенту Индустрије 4.0, креиран је нови наменски језик, чије моделе

рачунар може да обради на аутоматизован начин. Креирани језик има
могућност моделовања производних процеса који могу бити независни од

производних система и тиме употребљени у различитим постројењима

или фабрикама, али и производних процеса који су специфични за

одређени систем. Како би моделе производних процеса зависних од

конкретног производног система било могуће на аутоматизован начин

трансформисати у инструкције које ресурси производног система

извршавају, креиран је генератор инструкција. Такође су креирани и

генератори техничке документације, који на аутоматизован начин

трансформишу моделе производних процеса у документе различитих

типова. Употребом предложеног приступа, наменског језика и

софтверског решења доприноси се увођењу фабрика у процес дигиталне

1 Аутор докторске дисертације потписао је и приложио следеће Обрасце:

5б – Изјава о ауторству;

5в – Изјава o истоветности штампане и електронске верзије и о личним подацима;

5г – Изјава о коришћењу.

Ове Изјаве се чувају на факултету у штампаном и електронском облику и не кориче се са тезом.

трансформације. Како фабрике у ери Индустрије 4.0 морају брзо да се

прилагоде новим производима и њиховим варијацијама, неопходно је

динамички водити производњу и на аутоматизован начин слати

инструкције ресурсима у фабрици, у зависности од производа који се

креирају у конкретном постројењу. Тиме што је у предложеном приступу

могуће из модела процеса аутоматизовано генерисати инструкције и
послати их ресурсима, доприноси се креирању једног динамичког

окружења у савременим фабрикама. Додатно, услед великог броја

различитих производа и њихових варијација, постаје изазовно одржавати

неопходну техничку документацију, што је у предложеном приступу

могуће урадити на аутоматизован начин и тиме значајно уштедети време

пројектаната процеса.

Датум прихватања

теме од стране

надлежног већа:

26. 1. 2023.

Датум одбране:

(Попуњава

одговарајућа служба)

Чланови комисије:

(титула, име,

презиме, звање,

институција)

Председник: др Соња Ристић, редовни професор, Универзитет у Новом

Саду, Факултет техничких наука
Члан: др Миладин Стефановић, редовни професор, Универзитет у

Крагујевцу, Факултет инжењерских наука

Члан: др Славица Кордић, ванредни професор, Универзитет у Новом

Саду, Факултет техничких наука

Члан, ментор: др Иван Луковић, редовни професор, Универзитет у

Београду, Факултет организационих наука

Члан, ментор: др Владимир Димитриески, доцент, Универзитет у Новом

Саду, Факултет техничких наука

Напомена:

UNIVERSITY OF NOVI SAD

FACULTY OF TECHNICAL SCIENCES

KEY WORD DOCUMENTATION2

Document type: Doctoral dissertation

Author: Marko Vještica

Supervisors (title, first

name, last name,

position, institution)

Dr. Vladimir Dimitrieski, Assistant Professor, University of Novi Sad, Faculty

of Technical Sciences

Dr. Ivan Luković, Full Professor, University of Belgrade, Faculty of

Organizational Sciences

Thesis title:
A Model-Driven Approach to the Production Process Specification and

Generation

Language of text

(script):
English language

Physical description:

Number of:

Pages 253

Chapters 10

References 265

Tables 8
Figures 51

Listings 21

Graphs 2

Appendices 1

Scientific field: Electrical engineering and computing

Scientific subfield

(scientific discipline):
Applied computer science and informatics

Subject, Key words:
Production Process Modeling; Process Execution; Industry 4.0; Domain-

Specific Languages; Model Transformations; Model-Driven Engineering

Abstract in English

language:

In this thesis, we present an approach to the production process specification

and generation based on the model-driven paradigm, with the goal to increase
the flexibility of factories and respond to the challenges that emerged in the era

of Industry 4.0 more efficiently. To formally specify production processes and

their variations in the Industry 4.0 environment, we created a novel domain-

specific modeling language, whose models are machine-readable. The created

language can be used to model production processes that can be independent of

any production system, enabling process models to be used in different

production systems, and process models used for the specific production

system. To automatically transform production process models dependent on

the specific production system into instructions that are to be executed by

production system resources, we created an instruction generator. Also, we

created generators for different manufacturing documentation, which
automatically transform production process models into manufacturing

documents of different types. The proposed approach, domain-specific

modeling language, and software solution contribute to introducing factories

into the digital transformation process. As factories must rapidly adapt to new

products and their variations in the era of Industry 4.0, production must be

dynamically led and instructions must be automatically sent to factory

resources, depending on products that are to be created on the shop floor. The

2 The author of doctoral dissertation has signed the following Statements:

5б – Statement on the authority,

5в – Statement that the printed and e-version of doctoral dissertation are identical and about personal data,

5г – Statement on copyright licenses.

The paper and e-versions of Statements are held at he faculty and are not included into the printed thesis.

proposed approach contributes to the creation of such a dynamic environment

in contemporary factories, as it allows to automatically generate instructions

from process models and send them to resources for execution. Additionally, as

there are numerous different products and their variations, keeping the required

manufacturing documentation up to date becomes challenging, which can be

done automatically by using the proposed approach and thus significantly lower
process designers' time.

Accepted on Scientific

Board on:
26. 1. 2023.

Defended:
(Filled by the faculty

service)

Thesis Defend Board:

(title, first name, last
name, position,

institution)

President: Dr. Sonja Ristić, Full Professor, University of Novi Sad, Faculty of

Technical Sciences

Member: Dr. Miladin Stefanović, Full Professor, University of Kragujevac,

Faculty of Engineering

Member: Dr. Slavica Kordić, Associate Professor, University of Novi Sad,
Faculty of Technical Sciences

Member, supervisor: Dr. Ivan Luković, Full Professor, University of

Belgrade, Faculty of Organizational Sciences

Member, supervisor: Dr. Vladimir Dimitrieski, Assistant Professor, University

of Novi Sad, Faculty of Technical Sciences

Note:

vii

Dedication

I dedicate this thesis to my family, for their great patience, support, and love.

I want to express my gratitude to my mentors Dr. Vladimir Dimitrieski and

Prof. Dr. Ivan Luković for their immense help, support, patience, and advice

during my Ph.D. studies. I am thankful for their generous efforts in guiding

me through the journey of research and writing the Ph.D. thesis.

I thank my colleagues from the Data Science and Information Systems group

from the Faculty of Technical Sciences who participated in the research

presented in this thesis. I am especially grateful to Prof. Dr. Sonja Ristić and

Prof. Dr. Slavica Kordić for their great help throughout my research work.

Their guidance vastly contributed to the research and enrichment of my

knowledge.

I give my thanks to KEBA Group AG for their support during my scientific and

practical work and for the systematic development of projects. I thank

everyone in Linz and Novi Sad who participated in the Digital Factory project.

I owe special thanks to Thomas Linde and Milan Pisarić for their huge support

in project development and publishing scientific results.

I would like to thank Milica Todorović and Maksim Lalić for their help in

preparing and analyzing the evaluation questionnaire, as well as all the

evaluation participants for their time and valuable feedback. I would also like

to thank Milica Ranisavljev for her help in proofreading various publications

written during the research related to this thesis.

viii

ix

Abstract

Manufacturing is an essential activity of making products and services, with the goal of satisfying
customer needs. Over time, manufacturing has become more and more sophisticated, and

contemporary manufacturing is mainly done by computer-controlled systems, making a large

number of the same or similar products. Such manufacturing, named mass production, is usually

inappropriate for creating custom products in small numbers, as it would require changing or
rearranging the existing shop floor. With emerging technologies, self-adjustable smart resources,

and smart products, the fourth industrial revolution is happening. This industrial revolution, called

Industry 4.0, aims to enable the production of numerous individualized products for customers,
creating an environment for lot-size-one production while preserving the economic characteristics

of mass production. Lot-size-one production would be hard to implement in contemporary

production systems, as their rigid structure consisting of assembly lines, fixed robots, and machines

cannot support the required production flexibility. Therefore, a new smart environment, consisting
of human workers and smart mobile robots, emerges in the context of Industry 4.0 which requires

a dynamic and automatic orchestration of production. Consequently, the number of product and

process variations increases even more as customers embrace such a dynamic nature of production
and thus raise their expectations. Additionally, due to the large number of variations, manufacturing

documentation required by different standards and procedures increases as well. Each time a

product or its process changes, the documentation of different types must be updated and new
versions created. Accordingly, creating and modifying product and process variations and

manufacturing documentation becomes a burdensome manual task. Also, as various products and

their variations are produced in a factory, human workers must often adapt and create new products.

Thus, a fast and automated knowledge transfer is needed on how to produce all these products and
variations, as well as guided production to lower the time and costs required for human worker

training. Therefore, new solutions are needed to support production flexibility and alleviate such

Industry 4.0 challenges. One way to contribute to production flexibility is by applying Model-
Driven (MD) principles in production systems that consist of smart resources. The solution we

present in this thesis is based on MD principles and utilizes production process models as a single

point of knowledge. These production process models are used to automatically generate executable
resource instructions that are sent to smart resources, schedule their tasks in a production system,

and automatically generate various manufacturing documentation. The main component of our MD

solution is a novel Domain-Specific Modeling Language (DSML) named Multi-Level Production

Process Modeling Language (MultiProLan), created for the Industry 4.0 domain. Such a language
and the whole MD solution are created to contribute to solving the following challenges: (i)

automatic and flexible production of individualized products; (ii) error handling during production;

(iii) a specification of numerous product and process variations; (iv) a single point of creation and
modification of manufacturing documentation in a company; and (v) training and guiding human

workers to produce various products. Also, one of the main challenges of Industry 4.0 production

process specification is that production process models should be machine-readable, allowing

automatic execution of process steps, but also, production process models need to be independent
of any production system in which they are to be executed, enabling production process models to

x

be used in multiple production systems. MultiProLan is a capability-based modeling language,
having different levels of detail and modeling layers, allowing production processes to be specified

independently of any production system and automatically transformable into executable resource

instructions that are sent to the chosen production system. By introducing different levels of detail,

process designers can specify production processes more easily, as they do not need to know details
related to the specific production system in which production process models are to be executed. In

addition, by introducing different modeling layers, process designers can choose aspects they want

to be focused on while modeling production processes, lowering the number of modeling concepts
they are dealing with. The main goal of the research, presented in this thesis, is to introduce factories

into the digital transformation process, contribute to flexible production, and help process designers

model production processes and create and modify manufacturing documentation in a more
efficient manner. Such a goal is to be achieved by defining a novel methodological approach and a

software solution that utilizes MD principles and a DSML to specify production processes formally.

Keywords: Production Process Modeling; Process Execution; Industry 4.0; Domain-Specific

Languages; Model Transformations; Model-Driven Engineering

xi

Резиме

Производња представља кључну активност креирања предмета и услуга. Разни алати,
машине и материјали користе се у производњи, која постаје све софистициранија услед

креирања различитих и све сложенијих производа. Савремена производња примарно се

изводи помоћу аутоматизованих машина којима управља рачунар [1,2].

Производња се може посматрати са два различита аспекта – технолошког и економског.
Са технолошког аспекта, производња представља примену физичких или хемијских процеса

како би се променила својства материјала, креирајући делове и производе. Производња се

извршава помоћу низа операција, у којем свака операција доводи материјал корак ближе
финалном производу. Са економског аспекта, производња представља прелазак материјала

у делове и производе више вредности. Свака операција у производњи мења својства

материјала, додајући им вредност.

Циљ производње је да буду задовољене потребе корисника тако што ће произвођачи
креирати одговарајуће производе или пружити одговарајуће услуге које могу продати. Како

се временом потребе корисника мењају, производи или сервиси морају такође бити

континуирано унапређивани. Услед сталних промена, настају различите варијације
производа које су груписане у оквиру породица производа. Свака варијација производа из

породице производа разликује се од осталих варијација по једном или више коришћених

делова или материјала. Такође, свака варијација производа има одговарајућу варијацију
производног процеса. Настанком нове варијације производа, постојеће производно

постројење у фабрици мора бити измењено или преуређено. То је најчешће изазовно јер су

производна постројења и процеси који се у оквиру њих одвијају веома ригидни и скупи за

измену.

Уместо честог мануелног преуређивања производног постројења, савремена постројења

требало би да буду самоподесива, како би фабрике успешно одговориле на захтеве

корисника за персонализованим производима. Све до краја 20. века, машине и даље нису
биле потпуно независне и самоподесиве како би се прилагодиле варијацијама производних

процеса. Измене производних постројења биле су сложен и дуготрајан задатак који је

захтевао заустављање производње док се измене не начине. Компанија би губила новац
сваки пут када је производња заустављена. Стога, начин производње требало би да буде

измењен како би се одговорило на захтеве корисника за великим бројем варијација

производа и процеса.

Појава четврте индустријске револуције, назване Индустрија 4.0, утиче на измене у
начину производње, употребом паметних, независних и самоподесивих ресурса у фабрици.

Циљ Индустрије 4.0 је да омогући производњу великог броја различитих, персонализованих

производа за кориснике (енгл. lot-size-one production), а да се уједно задрже економске
карактеристике серијске производње. Међутим, такав начин производње доноси и разне

изазове на које је потребно одговорити.

xii

Проблем истраживања. Један од главних изазова Индустрије 4.0 представља креирање
окружења флексибилне производње у којој је могуће производити различите производе и

њихове варијације. Креирањем окружења за производњу великог броја различитих

производа подстиче повећање броја варијација производа и процеса, јер корисници све више

желе нове, персонализоване производе. Због тога је неопходно динамички и аутоматизовано

управљати великим бројем варијација производа у флексибилној производњи фабрике.

Како би фабрика производила велик број различитих производа, неопходно је да

производња тече без прекида. У савременим производним постројењима, појава грешке
током производње често проузрокује заустављање производне линије како би грешка била

отклоњена, правећи додатне трошкове фабрици. Један од изазова Индустрије 4.0 је

спровођење јасно дефинисаних активности за отклањање ефеката грешака које настану

током производње, а да при томе не дође до заустављања производње.

Додатно, услед великог броја варијација, количина техничке документације у

производњи, чије се постојање захтева од стране различитих регулаторних тела и процедура,

такође се знатно повећава. Сваки пут када се производ или процес производње измени,
документи различитих типова морају бити ажурирани и нове верзије докумената креиране.

Тиме, креирање и ажурирање варијација производа и процеса, као и техничке документације,

постаје тежак мануелни задатак, што представља један од изазова Индустрије 4.0.

Услед великог броја различитих производа и њихових варијација произведених у

фабрици, радници често морају да се прилагоде изменама и креирају нове производе. Такође,

како се последњих година број радника у фабрикама смањује, радници често морају да
учествују у производњи широког спектра производа. Неопходно је уложити пуно времена у

обуку радника за потребе учешћа у изради нових производа. Додатно, искусни радници

морају да уложе своје време приликом обуке нових радника, које би иначе уложили у

креирање софистицираних производа у фабрици. Због свега наведеног, брз и аутоматизован
пренос знања о начину производње нових производа и њихових варијација, као и вођен

процес производње, неопходни су како би се смањили време и трошкови потребни за обуку

радника, што такође представља један од изазова Индустрије 4.0.

Истраживачи покушавају да одговоре на наведене изазове последњих година, али још

увек не постоји одговарајући приступ помоћу којег је могуће у потпуности креирати

флексибилан производни систем. Један од начина како одговорити на изазове Индустрије

4.0 и допринети креирању флексибилне производње јесте употреба принципа инжењерства
вођеном моделима (енгл. Model-Driven (MD)) у којима модели чине референтно место

спецификације знања о производњи. Модели производних процеса могли би бити

искоришћени да воде извршавање производних процеса на начин да се инструкције
генеришу из њих и шаљу ресурсима на извршавање. Међутим, такви модели процеса садрже

детаље о производном систему у којем ће бити извршени, што чини моделовање оваквих

процеса изазовним, а моделе везује искључиво за један производни систем. У ери
Индустрије 4.0, требало би да је могуће модел производног процеса искористити у

различитим постројењима или фабрикама. Због тога је један од главних изазова моделовања

производних процеса у Индустрији 4.0 да буде омогућено моделовање производних процеса

на једноставан начин, да модели процеса могу лако да буду читљиви, разумљиви и
искоришћени у различитим производним системима, али и да могу бити аутоматизовано

трансформисани у инструкције које ресурси извршавају у одабраном производном систему.

Предложено решење. У овој дисертацији предложено је решење за ублажавање или
отклањање поменутих изазова Индустрије 4.0, попут аутоматизоване и флексибилне

производње персонализованих производа, спецификације великог броја варијација

производа и процеса, аутоматизованог отклањања грешака у производњи, јединствене тачке
креирања и ажурирања техничке документације у компанији, као и обуке и навођења

радника приликом креирања различитих производа. Такво решење засновано је на примени

принципа MD парадигме и креирања новог наменског језика (енгл. Domain-Specific Modeling

Language (DSML)) названог Вишенивовски језик за моделовање производних процеса (енгл.

xiii

Multi-Level Production Process Modeling Language (MultiProLan)) у контексту домена

Индустрије 4.0.

Да би се одговорило изазовима Индустрије 4.0, предложено решење користи моделе

производних процеса како би било омогућено аутоматизовано вођење извршавања

производних процеса. Модели производних процеса трансформисани су у инструкције на
аутоматизован начин, а затим такве инструкције ресурси извршавају у производном

постројењу. Разни детаљи који се односе на процес производње и извршавање морају бити

складиштени у моделима. На тај начин, модели производних процеса постају референтно
место спецификације потребног знања у систему. Међутим, складиштењем детаља

извршавања унутар модела производних процеса чини моделовање изазовно за пројектанте

процеса. Због тога би требало такве моделе процеса представљати кроз различите нивое
детаљности. Тиме је могуће раздвојити моделе производних процеса који су независни од

производног система (Master-Level – MasL), а које моделују пројектанти процеса, од модела

производних процеса који су зависни од конкретног производног система у којем ће бити

извршени (Detail-Level – DetL). Како би било могуће на аутоматизован начин
трансформисати MasL у DetL моделе процеса, неопходно је дефинисати скуп правила

трансформисања. Интелигентни систем, попут оркестратора, може да искористи ова правила

и формално специфициране моделе процеса, како би извршио трансформацију између
модела на аутоматизован начин. Додатно, у оквиру предложеног система и наменског језика,

креирани су и различити слојеви моделовања, који приказују или сакривају различите

детаље релевантне само за одређене групе корисника.

Управо због тога што подржава различите нивое детаљности и различите слојеве

моделовања, MultiProLan је и добио назив Вишенивовски језик за моделовање производних

процеса, како би се истакла ова његова врло важна особина. MultiProLan раздваја MasL од

DetL модела процеса, омогућавајући пројектантима процеса да буду фокусирани искључиво
на кораке у процесу производње, уместо на детаље извршавања и на производни систем.

Како рачунар може да обради MultiProLan моделе на аутоматизован начин, извршиве

инструкције могу бити генерисане и послате ресурсима који ће их извршити и креирати
производе. Слике, аудио и видео записи, као и текстуални описи процесних корака такође

могу бити генерисани из модела процеса на аутоматизован начин и послати радницима у

производњи, како би радници знали на који начин да изврше кораке. Слањем једног по једног

процесног корака радницима, укључујући слике, аудио и видео записе, омогућен је вођен
процес производње и обука нових радника. Моделовањем потенцијалних грешака које могу

да се догоде приликом извршавања производних процеса, као и корака за уклањања ефеката

грешака, могуће је такође и разрешавање грешака током производње на аутоматизован
начин. Додатно, техничка документација такође може бити генерисана и ажурирана на

аутоматизован начин, када год настане нови производ или варијација производа, или се

измени постојећи производ или нека његова варијација. На тај начин могуће је уклонити
захтеван мануелни посао који обављају пројектанти процеса, чиме им се значајно штеди

време.

У наставку резимеа, представљене су хипотезе и циљеви истраживања, очекивани

доприноси, као и методологија истраживања, након чега следе резултати и будући правци

истраживања.

Хипотезе истраживања. Узимајући у обзир наведене изазове и мотивацију истраживања,

формирана је основна хипотеза истраживања:

Хипотеза 0 (H0). Могуће је креирати решење, засновано на моделима, за

спецификацију модела производних процеса који су независни од производног

система и модела производних процеса који су зависни од конкретног производног
система, као и решење за трансформисање таквих модела у извршиве инструкције

и техничку документацију на аутоматизован начин.

Главни задатак у истраживању, изведен из основне хипотезе, је дефинисање

методолошког приступа и софтверског решења заснованих на MD принципима, као и

xiv

наменског језика за формалну спецификацију производних процеса, како би се допринело
повећању флексибилности производње и одговорило на растуће потребе купаца. Тиме се

такође помаже пројектантима процеса приликом моделовања производних процеса и

креирања и ажурирања техничке документације. Додатно, формално специфицирани модели

производних процеса могу бити обрађени од стране рачунара на аутоматизован начин чиме
се омогућава аутоматизовано генерисање извршивих инструкција и техничке документације

из модела процеса.

Наредне четири хипотезе изведене су из хипотезе H0 како би боље били представљени
различити аспекти те основне хипотезе. Потврђивањем или одбацивањем изведених

хипотеза, биће потврђена или одбачена хипотеза H0.

Хипотеза 1 (H1). Могуће је креирати наменски језик за потребе моделовања
производних процеса са свим детаљима неопходним да би се на аутоматизован

начин генерисале инструкције из модела процеса које су извршиве на ресурсима.

Производни процеси требало би да буду моделовани на кохерентан и концизан начин

употребом наменског језика, чиме модели процеса постају читљиви и обрадиви од стране
рачунара. Додавањем неопходних детаља у моделе процеса који су потребни за извршавање

производних процеса, могуће је трансформисати такве моделе у инструкције извршиве на

ресурсима на аутоматизован начин. Такве инструкције могуће је послати у производно

постројење како би биле извршене од стране одговарајућих ресурса.

Модели производних процеса који садрже неопходне детаље за потребе аутоматизоване

производње, често морају бити моделовани од стране различитих група корисника, попут
инжењера процеса и инжењера квалитета. Такви модели морају укључити различите аспекте

и погледе на моделовање производних процеса, попут аспеката извршавања, управљања

грешкама, квалитета и сигурности. Различити аспекти и погледи требало би да буду

обједињени унутар једног модела процеса, чиме се креира централно место за
специфицирање знања о процесима производње, као што је наведено у наредној изведеној

хипотези.

Хипотеза 2 (H2). Могуће је представити различите аспекте производних процеса
на обједињен начин, независан од производног система, и тиме омогућити поновну

употребу модела процеса у различитим производним системима не губећи на

читљивости и разумевању модела.

Модели производних процеса који су спремни за генерисање инструкција постају
оптерећени детаљима у вези ресурса који ће извршити процесне кораке, активностима

логистике у производњи и активностима конфигурисања машина. Ручно специфицирање

таквих модела производних процеса представља изазов. Пројектанти процеса требало би да
специфицирају моделе производних процеса независно од конкретног производног система,

тиме не узимајући у обзир ресурсе, нити транспортне и конфигурационе активности. Модели

процеса независни од производног система могу бити употребљени у било ком производном

систему, а такође су једноставни за читање и разумевање.

Ипак, модели процеса независни од производног система не садрже довољно

информација како би било могуће трансформисати такве моделе у инструкције извршиве на

ресурсима. Због тога је најпре потребно креирати моделе производних процеса зависне од
конкретног производног система. То је могуће учинити обогаћивањем модела процеса

независног од производног система са детаљима одабраног система у којем ће бити извршен.

Такве обогаћене моделе могуће је креирати ручно од стране пројектаната процеса, што би
представљало врло захтевну активност, или их је могуће креирати на аутоматизован начин

од стране интелигентног система као што је оркестратор. Оркестратор представља

софтверско решење које је покренуто на кластеру индустријских рачунара, а које служи да
повеже ресурсе и процесне кораке, као и да распореди ресурсе у фабрици на што бољи начин

[3–5]. Како би концепти моделовања који се односе на производне системе требало да буду

укључени у наменски језик за моделовање производних процеса, пројектанти процеса могу

xv

користити такве концепте да ручно измене или оптимизују моделе производних процеса
зависне од конкретног производног система који су настали од стране оркестратора. Потреба

да наменски језик садржи концепте који се односе на производне системе како би било

омогућено ручно или аутоматизовано обогаћивање модела процеса независних од

производног система описана је у следећој хипотези.

Хипотеза 3 (H3). Могуће је креирати наменски језик који обухвата концепте

моделовања за обогаћивање модела процеса независних од производног система са

детаљима о конкретном производном систему, чиме је могуће креирати моделе

процеса зависне од конкретног производног система.

Како би модели производних процеса били независни од конкретног производног

система, њихово моделовање могуће је спровести уз помоћ основних концепата
инжењерства заснованом на способностима (енгл. skill-based engineering) [6,7].

Инжењерство засновано на способностима има за циљ да обједини начин описа способности

ресурса. Сваки ресурс нуди скуп способности, док сваки процесни корак захтева одређене

способности за извршавање одговарајуће активности. Повезивањем тражених способности
у процесним корацима и доступних способности на ресурсима, могуће је ресурсима

доделити процесне кораке које би требало да изврше. То је могуће урадити на аутоматизован

начин, што је задатак оркестратора. Повезивање ресурса и процесних корака може бити
представљено као трансформација модела једног типа у модел другог типа. Односно, може

бити представљено као аутоматизована трансформација модела процеса независних од

производног система у моделе процеса зависне од конкретних производних система.

 Поред повезивања ресурса и процесних корака, оркестратор би требало да дода

транспортне и конфигурационе кораке такође на аутоматизован начин, а на основу

топологије и логистике производног система. Оркестратор са својим алгоритмима за

повезивање и расподелу ресурса није део овог истраживања и коришћен је као готово
софтверско решење, без улажења у детаље његове имплементације. Више информација о

оркестратору могуће је пронаћи у претходном истраживању у којем је учествовао аутор

дисертације [4,5]. Аутоматизованим обогаћивањем модела процеса независних од
производних система, знатно се олакшава задатак пројектаната процеса, који могу да

креирају моделе процеса независне од производних система и на једноставан начин их

припреме за аутоматизовано генерисање инструкција. Како би производни процеси били

извршени, њихови модели би требало да буду трансформисани у инструкције извршиве на

ресурсима, што је описано у наредној хипотези.

Хипотеза 4 (H4). Могуће је на аутоматизован начин генерисати инструкције

извршиве на ресурсима и техничку документацију различитих типова из модела

производних процеса.

Употребом генератора инструкција са правилима трансформисања из модела у текст,

модел производног процеса зависног од одабраног производног система могуће је
трансформисати на аутоматизован начин у инструкције извршиве на ресурсима. Генерисане

инструкције могу бити послате ресурсима да их изврше, чиме се испуњава основна сврха

креирања модела производних процеса – да омогуће аутоматизовано вођење извршавања

производних процеса у производном систему. Како су рачунари у могућности да
интерпретирају моделе процеса на аутоматизован начин, техничка документација такође

може бити генерисана из модела процеса. Ова трансформација помаже пројектантима

процеса да елиминишу ручно креирање и ажурирање техничке документације. Услед
аутоматизованог генерисања техничке документације, могуће је уштедети време

пројектаната процеса, док грешке настале приликом ручног прављења документације могуће

је избећи.

Циљ истраживања. Ова дисертација требало би да омогући формулацију таквог приступа

који ће у ери Индустрије 4.0 обезбедити динамичко управљање производњом и

аутоматизовано извршавање производних процеса на основу модела процеса. Обезбеђењем

динамичког управљања производњом и аутоматизованог извршавања производних процеса

xvi

могуће је допринети увођењу фабрика у процес дигиталне трансформације, што представља
главни циљ спроведеног истраживања. Главни циљ истраживања могуће је остварити

достизањем следећих критичних фактора успеха:

• Обезбедити да један модел производног процеса може бити употребљен у више

различитих производних система, креирањем модела производних процеса који су

независни од производног система. Тиме би пројектанти процеса били у могућности
једноставније да моделују процесе производње, без потребе да поседују знање о

детаљима производног система у којем би процес био извршен.

• Ослободити пројектанте процеса мануелног задатка креирања модела процеса

специфичних за производних систем, односно обезбедити трансформисање модела
производног процеса независног од производног система у модел производног

процеса зависног од конкретног производног система на аутоматизован начин. Ипак,

потребно је пружити могућност ручне измене оваквих модела када пројектанти
процеса процене да постоји потреба за тим.

• Модел производног процеса зависан од производног система садржи у себи детаље

попут паметних ресурса који ће извршити кораке производње, активности логистике

у производном систему, као и активности конфигурисања машина. Обезбедити да

такви модели процеса аутоматизовано воде процес производње тиме што би модели
процеса били трансформисани у извршиве инструкције на аутоматизован начин.

• Омогућити откривање и отклањање лоше моделованих процеса и грешака које

настану током производње помоћу механизама за праћење извршавања процеса

производње.

• Обезбедити да различите групе корисника могу бити фокусиране на аспекте за које
су одговорни, креирајући различите погледе на модел производног процеса

употребом различитих слојева моделовања. На тај начин, модел производног

процеса представља референтно место спецификације потребног знања, а различите
групе корисника могу заједно да учествују у специфицирању различитих аспеката

производног процеса. Додавањем или уклањањем слојева модела производног

процеса, могуће је приказати или сакрити различите аспекте модела, чиме они

постају јаснији и читљивији.

• Ослободити пројектанте процеса мануелног одржавања великог броја докумената
различитих типова у фабрици, на начин да техничка документација буде

аутоматизовано генерисана и ажурирана трансформисањем модела производних

процеса у документацију.

• Омогућити да све варијације производа и процеса буду доступне у једном моделу
производног процеса. Како је могуће да постоји велик број варијација у моделу

процеса, што чини модел тешким за читање и одржавање, потребно је омогућити и

механизме за одабир варијације на коју би пројектант процеса био фокусиран.

• Обезбедити аутоматизовану помоћ новим радницима приликом обуке и креирања
производа и смањити време које искусни радници морају да уложе у обуку нових

радника. То је могуће постићи тиме што би модели производних процеса били

употребљени за вођен процес производње, слањем новим радницима једне по једне

инструкције са сликама и видео записима, насталим из модела процеса.

Очекивани доприноси. Како би биле потврђене или одбачене наведене хипотезе и

достигнут дефинисани циљ, спроведено је истраживање које је описано у овој дисертацији.

Као резултат истраживања, очекују се доприноси следећих типова:

• Теоријски доприноси у области моделовања производних процеса и њиховог
аутоматизованог извршавања:

o Преглед постојећих језика за моделовање производних процеса.

o Идентификација основних концепата неопходних за креирање наменског језика

за моделовање производних процеса у контексту Индустрије 4.0, а чији су
модели погодни за генерисање инструкција и техничке документације на

аутоматизован начин.

xvii

o Спецификација новог MD приступа за потребе динамичке производње и
аутоматизованог генерисања инструкција на основу модела производних

процеса насталих употребом наменског језика.

o Спецификација методологије за аутоматизовану трансформацију модела

независних од производног система у моделе зависне од производних система.
o Обезбеђена могућност примене MD принципа у домену производње, чиме би се

допринело једноставнијем моделовању производних процеса и њиховом

аутоматизованом извршавању.

• Доприноси развоју софтверске подршке за моделовање производних процеса и
генерисање инструкција извршивих на ресурсима и техничке документације:

o Развијен и имплементиран нови софтверски алат који подржава употребу

креираног наменског језика за моделовање производних процеса.
o Развијен и имплементиран генератор инструкција за генерисање инструкција

извршивих на ресурсима из модела наменског језика на аутоматизован начин.

o Развијен и имплементиран генератор техничке документације за генерисање

различите документације из модела наменског језика на аутоматизован начин.

• Доприноси примени MD приступа и наменског језика у домену производње, а у
виду студија случаја и анализе и оцене језика и алата за моделовање производних

процеса:

o Показана практична примена MD приступа и наменског језика за моделовање
производних процеса у монтажној индустрији.

o Извршена анализа и оцена новог софтверског алата и наменског језика за

моделовање производних процеса од стране различитих група корисника.
o Презентовано ново практично искуство, остварено применом предложеног

методолошког приступа, софтверског алата и подржаног наменског језика.

• Друштвени доприноси представљају могућност стављања на јавну употребу једног

општег модела управљања производним процесом, који је применљив у

организацијама ширег спектра, на начин да омогућава значајније унапређење
производног процеса и подизање општег кумулираног знања о томе како се на

савремен начин може допринети том процесу унапређења.

Остварењем очекиваних резултата истраживања постиже се једноставније и прецизније
моделовање производних процеса, чији модели омогућавају примену принципа

флексибилне производње и тиме обезбеђују кретање организације у смеру пуне примене

филозофије Индустрије 4.0. Тиме организација повећава степен способности да боље

одговори на све интензивније захтеве купаца за високо персонализованим производима.
Очекивани корисници алата и језика за моделовање производних процеса су пројектанти

процеса, које чине инжењери процеса и инжењери квалитета.

Методологија истраживања. Истраживање описано у овој дисертацији спроведено је кроз

наредних шест активност:

• Идентификација изазова Индустрије 4.0 у постојећој производњи и мотивација за

пружање доприноса у решавању идентификованих изазова.

• Дефинисање циљева предложеног MD приступа, наменског језика и алата за

моделовање производних процеса.

• Пројектовање и развој софтверског решења за спецификацију и извршавање
производних процеса, које обухвата наменски језик MultiProLan, његов алат за

моделовање производних процеса и различите генераторе инструкција и техничке

документације.

• Примена софтверског решења у две студије случаја монтажне индустрије.

• Анализа и оцена наменског језика MultiProLan и његовог алата за моделовање

производних процеса од стране различитих група корисника.

• Представљање резултата истраживања академској заједници на међународним
научним конференцијама и у часописима [4,5,8–19], као и релевантним корисницима

у индустрији.

xviii

У наставку резимеа, сумирани су резултати и будући правци истраживања. Најпре су
представљени резултати прегледа актуелног стања у области, опис имплементираног

решења, студије случаја, анализа и оцена имплементираног решења и будући правци

истраживања.

Преглед актуелног стања у области. Истраживања у области моделовања производних
процеса, посебно у Индустрији 4.0, све су интензивнија последњих година [20]. На то је

утицала чињеница да производни процеси морају бити дигитално подржани у Индустрији

4.0 [21], како би било могуће интегрисати их у оквиру паметних фабрика. Процеси би
требало да буду креирани са виртуелном репрезентацијом која захтева апстрактно

размишљање и моделовање помоћу специјализованог софтвера [22] – алата за моделовање.

Моделовање производних процеса у Индустрији 4.0 је изузетно важна информатичка
истраживачка тема, јер је од великог значаја разумети и оптимизовати процесе [23].

Међутим, није довољно само документовати производне процесе и чувати документацију у

бази података фабрике. Ова дисертација даје допринос све присутнијем захтеву да

производни процеси буду моделовани тако да аутоматизовано воде процес производње,
односно да буду спремни за аутоматизовано извршавање или генерисање извршивих

инструкција, али да уједно не буду превише комплексни, како би их човек могао прочитати

и разумети, и да буду независни од конкретног производног постројења.

У истраживању описаном у овој дисертацији, испитани су различити постојећи језици

и приступи за моделовање процеса, а који су потенцијално одговарајући за предложено MD

решење и тиме могу да допринесу решавању изазова Индустрије 4.0. Приликом иницијалног
прегледа литературе, формирани су захтеви које би један језик за моделовање процеса

требало да испуни, а чији модели би били коришћени за динамичку оркестрацију и

аутоматизовано генерисање извршивих инструкција у ери Индустрије 4.0. Захтеви су

детаљно представљени у поглављу 4, док је у наставку представљен њихов кратак опис:

• Захтев 1: постојање процесних корака који обухватају улазне производе над којима
је потребно извршити одговарајућу активност, излазне производе настале применом

одговарајућих активности над улазним производима, способност коју је потребно

поседовати за извршавање процесног корака и ресурс који би требало да изврши
процесни корак, а поседује тражену способност.

• Захтев 2: постојање контроле тока активности, као што су секвенца, одлука,

итерација и паралелизам.

• Захтев 3: постојање тока материјала, односно знања да ли је одређени производ

потребно преузети из складишта или је резултат неког од претходних процесних

корака.

• Захтев 4: постојање тока порука, односно сарадње између процесних корака или

ресурса разменом порука.

• Захтев 5: постојање неуређених процесних корака који могу бити извршени било

којим редоследом.

• Захтев 6: постојање варијација производа и процеса, где варијације производа

припадају истој породици производа које се разликују по одређеним
карактеристикама, а варијације процеса представљају разлике у начину извршавања

процесних корака.

• Захтев 7: постојање потпроцеса, чиме је могуће смањити комплексност модела

процеса и искористити исте процесне кораке у различитим процесима.

• Захтев 8: постојање управљања грешкама које настану током производње, а на које
је потребно одговорити одређеним активности за опоравак од негативних ефеката

насталих грешака.

• Захтев 9: модели производних процеса требало би да буду извршиви или би требало

генерисати извршиве инструкције из модела.

• Захтев 10: модели производних процеса требало би да буду независни од конкретног

производног система.

xix

Наведени захтеви коришћени су за систематичну анализу постојећих језика и приступа
за моделовање процеса, у којој је сваки пронађени језик или приступ тестиран да ли

испуњава захтеве. Проучавањем литературе идентификовано је више језика и приступа за

моделовање производних процеса, који су подељени у следеће четири категорије:

• Категорија 1: Традиционални приступи спецификацији производних процеса

(К1) [24–29]. Ови приступи најчешће користе неформалан текстуални опис,
дијаграме токова или табеларну форму записа како би били представљени разни

аспекти производних процеса. Такве форме записа коришћене су годинама.

• Категорија 2: Језици за моделовање процеса који нису примарно креирани за

потребе производних процеса и њихова проширења (К2) [30–57]. Ови језици
представљају другу по величини категорију, у којој Business Process Model and

Notation (BPMN) са својим проширењима чини језик који је најчешће коришћен и

најчешће прошириван за потребе описа производних процеса.

• Категорија 3: Комбинација различитих језика за потребе моделовања

производних процеса (К3) [58–62]. У овој категорији пронађен је најмањи број

приступа и језика. Аутори ових приступа су комбиновали различите језике како би

моделовали различите аспекте производних процеса.

• Категорија 4: Језици креирани да подрже моделовање производних процеса или

производних система (К4) [63–92]. Ова категорија језика је најзаступљенија, у којој
су језици посебно креирани за домен производње. Већина ових језика представља

наменске језике за моделовање.

Након спроведеног истраживања, примећено је да постоји растући тренд последњих
година у броју научних радова објављених на тему моделовања процеса. На основу

прикупљене литературе, примећена је доминација радова друге категорије (К2) све до 2019.

године. Разлог томе је што је једноставније проширити постојеће језике, него правити нови
наменски језик од почетка. Међутим, такви језици нису примарно креирани за домен

моделовања производних процеса и било би потребно користити више различитих

проширења језика како би се моделовали производни процеси за потребе аутоматизованог

извршавања, што би значајно отежало задатак пројектаната процеса. Како је домен
моделовања производних процеса комплексан, а самим тим је и комплексност модела

производних процеса велика, истраживачи све више креирају нове наменске језике. То је

примећено на основу прикупљене литературе у којој број радова друге категорије (К2) опада
након 2019. године, док број радова четврте категорије (К4) расте након 2019. године. Овај

растући тренд може бити проузрокован услед потребе да се модели производних процеса

изврше или да се генеришу инструкције из модела, као и техничка документација. Стога су
важни формални језици чије моделе рачунар може да обради на аутоматизован начин.

Истраживачи све више времена улажу у креирање нових, формалних језика од почетка, који

ће успети да се супротставе комплексностима насталим унутар домена производних процеса.

Међутим, креирани формални језици често моделују процесе на високом нивоу, без детаља
извршавања. Чак и када су укључени детаљи извршавања процеса, модели су зависни од

производног система, због чега не би било могуће употребити их у различитим системима.

Други начин одговора на комплексност домена јесте употреба различитих језика како би се
моделовали различити аспекти производних процеса. Ипак, овакав комбиновани приступ

(К3) је присутан у свега неколико радова од 2015. године. Овај релативно мали број приступа

вероватно је проузрокован чињеницом да је потребно додатно знање које пројектанти

процеса морају да имају како би познавали различите језике и активно их користили, што
чини задатак моделовања процеса изазовним. Прва категорија (К1) језика и приступа настала

је знатно раније и представља традиционалне начине описа производних процеса. Ови

приступи и језици обухватају најчешће неформалан или табеларан приказ производних
корака, а у случајевима дијаграма токова, процесни кораци представљају само графичке

симболе, без формалне семантике. Због тога би такве спецификације производних процеса

било тешко обрадити на аутоматизовани начин и генерисати инструкције из њих.

xx

Област моделовања производних процеса у контексту Индустрије 4.0 још увек је
недовољно истражена. Већина језика и приступа не обезбеђује могућност креирања модела

процеса погодних за динамичку производњу и аутоматизовано извршавање или генерисање

извршивих инструкција. У случајевима када језици подржавају аутоматизовано извршавање

модела процеса, такви модели садрже техничке детаље изведбе сервиса, попут адреса
сервиса и бројева портова. На тај начин, значајно се отежава рад пројектаната процеса, јер

они морају да познају детаље постројења у фабрици у којој ће процес бити извршен. Задатак

пројектаната процеса је да специфицирају процесне кораке и да не брину о детаљима у вези
производног постројења и извршавања. Такође, полазећи од доминантних ставова у

литератури, моделе производних процеса рачунар би требало да прочита на аутоматизован

начин, чиме се омогућава аутоматизовано извршење процесних корака описаних у моделу,
али би модели процеса требало уједно да буду формирани тако да су независни од

конкретног постројења у којем ће бити извршени, како би било могуће исти модел процеса

извршити у различитим постројењима [65]. Креирање модела производних процеса које

рачунар може да обради и генерише инструкције из њих, а који су такође независни од
производног постројења, представља један од главних проблема моделовања производних

процеса у ери Индустрије 4.0.

Наменски језик MultiProLan. Услед претходно наведених изазова и немогућности
проналаска одговарајућег језика приликом прегледа литературе, креиран је нови језик за

моделовање производних процеса. Модели новог језика садрже довољно детаља потребних

за динамичку производњу и аутоматизовано генерисање извршивих инструкција, а језик
омогућава пројектантима процеса да моделују процесне кораке без детаља извршавања.

Тиме је такође омогућено да модели процеса могу бити употребљени у различитим

производним постројењима. У том циљу, креирани су и одговарајући софтверски сервиси

који на аутоматизован начин трансформишу моделе процеса који су независни од

производног постројења, у моделе који су зависни од њега и спремни за извршавање.

Како би био креиран нови наменски језик, потребно је најпре анализирати домен у којем

ће језик бити примењен. Доменско знање за потребе моделована производних процеса
прикупљено је током прегледа литературе, кроз техничку документацију, разне студије

случаја, као и кроз разговоре са експертима из домена. Након прикупљеног неопходног

знања из домена производних процеса, концепти домена су структурирани и представљени

помоћу језика Feature-Oriented Domain Analysis (FODA) [93], чији су модели захтева описани

у поглављу 6.

Креирани наменски језик MultiProLan, представљен у овој дисертацији, имплементиран

је на основу концепата из домена представљених у моделу FODA, а такође испуњава
претходно дефинисане захтеве. Мета-модел овог језика, односно његова апстракта синтакса,

имплементирана је помоћу мета-мета-модела Ecore, који је део радног оквира Eclipse

Modeling Framework (EMF) [94,95]. Додатна ограничења која не могу бити исказана помоћу
концепата мета-мета-модела, а постоје у домену моделовања производних процеса,

имплементирана су уз помоћ језика Object Constraint Language (OCL) [96–98]. На основу

креиране апстрактне синтаксе, направљена је конкретна графичка синтакса као и прототип

алата, користећи радни оквир Eclipse Sirius [99,100]. MultiProLan првенствено је намењен
домену монтажне индустрије, али може бити употребљен и у другим доменима производње.

Пројектанти процеса користе овај језик како би моделовали производне процесе чији су

модели:

• погодни за аутоматизовано генерисање извршивих инструкција,

• независни од конкретних производних система,

• коришћени за руковање грешкама које настану током производње,

• садрже велик број варијација производа и процеса, и

• погодни за аутоматизовано генерисање и ажурирање техничке документације.

Постоје четири основне карактеристике језика MultiProLan које га разликују од осталих

језика анализираних током прегледа литературе:

xxi

• Основни скуп концепата потребан за спецификацију модела производних процеса

који су погодни за динамичку производњу и аутоматизовано генерисање извршивих
инструкција.

• Два нивоа детаљности која дозвољавају дистинкцију модела производних процеса

који су независни од производног система од модела производних процеса који су

зависни од конкретног производног система.

• Основни скуп концепата потребних за управљање грешкама.

• Обједињавање концепата различитих типова техничке документације у један
унифицирани модел производног процеса, што омогућава аутоматизовано

генерисање и ажурирање техничке документације из модела процеса.

Поред наведених предности и особина језика MultiProLan, постоје и неколико

претпоставки које су уведене, као и ограничења којих пројектант процеса мора бити свестан

приликом моделовања производних процеса:

• Производни процес може бити моделован за извршавање у једном производном

постројењу или у једној паметној фабрици. Није могуће моделовати извршавање

модела процеса у више различитих фабрика истовремено, као ни њихову
колаборацију.

• Постојећи ресурси у фабрици који извршавају моделоване процесне кораке довољно

су паметни да разумеју основне инструкције на високом нивоу, као што су покупи,

постави, крећи се и састави.

• Паметни ресурси представљају се систему приликом њиховог увођења и пружају све

потребне информације и семантику на који начин могу да се користе.

• Складишта у производном постројењу попуњена су материјалима и деловима који
не могу бити потрошени.

Детаљан опис апстрактне синтаксе, ограничења, конкретне синтаксе, алата за

моделовање, као и начин како MultiProLan испуњава претходно дефинисане захтеве,

представљен је у поглављу 7.

Студије случаја новог софтверског решења. Како су представљено MD решење и језик

MultiProLan првенствено креирани за дискретну производњу, посебно за монтажну
индустрију, примењени су у студијима случаја монтажне производње. Истраживачи често

тестирају своја решења управо у монтажној индустрији јер пружа могућност креирања

релативно једноставних производних процеса, али и врло комплексних. Стога је монтажна

индустрија добар почетни корак како би ново решење било тестирано. Припремљене су две
студије случаја за потребе валидације MD решења и језика MultiProLan, презентоване у овој

дисертацији у поглављу 8.

Прва студија случаја креирана је како би биле демонстриране могућности језика
MultiProLan и алата за моделовање производних процеса. У овом примеру састављана је

дрвена кутија, чији модел производног процеса садржи концепте попут различитих

варијација производа, сарадње између ресурса и паралелног извршавања процесних корака.
Такође, у овој студији случаја представљени су и примери генерисаних инструкција и

техничке документације. Друга студија случаја представља показно окружење креирано

како би било тестирано комплетно MD решење приликом склапања објеката од LEGO®

коцкица, чиме су избегнути трошкови који би настали услед грешака приликом склапања
реалног производа у производном постројењу. Поједини роботи коришћени у овој студији

случаја представљају индустријске покретне роботе, који се користе у реалној производњи,

као и истраживачке паметне роботе коришћене у показне сврхе. Радници такође учествују у

овој студији случаја приликом склапања LEGO® коцкица.

Анализа и оцена језика MultiProLan и алата за моделовање производних процеса. Поред

две студије случаја у којима је показана употреба целокупног MD решење, са акцентом на

језик MultiProLan, извршена је такође анализа и оцена језика MultiProLan и алата за
моделовање производних процеса, детаљно описане у поглављу 9. Различите групе

xxii

корисника учествовале су у процесу анализе језика и алата, укључујући инжењере процеса,
инжењере софтвера, истраживаче и студенте. Користећи радни оквир Framework for

Qualitative Assessment of Domain-specific languages (FQAD) [101], учесници су на

систематичан начин извршили анализу и оцену језика MultiProLan и његовог алата за

моделовање производних процеса и оставили важне повратне информације. Направљен је
експеримент у којем су учесници тестирали MultiProLan и алат за моделовање процеса и

оцењивали следеће карактеристике квалитета: функционалну комплетност, употребљивост,

поузданост, изражајност и продуктивност. Поред ових карактеристика, аутор дисертације са
коауторима извршио је оцену карактеристика квалитета која захтевају имплементациона

знања, а то су: могућност одржавања алата, проширивост, поновна употреба и могућност

интеграције са другим језицима. Постављена је следећа хипотеза на коју је било потребно

одговорити након извршеног експеримента:

EHnull – MultiProLan може бити употребљен у пракси јер има све следеће

карактеристике квалитета: функционалну комплетност, употребљивост,

поузданост, изражајност и продуктивност.

EHalt – MultiProLan не може бити употребљен у пракси јер нема једну или више од

следећих карактеристика квалитета: функционалну комплетност,

употребљивост, поузданост, изражајност или продуктивност.

Укупно 25 учесника било је укључено у експеримент и дали су своје оцене на претходно

наведене карактеристике квалитета. Учесници су најпре имали задатак да направе један

модел производног процеса, након чега су попуњавали анкету. Анкета је садржала питања
која су се односила на претходно искуство учесника и на представљене карактеристике

квалитета, као и секцију за слободан коментар. Сва питања, осим секције са коментаром,

садржала су понуђене одговоре на Ликертовој скали од 1 до 5. Резултати анкете детаљно су

описани у поглављу 9, а сумирани резултати који се односе на проценат позитивних
одговора је следећи: функционална комплетност (98,00%), употребљивост (88,50%),

поузданост (76,00%), изражајност (89,33%) и продуктивност (68,00%). На основу добијених

резултата, могуће је потврдити хипотезу EHnull, и тиме закључити да MultiProLan поседује
представљене карактеристике квалитета. Међутим, на основу коментара које су учесници

оставили, MultiProLan захтева додатна побољшања. Секција у анкети која се односила на

слободне коментаре била је врло значајна како би били откривени недостаци језика и алата

које би требало уклонити.

Закључак и будући правци истраживања. На основу резултата презентованих у овој

дисертацији, а који првенствено обухватају ново MD решење са новим методолошким

приступом и наменским језиком MultiProLan за моделовање и извршавање производних
процеса, у поглављу 10 дискутовано је да ли су хипотезе дефинисане у уводним поглављима

дисертације потврђене или одбачене. Како је креиран наменски језик MultiProLan, чији

модели процеса учествују у динамичкој производњи и погодни су за аутоматизовано
генерисање извршивих инструкција и техничке документације, а такође је омогућено

представити моделе процеса независно од производног система и по потреби их допунити

са елементима конкретног производног система, могуће је потврдити хипотезе H1, H2, H3 и

H4. Тиме је такође могуће потврдити и хипотезу H0, а на тај начин испуњен је главни задатак
овог истраживања и могуће је потврдити остварење главног циља, односно доприноса

увођења фабрика у процес дигиталне трансформације.

У поглављу 10 такође су детаљно описани сви доприноси истраживања представљеног
у овој дисертацији, као и будући правци истраживања. Они се деле на три општа правца

будућег истраживања:

• Будуће истраживање у области моделовања производних процеса и производних

система која обухватају:
o Истраживање у области моделовања производних система, односно ресурса,

њихових способности и ограничења, како би модел производног процеса могао

xxiii

на бољи начин да буде извршен, тиме што ће инструкције бити послате
одговарајућим ресурсима.

o Истраживање у области моделовања радника у фабрици са истим разлогом

споменутим у претходној ставци, међутим, раднике је потребно моделовати са

знатно више детаља, попут њихових компетенција, правних и здравствених
ограничења и улога у фабрици.

o Истраживање у областима моделовања ризика по раднике приликом извршавања

процесних корака, као и сигурносних аспеката, чиме би инструкције у
случајевима који су ризични по човека биле послате другим ресурсима.

o Истраживање у области моделовања утрошка енергије приликом извршавања

производних процеса, како би била обезбеђена одрживост фабрике тиме што би
инструкције биле послате ресурсима који би уз мањи утрошак енергије извршиле

задатак.

o Истраживање у области моделовања колаборативних производних процеса, у

којима је производни процес дељен и извршаван у различитим фабрикама, стога
је потребно обезбедити поверење између фабрика и гарантовати да ће сви услови

производње бити задовољени.

o Истраживање у области аутоматизоване трансформације модела производа,
попут модела Computer Aided Design (CAD), у модел производног процеса, што

би омогућило да се смањи време потребно за моделовање производних процеса.

• Будући развој језика MultiProLan и алата за моделовање производних процеса који

обухвата:
o Развој система препоруке који би на основу модела производног процеса

независног од производног система вршио процену времена производње и

утрошка енергије у различитим производним системима, и препоручивао у којем

систему је најпогодније извршити производни процес.
o Након извршене стандардизације способности и параметара у будућности, а

којима се описују ресурси у производњи и производни процеси, потребно је

прилагодити тренутни репозиторијум способности стандардизованим, како би се
обезбедила компатибилност са другим системима и решењима.

o Проширење језика MultiProLan концептима који би обезбедили моделовање

квалитета производње, чиме би било могуће повећати квалитет производње.

o Проширење језика MultiProLan концептима који би обезбедили моделовање
комплексније сарадње између ресурса приликом извршавања разних задатака.

o Креирање текстуалне конкретне синтаксе језика MultiProLan и анализирање да

ли је текстуална синтакса боља за пројектанте процеса у односу на графичку
синтаксу.

o Унапређење језика MultiProLan и алата за моделовање на основу коментара које

су оставили учесници анализе и оцене језика и алата, као и проширење анализе
и оцене језика и алата са новим учесницима, посебно инжењерима процеса.

• Нови домени примене језика MultiProLan који обухватају:

o Примену језика MultiProLan у процесној индустрији, односно континуалној

производњи, што би захтевало увођење нових концепата моделовања, попут

мерача времена и процене времена извршавања корака производње.
o Интеграцију представљеног MD решења са системом за аутоматизовану

детекцију извршавања процесних корака, како радници у фабрици не би морали

користити уређај са којим би потврдили да ли је процесни корак успешно
завршен и тиме губили значајно време. На тај начин додатно се убрзава обука

радника кроз систем за вођен процес производње, а такође се спречава да

радници забораве да изврше неки процесни корак.
o Примену језика MultiProLan у проширеној или помешаној реалности, у којој би

инструкције биле послате на одговарајући уређај коришћен од стране радника у

фабрици. Тиме би постојала могућност бржег и једноставнијег извршавања

процесних корака, посебно приликом обуке нових радника.

xxiv

o Примену других научних поља, попут науке о подацима и рударења процеса над
подацима прикупљеним током извршавања производних процеса, чиме би

потенцијално биле отклоњене аномалије, недостаци, грешке и кораци који

успоравају извршавање производних процеса.

Предложено MD решење, које је представљено у овој дисертацији, могуће је даље
унапређивати и развијати како би додатно подржало флексибилну производњу у индустрији.

Тиме би пун потенцијал овог решења био откривен, а такође би настале и примене у новим

доменима, подржавајући компаније у ери дигиталне трансформације и Индустрије 4.0.

Кључне речи: Моделовање производних процеса; Извршавање процеса; Индустрија 4.0;

Наменски језици; Трансформације модела; Инжењерство вођено моделима

xxv

Acknowledgments

The following projects supported the research presented in this thesis:

• "Intelligent Systems for Software Product Development and Business Support Based on
Models", III-44010, National Project, Ministry of Education, Science and Technological

Development of Republic of Serbia.

• "Innovative scientific and artistic research from the FTS (activity) domain", 451-03-

68/2020-14/200156, 451-03-68/2021-14/200156, 451-03-68/2022-14/200156, 451-03-

47/2023-01/200156, National Project, Ministry of Science, Technological Development
and Innovations of Republic of Serbia.

• "Digital Factory", Industrial R&D Project, KEBA Group AG, Linz, Republic of Austria.

xxvi

xxvii

Contents

List of Figures .. xxxi

List of Graphs .. xxxiii

List of Tables ...xxxv

List of Listings .. xxxvii

List of Acronyms ..xxxix

1 Introduction.. 1

1.1 Research Challenges, Motivation, Hypothesis and Goal ... 2

1.2 Overview of the Proposed Solution .. 3

1.3 Research Contributions and Results ... 4

1.4 Thesis Structure ... 5

2 Background and Theoretical Foundation ... 7

2.1 Relevant Concepts and Technologies in Industry 4.0 .. 8

2.2 Process Planning and Design ... 9

2.2.1 Production Process Planning ... 9

2.2.2 Production Process Design and Skill-Based Engineering ... 10

2.3 Overview of the MD Paradigm and DSMLs ... 12

2.4 Summary ... 15

3 Motivation, Research Hypotheses, Goals and Methodology .. 17

3.1 Motivation ... 17

3.2 Research Hypotheses ... 19

3.3 Research Goals .. 21

3.4 Expected Contributions and Results ... 22

3.5 Research Methodology .. 23

3.6 Summary ... 26

4 State-of-the-Art .. 27

4.1 Application of the MD Paradigm and DSLs ... 27

4.1.1 Information Systems ... 28

4.1.1.1 Information System Design Based on the IIS*Case Approach 28

4.1.1.2 Integration of Heterogeneous Technical Spaces .. 29

4.1.1.3 MD Paradigm and DSLs in Document Engineering and Robot Motion Control .. 30

4.1.2 Industry 4.0... 31

xxviii

4.1.2.1 Error Handling in Production Processes .. 31

4.1.2.2 Manufacturing Documentation ... 32

4.1.2.3 Guided Production .. 33

4.1.2.4 Process Modeling ... 33

4.2 Production Process Modeling ... 34

4.2.1 Production Process Modeling Language Requirements .. 34

4.2.2 Production Process Modeling Languages and Approaches ... 36

4.2.2.1 Traditional Production Process Specification .. 45

4.2.2.2 Process Modeling Languages and Extensions ... 46

4.2.2.3 Combining Modeling Languages to Model Production Processes 58

4.2.2.4 Modeling Languages to Support Production Process or Production System

Modeling ... 61

4.2.3 Discussion on Production Process Modeling .. 69

4.3 Summary ... 76

5 MD Solution for Modeling and Automatic Execution of Production Processes 77

5.1 Architecture of the MD System .. 77

5.2 Main Steps of the MD Approach .. 79

5.2.1 Main Steps of Modeling and Automatic Execution of Production Processes 80

5.2.2 Main Steps of Transforming Production Process Models into Manufacturing

Documentation .. 84

5.3 Objectives of the MD Solution ... 85

5.4 Summary ... 87

6 Analysis of the Production Process Modeling Domain .. 89

6.1 Operational and Resource Perspectives .. 90

6.2 Control-Flow Perspective ... 93

6.3 Summary ... 95

7 Multi-Level Production Process Modeling Language .. 97

7.1 Overview and Usage of MultiProLan ... 97

7.2 Abstract Syntax of MultiProLan ... 100

7.2.1 Master-Level Modeling Concepts at Execution Layer .. 100

7.2.2 Detail-Level Modeling Concepts at Execution Layer ... 107

7.2.3 Modeling Concepts at Error Handling Layer.. 109

7.2.4 Modeling Concepts for the Automatic Generation of Manufacturing Documentation

and Guided Production .. 112

7.3 Concrete Syntax of MultiProLan .. 114

7.4 Process Modeling Tool .. 122

7.5 Summary ... 126

8 Application of the MD Solution and MultiProLan ... 127

8.1 Example of MultiProLan Models of Customized Wooden Box Assembly 128

8.1.1 Master-Level Process Model of Wooden Box Production .. 129

8.1.2 Detail-Level Process Model of Assembling the Frame ... 137

8.1.3 Automatically Generated Instructions and Process Monitoring 140

xxix

8.1.4 Automatically Generated Manufacturing Documentation .. 144

8.2 Demonstration Environment with LEGO® Bricks .. 153

8.2.1 Test Scenarios Performed in the Demonstration Environment.................................. 153

8.2.2 Assembling a Flag from LEGO® Bricks .. 156

8.3 Summary ... 159

9 Evaluation of MultiProLan and Process Modeling Tool .. 161

9.1 Experiment Objective and Hypothesis.. 161

9.2 Experiment Participants ... 162

9.3 Experiment Preparation and Execution .. 163

9.4 Experiment Results and Data Analysis ... 164

9.4.1 Questionnaire Results ... 166

9.4.2 Statistical Analysis of the Questionnaire Answers ... 167

9.5 Overview of Other Quality Characteristics ... 168

9.6 Threats to Validity ... 169

9.7 Summary ... 170

10 Conclusions and Future Work ... 171

10.1 Outcome of Hypotheses Testing... 171

10.2 Research Contributions .. 173

10.2.1 Theoretical Contributions .. 173

10.2.2 Development Contributions ... 174

10.2.3 Application Contributions ... 175

10.2.4 Socio-Economic Contributions .. 175

10.3 Future Work .. 175

10.3.1 Future Research in the Domain of Production Process Modeling 176

10.3.2 Further Development of MultiProLan and Process Modeling Tool 177

10.3.3 New Application Domains of MultiProLan ... 178

References .. 181

Appendix A. Evaluation Experiment Tasks and Questionnaire ... 197

Appendix A.1. Experiment Tasks .. 197

Appendix A.2. Experiment Solution .. 201

Appendix A.3. Experiment Questionnaire .. 204

xxx

xxxi

List of Figures

Figure 2.1. A manufacturing flow of computer aided production systems 10

Figure 2.2. The four-layer infrastructure of model levels .. 13

Figure 3.1. Critical success factors of the novel MD solution .. 21

Figure 4.1. The Plank Sawing model example in BPMN .. 48

Figure 4.2. The Plank Sawing model example in UML AD .. 53

Figure 4.3. The Plank Sawing model example in PN .. 55

Figure 5.1. The architecture of the MD solution for production process modeling and

execution .. 78

Figure 6.1. A FODA model of a production process step suitable for an execution.......... 91

Figure 6.2. A FODA model of a production process suitable for an execution 94

Figure 7.1. Context and architecture of MultiProLan .. 98

Figure 7.2. The first part of the meta-model used for MasL model creation at Execution

Layer .. 101

Figure 7.3. The second part of the meta-model used for DetL model creation at Execution

Layer .. 107

Figure 7.4. The third part of the meta-model used for the error handling modeling at Error

Handling Layer .. 109

Figure 7.5. The fourth part of the meta-model used for the automatic generation of

manufacturing documentation and guided production 113

Figure 7.6. The Process Modeling Tool user interface .. 122

Figure 7.7. Process Modeling Tool Toolbar .. 123

Figure 7.8. The Process Modeling Tool layer button ... 123

Figure 7.9. The generate documentation dialog... 124

Figure 7.10. Tool palette of Process Modeling Tool without additional layers turned on . 125

Figure 7.11. Tool palette of Process Modeling Tool with both additional layers turned on

... 125

Figure 8.1. Parts of the wooden box used for the assembly ... 128

Figure 8.2. A variation of the assembled wooden box ... 129

Figure 8.3. The main MasL process model of wooden box production 130

Figure 8.4. The Assemble frame MasL sub-process model .. 131

Figure 8.5. The Hammer back side MasL sub-process model .. 132

Figure 8.6. The Glue fabric and dividers and place lid MasL sub-process model 134

xxxii

Figure 8.7. The wooden box product variations model .. 135

Figure 8.8. The wooden box variations ... 135

Figure 8.9. The Glue fabric and dividers and place lid MasL sub-process model with a

single variation (1.3 Box_TD_WL) .. 136

Figure 8.10. The Assemble frame DetL sub-process model ... 138

Figure 8.11. A user interface mockup of the human worker application 143

Figure 8.12. An example of monitoring the execution of the Assemble frame DetL sub-

process model ... 145

Figure 8.13. The BOM template used by Instruction Generator 147

Figure 8.14. An automatically generated BOM document from the Glue fabric and dividers

and place lid MasL sub-process model.. 147

Figure 8.15. An automatically generated BOMO document from the Glue fabric and

dividers and place lid MasL sub-process model .. 148

Figure 8.16. An automatically generated ASME FPC document from the Glue fabric and

dividers and place lid MasL sub-process model .. 148

Figure 8.17. The Glue fabric process step key points .. 149

Figure 8.18. An automatically generated JBS document from the Glue fabric and dividers

and place lid MasL sub-process model.. 150

Figure 8.19. The Insert pins in bottom side process step errors and error handler process

steps ... 151

Figure 8.20. An automatically generated PFMEA document from the Assemble frame DetL

sub-process model .. 152

Figure 8.21. The scheme of assembly demonstration environment 153

Figure 8.22. The digital twin of assembly demonstration environment 154

Figure 8.23. The assembly demonstration environment with research-grade smart robots

 .. .155

Figure 8.24. The assembly demonstration environment with an industrial mobile robot .. 155

Figure 8.25. The MasL process model of assembling the red-blue-white flag out of LEGO®

bricks ... 156

Figure 8.26. The DetL process model of assembling the red-blue-white flag out of LEGO®

bricks ... 158

Figure 8.27. The produced red-blue-white flag out of LEGO® bricks 159

Figure A.1. The wooden box whose production process is to be modeled 197

Figure A.2. The solution of the first experiment task ... 201

Figure A.3. The solution of the second experiment task ... 202

Figure A.4. The solution of the third experiment task .. 203

xxxiii

List of Graphs

Graph 4.1. Number of peer-reviewed papers per year ... 44

Graph 4.2. Number of peer-reviewed papers per year for the second, third, and fourth

categories ... 44

xxxiv

xxxv

List of Tables

Table 4.1. Search tokens and keywords ... 36

Table 4.2. Peer-reviewed papers of the reviewed literature .. 39

Table 4.3. The distribution of the presented languages and related papers by categories. 42

Table 4.4. A comparison of process modeling languages ... 73

Table 7.1. The basic modeling concepts of MultiProLan ... 114

Table 7.2. MultiProLan requirements fulfilment .. 117

Table 9.1. The questionnaire statistics ... 165

Table 9.2. Correlation coefficients and p-values for related questions 168

xxxvi

xxxvii

List of Listings

Listing 7.1. Constraints related to flow-type and collaboration-type relationships 102

Listing 7.2. The specification of the relational operator domain in product and capability

constraints .. 103

Listing 7.3. Constraints related to the start and end process steps 103

Listing 7.4. Constraints related to the startStep relation and the collaboration-type

relationship... 104

Listing 7.5. Constraints related to the pair of gates .. 105

Listing 7.6. Constraints related to diverging and converging gates 105

Listing 7.7. A constraint related to selection and iteration patterns 106

Listing 7.8. A constraint related to a process element variation 106

Listing 7.9. Constraints related to an unordered set of steps ... 106

Listing 7.10. Constraints related to resources and storage .. 108

Listing 7.11. A constraint related to regular storage ... 108

Listing 7.12. Constraints related to the start and end process step errors 109

Listing 7.13. Constraints related to local and global error handlers 110

Listing 7.14. A constraint related to a default error handler.. 110

Listing 7.15. A constraint related to an unordered set of error steps 111

Listing 7.16. Constraints related to error-type and flow-type relationships 111

Listing 7.17. Constraints related to gates from the error group ... 111

Listing 7.18. Constraints related to the start and end process steps and key points............ 112

Listing 8.1. An example of the Pick right side high-level instruction 140

Listing 8.2. An example of the Pick right side machine-specific ROS instruction 141

Listing 8.3. An example of the Assemble left-bottom sides high-level instruction 142

xxxviii

xxxix

List of Acronyms

AAS Asset Administration Shell ... 68

ADAPT Asset-Decision-Action-Property-relaTionship .. 60

AGV Automated Guided Vehicle .. 82

API Application Programming Interface.. 124

APICS American Production and Inventory Control Society 45

APQP Advanced Product Quality Planning ... 32

AR Augmented Reality .. 33

ASME American Society of Mechanical Engineers ... 45

ASML Assembly Sequence Modeling Language ... 61

BOM Bill of Materials ... 32

BOMO Bill of Materials and Operations ... 45

BOO Bill of Operations .. 45

BPEL Business Process Execution Language ... 49

BPM Business Process Management ... 50

BPMN Business Process Model and Notation .. 43

BSM Business System Model ... 14

CAD Computer Aided Design ... 10

CAM Computer Aided Manufacturing ... 10

CAPP Computer Aided Process Planning ... 10

CASE Computer Aided Software Engineering .. 28

CE-

MultiProLan

Collaborative Extension of Multi-Level Production Process Modeling

Language ... 25

CIM Computation-Independent Model ... 14

CPPS Cyber-Physical Production System... 8

CPS Cyber-Physical System .. 8

CT Composition Tree .. 58

DetL Detail-Level ... 81

DIN Deutsches Institut für Normung (English: German Institute for

Standardization) ... 12

DLT Distributed Ledger Technology .. 177

DPT Digital Process Twin .. 67

xl

DSL Domain-Specific Language .. 13

DSML Domain-Specific Modeling Language .. 3

DSR Design Science Research .. 23

DSRM Design Science Research Methodology .. 23

EMF Eclipse Modeling Framework ... 13

EPC Event-driven Process Chain .. 51

ER Entity-Relationship .. 28

FMEA Failure Mode and Effect Analysis... 31

FODA Feature-Oriented Domain Analysis ... 24

FOSD Feature-Oriented Software Development ... 89

FPC Flow Process Chart .. 32

FQAD Framework for Qualitative Assessment of Domain-specific languages 24

GenERTiCA Generation of Embedded Real-Time Code based on Aspects 31

GMA VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik (English:

VDI/VDE Society for Measurement and Automatic Control) 65

GME Generic Modeling Environment.. 31

GMPM Green information-based Manufacturing Process Modeling 64

GPML General-Purpose Modeling Language ... 13

GRAMOSA GRAphical Modeling and Simulation-based Analysis 62

GSMSPP Graph-based Simulation of Multi-Stage Production Processes 59

HMI Human-Machine Interaction ... 7

HMS Holonic Manufacturing System .. 68

HResModLan Human Resource Modeling Language .. 25

HSE Health, Safety, and Environment .. 70

HTTP HyperText Transfer Protocol .. 51

I4PML Industry 4.0 Process Modeling Language ... 60

I4PMM Industry 4.0 Process Modeling Method... 60

IAPMM IoT-Aware Process Modeling Method .. 60

IAPMN IoT-Aware Process Modeling Notation .. 60

IBPM Industrial Business Process Management .. 59

IDEF Integration DEFinition ... 57

IDEF3 Integration DEFinition method for Process Description Capture 57

IIoT Industrial Internet of Things ... 9

IIS*Case Integrated Information Systems*Case ... 28

IIS*Studio Integrated Information Systems*Studio .. 29

IoT Internet of Things ... 7

IP Internet Protocol... 67

IPPMA Integrated Product-Process Modeling Approach ... 63

IS Information System .. 9

IT Information Technology ... 7

JBS Job Breakdown Sheet ... 112

JSON JavaScript Object Notation ... 69

xli

KS A Korean Standards Association .. 45

LCDP Low-Code Development Platform .. 69

M2M Model-to-Model ... 15

M2T Model-to-Text.. 15

MaRCO Manufacturing Resource Capability Ontology .. 62

MasL Master-Level ... 80

MBSE Model-Based System Engineering .. 67

MD Model-Driven .. 2

MDA Model-Driven Architecture .. 12

MDD Model-Driven Development ... 12

MDE Model-Driven Engineering... 12

MDSD Model-Driven Software Development .. 12

MDSE Model-Driven Software Engineering .. 12

MDSEA Model-Driven System Engineering Architecture .. 14

MES Manufacturing Execution System ... 9

MES-ML Manufacturing Execution System Modeling Language 63

MMPD Meta-Model for Production Data .. 62

MoDEBiTE Model-Driven Engineering of Bidirectional Transformations via Epsilon 89

MOF Meta Object Facility .. 13

MPC Manufacturing Planning and Control .. 9

MPIM Manufacturing Process Information Model ... 62

MPIMM Manufacturing Process Information MetaModel ... 62

MR Mixed Reality .. 179

MService Manufacturing Service ... 68

MultiProLan Multi-Level Production Process Modeling Language 3

NIST National Institute of Standards and Technology .. 63

OCL Object Constraint Language ... 97

OMG Object Management Group .. 13

OPC UA Open Platform Communications Unified Architecture 54

OWL Web Ontology Language ... 62

P&ID Piping and Instrumentation Diagram .. 166

PBM Process-Based Modeling .. 59

PFMEA Process Failure Mode and Effect Analysis .. 46

PIM Platform-Independent Model .. 14

PIPE2 Platform Independent Petri net Editor 2 .. 54

PLC Programmable Logic Controller ... 60

PM-HRC Process Model-based Human-Robot Collaboration 65

PMPM Part-flow based Manufacturing Process Modeling .. 65

PN Petri Net .. 46

PPR Product-Process-Resource .. 38

PPR-SS Product, Process, Resource, Schedule, and Space ... 59

xlii

PQ Predictive Quality .. 63

PSL Process Specification Language.. 63

PSM Platform-Specific Model .. 14

REST REpresentational State Transfer.. 29

ROS Robot Operating System... 79

RPN Risk Priority Number ... 151

RSD Rapid Software Development .. 122

SAP Systemanalyse Programmentwicklung (English: System Analysis Program

Development) .. 166

S-BPM Subject-oriented Business Process Management ... 57

SOA Service-Oriented Architecture .. 69

SQL Structured Query Language .. 67

SysML Systems Modeling Language .. 54

SysML AD Systems Modeling Language Activity Diagram .. 54

T2M Text-to-Model .. 15

T2T Text-to-Text ... 83

TIM Technology Independent Model ... 14

TNO Nederlandse Organisatie voor Toegepast-Natuurwetenschappelijk Onderzoek

(English: Netherlands Organization for Applied Scientific Research)............ 49

TSM Technology Specific Model .. 14

UML Unified Modeling Language ... 28

UML AD Unified Modeling Language Activity Diagram ... 46

UOB Unit of Behavior .. 57

VDE Verband der Elektrotechnik Elektronik Informationstechnik (English:

Association for Electrical, Electronic & Information Technologies) 65

VDI Verein Deutscher Ingenieure (English: Association of German Engineers) ... 12

VSM Value-Stream Mapping .. 49

WS-BPEL Web Services Business Process Execution Language 51

WWW World Wide Web ... 62

XMI XML Metadata Interchange .. 67

XML Extensible Markup Language ... 60

YAFMT Yet Another Feature Modeling Tool ... 89

Introduction 1

1 Introduction

Manufacturing is a term used for the essential activity of making products and services. The word
manufacture is several centuries old, derived from two Latin words: manus – a hand, and factus –

to make, meaning made by hand. Besides making objects by hands, humans have been using tools

and materials since the Stone Age. Various tools and materials are still used nowadays, and, over

time, manufacturing became more and more sophisticated. Contemporary manufacturing is mainly

done by automated and computer-controlled machinery [1,2].

Manufacturing can be observed from both a technological and an economic viewpoint. From

the technological viewpoint, manufacturing represents an application of physical or chemical
processes to change the properties of materials, creating parts or products. It is carried out by a set

of operations, each transforming materials a step closer to the final product form. From the

economic viewpoint, manufacturing is the transformation of materials into parts or products of

greater value. Each manufacturing operation changes the properties of materials, adding value to

them.

As it is crucial for a country's welfare and a standard of living to sell final products created by

manufacturers in the country, the goal of manufacturing is to satisfy customer needs by making
sellable products or by providing services. As customer needs change over time, a product or a

service needs to be continually improved. Consequently, products and their manufacturing

processes are also continually evolving. Due to product changes, different product variations
emerge and are often grouped inside product families. Each product variation within a product

family differs from others by one or more specific parts or materials. Also, each product variation

has a corresponding production process variation. Every time a new process variation emerges, the

existing shop floor in a manufacturing company needs to be changed and rearranged. This can be,

and often is, challenging as the shop floor and its processes are usually rigid.

Besides manually rearranging shop floors frequently, they may be self-adjustable to meet the

demand for customized products. Until the end of the 20th century, machines were still not fully
independent and self-adjustable to variations in the production processes. Changing a shop floor

was a burdensome and time-consuming task that required stopping production. Each time

production was stopped, a company lost money. Therefore, the way of manufacturing needs to be

changed in order to respond to customer demands and numerous product and process variations.

In the rest of this section, we provide an overview of the research conducted and presented in

this Ph.D. thesis. This section is structured as follows. In Section 1.1, we discuss research

challenges, motivation, the main hypothesis, and the main goal. A brief overview of the proposed
solution is outlined in Section 1.2, while the expected research results and contributions are

presented in Section 1.3. The section concludes with the thesis structure presented in Section 1.4.

2 Introduction

1.1 Research Challenges, Motivation, Hypothesis and Goal

A new way of manufacturing, providing flexible shop floors, is supposed to be implemented during

the fourth industrial revolution, named Industry 4.0. The aim of Industry 4.0 is to enable the

production of numerous individualized products for customers, creating an environment for lot-
size-one production while preserving the economic characteristics of mass production. However,

with such an environment, the number of product and process variations increases even more, as

customers raise their needs. Therefore, one of the main challenges of Industry 4.0 is:

(Ch1) to cope with numerous product and process variations by creating a flexible

environment for lot-size-one production.

In such a dynamic and flexible production, various errors and failures may occur, that can lead

to production being stopped. In contemporary production systems, when an error occurs during
production, a production line needs to be stopped, causing additional costs to factories. In Industry

4.0 flexible production, the exact procedures on how to handle errors must exist and, in most cases,

these error handling procedures must be performed without a need to stop production. Thus, an

important Industry 4.0 challenge is:

(Ch2) to run flexible production smoothly, even if an error occurs, by having well-

established procedures that are automatically performed to minimize damage and costs

caused by errors.

Additionally, due to many variations, manufacturing documentation required by different

standards and procedures increases as well. Each time a product or its process changes, the

documentation of different types must be updated and new versions created, which is a time-
consuming task. To keep the documentation up to date, additional personnel need to be engaged,

raising costs for a manufacturing company. Accordingly, as creating and modifying product and

process variations and keeping the manufacturing documentation up to date becomes a burdensome

manual task, another important Industry 4.0 challenge that needs to be addressed is:

(Ch3) to manage product and process variations easily and keep the manufacturing

documentation up to date automatically.

As various products and their variations are produced in a factory, human workers must adapt
and create new products often. Thus, a fast knowledge transfer is needed on how to produce all

these products and variations. Otherwise, a lot of time needs to be spent in training workers when

creating new products and expert workers need to spend a lot of time training new workers coming
to a factory. In addition, as the number of human workers decreases in factories, they often need to

change their workplace and create various products. Therefore, another important Industry 4.0

challenge is:

(Ch4) to provide automated knowledge transfer and guided production to lower the time

and costs required for human worker training.

Recently, both the research community and the industry are trying to create such a flexible

environment that manages many product and process variations, handles production errors
dynamically, keeps the manufacturing documentation up to date, and provides a fast knowledge

transfer to human workers. However, none have managed to cope with the challenges (Ch1–Ch4)

fully. The creation of dynamic and flexible production is still in its early stages of development,

and researchers apply various existing approaches and create new ones to enable such production.

One way to deal with the challenges (Ch1–Ch4) is by using an intelligent system that is built

on the Model-Driven (MD) principles, having models as central artifacts that lead the production

process execution. Thus, production processes, alongside different product and process variations,
could be specified in the form of formal and machine-readable models with precise semantics.

These formal, machine-readable models could be automatically transformed into executable

resource instructions that the intelligent system dynamically orchestrates and allocates to the shop
floor resources. Whenever these instructions are sent to human workers, the instructions could

Introduction 3

contain descriptions, images and videos, guiding workers to create a product and transfer new
knowledge to them. If process models are enriched with corrective process steps as a response when

an error occurs, the models could be used by the intelligent system to manage error handling. Also,

production process models could be used to automatically generate manufacturing documentation

and keep the documentation up to date by updating it whenever a change appears in a product or its

process.

However, creating such resource-aware production process models with all the details related

to process execution, error handling and manufacturing documentation, makes the modeling
challenging, as it requires factory shop floor details to be included in process models. Creating a

resource-aware production process model with all these details requires process designers to have

knowledge about the shop floor on which the production process model is to be executed. Thus,
process modeling becomes a burdensome and time-consuming task. Additionally, a resource-aware

production process model is dependent on a specific production system. In Industry 4.0, production

process models should be independent of any production system, allowing resource-agnostic

production process models to be reused in different production systems. Accordingly, one of the

biggest challenges in Industry 4.0 related to production process modeling is:

(Ch5) to allow the creation of resource-agnostic production process models in a simple

manner, easy to understand, and reusable in multiple production systems, but also

automatically transformable into executable resource instructions.

To transform a resource-agnostic production process model into executable resource

instructions, the model needs to be manually or automatically transformed into a resource-aware
production process model first. The automatic transformation of resource-agnostic into resource-

aware production process models is also one of the important Industry 4.0 challenges but is out of

scope in this thesis.

Many researchers put a lot of effort into solving the production process modeling challenge
(Ch5). Production processes are modeled in different ways, and even if they are suitable for the

automatic generation of executable resource instructions, these models are closely coupled with a

specific production system to which instructions are to be sent, leaving the modeling challenge

(Ch5) still open.

In this thesis, we aim to contribute to solving the research problem discussed through the

research challenges (Ch1–Ch5), by creating a novel MD solution for production process modeling

and execution. Thus, we formulate the main hypothesis and the main goal of our research:

Hypothesis 0 (H0). It is possible to create an MD solution for resource-agnostic and

resource-aware specification of production processes and automatic transformation of

such specifications into executable resource instructions and manufacturing

documentation.

The main goal of our research, derived from the main hypothesis, is to introduce factories

into the digital transformation process, by providing dynamic production management
and automatic production process execution based on process models.

1.2 Overview of the Proposed Solution

To achieve the research goal, we propose a novel methodological approach and a software solution
that utilizes MD principles, and a novel Domain-Specific Modeling Language (DSML), named

Multi-Level Production Process Modeling Language (MultiProLan), to specify production

processes formally in the Industry 4.0 era. The aim of such an MD solution and MultiProLan is also
to help process designers model production processes and keep the manufacturing documentation

up to date in a more efficient manner.

4 Introduction

To cope with the Industry 4.0 challenges (Ch1–Ch5), our solution uses production process
models that automatically lead the execution of production processes by generating and executing

resource instructions from the models. Accordingly, such models need to be machine-readable and

numerous production and execution details need to be stored in the models. However, including

production and execution details in production process models makes manual process modeling
difficult for a process designer. Therefore, these models are presented through different levels of

detail to separate process models that are independent of any production system and modeled by

process designers, and process models that are made for specific production systems in which they
are to be executed. In addition, to cope with numerous details in production process models,

modeling layers need to be created to show or hide different aspects of production processes.

As MultiProLan supports different modeling levels and layers, making them one of the main
features of our language, we named it Multi-Level Production Process Modeling Language to

highlight such an important feature. MultiProLan separates resource-agnostic from resource-aware

production process models, allowing process designers to be focused only on production process

steps instead of execution details and production systems. An intelligent system, named
orchestrator, is used to automatically transform resource-agnostic into resource-aware production

process models. This can be achieved as MultiProLan is a capability-based process modeling

language, meaning that each process step in a model has the capability required to execute the
process step. In the orchestrator, there is information about each resource and the capabilities it

offers, allowing process steps to be allocated to resources based on capabilities.

As MultiProLan models are machine-readable, executable resource instructions can be
automatically generated from resource-aware models and sent to resources to execute instructions

and create products. Production process step images and video footage can be automatically

generated and sent to human workers one by one with textual and audio descriptions on how to

perform each step, enabling guided production and training for them. In addition, manufacturing
documentation can be automatically generated and updated whenever new products or variations

emerge, or existing products or variations change, eliminating such a burdensome manual task from

process designers.

1.3 Research Contributions and Results

The overall research presented in this thesis is expected to have the following contributions.

Theoretical contributions are expected to cover a novel MD approach and a modeling
language in the field of production process modeling, and also a novel methodology for the

automatic transformation of production process models into executable resource instructions and

manufacturing documentation.

Development contributions are expected to cover the development and implementation of a
novel software solution for production process modeling and novel instruction and manufacturing

documentation generators.

Application contributions are expected to cover the application of an MD approach and a
modeling language in the production domain in the form of use cases with practical application in

the assembly industry and the evaluation of the modeling language and the tool for production

process modeling.

In addition to the aforementioned scientific and practical contributions, it is important to
mention the socio-economic contributions expected from the conducted research in the light of

contemporary trends in the world in the development of the Industry 4.0 field. These socio-

economic contributions refer to the possibility of putting into public use a general model of
production process management, applicable in a wide range of organizations in a way that enables

significant production process improvement and raises general accumulated knowledge on how to

contribute to such a process improvement contemporarily.

Introduction 5

The main expected result of our research is easier and simpler formal modeling of production
processes in the era of Industry 4.0. Created models are to lead the process execution in flexible

production and keep the manufacturing documentation up to date automatically, thus responding to

increasing customer demands for individualized products and coping with Industry 4.0 challenges

(Ch1–Ch5).

More details about the research motivation, goals, expected contributions and results, and

research methodology are presented in Section 3. Also, besides the main hypothesis presented in

this section, there are four hypotheses derived from the main one, presented in Section 3. All these
details are not presented in the Introduction section to make it clear, concise, and simple. Thus,

before going into details in Section 3, first we introduce the background and theoretical foundations

related to our research in Section 2. The complete overview of the thesis structure is outlined in the

following section.

1.4 Thesis Structure

Apart from Introduction, Conclusion, and Appendix, this thesis is structured as follows.

In Section 2, we present the background and theoretical foundation related to this thesis. First,
we discuss industrial revolutions, especially Industry 4.0 and its relevant concepts and technologies.

Afterward, we present an overview of production process planning and design, and skill-based

engineering. The section ends with an overview of the MD paradigm and DSMLs.

Research challenges, motivation, and goals are presented in detail in Section 3. The main and

four derived hypotheses are presented and discussed in this section, as well as the expected

contributions and results of this research. The research methodology and the activities performed

to conduct the research are also presented in this section.

In Section 4, we present the state-of-the-art of different aspects related to the MD paradigm

and Industry 4.0, with production process modeling and execution as the main aspects. Based on

the preliminary research, industrial use cases we encountered, and the discussion with domain
experts, we specified requirements for a production process modeling language whose models

would be suitable for dynamic orchestration and automatic model execution or generation of

executable instructions. Afterward, the researched languages and approaches are presented in detail,
and divided into four categories we identified. These languages and approaches are tested on

fulfilling the specified requirements. In the Summary subsection, we discuss the requirements

coverage by languages and approaches, the features that are mostly not covered by languages and

approaches, and the future research directions in production process modeling.

Our MD solution, comprised of the novel MD approach and the MD system, is discussed in

detail in Section 5. First, the architecture of our MD system is presented, containing modeling tools,

an orchestrator and a knowledge base, different code generators, and a production system with a
digital twin. Afterward, the main steps of our MD approach are outlined, comprising the

specification of production system models and production process models, and the automatic

transformation of process models into executable resource instructions and manufacturing

documentation. The section ends with the objectives that our MD solution aims to fulfill.

To develop a novel DSML for production process modeling, used as the main component of

our MD system, the relevant domain needs to be analyzed first. We divided the production process

modeling domain into operational, resource, and control-flow perspectives, and presented domain
concepts relevant to a modeling language that aims to model production processes in the context of

Industry 4.0. The production process modeling domain analysis is outlined in Section 6.

In Section 7, we present MultiProLan, the novel DSML for production process modeling. In
this section, we present an overview and the usage of MultiProLan, its detail levels and modeling

layers, as well as the users of the language. Then, we present the abstract and concrete graphical

syntaxes of MultiProLan and a way in which MultiProLan fulfills the requirements specified in

6 Introduction

Section 4. An overview of the process modeling tool that utilizes MultiProLan is presented at the

end of Section 7.

In Section 8, the application of our MD solution and MultiProLan is outlined in order to present

their usability in different use cases. There are two proof-of-concept use cases presented in this

section. In the first use case, a customized wooden box is assembled, having different product
variations. This use case is created to demonstrate the possibilities of MultiProLan and its process

modeling tool. The second use case represents a demonstration environment created to test the

whole solution in assembling objects from LEGO® bricks, avoiding failure costs associated with
the real production system. In this demonstration environment, different robots are used and some

of them are industrial mobile robots, which are used in real production. In this section, various

production process models are presented, as well as automatically generated instructions and

manufacturing documentation.

The evaluation of MultiProLan and its process modeling tool by different user groups is

presented in Section 9. The evaluation participants performed an experiment in which they modeled

production processes and evaluated the following quality characteristics of MultiProLan and the
modeling tool: functional suitability, usability, reliability, expressiveness, and productivity. In this

section, we discuss the experiment objective and hypothesis, user groups that participated in the

experiment, the preparation and execution of the experiment, the results of the evaluation, and

possible threats to validity.

Background and Theoretical Foundation 7

2 Background and Theoretical Foundation

The way of manufacturing has changed over time, especially during industrial revolutions. An

industrial revolution involves fundamental changes, altering different aspects of societies, such as

production and economics. Each industrial revolution significantly impacted countries over the past
three centuries. To this date, three revolutions have happened, triggered by the following

breakthroughs: (i) the James Watt's steam engine in 1784; (ii) the power of electricity and oil with

internal combustion motors in the 1870s; and (iii) electronics and microcontrollers in the 1960s
[102,103]. Although these changes are called industrial revolutions, historians raise concerns over

using the term revolution, as these changes took several decades to modify production [103].

Currently, a new revolution is happening. The fourth industrial revolution has been triggered by
technological advances, such as highly networked devices and new Information Technology (IT)

infrastructure, as well as increasing customer needs for highly customized products. As it began

only a few years ago, we expect it to last for years to come, similar to previous revolutions.

The fourth industrial revolution is also known as Industry 4.0 (German: Industrie 4.0), a term
coined in 2011 by Kagermann et al. [104] when they proposed ideas on how to strengthen the

competitiveness of the German manufacturing industry. Although this particular name was coined

in Germany, other countries also have similar national programs and research projects, albeit named
differently, in the domain of smart manufacturing in order to define and implement its concepts

[105].

Industry 4.0 emerged at the beginning of the 21st century, and companies are moving from
mass production to mass customization. Advanced technologies in the form of smart resources and

smart products represent the basis for Industry 4.0, enabling fast changes of products created in

factories. Industry 4.0 introduces primarily IT-driven changes in existing production systems to

enable the production of individualized products while preserving all beneficial economic

characteristics of mass production [106,107].

Ivanov et al. [108] defined the notion of Industry 4.0 as the industry that integrates

technologies, organizational concepts, and management principles to adapt to rapid production
changes by rearranging and reallocating components and capabilities. The goals of Industry 4.0 are

to [105,109]:

• provide IT-enabled mass customization of products;

• make an automatic and flexible adaptation of production;

• track parts and products during production;

• facilitate communication among parts, products, and machines;

• apply Human-Machine Interaction (HMI) and ensure the safety of human workers and

machines working together in close proximity;

• achieve Internet of Things (IoT)-enabled production optimization in factories;

• provide new types of services and business models;

• save energy and reduce lead times, costs, and waste; and

8 Background and Theoretical Foundation

• improve the quality of products and efficiency of production.

To sum up the goals, Industry 4.0 aims to achieve a higher level of operational efficiency,

productivity, and automatization, providing more flexible and lot-size-one production.

However, contemporary production environments and machines are not appropriately

automated, fully independent, and self-adjustable to support such flexible production. Therefore,

the Industry 4.0 goals are yet to be met despite the numerous contributions to smart manufacturing

in recent years.

The MD paradigm can be used to create an environment to make production more flexible and

in which production process models lead the production process execution. Executable instructions
can be automatically generated from process models and sent to Industry 4.0 smart resources for

execution. Therefore, in this section, we outline the background and theoretical foundation related

to the production process modeling in the context of Industry 4.0 and the MD paradigm. The main
concepts and technologies used in the Industry 4.0 context are presented in Section 2.1. The way

production processes are planned and designed is described in Section 2.2. A brief overview of the

MD paradigm and DSMLs is outlined in Section 2.3. The summary of the background and

theoretical foundation is presented in Section 2.4.

2.1 Relevant Concepts and Technologies in Industry 4.0

Numerous technologies are used to bring the Industry 4.0 concepts to life in companies [109,110].

Therefore, to discuss further about the Industry 4.0 context related to our research, in this section

we describe the main concepts and technologies commonly used in Industry 4.0:

• Smart Factory is an intelligent production system based on digital and automated

production, using IT to improve the management and quality of production [111]. A smart

factory realizes flexible manufacturing, dynamic reconfiguration, and production
optimization, adapting to rapid changes in production due to customer needs. It consists of

intelligent and autonomous shop floor entities aiming to decentralize production [112].

These entities represent smart materials or smart products and smart resources, able to store

information of different types, such as their state, position, and history. Smart materials
and smart products are service consumers, processed by smart resources that are service

providers. As these smart entities should be autonomous and independent, a smart factory

should be able to produce customized and small-lot products efficiently and profitably
[113]. Such customized production and a smart environment are enabled by advanced

technologies, such as Cyber-Physical System (CPS) and IoT [114], introduced further in

this section.

• Cyber-Physical System (CPS) is an automated system that integrates both physical and
virtual worlds, networking devices of different types [115,116]. It consists of a control unit,

controlling sensors, and actuators necessary to interact with the real world, with the purpose

of synchronizing physical and virtual worlds [115,117]. There are various fields of

application for CPS, such as medical equipment, driving safety and assistance, autonomous
cars, industrial process control and automation systems, and the smart electric grid. CPS

applied in manufacturing is usually called Cyber-Physical Production System (CPPS). It

relies on computer science, information and communication technologies, and
manufacturing science and technologies, enabling the equipment of a smart factory to

become intelligent and thus leading to smart production [21,118].

• Digital Twin is a digital part of a CPS, representing a virtual model of a physical object. It

is a digital representation of an active product or a product-service system, and it comprises
their characteristics, conditions, and behavior [119]. A digital twin can be used to simulate

the object's behavior, while the object can respond to changes made in the simulation [120].

It should be possible to simulate all production steps and depict their influence on

production, enabling product-specific costs to be calculated in advance [121]. Simulations

Background and Theoretical Foundation 9

need to be highly utilized in Industry 4.0 to simulate products, robots, and humans in order
to reduce failures and optimize resource consumption [122]. Accordingly, by testing

production using digital twins and simulations, production failures may be mitigated or

missing production steps detected, lowering costs and wastes due to production failures.

• Internet of Things (IoT) may be seen as a CPS connected to the Internet [115]. It is

considered Internet of the future, consisting of numerous heterogeneously and wirelessly
connected devices that interact without human intervention [123]. IoT applied in

manufacturing is usually referred to as Industrial Internet of Things (IIoT). It covers the

domain of machine-to-machine and industrial communication technologies, enabling
efficient and sustainable production [124]. As the pillar of digital manufacturing, IIoT aims

to connect all industrial assets with Information Systems (ISs) and business processes.

• Production orchestration represents diverse activities of scheduling and allocating

operations to resources. These activities should be performed automatically and
dynamically in Industry 4.0, enabling fast adaptation of the production floor to customer

needs. A component named orchestrator can be used in production systems to achieve such

goals. An orchestrator is software run on top of a cluster of industrial computers that can

orchestrate smart resources and assign them process steps for execution [3–5].

• Manufacturing Execution System (MES) provides a common user interface and a data
management system, integrating multiple execution management components into a single

solution [125]. MES assists production by managing activities on the shop floor and serves

as a bridge between planning and control systems [126]. Smart factories utilize MES to
assist human workers and machines in executing their tasks during production.

The presented concepts and technologies are referenced throughout this thesis, but mostly as

a context in which we conduct or apply the research related to the production process modeling.
The following section introduces an overview of production process planning and design as they

are currently performed by manufacturing companies to the best of our knowledge.

2.2 Process Planning and Design

In this section, we describe activities of designing products and processes, planning processes, and
manufacturing products. This section is divided into the following two subsections. In Section 2.2.1,

process planning activities are discussed, while process design and its integration with skill-based

engineering are described in Section 2.2.2.

2.2.1 Production Process Planning

Manufacturing Planning and Control (MPC) comprises a wide range of activities, from managing

materials and scheduling resources to coordinating suppliers and planning customer shipments

[127]. Part of MPC activities is related to designing products and planning production processes,

which are relevant to the research presented in this thesis. Other MPC activities are not considered

in this thesis.

Process planning represents a set of strategies, methods, and activities needed to

systematically determine manufacturing operations required to create a product economically and
competitively [128–132]. Each manufacturing operation needs to be defined in the best possible

way so that created products fulfill the intended quality at a competitive price. The input to process

planning is a product design, such as a product's blueprint, while the output of process planning are
various manufacturing documents, including a production process specification and a plan for how

to produce a product, and the manufacturing of a product.

There are different types of planning, such as: (i) strategic or long-term; (ii) tactical or medium-

term; and (iii) production scheduling or short-term planning [133]. Long-term planning determines
a manufacturing company's supply chain structure, which represents a network of production

10 Background and Theoretical Foundation

facilities and distribution options. Medium-term planning includes decisions such as assigning
production targets to production facilities and transportation logistics from facilities to warehouses.

Short-term planning is performed daily or weekly, and at the production level, it is referred to as

scheduling. Production scheduling represents an allocation of tasks to available production

resources over time, to best satisfy a set of various optimization criteria [134]. In the research
presented in this thesis, we are focused on short-term planning, especially in process design and

execution. Thus, we do not consider the management of production facilities or material handling

at the level of warehouses and facilities in our research.

Since computers are known for their speed and consistency, Niebel [135] first presented the

idea of using them to assist in the determination of process plans in 1965, and the year after, Schenk

[136] discussed the feasibility of automated process planning. Computer Aided Process Planning
(CAPP) has been researched since then, and its purpose is to automate process planning tasks in

order to generate process plans consistently [129]. CAPP is an essential component of a computer

integrated manufacturing environment, and it acts as a bridge between Computer Aided Design

(CAD) and Computer Aided Manufacturing (CAM) [129,137]. CAD uses computer systems to
assist in the creation, modification, analysis, and optimization of a design, increasing the

productivity of designers [138]. Products or parts can be designed using CAD software, and the

output of such software is two-dimensional drawings or three-dimensional models. CAM uses
computer systems to plan, manage, and control operations of production resources in a

manufacturing plant, automating a manufacturing process. Computer integrated manufacturing

utilizes computer systems to integrate concepts such as CAD, CAPP, and CAM into one extensive
system, controlling the entire production. A manufacturing flow from computer aided product

design to manufacturing is presented in Figure 2.1.

A novel methodology that is considered nowadays and is derived from computer aided

planning is the MD process planning. The MD process planning is a methodology in which digital
models are applied to create, represent, and use the information of products, processes, and

resources, supporting process planners in creating process plans [131,132]. The resulting process

plan is digital, and, unlike traditional CAPP plans, it is a computer interpretable model with exact
and precise semantics, defining what and how it will be produced. Furthermore, the MD process

planning enables a comparison between design objectives – as planned, and production and

inspection information – as realized, by gathering feedback from the process execution. Therefore,

structured knowledge is developed, making it possible to improve product and process design.

2.2.2 Production Process Design and Skill-Based Engineering

A manufacturing process design is a part of the process planning phase consisting of process steps

needed to create a product. A manufacturing process is a designed procedure that physically,

mechanically, thermally, electrically, or chemically changes an input material intending to increase
its value [1,139]. Besides materials, the input of a manufacturing process includes machines,

tooling, energy, labor, and knowledge, and after a set of operations is executed, a processed part or

Figure 2.1. A manufacturing flow of computer aided production systems.

Background and Theoretical Foundation 11

product with scrap, waste, and emissions are the output of such a process [1,140]. Therefore, a
manufacturing process is usually defined as a transformation activity consisting of a collection of

operations in which human workers and machines use energy and information to transform raw

materials into finished products, fulfilling certain requirements [2,32,139]. There is also a term

production process, which is usually referred to as a superset of all kinds of processes in a
manufacturing company. Therefore, it includes all business processes as well as manufacturing

processes in a company [32]. A process operation or a process step is an activity performed to

produce the desired result or effect. Manufacturing processes are divided into discrete and
continuous processes [141]. Discrete processes have an output that can be identified and is

measurable by distinct units, while continuous processes have an output that can be identified and

is measurable by mass or volume.

Manufacturing processes are executed in a manufacturing system or a factory that represents

a complex set of physical elements that includes machines, people, materials-handling equipment,

and tooling [2]. A production system is usually referred to as an enterprise system or an entire

company, including all aspects of commerce, such as sales, advertising, profit, distribution, and a
manufacturing system [2]. For the rest of this thesis, we will use the terms production process and

production system, as we aim to cover different aspects of production in our research, but we mainly

think of manufacturing processes and systems when we use these terms. Also, production process
and production system terms are widely used in the literature and usually stand for manufacturing

processes and systems.

Production process specifications are created by process designers. By the notion of process
designer, we denote a person in charge of transforming a valuable idea or an experiment into an

industrial process in a way to fulfill not only originality, efficiency, quality, and sustainability

criteria but to consider many, often contradictory constraints. It includes all the users participating

in process specification, such as process engineers, quality engineers, and resource managers. We
should note that we use the syntagm "process engineer" to denote someone who specifies

production processes, not only in the process industry but covering a wider range of processes.

As production processes change rapidly and numerous process variations emerge in the era of
Industry 4.0, production systems need to adapt to these changes. Traditionally, to execute

production processes, resources are arranged in a factory to form a production system [2]. However,

to increase the adaptability of production systems, production processes need to be decoupled from

them [65]. Therefore, production processes should be modeled independently from any production

system, and production systems should be flexible enough to support various processes.

Skill-based engineering may be applied to decouple production processes from production

systems. Machines and robots made by different vendors may participate in a single production
system. Some may use low-level instructions at the level of sensors and actuators, while others may

use high-level instructions, such as pick, place, and move. Even at the same abstraction level,

instruction syntax may vary by a resource vendor. There are also human workers working in a
production system that can use instructions in the form of textual descriptions. Managing

production in such a heterogeneous system can be particularly difficult, and it requires specific

knowledge from different domains and can be prone to errors [6]. Accordingly, there is a need to

unify the way how instructions are sent to resources, which may be achieved through skill-based
engineering [6,7]. Vathoopan et al. [7] defined skill-based engineering as "a very new method that

describes the individual components, constituting an automation system as objects with their

respective services, named skills".

A skill is usually referred to as a synonym for a capability, and a capability is defined as the

"implementation-independent potential of an Industry 4.0 component to achieve an effect within a

domain" [142]. There is also another view on skills and capabilities, indicating that a capability is
a type of skill, and a skill is a parametrized and executable instance of a capability. We will use the

term capability for the rest of this thesis as a synonym for a skill.

Production system resources may be seen as objects with their respective capabilities and

standardized interfaces. Therefore, resources are offering a set of capabilities they have. Production

12 Background and Theoretical Foundation

process steps may require the capabilities needed for their execution. Accordingly, offered and
required capabilities can be matched, thus matching process steps with resources that may perform

them. After the matching process is finished, a system is needed to automatically transform matched

resources and process steps into instructions to execute operations. These instructions can be sent

to resources for execution. By using capabilities to describe resources and process steps, production
process models can be specified independently from any specific production system. Also, process

steps and resources are described in a uniform way, independent of the instructions' abstraction

level and syntax.

To match process steps with resources, capabilities and their parameters should be specified

in a uniform and standardized way [143]. Otherwise, the matching process would be compromised

if synonyms are used for capabilities, the capability name is misspelled, or some unknown
capability parameters are used. A standardization of capabilities and their parameters in a

manufacturer-independent and cross-vendor way is still an open challenge [7,144–146], and such

standardization is necessary to establish production steps for manufacturing [65]. As the

standardization is still a work in progress, researchers have created capability taxonomies based on
the mixture of different existing standards [144], such as the Association of German Engineers' VDI

2860 [147] (German: Verein Deutscher Ingenieure, VDI) for assembly and handling operations,

and the German Institute for Standardization's DIN 8580 [148] (German: Deutsches Institut für
Normung, DIN) for manufacturing processes in general. An example of such a capability taxonomy

is presented by Hammerstingl and Reinhart [145]. The authors pointed out the necessity of the

solution-neutral standardization of capabilities and their parameters for cross-vendor
interoperability and proposed the capability taxonomy for assembly and handling operations.

Another example is the SkillPro project [149], which aimed to unify and abstract capabilities

provided by resources and required by production steps.

The Association of German Engineers (VDI) works on a standardized classification of
capabilities in the domain of the assembly industry [7]. The standardization of assembly capabilities

is expected soon under the standard VDI 2860. However, until the standardization of capabilities

becomes realized, a capability repository containing a capability taxonomy with available
parameters for each capability can help process designers specify production processes. Without

the repository, capability names would be specified as arbitrary text, allowing process designers to

misspell a capability or use a synonym for its name. Thus, an orchestrator or another intelligent

system cannot match process steps with resources.

2.3 Overview of the MD Paradigm and DSMLs

Model-Driven* (MD*) as a prefix is an umbrella term to indicate, among others: MD Engineering

(MDE), MD Software Engineering (MDSE), MD Development (MDD), MD Software
Development (MDSD), and MD Architecture (MDA) [150], all discussed in this section. According

to the MD paradigm, models represent a central artifact at all stages of system development.

Although models have been used extensively in the software development process for decades, they
were often used just for documentation purposes. Problems of growing complexity, number of

different platforms, and interoperability in system engineering in general, as well as in software

engineering, have motivated a paradigm shift. This shift caused a different usage of models, not

just for documentation purposes but now to lead the system development.

By using MDD principles, software engineers usually want to cope with system complexity

by raising abstraction levels. Therefore, by using the traditional four-layer infrastructure [151,152],

MDD aims to automate many complex tasks. The four-layer infrastructure, depicted in Figure 2.2,
represents a hierarchy of model levels, starting from M0 to M3. The bottom level (M0) represents

a system under study in which observed entities exist. The level above (M1) represents a model of

the system under study. A model is a representation of the observed entities, including only relevant
information about each particular entity and particular relationships between such modeled entities.

Therefore, it can be said that a model represents a system under study. A modeling language is

Background and Theoretical Foundation 13

needed to create such models. To create a modeling language, a system under study needs to be
observed, as well as the different types of entities that reside in the world, their relevant properties,

and their relationships. A specification of entity types, relationship types, and their properties is

called a meta-model, and it belongs at the next level of abstraction (M2). Every model created with

a modeling language conforms to its meta-model. Similarly, a meta-model needs to be specified by
using a language called meta-modeling language. Each meta-model is created using the same set

of concepts defined in a meta-meta-model at the next level (M3). Therefore, a meta-model conforms

to a meta-meta-model. Concepts defined in a meta-meta-model are independent of a particular
domain and are defined by the environment in which meta-models are specified. As there is no need

to introduce a level of abstraction above M3, a meta-meta-model is usually defined reflectively

using its own concepts. One frequently used meta-modeling language is the Object Management
Group's (OMG) Meta Object Facility (MOF) meta-meta-model. MOF is a self-defined platform-

independent meta-data management framework that enables the development of model and meta-

data driven systems, such as modeling and development tools [153]. One concrete implementation

of MOF is the Eclipse Modeling Framework's (EMF) Ecore meta-meta-model [94,95].

At the M2 level, modeling languages, commonly referred to as Domain-Specific Languages

(DSLs) or Domain-Specific Modeling Languages (DSMLs), are utilized. A DSL is a language

tailored for a specific domain, in which concrete syntax is usually implemented as textual, such as
the syntax programming languages have. A DSML is a language that can be seen as a specialization

of a wider notion of DSLs [154,155], often providing users with a graphical notation instead of a

textual syntax. The purpose of DSMLs is to bring modeling concepts closer to users familiar with
an application domain, so that they can specify their solution in less time and with fewer errors in

comparison to General-Purpose Modeling Languages (GPMLs). Solutions are specified faster and

with fewer errors due to the usage of domain-specific modeling concepts that are more related to

users, eliminating accidental complexity caused by a modeling tool or a GPML. The complexity
that needs to be solved using DSMLs is caused by the domain itself and such complexity exists

independently of whether DSMLs or GPMLs are used.

Figure 2.2. The four-layer infrastructure of model levels.

14 Background and Theoretical Foundation

MDSD is a software development paradigm usually built around a DSML. The main goals of

MDSD include [156]:

• the increase of development speed through automation and single point of system

definition;

• the increase in software quality through formalization;

• the increase in component reuse and improved manageability of complexity through

abstraction;

• greater domain expert inclusion in the development process; and

• better communication between different stakeholders in the software development process.

MDA is currently the most mature formulation of the MDSD paradigm and, according to

Brambilla et al. [157], "the particular vision of MDD" proposed by OMG. MDA is a modeling

framework that proposes the creation of models at different abstraction levels and applies the

transformation methods between these models. There are three levels of abstraction defined in

MDA [157]:

• Computation-Independent Model (CIM) – represents the context, requirements, and

purpose of the solution at the highest level of abstraction. CIMs have no bindings to

computational implications and also hide IT-related specifications. Therefore, such models
aim to stay independent of how a system will be implemented. They are usually referred to

as business or domain models, using concepts and terminology from the application

domain.

• Platform-Independent Model (PIM) – represents the part of the CIM that will be solved

using a software-based solution. It describes the behavior and structure of the solution,
independent of the implementation platform. Thus, PIM can be mapped to one or more

concrete implementation platforms. PIM includes information and algorithms independent

of the implementation technology.

• Platform-Specific Model (PSM) – contains all required information about the behavior and
structure of a system developed on a specific platform, which developers can use to

implement executable code. PSM represents a technology-aware detailed specification of

a system.

A Model-Driven Service Engineering Architecture framework is inspired by MDA and

discussed by Vallespir and Ducq [158]. This framework applies MDA in smart manufacturing and

has attracted increased interest in recent years. Since its original publishing, the framework has

been generalized and renamed into Model-Driven System Engineering Architecture (MDSEA)
[159] and is applied to manufacturing systems. Similar to MDA abstraction levels, MDSEA has

three abstraction levels as well:

• Business System Model (BSM) – describes service systems and their communication at a

high level of abstraction. BSMs are independent of the future technologies and skills that
resources will use.

• Technology Independent Model (TIM) – the second abstraction level that provides a

detailed specification of the structure, functionality, and operational details of the modeled

service system. TIMs are also independent of the technological details that will be used for
their implementation.

• Technology Specific Model (TSM) – enhances a TIM model with the implementation

details, such as a machine technology or a specific person. TSMs are ready for the

implementation of service systems. Based on TSMs, it is possible to implement a designed

system in terms such as applications, services, machines, material handling, or human
resources and organization, ensuring human-related tasks and operations.

Each BSM can be mapped to different TIMs, and each TIM can be mapped to different TSMs.

The same can be stated for CIM, PIM, and PSM mappings.

MDSE is a methodology that applies the advantages of modeling to software engineering

activities. Models created with DSMLs are changed and transformed over time, and both models

Background and Theoretical Foundation 15

and transformations compose the following equation in the MDSE context: "Models +
Transformations = Software" [157]. Model transformations represent operations on models, and

they are specified once at the level of meta-models as a set of transformation rules and can be

executed multiple times at the level of models. Each transformation has a source meta-model, a

target meta-model, and mappings between their modeling concepts. Model transformations are
specified using a transformation language that can be considered a DSL for model transformations.

Depending on a transformation target, there can be Model-to-Model (M2M) or Model-to-Text

(M2T) transformation types. There are also Text-to-Model (T2M) transformations, which are

usually applied in reverse engineering.

2.4 Summary

In this section, we presented background and theoretical foundations related to the research
presented in this Ph.D. thesis. The research comprises an application of the MD paradigm and

DSMLs in the production process modeling domain in the Industry 4.0 era. Therefore, we presented

an overview of Industry 4.0 and its concepts and technologies, process planning and design, and

the MD paradigm and DSMLs.

The MD paradigm is already applied in the manufacturing domain, such as the MDSEA

framework that provides different abstraction levels in manufacturing systems. Also, the MD

paradigm is applied in process planning, allowing the creation of digital process plans that are
computer interpretable, having exact and precise semantics on what and how will be produced.

These applications, alongside the usage of skill-based engineering in production process design,

provide us with the foundation to cope with the challenges (Ch1–Ch5) discussed in Section 1 and
reach the main research goal. Therefore, by applying the MD paradigm and skill-based engineering,

dynamic production management and automatic production process execution based on process

models may be achieved, introducing factories into the digital transformation process.

16 Background and Theoretical Foundation

Motivation, Research Hypotheses, Goals and Methodology 17

3 Motivation, Research Hypotheses, Goals and

Methodology

In this section, we present the motivation and define the goals of our research related to production

processes modeling suitable for dynamic production orchestration, automatic instruction

generation, and execution of instructions. We also lay out research hypotheses as well as expected

research results and the expected value of the research contributions.

The research motivation in the domain of production process modeling is presented in Section

3.1. Research hypotheses are outlined in Section 3.2 and the research goals are presented in Section
3.3. Expected contributions and results are discussed in Section 3.4, while the methodology used to

conduct this research is discussed in Section 3.5. This section concludes with a summary presented

in Section 3.6.

3.1 Motivation

Industry 4.0 introduces many challenges traditional production systems must overcome to produce

highly customized products. Producing such customized products in traditional production systems

often requires multiple production lines, or in a case of a single production line, stopping production
to allow the reconfiguration of machines. All of this incurs additional costs. The production needs

to be carried out without stopping a production line for the machine reconfiguration in order to

enable flexible, individualized, lot-size-one production that is economically viable [160].
Therefore, it is necessary to solve the problem of costly and time-consuming machine adaptation to

frequent production changes, which is common in Industry 4.0. To enable such flexibility, the entire

reconfiguration of the production line must be done "on the fly" by the automated mechanisms of

a smart factory and based on the production process models. To be used by the automated
mechanisms of a smart factory, production process models need to be formally described with

attached machine-readable semantics.

The increasing demand for customized products required to be produced in small batches and
in the least amount of time makes manual process planning difficult [132]. Therefore, a high degree

of automation in process planning and manufacturing is necessary to stay profitable and

competitive. However, completely automated process planning has not been fully realized yet due
to the complexity and level of uncertainty in process planning and the difficulty of rationally

capturing a process planner's expertise.

Besides formally specifying and planning production process execution, error handling needs

to be considered in order to run flexible production smoothly. Error handling is not crucial to
support automatic production management and execution, but it is of utmost importance in creating

flexible production. By implementing error handlers within production process models, any known

issue or failure that may occur is formally specified as well as corrective steps on how to solve such

18 Motivation, Research Hypotheses, Goals and Methodology

issues and failures. Therefore, if an error occurs, a well-established procedure will be performed to
minimize damage caused by the error and continue with production as soon as possible to minimize

costs caused by production being stopped. Some errors will still cause production to be stopped,

but the reaction to errors will be nearly instant and automatically performed. In contemporary

production systems, known errors and issues are mostly well documented but written in the form
of textual descriptions and thus cannot be used for the automatic elimination of error effects and

the recovery from an error occurrence.

Additionally, as contemporary customers want their products custom-tailored to fit their needs,
the number of product variations and corresponding production processes increases significantly in

comparison to mass production. Consequently, this increase is followed by an increase in the

number of product and process specifications and required documentation. Therefore, it is essential
that process models are easy to change and adapt to new process and product variations, enabling

automatic generation and update of manufacturing documentation. Due to many products and

product variations in customized, lot-size-one production, keeping manufacturing documentation

up to date manually becomes particularly difficult. Different documents need to be updated if a
product is changed in any way. Having a single point of knowledge stored in production process

models can facilitate the automatic update of documentation or the automatic creation of a new

version of the documentation, decreasing the amount of manual work that needs to be performed
by process designers. Issues associated with keeping the manufacturing documentation up to date

manually include redundant specifications, human-related errors which occur while writing or

modifying documentation, and the long time needed to create such specifications. These issues
could be mitigated with the automatic generation of manufacturing documentation from process

models.

There is also a problem of frequent position changes and relocations of human workers in a

factory [161]. Due to a decreasing number of human workers and an increasing level of automation
in factories, workers are required to perform different tasks. Frequently changing workers' tasks

leads to increased production dynamics and requires fine coordination of workers in a factory, so

their work can be optimized, and production downtime avoided. As workers often switch between
tasks, especially when allocated to a new workplace, fast knowledge transfer is required, so they do

not lose time when changing workplaces. Also, fast knowledge transfer is needed when novice

workers start producing new products, as expert workers need to invest their time in helping

novices. Guided production can be based on production process models, thus sending production
steps one by one to workers, including production descriptions, audio, images, and video footage.

Accordingly, time spent by expert workers when helping novices can be reduced and novice

workers may perform tasks more efficiently.

However, including all the details needed for flexible production, error handling, management

of process and product variations, creation and modification of manufacturing documentation, and

human workers' training and guided production makes production process modeling difficult.
Therefore, different levels of detail and modeling layers need to exist in order to ease the modeling

task done by process designers. With different levels of detail, production process models can be

specified independently of any production system. The separation of production process models

from any specific production system is one of the main challenges of Industry 4.0 production
process specification. A production process model should be machine-readable, allowing automatic

execution of process steps, but also, a production process model should be independent of any

production system in which it is to be executed, enabling production process models to be used in
multiple production systems [65]. To achieve such a goal, process designers should model a

production process without details specific to a production system, and an intelligent system, such

as an orchestrator, should automatically enrich the model with details specific to the production
system which is chosen to execute the production process. Thus, process designers do not need to

think of production resources or production logistics, creating resource-agnostic process models.

Such process models can then be used in various production systems, or different parts of process

models can be used in different production systems. To execute such models, they need to be
enriched with data from specific resources automatically, creating resource-aware process models.

Motivation, Research Hypotheses, Goals and Methodology 19

The execution performance of such process models can be estimated and compared for different
production systems before they are executed, thus providing an option to choose a production

system that would bring the best overall performance.

The research challenges (Ch1–Ch5) presented in Section 1 and the research problem discussed

in this section, motivated us to create a novel solution for production process modeling and
execution. We believe that a novel MD solution with a DSML for production process modeling can

be a basis for improving production flexibility in a smart factory. Such a DSML needs to be used

to create machine-readable models, both resource-agnostic and resource-aware production process
models, allowing the automatic transformation of models into executable resource instructions and

manufacturing documentation. Therefore, production process models are not used just for

documentation purposes but to guide production process execution.

In the following section, we formulate hypotheses related to this research, based on the

motivation discussed in this section.

3.2 Research Hypotheses

Considering the research problem and motivation outlined in the previous section, we formulate the

main hypothesis of our research.

Hypothesis 0 (H0). It is possible to create an MD solution for resource-agnostic and

resource-aware specification of production processes and automatic transformation of
such specifications into executable resource instructions and manufacturing

documentation.

The main task of our research, derived from the main hypothesis, is to define a methodological
approach and a software solution that utilizes MD principles and a DSML to specify production

processes formally, contributing to flexible production and increasing customer demands, and

helping process designers in modeling production processes and keeping the manufacturing

documentation up to date in a more efficient manner. Furthermore, such formally specified
production process models need to be machine-readable, thus enabling the automatic generation of

executable resource instructions and manufacturing documentation.

The following four hypotheses are derived from the hypothesis H0 to better address different
aspects of the main hypothesis. By confirming or rejecting the derived hypotheses, we will confirm

or reject the main hypothesis H0.

Hypothesis 1 (H1). It is possible to create a DSML that can be used to model production
processes with all the details required for the automatic generation of executable

resource instructions.

Production processes need to be modeled by using a DSML in a coherent and concise way,

thus creating machine-readable process models. By enriching process models with all the necessary
details needed to execute production processes, such models can be automatically transformed into

executable resource instructions which are then sent to the factory's shop floor.

Production process models that contain enough details to be used for automated production,
often need to be modeled by different users, such as process and quality engineers. Therefore,

models must include different aspects and viewpoints of production process modeling, such as

process execution, error handling, and quality and safety aspects. All these different aspects and

viewpoints need to be unified within a single process model, thus creating a single point of
knowledge about production processes. Therefore, the second derived hypothesis is defined as

follows.

Hypothesis 2 (H2). It is possible to represent different aspects of production processes in
a uniform, resource-agnostic way, thus allowing for model reuse in different production

systems while maintaining model readability and understandability.

20 Motivation, Research Hypotheses, Goals and Methodology

Instruction-generation-ready production process models become overloaded with details about
resources that execute production process steps, production logistic activities, and machine

configuration activities. It would be hard to specify such resource-aware process models manually.

Process designers need to specify production process models independently of any specific

production system, thus not considering resources and transportation and configuration process
steps. Such resource-agnostic process models could be used in any production system and would

be easy to read and understand.

However, resource-agnostic models do not contain enough information to be transformed into
resource instructions to execute process operations. Therefore, resource-aware production process

models need to be created based on resource-agnostic process models and production system details

in which models are to be executed. Resource-aware process models could be created manually by
process designers, which would be a burdensome task, or they can be created automatically by an

intelligent system, such as an orchestrator. As modeling concepts related to production systems

need to be included in the DSML for production process modeling, process designers will use such

concepts to manually change or optimize resource-aware process models created by an orchestrator
whenever necessary. The need for the DSML to contain modeling concepts related to production

systems to enable manual or automatic enrichments of resource-agnostic process models is

presented in the following hypothesis.

Hypothesis 3 (H3). It is possible to create a DSML comprising modeling concepts that

allow enriching the resource-agnostic production process models with details about a

specific production system, thus creating resource-aware production process models.

To be independent of any production system, the modeling of resource-agnostic production

process models can rest on the main concepts of skill-based engineering. Thus, production process

steps can be described with the capabilities required for their execution. Resources of production

systems can offer a set of capabilities they have. Accordingly, these required and offered
capabilities can be matched automatically, thus matching process steps and resources. An

orchestrator is able to perform such an automatic matching, which can be seen as an M2M

transformation, automatically creating resource-aware process models from resource-agnostic

process models.

Besides matching process steps with resources to execute them, an orchestrator needs to

automatically add transportation and configuration process steps as well, based on the production

system topology and logistics. An orchestrator with its matching algorithms is not a part of this
research and is used as a black box, while more details about the orchestrator can be found in [4,5].

With this automatic enrichment of resource-agnostic process models, process designers can create

production process models independent of a production system yet be able to automatically prepare
them for execution, making the process modeling task easier. To execute production processes,

their models need to be transformed into executable resource instructions, as described in the

following hypothesis.

Hypothesis 4 (H4). It is possible to automatically generate executable resource

instructions and manufacturing documentation of different types from production process

models.

By using an instruction generator with M2T transformation rules, resource-aware production
process models can be automatically transformed into executable resource instructions. The

generated instructions can be sent to resources for execution, thus completing the main purpose of

creating production process models – to lead production process execution on the shop floor. Also,
as production process models are machine-readable, they can be transformed into manufacturing

documentation. Such a transformation would help process designers avoid keeping the

manufacturing documentation up to date manually. Therefore, process designers' time can be saved
due to the automatic generation of manufacturing documentation, and errors caused by manual

documentation editing can be mitigated.

Motivation, Research Hypotheses, Goals and Methodology 21

In the following section, we discuss research goals and critical success factors derived from

the research hypotheses presented in this section.

3.3 Research Goals

The main goal of our research is to introduce factories into the digital transformation process, by
providing dynamic production management and automatic production process execution based on

process models. To accomplish the main research goal, the following critical success factors should

be achieved, as summarized in Figure 3.1:

• The usage of a single production process model in various production systems should be

provided, by creating a resource-agnostic production process model, independently from
any production system. Thus, process designers can model a production process more

easily, without the need to have knowledge about a production system in which the process

is to be executed.

• Process designers should be released from the burdensome manual task of creating a
resource-aware production process model, specific to a production system. Therefore, the

automatic transformation of resource-agnostic into resource-aware production process

models should be provided. However, manual resource-aware model changes should be

allowed whenever seem necessary by process designers.

• A resource-aware production process model is enriched with production system details,

such as smart resources, production logistic activities, and machine configuration activities.

Such a production process model should lead production process execution automatically.

Thus, the automatic transformation of a resource-aware production process model into
executable resource-specific instructions should be provided.

• Tracking and fixing badly modeled processes and production errors should be enabled with

the mechanisms for production process execution monitoring.

• Different user groups should be focused only on production process aspects they are

responsible for, by creating different views on a process model through different modeling
layers. Therefore, a production process model represents a single point of knowledge and

different users can participate together when modeling different aspects of a production

process. By adding or removing modeling layers from a production process model, it should

be possible to show or hide different aspects of a production process, making its model
clearer and more concise.

Figure 3.1. Critical success factors of the novel MD solution.

22 Motivation, Research Hypotheses, Goals and Methodology

• Process designers should be released from keeping the manufacturing documentation up to

date manually. Numerous manufacturing documents of different types should be generated
and updated automatically, by transforming a production process model into the

documentation.

• All product and process variations should be stored in a single production process model.

However, as too many variations may exist in a process model, making it hard to read and

maintain, mechanisms to choose a variation to be focused on should be provided.

• Novice workers should be provided with automatic help during the training and creation of
products, and the time spent by expert workers when helping novice ones should be

reduced. This can be achieved by using production process models for guided production,

sending instructions one by one to human workers, alongside images and video footage on
how to perform the instructions, generated from a process model.

In the research presented in this thesis, we utilize MD principles, creating a novel approach to

the production process modeling and execution. Core elements of the approach are a novel DSML
and a tool for production process modeling and code generators for the automatic transformation of

production process models into executable resource instructions and manufacturing documentation.

In the following section, we discuss the expected contributions and results of our research.

3.4 Expected Contributions and Results

We expect the following theoretical, development, application, and socio-economic contributions

from our research:

• Theoretical contributions in the fields of production process modeling and automatic

process execution are identified as follows:
o survey on existing languages and approaches for production process modeling;

o identification of main concepts needed to implement a DSML for production process

modeling in the context of Industry 4.0, which models are suitable for the dynamic
orchestration and the automatic generation of executable resource instructions and

manufacturing documentation;

o specification of an MD solution for dynamic orchestration and automatic instruction

and documentation generation based on DSML models;
o specification of a methodology to automatically transform resource-agnostic process

models into resource-aware process models; and

o application of MD principles in the production domain, contributing to easier
production process modeling and automatic execution of processes.

• Development contributions by implementing a tool for production process modeling and

code generators for the automatic generation of executable resource instructions and

manufacturing documentation are identified as follows:
o developed and implemented a novel modeling tool that utilizes the DSML for

production process modeling;

o developed and implemented an instruction generator for the automatic generation of

resource instructions to execute process operations based on DSML models; and
o developed and implemented documentation generators for the automatic generation of

different manufacturing documentation based on DSML models.

• Application contributions are reflected through several use cases in which the MD

solution is applied and the evaluation process of the DSML and its modeling tool. These
contributions include:

o demonstration of a practical application of the MD solution and the DSML for

production process modeling in the assembly industry;
o evaluation of the DSML and the modeling tool for production process modeling by

users from different user categories; and

Motivation, Research Hypotheses, Goals and Methodology 23

o presentation of a new practical experience from applying a novel methodological
approach, a modeling tool, and a DSML.

• Socio-economic contributions by putting into public use a general model of production

process management, applicable in a wide range of organizations in a way that enables

significant production process improvement and raises general accumulated knowledge on

how to contribute to such a process improvement contemporarily.

The main expected result of our research is easier and simpler formal modeling of production

processes in the era of Industry 4.0. Created models are to lead the process execution in flexible

production and keep the manufacturing documentation up to date automatically, thus responding to
increasing customer demands for individualized products and coping with Industry 4.0 challenges

(Ch1–Ch5). The expected end-users of the production process modeling tool and language are

process designers, consisting of process and quality engineers, who need to specify production

process models.

In the following section, we present a research methodology we follow in order to investigate

the problem domain, design, develop and evaluate the solution, publish the research results, and

confirm or reject the research hypotheses.

3.5 Research Methodology

The real world is being modified by humans as they design and develop tools to change its

environment, making it more artificial [162]. The design of tools is concerned with how developed
artifacts will change the real world to attain specific goals. Nowadays, these tools and artifacts are

usually based on IT, making the world even more artificial. The design of an IT system is required

to make progress in solving real-life problems and understanding how and why the system works.
Researchers in IT need to conceptualize and represent real problems, construct appropriate

techniques for their solution, and implement and evaluate the solution using appropriate criteria

[163]. These steps lead us to the design science paradigm, which aims to develop ways to achieve

human goals. The design science paradigm's goal is to extend the boundaries of human and

organizational capabilities by creating new and innovative artifacts [164].

Hevner et al. [164] described the characteristics of the Design Science Research (DSR)

paradigm in ISs. DSR is a problem-solving paradigm aiming to enhance technology and science
knowledge by creating innovative artifacts that solve real-world problems and improving an

environment in which the artifacts are instantiated [164,165]. The DSR results consist of newly

designed artifacts and design knowledge, providing a better understanding of why the artifacts

contribute or not to the application environment.

There are several process models on how to perform DSR [165], but the most referenced DSR

process model is proposed by Peffers et al. [166]. The authors presented Design Science Research

Methodology (DSRM), incorporating principles, practices, and procedures required to produce and
present research in the IS field. A commonly accepted methodology is provided by the authors for

successfully carrying out design science research. The methodology helps with recognizing and

legitimizing the research, its objectives, processes, and outputs, as researchers follow the commonly
understood methodology instead of doing ad-hoc research. The methodology introduces six

activities when performing the DSR process [165,166], which we utilize in our research to define

the research plan. In the following list, we describe the activities we performed when we conducted

the research presented in this thesis:

• Activity 1. First, we identified research problems that are present in contemporary
production systems aiming to become flexible and responsive to customer needs in the era

of Industry 4.0. The identification of research problems and the motivation corresponds to

the first DSRM activity. Challenges that appear in the era of Industry 4.0 related to our
research and the motivation to cope with these challenges are discussed in Section 1 and

Section 3. The decision to create a novel DSML – MultiProLan is based on the research

24 Motivation, Research Hypotheses, Goals and Methodology

conducted and presented in Section 4. In the research presented in Section 4, we formulated
requirements for a production process modeling language in the era of Industry 4.0 needs

to fulfill and analyzed various existing languages whether they fulfill these requirements.

According to the reviewed literature, technical documentation, interviewed domain experts,

use cases, and the Industry 4.0 environment, we have analyzed a domain of production
process modeling suitable for automatic instruction generation and execution. The domain

analysis has been performed by means of the Feature-Oriented Domain Analysis (FODA)

method [93] and the results are given in Section 6.

• Activity 2. After the research problems were identified, i.e., challenges that Industry 4.0
introduced, we defined the objectives that our proposed solution aims to achieve and the

boundaries of our solution. Defining the objectives of the proposed solution represents the

second DSRM activity. The goals of our research are presented in Section 1 and Section 3,
while the objectives of our MD solution, MultiProLan, and the process modeling tool, are

outlined in Section 5.

• Activity 3. The specification and development of our MD solution, comprising of a novel

DSML – MultiProLan, the production process modeling tool, and various code generators,

are done after their objectives were defined. The design and development of the solution is
part of the third DSRM activity. The design of our MD solution and MultiProLan and the

technologies we use to implement the solution and the language are presented in Section 5.

Implementation details, abstract and concrete syntaxes of MultiProLan, and its process
modeling tool are presented in Section 7.

• Activity 4. Our MD solution and MultiProLan are applied in two proof-of-concept use

cases. In the first use case, a customized wooden box is assembled, demonstrating the

possibilities of MultiProLan. The second use case represents a demonstration environment
created to test the whole solution in assembling objects from LEGO® bricks. These use

cases are presented in Section 8. The demonstration of the solution is part of the fourth

DSRM activity.

• Activity 5. MultiProLan and its modeling tool are the main components of our MD solution

for production process modeling and execution. Therefore, we evaluated their quality
characteristics, by applying the Framework for Qualitative Assessment of Domain-specific

languages (FQAD) [101]. The evaluation participants performed an experiment in which

they modeled production processes and evaluated the following quality characteristics of
MultiProLan and the process modeling tool: functional suitability, usability, reliability,

expressiveness, and productivity. The evaluation results are presented in Section 9. The

evaluation of the solution corresponds to the fifth DSRM activity.

• Activity 6. Research and development results of production process modeling and
execution are presented both within the academic community and in the industry. We

presented our research results in international conferences and journals and gathered

feedback from reviewers and conference participants about our MD solution and

MultiProLan. We also present these results in this thesis. Our research and development
results are discussed with relevant stakeholders in the industry, and we applied the whole

MD solution in an industrial demonstration environment. The presentation and discussion

of contributions and results of the developed solution and the whole research are part of the
sixth DSRM activity.

DSRM activities 1 through 5 related to our research are presented in various sections of this

thesis, while the sixth DSRM activity related to our research results is presented in the rest of this

section. The initial research proposal in the context of Industry 4.0 manufacturing and the first draft
of our MD solution was presented at International Scientific Conference on Informatics

(Informatics) [8]. This research proposal was extended with more details, and an overview of

existing production process modeling languages with a pilot comparative analysis of a few
languages was published in the Open Computer Science journal [9]. The DSML for production

process modeling named MultiProLan was first introduced at Federated Conference on Computer

Science and Information Systems (FedCSIS) with its abstract and concrete syntaxes and the wooden
box production example [10]. The improved abstract and concrete syntaxes were then presented in

Motivation, Research Hypotheses, Goals and Methodology 25

Journal of Computer Languages, alongside the production process modeling domain analysis and
the evaluation of MultiProLan and its process modeling tool [11]. The automatic generation of

manufacturing documentation from MultiProLan models was introduced at International

Conference on Information Society and Technology (ICIST) together with the needed abstract

syntax extensions and a new production process modeling example [12]. An application of
MultiProLan in an assembly use case, creating a customizable flag from LEGO® bricks, was

presented at the Advances in Production Management Systems (APMS) conference [13]. Finally,

an overview of the whole MD solution for production process modeling, with a new assembly use
case and more complex process model examples are presented in International Journal of

Production Research, alongside the introduction of language requirements and a comparison of

process modeling languages based on these requirements [14].

In addition to the papers published during our research, other authors have published research

in which we also participated, and which was inspired by the outcomes and artifacts of our research.

The first overview of the orchestrator's architecture, which we are using in our research, was

presented by Pisarić et al. at the Advances in Production Management Systems (APMS) conference
[4]. An extended and more detailed version of the orchestrator's architecture was presented in the

Applied Sciences journal [5]. This paper also includes an assembly use case consisting of

MultiProLan process models and production system models, introduced for the first time, and

created by the resource modeling tool we are using in our MD solution.

In addition to the production process and production system modeling, Antanasijević et al.

[15] proposed research on human resource modeling in the context of Industry 4.0 and presented it
at International Scientific Conference on Informatics (Informatics). Based on the extensions of

MultiProLan and the production system modeling language, the authors plan to create a new

language for the formal specification of human workers' roles, skills, competencies, capabilities,

and limitations to achieve better integration of human workers and machines in a smart factory. The
DSML named Human Resource Modeling Language (HResModLan) is in the development phase,

aiming at human resource modeling from two different perspectives: production and organizational.

The first prototype of the HResModLan's production perspective, aimed at the formal specification
of a human worker as a production resource, is presented in the Acta Electrotechnica et Informatica

journal [16] and will be further developed in the future. The organizational perspective of the

language named HResModLan:Org is already created and presented in the IPSI Bgd Transactions

on Internet Research journal [17] with the aim to provide the easier and more effective requiring,

selection, hiring and development of human workers within an organization.

A research proposal and an MDSD approach to enable the automatic generation of smart

contracts used by collaborative parties to supervise the state of production was presented by
Todorović et al. at Federated Conference on Computer Science and Information Systems (FedCSIS)

[18]. This research proposal aims to connect collaborative parties when production is shared

between them and ensure that production is conducted according to the agreed conditions. To model
collaborative production processes in the proposed MDSD approach, a new MultiProLan-based

DSML, named Collaborative Extension of MultiProLan (CE-MultiProLan), was created by

Todorović et al., and its model examples were presented at International Conference on Innovative

Intelligent Industrial Production and Logistics (IN4PL) [19].

The research results presented in this Ph.D. thesis are also part of the sixth DSRM activity.

The discussed research plan, consisting of six DSRM activities, creates guidelines to achieve the

research goal: to introduce factories into the digital transformation process. Before creating a novel
software solution that aims to help us achieve the research goal, the research problem, motivation,

and objectives of the solution must be precisely defined. After the design and development of the

novel software solution, its performance must be evaluated and demonstrated in various use cases.
By presenting the solution to the academic community and in the industry, useful feedback and

future research directions can be gathered. Therefore, we applied the DSRM methodology in our

research to systematically develop the novel MD solution for modeling and automatic execution of

production processes, discussed in detail in the following sections.

26 Motivation, Research Hypotheses, Goals and Methodology

3.6 Summary

In this section, we presented the research motivation, hypotheses, goals, expected contributions and

results, and the methodology used to conduct the research. To cope with the Industry 4.0 challenges

(Ch1–Ch5) and introduce factories into the digital transformation process, we proposed an
application of the MD paradigm and a DSML to provide a formal specification and execution of

production processes. Accordingly, we formulated the main hypothesis of the research, in which

we stated that it is possible to create a novel MD solution that would provide the specification of

resource-agnostic and resource-aware production process models, used for the automatic generation

of executable resource instructions and manufacturing documentation.

Based on the background and theoretical foundation presented in the previous section, and the

discussion provided in this section, we believe that it is possible to create such an MD solution for
production process modeling and execution. We also investigate the application of the MD

paradigm in ISs and Industry 4.0 in the following section, as the proposed MD solution could be

seen as an IS applied in the Industry 4.0 context. The central part of the proposed MD solution

would be a DSML for production process modeling, whose models would be suitable for dynamic
production orchestration and automatic execution. Therefore, in the following section, we also

investigate existing languages and approaches for production process modeling, in order to explore

whether there is an existing language or approach that fits our needs.

State-of-the-Art 27

4 State-of-the-Art

To achieve the research goals presented in the previous section, we examined the literature,
gathering knowledge related to the MD paradigm, DSLs, Industry 4.0, and production process

modeling. Accordingly, we investigated the state-of-the-art presented in this Ph.D. thesis based on

the following aspects related to our research, especially on production process modeling languages

and approaches.

In Section 4.1, we discuss the application of the MD paradigm and DSLs in the ISs and

Industry 4.0 domains. In the domain of ISs, we examined the application of MD principles in the

design and development of ISs, the integration of heterogeneous technical spaces, document
engineering, and measurement and control systems. These aspects are relevant to our research as

we plan to develop a new MD solution that can be seen as an IS used for production process

modeling and execution. In the domain of Industry 4.0, we investigated the application of MD

principles in general, particularly in the aspects related to the challenges we discussed in Section 1.
The aspects related to Industry 4.0 we investigated are error handling in production processes,

manufacturing documentation, guided production, and process modeling.

In Section 4.2, we discuss production process modeling, the main aspect of the state-of-the-art
related to this thesis. As the main part of the proposed MD solution would be a DSML for

production process modeling, we examined whether there is an existing process modeling language

that fits our needs. Therefore, we defined the requirements a production process modeling language
needs to fulfill in order to be used for dynamic production orchestration and automatic execution

of production processes in the Industry 4.0 era. Then we analyzed various existing modeling

languages and approaches that could be used for such a purpose, based on the defined requirements.

The summary of the state-of-the-art related to this Ph.D. thesis is outlined in Section 4.3.

4.1 Application of the MD Paradigm and DSLs

The MD solution for production process specification and execution we propose in this Ph.D. thesis

can be seen as an IS applied in the manufacturing domain of Industry 4.0. Thus, in this section, we
present an overview of the related research and the application of the MD paradigm and DSLs in

ISs and Industry 4.0.

In Section 4.1.1, we discuss the research related to the MD paradigm and DSLs in the field of
ISs, conducted by the Data Science and Information Systems group. In Section 4.1.2, we outline

the related research in the domain of Industry 4.0 and the application of the MD paradigm and DSLs

in such a domain.

28 State-of-the-Art

4.1.1 Information Systems

Research related to the MD paradigm and DSLs in the field of ISs has a long history in the Data
Science and Information Systems group of the Faculty of Technical Sciences, University of Novi

Sad. The group has been applying MD principles and DSLs in the domains of the design and

development of ISs, integration of heterogeneous technical spaces, document engineering, and

measurement and control systems, among others. The research presented in this Ph.D. thesis was
partially conducted in the Data Science and Information Systems group, having foundations on the

knowledge and experience that the group has gathered throughout the years.

In this section, we discuss the research results of the Data Science and Information Systems
group, related to the application of the MD paradigm and DSLs in various domains, presented in

the following subsections. In Section 4.1.1.1, we discuss the IIS*Case approach created for the

design and development of ISs. The integration of heterogeneous technical spaces, based on the

MD paradigm, is outlined in Section 4.1.1.2. The MD paradigm and DSLs in document engineering

and robot motion control are discussed in Section 4.1.1.3.

4.1.1.1 Information System Design Based on the IIS*Case Approach

The Integrated Information Systems*Case (IIS*Case) approach and tool have been developed for

decades by researchers from the Data Science and Information Systems group. The tool has been

used for the design and development of various aspects of ISs, and some of these aspects are

discussed in the rest of this section.

To design database schemas, various approaches and techniques can be used, such as Entity-

Relationship (ER) modeling or Unified Modeling Language (UML), with an appropriate Computer
Aided Software Engineering (CASE) tool. However, these approaches and techniques are often

incomprehensible to end-users, which may lead to misunderstandings between designers and end-

users when designing a database schema. To overcome such an issue, Luković et al. [167] proposed
a new approach and a CASE tool for automated database schema design based on the concept end-

users are familiar with – the form type concept. It is the central concept of the presented IIS*Case

tool for the design and development of complex database schemas, representing screen forms that

end-users are familiar with when communicating with an IS. The IIS*Case tool is used to design a
database schema based on form types and generate an implementation of the database schema

automatically. As such an approach and a tool do not require advanced knowledge related to

database schemas, they can simplify the design and development of database schemas, avoid or
alleviate misunderstandings between designers and end-users, save work time, and lower the

designers' required effort.

Besides designing database schemas, IIS*Case is also used for the conceptual modeling of

business applications and for generating application prototypes. Luković et al. [168] presented a
DSL and a tool embedded into IIS*Case for the specification of check constraints and complex

functionalities of business applications. The DSL is developed to provide the specification of check

constraints on the PIM level, allowing designers to specify check constraints using problem domain
concepts. Business application functionalities are also specified at the PIM level in IIS*Case in a

visually oriented way. Therefore, designers are not burdened with the implementation details and

can be focused on the problem domain. To automatically transform PIMs of check constraints and
application functionalities into PSMs and program code, M2M and M2T transformations are

implemented. Therefore, fully executable application prototypes can be generated automatically.

 The IIS*Case PIM concepts are specified in a formal way through the meta-model by using

the Ecore meta-meta-model [94,95]. Čeliković et al. [169] presented a part of the IIS*Case meta-
model, its concrete textual syntax, and an application of the language by creating an IS model

example. The meta-model can be used for the verification of generated database schemas, enabling

the detection and resolution of formal conflicts at the level of the database model, such as various

constraint collisions.

State-of-the-Art 29

As the database reverse engineering process can be used to transform a physical database
schema into a conceptual or a logical database schema, or even an application prototype, Ristić et

al. [170] outlined the importance of using meta-models and transformations in such a process. The

authors presented part of meta-models and the M2M transformation between physical database

schema and generic relational database schema. By integrating meta-models and a chain of M2M
and M2T transformations into IIS*Case, the reverse engineering process can be performed,

allowing IIS*Case to transform legacy relational database schemas into executable application

prototypes.

 IIS*Case, which was renamed into Integrated Information Systems*Studio (IIS*Studio) after

many languages and extensions were integrated into it, has been further improved and developed

nowadays. New technologies and platforms are used to create new versions of IIS*Studio and
introduce novel features. For example, Luković et al. [171] presented a part of the IIS*Case PIM

meta-model, its novel graphical concrete syntax, and a code generator developed on the ADOxx

platform [172–174]. The concrete graphical syntax was created as some designers may use it more

efficiently than the textual one. However, the evaluation of the user experience with IIS*Case

textual and graphical syntaxes is left for future research.

Future research and development related to IIS*Case also comprise the support and application

in contemporary fields of the IS development domain. The research conducted by Terzić et al. [175]
resulted in the development of a new approach for the specification of microservice software

architecture. The presented research was derived from the IIS*Case ambient, and the IIS*Case

approach is planned to support the specification of such architectures. Terzić et al. presented
MicroBuilder which comprises MicroDSL and MicroGenerator modules. MicroDSL is a DSL for

the specification of REpresentational State Transfer (REST) microservice software architectures,

while MicroGenerator is a code generator used to generate executable program code from

MicroDSL models. Therefore, the process of microservice software architecture specification and

configuration can be automated and more easily performed.

As the main task of the research presented in this Ph.D. thesis is the development of a novel

MD solution for modeling and automatic execution of production processes, the accumulated
knowledge and experience in developing IIS*Case can help us create such a novel MD solution.

The solution represents an IS that utilizes MD principles and has various DSMLs, modeling tools,

and code generators.

4.1.1.2 Integration of Heterogeneous Technical Spaces

The exchange of models between different modeling tools is necessary as usually various modeling
tools are used to complete a certain task in an organization. Also, the exchange of models is needed

when replacing an old modeling tool with a new one that better fits the users' needs. Therefore,

Kern et al. [176] presented a mapping-based approach to realize the exchange of models between

tools by connecting their meta-models. The central part of the approach is a declarative mapping
language and a tool named AnyMap that allows the specification of mappings between source and

target meta-models. The approach was created to allow efficient and user-oriented import and

export of models in various modeling tools.

In the IoT environment, various devices are connected and they need to exchange data

continuously. Accordingly, similar to the exchange of models between tools, different schemas of

transmitted and received data between IoT devices need to be connected. IoT devices often
communicate using different protocols and send data belonging to different technical spaces. Thus,

Dimitrieski et al. [156,177] used the AnyMap language and tool to provide a uniform way of

creating transformations between technical spaces. The authors proposed an algorithm that reuses

previously created mappings to automatize the process of adapting new mappings to the schema
variations, while keeping an option to manually refine the new mappings when needed. The

algorithm is evaluated in a case study related to the integration of sensor devices and MESs.

To enable continuous information flow in Industry 4.0 production, the integration of ISs and
machines on the shop floor is required, which is a challenging, time-consuming, and expensive task.

30 State-of-the-Art

Such integration is required as machine interfaces may differ and are often adapted for a certain
domain, manufacturer, or machine itself. Kern et al. [178,179] presented a novel approach and a

framework for a structured, automated, and reusable integration of ISs and machines on the shop

floor. The authors used the AnyMap language and tool, and an intelligent solution for connecting

different systems that rely on the integrated, machine-independent learning mechanism, allowing a
systematic reuse of integration knowledge from previous projects. By using the proposed

framework, a specification of new mapping can be automated when a new machine arrives on the

shop floor, and existing machines can be connected with an IS with minimum impact on the system,

thus preparing them for the Industry 4.0 environment.

The integration of heterogeneous technical spaces is also needed in the research presented in

this thesis. In the proposed MD solution, we plan to match capability-based production process
models with the models of smart resources working on the shop floor. As production process steps

require capabilities for their execution, and smart resources offer various capabilities they have, the

integration of their models can be achieved. Therefore, it would be possible to transform resource-

agnostic into resource-aware production process models automatically.

4.1.1.3 MD Paradigm and DSLs in Document Engineering and Robot Motion

Control

Document engineering refers to the activities of specification, implementation, and usage of
documents in an organization. As documents can be frequently refined and updated, new solutions

are needed to keep the documentation up to date easily. One way to formally specify and render

documents is to use DSLs, thus allowing the automatic update of the documentation. Djukić et al.

[180] proposed a framework and DSLs for the formal and incremental specification and rendering
of documents in directory publishing. The authors presented DSLs used in document engineering,

for the modeling of small advertisements and business activities related to documents and their

content units. The framework that contains these languages enables the automation of document

engineering, by providing the generation of documents in an organization.

 Djukić et al. [181] presented an approach in which DSLs and their tools are used as client

applications in the areas of document engineering and measurement and control systems. Action
reports are used in the presented approach as special transformations that, in addition to the

description of M2T transformations, contain commands and rules for invoking commands during

model execution. The usage of the approach with action reports allows the specification of

processes for documenting model validation and the synchronization of actions on a model to the
state of the real system. Such synchronization can be applied in production systems as there is a

need to document each action of business procedures to models or to execute each action on models

by relying on the previously generated documents.

The same authors also presented an approach to handling frequent variations of modeling

languages and models for robot motion control [182]. As there is a need for improvements in

software development in automation and robot control, particularly the development of tools for
formal specification and execution of control processes and the creation and application of robot-

motion control languages, the authors proposed a new MD approach. The approach may contribute

to the development of intelligent robot controllers and the development of measurement and control

systems.

The experience gathered from document engineering, especially in measurement and control

systems, can help us in creating a solution for keeping the manufacturing documentation up to date

effortlessly. The development of an approach for robot motion control also helps us understand the

way robots are utilized, which are particularly used in the Industry 4.0 era.

State-of-the-Art 31

4.1.2 Industry 4.0

In recent years, we are witnessing that the MD paradigm, meta-modeling, and DSLs are

increasingly applied in the context of Industry 4.0 [183]. They are particularly used in:

• development and management of CPSs and smart manufacturing [184,185];

• integration of heterogeneous technical spaces [156];

• fields of IoT, manufacturing systems, and multi-agent systems [186];

• fields of robotics, the development of software for robots [187], and mobile robotic systems

[188]; and

• formal description of processes, process information exchange, decision-making support,

simulation of manufacturing systems, and material flow systems [189].

The MD paradigm, DSLs, meta-modeling techniques, and model transformations are helpful
when needed to make a higher abstraction level of a domain problem and contribute to solving

problems systematically. Therefore, we believe that DSLs may contribute to automatic production

by formally defining production process models and automatically generating instructions to

execute process operations using model transformations and following MD principles.

Various technologies and environments for meta-modeling are used in Industry 4.0 in general

and particularly in CPS, IoT, robotics, and process modeling domains. Most commonly used
environments and languages to develop DSLs, meta-models, and tools are UML [43], Ecore within

the modeling platform EMF [94,95], Generic Modeling Environment (GME) [190,191], MontiCore

[192,193], MetaEdit+ [194,195], MOF [153], and Xtext [196]. Languages such as Generation of

Embedded Real-Time Code based on Aspects (GenERTiCA) [197] and Xtend [198] are used to

implement different types of transformations.

As there are plenty of DSLs and meta-modeling techniques used to address various Industry

4.0 challenges, it may imply that such challenges cannot be addressed properly by using established
modeling techniques. As for Industry 4.0 process modeling, DSLs are the most popular, followed

by the application of knowledge representation techniques, formal methods, and UML [183]. Meta-

modeling is mostly applied in manufacturing to achieve uniformity, standardization, and coherent

and formal description of processes [189]. We may also notice a strong focus on model

transformations, code generations, and the usage of models at runtime.

Accordingly, we believe that applying an appropriate MD approach with DSLs can support

flexible, orchestrated, and highly automated production in the domain of Industry 4.0. In the rest of
this section, we discuss the following Industry 4.0 aspects in more detail: error handling in

production processes (see Section 4.1.2.1), manufacturing documentation (see Section 4.1.2.2),

guided production (see Section 4.1.2.3), and process modeling in general (see Section 4.1.2.4). We
discuss these aspects as they are present in contemporary production systems and the MD paradigm

and DSLs are applied in these aspects. They are also related to the research challenges (Ch1–Ch5)

presented in Section 1.

4.1.2.1 Error Handling in Production Processes

As industrial systems become increasingly complex and expensive, there is less tolerance for any
faults that could cause performance degradation, productivity decrease, or safety hazards [199].

During the process execution, there is a need to detect, classify, and mitigate errors as soon as

possible and implement error handling mechanisms to minimize costs caused by errors. An error

handler represents a set of actions needed to mitigate the effects of an error and avoid failure
scenarios. There are different error handling methods to aid manufacturing systems; however, they

are rarely integrated within a production process, as there is a lack of defined workflow, tools, and

processes [200].

In contemporary manufacturing companies, known errors and failures that could occur during

production are usually specified in textual documents or spreadsheets, such as Failure Mode and

Effect Analysis (FMEA). FMEA is a technique used to define, identify, and eliminate known and

32 State-of-the-Art

potential failures from a system, design, process, or service before they reach a customer [27].
Textual, informal documents cannot be used to automatically derive corrective steps from them and

choose specific resources to perform such steps. In flexible production, negative effects caused by

an occurred error need to be removed by using formally defined corrective steps, automatically

assigned resources to perform the steps, and without stopping production, whenever it is possible
to do so. Thus, detecting any disturbance during production requires error handling, which is

essential as errors can occur at any step of a production process. Accordingly, they need to be

carefully managed and modeled in order to define errors clearly and identify their boundaries [201].

One way to formally specify potential errors and error handlers is to integrate them into

production process models created by means of a DSL. By utilizing appropriate code generators,

such production process models could be used to automatically initiate corrective steps whenever a
known error occurs, leading to better response to production errors and minimizing costs caused by

errors.

4.1.2.2 Manufacturing Documentation

Manufacturing documentation is required by various methodologies and standards that a

manufacturing company utilizes. Creating and modifying the documentation is usually a time-
consuming task that additionally burdens process designers. Especially when there are numerous

product and process variations, keeping manufacturing documentation up to date is challenging.

Manufacturing documentation needs to be updated whenever a product is changed, certain technical

modifications are done in a production system, production volume is adjusted, or production is
optimized. These changes are usually stored as separate documents or, in some cases, can be even

completely undocumented [202]. The documentation must be kept up to date as any additional

change to a product or its maintenance requires accurate documentation. Accordingly, to keep the
documentation up to date, additional personnel need to be engaged, raising the costs for a

manufacturing company and even for a final product. Also, the creation and update of

documentation is usually done in addition to the process planning activities. Therefore, process

designers waste time writing manufacturing documentation using information already created in

the process planning phase [131].

For instance, Advanced Product Quality Planning (APQP) is a structured method for defining

and executing actions required to ensure that a product satisfies a customer – all required steps are
completed on time, with high quality and acceptable cost [29]. Documents such as FMEA

spreadsheets are required to manage APQP in production, resulting in a high workload of teams in

charge of manufacturing documentation writing. FMEA spreadsheets can be large, leading to heavy
manual work due to the lack of a proper tool and the complexity of the documentation writing task

[131]. Such heavy work is usually not effective enough; thus, FMEA is not updated continuously

as changes in production appear. The same statements can also be applied to other document types,

such as Bills of Materials (BOMs), Flow Process Charts (FPCs), and user manuals. This issue is
additionally emphasized in the context of Industry 4.0, having numerous product and process

variations.

The MD paradigm can be applied to keep the documentation up to date and release process
designers from such a burdensome manual task. For such a purpose, production process models

need to be formally specified and store the information required by the documentation. Storing all

the information in a single place can be useful, as different document types share some information,
such as names of a production process and its steps or the materials used in production process

steps. Therefore, the same information does not need to be written multiple times in documents of

different types but stored once in a production process model. As such a model can be formally

specified by using a DSL, the model can be automatically transformed into the required
documentation, saving the time process designers need to invest and lowering the costs of a

manufacturing company.

State-of-the-Art 33

4.1.2.3 Guided Production

Considering the human workforce in Industry 4.0 manufacturing companies, there are certain

challenges that need to be addressed. As different products and their variations are produced in a
factory, human workers must adapt and often create new products. Therefore, human workers are

reallocated frequently, changing their position, workplace, and products they produce [161].

Additionally, it is possible to lose the know-how in manufacturing companies as increasing
automation in factories may lead to the reduction of the human workforce [203], leaving human

workers to perform a large variety of tasks. Such a need could be seen during the pandemic of

COVID-19 as well, when there were frequent worker replacements and changes of workers' tasks

due to their unplanned absences. Thus, these task changes lead to increased production dynamics
and require fine coordination of workers in a factory, so their work can be optimized, and production

downtime avoided. Accordingly, fast knowledge transfer is required so human workers do not lose

time when changing workplaces, as well as to spend less time training the workers when creating

new products and for expert workers to spend less time training novice workers coming to a factory.

Human workers need to be employed in such a way that their skills and talents are fully realized

in Industry 4.0 [161], thus manufacturing companies need to take special care in reskilling and
upskilling the human workforce [204]. Careful management of training and production tasks is

necessary for Industry 4.0 manufacturing also due to demographic change [205], as elderly workers

are becoming the majority. Although with great experience in manufacturing, they require more

adapted tasks and improved skills.

To achieve a fast knowledge transfer on how to produce different products and their variation

and provide efficient and low-cost human worker training, production process models can be used

to generate resource instructions from them automatically, thus enabling guided production, and
also preserve production knowledge permanently. Accordingly, production process models need to

be specified formally and MD principles need to be applied, creating an environment for the

automatic transformation of production process models into human-readable instructions that

include textual descriptions, images, audio, and videos.

The idea of guiding workers step by step through complex activities based on production

process models has been already discussed by Gorecky et al. [161]. By using a detection system to

recognize the execution of production steps automatically, real-time assistance can be provided to
human workers, sending instructions to them one by one in the form of textual descriptions.

Whenever necessary, human workers can initiate guided production that can include a user manual,

images, audio, or videos to guide them in creating products. Besides receiving instructions through
a mobile device, smart watch, or monitor, human workers can also wear Augmented Reality (AR)

glasses through which they can get instructions by changing their field of vision, receive remote

assistance from expert workers, or receive repair or error handling instructions [206]. Therefore,

various technologies can be used in combination with MD principles and formally specified

production processes to guide and train human workers whenever necessary.

4.1.2.4 Process Modeling

Research in the context of Industry 4.0 has been gaining much attention in recent years. However,

many software specification and development aspects are still not sufficiently covered, such as

standardization and modeling languages. In the Industry 4.0 environment, modeling languages aim
to contribute to solving the challenges of digital representation and integration. Usually, modeling

languages are developed and applied to solve basic challenges in Industry 4.0 but are rarely

evaluated through experiments to investigate their benefits in practice [183].

Research related to process modeling, especially in the Industry 4.0 context, has also grown

over the years [20]. Production processes need to be digitally supported in Industry 4.0 [21], so they

can be integrated within a smart factory. Processes need to be engineered with virtual

representations that require abstract thinking and modeling with the support of specialized software

[22] – a modeling tool.

34 State-of-the-Art

Modeling production processes in Industry 4.0 is an essential industrial informatics research
topic, as it is crucial to understand and optimize the processes [23]. However, it is not enough to

document processes and store them in a factory database, as most contemporary manufacturing

companies are doing it nowadays. Production processes need to be modeled to lead production

process execution, and, at the same time, not too complex for a human to comprehend. Therefore,
production processes need to be formally specified, whose models are machine-readable and thus

can be used for dynamic production orchestration and automatic execution. As production process

modeling is the main aspect of the state-of-the-art of this thesis, we discuss it in more detail in the

following section.

4.2 Production Process Modeling

We have investigated the state-of-the-art in the domain of production process modeling and
presented the investigation results in [9–11,13,14]. As an outcome of the initial investigation, we

have identified requirements for a language that would be used for production process modeling

suitable for dynamic orchestration and automatic model execution or generation of executable

instructions. Based on the identified requirements, we have created a framework for comparing and
analyzing languages and approaches we have found. The framework was presented for the first time

in [14].

This section is structured as follows. In Section 4.2.1, we present the identified production
process modeling language requirements, while the analysis of languages and approaches we have

found are outlined in Section 4.2.2. Discussion and conclusions of the production process modeling

state-of-the-art are given in Section 4.2.3.

4.2.1 Production Process Modeling Language Requirements

During our preliminary research [8,9], we investigated the production process modeling domain
and identified basic concepts for modeling production processes within discrete product

manufacturing. The investigation included information gathering from the literature, an industrial

use case in which we participated, and domain experts we encountered. Based on the investigation,
we have formulated the requirements for a production process modeling language whose models

would be suitable for dynamic production orchestration and automatic model execution or

generation of executable resource instructions. These requirements, first time presented in [14], do
not constitute a complete list of all requirements for production process modeling. They are a core

set of characteristics a production process modeling language should have so that process models

can be dynamically orchestrated, executed or resource instructions generated from them, and

applied in various use cases in the Industry 4.0 context.

The core set of requirements, which need to be fulfilled by a process modeling language whose

models are suitable for dynamic orchestration and automatic execution, is defined as follows:

• Requirement 1 (R1): the existence of the process step modeling concept, representing a

single production step needed to execute a production process. It comprises input products,
capability, output products, and resource.

o Requirement 1.1 (R1.1): the existence of the product modeling concept, which can be

an input or an output of process steps. Input products of a process step represent
ingredients, such as materials, parts, and intermediate products needed to create output

products of a process step, representing intermediate or finished products. The

specification of different constraints or properties of a product needs to be supported,

such as dimensions and mass.
o Requirement 1.2 (R1.2): the existence of the capability modeling concept,

representing a skill needed for process step execution. Constraints need to be specified

State-of-the-Art 35

for a capability, such as a gripper's range required to pick a product, and different
parameters, such as storage location from which products need to be picked.

o Requirement 1.3 (R1.3): the existence of the resource modeling concept, representing

a human worker, a machine, or a robot able to execute a process step.

• Requirement 2 (R2): the existence of the control flow modeling concept into which

process steps can be organized for execution. Different flow patterns, such as sequence,
decision, iteration, and parallelism, need to be supported.

o Requirement 2.1 (R2.1): the existence of the sequence modeling concept, representing

a flow in which process steps need to be executed one after another.
o Requirement 2.2 (R2.2): the existence of the decision modeling concept, representing

a flow in which different process steps need to be executed based on a condition.

o Requirement 2.3 (R2.3): the existence of the iteration modeling concept, representing
a flow in which process steps are iteratively executed until a termination condition is

fulfilled.

o Requirement 2.4 (R2.4): the existence of the parallelism modeling concept,

representing a flow in which process steps are executed in parallel.

• Requirement 3 (R3): the existence of the material flow modeling concept needed to track
materials, parts, and products through a production process. For each input product, it must

be known whether it needs to be taken from storage or represents a result of previous

process steps. Also, for each output product, it must be known whether it needs to be stored
in storage or used in the succeeding steps.

• Requirement 4 (R4): the existence of the message flow modeling concept that facilitates

collaboration between different process steps or resources.

Additional requirements exist that need to be fulfilled by a process modeling language to
support a broader array of use cases, especially in Industry 4.0 (e.g., requirements R6 and R8). They

are also needed to semantically enrich process models that participate in production orchestration

and execution. These language requirements are defined as follows:

• Requirement 5 (R5): the existence of the unordered steps modeling concept, representing

a set of process steps that can be executed in an arbitrary order.

• Requirement 6 (R6): the existence of product and process variations modeling concepts,
representing different sets of process steps that result in multiple products of the same

product family or result in the same intermediate or finished product.

• Requirement 7 (R7): the existence of the sub-process modeling concept, representing a

reference to another process, utilized to reduce redundancy and model complexity, and
increase reusability.

• Requirement 8 (R8): the existence of the error handler modeling concept needed to

specify errors that could occur during production and process steps needed to handle them.

o Requirement 8.1 (R8.1): the existence of the local error handler modeling concept,
representing a collection of error-specific steps needed to recover from the error

specified at the level of a single process step.

o Requirement 8.2 (R8.2): the existence of the global error handler modeling concept

representing a collection of process steps that can be used to recover from various errors
specified in multiple process steps.

The following two requirements represent overall process modeling language requirements,

fundamental in Industry 4.0 to achieve flexible production. These requirements are defined as

follows:

• Requirement 9 (R9): the models written in the language should be executable or suitable

for automatic instruction generation, i.e., models should be transformable into a set of

executable resource instructions via formally defined transformation rules.

• Requirement 10 (R10): the models written in the language should be independent of

production systems. A process model should be independent of the production system or
technology details so that they can be easily specified and used in different production

36 State-of-the-Art

systems. Also, such resource-agnostic process models need to be easily and automatically
enriched and transformed into resource-aware process models, adding resources to execute

process steps, production logistics, and machine configuration activities.

Based on the presented requirements, we have checked whether the languages identified in the

literature survey support them or not, as discussed in the following section. We also used these

requirements to evaluate whether MultiProLan fulfills them or not, as presented in Section 7.3.

4.2.2 Production Process Modeling Languages and Approaches

Before searching for the production process modeling literature, we conducted a pilot study to

familiarize ourselves with the domain. We have searched for production process modeling
languages using the Google Scholar search engine and gathered several mostly cited and searched

papers. By reading the papers, we have formulated search tokens, i.e., the main terms for searching

the literature, that we have used to gather literature in a more systematic manner. In Table 4.1, we

present the search tokens and the related keywords we used in search engines.

Table 4.1. Search tokens and keywords.

Tokens Keywords

Production Process
Production Process

Manufacturing Process

Modeling

Modeling

Modelling

Model

Describe

Description

Specify

Specification

Language

Language

Meta-Model

Domain-Specific Language

Domain-Specific Modeling Language

Extension

Industry 4.0

Industry 4.0

Fourth Industrial Revolution

Smart Factory

Smart Production

Smart Manufacturing

Digital Factory

Factory of the Future

Execution

Execution

Execute

Executable

Instruction

Interpretable

Machine-Readable

Model-Driven Model-Driven

The first two tokens, "Production Process" and "Modeling", have always been used when we
searched for literature, as these are the main words of our research related to the production process

modeling domain. Other tokens have been optionally combined with the first two tokens to find

more specific papers. The token "Language" has been optionally used to narrow the search area and

State-of-the-Art 37

papers we got from search engines. The token "Industry 4.0" was also optional as we wanted to find
production process modeling languages before the Industry 4.0 term began to be used. The token

"Execution" has been optionally used as we aimed to find production process modeling languages

whose models are execution-ready or instruction-generation-ready. Finally, the token "Model-

Driven" has also been optionally used as we wanted to find languages used in MD approaches that
usually support model transformations and have formal languages. We did not search abbreviations

of the tokens as we assumed that at least once an entire phrase was used in the text. Similarly, we

did not search for plural words, assuming that singular words were used at least once in the text.

We searched for the related literature using the search engines of the following digital libraries:

Institute of Electrical and Electronics Engineers (IEEE) Xplore, Association for Computing

Machinery (ACM) Digital Library, Scopus, Science Direct, Web of Science (WoS), and Google
Scholar. To use the advanced search in these libraries, we had to create complex search strings. The

search strings may vary a bit depending on the syntax used by the search engines, but they all have

keywords written between logical operators. Some search engines have limitations, such as Science

Direct, in which only eight logical operators can be used. An example of the search string is

presented in the following text:

("Production Process" OR "Manufacturing Process") AND ("Modeling" OR "Modelling" OR

"Model" OR "Describe" OR "Description" OR "Specify" OR "Specification") AND ("Language"
OR "Meta-Model" OR "Domain-Specific Language" OR "Domain-Specific Modeling Language"

OR "Extension")

Google Scholar has also been used to search for literature, even thou it provides non-peer-
reviewed publications as well, such as presentations and websites. However, we have used it to find

different standards, technical reports, book sections, and Ph.D. theses in which detailed descriptions

of some modeling languages are provided. When we searched for the peer-reviewed literature, we

put 2010 as the lower bound of a publication year, while the implicit upper bound was December

2021, when we conducted the research.

We first applied inclusion and exclusion criteria to the studies when we gathered the literature

from the aforementioned digital libraries. Inclusion criteria consist of:

• peer-reviewed studies published in journals, conferences, and workshops;

• standards, technical reports, book sections, and Ph.D. theses, that may be non-peer-
reviewed studies;

• studies that are accessible electronically; and

• studies that are written in English.

Exclusion criteria consist of:

• non-peer-reviewed studies, such as presentations, informal reports, reviews, editorials,

abstracts, keynotes, posters, informal surveys, and websites;

• studies that are not available in English;

• studies that we did not have access to;

• studies that are not related to production process modeling; and

• duplicates.

After applying inclusion and exclusion criteria, we have read the title, keywords, and abstract

of the remaining studies and excluded ones that do not fit in the production process modeling

domain. Whenever we have not been sure whether to exclude a study based on the title, keywords,

and abstract, we read the introduction and conclusion sections of the study to make a final call to
include or exclude the study. Due to the possibility that some of the studies have been omitted, we

have applied the backward and forward snowballing guidelines [207] to the remained studies. The

backward snowballing means that we have used reference lists of the studies to identify the studies
they have referenced. The forward snowballing means that we have identified studies that have

cited studies we have initially gathered. When we have been looking for referenced and citing

studies of the initially gathered ones, we also applied inclusion and exclusion criteria, read the title,

38 State-of-the-Art

keywords, and abstract, and optionally read the introduction and conclusion sections to conclude

whether to keep new studies or not.

The remaining literature includes 51 peer-reviewed studies and 18 non-peer-reviewed studies.

Although not fitting the publication year search criteria, an additional peer-review study [24] from

the year 2000. has been included since the Bill of Materials (BOM) specification is frequently used
in companies. We have used these studies to find answers to the research questions we formulated

in this thesis. The research questions are not the hypotheses presented in Section 3.2 but are related

to the reviewed literature. These questions are:

• Research Question 1 (RQ1): In which areas process modeling languages have been
applied, and which concerns do they address? This question aims to reveal research trends

in process modeling, especially in the context of Industry 4.0.

• Research Question 2 (RQ2): What are the related languages and approaches used for

production process modeling? This question aims to point out relevant languages and
approaches used in the production domain.

• Research Question 3 (RQ3): Which languages and approaches are most frequently used

and extended for the production domain? By answering this question, we aim to identify

languages and approaches applied by researchers, pointing out current trends in production

process modeling.

• Research Question 4 (RQ4): To what degree are identified requirements (c.f. Section
4.2.1) fulfilled by languages and approaches? This question aims to point out what the

concerns and challenges in production process modeling are and what are future research

directions.
o Research Question 4.1 (RQ4.1): How production process models are executed?

This question aims to uncover how production process models are executed or

executable instructions are generated from models, which is one of the biggest
challenges in production process modeling, especially in the Industry 4.0 context.

o Research Question 4.2 (RQ4.2): In which way is the production system

independence achieved in production process models? This question aims to

reveal one of the biggest challenges in production process modeling – how
production system independence can be achieved.

o Research Question 4.3 (RQ4.3): Is there a language that fulfills all the identified

requirements? This question aims to uncover whether there is a language that
fulfills all the requirements and whose models can be used for dynamic production

orchestration and automatic execution.

In Table 4.2, we present only the peer-reviewed conference and journal papers alongside a
language name, a publishing year, tags that describe the content of a paper, and a name of a

conference or a journal in which the paper is published (sorted by the language name and publishing

year). To distinguish between different extensions of the same language, the name of the first author

of the extension is presented in parentheses. Different tags are added to each paper, having the

following meaning:

• General – a language used to model production processes in general;

• MES – a language used to model production processes in the MES domain;

• IoT – a language used to model production processes in the IoT domain;

• CPS – a language used to model production processes in the CPS domain;

• CPPS – a language used to model production processes in the CPPS domain;

• Skills – a language uses skill or capability modeling concepts;

• Services – a language stores service information in models for execution purposes;

• Engines – language models are used as input to engines for execution purposes;

• PPR – a language based on the Product-Process-Resource (PPR) concept;

• VDI/VDE 3682 – a language based on the VDI/VDE 3682 standard;

• MD – a language used in the MD paradigm; and

• Combination – a combination of languages is used to model production processes.

S
tate-o

f-th
e-A

rt 3
9

Table 4.2. Peer-reviewed papers of the reviewed literature.

Language Year Tags Conference Journal

ADAPT [62] 2018
General, MD, Skills,
Combination

2018 IEEE 16th International Conference on Industrial
Informatics (INDIN)

-

ASML [64] 2014 General -
International Journal of Production

Research

BOM/BOO/BOMO [24] 2000 General - Concurrent Engineering

BPMN ext. (Zor) [31] 2010 General, Engines
43rd CIRP International Conference on Manufacturing Systems
(ICMS 2010)

-

BPMN ext. (Zor) [32] 2011 General
44th CIRP International Conference on Manufacturing Systems
(ICMS 2011)

-

BPMN ext. (Michalik) [37] 2013 MES - Quality Innovation Prosperity

BPMN ext. (Meyer) [40] 2013 IoT
25th International Conference on Advanced Information
Systems Engineering (CAiSE 2013)

-

BPMN ext. (Meyer) [41] 2015 IoT
27th International Conference on Advanced Information
Systems Engineering (CAiSE 2015)

-

BPMN4CPS [38] 2016 CPS
2016 IEEE 25th International Conference on Enabling
Technologies: Infrastructure for Collaborative Enterprises

(WETICE)

-

BPMN ext. (Bocciarelli) [39] 2017 CPS, MD
2017 IEEE 14th International Conference on Networking,
Sensing and Control (ICNSC)

-

BPMN ext. (Polderdijk) [33] 2017 General
International Conference on Business Process Management
(BPM 2017)

-

BPMN ext. (Ahn) [34] 2018 General, Engines Advances in Production Management Systems (APMS 2018) -

BPMN ext. (Ahn) [35] 2019 General, Engines - Sustainability

BPMN ext. (Abouzid) [36] 2019 General
2019 5th International Conference on Optimization and

Applications (ICOA)
-

BPMN ext. (Schönig) [42] 2020 IoT, Services - Software and Systems Modeling

CT [57] 2012 General - Advanced Materials Research

DSL for production workflows [65] 2015 General
2015 IEEE International Conference on Industrial Technology

(ICIT)
-

DSML for CPS processes [86] 2015 CPS, Services - Journal of Computational Science

GMPM [78] 2014 MES -
International Journal of Precision
Engineering and Manufacturing

4
0

 S
tate-o

f-th
e-A

rt

GRAMOSA [66] 2015 General -
The International Journal of Advanced

Manufacturing Technology

GSMSPP [58] 2018 General, Combination -
Enterprise Modelling and Information
Systems Architectures

Hierarchical DSL for CPPS [90] 2021 CPPS, Services
26th IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA)

-

IAPMM [60] 2015 IoT, Combination
2nd Management and Innovation Technology International
Conference (MITiCON2015)

-

I4PMM [61] 2016 IoT, Combination
2016 13th International Joint Conference on Computer Science

and Software Engineering (JCSSE)
-

Information model of DPT [85] 2020 General, VDI/VDE 3682
25th IEEE International Conference on Emerging Technologies

and Factory Automation (ETFA)
-

IPPMA [71] 2020 General -
International Journal of Production
Research

LCDP [92] 2021 General, MD, Services Advances in Production Management Systems (APMS 2021) -

MaRCO [69] 2019 General, Skills - Journal of Intelligent Manufacturing

MES-ML [74] 2012 MES -
IEEE Transactions on Industrial

Informatics

MES-ML ext. (Weißenberger) [75] 2015 MES, MD
2015 IEEE 20th Conference on Emerging Technologies &
Factory Automation (ETFA)

-

MES-ML ext. (Chen) [76] 2018 MES, MD - Computers in Industry

MES-ML ext. (Chen) [77] 2021 MES, MD -
The International Journal of Advanced
Manufacturing Technology

MMPD [70] 2020 General
14th CIRP Conference on Intelligent Computation in
Manufacturing Engineering (ICME'20)

-

MPIMM/MPIM [67] 2016 General, MD
9th International Conference on Digital Enterprise Technology
(DET 2016)

-

MPIMM/MPIM [68] 2018 General, MD -
The International Journal of Advanced

Manufacturing Technology

MService HMS [91] 2016 General, Services -
Engineering Applications of Artificial

Intelligence

Object PN (Latorre-Biel) [50] 2018 General, Services
9th Vienna International Conference on Mathematical
Modelling (MATHMOD 2018)

-

PBM for ship block assembly
planning [59]

2020 General, PPR, Combination - Processes

S
tate-o

f-th
e-A

rt 4
1

PMPM [79] 2018 General, PPR Advances in Production Management Systems (APMS 2018) -

PMPM [80] 2020 General, PPR, MD -
International Journal of Precision
Engineering and Manufacturing

PN and PN-like models [48] 2019 General, Skills 52nd CIRP Conference on Manufacturing Systems (CMS) -

PPR DSL [83] 2020
General, PPR, VDI/VDE

3682, CPPS

25th IEEE International Conference on Emerging Technologies

and Factory Automation (ETFA)
-

PPR DSL [84] 2021
General, PPR, VDI/VDE
3682, CPPS

26th IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA)

-

PSL ext. (Qiao) [73] 2011 General -
The International Journal of Advanced
Manufacturing Technology

S-BPM (Fleischmann) [54] 2010 General
International Conference on Subject-Oriented Business Process
Management (S-BPM ONE)

-

S-BPM (Fleischmann) [55] 2012 General -
Universal Access in the Information

Society

S-BPM (Neubauer) [56] 2017 General, Services -
International Journal of Production
Research

Skill-based meta-model for
assembly processes [87]

2019 CPS, Skills
39th Central America and Panama Convention (CONCAPAN
XXXIX)

-

Skill-based meta-model for

assembly processes [88]
2020 CPS, Skills

2nd Eurasia Conference on IOT, Communication and

Engineering (ECICE)
-

Skill-based meta-model for
assembly processes [89]

2021 CPS, Skills
3rd Eurasia Conference on IOT, Communication and
Engineering (ECICE)

-

SysML (Fallah) [45] 2016 MES, Services
2016 1st International Workshop on Cyber-Physical Production
Systems (CPPS)

-

42 State-of-the-Art

We analyzed 29 conference papers and 22 journal papers as state-of-the-art in production
process modeling. Based on the reviewed literature, conference papers are primarily published in

IEEE International Conference on Emerging Technologies and Factory Automation (ETFA) (5

papers), Advances in Production Management Systems (APMS) (3 papers), and the International

Academy for Production Engineering, CIRP (French: College International pour la Recherche en
Productique) Conference on Manufacturing Systems (CMS) (3 papers). Other conferences have one

or two papers presented in this thesis. As for the journals, papers are primarily published in The

International Journal of Advanced Manufacturing Technology (4 papers), International Journal of
Production Research (3 papers), and International Journal of Precision Engineering and

Manufacturing (2 papers). Other journals have one paper each.

As presented in Table 4.2, modeling languages were mostly created to support process
modeling in general, CPS/CPPS, IoT, and MES. Various languages utilize the PPR concept, as

products, process operations, and resources are the main concepts for production process modeling.

Skill-based engineering has also been applied recently, as it allows specifying production processes

in a production-system-independent manner. The MD principles have been applied nowadays in
order to automatically transform process models into code or models of different types, and a few

languages are created for the execution of their models.

There are different languages and approaches to modeling production processes and their
various aspects. We divided the languages and approaches into four categories based on which this

section is also divided into four subsections:

• Category 1 (Cat1): traditional ways to specify production processes (Section 4.2.2.1);

• Category 2 (Cat2): process modeling languages that are not primarily created for

production process modeling but can be used to accomplish that task, and their extensions
made to fulfill specific production process modeling requirements (Section 4.2.2.2);

• Category 3 (Cat3): a combination of different modeling languages used to model various

aspects of production processes (Section 4.2.2.3); and

• Category 4 (Cat4): modeling languages made with the exact purpose to support production

process or production system modeling (Section 4.2.2.4).

The distribution of the presented languages and related papers by four categories presented in
this section is summarized in Table 4.3. The table includes all the literature we have found and

analyzed, including journal and conference papers, technical reports, book sections, and standards.

Table 4.3. The distribution of the presented languages and related papers by categories.

Category Modeling Language Papers

(Cat1) Traditional ways to

specify production processes

BOM [24]

BOO [24]

BOMO [24]

ASME FPC [25]

KS A 3002 [26]

FMEA/PFMEA [27–29]

(Cat2) Process modeling

languages that are not

primarily created for the

production process modeling

and their extensions

BPMN [30]

BPMN extensions [31–42]

UML AD [43]

SysML AD [44,45]

PN [46,47]

PN and PN-like languages [48]

Object PN [49,50]

IDEF3 [51,52]

EPC [53]

S-BPM [54–56]

CT [57]

State-of-the-Art 43

(Cat3) A combination of

different modeling languages

used to model production

processes

GSMSPP [58]

PBM for ship block assembly

planning
[59]

IAPMM [60]

I4PMM [61]

ADAPT [62]

(Cat4) Modeling languages

created to support production

process or production system

modeling

VSM [63]

ASML [64]

DSL for production workflows [65]

GRAMOSA [66]

MPIMM/MPIM [67,68]

MaRCO [69]

MMPD [70]

IPPMA [71]

PSL [72]

PSL extension [73]

MES-ML [74]

MES-ML extensions [75–77]

GMPM [78]

PMPM [79,80]

VDI/VDE 3682 [81,82]

PPR DSL [83,84]

Information model of DPT [85]

DSML for CPS processes [86]

Skill-based meta-model for assembly

processes
[87–89]

Hierarchical DSL for CPPS [90]

MService HMS [91]

LCDP [92]

Traditional ways to describe production processes (Cat1), that have been used for years, mostly
use spreadsheets to represent various aspects of processes. The category (Cat2) of languages that

are not primarily made for production process modeling is the second largest, and Business Process

Model and Notation (BPMN), with its extensions, represents the most used language. The third
category (Cat3) represents approaches in which a combination of languages is used to describe

production processes, with only a few such approaches found. The largest category (Cat4)

comprises languages specifically created for the production domain, most of which are DSMLs. All

these languages are discussed in detail in Section 4.2.2.1 throughout Section 4.2.2.4.

 In Graph 4.1, the number of peer-reviewed papers per year, distributed from 2010 to 2021, is

presented. Only a single peer-reviewed paper [24] is not presented in Graph 4.1, as it is from 2000

and represents the only outlier that we omitted so as to keep the graph more compact. Based on the
papers found, we can see a rising trend of published papers in production process modeling during

that period, especially from 2015. Furthermore, as our state-of-the-art investigation was finished in

December 2021, there may be additional papers in 2021 that would raise the trend even more.
Therefore, it may be stated that production process modeling has been gaining much attention in

recent years. Such an increase in research intention may be caused by Industry 4.0 and a need to

create flexible production. Also, the rising complexity of production processes and multiple process

variations have probably caused increased production process modeling usage.

More information may be obtained if the number of peer-reviewed papers per year of the

second (Cat2 – 19 papers), the third (Cat3 – 5 papers), and the fourth (Cat4 – 26 papers) categories

are separately presented, as it is in Graph 4.2. The first category (Cat1) mostly includes papers that
are not peer-reviewed, such as book sections and standards; thus, it is not presented in Graph 4.2.

44 State-of-the-Art

Languages from the second category (Cat2) have a rising trend until 2019 and most of them are

based on BPMN and its extensions. BPMN is extensively used not only in the manufacturing
domain but in many other domains as well, as the implementation of a novel DSML from scratch

could be time-consuming [208]. However, as the production process modeling domain is complex

and the complexity of production process models is rising, researchers are creating novel DSMLs

for such a domain. Switching from language extensions to novel DSMLs may be seen in Graph 4.2,
as the second category (Cat2) has a falling trend from 2019, and the fourth category (Cat4) has a

rising trend from 2019. This rising trend may be caused by a need to execute process models and

generate instructions and documentation automatically. Therefore, formal languages with machine-
readable models are required. Thus, researchers invest more time in creating novel, formal

languages from scratch that will cope with a complex domain of production process modeling.

Another way to cope with the complex domain of production process modeling is to combine

various languages to model different aspects of production processes. However, such a combined
approach (Cat3) is present only in a few papers from 2015. The shortage of combined approaches

is probably due to the need for additional knowledge that process designers must have, as using

Graph 4.1. Number of peer-reviewed papers per year.

0

1

2

3

4

5

6

7

8

9

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Number of papers per year

Peer-reviewed papers

Graph 4.2. Number of peer-reviewed papers per year for the second, third, and fourth categories.

0

1

2

3

4

5

6

7

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Number of papers per year

Cat2 Cat3 Cat4

State-of-the-Art 45

various languages requires process designers to know how to use all of them, making process

modeling a more burdensome task.

In the rest of this section, each category, with the representative process languages and

approaches, is discussed in its own subsection in detail.

4.2.2.1 Traditional Production Process Specification

In traditional manufacturing, companies use documentation and models of various types, such as
schemas, drawings, or textual descriptions, to describe production processes. Production process

documents are usually textual, containing a description of how to produce a product. However, such

documents do not have a precise and concise syntax that would lower the amount of text needed

for the description. Such arbitrarily textual documents are not applicable for automatic instruction
generation and execution of the instructions due to their informal description, thus not being

machine-readable. As process designers often create production process specifications in

spreadsheets, this could be time-consuming, and different errors may occur during the writing.
Companies also use manufacturing process charts and Bill of Materials (BOM) to specify

production processes. However, even if they are more structured and formal than arbitrary text,

none of these specifications provide enough data to facilitate an automatic execution.

A BOM specification represents a structured list of parts [24] used in a product's composition

hierarchy. The specification is composed of hierarchy levels with parent items and component

items, and for each component item, a quantity is specified. In American Production and Inventory

Control Society (APICS) Dictionary [209], BOM is defined as "a listing of all the subassemblies,
intermediates, parts, and raw materials that go into a parent assembly showing the quantity of each

required to make an assembly." However, BOM specifications are insufficient to understand a

production flow [34,35], as they only present a product's composition.

Bill of Operations (BOO) or routing as it is also called, represents a production structure of a

product [24]. It provides information on operations and their sequence to produce an item, involved

work centers, and standards for setup and execution. BOO may also provide information on tooling,

workers' skill levels, inspection operations, and testing requirements [209]. In addition to BOM, the
production flow is described through BOO, but products, materials, and their flow during

production are missing.

Although BOM and BOO are separate kinds of documents, they are often used in conjunction
to describe manufacturing. Thus, Bill of Materials and Operations (BOMO) specifications have

been created by integrating product structure and operation information into one document [24].

BOMO covers a sequence of production operations, materials, parts, a final product used in a
process, and information on resources or work centers. However, BOMO specifications are still

insufficient to specify all the necessary production process details, such as communication between

resources.

The American Society of Mechanical Engineers (ASME) Flow Process Charts (FPCs) [25] are
used to specify a production flow. Basic activities are defined in FPCs in the form of operation,

inspection, transportation, and delay. Such classification of activities is done for analytical purposes

and to detect and eliminate inefficiencies in a production process. Storage is also defined, indicating
that the material flow may be specified. However, smart resources and communication between

them cannot be modeled. Additionally, if FPCs are represented in the form of a table, only

sequential processes can be specified. Due to these insufficiencies, FPCs are not suitable for

automatic execution of production processes.

There is also the Korean Standards Association's (KS A) 3002 [26] manufacturing process

chart standard, which provides a set of graphical notations for manufacturing process modeling.

The standard was discussed by Ahn and Chang [34,35], stating that tooling support for modeling

and the possibility to execute models automatically are missing from the KS A 3002 standard.

Failure Mode and Effect Analysis (FMEA) is a method for analysis of known and potential

failures that could occur in a system, service, or process. Performing FMEA in a company may

46 State-of-the-Art

minimize damages caused by failures [27]. The FMEA method aims to identify and evaluate
potential failures of products or processes and identify actions that may eliminate or reduce the

occurrence of potential failures [28]. However, as FMEA focuses only on one component at a time,

it is not suitable to model a combination of component failures, and thus one way is to deal with

the problem via process modeling and simulation [210].

There are different types of FMEA methods [27], and one of them is Process-related FMEA

(PFMEA), which is driven by process functions and product characteristics and is used to analyze

manufacturing and assembly processes. The PFMEA method is used to ensure that process-related
failures and their associated causes are considered and resolved [29]. A PFMEA document is

created after the completion of a production process flow diagram, and the document consists of

identified failure modes, causes and effects, and the risks prioritization and their mitigation plans
in the process [29]. It specifies all the details about the error handling, but its purpose is not to

specify a production process, especially one that will be used for automatic code generation.

Traditional methods are commonly used by process designers who are familiar with these

kinds of process specifications. Therefore, due to familiarity with such methods, process designers
are usually not eager to replace them with new approaches, even if these kinds of informal

specifications could slow them down. As these methods are not formal, e.g., specifications in the

form of textual description can be arbitrarily specified, or a spreadsheet's structure can vary, they
can be time-consuming and prone to errors during specification writing. In addition, due to the

informal specification of production processes and the lack of certain modeling concepts needed

for the automatic generation of instructions, these specifications would be hard to transform into

executable resource instructions.

The presented traditional methods provided us with knowledge of how production processes

are usually specified by process designers. Thus, we plan to use similar concepts when creating a

novel DSML for production process modeling, such as ASME FPC basic activity types, to make
the language more suitable and appealing for process designers. As DSML is a formal language, its

models are machine-readable and thus may be used for the automatic generation of executable

resource instructions.

4.2.2.2 Process Modeling Languages and Extensions

As per research presented by Sott et al. [211], Business Process Model and Notation (BPMN),
Unified Modeling Language (UML), and Petri Net (PN) are identified as some of the most relevant

languages in smart manufacturing. However, by using process modeling languages like BPMN,

UML Activity Diagram (AD), and PN, it is difficult to model production processes primarily as
these languages are not created for that purpose. These difficulties are even more noticeable

whenever the languages need to be used to model all production process concepts required for

automatic execution.

Different annotations in the form of arbitrary text are often used in models to add all
information required for the production domain. However, a custom parser needs to be implemented

to execute such models, as the arbitrary text is not part of a modeling language and needs to be

parsed by the language parser. Even if the language parser is created for such a purpose, it is still
difficult to read and comprehend the text by humans. To solve this problem, researchers extend

existing languages to add missing semantics. Unlike previously mentioned model-level extensions,

these are meta-model-level extensions. However, even these extensions are not sufficient due to the
wide application domain of a language. Thus, instead of extending existing general-purpose

languages, researchers often try to create new domain-specific languages [183], as presented in

Section 4.2.2.4.

In this section, we present an overview of BPMN, UML AD, PN, and their extensions, and
other languages related to process modeling. In addition, we created a production process model

example by using BPMN, UML AD, and PN to present the possibilities and limitations of these

three common languages in the context of production process modeling. We created a model

State-of-the-Art 47

example of wooden plank sawing, presented for the first time in [9], as modeling such a process

requires most of the core production process modeling concepts to be used.

The example named Plank Sawing is constructed in a way not to include too many modeling

concepts but only basic ones from the requirements described in Section 4.2.1, making it possible

to test whether these languages can fulfill the requirements. The Plank Sawing example represents
a process in which two planks need to be sawed and packed. This process is a sub-process of

assembling the wooden box, which needs to be done before the assembling activities. In this

example, we only consider sawing and packaging of these two planks. We assume that the process

will be executed within a smart factory, having smart resources that utilize high-level instructions.

In the example, two planks need to be sawed in parallel. Due to their dimensions, we assume

that the same smart resource cannot simultaneously saw both planks. Moreover, both planks need
to be inspected after they are sawed. If there is any plank defect, a procedure to discard planks needs

to be performed, which should be presented as a sub-process as it is often reused in other processes

as well. Otherwise, if there are no plank defects, planks need to be placed in a box. One smart

resource needs to hold the planks, while another smart resource gets a box from storage and places
it beneath the planks. After that, planks need to be placed in the box, which should be closed

afterward, finishing the Plank Sawing process. To model production processes suitable for

automatic instruction generation, smart resources with their properties need to be specified within

the model as well.

This section is divided into BPMN-based, UML-based, and PN-based languages and

extensions, other languages without any extension presented, and the summary related to presented
languages and extensions. For BPMN, UML AD, and PN languages, the Plank Sawing example is

presented as well.

BPMN-based languages. Business Process Model and Notation (BPMN) [30] is designed by

Object Management Group (OMG) with the goal to provide a notation understandable by various
business and software users, creating a bridge between business process design and implementation.

The language was created to standardize business process modeling, being one of the most

frequently used languages for such a purpose. In the context of production process modeling,
BPMN covers some modeling concepts, such as error handling and a message flow [9,212], i.e.,

communication between process steps or resources. However, it is still insufficient to model

concepts such as a material flow [9,66,212]. Furthermore, smart resources cannot be fully modeled

using BPMN, as the standard BPMN resource definition is abstract without specifying details [39].
They can only be represented by pools and lanes [9,212], but different attributes and constraints

cannot be modeled [9]. Also, BPMN does not support the modeling of process variations [86]. Due

to the large variety of modeling concepts and BPMN's complexity, non-experts struggle with using
such a language [86]. In general, BPMN does not cover all aspects of the manufacturing domain as

it is not tailored for such a domain [35]. Accordingly, it does not have domain-specific modeling

concepts to express different types of flows [58], and it cannot be used to control production
automatically [65]. Still, it is one of the most usable and extendable languages in the production

domain.

The Plank Sawing production process is modeled using BPMN and presented in Figure 4.1.

The BPMN model is created by using Yaoqiang BPMN Editor [213]. There are three lanes
representing three smart resources – two robots and a human worker, without the possibility of

specifying resource properties in detail. Parallel process steps to pick and saw planks are assigned

to robots.

Annotations with arbitrary text can be used to specify input and output products and

capabilities for each process step. Also, storage can be specified within annotations whenever a

product is retrieved from storage or placed in storage. Annotations that represent products can be
connected whenever an input product of one process step is an output product of some previous

process step. However, the material flow modeling concept is hard to model when using BPMN,

because:

48 State-of-the-Art

• any annotation can be connected, even ones that represent capabilities;

• connections are not directed; and

• arbitrary text is used to specify products and storage.

In Figure 4.1, annotations are assigned only to parallel process steps to take less space and to
keep the model as simple as possible. To automatically generate instructions, there is a need to

recognize and parse products and capabilities, especially if constraints and parameters are specified

Figure 4.1. The Plank Sawing model example in BPMN.

State-of-the-Art 49

as arbitrary text in annotations. Using arbitrary text in annotations requires the creation of a parser,

as the text is not formally specified as a part of the modeling language.

In the example presented in Figure 4.1, the Pick plank 1 process step has the input product

Plank 1 that needs to be retrieved from a smart shelf. The same step has the output product Picked

plank 1, which is the same as the input product as it is only picked from the smart shelf and is not
processed in any way. The Saw plank 1 process step has the input product Picked plank 1, which is

the same plank from the previous process step, and has the output product Sawed plank 1, which is

sawed at a smart table.

After the inspection of planks, a decision pattern is modeled, indicating whether planks should

be discarded or placed in a box, depending on whether defects are present. Plank discarding is

modeled as a sub-process, while plank packaging is modeled with concepts to support collaborative
actions. A message flow and a collaboration of smart resources can be modeled using parallelism

gates and message events. The message event indicates that planks should not be placed until the

box is placed under the planks. Afterward, the box should be closed.

There are different types of process steps presented on the process model diagram, such as
operation, transportation, and inspection. However, different process step notations cannot be

modeled and distinguished using BPMN.

Based on the presented example, BPMN can be used to specify some of the basic concepts of
production process modeling. However, it lacks the semantics of production processes, especially

ones whose models are used for dynamic production orchestration and are suitable for the automatic

generation of executable instructions. It is hard to model concepts, such as process steps with all
the details, the material flow, and process variations. Furthermore, to describe products, storage,

constraints, and parameters in BPMN, textual annotations with arbitrary text are used, making it

hard to generate instructions as free-form text is susceptible to frequent errors. The error handling

modeling concept is covered well, but a BPMN modeling tool should support an additional
modeling layer to lower the number of elements on a diagram. BPMN extensions are created to

support different aspects of production process modeling. However, BPMN is still business-

oriented and is not tailored for a production domain.

For the rest of this subsection, BPMN extensions related to the production domain are

discussed.

Zor et al. [31] identified elements that BPMN lacks to represent manufacturing processes, and

they suggested adding a set of concepts to BPMN. The authors were inspired by the Value-Stream
Mapping (VSM) language, whose detailed description is outlined in Section 4.2.2.4, and mapped

VSM material and material flow concepts into BPMN data object and data flow concepts. By

mapping VSM modeling concepts into BPMN, the authors aimed to map BPMN modeling concepts
into Business Process Execution Language (BPEL) and execute processes with BPEL engines.

However, the smart resource modeling concept is not specified, and only the number of workers

needed for process execution is presented within tasks.

Zor et al. [32] then presented BPMN extensions to model production processes. They extended

the language with manufacturing tasks, machines, tools, parts, and material gateways. However, it

is still difficult to model the material flow modeling concept [66]. Additionally, it would be difficult

to model human workers with all the required details as they are represented with pools and lanes.
As production processes are coupled with machines, process models depend on a specific

production system [65]. The tool support for such an extended BPMN is not implemented and is

considered by authors as an ongoing work.

As occupational risk factors are often not supported by process modeling languages, Polderdijk

et al. [33] extended BPMN with human tasks and physical risk properties. These extensions were

created to model and visualize human physical risks, such as lifting and carrying heavy objects or
using vibration tools for too long. Within BPMN, the authors integrated Netherlands Organization

for Applied Scientific Research' TNO (Dutch: Nederlandse Organisatie voor Toegepast-

Natuurwetenschappelijk Onderzoek, TNO) Checklist Physical Load [214], which is focused on

50 State-of-the-Art

occupational risk factors. With these BPMN extensions, it is possible to fill in a questionnaire dialog
within a modeling tool, stating which risk types are present in each human task. These extensions

aim to allow users to analyze occupational risk factors that should be mitigated by redesigning

production processes. However, the automatic execution of production process models has not been

considered in this paper, and thus most of the BPMN insufficiencies in modeling production
processes remain. Including occupational risk factors in production process models can be useful,

as an intelligent system, such as an orchestrator, can better decide whether to choose a robot or a

human worker to perform a particular process step based on the specified risks.

BPMN extensions are also proposed by Ahn and Chang [34] to calculate a similarity measure

of manufacturing processes, based on production-related operation similarity. Assuming that a

company adopts a Business Process Management (BPM) approach and has many manufacturing
process models stored in a repository, these similarity measures extensions enable a search and

reuse of the models or their parts when designing a new manufacturing process model. The authors

defined a minimal set of BPMN notations as sufficient to model the process examples they

presented. Therefore, not all BPMN modeling concepts are used, e.g., the authors limited notations
to be used only for sequential and parallel control flow patterns. BPMN is extended with operations,

i.e., manufacturing tasks, and components, i.e., materials, parts, and products, but there is no

mention of whether smart resources can be added.

The same authors then extended their work and introduced a similarity-based hierarchical

clustering method for manufacturing process models [35]. The authors described an agglomerative

clustering algorithm for manufacturing process models. If some deficiencies are identified in a
process model, the algorithm can help to detect a cluster of similar process models and eventually

redesign the whole cluster of process models that may also have such deficiencies. Also, the

algorithm can help design new process models by searching a process model cluster of similar

products and thus reusing or referring information from the cluster. The authors presented the
conversion of process models into a textual form that BPM execution systems may execute, but the

model execution is not described in the paper.

Abouzid and Saidi [36] proposed BPMN extensions for modeling manufacturing processes
and presented examples of manufacturing process models in carpentry and textile domains. BPMN

is extended with concepts for modeling the process step scheduling and inventory. The authors

aimed to model the minimum and maximum time needed to complete each process step, making it

possible to calculate the time for the whole process. Furthermore, by adding the inventory modeling
concept, it is possible to model the inventory of goods and materials, providing insight into semi-

finished goods waiting to be used in the following process steps. However, by using these

extensions, process models become complex [36], and all the previously described insufficiencies

of BPMN in the production domain are also present in this version.

Michalik et al. [37] presented an application of BPMN in modeling a flexible production line

at an MES level of information and control systems. The authors presented an example of a BPMN
model for the management maintenance function at MES and technological levels. However, the

production process within the BPMN model is represented as a single task only. Therefore, it is not

clear whether the production process could be executed automatically. Also, all the BPMN

insufficiencies in the context of production process modeling are still present. The authors
concluded that it is not possible to capture the complex technological details of an MES system and

that it is necessary to find new approaches to model these systems, such as a combination of

different existing technologies. However, that may increase the models' complexity and require

knowledge of different technologies from process designers.

Graja et al. [38] implemented the BPMN4CPS language by extending BPMN to model CPS-

aware processes. These BPMN extensions aim to enable process designers to precisely model
different CPS concepts. The authors introduced cyber and physical tasks and different attributes for

tasks, such as the technology that will be used to send or receive messages. Lanes are extended to

represent CPS devices and their constraints and parameters. However, as multiple CPS devices can

be modeled, a diagram's size will rise and become hard to read. Therefore, the authors proposed

State-of-the-Art 51

using colored physical tasks where each color refers to a specific device role written as a comment
in the diagram. Physical entities also need to be modeled, which are relevant to the physical

activities of CPS devices. As the real-world environment is composed of a number of physical

entities, it can be modeled as a pool. However, there are no details on how to execute BPMN4CPS

models [42], how to hide implementation details from the process model, and how to model

concepts such as the material flow.

Bocciarelli et al. [39] also presented BPMN extensions to address the modeling of resources

in the CPS-aware Industry 4.0 business processes. As BPMN lacks modeling concepts to specify
IoT devices and CPSs, the BPMN extensions enable the modeling of CPSs as resources associated

with BPMN tasks. Also, the extensions cover the performance and reliability-oriented

characteristics of resources, making it possible to specify them at different abstraction levels. These
extensions are based on the MDA approach, enabling the simulation-based analysis of CPS.

However, production process modeling concepts that BPMN lacks to specify are still missing, and

thus the automatic orchestration and execution of production processes would be hard to achieve.

Also, there is a dependency on a production system by specifying resources and their components,
i.e., control units, communication interfaces, sensors, and actuators, within production process

models.

Meyer et al. [40] analyzed and identified IoT domain concepts and proposed BPMN extensions
to model IoT devices and their native software components, creating IoT-aware process models.

The authors chose to extend BPMN as it is more appropriate for IoT extensions in comparison to

Event-driven Process Chain (EPC) (discussed further in this section), UML AD, and Web Services
Business Process Execution Language (WS-BPEL) [215] process notations [216]. Besides humans

participating in business process executions, IoT-aware processes also include IoT devices that can

perform some tasks in a smart factory. BPMN is extended with a modeling concept of IoT devices

with parameters represented by a swim lane. The IoT devices are added to the process flow as
resources for documentation and automation purposes. Also, BPMN is extended with an IoT

device's native service modeling concept represented with an activity.

Meyer et al. [41] then proposed further BPMN extensions to model physical entities in the
context of IoT as custom participants visualized as collapsed pools in BPMN. Thus, the authors

aimed to make extensions close to the standard BPMN notation. A physical entity or a "thing" of

IoT represents a passive object that is a part of a physical environment and is of interest to a process

as its state can be measured or changed by IoT devices. However, other concepts BPMN lacks are
still missing, such as the product and the material flow, and there are no details on how to execute

the models [42].

Schönig et al. [42] proposed an approach for integrating IoT objects with business process
models ready for execution as, per their claim, many languages and approaches provide no details

on how to execute models. They extended BPMN to enable the integration of IoT objects with

process models and to preserve the possibility of executing the models in existing BPM execution
systems. The models are executed as business processes, i.e., HyperText Transfer Protocol (HTTP)

requests are specified in Script and Human tasks, and instructions are sent to machines or human

workers. Thus, technological details need to be implemented within the models, making a

dependency on a production system. In addition, it would be difficult to model concepts such as
material flow, smart resources, storage, products, capabilities, and constraints. Therefore, an

orchestrator would not be able to dynamically and automatically orchestrate the production based

on the models.

BPMN is a process modeling language, commonly used in various domains, especially for

business process modeling. It has good-looking graphical elements and constructs that can be

relatively easily learned. Some of these graphical elements, such as gateways, ad-hoc sub-
processes, and error events, can be used when creating a novel DSML for production process

modeling. Also, BPMN and many of its extensions can be executed in existing BPM execution

systems. However, BPMN is a business process modeling language and is not suitable for

production process modeling.

52 State-of-the-Art

UML-based languages. Unified Modeling Language (UML) [43] is designed by OMG and
represents a family of languages used by system architects, software engineers, and software

developers to analyze, design, and implement software-based systems and also model business and

similar processes. There are several UML diagram types, but UML Activity Diagram (AD) is used

to model a workflow of activities and thus may be used to describe production processes. Vathoopan
et al. [7] mentioned they are using UML AD to create a production workflow as a sequence of skills

in their prototype tool named SystemPlanner, which is used for skill-based engineering. The action

modeling concept of UML AD is used to represent the skills of the production workflow. However,
UML AD models are not suitable for automatic execution as they do not consider automation and

technical requirements [74]. As UML represents a family of languages, it could be possible to use

different UML languages to model production processes and cover some of the insufficiencies of
the sole usage of UML AD. However, this would additionally load process designers as they would

need to be familiar with multiple languages to model production processes. Thus, the complexity

of production process models would grow. According to Lee et al. [78], UML cannot present

process flows, detailed activities and resources, and sustainability information at the same time, as

there are differences between business and production processes.

The UML AD model of the Plank Sawing production process is presented in Figure 4.2. The

UML AD model is created by using the diagrams.net [217] modeling tool. Three lanes are used to

represent smart resources, but using UML AD, it is not possible to model resource properties.

Parallel process steps are specified to pick and saw two planks. A capability is presented within

an activity – a process step, and capability parameters are specified within the activity as input

parameters. Capability constraints need to be added as arbitrary text within annotations.

Input and output products are modeled as objects, while their constraints and storage are

modeled as text annotations attached to objects. Storage properties are hard to specify within

annotations. Like BPMN models, it would be hard to recognize and parse the text from UML AD
annotations to generate instructions automatically and execute them. Objects and activities can be

connected to specify if a product is a result of a previous process step.

In the example presented in Figure 4.2, the Plank 1 object represents the input product of the
Pick plank 1 activity, while the output product of the same activity is the Picked plank 1 object,

which is the same as the input product. However, the name of these two objects is not the same

since the state of the plank changed – from a state in which the plank is stored on a smart shelf to

another state in which the plank is already picked. The Picked plank 1 object is then used in the
Saw plank 1 activity as an input product, and after it is sawed, the output product of the same activity

is the Sawed plank 1 object with a shorter width than it was before the activity.

Material flow modeling requires the usage of different modeling concepts, such as objects,
activities, and annotations. This is more complex compared to BPMN models, in which only

annotations are used. Similar to the BPMN Plank Sawing example, input and output products are

only presented for parallel process steps, while others are hidden from the diagram to make the

model as simple as possible.

The decision pattern is modeled after the inspection of planks. A sub-process of discarding

planks can be modeled as a call behavior action. Compared to BPMN, it is harder to represent a

message flow and a collaboration of smart resources, which may be done by means of
synchronization. For example, there is the Send message activity in the Human worker lane, and in

the Robot 2 lane, it must be checked whether the message arrived using the decision pattern. This

solution may be difficult for automatic instruction generation due to a need to continuously check
if the message has arrived. The message flow may also be modeled using signals, but their purpose

is to communicate with an external participant. Similar to modeling with BPMN, process step

notations cannot be modeled.

Like BPMN, UML AD can be used to specify some of the basic concepts, but it lacks the

semantics of production processes. Due to object and parameter modeling concepts, UML AD

provides more concepts to model process steps compared to BPMN. However, by using BPMN, it

State-of-the-Art 53

is possible to model unordered process steps and the message flow can be modeled in more detail
as the message attributes can be specified, and the message flow can be presented more clearly

using relationships. If UML AD is used to model production processes, it would be hard to

dynamically orchestrate production and automatically generate executable instructions based on

models alone.

UML profiles could be created to extend the language with production process modeling

concepts, but too many extensions would need to be created. Using the initial set of modeling

concepts and many language extensions would make the production process modeling difficult.

Figure 4.2. The Plank Sawing model example in UML AD.

54 State-of-the-Art

For the rest of this subsection, we present UML-based languages and their application in the

production domain.

Systems Modeling Language (SysML) [44] is designed by OMG and represents a GPML for

systems engineering. SysML reuses a subset of UML, making UML a base for SysML modeling

and extends it with modeling concepts for system engineering. The language is supposed to be
customized to model different domain-specific applications, such as automotive, aerospace, and

ISs. It aims to provide simple constructs for modeling a wide range of system engineering problems.

Like UML, SysML contains a collection of different types of diagrams, but SysML does not use all
UML diagram types. A diagram type that may be considered for production process modeling is

the SysML Activity Diagram (AD), which is an extension of UML AD. The scope that SysML AD

covers in production process modeling is similar to UML AD. Therefore, all the insufficiencies of

UML AD in the context of production process modeling are also present in SysML AD.

Fallah et al. [45] proposed a conceptual framework to model a modular MES using SysML.

As there is a need for both flexible and low-cost production, the authors wanted to create a

conceptual approach for the model-integrated service-oriented MES to ease reconfiguration efforts.
Models would be used not only to design MES but also for the execution of operations. The solution

would be built on MDE principles, allowing comprehensive system modeling at different

abstraction levels. SysML MES models would represent platform-independent models, which
would be connected through the platform-specific Open Platform Communications Unified

Architecture (OPC UA) protocol with cell controllers. OPC UA [218,219] is a service-oriented

architecture that provides data exchange in a platform-independent manner. It was developed by
the OPC Foundation, aiming to create a standard way of communication between different systems

and devices through various networks. Fallah et al. aim to model production processes on a higher

abstraction level by developing a modular MES through SysML. However, this framework is not

implemented. Also, neither a code generator for model transformation into executable code nor an
interpreter for direct model execution are implemented. Nevertheless, the idea of creating an MDE

solution and transforming PIMs to PSMs in the MES domain may be applied in the production

process modeling domain as well, transforming resource-agnostic to resource-aware production

process models automatically based on the MD paradigm.

UML represents a family of languages that is utilized in various domains. Different languages

from UML may be used to specify various aspects of production processes but would require

additional knowledge from process designers when modeling production processes. This may lead
to difficulties and errors during modeling. UML AD alone does not provide enough modeling

concepts to cover the production process modeling domain fully.

PN-based languages. Petri Net (PN) [47] has been designed by Carl Adam Petri [46] to visualize
chemical processes. PN is a language with only a few modeling concepts, such as places, transitions,

arcs, and tokens. Places represent passive components such as states; transitions represent active

components such as activities; arcs are used to connect places and transitions; and tokens represent
the current state of a PN system. Due to the limited number of modeling concepts, PN is easy to

use and can be applied in many domains. However, PN is too generic to be used for modeling

production processes. Fleischmann [54] stated that subjects and objects could only be modeled as

comments using PN, which also applies to resources and products. Therefore, it would be hard to
model these concepts like that. In addition, the complexity of PN models is high, even for simple

production processes containing just a few process steps.

The model of the Plank Sawing production process expressed by the concepts of PN is
presented in Figure 4.3. The PN model is created using the Platform Independent Petri net Editor 2

(PIPE2) [220–222]. Capabilities of process steps can be specified by adding transitions in a PN

model. However, products, smart resources, storage, constraints, and parameters cannot be added
to the model. They can only be specified as arbitrary text attached to each transition. It would be

hard to parse such a text, and it would also be hard to read for humans. Thus, process designers

would have difficulty modeling production processes using the PN language.

State-of-the-Art 55

Transitions with multiple relationships are used to specify parallelism. In the example
presented in Figure 4.3, parallel process steps to pick and saw different planks are modeled between

transitions with multiple relationships. After the inspection of planks, the decision pattern is

modeled using places with multiple relationships.

Figure 4.3. The Plank Sawing model example in PN.

56 State-of-the-Art

As opposed to BPMN and UML AD, sub-processes cannot be modeled using PN, and
consequently, they are modeled as transitions, such as the Discard planks transition. A message

flow can be expressed like other activities in a PN model. In Figure 4.3, the Send start message

transition is used to represent a process step of sending a message after the box is placed and the

Start message place is used to represent the message, which is a precondition for the Place planks
transition. However, no details can be specified for a message, and it cannot be distinguished from

other places in a PN model.

Similar to the conclusions of the BPMN and UML AD examples, it can also be concluded that
it would be hard to orchestrate production and generate executable instructions based on PN

production process models. Likewise, process step notations cannot be modeled by means of PN.

The language can be used to model only a few basic concepts of production processes, as it is too
generic to model any specific concept of the production process domain. This is especially true if

models are specified in detail, as required for dynamic orchestration and automatic instruction

generation. Unlike BPMN, an advantage of PN is that it has only a few basic concepts that process

designers use to model processes, making the modeling easier. However, the consequence of having
only a few modeling concepts is that production process models become too complex, even with a

few process steps.

For the rest of this subsection, we present PN-based languages and their application in the

production domain.

Müller et al. [48] presented an approach for planning and programming an assembly system

based on the PN language. The approach aims to reduce the implementation effort of flexible
assembly systems. An assembly process is composed of skills, while resources offer a set of skills.

Based on such generic process step descriptions, resources with the required skills can be chosen

via services to perform such steps. Specifications of assembly systems and processes are used as

work instructions for a control system. An assembly process is divided into two types of flows: (i)
a program flow – a logic to perform an assembly process; and (ii) a data flow – a flow of information

during the process. A program flow is expressed as a PN model, in which places represent states

while performing a process, and transitions represent skills needed to perform process steps. A data
flow is expressed with a PN-like model, specifying a connection between different software

functionalities or production equipment with other elements. By introducing different levels of

workflow, the production system's independence can be achieved. Models at the process planning

level are abstract, without any resources. A program flow level contains additional operations and
details about resources needed for process execution, while a data flow level specifies the workflow

fully. Transitions are described with arbitrary text, and such text needs to be interpreted to be

executed. Such a process of interpreting PN model elements may be prone to errors. Also, other
insufficiencies of PN to represent production processes still exist. However, utilizing skill-based

engineering in production process modeling may provide independence of production process

models from a specific production system, which also motivates us to consider applying skill-based

engineering when creating a novel DSML for production process modeling.

Latorre-Biel et al. [50] used Object PN to model an Industry 4.0 manufacturing facility so that

models can be considered for analysis, performance evaluation, and decision making support.

Object PN [49] supports the nets-within-nets paradigm, providing tokens with the structure of PN.
These tokens are called token nets or object nets, and they belong to a surrounding net called a

system net, forming an object net system. Between different token nets and between token nets and

system nets, interaction mechanisms may exist. The authors used a token net to describe a single
product, which can request a list of services, and a system net to describe a manufacturing facility

with its resources, such as robots and conveyor belts. Each product is modeled with a different

token net. Communication between a system net and token nets makes requesting services possible.
This approach focuses on a production facility and a product that changes state as it moves through

the facility. Therefore, there is a possibility to model the material flow, as storage may be modeled

as places called buffers and warehouses. However, it would be difficult to specify different

constraints, parameters, and details about products, resources, and storage.

State-of-the-Art 57

As a general-purpose language, PN has a wide range of application domains. Due to only a
few modeling concepts PN supports, it can be easily learned and applied in various use cases.

However, it would be hard to model production processes using PN, as it does not have semantics

to cover all the required modeling concepts and constructs, and with only a relatively complex

production process, PN model diagrams become large and hard to read. The concept of a token,
used in a PN model to track the state of a system, can be useful in production process modeling,

allowing the tracking of the production process steps execution and monitoring of the whole

production.

Other modeling languages. The Integration DEFinition (IDEF) method for Process Description

Capture (IDEF3) [51] is designed to document and analyze the processes of the existing or proposed

systems. IDEF3 was created to describe sequences of activities, and its goal is to provide a method
used by domain experts to specify the activities of a system or an organization. IDEF3 was recently

used for business process modeling, analysis, reengineering, and management [52] but was also

applied in the manufacturing domain [212]. However, IDEF3 lacks modeling concepts to describe

materials and resources related to activities [73]. Objects could be used to represent products – from
raw materials to packaged goods, and Units of Behavior (UOBs) could be used to represent process

steps [212]. Smart resources could be modeled using the object elements [212], but there would be

a conflict with the representation of products and materials. IDEF3 process models can be easily
understood because of the language's simplicity and the small number of modeling concepts, but it

struggles to represent complex processes [78].

Event-driven Process Chain (EPC) [53] is used to model processes with four types of objects:
events, functions, rules, and resources. These objects form a chain of functions and events. As EPC

was created for business process modeling, it does not provide all the modeling concepts for

execution-ready production processes. Like with previously described languages, it would be hard

to model resources such as humans, robots, and machines with all the details needed for execution.
The material flow concept is neglected [66], and so are the message flow and the error handling.

Thus, the automatic execution of the process models would be hard to achieve.

Subject-oriented Business Process Management (S-BPM) is an approach that combines
different properties of BPM 2.0, including technical perspectives as well as human interaction [54].

This approach recognizes a subject, i.e., an actor, as the starting point for modeling business

processes and focuses on the interaction between the subjects [55]. Thus, communication modeling

is the prime aspect of this language. When modeling with S-BPM, abstract subjects are used instead
of concrete ones, and concrete subjects are assigned when a process is embedded into an

organization, indicating that the independence of the production system may be achieved. However,

products and the material flow are still difficult to model, due to the lack of modeling concepts.
Therefore, the automatic execution of production process models would be hard to achieve. The

assignment of concrete subjects based on abstract ones may be seen as similar to the creation of

resource-aware production process models based on resource-agnostic production process models
we plan to achieve by utilizing skill-based engineering. However, in the approach we plan to create,

the enrichment of resource-agnostic production process models with storage, transportation, and

configuration activities should also be provided.

Neubauer et al. [56] specified requirements for the vertical integration of business and
technical manufacturing processes so that companies could flexibly react to production changes.

The authors investigated the applicability of S-BPM to achieve vertical process integration, and

they modified the language by adding different types of messages. They proposed a generic
modeling pattern for subject-oriented design and execution of production processes. This pattern

comprises three types of subjects: a service, a human, and a coordinator. The service subjects can

represent devices, machines, and web services, while the human subjects can represent employees,
workers, and other human users in the production environment. The coordinator subjects coordinate

the interaction of subjects in the production environment. However, all the insufficiencies of S-

BPM in production process modeling still exist. Their vision of subject-oriented modeling,

especially the usage of a coordinator in the proposed pattern, is similar to what an orchestrator is

supposed to do – to automatically coordinate production.

58 State-of-the-Art

Many intermediate products and materials exist only for a short time during a manufacturing
process and thus do not have any formal name. Wen and Tuffley [57] applied the Composition Tree

(CT) language to solve the naming problem that may appear when:

• a product is transformed into a new one;

• different products are combined to form a new one; and

• a product is split into new products, or a part is removed from a product that becomes a

product on its own.

CT is a formal language, a part of behavior engineering developed for large software systems.
It may also be applied in the domain of manufacturing processes. The root node of CT is used to

represent a final product, while other nodes under it are used to represent materials needed for the

final product. An ordinal number of a process step to which material belongs is also presented
within a node. Therefore, a sequential process may be concluded from a CT model. There are also

different attributes for each product and material and relationships to other materials and products,

e.g., whether the material needs to be added or mixed with another one. Accordingly, a material
flow can be modeled, but the storage modeling concept is not available. Also, only sequential

processes may be represented. Thus, behavior trees may be needed to model dynamic aspects of

manufacturing processes [57]. The naming issue, discussed by Wen and Tuffley, could be addressed

when creating a novel DSML through the material flow modeling concept that connects all
materials, intermediate parts, and final products of a production process, thus formally specifying

all of them through the process model. A newly created DSML, whose models would be used for

production process execution, needs to allow the specification of all materials and intermediate

parts in order to track the material flow and enable the automatic execution of production processes.

Summary. A common conclusion can be drawn for the presented languages. These languages are

not created to support production process modeling, especially the process models suitable for
dynamic orchestration and automatic execution. Thus, they cannot be used to specify all the

production details. Various authors extended such languages to cover certain aspects of production

process modeling but usually not all the details required for process execution. Due to the

complexity of the production process modeling domain, many different extensions would need to
be used to specify models suitable for execution or automatic instruction generation. Such a

language would be hard to use for process designers as it has its base modeling concepts that are

not tailored for the manufacturing domain. Even if process designers are trained to model
production processes using these languages, none of these languages are conceptually familiar to

them. Therefore, they would need to invest a lot of time and effort in learning to use any of these

languages and their modeling tools. Difficulties in learning to use a modeling tool that supports one

of these languages are not caused by the complexity of the domain but by the complexity of the
modeling language and the tool. Accordingly, if the languages are extended to support production

process modeling concepts they are missing, these languages are still not tailored for such a domain.

As too many extensions need to be created, it is much more efficient to create a novel language
from scratch, adapting it for the production process modeling domain. Therefore, process designers

would use modeling concepts they are familiar with, and such a domain-specific language would

have formal semantics, with exact rules on how to model production processes, minimizing faults
caused during modeling. By using the formally defined language, machine-readable production

process models can be created and automatically transformed into executable resource instructions.

We expect that the creation of an appropriate novel DSML would speed up the specification of

production processes, decrease the number of faults during the specification, and enable faster

changes in models.

4.2.2.3 Combining Modeling Languages to Model Production Processes

Using different modeling languages to specify various aspects of production processes is one way

to deal with the complexity of production process models and the extensive volume of modeling

concepts a single language needs to have to specify production processes. Researchers have created

State-of-the-Art 59

various approaches in which they used a combination of modeling languages to specify production

processes, as discussed in this section.

Bork et al. [58] proposed a procedural framework that guides the design and development of

combined conceptual modeling methods in the context of Industrial Business Process Management

(IBPM). The framework is composed of three abstraction levels:

• approach level – abstract meta-model building blocks;

• concept level – model and functional building blocks; and

• execution level – execution building blocks.

The authors evaluated the proposed framework using the ADOxx meta-modeling platform to

implement a multi-stage manufacturing process simulation environment. ADOxx [172] is a meta-

modeling and configuration platform used to conceptualize modeling methods [173]. A formal
definition for ADOxx meta-modeling concepts can be found in the work of Fill et al. [174]. As the

ideas of IBPM are that there is no single approach applicable to a complex domain and that a

combination of different approaches is needed, the authors proposed the usage of different
languages in the multi-stage manufacturing process simulation environment. Various models of a

production process should be flexible and loosely coupled, representing different views on the

production process. The idea is that different modeling languages are based on the same abstract

meta-model building blocks. Therefore, the authors implemented abstract and concrete building
blocks for Graph-based Simulation of Multi-Stage Production Processes (GSMSPP), and they used

simplified BPMN and simplified block diagrams of concrete building blocks to model production

processes. Based on the presented meta-models, some production process modeling concepts are
not covered, such as resources and products. Modeled processes can be simulated, but it would be

hard to use the models for dynamic orchestration and automatic execution. In this framework

implementation, some flow types are missing, such as material flow, but the framework could be
extended with different languages to support various flows. However, using different modeling

languages comes with risks in consistency, usability, and intuitive understanding [58]. Therefore,

it may be hard for process designers to know how to use different languages, especially as these

languages may not be from the domain they are familiar with. These are some of the main reasons
we propose the creation of a novel DSML – so that process designers use a single language with

modeling concepts familiar to them. The whole domain of production process modeling is complex,

and this justifies the authors' statement that one modeling language is not enough to capture all the
requirements and that multiple modeling languages should be used. However, our opinion is that

the usage of a single language with different levels of detail and different modeling layers can be

applied to cope with the domain complexity problem.

Jeong et al. [59] proposed a Process-Based Modeling (PBM) method to describe the production
processes of ship block assembly planning. This method uses different modeling approaches,

languages, and documents to describe production processes. It consists of four modeling steps:

• creation of a unit model that includes products, processes, and resources for a block;

• design of an integrated network of processes by linking unit models based on a BOM;

• creation of a process-based model describing production processes by combining unit

models; and

• generation of a PN model from a process-based model to simulate and analyze the
productivity of a ship block assembly process and to support model validation.

The PBM method can be used to model Products, Processes, Resources, Schedules, and Spaces

(PPR-SS) needed for block production, and it can identify complex interrelations between
processes. The method combines data from different sources, such as a unit product, BOM, activity

data, and resource data, creating a unit model. Therefore, a process designer must be familiar with

all these sources to specify production process models. Being aware of all these details may be

burdensome for process designers. Since the PBM method does not have a formal description [59],

it would be hard to execute its models.

60 State-of-the-Art

Petrasch and Hentschke [60] presented IoT-Aware Process Modeling Method (IAPMM) that
uses languages, such as SysML requirement diagrams, UML use cases, and BPMN extensions

named IoT-Aware Process Modeling Notation (IAPMN) in order to model IoT-aware processes.

The goal of this method is to enable the modeling of software systems and software applications

like sensing and actuation. As IoT-aware process models are needed to specify system and software
design requirements, a new modeling method is introduced. The authors used existing modeling

concepts and added new ones to model IoT devices, physical entities, IoT activities such as

actuation and sensing tasks, real-world data objects and stores, mobility aspects, and indicators of
whether human beings are involved. Therefore, resources and activities may be modeled, but

products and the material flow modeling concepts are missing.

The same authors created Industry 4.0 Process Modeling Language (I4PML) and Industry 4.0
Process Modeling Method (I4PMM) [61] by extending IAPMN and IAPMM with Cloud

Computing applications. The language represents an extension of BPMN. By using I4PML, it is

not possible to model all the technological details as its purpose is to model production processes

in a requirements specification and analysis phase. Also, there are no details on how to execute
models of both methods presented by the authors [42]. However, as I4PML represents a UML

profile, it has a formal definition and may be integrated with existing validation and simulation

tools and used as a source for M2M or M2T transformations within code generators.

As many modeling approaches are insufficient to support collaborative tasks of human workers

and machines, Lindorfer et al. [62] presented the Asset-Decision-Action-Property-relaTionship

(ADAPT) modeling approach to model variable work tasks of humans and machines. The approach
is based on a newly created meta-model, and the authors presented the first implementation of a

BPMN-based workflow designer. Such an approach aims to enable the modeling of assembly

workflows, collaboration between human workers and machines, decision-making, and assembly

variations. The authors plan to extend the tool to use a combination of Gantt and flow process charts
to model various assembly tasks. Currently, they only developed a workflow modeler based on the

extensions of the BPMN language to support ADAPT models, enabling the modeling of actions,

decisions, and assets. Assets are used to define many concepts, such as skill profiles, resources,
products, parameters, images, and work instructions. Therefore, it may confuse users on how to use

such a modeling concept. Likewise, a decision concept is used to model both conditional workflows

and product variations. A model may also be specified as an Extensible Markup Language (XML)

file, later used to generate PSMs for different software applications, such as a visualization or a
specific robot system. A code generator is used to transform an XML-based model into an HTML

webpage with work instructions and images that are sent to a worker's smart device. Specific robots

and workers are not modeled by users, indicating that it is possible to separate some of the
production system details from production process models, as they use skill profiles and match

process steps with workers. The material flow modeling concept is missing, and it is unclear how a

collaboration and message exchange between human workers and machines may be modeled. Also,
the authors stated that the Programmable Logic Controller (PLC) program might be generated from

models for different kinds of robots but is considered a future work. Similar to the skill profiles

used in the ADAPT approach, we plan to utilize skill-based engineering to match process steps with

resources but also to separate specific storage, and transportation and configuration activities from

resource-agnostic production process models.

Combining different modeling languages to cover various concepts of production process

modeling is a justified approach. Due to the complexity of the production process modeling domain,
authors used different modeling languages to model various production process aspects, which

would hardly be achieved by using only a single language. However, this approach requires

knowledge from process designers to apply multiple modeling languages. Moreover, they would
need to be trained to actively use different modeling languages, which can be particularly

burdensome.

State-of-the-Art 61

4.2.2.4 Modeling Languages to Support Production Process or Production System

Modeling

The final category of modeling languages represents the ones that can be referred to as DSMLs in

the domain of production process modeling or production system modeling. Even if some DSMLs

are created to support the production system modeling, these languages usually cover modeling
concepts such as operations, activities, or capabilities, thus allowing the specification of production

processes as well. The DSMLs we investigated were created to cover various aspects of the

production domain, as presented in this section.

Value-Stream Mapping (VSM) [63] is a language used to model production processes, having

modeling concepts that can express material and information flows in detail. VSM models are used

to create a production path from customer to supplier, and they are used to identify issues and reduce
waste during production. However, according to Zor et al. [31], VSM models serve documentation

purposes only and cannot be executed automatically. Additionally, VSM is limited to simple linear

process sequences [66] and describes tasks at a high level [212].

Salmi et al. [64] presented a novel Assembly Sequence Modeling Language (ASML) to
support the decision-making process of determining to which level to automate a factory in

assembly manufacturing. ASML is used to represent different assembly sequences and to schedule

their tasks in different ways to determine the optimal level of automation and estimate the assembly
time and cost. The language is built so a user can work on assembly tasks without knowing the

technological details. A resource is defined as a block of process tasks, but it is not presented in the

paper whether any resource details can be specified. An automation optimization algorithm, a

process designer, or a manufacturer will decide the specific resources. Thus, an assembly sequence
without resources and their schedule is given as input to the decision-making process. After testing

different scheduling scenarios, the output is an assembly sequence with resources, their scheduling,

technological details, and cost estimations. However, products, storage, and material flow would
be hard to specify, making dynamic and automatic production orchestration difficult. Also, the

ASML modeling tool was not implemented and is considered future work. As assembly sequences

are modeled without specifying particular resources, and then different scheduling scenarios are
tested, this is one way to create resource-agnostic production process models and their scheduling.

We also aim to create resource-agnostic production process models, but semantically richer in order

to be used by an orchestrator to automatically match resources with process steps and schedule their

allocation automatically. Additionally, an orchestrator should also be able to add production
logistics steps, including the material flow in a facility, and configuration process steps when

needed.

Since manufacturing systems aim to be flexible, reacting quickly to customer changes, Keddis
et al. [65] proposed a DSL for production workflows to address such needs. The authors stated that

flexibility could be increased by separating process descriptions from production systems. Thus,

production process descriptions should not be based on available resources. Instead, a generic
description of processes should be defined once and reused with different factory setups. The goal

of creating such a language is to use workflows in automated planning and scheduling systems to

determine which resources are to execute process steps. This allocation of resources needs to be

done automatically without user intervention. The authors implemented a meta-model of the
language by using EMF. Therefore, production process models are machine-readable, making it

possible to execute such models in the future, but this has not yet been implemented. Process steps

do not include resource-related information but only process operations, input and output products,
and materials. Besides sequence, parallelism, and decision workflows, the language also supports

an arbitrary order of process steps. The error handling modeling concept is considered a future

work. Similar to the language and approach presented by Keddis et al., we also plan to create generic

process descriptions, by using different detail levels to separate resource-agnostic from resource-
aware production process models. However, besides creating resource-agnostic process models as

generic process descriptions, we also plan to separate storage, and transportation and configuration

process steps from such models.

62 State-of-the-Art

To overcome the usual lack of the material flow modeling concept, Lütjen and Rippel [66]
proposed the GRAphical MOdeling and Simulation-based Analysis (GRAMOSA) integrated

approach. GRAMOSA is a novel material flow-oriented production process modeling language that

is used to transform factory data models into executable simulation models. The authors

implemented an automatic generation of executable simulation models from factory data models to
reduce the time and errors of manual transformation. GRAMOSA uses symbols from UML class

diagrams but has a profiled UML notation instead of a regular UML one. Processes can be specified

in sequence or parallel, but operations can only be specified in a linear sequence. Materials,
products, and storage can be specified, thus creating a material flow. However, as the authors stated

in the paper, the material flow-oriented approach is complex [66].

Since there is a need for clear and accurate manufacturing process information modeling, Yang
et al. [67] proposed a four-layer framework based on meta-modeling, and extended it two years

later [68]. The framework is formally defined, providing a systematic and standardized method for

manufacturing process information modeling at the process planning stage. The framework is based

on UML and has four layers: meta-meta-model, meta-model, model, and data layer. As the
framework is constructed via UML, the meta-meta-model is represented by the OMG's MOF

modeling infrastructure. The authors presented the meta-model named Manufacturing Process

Information MetaModel (MPIMM) to create models independent of specific products and processes
with a wide range of applications. Based on the MPIMM and the UML profile extension

mechanism, models named Manufacturing Process Information Models (MPIMs) can be created,

thus specifying concepts closer to the specific manufacturing domain. With the MDA principles,
MPIM can be transformed into specific data models. Process steps can be fully modeled using the

framework, and for each step, different resources may be specified that have the same or similar

capabilities needed to execute an operation. Therefore, there is no mention of separating production

system details from production process models. Also, the framework does not support modeling

collaboration between humans and robots [62], and the material flow modeling concept is missing.

To support rapid semi-automatic system design, reconfiguration, and auto-configuration of

heterogeneous multi-vendor production systems, Järvenpää et al. [69] presented Manufacturing
Resource Capability Ontology (MaRCO). The proposed ontology is formally based on Web

Ontology Language (OWL) [223], a semantic markup language for publishing and sharing

ontologies on the World Wide Web (WWW). Resource vendors may use MaRCO to describe

offered capabilities, while end-users may use it to identify resource candidates for a specific
production. The presented ontology is used to formally model the capabilities of manufacturing

resources in a vendor-independent manner. MaRCO aims to allow automatic matching and suggests

appropriate resources for specific product requirements. By using the ontology, products, process
steps to create products, resources, and their set of capabilities can be modeled, as well as

matchmaking between process step required functionalities and resource capabilities, i.e., provided

functionalities. The authors presented the Device Blueprint modeling concept representing types of
devices with nominal capabilities. As nominal capabilities and parameters may change during the

usage of resources, there are actual capabilities modeled for individual devices that can refer to a

Device Blueprint. By introducing Device Blueprint and nominal capabilities, the independence of

production system details may be partially achieved. Process variations may be represented through
combined capabilities with the OR operator that may be modeled to represent different variations

of similar capabilities, but product variations are not described. The authors created a capability

catalog, defining a pool of generic capabilities and parameters that are assigned to resources with
resource-specific parameter values. We also consider creating the capability repository, as

capabilities are not standardized yet. Therefore, process designers could use capabilities and

parameters from the repository when specifying production processes. Otherwise, process designers
may use synonyms or slang for the names of capabilities and parameters, or they can misspell the

name unintentionally. All these scenarios lead to the inability of matching process steps and

resources by an orchestrator.

Cramer et al. [70] established the Meta-Model for Production Data (MMPD) for efficient data
integration with multi-step production processes, as usually, meta-information about processes is

State-of-the-Art 63

missing. Creating data-driven models may be used to predict the occurrence of defects in
production, which is called Predictive Quality (PQ). MMPD is a product-centric meta-model that

can be used to specify production data for automated PQ methods. The language contains modeling

concepts, such as products, process steps, machines, tools, and human workers. A process flow

determines a sequence of atomic process steps, meaning even changing a machine tool should be
represented as a new process step. However, MMPD does not support modeling concepts such as

material and message flows. It would be hard to execute MMPD models due to the lack of details,

and such models depend on a specific production system, making the modeling difficult for users.
We also plan to model production processes consisting of atomic process steps in order to allow the

orchestration of each production process step, and not the high-level orchestration. For example, if

a gripper needs to be changed or a robot needs to determine its position, these are all considered

distinct process steps.

Brunoe et al. [71] proposed an approach and a meta-model for modeling components,

processes, equipment, and their relationships. The approach is called an Integrated Product-Process

Modeling Approach (IPPMA), aiming to contribute to increasing manufacturing changeability. The
product-process modeling approach is based on the modeling of products and processes at two

distinct levels:

• generic level – forms a company-specific ontology of components and processes; and

• specific level – based on the generic ontology, specific components and processes in a

company are described.

A generic level is introduced, so that specific components and processes are always described

using the same attributes and relationships between them. However, production system details are

not separated from product-process models. The approach does not include a sequence of
operations, implying that it does not support automated routing. It is only possible to assign

operations needed to produce a component. Also, the approach was not validated in the industry

[71]. Differing from the abstraction levels presented in this approach, we aim to create detail levels

to separate equipment, i.e., smart resources, devices, and storage, from production process models,

alongside the configuration of the equipment and production logistics.

Qiao et al. [73] presented a manufacturing process information modeling method based on

Process Specification Language (PSL) with its extensions related to activities, materials, and
resources. PSL is an interchange format used in various manufacturing application systems, such

as process modeling, process planning, scheduling, simulation, workflow, project management, and

business process re-engineering [72]. The language aims to exchange process information

automatically between such manufacturing application systems by transforming their native format
into PSL. It was created by National Institute of Standards and Technology (NIST) [224] with the

goal to make a standard language with formal semantic definitions to serve as an integration format

between different process-related application systems throughout the manufacturing life cycle. The
authors [73] extended PSL version 2.5 to create a generic representation of manufacturing process

information. The language can represent activities, materials, and resources, with different

relationships between such concepts. One activity may be assigned to multiple resource options in
a process plan, as different resources may perform such a manufacturing task, but only one will

perform it during the process execution. A situation where several resources may be used to execute

a single activity can also be modeled. In addition, there is a possibility to create resource sets that

may substitute each other, as using one resource leads to using other specific resources. Therefore,
these kinds of relationships can be used to create process models that are partially independent of

specific resources, but there are still relations to resources from process models. As PSL models

are machine-interpretable, they can be exchanged and understood by different application systems.

However, certain modeling concepts are missing, such as storage, message flow, and error handling.

Witsch and Vogel-Heuser [74] presented Manufacturing Execution System Modeling

Language (MES-ML), whose purpose is to specify MES through different views so that the model

complexity can be reduced. MES-ML is based on BPMN and covers the modeling of:

• a technical system, i.e., the technological structure of a plant;

64 State-of-the-Art

• production processes; and

• MES/IT functions.

Integration of these three views is done with an MES-ML linking model. By using links, it is
possible to connect process steps with production system elements, i.e., smart resources, that will

execute the steps. However, such links create a dependency between production process models

and a production system. Due to this dependency, a process designer must take care of connecting

process steps with production system elements during the production process modeling. Such a task
makes the production process modeling more complex and could lead to a higher number of created

errors during the modeling and higher model complexity. The models could be independent if MES

is not implemented for the existing plant but is projected in the early engineering phases – there are
process steps that are not yet linked to the technical system. MES-ML is used for specification,

standardization, testing, and documentation of the MES software, but the automatic execution of

the models would be hard to achieve. In the presented approach, links to connect process steps and
resources need to be defined manually. To avoid connecting process steps and resources manually,

we aim to utilize skill-based engineering in production process modeling and use an orchestrator to

automatically assign process steps to resources and add storage, and transportation and

configuration steps.

According to Weißenberger et al. [75], MES-ML does not support the creation of generic

production process specifications as the semantics of process tasks are insufficiently specified, and

process models are not suitable for code generation. MES-ML models are used as human-readable
text-based MES specifications. To enable the modeling of machine-usable MES specifications

suitable for code generation, the authors implemented a DSML by extending MES-ML. This new

language aims to enable higher independence of production process models from a production
system during the process modeling. Instead of the link used to connect a process step with a

resource of a production system, the authors proposed a list of links to be used for each process

step. At runtime, resources that execute process steps will be determined. However, the dependency

between process steps and production system resources remains, and it is ambiguous which
resources will execute process steps until the runtime. Therefore, process steps are not entirely

independent as they have direct links to the resources of a production system. Such a way to achieve

independence is similar to resource options and resource sets presented by Qiao et al. [73] when
modeling production processes using PSL. Instead of manually specifying a list of links that connect

a process step with resource candidates that may execute the step, we plan to connect process steps

and resources through required and offered capabilities. Thus, we plan to provide the independence

of a production process model from a specific production system.

As an MDE approach for the food and beverage industry domain has not been established for

MES, Chen et al. [76] extended MES-ML further to use it in such a domain. The authors focused

on specifying modeling elements of MES functions that would enable the automatic transformation
of models into operational MES. The MES-ML language [74] and its previous extensions [75] are

further extended with energy consumption and overall equipment effectiveness concepts, as the

food and beverage industry creates a product for human consumption, requiring high quality and
safety standards. The authors applied their approach in the beer brewing context by adding domain-

specific elements to the existing meta-model. However, the authors have not yet implemented a

transformation tool from MES specifications to operational MES solutions.

Afterward, Chen et al. [77] applied the approach in two additional use cases in the processing
and packaging areas of the food and beverage industry to prove its usability. The authors also

presented generated graphical user interfaces from MES-ML models. By using such an MDE

approach, MES customizations do not depend on high programming efforts but on domain-specific

modeling, which is more suitable for MES users.

Considering manufacturing processes' sustainability or energy consumption, Lee et al. [78]

proposed the Green information-based Manufacturing Process Modeling (GMPM) methodology to
support the design of MES functions. The authors also presented a procedure for extracting

functional requirements from GMPM models and mapping them to standardized MES functions.

State-of-the-Art 65

The methodology can be used to effectively design and introduce MES by recommending proper
MES functions based on information gathered from manufacturing process models. GMPM is

designed to include detailed activity information and green information, i.e., manufacturing

processes' sustainability or energy consumption information. It can be used to model process flows,

activities, and energy consumption simultaneously. However, GMPM cannot be used to model

concepts such as material flow, message flow, and error handling.

Lee et al. [79,80] also created the Part-flow based Manufacturing Process Modeling (PMPM)

language to express a process flow and a part flow at the same time. This language has similar
modeling concepts to the GMPM language created by the same authors. The authors used PMPM

in their conceptual framework for the Process Model-based Human-Robot Collaboration (PM-

HRC) system. The system is used for human-robot collaboration in a semi-automation process of
electric motor production [79]. In such a process, a robot assists a human worker during material

handling. As a human worker does not know in advance what part type a robot has picked, there is

a delay when the human worker receives the part as it needs to be identified. Therefore, the authors

applied the AR technology worn by human workers to identify parts in such collaborative
operations. The technology is used to visualize process workflow during the execution and part

information modeled with the PMPM language.

In their subsequent paper [80], Lee et al. also used the PM-HRC system so they could respond
to changes in customer demands and process plans through a collaboration of human workers and

robots. PM-HRC is based on MDE principles and can be used to automatically transform PMPM

models into BOMs, assembly instructions for workers, control codes for cobots, and PN verification
models. Assembly instructions are sent via mobile devices to human workers. Control codes are

sent to cobots and are verified through automatically generated PN models. PMPM is based on the

PPR concept. Therefore, operations, products, and resources can be modeled. By using PMPM,

tasks performed by automated machines and collaborative works of robots and human workers can
be modeled. However, a human-robot collaboration is achieved through modeled process steps and

the usage of AR devices during a part handover at an assembly workstation. A message exchange

between process steps or resources cannot be modeled. Input and output parts of each task can be
modeled, as well as a part flow through process steps, but the storage modeling concept is missing.

Additionally, as operations and parameters of control codes are not synchronized when activity or

part flows change, manual debugging and manual parameter synchronization are necessary [80].

Compared with the authors' approach, we also plan to use code generators and predefined templates

to generate various manufacturing documentation, but also instructions to execute process steps.

VDI/VDE 3682 [81,82] is a standard for formal process descriptions created by the

Association of German Engineers and the Association for Electrical, Electronic & Information
Technologies, VDI/VDE (German: Verein Deutscher Ingenieure/Verband der Elektrotechnik

Elektronik und Informationstechnik) Society for Measurement and Automatic Control (German:

VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik, GMA). Currently, there are two parts
of this standard: (i) Concept and graphic representation [81]; and (ii) Information model [82]. The

other three parts are still in preparation: (i) XML representation; (ii) Application in process industry;

and (iii) Application in the manufacturing industry. The standard aims to apply formalized process

descriptions in technical and non-technical processes, continuous, batch and discrete processes, and
in different manufacturing domains. Requirements are specified in this standard, and thus a process

description should be:

• simple;

• neutral as regards the branch of industry;

• easily understandable for all the functional areas involved; and

• usable throughout the life cycle of the system.

Regarding the requirements described in the VDI/VDE 3682 standard, the DSML we propose
also aims to fulfill those requirements. In addition, it is mentioned in the standard that having a

formalized process description creates a basis for:

• checking the quality of processes and products;

66 State-of-the-Art

• analyzing different metrics;

• simulating, validating, and verifying process models; and

• easily importing/exporting information with computer aided systems.

These are some of the reasons why we also propose a formal description of production
processes. When using the VDI/VDE 3682 standard, a process is represented graphically with

symbols only, and additional information, such as attribute values, is added afterward. These

symbols are visually simple, and there are only a few different symbol types, as one of the aims of

the standard's language is to be easily used by users unfamiliar with IT. Production process models
are created using states and process operators connected via directed links. States can represent a

product, energy, or information, and they are changed by process operators with the help of

technical resources, i.e., assets. Connecting products and process operators creates a sequence of
process steps. The standard uses separate flows between process operators and states to represent

process alternatives or partially shared flows between them to represent parallelism. It does not

include additional modeling concepts to represent different control flow types. Therefore,
separating and sharing flows could make the process model harder to read, but the idea of not

creating additional modeling concepts is justified. Process variations can be modeled using

alternative processes, but there is no information on distinguishing decision flows and variations

since there is only the alternative process flow concept. Also, by using the standard, alternative
products can be specified. As for the material flow modeling concept, there is no mention of storage

and locations, but the technical resource modeling concept could probably be used to represent

storage, and process operators could be used to represent activities of transporting materials. The
standard covers different production process modeling concepts, but machines could hardly process

this kind of process representation, especially as PPR constraints are hard to model [83,84].

Meixner et al. [83] proposed a DSL to model and evaluate PPR concepts and constraints
between them. The authors analyzed the VDI/VDE 3682 standard used for visual PPR modeling in

the basic planning phase. They used the standard and part of its extensions as a base for their

language and extended it to create a new textual DSL – PPR DSL. The proposed DSL is used for

modeling PPR and constraints between them, whose models should be readable by domain experts
and processable by machines. The authors also introduced three requirements for the representation

of PPR constraints in CPPS engineering:

• expressiveness of the PPR concepts – the language should support products, processes, and

resources; relationships between them to model process alternatives; and constraints
between PPR;

• computer processability – the language should be readable by a computer, processable for

verification and evaluation, and easy to exchange between platforms; and

• usability and usefulness – the language should be usable by and useful for domain experts.

By usability, the authors mean the language is easy to understand, learn and apply, and by
usefulness, they mean the language should provide benefits that exceed the effort to use it.

Meixner et al. focused on the first requirement in this paper and left other requirements for

future research. The PPR DSL tool implementation is considered a future work as well. Regarding

the DSML we propose to create, we also aim to fulfill such requirements by:

• supporting the production process modeling concepts, such as products, process steps,
resources, relationships, and constraints;

• creating the abstract syntax – a formal approach to specify production process models that

can be processable by computers and machines; and

• creating such a concrete syntax that can be easily used by domain experts and by evaluating

the language's usability and usefulness with different user groups.

A year after, Meixner et al. [84] presented a meta-model of the PPR DSL, which is built on

the VDI/VDE 3682 standard and its extensions. As VDI/VDE 3682 process models are not

machine-readable and insufficiently formally defined, the PPR DSL aims to formalize PPR models.

Therefore, the language can specify PPR aspects – products, processes, resources, attributes,

State-of-the-Art 67

relationships, and constraints. The assembly sequence concept can be used to form a production
sequence, but there is no mention of other control flow patterns. PPR aspects can be abstractly

specified with high-level attributes so they can be reused and instantiated in a process model.

Attributes can be specified at the beginning of the textual model, and afterward, they can be used

and reused in PPR concepts. As PPR DSL models are machine-readable, the authors implemented
parsers to map the PPR DSL constraint modeling concept into Structured Query Language (SQL)

queries. They observed whether constraints are violated by executing generated SQL queries in a

relational database. Thus, the authors aimed to evaluate the language by using a technology
frequently applied in industry. The presented design of PPR DSL does not cover all the modeling

concepts covered by the VDI/VDE 3682 standard. However, the advantage of PPR DSL in

comparison to VDI/VDE 3682 is that PPR DSL supports the constraint modeling concept.

A Digital Process Twin (DPT) is a type of digital twin related to manufacturing processes.

Such a digital twin aims to optimize a manufacturing process, thus producing optimal products and

energy consumption and fulfilling certain quality requirements. Caesar et al. [85] presented an

information model of DPT for machining processes. The information model describes the properties
and relationships of relevant data needed to perform a processing task. Both planning and

processing, i.e., execution data, can be used for process analysis and optimization. The proposed

information model is based on the VDI/VDE 3682 standard, which is extended to support
machining operations. According to the presented information model, a detailed specification of

processes, materials, products, resources, tools, parameters, and constraints can be achieved. The

information model has process steps specified in detail, but other modeling concepts are not

considered in this approach, such as the control flow, material flow, and message flow.

Most workflow languages lack the expressiveness and flexibility to model CPS processes.

Therefore, Seiger et al. [86] introduced a novel DSML – an object-oriented workflow language for

formalizing processes in heterogeneous and dynamic environments, enabling a hierarchical
composition of processes and process variations. The language can be used to model process steps

and service calls at the type level, i.e., a service type should be invoked, not a specific service. Thus,

concrete services or devices that will execute process steps do not need to be known during process
modeling. Accordingly, the authors aimed to separate a specific production system from a process

model, as process models may be used in different non-distributed or distributed environments.

Also, resources to execute activities can be specified at both the instance level and the type level,

and it may be a device, a service, or a human worker. Specifying a resource type supports the
authors' future goal – to enable distributed process execution across many ubiquitous systems with

different devices. However, to execute such process models, information about service names,

server Internet Protocol (IP) addresses, HTTP methods, and configuration files need to be specified
inside process steps. The authors created the language and the modeling tool using EMF and

Graphiti [225]. As process models are stored in the XML Metadata Interchange (XMI) format, they

can be used for process execution and monitoring. Thus, the authors plan to develop a process
repository and a process engine for distributed execution of process models. However, this language

does not cover modeling concepts such as material and message flows.

The matching of production resources with production processes needed for creating a product

is usually done manually. Brovkina and Riedel [87] proposed a meta-model for CPS, which
provides high-granularity skill descriptions that, when combined with the manufacturing process

descriptions, allow for automating the matching of process steps with resources. The skill-based

CPS meta-model is designed to model skills, primarily for the assembly industry.

Brovkina and Riedel [88] then presented a data model and an automated system for the design

of assembly lines based on the Model-Based System Engineering (MBSE) principles. Their solution

aims to improve resource selection for an assembly line design, defining which skills are needed to
create a product, which resources have such skills, and which transport elements are connecting

resources. The presented system uses a graph-based description, specifying assembly sequences

with products and capabilities. There are also abstract storage and sources that can be matched with

equipment having a storage skill. The presented graph-based model example of assembly sequences
seems complex, with many nodes and relationships between them. Also, a node can represent any

68 State-of-the-Art

of the modeling concepts, and they are all represented as a circle but with different colors, which

can be hard to read, especially for someone who has difficulties distinguishing colors.

Afterward, Brovkina and Riedel [89] presented a data model for skill definitions of

heterogeneous machines, focusing on standardizing a capability representation. The data model is

abstracted to define a generic assembly process model. Usually, assembly process models are
specified using flow charts and diagrams or using the same data model applied for skill definitions,

allowing automated matching between resources and process steps. However, a common issue is

when having different machines that can perform a process step in different ways, leading to the
specification of multiple models for the same process. Therefore, an abstract process model is

needed in which process steps can be matched with different machine skills. Creating such an

abstract assembly process model and matching it with the skills of resources is the primary goal of
the presented data model. However, the presented data model does not cover modeling concepts,

such as the material and message flows. The authors also defined four requirements for process

descriptions:

• abstraction – a process model is an abstract description of required skills;

• machine-independence – a process model is not attached to any specific machine;

• product-derivability – a process model includes product-relevant parameters that can be

derived from a product description; and

• standardization – a process model is a formal description of a process or is based on existing
standards.

The DSML we propose also aims to fulfill these requirements as:

• a production process model should be composed of process steps that contain abstract

capabilities;

• resource-agnostic production process models and their process steps should not contain any
specific resources that are to execute such process steps;

• process steps should contain products with their set of constraints, which can be extracted

from a product description, but such automatic extraction from a product description is

considered as future work; and

• production process models should be formally specified through the defined meta-model
of the language.

As DSLs for CPPS are not much focused on production-specific details, and process-specific

information from Asset Administration Shell (AAS) has not been integrated with DSL tools so far,

Lehnert et al. [90] proposed a new service-oriented hierarchical DSL for CPPS automation software
design. The language contains elements and rules for modeling service-oriented process tasks,

including information from AAS. This DSL consists of four layers with different abstraction levels

and degrees of detail in models. These layers allow different users, such as process and software
engineers, to work together during the software development process. The AAS contains process

parameters, such as material properties, configurations, and control parameters, and it is used and

integrated within the DSL for parametrization purposes. Thus, program code can be generated using
a code generator leading to the executable services. The authors stated that sequential process steps

could be created, but other control flow patterns are not mentioned. Information about materials

and plant properties can be specified, thus making it possible to specify process steps fully. Similar

to the presented multi-abstraction level approach, we also plan to utilize multiple modeling layers
and levels of detail in order to make the process modeling easier and to include different users when

specifying process models. In addition, as the authors integrated AAS with the DSL, similarly, we

plan to use a capability repository integrated with a modeling tool associated with the DSML we
propose, so that process designers can choose capabilities and appropriate parameters when creating

production process models.

Gamboa Quintanilla et al. [91] proposed a framework for customizable product-process

specifications based on Manufacturing Services (MServices) in Holonic Manufacturing Systems
(HMSs), suitable for product-driven applications. As services were initially built for web

State-of-the-Art 69

applications and needed a new model to be applied in the manufacturing domain, the authors
proposed the usage of a new information model based on the design principles of Service-Oriented

Architectures (SOAs). Manufacturing processes are formed by defining relations between the

composing MServices. Process steps are represented by MServices that are executed by one or

several resources, and they can be reused in multiple processes, as they are independent of a
production system. Resources offer a collection of MServices, while process steps request them.

Service providers and service requests are matched through MServices, similar to what can be done

with skill-based engineering, matching skills requested by process steps and skills offered by
resources. However, there is no mention of separating resources from process models in the

proposed framework, and resources are equipped with all the information needed to execute

operations. The authors did not discuss an invocation of MServices in the framework, but the

services could probably be executed like any other.

Indamutsa et al. [92] proposed a Low-Code Development Platform (LCDP) to support the

planning, development, and execution of model-management workflows of complex systems. The

proposed platform aims to support developers not to manage low-level details, such as discovery,
orchestration, and integration of model management services needed to develop a process. LCDP

is an event-driven platform based on trigger-action programming that supports high-level

abstraction and automation of model management services offered by different providers. By using
a DSL, a user can programmatically specify complex expressions of the workflow, and by using a

graphical modeling tool, it is possible to model nodes that represent microservices orchestrated

when a workflow is executed. A workflow represented in the XML or JavaScript Object Notation
(JSON) format can be transformed and executed by an engine. However, in the context of

production process modeling, the language does not support modeling concepts such as the material

and message flows. Also, LCDP does not have a mechanism to check the terminology used for

naming workflow tasks. We plan to cope with such an issue by using a capability repository when

modeling production process steps.

Languages created to support the production process or production system modeling cover

various aspects of production. They are mainly created to be specific for a particular manufacturing
domain, i.e., they can be classified as DSMLs. Nearly all the presented languages allow the

specification of production steps, operations or capabilities, and the production flow. However, they

usually specify production processes at a high abstraction level. Therefore, the execution details, or

how to perform process steps, are usually omitted, and thus models cannot be used for the automatic
execution or resource instruction generation. Even if some execution details are included in

production process models, they depend on a specific production system.

4.2.3 Discussion on Production Process Modeling

In this section, we analyze the literature found and presented in detail in Section 4.2.2 and discuss
answers to the research questions formulated in the same section. As part of the answers to the

research questions, we also present the investigated languages and approaches and their fulfillment

of the requirements presented in Section 4.2.1, as well as the directions for future development of

DSMLs for the production process modeling domain.

RQ1: In which areas process modeling languages have been applied, and which concerns do they

address? Process modeling languages are mostly used in the domains of MES, IoT, CPS/CPPS,

and for production process modeling in general, covering various aspects in such domains. The
researchers utilized process modeling languages to create models that would be used for simulation,

execution, monitoring, comparison and evaluation of process performances, and for documentation

purposes.

Various languages utilize the PPR concept, as products, process operations, and resources are

essential concepts a production process modeling language needs to have. Recently, researchers are

trying to integrate skill-based engineering with production process modeling, as it allows the

specification of production processes independently of a specific production system, yet production

70 State-of-the-Art

process models can be matched with resources of a chosen system when needed through required
and offered skills or capabilities. Also, the MD paradigm is applied nowadays in production process

modeling, allowing the transformation of production process models into code used for simulation

or execution purposes, documentation of various types, or models of different types.

Most applied languages support modeling concepts such as process operations, control flows,
and sub-processes but lack support for material flow or collaboration between resources. This lack

of support motivated researchers to create novel modeling concepts for existing languages or to

create entirely new languages to support these missing concepts. In addition, as flexible production
is gaining much attention recently, novel modeling concepts are created to support the modeling of

product and process variations. The Health, Safety, and Environment (HSE) management and

energy consumption modeling concepts are also researched and applied in a few languages, as
human physical risk factors, safety, and energy consumption are particularly considered in Industry

4.0. As for the production process domain coverage, many languages are applied in discrete

production, especially in the assembly industry, but languages are also applied in the process

industry.

RQ2: What are the related languages and approaches used for production process modeling? We

have found many languages, approaches, and methods applied in the manufacturing domain, as

presented in Table 4.3, and discussed in detail in Section 4.2.2. Researchers have either applied
existing languages in their original form, extended them, or created novel languages from scratch

to enable production process modeling. Some researchers have applied a combined approach by

using different languages to cover various concepts of production process modeling, as such a
domain is complex. Therefore, various production process aspects are modeled using different

languages. However, this approach requires knowledge from process designers to apply multiple

modeling languages, which can be burdensome.

Traditional methods to specify production processes usually lack certain modeling concepts
needed for the automatic generation of instructions. Also, such methods are usually not formally

defined. They are mostly presented as tables, spreadsheets, arbitrary text, or flow charts with

graphical symbols only and without formal semantics, making it hard to transform such

specifications into executable instructions.

We also analyzed different process modeling languages that are not primarily created for the

manufacturing domain but the business domain or the process modeling in general, and thus they

cannot be used to specify all the production details. Researchers have used and extended such
languages to cover certain aspects of production process modeling and usually not all the details

required for process execution. Due to the complexity of production process modeling, many

different extensions would need to be used to specify models that are suitable for execution or
automatic instruction generation. Such a language would be hard to use by process designers as it

has its base modeling concepts that are not tailored for the manufacturing domain. Even if process

designers are trained to model production processes using these languages, none of the language
concepts are conceptually familiar to them. Therefore, they would need to invest a lot of time and

effort in learning to use any of these languages and their modeling tools. Difficulties in learning to

use a modeling tool that supports one of these languages are not caused by the complexity of the

domain but by the complexity of the modeling language and the tool. Accordingly, if the languages
are extended to support production process modeling concepts they are missing, these languages

are still not tailored for such a domain. As too many extensions need to be created, it would be

better to create a novel language from scratch, adapting it for the production process modeling

domain.

Therefore, to solve this issue, some researchers created domain-specific process modeling

languages for the manufacturing domain. However, process modeling languages created for the
manufacturing domain usually specify production processes at a high abstraction level. Thus, the

execution details are not included, and even if some execution details are included, process models

are dependent on a production system. Accordingly, such resource-aware process models cannot

State-of-the-Art 71

be used in various production systems, and process designers need to put much effort into specifying

such process models that are dependent on a production system, covering all the execution details.

RQ3: Which languages and approaches are most frequently used and extended for the production

domain? According to the reviewed literature, BPMN, UML, PN, MES-ML, and VDI/VDE 3682

are usually extended or used as a base for other languages. BPMN is the most extended language,
with numerous extensions and applications in the context of production process modeling. It has

many extensions created in the production domain, and if they are used together, many of the

presented requirements could be fulfilled. However, too many extensions would need to be applied
simultaneously to specify instruction-generation-ready production process models fully. The

researchers mostly extended BPMN so that production process models could be integrated with

currently used enterprise systems and together be specified with business process details. MES-ML
has been developed for years and influenced researchers to extend it multiple times. Recently, the

VDI/VDE 3682 standard has gained attention from different researchers and has been extended or

used as a base for different languages.

RQ4: To what degree are identified requirements (c.f. Section 4.2.1) fulfilled by languages and
approaches? A comparative analysis of the reviewed languages and approaches with the specified

requirements is presented in Table 4.4. Each cell is filled with both a character and a shading pattern.

The character represents whether a language supports the requirement fully – Y (Yes), partially –
P (Partially), or does not support it at all – N (No). The shading pattern represents the language's

main advantages (horizontal strips) or disadvantages (vertical strips). To distinguish between

different extensions of the same language, the name of the first author of the extension is presented
in parentheses. At the bottom of the table, a percentage of languages and approaches fulfilling each

requirement is presented.

In the following text, we discuss the fulfillment of the requirements presented in Table 4.4:

• R1 (process step): this requirement is the only one that is at least partially covered by each

of the presented languages. Each language has a modeling concept, such as a process step,
an operation, a skill, or a capability. Product and resource modeling concepts are not always

covered. Even if products, resources, and capabilities are covered, only some languages

(21.15%) cover such concepts' attributes, constraints, and parameters. Usually, attributes
are not covered as products, resources, or operations are presented with graphical symbols

only, without additional semantics.

• R2 (control flow): most languages (92.31%) cover at least a sequence of process steps.

Parallelism, decision, or iteration control flow patterns are not supported by all the reviewed

languages, as they usually cover only a sequence of steps, because most of the processes
are sequential in mass production. However, due to the increased flexibility of processes

and a need to change process step execution in runtime, control flow patterns, such as

parallelism, decision, and iteration are required and covered by many existing process
modeling languages (65.39%).

• R3 (material flow): the material flow modeling concept is fully covered only by a few

reviewed languages (5.77%). Such a modeling concept is usually not considered at all by

languages (69.23%), and some languages are created especially to model material flows,
as it is essential to know whether a product needs to be retrieved from storage or is a result

of a previous step. As for the partial coverage of such modeling concepts (25.00%), some

languages lack a connection between products, or the storage modeling concept is missing.

• R4 (message flow): more than half of the reviewed languages (53.85%) do not cover

collaboration of process steps or resources. However, in recent years, especially in the
context of Industry 4.0, a collaboration between resources, particularly a human-machine

collaboration, is covered by languages. Therefore, the collaboration or message flow

modeling concept will be needed to fully model and perform production processes in the
Industry 4.0 environment. Most reviewed languages that cover such a modeling concept

are based on BPMN.

72 State-of-the-Art

• R5 (unordered steps): this requirement does not have partial fulfillment, as a set of

unordered steps is a simple modeling concept. Only some reviewed languages support such
a modeling concept (25.00%), most of which are based on BPMN. The concept is not

crucial for production process modeling but has different applications whenever the order

of process step execution is not important. Therefore, it allows workers to discover the

optimal order of process steps to execute, if there is one, and thus improve process
execution.

• R6 (product and process variations): product and process variations are the modeling

concepts that are the most unsupported in the reviewed languages (90.39%). These

modeling concepts have a special role in the Industry 4.0 context, as production flexibility
implies multiple product and process variations. Such variations need to be formally

specified as they will be part of dynamic orchestration and production. The VDI/VDE 3682

standard presents product and process variations and will probably influence the further
development of languages.

• R7 (sub-process): similar to the unordered steps modeling concept, this requirement does

not have partial fulfillment due to the simplicity of the modeling concept. Many process

modeling languages support the sub-process modeling concept (61.54%) as it is essential

in reducing the diagram's complexity, increasing the reusability of processes, and
decreasing the redundancy of model elements.

• R8 (error handler): more than half of the reviewed languages (57.69%) do not support

error handling in production processes. Without such a modeling concept, production

process models can be orchestrated and executed, but if an error occurs during production,
an execution system does not have formally defined corrective steps to repair the

consequences of the error. Consequently, this would increase costs during production as it

will be stopped until a production expert arrives to solve the issue. Most of the reviewed
languages that cover such a modeling concept are based on BPMN.

• R9 (executable or suitable for automatic instruction generation): many languages are

created to model production processes for the planning phase or documentation purposes

only. Therefore, they are not suitable for execution or automatic instruction generation

(69.23%). In recent years, machine-readable models have been created as MD principles
are applied and formal languages are developed. Human workers perform the execution of

process models by sending them a textual description of each process step. These kinds of

instructions are informal. However, a formal specification of process steps is required to
send instructions to machines and robots, or specific instructions or services need to be

added to process steps. Most languages that support the execution of process models

integrate service information into process models.

• R10 (production system independence): the independence of production process models
from a specific production system is still not fully supported by the reviewed languages.

Most languages do not support such independence (71.15%), and some support it partially

(28.85%). Production system details are required to create process models suitable for

automatic execution or instruction generation. Such required details make it hard for
process designers to create process models and make these models not usable in different

production systems. Therefore, some languages apply different abstraction levels of

modeling concepts, modeling layers, or services on different levels. Researchers usually
create independence from production resources by creating sets of resources that can

execute process steps, links to specific production systems, or capability-based process

models. However, production logistics, transportation steps, specific storage, and steps to

configure machines are not part of such production process independence. Languages
should also consider these concepts to create an independent production process model.

S
tate-o

f-th
e-A

rt 7
3

Table 4.4. A comparison of process modeling languages.

Language R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Traditional ways to specify production processes

BOM [24] P N [34,35] P N N N N N N N

BOO [24] P P N N N N N N N N

BOMO [24] P P P N N N N N N N

ASME FPC [25] P Y P N N N N N N N

FMEA/PFMEA [27–29] P N N N N N N Y N N

Process modeling languages that are not primarily created for the production process modeling and their extensions

BPMN [30] P [39] Y N Y Y N [86] Y Y N N

BPMN ext. (Zor) [31] P Y N Y Y N Y Y N N

BPMN ext. (Zor) [32] P Y N Y Y N Y Y N N [65]

BPMN ext. (Polderdijk) [33] P Y N Y Y N Y Y N N

BPMN ext. (Ahn) [34,35] P P N N N N N N P N

BPMN ext. (Abouzid) [36] P Y N Y Y N Y Y N N

BPMN ext. (Michalik) [37] P Y N Y Y N Y Y N N

BPMN4CPS [38] P Y N Y Y N Y Y N [42] N

BPMN ext. (Bocciarelli) [39] P Y N Y Y N Y Y N N

BPMN ext. (Meyer) [40,41] P Y N Y Y N Y Y N [42] N

BPMN ext. (Schönig) [42] P Y N Y Y N Y Y Y N

UML AD [43] P Y P P N N Y Y N N

SysML AD [44,45] P Y P P N N Y Y N N

PN [46,47] P Y N N N N N N N N

PN and PN-like models [48] P Y N N N N N N P P

Object PN [49,50] P Y Y N N N N N N N

IDEF3 [51,52] P [73] Y P N N N Y N N N

EPC [53] P Y N N N N N N N N

S-BPM [54–56] P Y N Y N N Y Y N P

CT [57] P P P N N N N N N N

A combination of different modeling languages used to model production processes

GSMSPP [58] P Y P P N N Y P P N

PBM for ship block assembly
planning [59]

P Y P N N N Y N N N

7
4

 S
tate-o

f-th
e-A

rt

Language R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

IAPMM [60] P Y N Y Y N Y Y N [42] N

I4PML [61] P Y N Y Y N Y Y N [42] N

ADAPT [62] P P N P N P Y N N P

Modeling languages created to support production process or production system modeling

VSM [63] P P Y [31] Y [31] N N N N N [31] N

ASML [64] P Y N Y N N Y N N P

DSL for production workflows [65] P P N N Y N N N N P

GRAMOSA [66] P P Y N N N N Y P N

MPIMM/MPIM [67,68] Y Y N N N N Y N N N

MaRCO [69] Y P N N N P N N P P

MMPD [70] Y P N N N N N N N N

IPPMA [71] Y N N N N N N N N N

PSL ext. (Qiao) [73] Y Y P N N N Y N P P

MES-ML [74] P Y N Y N N Y Y N [75] P

MES-ML ext. (Weißenberger) [75] P Y N Y N N Y Y P P

MES-ML ext. (Chen) [76,77] P Y N Y N N Y Y P P

GMPM [78] P Y N N N N N N N N

PMPM [79,80] Y Y P P N N Y N P N

VDI/VDE 3682 [81,82] P [83,84] P P N N Y Y N N N

PPR DSL [83,84] Y P P N N N Y N P P

Information model of DPT [85] Y N N N N N N N N N

DSML for CPS processes [86] P Y N N N P Y N Y P

Skill-based meta-model for assembly

processes [87–89]
Y P N N N P Y N P P

Hierarchical DSL for CPPS [90] Y P N P N N Y N Y P

MService HMS [91] Y Y N N N N Y N Y P

LCDP [92] P Y N N N N N P Y N

No 0.00 % 7.69 % 69.23 % 53.85 % 75.00 % 90.39 % 38.46 % 57.69 % 69.23 % 71.15 %

Partial 78.85 % 26.92 % 25.00 % 11.54 % 0.00 % 7.69 % 0.00 % 3.85 % 21.15 % 28.85 %

Yes 21.15 % 65.39 % 5.77 % 34.61 % 25.00 % 1.92 % 61.54 % 38.46 % 9.62 % 0.00 %

State-of-the-Art 75

RQ4.1: How production process models are executed? In recent years, many researchers have
applied MD principles in their approaches supporting different aspects of production processes.

Such languages have been formally defined with a meta-model so that models could be machine-

readable and used as input to code generators or model interpreters. The code generators allow to

automatically generate human workers' instructions, machines' program code, simulations, and

manufacturing documentation.

To execute production process models, researchers usually apply their languages in SOA,

adding service information inside process models or making a language domain-specific for the
SOA domain. Integrating service information inside production process models, such as HTTP,

service name, and port makes it possible to execute such models but also creates a dependency on

a specific production system. Also, such service-integrated production process models would be
hard to orchestrate, as process steps are coupled with specific services. In addition, process

designers would struggle to create production process models with all the service information

integrated into production steps.

As for the BPMN extensions, several researchers aimed to use such models in BPM engines
and execute them, but production system details or specific services need to be added to process

models.

RQ4.2: In which way is the production system independence achieved in production process
models? Some of the researchers aimed to separate production process models from a specific

production system. There are four approaches identified in the reviewed papers:

• a process step has a set of resources that may execute it;

• a process step has a set of links that reference resources from a production system;

• a process step has a resource type, i.e., abstract resource or abstract service needed for

execution; and

• a process step has a skill or a capability needed for its execution, and there are resources
with a set of skills or capabilities they have. At runtime, a human or an intelligent system

is needed to determine which specific resources will execute each process step.

The first and second approaches still store information about production systems, the third

approach stores resource types in process models, while the fourth approach makes process models
independent of a specific production system. However, for the fourth approach, capabilities may be

arbitrarily specified by a process designer, which may be prone to errors, or a capability repository

may be created to store the available capabilities of production systems. The latter could make
process models partially dependent on the production systems under consideration, as the repository

or a dictionary contains currently available capabilities that may be used for production process

modeling. This issue could be solved in the future when capabilities and their parameters are

standardized.

The researchers also created languages to support the matching and scheduling of production

processes, as any of the four mentioned approaches requires matching process steps to specific

resources before a process model execution. Also, to create optimal execution in a production

system, the scheduling of production process execution and resources needs to be defined.

RQ4.3: Is there a language that fulfills all the identified requirements? Based on our survey, we

have not identified a modeling language capable of fulfilling all the production process modeling
requirements for dynamic production orchestration and automatic execution of production

processes, formulated in Section 4.2.1. We have found that many languages lack support for

modeling concepts, such as material flow, collaboration and message exchange between resources,

product and process variations, and error handling. These modeling concepts need additional
attention in the future by researchers if production process languages are to be applied in production,

especially in the context of Industry 4.0.

Additionally, human risk factors and safety aspects are most rarely modeled within production
processes. As for the human risk factors, they should be specified so that an intelligent system in

charge of production orchestration and execution can conclude whether a human worker or a

76 State-of-the-Art

machine should execute a production task. Also, as human-machine interaction is gaining attention,
especially in the Industry 4.0 context, the safety aspect should be considered as well. The energy

consumption and time estimations of production process execution also need special attention in

the future in order to allow the evaluation of production process execution in various production

systems, choosing the one with performances that are preferred.

As the reviewed languages do not cover all identified production process modeling concepts,

the specification of production process models with all the execution details would be hard to

achieve. Although some examined languages can be used to specify execution details, they still
incur dependency between production process models and production system details. Thus,

production process models become more complex, burdensome to model by process designers, and

hard to read by any interested parties.

Formal languages with machine-readable models should be utilized to support dynamic

production orchestration and automatic execution of production processes. However, as such

execution-ready or instruction-generation-ready production process models are coupled with a

specific production system, the independence of a production system should be achieved. This
production system independence does not only consider the independence of specific resources that

will execute process steps but also of production logistics and configuration of machines. Therefore,

based on the reviewed literature, capability-based process modeling promises the possibility of
creating production process models suitable for execution but also independent of a specific

production system. Such production process models would be used by matching and scheduling

algorithms of an intelligent system, such as an orchestrator, automatically and dynamically creating

instructions for the resources of a chosen production system.

Every conclusion discussed in this section is based on the reviewed languages. Such

conclusions may provide directions on what should be considered before creating a language whose

models are suitable for dynamic orchestration and automatic execution of production processes in

the Industry 4.0 environment.

4.3 Summary

In this section, we first discussed the research and application of the MD paradigm and DSLs in ISs
and Industry 4.0. The largest part of the state-of-the-art investigation is related to the languages and

approaches used for production process modeling. We formulated the requirements a production

process modeling language needs to fulfill in order to be used in the Industry 4.0 context and

analyzed the languages and approaches we found based on these requirements.

According to the state-of-the-art analysis and conclusions made in Section 4.2.3, and as we

could not find a modeling language that fulfills the formulated requirements, we decided to create

a novel DSML for production process modeling. It should be a formal, capability-based modeling
language whose models should be independent of any production system yet suitable to be

automatically enriched with details needed for the automatic generation of executable resource

instructions. Therefore, the DSML should allow the creation of generic production process models
suitable for dynamic production orchestration and automatic generation of resource instructions and

manufacturing documentation, unifying different production process aspects. In this way, process

designers should not need to take care of production system details during the production process

modeling, and they should be entirely focused on modeling process steps. Furthermore, it should
be possible to automatically connect process steps with smart resources at runtime without

additional load to process designers by using an orchestrator.

The design, development, application, and evaluation of the proposed DSML, named
MultiProLan, are discussed in the following sections of the rest of this thesis. The MD solution that

enables the transformation of MultiProLan resource-agnostic process models into MultiProLan

resource-aware process models and then into executable resource instructions and manufacturing

documentation is presented in the following section.

MD Solution for Modeling and Automatic Execution of Production Processes 77

5 MD Solution for Modeling and Automatic

Execution of Production Processes

To contribute to flexible and automatic production, we propose a novel MD solution for modeling

and automatic execution of production processes. Our MD solution was first proposed in [8,9] and

extended in [10,11,13,14]. This MD solution comprises two parts: the MD approach and the MD
system. The MD approach consists of several steps to convert production process models into

manufacturing documentation and executable resource instructions, executed in a digital twin and

on a shop floor. To support the proposed MD approach, our MD system consists of several
components, such as Resource Modeling Tool, Process Modeling Tool, Orchestrator, Knowledge

Base, Instruction Generator, Digital Twin, Production System, Documentation Generators, and

Documentation Storage. The research presented in this thesis focuses on Process Modeling Tool

and Instruction and Documentation Generators, as well as transformation steps from production
process models to executable resource instructions and manufacturing documentation of different

types.

A central component of the MD solution is a novel DSML for production process modeling,
named Multi-Level Production Process Modeling Language (MultiProLan). The aim of

MultiProLan is to help process designers specify production processes in a formal manner, thus

creating process models that can lead the execution of production processes and contribute to
production flexibility. The language is mainly focused on modeling discrete product manufacturing

or, to be more precise, the assembly of discrete products.

This section is structured as follows. The MD system architecture with its components is

discussed in Section 5.1, and the steps used in our MD approach are presented in Section 5.2. The
main objectives of our MD solution, MultiProLan and Process Modeling Tool are outlined in

Section 5.3. The summary of the proposed solution is presented in Section 5.4.

5.1 Architecture of the MD System

In Figure 5.1, we present the architecture of the MD system for production process modeling and

execution. The architecture components, encapsulated with a solid black line in Figure 5.1, are the

main focus of our research, while the components presented outside the black solid enclosure are
given to outline the context of our research and they are part of another research. All these

components are presented in short in this section, while the main components are discussed further

in the following sections. The architecture contains the following components:

• Resource Modeling Tool. To create production system models, Resource Modeling Tool

is used by resource managers. We denote a resource manager as a person in charge of
specifying shop floor resources, their capabilities, production logistics, and available

materials and products on the shop floor. Production system models contain all the shop

78 MD Solution for Modeling and Automatic Execution of Production Processes

floor resources and their capabilities, among other details that can be specified. Resource
Modeling Tool contains a DSML for production system modeling, and it is a part of another

research described in [5].

• Process Modeling Tool. To specify production process models, including process steps

and capabilities needed for their execution, production Process Modeling Tool is used by

process designers. Process Modeling Tool contains the MultiProLan language, and as the
tool and the language are the main components of our solution, they are discussed further

in this thesis. Both Process Modeling Tool and MultiProLan are implemented using a

framework for rapid tool prototyping. Frameworks, such as EMF [94,95], are effective in
creating tool prototypes in a relatively short time while allowing for the more detailed and

customized specification of necessary features. We used the Ecore meta-meta-model to

create an abstract syntax of MultiProLan. As process designers are familiar with flow charts
and not so familiar with textual notations, we created a graphical syntax for MultiProLan

using the Eclipse Sirius framework [100]. In addition to graphical concrete syntax creation,

the Sirius framework also enables rapid implementation of a prototype tool [99]. As

MultiProLan is a capability-based process modeling language, our MD solution uses a
capability repository for the specification of process steps. We created the capability

repository, storing capabilities and their parameters, so they can be reused in production

process models. Once the capabilities are standardized by international committees, we will
replace our capability taxonomy stored in the repository with a standard one.

Figure 5.1. The architecture of the MD solution for production process modeling and execution.

MD Solution for Modeling and Automatic Execution of Production Processes 79

• Orchestrator. Orchestrator is utilized to automatically match process steps with resources

through required and offered capabilities and to schedule production. Thus, Orchestrator
automatically transforms resource-agnostic into resource-aware production process

models. The development of Orchestrator is not part of this research, but we used the one

presented by Pisarić et al. [4,5], which entirely fits our needs.

• Knowledge Base. To store data about production systems in which process models can be

executed, Knowledge Base is needed. Orchestrator uses stored knowledge for its matching
and scheduling algorithms. Both resource-agnostic and resource-aware production process

models are stored in Knowledge Base, as well as the capability repository. We utilized

Vaticle TypeDB [226] to store knowledge about production systems, capabilities and their
parameters, and production processes, and to enable reasoning about the connections within

such a knowledge graph.

• Instruction Generator. To automatically transform resource-aware process models into

high-level instructions, Instruction Generator is used. We developed Instruction Generator
and M2T transformations from scratch in the Java programming language.

• Digital Twin. A production system needs to be connected with our MD solution through

its Digital Twin. Digital Twin can be used in two different modes: production and

simulation-only. In the production mode, Digital Twin is used to obtain high-level

instructions sent by Instruction Generator, transform the instructions into machine-specific
or human-readable instructions by using protocol transformation components, and send

such instructions to Production System. In the simulation-only mode, Digital Twin is used

as a simulation environment to test created process models when needed, without sending
instructions to Production System. We utilized the Robot Operating System (ROS)

[227,228] framework to create a bridge across machine-specific instructions that are to be

sent to machines. Human workers use a custom-made mobile application to get human-
readable instructions on their tablets or smart watches. The Gazebo simulator [229,230] is

utilized to create a simulation that is a core part of Digital Twin. Both Digital Twin and the

simulation are part of another research and development [4,5]. Therefore, we use them as

a black box.

• Production System. Production System contains smart resources, both human workers and
machines, working together to produce various products. Smart resources are connected

with our MD solution through Digital Twin, receiving executable instructions based on

production process models.

• Documentation Generators. Manufacturing documents of various types are automatically
generated from process models by using Documentation Generators. We used the Xtend

[198] language to develop Documentation Generators and M2T transformations.

• Documentation Storage. The automatically generated manufacturing documentation is

permanently stored in a factory Documentation Storage. The generated documentation can
be used by any relevant stakeholder.

In the following section, we discuss the usage of our MD approach, including the main steps

to get executable instructions and manufacturing documentation from MultiProLan models. These

steps are presented in Figure 5.1.

5.2 Main Steps of the MD Approach

To create a novel MD approach for production process modeling and automatic generation of

executable resource instructions and manufacturing documentation, we applied the MDSEA
framework. Production process models independent of a production system – resource-agnostic

process models, can be seen as TIMs, while production process models enriched with resource

information – resource-aware process models, can be seen as TSMs. To automatically transform
resource-agnostic into resource-aware process models, we need M2M transformation rules.

Similarly, to automatically transform resource-aware process models into instructions to execute

80 MD Solution for Modeling and Automatic Execution of Production Processes

process operations and to transform process models into manufacturing documentation, we need
M2T transformation rules. In this section, we discuss our MD approach in which production process

models are used in such M2M and M2T transformations.

The MD approach comprises the five steps of modeling and automatic execution of production

processes and the two additional steps of transforming process models into manufacturing

documentation, described in the following subsections.

5.2.1 Main Steps of Modeling and Automatic Execution of Production

Processes

The developed MD approach comprises the following five steps of modeling production processes

and automatically transforming them into executable resource instructions.

Step I – Specification of production system models. Resource managers use Resource Modeling

Tool to create models of production systems. A production system model is stored in Orchestrator's

Knowledge Base and later used for matching and scheduling algorithms.

Detailed information on a production system needs to be specified first, as Orchestrator
requires them when enhancing existing production process models. Such information is required

by Orchestrator to automatically transform resource-agnostic into resource-aware production

process models. A production system model includes:

• resources of a production system;

• capabilities that are offered by the resources;

• prerequisites needed by a resource to perform a capability;

• interactions between the resources, e.g., whether the resources can cooperate or hand over
materials between themselves;

• constraints of various types in the production system;

• different interfaces and protocols used by the resources;

• storage and their locations; and

• materials and products stored in the storage.

The production system details can be added manually to Knowledge Base by specifying them

in the form of a Knowledge Base script and executing this script through Knowledge Base
Management System. However, by using Resource Modeling Tool and its DSML, a resource

manager can create a graphical production system model, transform the model into a Knowledge

Base script, and execute the script on Knowledge Base Management System, saving the production

system details in Knowledge Base.

Step II – Specification of resource-agnostic production process models. Process designers use

Process Modeling Tool that utilizes MultiProLan to create resource-agnostic production process

models, which we denote as Master-Level (MasL) models. These process models may be applied
in various production systems with different production resources. As resource-agnostic models are

independent of any production system, Step I and Step II of our MD approach may be performed

in parallel.

A MasL production process model represents a technical description of a production process.
It includes specification of process steps without details required for the automatic production, such

as: smart resources required to execute process steps; production logistic activities; specific storage

where products and parts are stored; and machine configuration activities. Therefore, MasL models
do not depend on a specific technological platform, i.e., on a production system in which modeled

production processes are to be executed.

We have implemented a graphical Process Modeling Tool to allow the modeling of production
processes by using MultiProLan. Process designers use the modeling tool to model production

processes without the need to specify execution details. These MasL models include:

MD Solution for Modeling and Automatic Execution of Production Processes 81

• process steps;

• capabilities required to execute process steps, with their parameters and constraints;

• input and output products, i.e., raw materials, components, or finished goods, with

constraints and the material flow;

• the control flow, i.e., sequence, parallelism, selection, and iteration patterns;

• unordered process steps;

• collaboration needed between process steps;

• product and process variations; and

• sub-processes.

In addition to the above, MultiProLan contains modeling concepts aimed at modeling errors

and corrective process steps used to handle these errors. By the notion of a production error, we

denote errors that may occur during the execution of a process. This part of a MasL model is

optional, and if it is specified, it can be visible or hidden within Process Modeling Tool on demand.

By using the services of Knowledge Base Management System, MasL models can be stored

in Knowledge Base, which represents a central place to store process and resource semantics. These

stored MasL models can be reused at any time, as they can be imported into Process Modeling Tool
through Knowledge Base Management System, thus enabling any required MasL model

modifications and optimizations.

Step III – Enrichment of resource-agnostic production process models. Orchestrator can
automatically enrich resource-agnostic process models with details needed for the process

execution. It uses knowledge about a production system in which processes are to be executed and

enriches resource-agnostic process models, creating resource-aware production process models,

which we denote as Detail-Level (DetL) models.

A production process model created by a process designer needs to be executed within a chosen

production system. Additional information must be placed in a MasL model to be used for the

automatic generation of executable instructions. A MasL model needs to be enriched with the

following elements of a chosen production system:

• specific resources, such as robots, machines, and human workers, that are to perform

process steps;

• production logistic activities, which represent transportation of materials, products, and

resources;

• specific storage where materials, parts, and products are stored; and

• configurations of machines and robots, such as software setup, changing grippers, position
calibration, and plugging into a charger or a workstation.

DetL models can be created either manually or automatically. A process designer conducts the

manual DetL creation by using MasL elements and DetL elements related to a chosen production

system. DetL models are similarly stored in Knowledge Base as it is with MasL models. A process
designer can make additional changes to the existing MasL/DetL model, which is imported from

Knowledge Base, or create a DetL model from scratch using Process Modeling Tool. A process

designer can also import the existing DetL model to check the model, improve, refine, and optimize
it before execution, or monitor its execution. Both import and export of MasL/DetL models are

done via Knowledge Base Management System.

Although manual creation of DetL models is possible, it would be a complex and time-
consuming task as it requires specification of all the technological and production system details

needed to execute the process. During the DetL modeling, a process designer must think about the

production system details – specific resources, storage, production logistics and configuration steps

already specified in Knowledge Base. Therefore, the full potential of our system is reached if

Orchestrator is used to automate this burdensome process.

In our vision of Industry 4.0 production process modeling, production system and production

process models should be separated to enable a high level of product customization. Thus, the

82 MD Solution for Modeling and Automatic Execution of Production Processes

automatic creation of DetL models from the existing MasL models is also supported in our MD
solution and is conducted by means of the Orchestrator software. Our Orchestrator [4,5] comprises

a matching mechanism that connects resources with process steps and storage with products, as

well as a scheduling algorithm to provide an optimal match between resources and process steps.

Therefore, matching and scheduling algorithms of Orchestrator can be seen as M2M
transformations, as MasL models independent of a production system are transformed

automatically into DetL models dependent on a specific, chosen production system. Orchestrator is

also responsible for adding transportation and configuration process steps to existing process
models. Based on a MasL model and the production system details gathered from Knowledge Base

with the help of Knowledge Base Management System, our Orchestrator can automatically generate

a DetL model. Then, the generated DetL model is sent to Knowledge Base Management System to
store it in Knowledge Base. In the following text, the process of automatic creation of DetL models

is explained.

Knowledge Base needs to provide all the necessary information about a given production

system for Orchestrator to be able to generate DetL models from MasL models automatically. Every
process step specified in a MasL model contains a capability required to execute a process step,

alongside various constraints that need to be fulfilled. It is necessary to add information about a

resource that will execute a process step within the chosen production system. This resource cannot
be just any resource but the resource with the required capability in its set of offered capabilities

and that can fulfill defined constraints. By using Knowledge Base, our Orchestrator can match a

capability that is required in a process step with a capability that a specific resource offers and, in
that way, match the process step with the resource. A capability of one process step could be

matched with the same capability of multiple resources. Orchestrator needs to use optimization

techniques and scheduling algorithms to choose one resource for every process step and to optimize

the work of resources in a factory. Therefore, Orchestrator needs to determine the allocation of
operations to matched resources based on various optimization criteria, supporting real-time

orchestration and capability-based process execution. A process step that is ready to be executed is

composed of:

• input products that are to be used during the process step execution;

• a capability that a resource must have in order to execute the process step;

• a smart resource that has the required capability and is to execute the process step activity
on the input products; and

• output products that are the result of executing the process step activity on input products.

Orchestrator also needs to take care of production logistics. It needs to identify and add storage

containing required materials, parts, and products into a DetL process model and process steps that
facilitate the transportation of materials, parts, and products, and the movement of resources

between storage and workstations. Production logistic activities significantly impact production

processes as they require a lot of time to execute [231], so these activities must be well organized.

Orchestrator also takes care of machine configurations. Based on the knowledge gathered from
Knowledge Base, our Orchestrator can infer whether machine configuration steps need to be added

to the process to enable further activities, e.g., calibrating an Automated Guided Vehicle (AGV)

after movement so the mounted gripper has the required precision. If several process variations are
modeled (e.g., a hole can be made by borer drilling and some sanding, or by laser drilling),

Orchestrator also needs to choose the best option in a current state based on a factory topology,

available resources, or certain custom-made optimization criteria.

In this Ph.D. thesis, we look at Orchestrator as a black box, as it is a part of another research.
It is introduced to provide a context in which MultiProLan is used. An internal structure of

Orchestrator used in our MD solution can be found in [4,5].

Step IV – Generation of high-level instructions. Instruction Generator automatically generates
high-level instructions from a resource-aware production process model. Such an M2T

transformation creates instructions with the same structure, independent of specific resources.

MD Solution for Modeling and Automatic Execution of Production Processes 83

Therefore, if new resource types are added to the production system or some resource types are

replaced with other ones, these high-level instructions do not need to be changed.

The aim of MultiProLan models is not only to serve documentation purposes but also to lead

production process execution in a smart factory. As MultiProLan is created to be a formal language

with exact and precise semantics, modeling concepts are machine-readable and understandable,
enabling the automatic transformation of modeling concepts into instructions to execute process

operations. DetL models have all the technological details needed for the automatic generation of

instructions that resources will execute. A process designer can initiate the automatic generation of
instructions from a DetL model through Process Modeling Tool by choosing the existing model

from Knowledge Base. Another option is the automatic generation of instructions that Orchestrator

can initiate after it finishes the automatic transformation of a MasL model to a DetL model.
Knowledge Base Management System obtains a DetL model from Knowledge Base and sends it to

Instruction Generator, which transforms the model into a set of high-level, generic instructions.

These instructions are serialized as JSON objects that contain information on:

• process steps;

• required process steps' capabilities with parameters;

• input and output products;

• specific storage where products are stored or need to be stored, i.e., the material flow; and

• smart resources that are to perform process steps with resources' protocols on which

instructions need to be sent;

The high-level, generic instructions are sent to Digital Twin. In our case, Digital Twin can be

used for the simulation only or for forwarding instructions to the Production System's smart

resources through appropriate communication protocols. Using a digital twin in the simulation-only
mode can decrease production failures, provide insight into poorly modeled process steps, and

enable the optimization of resources and processes [122]. Furthermore, running simulations makes

it possible to predict the impact of process steps on the final product [121].

Step V – Transformation of high-level instructions into resource-specific instructions.

Protocol transformation components stored in Digital Twin transform high-level instructions into

resource-specific instructions. Such a Text-to-Text (T2T) transformation creates instructions that

are to be executed by resources. Each resource supports a communication protocol, and if a new
resource type appears in Production System, a new protocol transformation component will be

created.

Whenever Digital Twin is used to forward instructions to Production System, a transformation
of high-level, generic instructions into resource-specific instructions needs to be performed by

protocol transformation components. These resource-specific instructions are then passed to real-

world resources, whether machines or humans, in the order defined by the control flow through an
appropriate communication protocol. An appropriate protocol transformation component is selected

to do the transformation based on a protocol defined for each smart resource in a DetL model.

Digital Twin has different protocol transformation components that transform high-level

instructions into machine-specific instructions depending on the protocols of the machines.
Whenever a new type of machine is added to the shop floor, a new protocol transformation

component needs to be added to Digital Twin to support the transformation of high-level

instructions into machine-specific instructions for the newly added machine. Also, the knowledge
about a newly added resource needs to be stored in Knowledge Base through Knowledge Base

Management System. The machine-specific instructions are sent wirelessly to machines and robots

to execute them on the shop floor, after machines and robots send feedback about the execution

performance. The feedback is forwarded from Digital Twin to Process Modeling Tool, enabling
monitoring of the process execution. Each process step can be in the execution phase, executed

successfully, or an error can occur. Whenever an error occurs, Digital Twin also forwards

information about it to Orchestrator so the error can be handled, and the executed process can be

reorchestrated.

84 MD Solution for Modeling and Automatic Execution of Production Processes

A human protocol transformation component is also embedded into Digital Twin, transforming
high-level, generic instructions into human-readable instructions. Human workers receive these

instructions on their tablets, monitors, or smart watches, and the workers respond through these

devices and send feedback on whether instructions are executed successfully or an error occurred.

Digital Twin also updates the digital footprint of all resources it manages.

5.2.2 Main Steps of Transforming Production Process Models into

Manufacturing Documentation

Our MD approach comprises the following two steps of automatic generation of manufacturing

documentation. As a precondition to these steps, MultiProLan models have to be created.

Step * – Generation of manufacturing documentation of different types. Documentation
Generators automatically generate manufacturing documentation of different types from resource-

agnostic or resource-aware production process models. Such an M2T transformation creates new

manufacturing documents or updates existing documents and creates new versions of them.

Documents of various types need to be created and stored when specifying production
processes in manufacturing companies. Production processes are mostly described in a textual form,

often without an accompanying graphical model. MultiProLan aims to unify the content of various

manufacturing documentation into a single model, thus providing a single point of knowledge. Due
to different procedures, legal regulations, and internal or external standards in a factory, it may still

be required for the documentation to be stored in a textual form. Therefore, the automatic generation

of manufacturing documents from MultiProLan models is implemented.

The manufacturing documentation needs to be updated whenever a process or a product
changes. In the context of Industry 4.0, where mass customization replaces mass production,

product and process changes are common, so the documentation needs to be updated frequently. In

traditional manufacturing, these changes are often stored as separate documents [202]. This
increases the possibility of human errors while introducing the changes and decreases the level of

documentation quality, as vast amounts of content from previously created documents need to be

rewritten or copied into new documents. Therefore, the automatic generation of manufacturing

documents from MultiProLan models can:

• make the documentation modifications easier;

• decrease the documentation creation time;

• increase the documentation consistency and synchronization with actual production

process models; and

• reduce the likelihood of human error.

There are five Documentation Generators implemented to enable M2T transformations – the

generation of: Bill of Materials (BOM), Bill of Materials and Operations (BOMO), Flow Process
Charts (FPCs), Process Failure Mode and Effect Analysis (PFMEA), and user manuals [12]. By

using Process Modeling Tool, a process designer can initiate the generation of the documents based

on the newly created MasL/DetL model or the existing MasL/DetL model imported from
Knowledge Base. Depending on the document chosen to be generated from a MultiProLan model,

appropriate Documentation Generator is initiated, after which the automatically generated

document is ready to be stored. Therefore, it is not necessary to manually create all the documents,
reducing the time needed for the process design phase. As MultiProLan unifies different documents

into a single model, process and quality engineers can work together on modeling processes with a

single language while simultaneously getting the documents required in a company.

Step ** – Manufacturing documentation storage. Generated manufacturing documentation is
stored in Documentation Storage, allowing various stakeholders to access the documentation when

needed.

MD Solution for Modeling and Automatic Execution of Production Processes 85

Generating and storing the manufacturing documentation from MultiProLan models serves for
subsequent production analysis and compliance with procedures, legal regulations, and standards.

The automatic generation of manufacturing documentation can help keep the documentation up to

date while lowering the costs needed for manual creation and update of the documentation.

In the following section, we summarize the objectives our MD solution aims to achieve, with

a special focus on its two main components – MultiProLan and Process Modeling Tool.

5.3 Objectives of the MD Solution

Our MD solution, including MultiProLan and Process Modeling Tool, has multiple objectives it
needs to achieve. These objectives are summarized to better denote the reasons for creating such a

solution and to point out what are the goals of our MD solution and its components. The MD

solution should fulfill the following objectives:

• The automatic transformation of MasL into DetL models should help process designers
when modeling processes, as the manual creation of DetL production process models is a

burdensome task. Also, the automatic transformation should enable fast switching between

different production systems as a single MasL model is used, and DetL models can be

automatically created. Therefore, the time-consuming task of manually adapting process
specifications for different production systems can be replaced with the automatic one.

Additionally, an analysis and a comparison of different DetL process models of the same

product should be possible, choosing a production system in which the product will be
produced optimally.

• The automatic generation of high-level instructions from DetL models should enable

manufacturing products based on their production process models. Additionally, high-level

instructions that are to be transformed into textual descriptions with images and videos and
sent to human workers one by one via tablets or smart watches should enable guided

production. Such production should help workers, especially the novice ones, to better

understand production processes and perform each process step more easily. Also, such

production can lower the time spent by experts helping novice workers, thus improving
performance in a factory of both these worker categories.

• The solution should support a process monitoring feature by gathering feedback from

resources while executing process steps and sending the feedback to Process Modeling

Tool. Therefore, the execution of process steps can be presented in the tool, making it
possible to present successfully executed process steps, currently executed process steps,

and errors that occur during production. Thus, better control of the process execution and

a faster response to occurred errors can be utilized. Also, a current state of the process
execution can be presented to human workers, indicating which exact step they currently

execute and what are the following process steps, gaining an overview of the whole process.

Gathered feedback will also be stored in a database, creating a possibility for process

analysis, which can lead to the detection of process anomalies, bottlenecks, and failures.
Based on these findings, production processes can be optimized, and unscheduled system

shutdowns can be prevented as some failures can be mitigated.

• Instead of a time-consuming manual creation of manufacturing documentation of different

types, an automatic generation of such documentation should decrease the time invested by
process designers. Also, the manual creation of documentation is usually error-prone, as

many documents need to be created. The volume of needed documentation increases

significantly in the Industry 4.0 context, where multiple process and product variations
exist. Additionally, as a product or its process may change over time, all manufacturing

documents related to the product must be updated. By using manufacturing Documentation

Generators, versioning and keeping the manufacturing documentation up to date should be

done automatically, reducing the time needed for such tasks and possible errors that may
occur during manual writing.

86 MD Solution for Modeling and Automatic Execution of Production Processes

• The MD system should contribute to flexible production in the context of Industry 4.0,

introducing factories to the digital transformation process.

The developed DSML – MultiProLan should fulfill the following objectives:

• MultiProLan should be a capability-based production process modeling language, allowing

Orchestrator to match process steps with resources automatically, thus contributing to

flexible production.

• MultiProLan should have a core set of concepts to describe production process models

suitable for the automatic generation of executable instructions. Among the core concepts,
the language should cover modeling concepts such as material flow, error handling, and

product and process variations, making models ready to cope with the production flexibility

challenge. In addition, the requirements presented in Section 4.2.1 should be fulfilled by
the language, allowing various processes to be modeled.

• MultiProLan should support the modeling of all production details required for the

automatic instruction generation and execution but not be too complex for a human to

comprehend. It would be hard to model production processes with all the details required
for the execution while keeping models clear, concise, and appropriate for initial process

analysis. Accordingly, two levels of detail should be implemented to distinguish between

MasL and DetL process models. By creating two levels of detail, production process

models will become independent of the production system details, and thus efforts needed
during the production process modeling will be reduced, as they will be modeled in a

generic way. Also, such generic process models can be utilized in multiple different

production systems.

• MultiProLan should include and unify concepts from different types of manufacturing
documentation to support automatic documentation generation from a single model. A

production process model should store knowledge that is usually stored across different

sheets and documents, making such a model a single point of knowledge. Such unification
should allow various users, such as process and quality engineers, to collaborate on creating

the same model from different viewpoints.

• MultiProLan should:

o speed up and increase the precision with which production processes are designed;

o decrease the number of faults during process design; and
o enable faster changes in production process models.

Process Modeling Tool should fulfill the following objectives:

• The tool should support process monitoring, being able to get process execution feedback.

The process model's production steps should change color depending on the execution
status. By presenting execution status to users, they can monitor process execution and

intervene if needed, solving issues during production.

• The tool should support mechanisms to lower the complexity of process diagrams, making

them more readable:
o The tool should support different modeling layers, being able to show or hide a set of

modeling concepts related to the specific layer. The usage of layers would allow

different users, such as process and quality engineers, to work together on the same

process model, showing just the modeling concepts relevant to them. Therefore, the
amount of information and modeling elements on a process diagram would be lower

for each class of users, allowing them to model processes more easily and to be focused

only on their modeling task.
o Process modeling elements that are containers for other elements should have a

mechanism to show or hide contained elements, allowing to have more or fewer details

on a process diagram.

o A process model should contain sub-processes, allowing the decomposition of a
process model and the reusability of existing processes. The modeling tool should

MD Solution for Modeling and Automatic Execution of Production Processes 87

allow for easy usage of sub-processes, being able to easily open and present sub-
processes when needed.

o As there can be multiple process and product variations presented on a process diagram,

the complexity and volume of the diagram can increase significantly. Therefore, the

tool should have a filter function that would allow a user to choose which process or
product variation to present, hiding all other variations from the diagram. Such a feature

would allow users to be focused only on variations they want to create, view, or update.

o A zoom feature should also be implemented to allow an overview of the whole process
diagram or focus on the part of the diagram.

In order to use MultiProLan, Process Modeling Tool, and the whole MD solution effectively,

the presented objectives should be achieved. Therefore, the full potential of the proposed solution

can be reached.

5.4 Summary

In this section, we presented our MD solution comprising a novel system and an approach for

modeling and automatic execution of production processes. The presented MD solution can be used
by process designers to specify resource-agnostic production process models. These models can be

enriched with details of a chosen production system in which a production process is to be executed.

Such enrichment of resource-agnostic production process models can be done automatically by
Orchestrator, based on production system models stored in Knowledge Base, creating resource-

aware production process models. These models can be automatically transformed into executable

resource instructions by Instruction Generator and protocol transformation components stored in
Digital Twin. Instructions can be sent to the shop floor resources to perform specified production

process steps. Our MD solution can also be used to automatically transform production process

models into manufacturing documentation.

The main component of our MD solution is MultiProLan, a novel DSML for production
process modeling. Before creating a novel DSML, modeling concepts need to be carefully analyzed

and selected. Therefore, a production process modeling domain analysis is conducted and presented

in the following section.

88 MD Solution for Modeling and Automatic Execution of Production Processes

Analysis of the Production Process Modeling Domain 89

6 Analysis of the Production Process Modeling

Domain

Creating a new language requires formulating its abstract syntax based on the relevant identified

domain concepts. Therefore, we analyzed the domain of production process modeling and identified

its main concepts before creating the MultiProLan language. Domain knowledge is gathered from
research papers, technical documentation, use cases, and by talking to domain experts. Feature-

Oriented Domain Analysis (FODA) is used as a domain analysis method [93]. The FODA method

is used to analyze a domain and identify features that are usually expected to support software

development.

A feature model comprises the typical features of a family of systems in the domain and their

relationships [93]. A feature represents a property of a system that directly affects stakeholders that

use the system. Features are connected via structural relationship, meaning features consist of other
features, representing a logical grouping of features. Inside a feature group, alternative features can

exist, representing a specialization of a more general category and indicating that no more than one

specialization can be used. There are also mandatory and optional features, indicating which

features must exist and which ones are optional.

In this thesis, we use the standard FODA notation [93,155] extended to support feature and

group cardinalities in order to create cardinality-based feature models [232]. A feature cardinality
represents how often a sub-feature or an entire sub-tree can be replicated. The feature cardinality is

presented in a form [n..m], indicating that at least n and at most m sub-features need to be replicated.

If no cardinality is presented for a sub-feature, an unfilled circle of a relation represents the [0..1]

cardinality, while a filled circle represents the [1..1] cardinality. A group cardinality can be specified
for a whole group of sub-features, indicating how many sub-features can be selected. The group

cardinality is presented in a form <n..m>, indicating that at least n and at most m group features

need to be selected. If no cardinality is presented for a group, the <1..1> cardinality is assumed.

To create cardinality-based feature models, we used Yet Another Feature Modeling Tool

(YAFMT) [233], representing a collection of Eclipse plug-ins for feature modeling. This tool was

also used by Samimi-Dehkordi et al. [234] when they analyzed a domain for the Model-Driven
Engineering of Bidirectional Transformations via Epsilon (MoDEBiTE) language. The only

difference in the syntax of FODA models that we encountered when using YAFMT compared to

the standard FODA notation is that when specifying a group of features, a square is used instead of

a circle at the end of relations. There are also other feature modeling tools, such as FeatureIDE
[235,236] – an Eclipse-based open-source framework for Feature-Oriented Software Development

(FOSD), a paradigm for the construction, customization, and synthesis of software systems.

However, we chose the YAFMT tool due to the good-looking graphical appearance of feature

model diagrams, easiness of use, and cardinality-based feature modeling.

Production processes typically follow a strict set of rules or guidelines in order to turn raw

materials into a quality finished product. They can be described in various ways and at different

90 Analysis of the Production Process Modeling Domain

levels of detail. As we aim to create production process models that can be used for the automatic
instruction generation and execution of the generated instructions, production processes need to be

described with all the details required for the execution. A production process can be understood

from several different perspectives. Here we focus on the operational, resource, and control-flow

perspectives and present them as cardinality-based feature models. It should be noted that these
feature models do not cover all the details of the production processes domain, but a minimal set of

features needed for dynamic production orchestration and automatic process execution and error

handling. The domain analysis of production process modeling and related FODA models were

published in [11].

This section is composed of the following three subsections. In Section 6.1, we present the

cardinality-based feature model of the operational and resource perspectives of production process
steps, while in Section 6.2, we present the control-flow perspective of production processes as the

cardinality-based feature model. The summary of the domain analysis is outlined in Section 6.3.

6.1 Operational and Resource Perspectives

The operational and resource perspectives are presented in Figure 6.1 as a cardinality-based feature
model of a production process step. The operational perspective describes elementary units of work

(Process Step), and the resource perspective provides an organizational structure in the form of

human and machine roles responsible for executing process steps. A process step feature is the root
of the FODA tree in Figure 6.1. A process step requires a capability (Capability) that represents the

"implementation-independent potential of an Industry 4.0 component to achieve an effect within a

domain" [142], i.e., a skill needed to execute the process step. For example, a robot can have
different capabilities depending on which tools are mounted, and a human worker can have different

capabilities depending on their expertise or completed training. A process step capability can have

different parameters (Capability Parameter) or constraints (Capability Constraint). A capability

parameter is used to specify additionally how a capability needs to be used. Parameters usually
represent conditions, attributes, or settings that can be varied to affect the execution of process steps

[141]. For example, if a product needs to be placed on a pedestal, the coordinates of where the

product is to be placed need to be specified. A capability constraint indicates what is an additional
requirement to execute a process step. For example, for the pick capability, a constraint can be that

a gripper needs to be able to pick up objects wider than 0.5 m. Different robots can all have the pick

capability, but they can pick objects of different sizes, as their grippers are not the same. Also, a
constraint for the pick capability can be defined as a minimal mass that the resource can handle,

e.g., 100 kg. Human workers and some robots can pick objects, but there is a limitation on how

much weight they can lift. Thus, only some of the robots can lift such objects.

A process step can exist without any products (Product). For example, if a process step is a
movement operation of a resource or some of the resources just need to be configured, none of the

products are included as these operations do not require them. A process step can include multiple

products of different kinds (Product Kind): input (Input) and output (Output) products. A process
step capability is used on input products to create output products of the process step. Products can

be of different types (Product Type) [141]:

• raw material (Raw Material) – represents any physical material used in a product creation;

• an intermediate product, a part, or a component (Component) – represents an output of a

process step that is an input to another process step and requires further transformations

within a production system; and

• a finished good or a final product (Finished Good) – represents any good or service offered

to satisfy someone's needs.

A
n
aly

sis o
f th

e P
ro

d
u
ctio

n
 P

ro
cess M

o
d
elin

g
 D

o
m

ain
 9

1

Figure 6.1. A FODA model of a production process step suitable for an execution.

92 Analysis of the Production Process Modeling Domain

For each product, different constraints (Product Constraint) can be specified. Like capability
constraints, product constraints can be used to determine which resources can execute a process

step. A product constraint can be seen as an attribute, as it specifies a product's property, such as

height, width, depth, mass, or color.

It is also important to specify a flow of materials or products (Material Flow) between storage
and execution resources of process steps. A material flow represents products entering from or

leaving to another production system [141], or in the case of a single production process, it

represents materials and products entering from or leaving to another process steps. For each input
product, it must be known whether it needs to be taken from storage (From Storage) or is a result

of a previous process step (From Previous Process Step). Also, for each output product, it must be

known whether it needs to be placed in storage (To Storage) or it will be used in some further
process steps (To Next Process Step). If an input product needs to be taken from storage or an output

product placed in storage, the product needs to include information on which storage (Storage) that

should be.

Each product can have many variations (Product Variation), especially in the context of
Industry 4.0 and lot-size-one production. As customers require various personalized products in

such production, each product variation can differ in the parts and materials it is made. Therefore,

a product with all its variations belongs to the same product family.

A smart resource (Resource) needs to be specified for each process step to enable its execution.

Smart resources can be of different types (Resource Type): a robot or a machine (Machine) or a

human worker (Human). A machine represents a device, a piece of equipment, an instrument, a
tool, a single machine, or a robot, that performs elementary activities, is used for elementary

activities, or makes work easier [141].

Process steps can be represented by using different notations (Notation): (i) operation

(Operation), (ii) inspection (Inspection), (iii) delay (Delay), (iv) transportation (Transportation), or
(v) configuration (Configuration). An operation is an activity needed to change input products and

create output products, e.g., cutting a metal bar. An inspection is an activity needed to check

whether a product fulfills certain requirements, e.g., visually inspecting assembled parts. A delay is
an activity designed to wait for some other process to be finished, e.g., waiting for a metal bar to

cool down. Transportation is an activity needed for changing the location or position of resources

or products between storage, e.g., moving a robot to a smart shelf. These four notations are also

present in the American Society of Mechanical Engineers (ASME) Flow Process Charts (FPCs)
[25], as well as in [2], but without the delay notation. To specify production processes that are

suitable for execution, configuration activities also need to be defined. Configuration is an activity

needed to configure resources in order to finish different tasks. For example, a robot must determine

its position before it executes an operation, change a gripper, or plug itself into a charger.

Various errors (Error) can occur when executing process steps, so error handlers need to be

specified. An error handler has its domain (Error Domain): global (Global) – the same error handler
can be used for different errors, or local (Local) – the error handler is specific to the error and cannot

be used for other errors. For example, a global error handler can be utilized to specify steps to

recycle a plastic product and a local error handler can be used to specify steps for disassembling a

specific product into components. Also, error handlers can be specified for errors of the following
types (Error Type): known errors (Known) – identified errors that can occur in process steps and

process designers are aware of them, or unknown errors (Unknown) – unidentified errors that can

occur in process steps. There can be only one unidentified error handler for each process step and

many identified error handlers.

The status (Status) of each process step needs to be monitored during the execution of a

production process. A process step can be in the following states: (i) not yet executed (Waiting For
Execution), (ii) currently being executed (Currently Executed), (iii) executed successfully

(Execution Finished), and (iv) an error occurred during the execution (Error Appeared).

Analysis of the Production Process Modeling Domain 93

6.2 Control-Flow Perspective

The control-flow perspective is presented in Figure 6.2 as a cardinality-based feature model of a

production process. The control-flow perspective describes activities and their execution ordering

through different constructors (Control Structure), which permit a flow of execution control, e.g.,
sequence, parallelism, decision, and iteration. Activities in an elementary form are atomic units of

work (Process Step), and in a compound form, they are a set of activities that modularize an

execution order.

A production process or a manufacturing process (Process) is the root concept of the FODA
tree presented in Figure 6.2. A process has a starting point (Start), an ending point (End), and a non-

empty array of control structures (Control Structure). Control structures represent different types

of execution flows that contain branches and process steps. They are: (i) sequence (Sequence), (ii)
parallelism (Parallelism), (iii) decision (Decision), (iv) iteration (Iteration), (v) collaboration

(Collaboration), (vi) variation (Variation), and (vii) unordered set of steps (Unordered Steps).

During the domain analysis, we encountered multiple examples of these control structures, and

some of these examples are discussed in the following paragraphs.

A sequence (Sequence) is a non-empty array of process steps (Process Step) that must be

executed in the exact order they are presented. For example, a robot needs to move to an assembly

table and proceed to assemble two parts.

Parallelism (Parallelism) has a starting point (Start Parallelism (Fork)), an ending point (End

Parallelism (Join)), and an array of at least two parallel branches (Parallel Branch). Each parallel

branch is a non-empty array of control structures (Control Structure). The branches are to be
executed in parallel. For example, there are different independent parts that can be assembled in

parallel.

A decision (Decision) has two or more branches (Decision Branch), and each of them is an

array of control structures (Control Structure) that can be empty. Every branch has a condition
(Decision Condition) that needs to be met for the branch to be executed. For example, after

inspecting a product, a decision is made whether the product needs to be stored or discarded,

depending on the inspection results.

An iteration (Iteration) has an iteration branch (Iteration Branch) that is a non-empty array of

control structures (Control Structure) placed between a check point (Check Point) and a return point

(Return Point) that needs to be executed as part of the current iteration. The check point comprises
a condition (Iteration Condition) that can be checked before the execution of the iteration branch

(Pre-Condition) or after the execution of the iteration branch (Post-Condition). Thus, it is possible

to create while or do-until loops. For example, a metal bar needs to be heated several times.

A collaboration (Collaboration) has two or more collaboration branches (Collaboration
Branch), and one or more messages (Message). Each collaboration branch is a non-empty array of

control structures (Control Structure). Messages are exchanged between process steps contained in

some of the control structures. Each message has a source process step (Source Process Step) that
sends the message to a target process step (Target Process Step) that receives the message. For

example, one part needs to be held while another one is getting attached to it. The attachment

process step should not start before a message arrives that the first part is being held. The holding

process step should not end until a message arrives that the second part becomes fully attached to
the first one. A collaboration between resources is essential in the context of Industry 4.0, especially

a human-machine or human-robot collaboration. Due to the need for highly flexible production,

resources are meant to collaborate frequently to produce different products and their variations.
Accordingly, a human-robot collaboration combines benefits from both human workers (e.g.,

sensorimotor skills) and robots (e.g., high-precision skills), making production more effective and

efficient [237].

9
4

 A
n
aly

sis o
f th

e P
ro

d
u
ctio

n
 P

ro
cess M

o
d
elin

g
 D

o
m

ain

Figure 6.2. A FODA model of a production process suitable for an execution.

Analysis of the Production Process Modeling Domain 95

A variation (Variation) represents a part of a process with two or more variation branches
(Variation Branch), leading to different product variations in the same product family or the same

product but processed in different ways. Each variation branch is a non-empty array of control

structures (Control Structure). Different product variations can belong to the same product family

but differ in some materials or parts. Each variation branch can represent different product
variations, containing different activities and products that participate in the process. The exact

product variation is chosen before the execution of the process. In addition, an intermediate product

or a finished good can be created in different ways, which is what process variations represent. For
example, a hole in a component can be created by a drilling process step followed by a sanding

process step, or the hole can be made with a laser without needing the sanding afterward. There are

many other ways to create a hole, such as water cutting, plasma cutting, or punching [71]. All these
variations can be specified, and just before the execution of a process, an optimal variation can be

chosen.

An unordered set of steps (Unordered Steps) represents a collection of two or more process

steps (Process Step) that may be executed in any order. For example, two parts need to be picked
from the same storage, and it is not important which one should be picked first. Such arbitrarily

ordered steps can be useful in cases when workers are allowed to assemble certain parts in any

order, and at some time, workers may find out the fastest way to assemble a product, optimizing
their performance and needed time. Arbitrarily ordered steps may also be applied for quality

assurance steps when several tests need to be done for a part or a product [65].

6.3 Summary

To execute a production process model, it should have at least the following features: specified

starting and ending points of the process and, between these two points, a sequence control flow

with at least one specified process step. The process step comprises a single input product, a

capability, a single output product, and a resource. All of the aforementioned represent a minimal
set of features needed to execute a process, assuming that a resource already has an input product

at a workspace and that transportation of the product is not required. However, in practice, storage

and transportation process steps should be specified in the process, as well as the configuration of
resources when needed. Additionally, product and capability constraints and capability parameters

should be specified when they are required.

The domain of production process modeling is much broader and semantically richer than
presented in this thesis. We settled on describing only the given concepts as we focused on a

minimal set of features needed for the automatic execution of production processes and error

handling. Based on the presented features, we created a novel DSML – MultiProLan that covers all

the aforementioned domain concepts, discussed in the following section.

Multi-Level Production Process Modeling Language 97

7 Multi-Level Production Process Modeling

Language

In this section, we present the abstract and concrete syntaxes of Multi-Level Production Process
Modeling Language (MultiProLan) – a DSML for modeling production processes suitable for

dynamic production orchestration and automatic generation of executable resource instructions and

manufacturing documentation.

We used the Ecore meta-meta-model, which is a part of EMF [94,95], to create the abstract

syntax of MultiProLan based on the domain analysis presented in the previous section. Additional

constraints that cannot be expressed by the meta-meta-model concepts, but exist in the production
process modeling domain, are expressed by using Object Constraint Language (OCL) [96]. OCL is

a standard language created by OMG to overcome the limitations of UML by defining various

expressions clearly and unambiguously [97]. It was primarily made to express various constraints

of a system, but the newer OCL versions are also used to define different queries, data manipulation,

business rules, and model transformations [98].

To create the graphical concrete syntax and to enable the simple implementation of a prototype

tool [99], we used the Eclipse Sirius framework [100]. Both MultiProLan and Process Modeling

Tool were developed iteratively.

During the design of MultiProLan, several process engineers were involved as domain experts

and provided us with different model examples specified as ASME FPCs, BOMs, and textual
descriptions. With their help, we identified domain concepts and validated the modeling concepts

of our language.

This section is structured as follows. First, an overview and usage of MultiProLan are

discussed in Section 7.1. Then, the abstract syntax of MultiProLan is presented in Section 7.2, while
its concrete graphical syntax is presented in Section 7.3. Process Modeling Tool, introduced as a

part of our MD system in Section 5.1, is discussed in detail in Section 7.4. The summary of

developing MultiProLan and Process Modeling Tool is outlined in Section 7.5.

A detailed description of the MultiProLan usage was presented in [11] and [14]. The abstract

syntax of MultiProLan was presented for the first time in [10] and extended in [11], while the

MultiProLan's concrete syntax was presented through model examples and figures in [10,11,13]

and in a more detailed manner in [14].

7.1 Overview and Usage of MultiProLan

The main goal of creating MultiProLan is to enable formal specification of production processes

that will allow the automatic generation of executable instructions. This way, we want to automate

98 Multi-Level Production Process Modeling Language

process execution and thus improve production flexibility. The language is created according to the

requirements presented in Section 4.2.1.

MultiProLan is a production process modeling language primarily used in the domain of

hardware assembly. Currently, it does not support other production domains, but it can be extended

to support them in the future. The language unifies different production process aspects and,
therefore, allows the unification of the work from different user groups. At this point of the

MultiProLan development, these user groups comprise process and quality engineers. They use

MultiProLan together to create production process models that are:

• suitable for automatic generation of executable instructions;

• independent of any production system;

• used to handle errors when they occur;

• comprised of multiple variations of the process and final product; and

• suitable for automatic generation and update of manufacturing documentation.

As manufacturing companies need to have an overview of their processes from different

viewpoints [212], the MultiProLan modeling concepts, at the present stage, are grouped across two

detail levels and two layers, as seen in Figure 7.1. Two detail levels – Master-Level (MasL, i.e.,
resource-agnostic) and Detail-Level (DetL, i.e., resource-aware) – are used to separate modeling

concepts independent of an execution platform, i.e., a specific production system, from those that

are execution platform-specific, respectively. Furthermore, as MultiProLan follows the principles

of skill-based engineering, i.e., process steps are specified through capabilities, MasL models can
be automatically transformed into DetL models. Such an automatic transformation is possible by

using matching mechanisms implemented in Orchestrator, connecting required capabilities from

process steps with offered capabilities from production resources. Assigning resources to MasL
process steps and adding transportation and configuration process steps as well, creates DetL

process models. As capabilities are independent of any specific production system, these two levels

participate in one of the key features of the MultiProLan languages – production process models
need to be independent of any production system so that they can be used in various systems, but

also, process models need to be executable in a chosen production system.

To ease language extensibility, modeling concepts are additionally grouped across so-called

layers. Execution Layer is the default layer. It comprises modeling concepts that are crucial for
production process modeling and execution. This layer is always visible within the graphical

representation of a MasL/DetL model and is required for other layers to be applied. In Execution

Figure 7.1. Context and architecture of MultiProLan.

Multi-Level Production Process Modeling Language 99

Layer, process steps are modeled with input and output products, capabilities, and resources. Also,
the control flow of process steps and the material and message flows are modeled in this layer, as

well as different process variations. Errors that might occur during production and process steps

needed for their handling are grouped within Error Handling Layer, and these modeling concepts

are used mainly by quality engineers. Most of the time, process and quality engineers collaborate
to create a process model. However, sometimes process and quality engineers want to be focused

only on their part of process modeling. Also, as there may be a significant number of details on a

process model diagram, a mechanism should exist to reduce the level of detail and enable process
and quality engineers to be more focused on their work. Thus, Error Handling Layer can be hidden

from a process engineer and can be made visible to a quality engineer. Hiding layers from other

users enables them only to be focused on their part of the process modeling. However, both layers
can be presented simultaneously so all users can work together and optimize a production process

model. In Figure 7.1, we present user groups that use modeling concepts grouped across detail

levels and currently supported layers. Additional layers are under development, such as Risk

Management Layer, which presents a part of a production process model specifying different risk
factors for each process step and the overall risk associated with resources. This layer will be used

mainly by HSE managers. Modeling various production safety and energy consumption aspects

needs to be considered as well but it is part of our future work.

The two detail levels and two different layers discussed are part of the production process

modeling. To create DetL models from MasL models, a specification of a production system also

needs to be possible. The production system modeling is done by a resource manager, as seen in
the bottom part of Figure 7.1. The language for production system modeling is another language

used in Resource Modeling Tool (introduced in Section 5.1), but it has similar modeling concepts

to MultiProLan, such as capabilities, resources, storage, and material flows. Thus, we can say that

they both belong to the same language family – the languages are compatible, have overlapping
concepts, and complement each other, but they were developed and are considered separately. The

production system modeling language and Resource Modeling Tool are part of another research [5]

and will not be discussed in detail in this thesis.

Four main characteristics that differentiate MultiProLan from the languages and approaches

presented in Section 4.2.2 are:

• A core set of concepts needed to describe production process models suitable for

automatic generation of executable instructions (C1). The first characteristic enables

process designers to use MultiProLan to model production processes ready for automatic
instruction generation and execution.

• Two detail levels that allow distinction between resource-agnostic and resource-aware

production process models (C2). As it is hard to model production processes with all the

details required for the execution while keeping models clear, concise, and appropriate for
initial process analysis, two detail levels are introduced. The second characteristic makes

modeling easier for process designers by allowing them to specify production processes at

a high level, independent of the exact resources that will execute the process. Furthermore,
to automatically enrich these abstract models with specific shop floor details, methods to

transform resource-agnostic into resource-aware models are required.

• A core set of concepts needed to model error handling (C3). The third characteristic

enables process designers to use MultiProLan to model production process errors that may

occur. During the process execution, various errors may occur, and they need to be modeled
alongside the corrective steps to remove the damage caused by the errors.

• Unification of concepts from different manufacturing documents, such as BOM, FPC,

and PFMEA, into a single, uniform production process model, allowing automatic

generation and update of manufacturing documentation from the single model (C4).
The fourth characteristic allows various users, such as process and quality engineers, to

collaborate on creating the same model from different viewpoints. Thus, different aspects

of a production process can be integrated into a uniform model instead of having several
documents covering various aspects. Accordingly, having a uniform process model with

100 Multi-Level Production Process Modeling Language

information usually stored in multiple documents makes it possible to automatically
generate and update the manufacturing documentation from such a model.

When modeling a production process by using MultiProLan, there are several assumptions or

constraints in place that a modeler must be aware of:

• A production process may be modeled for execution in a single facility or a single smart

factory. However, multi-facility collaboration is not yet supported.

• Existing factory resources executing modeled process steps are smart enough to understand
basic high-level instructions, such as pick, place, move, or assemble.

• Once online, resources introduce themselves to the system and provide the needed

semantics on how to use them.

• Storage in a production facility, such as smart shelves, is already filled with materials and

parts and cannot be depleted.

In the following sections, the abstract and concrete syntaxes of MultiProLan are described, as

well as Process Modeling Tool.

7.2 Abstract Syntax of MultiProLan

To make the MultiProLan meta-model diagram more concise and easier to understand, we divided

its concepts into four parts. The first two parts of the meta-model cover modeling concepts of MasL

and DetL at Execution Layer. The third part of the meta-model covers modeling concepts at Error
Handling Layer, while the fourth part of the meta-model covers the extensions needed for the

automatic generation of manufacturing documentation. Therefore, we divided this section into four

subsections based on these four meta-model parts.

7.2.1 Master-Level Modeling Concepts at Execution Layer

The MasL part of the MultiProLan meta-model used at Execution Layer is depicted in Figure 7.2.
Process designers use these modeling concepts to create MasL models. A production process is

modeled using the Process class, which represents the root model element. A process version

(version) can be specified as models are stored in Knowledge Base and can be changed or reused
at any time. A process is composed of at least one process element (ProcessElement), and process

elements can come in the form of process steps (ProcessStep), gates (Gate), unordered sets of steps

(UnorderedSteps), or sub-processes (SubProcess). Each process also comprises relationships

(Relationship) between process elements. As the knowledge of the execution starting point is

needed, a start process step must be referenced from a process (startStep).

There are two types (type) of relationships (ERelationshipType):

• FLOW – representing a control flow between process elements; and

• COLLABORATION – representing a message flow between process steps.

Relationships have the message attribute (message) specified whenever a message needs to be
sent between collaboration process steps. Also, relationships have the logical condition

(logicalCondition) specified whenever they are used in selection or iteration patterns. There are

input (inRelationship) and output (outRelationship) relationships connected to a process element,

and each relationship must have its source (source) and target (target) process element.

M
u
lti-L

ev
el P

ro
d
u
ctio

n
 P

ro
cess M

o
d
elin

g
 L

an
g
u
ag

e
 1

0
1

Figure 7.2. The first part of the meta-model used for MasL model creation at Execution Layer.

102 Multi-Level Production Process Modeling Language

Additional constraints exist when specifying a relationship:

• relationship's source and target cannot reference the same process element;

• there cannot be two flow-type relationships that have the same source and target elements;

• each flow-type relationship cannot have the message attribute specified;

• each collaboration-type relationship must have the message attribute specified; and

• each collaboration-type relationship cannot have the logicalCondition attribute specified.

These constraints are specified in OCL, which code is implemented inside the Ecore-based

meta-model. The code of these constraints is presented in Listing 7.1.

A process step is composed of a capability (Capability) required to perform an activity and

products (Product) on which the activity is to be performed. A capability has an indicator of whether

it requires storage (requiresStorage) to be executed in the real world.

Each product has an identifier of a product type it belongs to (catalogId), as well as an indicator
of whether it is a final product (isFinal) or an intermediate one. A process step can have input

products (inProducts), representing products on which an activity is to be performed, and output

products (outProducts), representing products that are the result of performing the activity. There
is also the quantity attribute (quantity), representing the number of products used as input to a

process step or produced as output of the process step.

A material flow should be specified for every product. An input product can be considered as
equivalent (equivalents) to products of some previous process steps, or it can be brought from

storage (isStored). An output product can be used in the following process steps or stored in storage.

Every product and capability may have constraints (Constraint), such are dimensions, color,

and mass. Constraints will be considered by Orchestrator when it decides which smart resources
can perform a process step. A constraint has a physical dimension (physicalDimension), such as

mass and width, a relational operator (relationalOperator), such as =, !=, <, >, <=, >=, and a value

(value). Optionally, it has a metric unit (metricUnit), such as gram and meter, but there is no metric
unit for constraints such as color. A product has constraints with the equivalency relational operator,

as they describe its characteristics (e.g., width = 0.5 meters), while capability constraints can have

any relational operator. For example, if the pick capability has the following constraint: width < 1

meter, it means that a resource with the pick capability is needed to pick a product, and not just any
resource, but the resource that can pick objects whose width is less than 1 meter. The

1

2

3

4

5

invariant relationshipsCannotBeRecursive('Source and target elements of each
relationship must be different.'):
 Relationship.allInstances()->forAll(r | r.source <> r.target);
invariant singleFlowRelationshipBetweenElements('There cannot be more than a
single flow-type relationship between the same source and target elements.'):
 Relationship.allInstances()->forAll(r1, r2 | ((r1 <> r2) and
 (r1.type = ERelationshipType::FLOW and r2.type = ERelationshipType::FLOW))
 implies ((r1.source <> r2.source) or (r1.target <> r2.target)));
invariant flowRelationshipCannotHaveMessage('The message attribute cannot be
specified for a flow-type relationship.'):
 Relationship.allInstances()->forAll(r | r.type = (ERelationshipType::FLOW)
 implies (r.message = null or r.message = ''));
invariant collaborationRelationshipMustHaveMessage('The message attribute must be
specified for each collaboration-type relationship.'):
 Relationship.allInstances()->forAll(r |
 r.type = (ERelationshipType::COLLABORATION) implies (r.message <> null
 and r.message <> ''));
invariant collaborationRelationshipCannotHaveLogicalCondition('The logical
condition attribute cannot be specified for a collaboration-type relationship.'):
 Relationship.allInstances()->forAll(r |
 r.type = (ERelationshipType::COLLABORATION) implies
 (r.logicalCondition = null or r.logicalCondition = ''));

Listing 7.1. Constraints related to flow-type and collaboration-type relationships.

Multi-Level Production Process Modeling Language 103

relationalOperator attribute domains for product and capability constraints are defined in the

Product and Capability classes by using OCL and they are presented in Listing 7.2.

1

2

invariant productConstraintRelationalOperatorDomain('The equivalency (=)
relational operator must be used in product constraints.'):
 self.constraints->forAll(c | c.relationalOperator = '=');
invariant capabilityConstraintRelationalOperatorDomain('A capability constraint
relational operator must have one of the following values: =, !=, <, >, <=, >='):
 self.constraints->forAll(c | Set{'=', '!=', '<', '>', '<=', '>='}
 ->includes(c.relationalOperator));

Listing 7.2. The specification of the relational operator domain in product and capability

constraints.

Some capabilities may require parameters (Parameter) to be specified. For example, the

drilling position must be specified to drill a hole. A parameter has two attributes: a key or a name

(key) of the parameter and a value (value) of such a parameter.

Process steps can be of different types (type), having one of the following values

(EProcessStepType):

• START – the first process step;

• END – the last process step; and

• REGULAR – other process steps that may contain capabilities and products.

The start and end process steps have additional constraints implemented using OCL and

presented in Listing 7.3:

• the start and end process steps do not have any capabilities or products;

• exactly one start process step and one end process step have to exist per each production

process model;

• the start process step cannot have any input flow-type relationships (but it is possible for

the start process step to contain input error-type relationships, as discussed in Section

7.2.3), and must contain a single output flow-type relationship; and

• the end process step cannot contain output relationships and must contain a single input

flow-type relationship.

1

2

3

4

5

6

7

invariant startProcessStepCannotContainProductsOrCapability('The start process
step cannot contain products or a capability.'):
 ProcessStep.allInstances()->forAll(ps | (ps.type = EProcessStepType::START)
 implies (ps.inProducts->isEmpty() and ps.outProducts->isEmpty() and
 ps.capability = null));
invariant endProcessStepCannotContainProductsOrCapability('The end process step
cannot contain products or a capability.'):
 ProcessStep.allInstances()->forAll(ps | (ps.type = EProcessStepType::END)
 implies (ps.inProducts->isEmpty() and ps.outProducts->isEmpty() and
 ps.capability = null));
invariant startProcessStepMustExist('A single start process step must exist.'):
 ProcessStep.allInstances()->select(ps | ps.type = EProcessStepType::START)
 ->size() = 1;
invariant endProcessStepMustExist('A single end process step must exist.'):
 ProcessStep.allInstances()->select(ps | ps.type = EProcessStepType::END)
 ->size() = 1;
invariant startProcessStepCannotContainInputFlowRelationship('The start process
step cannot contain an input flow-type relationship.'):
 ProcessStep.allInstances()->forAll(ps | (ps.type = EProcessStepType::START)
 implies (ps.inRelationships->forAll(r | r.type <> ERelationshipType::FLOW)));
invariant startProcessStepMustHaveSingleOutputRelationship('The start process
step must have a single output flow-type relationship.'):
 ProcessStep.allInstances()->forAll(ps | (ps.type = EProcessStepType::START)
 implies (ps.outRelationships->size() = 1));
invariant endProcessStepCannotHaveOutputRelationship('The end process step cannot
have an output relationship.'):

104 Multi-Level Production Process Modeling Language

8

 ProcessStep.allInstances()->forAll(ps | (ps.type = EProcessStepType::END)
 implies (ps.outRelationships->isEmpty()));
invariant endProcessStepMustHaveSingleInputFlowRelationship('The end process step
must have a single input flow-type relationship.'):
 ProcessStep.allInstances()->forAll(ps | (ps.type = EProcessStepType::END)
 implies (ps.inRelationships->select(r | r.type = ERelationshipType::FLOW)
 ->size() = 1));

Listing 7.3. Constraints related to the start and end process steps.

By introducing process step types, two more constraints need to be defined and they are

implemented using OCL as presented in Listing 7.4:

• the startStep relation from the Process class must reference the start process step; and

• a collaboration-type relationship can only be created between regular process steps.

1

2

invariant startStepRelationMustReferenceStartProcessStep('The startStep relation
from the process must reference the start process step.'):
 self.startStep.type = EProcessStepType::START;
invariant collaborationRelationshipMustConnectRegularProcessSteps('Collaboration
relationships must connect only regular process steps.'):
 Relationship.allInstances()->forAll(r |
 (r.type = ERelationshipType::COLLABORATION) implies
 ((ProcessStep.allInstances()->exists(ps | ps.type = EProcessStepType::REGULAR
 and ps = r.source)) and (ProcessStep.allInstances()->exists(ps |
 ps.type = EProcessStepType::REGULAR and ps = r.target))));

Listing 7.4. Constraints related to the startStep relation and the collaboration-type relationship.

A process step has a notation (notation), having one of the following values

(EProcessStepNotation):

• NONE – a notation needed for the start and end process steps;

• OPERATION – an activity that changes input products and creates output products;

• INSPECTION – an activity to perform various checks on products; and

• DELAY – necessary waiting activities.

A process step can have its description (description) to provide additional information about

it and is used when a human worker executes a process step. A process step can have a completion
criterion (completionCriterion), indicating when a process step is finished. It also can have an

acceptance criterion (acceptanceCriterion), providing boundaries in which completion of the

process step is acceptable. For example, a wooden plank needs to be cut, and its width should be

500 mm, representing the completion criterion. However, it is acceptable to have the wooden plank
cut with a deviation of +/- 1 mm, representing the acceptance criterion – to have the wooden plank

cut between 499 mm and 501 mm. These two attributes are related to production quality and are

currently represented as string attributes. Our meta-model, especially the part on production quality,

can be extended further and is considered a future work.

Besides process steps, gates (Gate) can be used as elements of a control flow. Gates of different

types (type) are needed to specify entry and exit points of (EGateType):

• decision branches (DECISION) – to decide which structured set of process elements to
execute based on a certain condition;

• iteration branches (ITERATION) – to repeat the execution of a structured set of process

elements a certain number of times or until a certain condition is met;

• parallelism branches (PARALLELISM) – to execute structured sets of process elements in

parallel;

• collaboration branches (COLLABORATION) – to execute structured sets of process

elements in parallel, but there are process steps that must not start or finish their activities
before they get a message that other process steps finished their activities; and

Multi-Level Production Process Modeling Language 105

• variation branches (VARIATION) – the same intermediate or finished product can be

produced by executing different structured sets of process elements, representing process
variations, or different intermediate or finished products can be produced by executing

different structured sets of process elements, representing product variations of the same

product family.

Currently, the collaboration flow is based on a message exchange between process steps or
resources and is modeled at a high level of abstraction using MultiProLan. With the collaboration

modeling concept, it is possible to synchronize the actions of different resources. Whenever there

is a collaboration between human workers and machines, safety aspects should also be considered,
but this is part of our future work – to create an additional modeling layer to support the modeling

of safety aspects. Also, as part of our future work, more complex communication between resources

needs to be available for modeling using MultiProLan.

A gate has two additional attributes, which values need to be specified. Gates come in pairs,

having the same pair identifier (pairId) and the same type. In addition, gates in the pair have

different purposes regarding input and output branches (EGateFlowType). One gate is diverging

(DIVERGING), meaning branches are going from the gate, and another one is converging
(CONVERGING), meaning branches are going to the gate, distinguished by the flow attribute. These

constraints are defined by using OCL and presented in Listing 7.5.

1

2

3

invariant gateMustHaveItsPair('Each gate must have only one paired gate with the
same pairId.'):
 Gate.allInstances()->forAll(g | Gate.allInstances()->select(pairGate |
 g <> pairGate and g.pairId = pairGate.pairId)->size() = 1);
invariant pairGatesMustBeOfTheSameType('Gates in the pair must be of the same
type.'):
 Gate.allInstances()->forAll(g1, g2 | (g1 <> g2 and g1.pairId = g2.pairId)
 implies (g1.type = g2.type));
invariant pairGatesMustHaveOppositeFlowPurposes('Gates in the pair must have
opposite flow purposes.'):
 Gate.allInstances()->forAll(g1, g2 | (g1 <> g2 and g1.pairId = g2.pairId)
 implies (g1.flow <> g2.flow));

Listing 7.5. Constraints related to the pair of gates.

There are two constraints regarding diverging and converging gates, presented in Listing 7.6:

• each diverging gate that is not part of the error handling must have a single input flow-type
relationship and at least two output flow-type relationships (diverging gates that are part of

the error handling use error-type relationships, as discussed in Section 7.2.3); and

• each converging gate that is not part of the error handling must have at least two input flow-

type relationships and a single output flow-type relationship.

1

2

invariant divergingGateRelationships('A diverging gate must have a single input
and at least two output flow-type relationships.'):
 Gate.allInstances()->forAll(g | (not(g.isErrorGroup) and
 g.flow = EGateFlowType::DIVERGING) implies
 (g.inRelationships->select(r | r.type = ERelationshipType::FLOW)->size() = 1
 and g.outRelationships->select(r | r.type = ERelationshipType::FLOW)->
 size() >= 2));
invariant convergingGateRelationships('A converging gate must have at least two
input and a single output flow-type relationships.'):
 Gate.allInstances()->forAll(g | (not(g.isErrorGroup) and
 g.flow = EGateFlowType::CONVERGING) implies
 (g.inRelationships->select(r | r.type = ERelationshipType::FLOW)->size() >= 2
 and g.outRelationships->select(r | r.type = ERelationshipType::FLOW)->
 size() = 1));

Listing 7.6. Constraints related to diverging and converging gates.

106 Multi-Level Production Process Modeling Language

There is also an additional constraint regarding the gate's type. Whenever a diverging decision
or a diverging iteration gate is created, all its output relationships must have the logicalCondition

attribute specified, as selection and iteration patterns require a logical condition to be specified for

each output branch. Such a constraint is presented in Listing 7.7.

1

invariant selectionAndIterationPatternsMustHaveLogicalCondition('A logical
condition must be specified for each output flow-type relationship of diverging
decision and iteration gates.'):
 Gate.allInstances()->forAll(g | (not(g.isErrorGroup) and
 (g.type = EGateType::DECISION or g.type = EGateType::ITERATION) and
 g.flow = EGateFlowType::DIVERGING) implies (g.outRelationships->forAll(r |
 (r.type = ERelationshipType::FLOW) implies (r.logicalCondition <> null
 and r.logicalCondition <> ''))));

Listing 7.7. A constraint related to selection and iteration patterns.

As stated before, variation branches and gates are used to represent different process or product

variations. Therefore, each process has at least one variation (ProcessVariation), having semantic
identifier (semanticId) and description (description) as attributes. Process variations are

hierarchically organized; each variation has at most one parent variation (superVariation) and may

have many child variations (subVariations). Each process element is assigned to at least one
variation of the process it belongs to but may also be assigned to many variations, as a process

element may appear in different variations. The constraint that restricts process element variations

to only refer to variations of the parent process is implemented by using OCL inside the Process
class and presented in Listing 7.8. Therefore, such a constraint forbids process element variations

to refer to variations from other processes. Similar constraints are defined for other classes (e.g.,

the startStep relation from the Process class cannot reference the start step from another process)

but are not presented in this thesis as they all have the same structure. A process has a default
variation chosen from variations it has, which can help process designers speed up the process

elements modeling by assigning the default variation to the elements automatically.

1

invariant elementVariationMustReferToParentProcess('Each element variation must
refer to a variation of the parent process.'):
 self.elements->forAll(e | e.variations->forAll(v |
 self.variations->exists(processVariation | v = processVariation)));

Listing 7.8. A constraint related to a process element variation.

The unordered steps element (UnorderedSteps) contains different process steps that can be

executed in any order. Each unordered set of steps that is not part of error handling must contain at

least two regular process steps that are not part of the error handling elements. Process steps in an
unordered set of steps cannot be connected with any relationships. These constraints are

implemented by using OCL and presented in Listing 7.9.

1

2

3

invariant unorderedSetMustContainAtLeastTwoProcessSteps('An unordered set of
steps must contain at least two process steps.'):
 UnorderedSteps.allInstances()->forAll(us | us.steps->size() >= 2);
invariant unorderedSetMustContainOnlyRegularProcessSteps('An unordered set of
steps must contain only regular process steps that are not from the error
group.'):
 UnorderedSteps.allInstances()->forAll (us | (not(us.isErrorGroup)) implies
 (us.steps->forAll(ps | not(ps.isErrorGroup) and
 ps.type = EProcessStepType::REGULAR)));
invariant unorderedSetCannotContainRelationships('There are no relationships in
unordered steps.'):
 UnorderedSteps.allInstances()->forAll(us | us.steps->forAll(ps |
 ps.inRelationships->isEmpty() and ps.outRelationships->isEmpty()));

Listing 7.9. Constraints related to an unordered set of steps.

Multi-Level Production Process Modeling Language 107

There is also a sub-process (SubProcess) – a process element that references another process

in order to:

• make process models more readable and less complex;

• increase the reusability of processes; and

• decrease the redundancy of process elements.

The material flow must be included in sub-processes, meaning that a sub-process can have

parameters (ProcessParameter) of different types (type), having one of the following values

(EProcessParameterType):

• INPUT_PARAMETER – represents input parameters, i.e., materials or products that are

coming to the sub-process; and

• OUTPUT_PARAMETER – represents output parameters, i.e., materials or products that are

coming from the sub-process as a result.

Sub-process parameters can reference products or other parameters, as sub-processes can be
part of a larger control flow, just like any process element can. A process also contains parameters,

which are referenced from sub-process parameters, and they are connected to other parameters or

products in the process. As a sub-process may be the final process element in a process, its output

parameter can represent the final product (isFinal) of the process.

Finally, most of the presented classes inherit the IDNamedElement class comprising identifier

(id) and name (name) attributes.

7.2.2 Detail-Level Modeling Concepts at Execution Layer

The DetL part of the MultiProLan meta-model used at Execution Layer is depicted in Figure 7.3.
This part of the meta-model is an extension of the MasL part, and together they are used to create

DetL models.

As DetL process models include transportation and configuration activities, process step

notations are extended by:

• TRANSPORTATION – production logistic activities of transporting materials or resources;

and

Figure 7.3. The second part of the meta-model used for DetL model creation at Execution Layer.

108 Multi-Level Production Process Modeling Language

• CONFIGURATION – activities to configure resources, such as changing a griper or

determining the robot's position.

A process step is extended with a resource (resource) that is to execute it using a required

capability. A product is also extended with specific storage (storage) that needs to be defined for

every input product retrieved from storage and for every output product placed in storage. Storage

also represents a resource, as it can be equipped with sensors to monitor materials and products and

with various devices.

A resource (Resource) inherits the IDNamedElement class, and it can be an actuator

(isActuator) – an active resource, i.e., one that performs different activities during production, or
storage (isStorage) – a passive resource, i.e., one that stores products. A resource can be both an

actuator and storage; e.g., some robots can execute different tasks but also have a place on

themselves to temporarily store products. Additional constraints must be defined for resources and

they are implemented using OCL as presented in Listing 7.10:

• a process step can reference (resource) only a resource that is an actuator;

• a product can reference (storage) only a resource that is storage; and

• start and end process steps cannot reference a resource.

1

2

3

4

invariant processStepMustReferToActuator('A process step must refer to a resource
that is an actuator.'):
 ProcessStep.allInstances()->forAll(ps | (ps.resource <> null) implies
 (ps.resource.isActuator));
invariant productMustReferToStorage('A product must refer to a resource that is
storage.'):
 Product.allInstances()->forAll(p | (p.storage <> null) implies
 (p.storage.isStorage));
invariant startProcessStepCannotContainResource('The start process step cannot
contain a resource.'):
 ProcessStep.allInstances()->forAll(ps | (ps.type = EProcessStepType::START)
 implies (ps.resource = null));
invariant endProcessStepCannotContainResource('The end process step cannot
contain a resource.'):
 ProcessStep.allInstances()->forAll(ps | (ps.type = EProcessStepType::END)
 implies (ps.resource = null));

Listing 7.10. Constraints related to resources and storage.

Resources can also be classified (type) with the following values (EResourceType):

• HUMAN – a human worker;

• MACHINE – a machine or a robot; and

• NONE – a resource is neither a human nor a machine, e.g., a regular storage shelf with no
smart devices or sensors attached.

Whenever a resource type is NONE, the resource must represent storage and it is not an

actuator. Such a constraint is implemented and presented in Listing 7.11.

1

invariant noneTypeResourceMustBeRegularStorage('A resource of the NONE type must
be storage and not an actuator.'):
 Resource.allInstances()->forAll(r | (r.type = EResourceType::NONE) implies
 (r.isStorage and not(r.isActuator)));

Listing 7.11. A constraint related to regular storage.

A protocol (protocol) must be specified for each resource, which is important information,

especially during instruction generation, as instructions will be sent to protocol transformation

components. Depending on the resource type and protocol, human-readable or machine-specific
instructions will be generated for every process step. A resource's status (status) needs to be known

before and during the process execution, and it can have the following values (EResourceStatus):

Multi-Level Production Process Modeling Language 109

• RUNNING – a resource is running and ready for process steps execution;

• STOPPED – a resource has stopped working;

• MALFUNCTIONING – a resource is malfunctioning and cannot be used before it is

repaired; and

• MAINTAINING – a resource is currently maintained.

A process element also has an execution status (status) through which process monitoring is

implemented, and it can have the following values (EProcessElementStatus):

• NONE – a process element is not yet executed;

• ACTIVE – a process element is currently being executed; and

• INACTIVE – a process element has been successfully executed.

When extended with active and passive resources, production logistics, and configuration

activities, process models are ready for the automatic generation of executable instructions.

7.2.3 Modeling Concepts at Error Handling Layer

In Figure 7.4, the third part of the meta-model is presented, representing modeling concepts needed

for error handling at Error Handling Layer. This additional layer to production process models is

used both at MasL and DetL. The central class of this part of the meta-model is an error (Error),
which inherits the IDNamedElement class, and a process step can contain many errors related to it.

However, the start and end process steps cannot contain errors, and such constraints are

implemented using OCL and presented in Listing 7.12.

1

2

invariant startProcessStepCannotContainErrors('The start process step cannot
contain errors.'):
 ProcessStep.allInstances()->forAll(ps | (ps.type = EProcessStepType::START)
 implies (ps.errors->isEmpty()));
invariant endProcessStepCannotContainErrors('The end process step cannot contain
errors.'):
 ProcessStep.allInstances()->forAll(ps | (ps.type = EProcessStepType::END)
 implies (ps.errors->isEmpty()));

Listing 7.12. Constraints related to the start and end process step errors.

Figure 7.4. The third part of the meta-model used for the error handling modeling at Error

Handling Layer.

110 Multi-Level Production Process Modeling Language

An error has its domain (domain), which can be (EErrorDomain):

• LOCAL – representing a local error that has the specific handler for the process in which it
occurs; and

• GLOBAL – representing a global error that can occur in multiple process steps of the same

or other processes.

Depending on the selected domain, an error can reference a process element

(localErrorHandler) – starts a control flow of process elements that handle the error, or an error
can reference another process (globalErrorHandler) – a process that is already modeled and

represents a handler for multiple errors. The constraints determining localErrorHandler or

globalErrorHandler to be specified if the LOCAL or GLOBAL domain is chosen are implemented

using OCL and presented in Listing 7.13.

1

2

invariant localErrorHandlerDependsOnDomain('A local error handler must be
specified for the local domain.'):
 Error.allInstances()->forAll(e | (e.domain = EErrorDomain::LOCAL) implies
 (e.localErrorHandler <> null and e.globalErrorHandler = null));
invariant globalErrorHandlerDependsOnDomain('A global error handler must be
specified for the global domain.'):
 Error.allInstances()->forAll(e | (e.domain = EErrorDomain::GLOBAL) implies
 (e.globalErrorHandler <> null and e.localErrorHandler = null));

Listing 7.13. Constraints related to local and global error handlers.

An error also has a type (type), and it can be (EErrorType):

• NAMED_ERROR – an error that is known to process designers and can be expected; and

• DEFAULT – an unknown error with a default error handler.

Only a single default error handler can be specified per process element, and such a constraint

is implemented using OCL and presented in Listing 7.14. If a default error handler is not specified
for a process element, a default error handler at the process level (unidentifiedErrorHandler) will

be used.

1

invariant singleDefaultErrorHandlerPerStepCanExist('Only a single default error
handler per process step can exist.'):
 ProcessStep.allInstances()->forAll(ps | ps.errors->select(e |
 e.type = EErrorType::DEFAULT)->size() <= 1);

Listing 7.14. A constraint related to a default error handler.

There is also an error status (status) during process execution, having one of the following

values (EErrorStatus):

• INACTIVE – an error has not occurred yet; and

• ACTIVE – an error has occurred and corrective steps are going to be applied.

Also, a process element has a new status value added (ERROR), and this status is active

whenever an error occurs at the process element during the execution. To distinguish default process
elements from process elements specified for local error handlers, there is an indicator

(isErrorGroup) for each process element. Similar to the constraint related to the unordered set of

steps that is not from the error group (discussed in Section 7.2.1), each unordered set of steps that
is from the error group must contain regular process steps that are from the error group. Such a

constraint is implemented using OCL and presented in Listing 7.15.

Multi-Level Production Process Modeling Language 111

1

invariant errorUnorderedSetMustContainOnlyRegularErrorProcessSteps('An unordered
set of steps from the error group must contain only regular process steps that
are from the error group.'):
 UnorderedSteps.allInstances()->forAll(us | (us.isErrorGroup) implies
 (us.steps->forAll(ps | ps.isErrorGroup and
 ps.type = EProcessStepType::REGULAR)));

Listing 7.15. A constraint related to an unordered set of error steps.

An additional relationship type (ERROR) is added to connect error process elements. There

are also constraints related to error-type and flow-type relationships, presented in Listing 7.16:

• there cannot be two error-type relationships that have the same source and target elements;

• an error-type relationship source element must be from the error group, but a target element

does not have to be from the error group (e.g., after some corrective steps, an error flow
returns to the main process steps);

• each error-type relationship cannot have the message attribute specified; and

• a flow-type relationship source and target elements cannot be from the error group.

1

2

3

4

invariant singleErrorRelationshipBetweenElements('There cannot be more than a
single error-type relationship between the same source and target elements.'):
 Relationship.allInstances()->forAll(r1, r2 | ((r1 <> r2) and
 (r1.type = ERelationshipType::ERROR and r2.type = ERelationshipType::ERROR))
 implies ((r1.source <> r2.source) or (r1.target <> r2.target)));
invariant errorRelationshipSourceMustBeErrorElement('A source of an error-type
relationship must be an element from the error group.'):
 Relationship.allInstances()->forAll(r | (r.type = ERelationshipType::ERROR)
 implies (r.source.isErrorGroup));
invariant errorRelationshipCannotHaveMessage('The message attribute cannot be
specified for an error-type relationship.'):
 Relationship.allInstances()->forAll(r | r.type = (ERelationshipType::ERROR)
 implies (r.message = null or r.message = ''));
invariant flowRelationshipCannotConnectErrorElements('A flow-type relationship
cannot connect elements from the error group.'):
 Relationship.allInstances()->forAll(r | (r.type = ERelationshipType::FLOW)
 implies (not(r.source.isErrorGroup or r.target.isErrorGroup)));

Listing 7.16. Constraints related to error-type and flow-type relationships.

Gates from the error group have similar constraints to the gates that are not from the error

group (discussed in Section 7.2.1), and they are presented in Listing 7.17:

• Each diverging gate from the error group must have at least two output error-type

relationships. There is no additional constraint for input relationships as a diverging gate

from the error group can have no input relationships whenever it is only referenced from
an error, or it can have multiple input relationships if some corrective steps are going back

to the gate to repeat some steps.

• Each converging gate from the error group must have at least two input error-type

relationships and a single output error-type relationship.

• Output error-type relationships from a diverging decision or a diverging iteration gate must

have the logicalCondition attribute specified.

1

2

invariant errorDivergingGateRelationships('A diverging gate from the error group
must have at least two output error-type relationships.'):
 Gate.allInstances()->forAll(g | (g.isErrorGroup and
 g.flow = EGateFlowType::DIVERGING) implies (g.outRelationships->select(r |
 r.type = ERelationshipType::ERROR)->size() >= 2));
invariant errorConvergingGateRelationships('A converging gate from the error
group must have at least two input and a single output error-type
relationships.'):
 Gate.allInstances()->forAll(g | (g.isErrorGroup and
 g.flow = EGateFlowType::CONVERGING) implies (g.inRelationships->select(r |

112 Multi-Level Production Process Modeling Language

3

 r.type = ERelationshipType::ERROR)->size() >= 2 and
 g.outRelationships->select(r | r.type = ERelationshipType::ERROR)->
 size() = 1));
invariant errorSelectionAndIterationPatternsMustHaveLogicalCondition('A logical
condition must be specified for each output error-type relationship of diverging
decision and iteration gates from the error group.'):
 Gate.allInstances()->forAll(g | (g.isErrorGroup and
 (g.type = EGateType::DECISION or g.type = EGateType::ITERATION) and
 g.flow = EGateFlowType::DIVERGING) implies (g.outRelationships->forAll(r |
 (r.type = ERelationshipType::ERROR) implies (r.logicalCondition <> null and
 r.logicalCondition <> ''))));

Listing 7.17. Constraints related to gates from the error group.

Each error has a code – an identifier of an error type it belongs to (code), a message (message),
and a description (description) that will be presented to supervisors who monitor process execution

after the error occurs.

7.2.4 Modeling Concepts for the Automatic Generation of Manufacturing

Documentation and Guided Production

In Figure 7.5, the fourth and the last part of the meta-model is presented, representing modeling

concepts or meta-model extensions needed for the automatic generation of manufacturing

documentation of different types and for guided production.

The Process class is extended with the following attributes, which are used in most generated

documents:

• company – a name of a company in which a process model is created;

• author – a name of an author or authors who created a process model;

• date – a date when a process model is created; and

• isProposedProcess – an indicator of whether a process model is a proposal or is already
finished and approved by stakeholders.

The Process class is also extended with image (image) and video (video) links related to the

whole process of producing the final product. These attributes are needed for guided production to

export images and videos and send them to human workers. The ProcessStep, UnorderedSteps, and
SubProcess classes are also extended with the image (image) and video (video) attributes for the

same purpose, but also for the worker-manual-like documentation, such as Job Breakdown Sheets

(JBSs) [238].

Expert workers or instructors use JBS to train new workers to create products. Therefore, each

process step needs to be described, and images need to be included to visually present what needs

to be done. Also, each process step can include key points (KeyPoint), indicating the details workers

need to pay attention to while performing process steps. However, the start and end process steps
cannot contain key points. These constraints are implemented using OCL and presented in Listing

7.18.

1

2

invariant startProcessStepCannotContainKeyPoints('The start process step cannot
contain key points.'):
 ProcessStep.allInstances()->forAll(ps | (ps.type = EProcessStepType::START)
 implies (ps.keypoints->isEmpty()));
invariant endProcessStepCannotContainKeyPoints('The end process step cannot
contain key points.'):
 ProcessStep.allInstances()->forAll(ps | (ps.type = EProcessStepType::END)
 implies (ps.keypoints->isEmpty()));

Listing 7.18. Constraints related to the start and end process steps and key points.

Multi-Level Production Process Modeling Language 113

A key point has a type (type), including one of the following values (EKeyPointType):

• COMPLETE_JOB – how to perform a process step to complete the task;

• COMPLETE_JOB_EASIER – how to perform a process step to complete it easier;

• BREAK_JOB – what and how not to do as it could compromise the successful finishing of
the task; and

• INJURE_WORKER – what could cause an injury to a worker.

The KeyPoint class inherits the IDNamedElement class, and each key point has a reason

(reason) to be considered during a process step execution. Key points can also be used in guided

production to help workers during production.

The ProcessStep class is extended with time (time) and work center (workCenter) attributes.

Estimation of the process step's duration and the name of the work center in which the process step

is to be performed are needed by documents, such as BOMO.

To automatically generate PFMEA spreadsheets, the Error class needs to be extended with the

following attributes [28]:

• mode – a potential failure mode representing a manner in which process step requirements

may potentially fail to be met;

• effect – a potential effect of a failure on the product, customer, worker, machine, or the
following operations;

Figure 7.5. The fourth part of the meta-model used for the automatic generation of manufacturing

documentation and guided production.

114 Multi-Level Production Process Modeling Language

• severity – represents a relative ranking of how serious the effect is, usually ranging from 1

to 10;

• classification – used to classify any product or process characteristic;

• cause – a potential cause of a failure represents how the failure can occur;

• occurrence – represents a relative ranking of the likelihood of a failure to occur, usually
ranging from 1 to 10;

• prevention – a description of control to prevent a failure from occurring;

• detectionDescription – a description of how to detect a failure; and

• detection – represents a relative ranking of a failure to be detected, usually ranging from 1

to 10.

In the following section, the concrete graphical syntax of MultiProLan is presented, which is

created based on the abstract syntax presented in this section.

7.3 Concrete Syntax of MultiProLan

There are two types of concrete syntaxes – textual and graphical, but there is no general answer to

which one is better overall [239]. We decided to create a graphical syntax for MultiProLan to make
the modeling easier for process designers as they are already familiar with other graphical

languages, such as ASME FPC [25]. The decision was also made to enable visualized process

monitoring, as well as to enable visualization of detected errors during production. As BPMN [30]
is commonly used to model processes of different kinds, and as it is easy to interpret its models

[240], some BPMN concepts, such as activities and gateways, are used in the graphical syntax of

MultiProLan. The graphical syntax is also inspired by ASME FPC as process designers are used to
these charts. Some FPC elements are used in process step notations, such as operation,

transportation, inspection, and delay. Also, the storage element is used within a product, indicating

that a product should be retrieved from storage or placed in storage.

The graphical symbols used for the MultiProLan's concrete syntax are presented and described
in Table 7.1, starting with MasL modeling concepts at Execution Layer and Error Handling Layer

and ending with DetL modeling concepts at both layers. All the MasL modeling concepts are used

for DetL modeling as well.

Table 7.1. The basic modeling concepts of MultiProLan.

Description Symbol

Master-Level modeling concepts at Execution Layer

The Start (a) and End (b) process steps

indicate the starting and finishing points

of the process execution.

(a) (b)

Regular process steps can be an operation
(a), inspection (b), or delay (c). These

process step notations indicate to process

designers what kinds of activities need

execution.

(a) (b) (c)

Gates are used as a control flow

mechanism, forming a decision (a),

iteration (b), parallelism (c),

collaboration (d), or product/process

variations (e).

(a) (b) (c) (d) (e)

Relationships are used to form a control

flow (a) or a collaboration (b).

(a) (b)

Multi-Level Production Process Modeling Language 115

A capability is specified for each regular

process step. Different parameters can be
specified as key-value properties. A key

represents a parameter's name.

An input product represents a material, a

part, or an intermediate product. It can be

an output from a previous process step (a)

or be retrieved from storage, which is

indicated by a triangle icon (b). Different

constraints can be specified for an input
product.

(a) (b)

An output product represents an

intermediate or finished product. It can

be used as an input for a subsequent step

(a) or stored in storage, which is

indicated by a triangle icon (b). Different

constraints can be specified for an output

product.

(a) (b)

A product equivalency link is used to

represent equivalent products, i.e., when

an input product of a process step is the
same product that was present in a

previous process step.

An unordered set of steps includes

process steps that can be executed in any

order (a). Process steps can be hidden

using a +/- button to reduce model

complexity (b).

(a) (b)

A sub-process (a) is used to reference

another process model. It is a mechanism
for reducing the complexity of a model.

A sub-process (b) can be equipped with

input and output parameters.

(a) (b)

Input parameters (a) are used to send

products to sub-processes, and output

parameters (b) are used to receive

products from sub-processes. They are

also used in processes to connect with

products or sub-process parameters.

(a) (b)

A parameter link connects a parameter

with a product or with another parameter.

116 Multi-Level Production Process Modeling Language

Key points indicate to workers how to

successfully perform a process step (a),

how to perform a process step easier (b),
what could make a process step fail (c),

and what could injure workers while

performing a process step (d). Key points

can be added to a process step they are

related to (e).

(a) (b) (c) (d)

(e)

Product and process variations are

hierarchically presented within a tree

structure (a). The root node is a process

model (b), having variations as sub-

nodes (c). Each variation can have many

sub-variations.

(a)

(b) (c)

Master-Level modeling concepts at Error Handling Layer

Production errors can be modeled within

local error handlers with action steps as

part of the current model (a) or within
global error handlers as separate

processes (b). Unidentified errors can

also be modeled within local error

handlers (c) or global error handlers (d).

(a) (b) (c) (d)

Error relationships are used to link errors

and error handler process elements.

Process elements that are part of a local

error handler in MasL. These elements
are from the error group, and they are

marked with a red border.

Multi-Level Production Process Modeling Language 117

Additional modeling concepts for Detail-Level at Execution Layer

Additional types of process steps are

added to support transportation (a) and

configuration (b) activities.

(a) (b)

Active smart resources can be attached to

process steps representing a human (a) or

a machine/robot (b). Passive smart

resources can be attached to products

representing storage (c).

(a) (b) (c)

Additional modeling concepts for Detail-Level at Error Handling Layer

As new types of process steps are added

in DetL, additional process step types are

added to a local error handler as well.

A classification of MultiProLan features according to already introduced production process

modeling requirements in Section 4.2.1 is outlined in Table 7.2. Therefore, a way in which

MultiProLan fulfills the requirements is presented in the table.

Table 7.2. MultiProLan requirements fulfilment.

Requirement Description Figure

R1

process step

A MasL process step
contains input and output

products and a capability (a).

In addition to the MasL

process step, a DetL process

step also contains a smart

resource (c). Products and a

capability can be hidden by

using a process step's +/-

button (b, d) to make a

process model diagram more

readable.

(a) (b)

(c) (d)

R2.1

sequence

A sequence is represented by

two or more process

elements connected with a

flow-type relationship.

118 Multi-Level Production Process Modeling Language

R2.2

decision

A decision is created

between two decision gates

with two or more conditional

branches and process

elements between them.

R2.3

iteration

An iteration is created

similarly to a decision, with

one branch returning to the

converging iteration gate.

R2.4

parallelism

Parallelism is created

between two parallelism

gates with two or more

parallel branches and

process elements between

them.

R3

material flow

A material flow is

represented by products
retrieved from or placed in

storage and product

equivalency links, indicating

that a product of one process

step is the same product of

another process step. In

MasL models, particular

storage is not specified but

just an indicator that storage

is needed (a), while in DetL

models, storage is specified

with all the necessary details
(b).

(a) (b)

Multi-Level Production Process Modeling Language 119

R4

message flow

A message flow is created

between two collaboration

gates with two or more

branches and process steps

between them. Process steps

are also connected with
collaboration-type

relationships representing

message exchange between

them. For example, one

process step cannot start

before another one is started,

or one process step cannot

finish before another one is

finished.

R5

unordered

steps

An unordered set of steps is

created with an element

containing different process

steps that can be executed in

any order.

R6

product and
process

variations

Product and process
variations are defined in a

hierarchical structure (a). In

a process model, variations

are specified between two

variation gates with two or

more branches and process

elements between them.

Each process element in a

process model references

variations it belongs to from

the previously defined tree

structure. Therefore, each
branch represents a different

variation. There are two

types of variations: product

and process variations.

Product variations (b) refer

to differences in products

from the same product

family. For example, a

wooden box can have a fully

wooden lid or a wooden lid

with a glass opening in the
middle. Process variations

(c) refer to different ways of

(a)

(b)

120 Multi-Level Production Process Modeling Language

creating the same product.

For example, a hole can be

created by borer drilling and

some sanding, or it can be

made just by laser drilling.

(c)

R7

sub-process

A sub-process (a) is
represented by a single

process element containing a

reference to another process

model (b).

(a) (b)

R8.1

local error

handler

A local error handler is
specified within a process

model. There are handlers of

known errors (at the

Assemble box process step)

and handlers of unknown

errors (at the Glue fabric

process step).

R8.2

global error

handler

A global error handler is a

process model (b), that is

referenced from another

process model (a). There are

handlers of known errors (at

the Insert pins in bottom side

process step) and handlers of

unknown errors (at the Insert

pins in upper side process
step).

(a) (b)

Multi-Level Production Process Modeling Language 121

R9

executable or

suitable for
automatic

instruction

generation

A process model suitable for

automatic execution is

composed of the Start and
End process steps and at

least one regular process

step with products, a

capability, and a resource.

R10

production

system

independence

The independence of a

production process model
from the specific production

system is achieved through

two detail levels. A MasL

production process model

contains only process steps

with input and output

products and a capability (a).

A DetL production process

model is created by

enriching a MasL model

with transportation and
configuration process steps,

resources, and storage (b).

These additional elements

are related to the production

system in which the process

is to be executed.

(a) (b)

As we created the graphical concrete syntax for MultiProLan, we had to create different

mechanisms to reduce the diagram complexity and make it more readable when multiple modeling

elements exist. At the level of language syntax, MultiProLan's complexity of model diagrams is

addressed similarly to programming languages with a functional decomposition approach, e.g., by
using sub-processes and global error handlers. At the modeling tool level, there are mechanisms to

hide some parts of a diagram to simplify the view of the diagram and deal with the scalability

problem. Such mechanisms are different modeling layers, +/- buttons within process steps and

unordered sets of steps, the zoom feature, and element-type filtering tools.

The product family variability also needs to be addressed in production process modeling,

especially in the context of Industry 4.0, but it increases the complexity of model diagrams.

Variation gates with several branches between them are used to distinguish different product
variations of the same product family. The sub-process modeling concept can address the variability

of product families, as the same sub-process can be used in different product variations. Also,

filtering tools can be used to choose a product variation to be presented and hide other variations

from a diagram.

In the following section, we present an overview of Process Modeling Tool, which utilizes the

MultiProLan language, and describe the tool's main components.

122 Multi-Level Production Process Modeling Language

7.4 Process Modeling Tool

Process Modeling Tool, described in this section, is the one presented as a part of the architecture

outlined in Figure 5.1. The tool utilizes MultiProLan and helps process designers model production

processes. It was created in accordance with the principles of Rapid Software Development (RSD)
[241] and by using the Eclipse Sirius framework. RSD aims to minimize the gap between software

development and deployment by developing software in short rapid parallel cycles. It is built on

agile practices, such as continuous integration and fast value delivery, making rapid and continuous

experimentation on the software possible. As the requirements and development of MultiProLan
and Process Modeling Tool were frequently changing during our research, due to the new and

dynamic area of Industry 4.0, RSD fitted to such a changing and dynamic development process. In

the rest of this section, we describe the main parts and features of Process Modeling Tool.

The user interface of Process Modeling Tool is presented in Figure 7.6. The tool is composed

of the following:

i) Working area – a canvas in which process designers create MultiProLan models;

ii) Toolbar – an array of action buttons leading to various features;
iii) Tool palette – a palette containing tools for the creation of various elements and

relationships;

iv) Properties panel – a panel with a changeable set of properties depending on the selected
diagram, element type, or relationship type;

v) Diagram overview – an area representing the whole diagram, even if the diagram is too

large for Working area; and
vi) Model explorer – a set of projects containing MultiProLan models.

Figure 7.6. The Process Modeling Tool user interface.

Multi-Level Production Process Modeling Language 123

The Sirius framework automatically generates Working area; Toolbar with predefined action
buttons discussed further in this section; empty Tool palette; Properties panel for each element and

relationship type, as well as for the diagram; Diagram overview and Model explorer areas. Toolbar

can be extended by adding new action buttons and Properties panel can be customized by changing

which properties need to be shown or hidden or by changing their interface. Tool palette is the only

tool part that needs to be fully implemented.

Toolbar has automatically generated action buttons, such as ones to arrange elements on a

diagram, refresh a diagram, choose modeling layers, filter diagram elements, zoom in and out, and
export a diagram as an image. In Figure 7.7, we present Process Modeling Tool Toolbar, while

newly added or changed action buttons are framed. The action button that is modified is the

modeling layers button, presented in Figure 7.8, with Error Handling Layer turned on. Execution
Layer is the default one and is always visible, while Error Handling Layer and the layer with key

points are optionally visible. The key points layer contains only the key point modeling concept

and as a rather small layer, we considered it as a part of Execution Layer when mentioned in

previous sections. It is created in Process Modeling Tool only to make a model diagram more
readable. By turning on or off some modeling layer, a model diagram changes by showing or hiding

elements related to the layer. Tool palette changes as well, which is discussed further in this section.

There are four action buttons added to Toolbar:

a) Orchestrate MasL process model – a MasL process model presented in Working area is

sent to Orchestrator, after which it is automatically transformed into a DetL model. Both

MasL and DetL models are stored in Knowledge Base. Afterward, high-level instructions
are generated by Instruction Generator and sent to Digital Twin for execution.

b) Execute DetL process model – a DetL process model presented in Working area is sent to

Instruction Generator to automatically transform it into high-level instructions. These high-

level instructions are then sent to Digital Twin for execution.
c) Generate documentation – a MasL or DetL process model presented in Working area is

automatically transformed into manufacturing documentation of various types. After the

Generate documentation button is selected, a dialog is opened as presented in Figure 7.9.
A user can choose various documentation to be generated, which product or process

variation to use for the generation, and a location to save the generated documentation.

d) Filter variations – a MasL process model presented in Working area is filtered based on the

chosen product or process variation. A user can choose a product or process variation and
choose whether this variation is to be used as the default one, meaning that each new

element created on a diagram is going to belong to the chosen default variation. After a

variation is chosen, elements and relationships belonging to other variations are hidden.
Therefore, only the chosen variation and its super variations are presented to a user.

Tool palette is presented in Figure 7.10, and it consists of the following sections: (i) process

steps; (ii) gates; (iii) sub-processes and parameters; (iv) capabilities and products, alongside
parameters and constraints; (v) resources and storage (if a DetL process model is being created,

otherwise this section is hidden); and (vi) relationships. Each tool has a tooltip, providing additional

information to users on how to use the tool. There are also various shortcuts that help users model

Figure 7.7. Process Modeling Tool Toolbar.

Figure 7.8. The Process Modeling Tool layer button.

124 Multi-Level Production Process Modeling Language

production processes faster, such as when creating product equivalents, a product equivalent link
can be used to connect a process step and a product of some previous process step, thus

automatically creating an input product for the chosen step with same properties as the previous

one. Another example is when creating capability parameters or product constraints which can be

done by double clicking a capability or a product, after the parameter or constraint properties can

be inserted by typing their values with a space as a delimiter for each property value.

Tool palette changes whenever a modeling layer is turned on or off. As presented in Figure

7.11, when Error Handling Layer is turned on, Tool palette is extended with the errors and error
elements sections, while when the key points layer is turned on, Tool palette is extended with the

key points section. The feature of extending or collapsing Tool palette based on the activation status

of modeling layers helps process designers when modeling production processes, as tools not used
by a particular user group are hidden from them, lowering the level of details in Process Modeling

Tool. For example, process engineers only see basic Tool palette with key points optionally, while

quality engineers see the error tools as well. Therefore, a particular user group is not burdened by

the tools that the users do not use.

As process designers need to communicate with Knowledge Base to store new process models

or retrieve the existing ones, Process Modeling Tool has import and export features as well. By

choosing a process model located in the Model explorer area of Process Modeling Tool, a user can
start the export feature. Afterward, a user can choose a server and a port of Orchestrator with

Knowledge Base to which a process model should be sent. Then, a process model is automatically

transformed into a JSON file, which is sent to the location of Orchestrator's Application
Programming Interface (API) that waits for the process model in the JSON format. The

Orchestrator's inner components automatically transform a JSON process model into a format

appropriate for Vaticle TypeDB and programmatically store the process model in Knowledge Base

permanently.

Production process models stored in Knowledge Base can be imported into Process Modeling

Tool via the import feature. By choosing a modeling project located in the Model explorer area of

Process Modeling Tool, a user can start the import feature. A user can choose a server and a port of
Orchestrator with Knowledge Base from which a process model should be received. Afterward, a

user can choose a process model from Knowledge Base that needs to be imported into Process

Modeling Tool. The process model is programmatically read from Vaticle TypeDB Knowledge

Figure 7.9. The generate documentation dialog.

Multi-Level Production Process Modeling Language 125

Base by Orchestrator's inner components and automatically transformed into the JSON file. The
JSON process model is sent to Process Modeling Tool's API, after which it is automatically

transformed into the production process model and stored in the chosen modeling project.

Figure 7.10. Tool palette of Process Modeling

Tool without additional layers turned on.

Figure 7.11. Tool palette of Process Modeling

Tool with both additional layers turned on.

126 Multi-Level Production Process Modeling Language

7.5 Summary

In this section, we presented MultiProLan, a DSML for production process modeling, whose

models are suitable for dynamic production orchestration and automatic generation of executable

resource instructions and manufacturing documentation. First, we presented the abstract syntax of
MultiProLan and various constraints as part of the syntax. The abstract syntax is developed based

on the FODA models related to production process modeling, discussed in the previous section.

Then, we presented the concrete graphical syntax that is implemented based on the presented

abstract syntax. The graphical syntax was chosen over the textual syntax as process designers are
already familiar with various process charts. MultiProLan is created in a way to fulfill the

requirements defined in Section 4.2.1, thus allowing the creation of resource-agnostic production

process models that can be easily orchestrated in a chosen production system and transformed into
resource-aware production process models and executable resource instructions. The modeling of

production processes by means of MultiProLan is possible through Process Modeling Tool that is

discussed at the end of this section. Process Modeling Tool covers various features that provide

easier production process modeling and make process model diagrams more readable and

understandable.

To test the usability of MultiProLan, Process Modeling Tool, and the whole MD solution in

the assembly industry, we created two proof-of-concept use cases. The first use case demonstrates
the possibilities of MultiProLan and Process Modeling Tool in creating production process models

with different product variations. The second use case demonstrates the usability of the whole MD

solution in creating objects from LEGO® bricks. Different robots, including industrial mobile
robots, and human workers participated in the second use case in which they received instructions

from our MD solution and assembled objects from the bricks. These two use cases are presented in

detail in Section 8.

Besides demonstrating the usage of our MD solution in various use cases, it needs to be tested
by users from different user groups. MultiProLan and Process Modeling Tool, as the core elements

of our MD solution, were evaluated by participants of the experiment, in which they modeled

production processes. The evaluation participants tested whether MultiProLan and Process
Modeling Tool fulfill certain quality characteristics. The evaluation process and results are

described in Section 9.

Application of the MD Solution and MultiProLan 127

8 Application of the MD Solution and MultiProLan

Our MD solution and MultiProLan are tailored primarily for discrete product manufacturing,

especially for the assembly industry, but can be used for production process modeling in general.

Therefore, our solution is mainly applied in assembly production, with the potential to be applied
in the process industry as well. Many researchers have also been applying their solutions in

assembly production, as such production can range from a relatively easy production process with

a few simple process steps to a very complex production process with numerous steps. Therefore,
assembly production can be a good starting point to make a proof-of-concept of a novel solution,

as it has discrete and precise process steps included in more or less complex production processes.

To validate our MD solution and MultiProLan, we applied them in two proof-of-concept use cases

and presented them in this section.

The first use case is created to demonstrate the possibilities of MultiProLan and Process

Modeling Tool. In this use case, a customized wooden box is assembled, whose production process

model includes concepts, such as different product and process variations, collaboration between

resources, and parallel execution of process steps.

The second use case represents a demonstration environment created to test the solution in

assembling objects from LEGO® bricks, avoiding failure costs associated with the real production
system. In this demonstration environment, different robots are used. Some robots are industrial

mobile robots, which are often used in real production, and some are research-grade smart robots

used for demonstration purposes. Human workers are also present in this use case in order to

assemble LEGO® bricks.

Our demonstration environment supports the assembly of objects from LEGO® bricks, whose

production processes do not require the full potential of MultiProLan, as only a few MultiProLan

modeling concepts are used to model these processes. Also, the manufacturing documentation
automatically generated from such production process models does not have too much content to

present. Therefore, we created the use case of assembling a customized wooden box, which is not

a part of the demonstration environment, to present various MultiProLan modeling concepts, and

instructions and documentation generated from the created models.

First, we present the use case related to the customized wooden box production in Section 8.1,

to introduce the usage of MultiProLan with its full potential. Afterward, the use case related to the

demonstration environment is covered in Section 8.2, to present the usage of the whole MD solution

in practice. The summary of these two proof-of-concept use cases is discussed in Section 8.3.

128 Application of the MD Solution and MultiProLan

8.1 Example of MultiProLan Models of Customized Wooden Box

Assembly

In this section, we present a process of wooden box production modeled using MultiProLan and

Process Modeling Tool. The wooden box MultiProLan process models were already discussed in
[10,11], and in this thesis, they are extended and discussed in more detail. The box is composed of

the following parts, presented in Figure 8.1:

i) four wooden planks that represent different sides of the box;

ii) a thin wooden back side;
iii) a piece of fabric that is to be glued on the back side;

iv) dividers that separate the space inside the box; and

v) a lid that is to be placed on the top of the box.

First, the four wooden planks are assembled into a frame using wooden dowel pins, and the

wooden back side is hammered into the frame, creating the box. A piece of fabric is then glued at

the bottom of the box. Afterward, various dividers can be chosen and glued inside the box, and a
lid of the selected type is placed at the top of the box. An example of the produced box is presented

in Figure 8.2. Production of wooden boxes is performed in a smart factory, which is composed of:

• the smart shelf – storage where wooden planks, dowel pins, fabrics, dividers, and lids are

stored;

• the first assembly table – storage used to assemble four wooden sides;

• the second assembly table – storage used to hammer the back side into the frame;

• the third assembly table – storage used to glue fabric and dividers and place lids;

• the recycle bin – storage for impaired parts;

• the finishing area – storage for finished boxes; and

• human workers and mobile robots – smart resources able to perform required activities.

This section is divided into the following subsections. In Section 8.1.1, a MasL process model
of wooden box production created by process designers is presented. A DetL process model of

Figure 8.1. Parts of the wooden box used for the assembly.

Application of the MD Solution and MultiProLan 129

assembling the frame, created by Orchestrator, is presented in Section 8.1.2. Based on the presented

DetL process model, the automatically generated high-level and resource-specific instructions are

presented in Section 8.1.3, as well as the process monitoring. In Section 8.1.4, the automatically

generated manufacturing documentation from created process models is outlined.

8.1.1 Master-Level Process Model of Wooden Box Production

In this section, we present a MasL process model of wooden box production, composed of the main

process model and several sub-process models. The main MasL model of wooden box production

is presented in Figure 8.3. It is composed of the following elements:

• the Start process step;

• the sub-process of assembling a frame of the box;

• the sub-process of hammering a back side into the frame;

• the sub-process of gluing a piece of fabric and dividers into the box and placing a lid on the

top of the box;

• the visual inspection of the box;

• based on the inspection result, the created wooden box is discarded if there is any defect

identified, or the box is stored if there is no defect identified on the box; and

• the End process step.

The output of the Assemble frame sub-process represents a frame, which is the input to the

Hammer back side sub-process, and the output of this sub-process is the frame with the fixed back

side, used in the following Glue fabric and dividers and place lid sub-process as the input. Outputs

and inputs of sub-processes are connected via sub-process parameters and parameter links. After
the box is completed, it is used in the Inspect box process step to visually detect if there is any

defect. In the Inspect box process step, an input product is the same as the output of the previous

sub-process, and they are connected through the parameter link between the input product and the
output parameter. Finally, between the decision gates, a choice is made whether the box is to be

discarded or stored based on the inspection results.

Figure 8.2. A variation of the assembled wooden box.

130 Application of the MD Solution and MultiProLan

In the rest of this section, we describe the first three sub-processes in detail. The first sub-
process has parallel process steps of assembling the frame and is used to demonstrate the creation

of the DetL process model and resource instructions, as well as to demonstrate process execution

and monitoring. The second sub-process has collaborative activities to hammer the back side into

the frame. The third sub-process has different variations of dividers and lids; thus, it is used to

demonstrate product variations, as well as the automatic generation of the documentation.

The Assemble frame sub-process is presented in Figure 8.4. This MasL process model is

composed of the following elements:

• the Start process step;

• inserting wooden dowel pins into wooden sides and assembling left-bottom and right-upper
sides in parallel;

• assembling the frame with the previously assembled left-bottom and right-upper sides; and

• the output process parameter and the End process step.

Figure 8.3. The main MasL process model of wooden box production.

Application of the MD Solution and MultiProLan 131

The process starts with two branches placed between parallelism gates. These two branches
have equivalent process steps of inserting wooden dowel pins into one wooden side and assembling

two wooden sides into half of the frame. Therefore, only the assembly of the left-bottom sides is

discussed in detail, and the assembly of the right-upper sides is done similarly.

The first process step in the left-hand side branch is to insert wooden dowel pins into the
bottom side. The process step represents an operation as it is depicted with a circle icon to the left

of the process step name. It has two input products, the frame's bottom side, and four wooden dowel

pins, all retrieved from storage. The inverted triangle icon to the left of a product name represents
that an input product should be retrieved from storage. Two input products have various constraints

that are to be considered by Orchestrator when it assigns smart resources able to perform tasks. The

bottom side has width, length, and thickness constraints, representing the dimensions of the plank,
later used to determine which smart resources are able to pick or place it. Similarly, wooden dowel

pins have length and diameter constraints. There are also additional constraints, such as the mass

of the planks, but they are not presented in the diagram to make it as simple as possible. The same

process step has the Place capability with parameters representing four wooden dowel pins with
0.07 m of space between them, while two pins are inserted into the left side of the wooden plank,

and other two are inserted into the right side of the plank. The output product of this process step is

the bottom side with wooden dowel pins, which will not be stored but used by the following process
step. The following step is the assembly of the bottom and left sides. The input of such a process

step is the bottom side from the previous process step and the left side that needs to be retrieved

Figure 8.4. The Assemble frame MasL sub-process model.

132 Application of the MD Solution and MultiProLan

from storage. The process step has the Assemble capability with parameters similar to the Place

capability, and the output of such a process step is the assembled left-bottom side of the frame.

The assembly of the right-upper sides is represented with two process steps equivalent to the

process steps of assembling the left-bottom sides. Inserting wooden dowel pins and assembling

each half of the frame are process steps that can be executed in parallel, as they are modeled between
two parallelism gates. After each half of the frame is assembled, the following process step

(Assemble frame) is to assemble the frame, having two input products, the left-bottom and right-

upper sides, resulting from the previous two process steps. These input products are not retrieved
from storage but are equivalent to the previous process steps' output products, as depicted by the

directed dashed lines in the process diagram. This process step has the Assemble capability and the

frame as the output product. The output product is sent to the output parameter and used in the

following sub-process (Hammer back side) of the main process (see Figure 8.3).

The Hammer back side sub-process is depicted in Figure 8.5. The MasL model presented in

the figure is composed of the following elements:

• the input process parameter and the Start process step;

• collaborative activities of hammering the back side into the frame produced in the previous

sub-process;

• the visual inspection of the frame with the back side;

• based on the inspection result, the created frame is discarded if there is any defect identified,
or the sub-process ends and the frame is sent to the following sub-process; and

• the output process parameter and the End process step.

Figure 8.5. The Hammer back side MasL sub-process model.

Application of the MD Solution and MultiProLan 133

The sub-process starts with collaborative activities of holding the frame and hammering the
back side into the frame. These activities are presented as process steps in two branches between

collaboration gates. The Hold frame process step has the frame as the input product, and this frame

is the one assembled in the Assemble frame sub-process, imported through the input parameter.

This process step has the Hold capability and the frame with the back side as the output product.
Another collaborative process step is Hammer back side, which is the hammering of the back side

into the frame that is held. The input products of the Hammer back side process step are the back

side and eight nails needed for hammering. These input products are retrieved from storage. This
process step has the Hammer capability, having a predefined number of nails that should be

hammered, e.g., eight. It does not have an output product, as the back side is going to be hammered

into the frame, and thus, the output product is modeled only in the Hold frame process step. The
Hold frame and Hammer back side process steps are collaborative process steps, meaning they are

done in a parallel but in a synchronized manner. Hammering the back side should not start before

the message arrives that the frame is being held. The frame should be held until the message arrives

that the hammering is finished. Such a message exchange is presented in the process diagram with
dotted-line relationships between those two process steps. After the collaborative process steps are

finished, the frame with the back side is inspected for any deformation. The Inspect frame process

step requires a visual inspection of the frame, and the inspected frame is sent to the output
parameter, used in the following sub-process (Glue fabric and dividers and place lid) of the main

process (see Figure 8.3). The decision to discard the frame or finish the sub-process depends on

whether the frame passes all checks.

The inspected frame that passes visual checks in the Hammer back side sub-process is used in

the Glue fabric and dividers and place lid sub-process, presented in Figure 8.6. The MasL model

presented in the figure is composed of the following elements:

• the input process parameter and the Start process step;

• gluing a piece of fabric onto the bottom of the frame;

• variations of gluing dividers of different types;

• waiting for the glue to dry;

• variations of placing lids of different types; and

• the output process parameter and the End process step.

Before discussing the process model presented in Figure 8.6, the wooden box product
variations need to be mentioned. The wooden box can have dividers of different types: (i) a single

divider that vertically divides the box into two halves; (ii) two single dividers that vertically divide

the box into three thirds; and (iii) a cross divider that divides the box into four quarters. The wooden
box can have lids of different types: (i) a fully wooden lid; and (ii) a wooden lid with a glass opening

in the middle. The wooden box can have any combination of dividers and lids. Therefore, six

product variations of the wooden box are modeled and presented in Figure 8.7, and the images of

these six product variations are presented in Figure 8.8.

Each process element in the wooden box production process model has variations assigned in

which the elements appear. For example, in the Glue fabric and dividers and place lid sub-process

model, presented in Figure 8.6, the Place wooden lid process step has three variations assigned: 1.1
Box_SD_WL, 1.3 Box_TD_WL, and 1.5 Box_CD_WL, meaning that the wooden lid can be used in

any divider type previously used. However, the Wait for glue to dry process step has all the

variations assigned, as this process step must be executed independently of any variation. The
assigned variations to process elements are considered during the process execution and the

documentation generation when the desired product variation is chosen. In addition, the process

model diagram, presented in Figure 8.6, is burdened with details, even with only a few variations,

which can make the diagram hard to read by process designers. By using the Filter variations
function, outlined in Section 7.4, the complexity of the process model diagram can be reduced; thus,

process designers can be focused only on a single variation. For example, in Figure 8.9, we present

a process model diagram after the Filter variations function is executed, choosing the variation in

which two single dividers are glued, and the fully wooden lid is placed.

134 Application of the MD Solution and MultiProLan

Figure 8.6. The Glue fabric and dividers and place lid MasL sub-process model.

Application of the MD Solution and MultiProLan 135

Figure 8.7. The wooden box product variations model.

1.1 Box_SD_WL 1.2 Box_SD_WGL

1.3 Box_TD_WL 1.4 Box_TD_WGL

1.5 Box_CD_WL 1.6 Box_CD_WGL

Figure 8.8. The wooden box variations.

136 Application of the MD Solution and MultiProLan

Figure 8.9. The Glue fabric and dividers and place lid MasL sub-process model with a single

variation (1.3 Box_TD_WL).

Application of the MD Solution and MultiProLan 137

For the rest of this section, we describe the Glue fabric and dividers and place lid sub-process
model presented in Figure 8.6. The sub-process starts with gluing a piece of fabric onto the bottom

of the frame with the hammered back side. The input products of the Glue fabric process step are

the inspected frame, which results from the previous sub-process, imported through the input

parameter, and a piece of fabric retrieved from storage. The process step has the Glue capability,
with a parameter that indicates that gluing needs to be applied fully on the piece of fabric and the

bottom of the box. The output product of the Glue fabric process step is the frame with the piece of

fabric glued, which is used in one of the following variations.

After the Glue fabric process step, there are three branches between variation gates, each

representing a single option of modeled dividers that can be glued in the box. The left-hand side

branch contains the Glue single divider process step, which divides the box into two halves. The
input products are the frame with the fabric, created in the previous process step, as well as the

single divider retrieved from storage. The Glue capability does not have the method parameter but

the coordinates of two points on which the glue is to be applied and placed in the box. The output

of this process step is the frame with the glued divider. The middle branch contains the Glue cross
divider process step, which divides the box into four quarters. The process step has similar input

and output products and the Glue capability. The difference is that a cross divider is used instead of

a single divider, and the glue needs to be applied on the four points and placed in the box. The right-
hand side branch contains two Glue single divider process steps, each gluing a single divider, but

in different places in the box, dividing the box into three thirds. After the fabric and dividers are

glued, the process step of waiting for the glue to dry for 30 seconds is performed. This process step
represents a delay activity, as depicted with the icon to the left of the process step name. The input

product of such a process step is the frame with glued fabric and dividers, which is the output

product from one of the previous process steps from different variations. The Wait for glue to dry

process step has the Wait capability, with a parameter representing the waiting time, and the output

product of the process step is the frame with the dried glue.

The frame is then used in one of two following branches placed between two variation gates.

Both represent the activity of placing a lid at the top of the frame, creating the box as a final product.
A fully wooden lid is used in the left-hand side branch, while in the right-hand branch, a wooden

lid with a glass opening in the middle is used. As an output product of these two process steps, the

box is sent to the output parameter and used in the main process for the inspection activity and the

decision of whether to discard or store the box.

Based on the presented MasL process models, DetL process models are automatically

generated. The Assemble frame DetL process model is discussed in the following section to present

the automatic generation of such models and to demonstrate differences between MasL and DetL

process models.

8.1.2 Detail-Level Process Model of Assembling the Frame

Based on the presented MasL models and production system knowledge from Knowledge Base,

Orchestrator automatically generates DetL models of wooden box production for the chosen

production system. For example, the Assemble frame DetL sub-process model, presented in Figure
8.10, is automatically generated from the MasL sub-process model presented in Figure 8.4. Other

sub-processes are created in a similar manner and thus are not discussed further in this thesis. To

lower the complexity of the presented model diagram in Figure 8.10, products and capabilities are
depicted just for process steps in the left-hand side parallelism branch, while for other process steps,

they are modeled but hidden in the diagram using the +/- buttons.

The generated DetL model comprises process steps similar to the related MasL model, but the
DetL model is extended with additional details and new process steps, such as production logistic

activities and mobile robot configurations. These new process steps are needed to produce the box

automatically.

138 Application of the MD Solution and MultiProLan

Figure 8.10. The Assemble frame DetL sub-process model.

Application of the MD Solution and MultiProLan 139

The Assemble frame DetL sub-process model is composed of the following elements:

• the Start process step;

• moving to the smart shelf and determining resource position when needed;

• picking up input products from the smart shelf in any order;

• moving to the first assembly table and determining resource position when needed;

• inserting wooden dowel pins into wooden sides and assembling left-bottom and right-upper
sides in parallel;

• assembling the frame with the previously assembled left-bottom and right-upper sides; and

• the output process parameter and the End process step.

The assembly of left-bottom and right-upper sides are assigned in parallel to a human worker

and a mobile robot, respectively. In both parallel branches, transportation process steps are added,
which are depicted with the arrow icon to the left of the process step name. To assemble the left-

bottom side, the human worker needs to move to the smart shelf, pick the left and bottom sides and

wooden dowel pins in any order, move to the first assembly table, insert pins into the bottom side,

and assemble the left and bottom sides. Transportation process steps only have the Move capability
with the location parameter, as this capability requires no input or output products. The Pick process

steps have a capability and an input product, but an output product does not exist, as it is the same

as the input product. Unlike the MasL model, in which input products have general, i.e., abstract
storage as an indicator that the products need to be retrieved from it, the DetL model input products

have specific storage, such as the specific smart shelf, from which the products need to be retrieved.

The inverse triangle objects set on input products depict the specific storage. By selecting storage,

it is possible to specify or change the values of the storage attributes. The same can be done with
resources set on process steps. As for the Insert pins in bottom side process step input products,

they are equivalent to the previously picked bottom side and wooden dowel pins. Such equivalent

links are denoted with the directed dashed lines between equivalent products. Similarly, the
Assemble left-bottom sides process step input products are equivalent to the previously picked left

side and the produced bottom side with wooden dowel pins. These two process steps' capabilities

and output products are the same as in the MasL model.

The second parallel branch represents the assembly of the right-upper sides by the mobile

robot. The process steps in this branch are similar to those of the previously described branch,

except for the configuration process steps. As the mobile robot assigned to these process steps is

not equipped with a machine vision module, it must calibrate itself after each movement to
determine its position. The gear icon to the left of the process step name can differentiate

configuration process steps from others.

After the left-bottom and right-upper sides are assembled, the same human worker assembles
the frame. This activity does not require any transportation process steps as the human worker and

the required input products are already at the first assembly table. The assembled frame is used in

the following sub-process (Hammer back side), as it is sent via the output parameter to the main

process model (see Figure 8.3).

 Such a DetL process model is ready for the automatic generation of instructions, as it contains

all the necessary information related to a process and a production system. In the following section,

we present an example of generated instructions as well as process monitoring during the execution

of the process.

140 Application of the MD Solution and MultiProLan

8.1.3 Automatically Generated Instructions and Process Monitoring

The DetL model, presented in Figure 8.10, is suitable for the automatic generation of instructions.
Instruction Generator generates high-level instructions from the DetL model and passes the

instructions to Digital Twin. By using protocol transformation components, Digital Twin

transforms high-level instructions into resource-specific instructions, i.e., human-readable or

machine-specific instructions, and sends them to smart resources for execution. In this section, we

present automatically generated instructions for a smart mobile robot and a human worker.

As an example, we demonstrate the instruction generation for the Pick right side process step,

which is similar to the Pick left side process step presented in detail in Figure 8.10. It contains the
Pick capability without any parameters, and the Right side input product with constraints and the

specific storage, the smart shelf, from which it is to be retrieved. There is also the smart mobile

robot assigned to execute such a process step.

From such a DetL process step, Instruction Generator can automatically generate a high-level
instruction. An example of such a high-level instruction in a JSON format is presented in Listing

8.1. The instruction starts with the order identifier, which Orchestrator adds, indicating to which

customer order the process and process step belongs. Other instruction attributes are automatically
generated from the process model except for the scheduled time. After the process identifier is

specified, which relates to the executed process, the Pick right side process step attributes are

presented in Listing 8.1, such as the identifier, name, description, image path, and video path of the
process step. Afterward, the Pick capability object is specified, alongside its identifier, name,

indicator of whether it requires storage, and parameters. The parameters array is empty as the

modeled Pick capability does not have one specified. Input products and output products arrays are

specified next, with the output products array empty as there is no output product for the Pick right
side process step. Each product object in input and output products arrays has the following

attributes specified: identifier, name, quantity, and an indicator of whether the product is stored or

is the result of some previous process step. Based on the indicator value, the storage or the
equivalent object is specified. As the Right side input product is stored on the smart shelf, the

storage object is specified, as presented in Listing 8.1, and the equivalent object is empty. The smart

shelf storage object has the following attributes specified: identifier, name, and indicators of
whether the storage is an actuator as well or is storage only. The resource object is specified next.

A smart mobile robot is assigned to execute the instruction, and the following attributes are

specified for it: identifier, name, indicators of whether the resource is an actuator and whether it has

local storage on it, and the protocol to which the instruction is to be sent. The instruction ends with
the scheduled time attribute, automatically added by Orchestrator, indicating the estimation time

when the process step is to be executed.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

{
 "orderId": "720f89365d3a",
 "processId": "b6624c68-709d-4afa-a59a-8b0178af8f73",
 "processStepId": "2177e6b8-a653-4ebe-9cf2-fcf55d5a2b65",
 "name": "Pick right side",
 "description": "Pick a frame's right-side wooden plank.",
 "image": "<path>/PickRightSide.jpg",
 "video": "<path>/PickRightSide.avi",
 "capability": {
 "id": "e1a68dce-698c-41fc-af0d-20ff9e1ac093",
 "name": "Pick",
 "requiresStorage": true,
 "parameters": []
 },
 "inputProducts": [{
 "id": "31b93c3f-7ac1-4116-b1f5-b69a730f9b24",
 "name": "Right side",
 "quantity": 1,
 "isStored": true,
 "storage": {

Application of the MD Solution and MultiProLan 141

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

 "id": "88d376a8-ee43-4ca3-a1af-ff5ee7192d2f",
 "name": "Smart shelf",
 "isActuator": false,
 "isStorage": true
 },
 "equivalent": {}
 }],
 "outputProducts": [],
 "resource": {
 "id": "91a3f687-fe14-4897-909a-53bd63f0ef37",
 "name": "Mobile Robot M7",
 "isActuator": true,
 "isStorage": false,
 "protocol": "ROS"
 },
 "scheduledTime": "2023-02-14T13:45:30+00:00"
}

Listing 8.1. An example of the Pick right side high-level instruction.

The presented high-level instruction is sent to Digital Twin for execution in a simulation. It

can also be transformed into a machine-specific instruction automatically, which is sent to a shop

floor to be physically executed by a smart resource. As the resource protocol indicates that the high-
level instruction is to be sent through the ROS [227,228] protocol, the high-level instruction is

transformed into the ROS instruction. The smart mobile robot runs ROS and thus can perform

various ROS instructions.

An example of the Pick ROS instruction is presented in Listing 8.2, in a structured textual

form. The Pick instruction is to be sent to the service address composed of the smart resource's

name and the command to be executed or, in this case, the MobileRobotM7/Pick address. The
specific resource, such as Mobile Robot M7, has an action server and waits for a command to arrive,

after which the resource can send the feedback to an action client that sent the instruction. The

instruction begins with an indicator of whether a product is to be picked from the smart robot itself

or storage. The marker identifier refers to the storage location from which a product is to be picked,
e.g., the location of the smart shelf from which the right-side plank is to be picked. The instruction

ends with two more attributes related to the coordinates from which a product is to be picked. First,

the reference point in the coordinate system is specified, and then the related coordinates from the
reference point are specified, as well as the orientation of the product. In Listing 8.2, the smart shelf

marker position is specified as the reference point. The right-side planks are stored at the top of the

smart shelf, and their position is defined in the instruction. In addition, the orientation of the product

indicates that the right-side planks are not rotated but placed in line with the smart shelf.

1
2
3
4
5
6
7
8
9
10
11
12
13

isPickFromSelf: false
markerId: MarkerSS01
referencePoint: MarkerSS01
referencePose:
 position:
 x: 0
 y: 6
 z: 2
 orientation:
 x: 0
 y: 0
 z: 0
 w: 1

Listing 8.2. An example of the Pick right side machine-specific ROS instruction.

Another example of a high-level instruction is generated from the Assemble left-bottom sides

process step. It contains the Assemble capability with two parameters. The input products are

142 Application of the MD Solution and MultiProLan

equivalent to products of previous process steps, and the output product represents the assembled

Left-Bottom side. A human worker is assigned to execute such a process step.

A high-level instruction is automatically generated from such a process step and is presented

in Listing 8.3. This high-level instruction has a similar structure to the one presented in Listing 8.1.

However, there are a few differences that need to be discussed further. The Assemble capability has
two parameters specified in the process model. Therefore, these parameters must be part of the

instruction, as presented in lines 13 through 19. Each parameter has its key and value specified in

the instruction. Another difference is that input products result from previous process steps and not
storage. The isStored indicator is false, and the storage object is empty. Instead, the equivalent

object is specified as presented in lines 27 through 30 and 37 through 40. The output product is

presented in this instruction and specified in lines 42 through 49. Finally, compared to the
instruction presented in Listing 8.1, the last important difference this instruction introduces is the

human worker resource. In this instruction, a human worker is assigned, and the protocol of such a

resource is a human interface, referring that the instruction is to be sent to a human worker device.

1
2
3
4
5
6

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

{
 "orderId": "720f89365d3a",
 "processId": "b6624c68-709d-4afa-a59a-8b0178af8f73",
 "processStepId": "b6851c5e-2941-4568-8cdf-e1dfa67e300b",
 "name": "Assemble left-bottom sides",
 "description": "Assemble frame's left-side and bottom-side wooden planks. Two
 wooden dowel pins from the bottom-side plank need to be inserted into holes
 of the left-side plank.",
 "image": "<path>/AssembleLeftBottomSides.jpg",
 "video": "<path>/AssembleLeftBottomSides.avi",
 "capability": {
 "id": "982dbb73-53ad-4e21-b5f9-81fb803244",
 "name": "Assemble",
 "requiresStorage": true,
 "parameters": [{
 "key": "n",
 "value": "2"
 }, {
 "key": "r",
 "value": "0.07 m"
 }]
 },
 "inputProducts": [{
 "id": "6805e009-fc63-4a38-825a-e41d3326271124",
 "name": "Left side",
 "quantity": 1,
 "isStored": false,
 "storage": {},
 "equivalent": {
 "id": "3c89890d-8dc7-4a92-90bc-abec598978eb",
 "name": "Left side"
 }
 }, {
 "id": "0985589e-0a19-42f3-9153-04d0sadgq21c68",
 "name": "Bottom side with pins",
 "quantity": 1,
 "isStored": false,
 "storage": {},
 "equivalents": {
 "id": "99dd7833-ad56-45e5-a677-14d7258175f3",
 "name": "Bottom side with pins"
 }
 }],
 "outputProducts": [{
 "id": "e126c8c1-c38f-4756-a018-66506b04727e",
 "name": "Left-Bottom side",
 "quantity": 1,

Application of the MD Solution and MultiProLan 143

46
47
48
49
50
51
52
53
54
55
56
57
58

 "isStored": false,
 "storage": {},
 "equivalent": {}
 }],
 "resource": {
 "id": "ff30ac13-4b4e-4690-839e-b6c7c725ea74",
 "name": "Jovan Jovanović",
 "isActuator": true,
 "isStorage": false,
 "protocol": "human interface"
 },
 "scheduledTime": "2023-02-14T13:51:00+00:00"
}

Listing 8.3. An example of the Assemble left-bottom sides high-level instruction.

The Assemble left-bottom sides high-level instruction is sent to Digital Twin for execution in
a simulation. It can also be transformed into a human-readable instruction and sent to a human

worker to execute it on a shop floor. The high-level instruction needs to be transformed into a format

easily readable by human workers. It can be sent to an application running on a tablet, a smart
watch, a computer connected to a monitor in front of a worker, or an AR device. The human worker

application needs to contain the following elements:

• a textual description of a process step with key points helping a human worker perform a

task more easily;

• an image of how to perform a process step;

• a video of performing a process step played by a human worker whenever needed;

• an overview of a process model indicating the process status; and

• buttons to send feedback by a human worker when a process step is performed successfully,
or when an error appears.

A user interface mockup of the human worker application is presented in Figure 8.11. The user

interface varies depending on the device that is used. For example, if a monitor is used, all the

process step content can be presented. However, if a smart watch is used, only a process step name

and buttons for a completion status are presented.

After a DetL process model is transformed into instructions and the instructions are sent for

execution, the process execution status can be monitored. Monitoring can be done in Process
Modeling Tool by gathering the execution feedback from Digital Twin. Based on the gathered

Figure 8.11. A user interface mockup of the human worker application.

144 Application of the MD Solution and MultiProLan

feedback, the background color of process steps is changing. Process steps can be presented with

one of the four background colors, representing their status:

• white – a process step has not been executed yet;

• blue – a process step is currently being executed;

• red – an error has occurred during the execution; and

• green – a process step has been executed successfully.

In addition, when an error occurs, the error background color changes to red, indicating which

error occurred.

An example of monitoring the execution of the Assemble frame DetL sub-process model is

presented in Figure 8.12. To make the process model diagram as simple as possible, all capabilities

and products are hidden from it. The process monitoring snapshots are taken at five points in time:

• (t1) The Assemble frame process execution is started, and all process steps have a white

background, indicating they are not executed yet.

• (t2) Both the human worker and smart mobile robot are executing unordered process steps.
The human worker performed more tasks than the robot, as the robot had to be calibrated

after moving to the smart shelf.

• (t3) The human worker assembles the left and bottom sides while the mobile robot

determines its position in parallel.

• (t4) Parallel process steps are finished, and the human worker assembles the frame.

• (t5) The Assemble frame process execution is finished.

The process monitoring feature can help process designers detect and mitigate potential

bottlenecks and production process modeling errors. Such a feature is particularly useful when

Digital Twin is used in a simulation-only mode. Accordingly, potential bottlenecks and modeling

errors can be mitigated before they reach real production.

Besides the automatic instruction generation from process models, the manufacturing

documentation can also be automatically generated. The automatic generation and update of the

manufacturing documentation can reduce the time spent by process designers to keep the
documentation up to date manually. An example of the generated manufacturing documentation is

presented in the following section.

8.1.4 Automatically Generated Manufacturing Documentation

After process models are created by using MultiProLan and Process Modeling Tool, they can be

used by Documentation Generators to automatically generate and update the manufacturing
documentation. The automatic generation of manufacturing documentation can be particularly

useful when there are many product variations. Whenever an existing product changes or a new

product variation emerges, the documentation needs to be updated, which can happen frequently.

Thus, process designers need to spend much time manually changing it.

In this section, we present an example of automatically generated manufacturing

documentation based on the previously described process models. The manufacturing
documentation is automatically generated for the whole process model of wooden box production,

presented in Figure 8.3. However, for demonstration purposes, we present only the documentation

generated from the Glue fabric and dividers and place lid MasL and Assemble frame DetL sub-

process models in this section. More precisely, we present the documentation generated for the 1.3
Box_TD_WL product variation presented in Figure 8.9. In such a product variation, a piece of fabric

and two single dividers are glued, and after the glue is dried, the fully wooden lid is placed. These

are five sequential process steps enriched with all the necessary details required for generating the

manufacturing documentation.

A
p
p
licatio

n
 o

f th
e M

D
 S

o
lu

tio
n
 an

d
 M

u
ltiP

ro
L

an
 1

4
5

Figure 8.12. An example of monitoring the execution of the Assemble frame DetL sub-process model.

146 Application of the MD Solution and MultiProLan

From the Glue fabric and dividers and place lid MasL sub-process model, BOM, BOMO,
ASME FPC, and JBS documentation is generated. We start with the BOM document generated

from the model. First, in Figure 8.13, we present a template used for the automatic generation of

BOM documents. The BOM template represents a table with labels, presented as black-colored

text, and variables, presented as red-colored text. Labels are the same in any BOM document, but
variables depend on the values stored in a process model. The BOM template has a header with

three variable sections:

• a checkbox for whether a process is proposed or present, depending on the value of the

isProposedProcess attributed to a process;

• the name of the final product or parameter, based on the result of the findFinalProductName
function; and

• a company name retrieved from a process model.

The findFinalProductName function iterates through all products and process parameters of

the chosen product variation and finds the one that has the isFinal attribute with the true value. The
body or the main part of the BOM document is represented by a hierarchy level, a product (i.e., an

output product in a process step), a component (i.e., an input product in a process step) that is a part

of the product, and quantity of the component in the product. To display all products and

components in the correct hierarchy order, an algorithm in Documentation Generator finds the final
product in a process model, searches back all related input and output products in the process model,

and connects them in an array of product-component objects. Each product-component object has

a hierarchy level, calculated by the algorithm, a product, and a related component, with the quantity
of that component in the product. Each product-component object is displayed in the BOM

document. In the first column, the calculateDots function returns dots depending on the hierarchy

level and merges them with the hierarchy level of the product-component. A product name, a
component name, and the component quantity are displayed in the following columns. The BOM

document ends with its footer, containing the authors of the process model and the date of the

process model creation, both values retrieved from the process model.

Based on the Documentation Generator algorithms and the presented template, BOM
documents can be automatically created from process models. An example of the automatically

generated BOM document from the Glue fabric and dividers and place lid MasL sub-process model

(product variation 1.3) is presented in Figure 8.14. BOMO and ASME FPC documents are
automatically generated in a similar manner; thus, we do not present their templates. Examples of

BOMO and table formatted FPC of the same process model and product variation are presented in

Figure 8.15 and Figure 8.16, respectively.

BOMO and ASME FPC documents have the same header and footer sections as the BOM
document, and only the body section is different. Both BOMO and ASME FPC generators begin

with the same algorithm that goes from the start of a process model to the end of the process model,

detects each process step of the chosen product variation, and adds an appropriate identifier. The
first column of BOMO and ASME PFC documents is the process step identifier, starting with the

value ten, and each new process step identifier increments by ten. Next, a process step name and

work center (i.e., an abstract work center, not the specific one that is to be added by Orchestrator in
DetL models) columns are defined. Other columns are different in BOMO and FPC documents.

BOMO documents have the following columns: estimated duration of creating a product in minutes,

materials (i.e., input products in a process step) and their quantity needed to create the product, and

the product (i.e., an output product in a process step) with its quantity. The following columns of
ASME FPC documents are related to a process step type, i.e., whether a process step is an operation,

an inspection, transportation, a delay, or storage. There is an empty symbol for each process step

type, and they are filled whenever a process step is of that type. For example, the Glue fabric process
step is an operation, but it also has a storage symbol filled, as some of the input products are to be

retrieved from storage. Another example is the Wait for glue to dry process step, which is of the

delay type only.

A
p
p
licatio

n
 o

f th
e M

D
 S

o
lu

tio
n
 an

d
 M

u
ltiP

ro
L

an
 1

4
7

Figure 8.13. The BOM template used by Instruction Generator.

Figure 8.14. An automatically generated BOM document from the Glue fabric and dividers and place lid MasL sub-process model.

1
4
8

 A
p
p
licatio

n
 o

f th
e M

D
 S

o
lu

tio
n
 an

d
 M

u
ltiP

ro
L

an

Figure 8.15. An automatically generated BOMO document from the Glue fabric and dividers and place lid MasL sub-process model.

Figure 8.16. An automatically generated ASME FPC document from the Glue fabric and dividers and place lid MasL sub-process model.

Application of the MD Solution and MultiProLan 149

Another automatically generated documentation type is JBS, whose documents can be used as
work instructions for human workers. Before the automatic generation of the JBS document from

the Glue fabric and dividers and place lid MasL sub-process model (product variation 1.3), we

added two key points to the Glue fabric process step, presented in Figure 8.17 to demonstrate the

usage of key points in JBS. Key points can be added to any process step, providing workers with
additional information on how to perform a process step, but to make the model simple, we only

present key points in a single process step. The first key point, with the icon of the thumb up,

provides information that the glue areas must be clean to perform the process step successfully.
Another key point, with the icon of thumb down, provides information that there must be no air

bubbles after gluing the fabric, indicating what can go wrong. Key points can be added to a process

model when the key point modeling layer is turned on.

An example of the automatically generated JBS document is presented in Figure 8.18. It has

the same header and footer sections as previously presented document types, with the footer

extended by indicators of what each key point type means. The main section has the following

columns: an image of a process step, a process step identifier, such as the one presented in BOMO
and ASME FPC, with a process step name, a key point icon, and a key point description. If there is

no key point for a process step, the key point icon and description are replaced with the message

that there are no key points for a process step.

The last document type that we automatically generate from process models is PFMEA.

Potential production errors and failures must be modeled to generate a PFMEA document.

Production errors can be specified both at the level of MasL and the level of DetL. Any error
specified in the MasL process model needs to be propagated to the related DetL process model by

Orchestrator. However, some errors need to be specified manually by process designers, as different

process steps are added or changed in the DetL model, such as transportation and configuration

steps. It is not always possible to automatically enrich process models with production errors, as
Orchestrator does not always have the additional domain knowledge required to do it. For example,

new production errors that can occur during transportation activities need to be added manually, as

process designers possess the required domain knowledge, i.e., in which situations certain errors

may occur.

To demonstrate the manual creation of production process errors and the automatic generation

of the PFMEA documents, we added two errors into the Assemble frame DetL process model. In

Figure 8.19, we present only part of the Assemble frame DetL model with two errors specified in
the Insert pins in bottom side process step to keep the model readable while presenting all relevant

language concepts. Products and capabilities are hidden from the diagram as well to make it more

readable. There are two errors with local error handlers added to the Insert pins in bottom side
process step, each error having the same corrective process steps. The first error is related to the

case when, due to excessive use of force, the bottom-side plank cracks; thus, the plank cannot be

Figure 8.17. The Glue fabric process step key points.

150 Application of the MD Solution and MultiProLan

used further. The second error relates to the case when holes are badly drilled; thus, wooden pins
cannot be inserted appropriately. If any of these errors occur, the same sequence of corrective

process steps is to be performed. The human worker needs to discard the bottom-side plank to the

recycle bin near the assembly table, then move to the smart shelf, and pick a new bottom-side plank.

After the human worker performs these error handling process steps, the process execution returns
to the regular flow of process steps, meaning that the human worker needs to move to the first

assembly table again and insert wooden dowel pins into the new bottom-side plank. The process

execution then continues its regular flow. All these errors and error handlers are modeled within
Error Handling Layer. The layer can be turned off so that the diagram becomes more readable

compared to when the layer is turned on.

Figure 8.18. An automatically generated JBS document from the Glue fabric and dividers and

place lid MasL sub-process model.

Application of the MD Solution and MultiProLan 151

In Figure 8.20, we present the automatically generated PFMEA document based on the errors

modeled in the Assemble frame DetL sub-process model. The PFMEA document has the header

and the main sections. The header section includes an item or a process name, a core team or process
authors, and a key date or a process creation date. These values are automatically generated from

the process model. Other attributes in the header section have placeholders to be filled in later. The

main or the body section has columns related to potential failures, mostly described in Section 7.2.4.
These columns are a process step name, failure (i.e., error) mode, effect, severity, classification,

cause, occurrence, prevention, detection description, and detection value, all generated from an

error. The last filled column is the Risk Priority Number (RPN), calculated in Documentation

Generator by multiplying severity, occurrence, and detection values. RPN indicates whether an
error is severe enough to take some recommended actions to reduce its severity or occurrence or

become more easily detectable. A company can define a threshold for when to take some actions to

reduce the effect of an error. The following columns of the document are empty as they require
recommended actions to be applied and new values to be measured. At the time of the PFMEA

generation, these recommendations have not been applied yet.

We developed Documentation Generators to generate documents of five different types
automatically. Adding new generators to automatically generate documents of new types is

possible. To achieve the automatic generation of documents of new types, the MultiProLan meta-

model can be extended, new documentation templates created, and new algorithms, i.e.,

transformation rules, implemented. By extending our solution with new Documentation Generators,
various standards and regulations requiring certain documents in a company can be fulfilled, and

the number of manual tasks performed by process designers can be lowered.

Figure 8.19. The Insert pins in bottom side process step errors and error handler process steps.

1
5
2

 A
p
p
licatio

n
 o

f th
e M

D
 S

o
lu

tio
n
 an

d
 M

u
ltiP

ro
L

an

Figure 8.20. An automatically generated PFMEA document from the Assemble frame DetL sub-process model.

Application of the MD Solution and MultiProLan 153

8.2 Demonstration Environment with LEGO® Bricks

The demonstration environment, with its topology presented in Figure 8.21, comprises a fenced

area with two AGVs, two smart shelves, and two material areas. A human worker and an assembly

table are located outside the fenced area. Each smart shelf stores LEGO® bricks of various colors
and sizes needed for assembly. With the notion of AGV in Figure 8.21, we denote three types of

resources that can be placed in the environment: a research-grade smart robot, a cobot, or an

industrial mobile robot. An AGV moves inside the fenced area, picking LEGO® bricks from a smart

shelf and placing them on a material area. Therefore, AGVs are used to retrieve bricks from storage
and bring them close to the human worker in charge of the assembly, creating a human-machine

collaboration through material handling. LEGO® bricks of different types are stored on smart

shelves, and depending on the final product, required bricks may be retrieved from both shelves if
needed. The human worker picks bricks from material areas and assembles them on the assembly

table. The table has a brick pedestal on which LEGO® bricks can be assembled. Both material areas

are positioned between AGV and human worker areas, making it possible for AGVs and the human

worker to pick and place bricks in the area while adhering to all necessary safety protocols and
measures in place. Even if AGVs are cobots, having multiple sensors to detect objects around them,

we separated cobots from the worker with the fence, as we want to lower the influence of complex

safety mechanisms on the demonstration.

In the following subsections, we discuss two test scenarios performed in the demonstration

environment (see Section 8.2.1). Afterward, we present MasL and DetL process models of

assembling a flag out of LEGO® bricks in such an environment (see Section 8.2.2). Production
process models of assembling a flag out of LEGO® bricks were already presented in [13], and in

this thesis, they are discussed in more detail.

8.2.1 Test Scenarios Performed in the Demonstration Environment

The presented assembly demonstration environment is created to test the core functionalities of our

MD solution and MultiProLan. Process Modeling Tool utilizing MultiProLan is used to create
production process models of the brick assembly. From such models, machine-specific instructions

are generated and sent to AGVs. Also, human-readable instructions are generated and sent to the

Figure 8.21. The scheme of assembly demonstration environment.

154 Application of the MD Solution and MultiProLan

human worker when required. The human worker uses a tablet or a smart watch to receive
instructions and send feedback. Therefore, in this use case, multiple components of our solution are

used:

• Process Modeling Tool and MultiProLan are used by process designers to create MasL

process models;

• Orchestrator is used to automatically transform MasL into DetL process models;

• Instruction Generator is used to automatically generate high-level instructions from DetL

process models;

• Digital Twin with embedded protocol transformation components is used to transform

high-level instructions into machine-specific and human-readable instructions; and

• the tablet or smart watch applications are used by the human worker to receive instructions

and provide feedback.

It should be pointed out that Orchestrator, Digital Twin with embedded protocol
transformation components, and the tablet and smart watch applications are developed as part of

related research and development efforts as described in Pisarić et al. [4,5], but not as part of this

research. Instead, we consider them as black box components in this thesis.

The Digital Twin visualization, presented in Figure 8.22, is developed by using the Gazebo

simulator [229,230]. It reflects the physical, real demonstration environment in which we tested our

solution. There are two test scenarios we used in such a demonstration environment.

The first test scenario includes research-grade smart robots as AGVs, presented in Figure 8.23.
These robots use ROS [227,228] and each high-level instruction sent to Digital Twin is then

transformed into ROS-based instructions specific to such robots. Research-grade smart robots are

used to pick and place required LEGO® bricks in this test scenario, but we also tested them to

assemble objects from LEGO® bricks.

The second test scenario includes industrial mobile robots as AGVs, presented in Figure 8.24.

These robots are used in the real production of assembling various products. They can pick, place,
and assemble different objects and we tested them by using our solution. The solution generated

high-level instructions, which are then transformed into specific ROS instructions understandable

by a digital twin of a specific robot. The digital twin then transforms these ROS instructions into

machine-specific instructions. The robots do not have a machine vision module installed; thus, they
must calibrate themselves each time they move between shelves and material areas to determine

their position. Both research-grade smart robots and industrial mobile robots receive instructions

Figure 8.22. The digital twin of assembly demonstration environment.

Application of the MD Solution and MultiProLan 155

wirelessly via an appropriate protocol and in a similar manner they send the execution status and

feedback to our MD system.

A human worker that is a part of both test scenarios, receives instructions through a tablet or a

smart watch, with process steps descriptions, images, audio, and videos. After each instruction

Figure 8.23. The assembly demonstration environment with research-grade smart robots.

Figure 8.24. The assembly demonstration environment with an industrial mobile robot.

156 Application of the MD Solution and MultiProLan

execution, the human worker must confirm the execution status through the same device the

instructions are received.

In both test scenarios, the same process models are used to create objects from LEGO® bricks.

In the following section, we present MasL and DetL models of assembling a flag from LEGO®

bricks.

8.2.2 Assembling a Flag from LEGO® Bricks

In this section, we present an example of assembling a flag from LEGO® bricks. The flag is to be

made using three bricks of different colors. They are assembled one on top of another, making a

sequence of activities – the bottom brick must be first assembled on the brick pedestal, then the
middle brick on the top of the bottom brick, and, in the end, the upper brick on the top of the middle

brick.

The MasL process model of assembling a flag, created by a process designer, is presented in

Figure 8.25. This process model represents a sequence of assembly process steps, starting with the

Figure 8.25. The MasL process model of assembling the red-blue-white flag out of LEGO®

bricks.

Application of the MD Solution and MultiProLan 157

assembly of a white LEGO® brick. The Assemble white brick process step has an input product
representing a white brick that needs to be retrieved from storage. It has the following constraints:

(i) dimensions, i.e., width, length, and thickness; (ii) mass; (iii) material; and (iv) color. These

constraints are considered by Orchestrator when it matches appropriate resources with assembly

process steps. In both test scenarios, AGVs can pick, place, and assemble LEGO® bricks having the
presented constraints. The Assemble white brick process step has the Assemble capability with

parameters representing relative coordinates where to assemble a brick related to the brick pedestal.

Therefore, the white brick needs to be assembled on the center of the brick pedestal. The output
product of the Assemble white brick process step is the partially assembled flag, having only the

white LEGO® brick. The storage icon on the output product means that the product is to be placed

in storage, or in this case, on the top of the brick pedestal located at Assembly Table. The constraints

of such an output product are dimensions and mass equivalent to the ones of the white brick.

The following process step in the assembly sequence is the assembly of a blue LEGO® brick.

The Assemble blue brick process step has a blue brick as an input product that needs to be retrieved

from storage, similar to the previous process step input product, with the value of color constraint
as the only difference. The process step has the Assemble capability with parameters similar to the

capability of the previous process step. The only difference is in the dy relative coordinate, meaning

that the blue brick is to be assembled on the previously assembled white brick. The output product
of the Assemble blue brick process step is the partially assembled flag, having blue and white

LEGO® bricks, placed on the brick pedestal. The width and the length of this partially assembled

flag are the same as it is in the output product of the previous process step. However, as the blue
brick is added on top of the previously partially assembled flag, the thickness and the mass of the

output product are doubled.

The final process step in the assembly sequence, before the process ends, is the assembly of a

red LEGO® brick. The Assemble red brick process step has a red brick as an input product that
needs to be retrieved from storage, similar to the input products of the previous two process steps.

The process step has the Assemble capability, with parameters similar to the ones of the previous

two process step capabilities, differencing only in the dy relative coordinate, meaning that the red
brick is to be assembled on top of the previously assembled blue brick. The output product of the

Assemble red brick process step is the final product – the red-blue-white flag out of LEGO® bricks,

placed on the brick pedestal. In comparison to the output product of the previous process step (i.e.,

the partially assembled blue-white flag), the width and the length of the red-blue-white flag are the
same, but the thickness and the mass are higher as the red brick is added on the top of the previously

partially assembled flag.

To execute a process automatically, a MasL process model needs to be transformed into a DetL
process model related to the specific production system in which the process is to be executed. In

our case, the production system is one of the discussed test scenarios in the demonstration

environment. The previously modeled MasL process model is sent to Orchestrator to automatically
create the DetL process model, presented in Figure 8.26. Products and capabilities are specified in

the DetL process model but are hidden from the diagram to make it more readable. In the rest of

this section, we discuss the DetL process model and production of the final product.

In our demonstration environment, for this particular case of assembling the red-blue-white
flag out of LEGO® bricks, white bricks are stored on Smart Shelf 1, while blue and red bricks are

stored on Smart Shelf 2. Therefore, AGV 1 needs to retrieve a white brick from Smart Shelf 1,

while AGV 2 needs to retrieve blue and red bricks from Smart Shelf 2. The DetL process model
starts with a parallelism gate, representing the retrieving of LEGO® bricks done in parallel by

AGVs. In the left-hand side branch between parallelism gates, the retrieving of the white brick is

modeled. First, AGV 1 needs to move to Smart Shelf 1 and determine its location. After the
configuration activity is finished, AGV 1 needs to pick a white brick and place the brick in its local

storage. AGV 1 then moves to Material Area 1, determines its location, picks the white brick from

its local storage, and places the brick on Material Area 1. In the right-hand side branch between

parallelism gates, AGV 2 needs to pick blue and red bricks from Smart Shelf 2 and place them on
Material Area 2. These activities are similar to the ones in the left-hand side branch, with the only

158 Application of the MD Solution and MultiProLan

difference being that AGV 2 needs to pick two bricks after moving to Smart Shelf 2 and place both

of them after moving to Material Area 2.

After red, blue, and white bricks are placed on the material areas, the human worker needs to

move to Material Area 1, pick the white brick, then move to Material Area 2, and pick blue and red

Figure 8.26. The DetL process model of assembling the red-blue-white flag out of LEGO®

bricks.

Application of the MD Solution and MultiProLan 159

bricks. The human worker then needs to move to Assembly Table and assemble white, blue, and

red bricks in that order, producing the red-blue-white flag out of LEGO® bricks.

By using Instruction Generator, high-level instructions can be automatically generated from

the DetL process model, after they are transformed into machine-specific instructions for AGVs

and human-readable instructions for the human worker. All these high-level and resource-specific
instructions are similar to the ones presented in Section 8.1.3, and thus they are not presented in

this section. After executing resource-specific instructions by the resources in our demonstration

environment, the red-blue-white flag out of LEGO® bricks is produced, as presented in Figure 8.27.

8.3 Summary

In this section, we presented the application of our MD solution with a focus on MultiProLan and

Process Modeling Tool. Thus, we aimed to make a proof-of-concept of our solution for production
process modeling and execution. We modeled various production processes in the assembly

industry, and some of these models were presented in this section through the use cases. Based on

our experience in production process modeling, one of the biggest challenges when using a

modeling language with concrete graphical syntax is the readability of process diagrams. When
there is a relatively complex production process model with many process steps, or there are too

many errors that need to be specified, or there are numerous product variations present in a process

model, the process diagram becomes overwhelmed with details. We managed to deal with the model
diagram complexity through different MultiProLan concepts created for such a purpose and through

various mechanisms implemented in Process Modeling Tool, as discussed in this section. The whole

MD solution is tested in our demonstration environment, but to model and execute more complex
production processes, especially in the industry outside the assembly domain, the MD solution,

including MultiProLan and Process Modeling Tool, would need to be further developed.

Based on the experience we gathered while modeling various production processes in different

assembly use cases, we believe that MultiProLan and Process Modeling Tool can be used in practice

as:

Figure 8.27. The produced red-blue-white flag out of LEGO® bricks.

160 Application of the MD Solution and MultiProLan

• the main concepts needed for production process modeling are covered;

• the language and the tool are easy to use;

• their process models are readable and understandable;

• users are protected from making errors during modeling; and

• users are provided with mechanisms to deal with the model diagram complexity.

However, besides applying MultiProLan and Process Modeling Tool in the assembly use
cases, providing a proof-of-concept and presenting our experience, they must be tested by other

users. Therefore, MultiProLan and Process Modeling Tool were evaluated by users from various

user groups. In the following section, we present the results of the evaluation process, in which
users tested whether MultiProLan and Process Modeling Tool can be used in practice by

investigating the following quality characteristics: functional suitability, usability, reliability,

expressiveness, and productivity. We gathered useful feedback from the evaluation participants,

which helped us improve MultiProLan and Process Modeling Tool.

Evaluation of MultiProLan and Process Modeling Tool 161

9 Evaluation of MultiProLan and Process Modeling

Tool

Users of various profiles need to be included in the evaluation process to systematically evaluate a
language and a modeling tool and gather broader feedback. According to Salman et al. [242], when

applying new technology or a new approach in a software engineering experiment, there is no

significant difference whether students or professionals are involved. Thus, we included researchers
and students from the academic community, as well as process engineers and software developers

from the industry in the evaluation process. Each participant type has different skills related to the

production process modeling and tool development. We created an experiment in which participants
evaluated MultiProLan and Process Modeling Tool based on their functional suitability, usability,

reliability, expressiveness, and productivity characteristics. We also evaluated implementation-

related characteristics, such as maintainability, extensibility, reusability, and integrability. Quality

characteristics evaluated by participants are analyzed, and conclusions on how to improve

MultiProLan and Process Modeling Tool are presented in this section.

In this section, we discuss: (i) the experiment objective and hypothesis (see Section 9.1); (ii)

the experiment participants (see Section 9.2); (iii) the experiment preparation and execution (see
Section 9.3); (iv) the experiment results and data analysis (see Section 9.4); (v) an overview of other

quality characteristics (see Section 9.5); (vi) threats to validity (see Section 9.6); and (vii) a

summary of the evaluation process (see Section 9.7). The evaluation results were already presented

in [11].

9.1 Experiment Objective and Hypothesis

MultiProLan is used in a small-scale assembly use case [13] and is developed iteratively based on

the process designers' feedback. As we plan to apply MultiProLan in additional industry use cases,
various users, such as students, researchers, software developers, and process engineers, have

participated in the evaluation process.

To evaluate MultiProLan and Process Modeling Tool, we applied the Framework for
Qualitative Assessment of Domain-specific languages (FQAD) [101] and chose a subset of the

proposed characteristics already being applied to a DSML evaluation [243]. The framework has

been used to determine the evaluator's perspective on fundamental DSL quality characteristics and
to guide the evaluator through the evaluation process. These characteristics are adapted and

integrated from the international system and software quality standard ISO/IEC 25010:2011 [244].

Participants of the experiment evaluated their experience in using MultiProLan based on the

following characteristics:

• functional suitability – a degree to which MultiProLan supports developing solutions to
meet the needs of the production process modeling domain;

162 Evaluation of MultiProLan and Process Modeling Tool

• usability – a degree to which users can use MultiProLan to achieve specified goals;

• reliability – a property of MultiProLan that aids in productizing reliable programs, i.e.,

model checking ability;

• expressiveness – a degree to which a problem-solving strategy can be mapped onto a
program naturally; and

• productivity – a characteristic related to the number of resources that users spend to

achieve specified goals.

Other characteristics proposed in FQAD also need to be analyzed; however, these
characteristics require implementation knowledge. Thus, they are discussed and evaluated by the

authors of MultiProLan. These characteristics are:

• maintainability – the degree to which MultiProLan is easy to maintain;

• extensibility – the degree to which MultiProLan has general mechanisms for users to add

new features;

• reusability – the degree to which MultiProLan's constructs can be used in more than one

language; and

• integrability – the degree to which MultiProLan is amenable to integration with other
languages.

This experiment was created to evaluate the user experience with MultiProLan based on the

presented characteristics. The experiment's goal is to check whether MultiProLan can be used in
practice in the domain of Industry 4.0 assembly production, with positive user experience from

different user groups. Thus, we investigated the following hypothesis.

EHnull – MultiProLan can be used in practice as it has all the following quality

characteristics: functional suitability, usability, reliability, expressiveness, and

productivity.

EHalt – MultiProLan cannot be used in practice as it does not have one or more of the

following quality characteristics: functional suitability, usability, reliability,

expressiveness, or productivity.

We may confirm the EHnull hypothesis if there is more than 50% of positive feedback from the

evaluation participants per each quality characteristic. If there is a single quality characteristic that
does not have more than 50% of positive feedback, we may reject the EHnull hypothesis and confirm

the EHalt hypothesis. The way that positive feedback is calculated is discussed in Section 9.3.

9.2 Experiment Participants

At the time of the experiment execution, all participants had at least a B.Sc. in computer science.

There were 25 participants in the experiment, and they can be categorized into four disjunct groups:

• process engineers – participants who are experienced in production process modeling;

• software developers – participants who are experienced in the engineering of various

modeling tools;

• researchers – participants with Ph.D. in computer science, most of which are experienced

in business process modeling; and

• students – M.Sc. and Ph.D. students with previous experience in process modeling.

In the first group, there were 2 participants who were experts in production process modeling.

These two process engineers are not the same as those who participated in language development.

In the second group, there were 5 participants who tested and developed modeling tools in the
industry. In the third group, there were 6 participants who investigated different areas of computer

science and possessed experience in business process modeling. In the fourth group, there were 12

students – 5 M.Sc. students and 7 Ph.D. students who all had experience in process modeling using

Evaluation of MultiProLan and Process Modeling Tool 163

BPMN, UML, and PN. All the students attended master's courses covering business process

modeling and domain-specific modeling and languages.

9.3 Experiment Preparation and Execution

Due to the pandemic of COVID-19, we had to perform the evaluation experiment online via video
conferencing tools. We performed the experiment in a controlled environment where each

participant did the evaluation separately. The whole experiment lasted about 90 minutes per person.

The evaluation process was divided into five phases, and each participant had:

• an overview of the experiment (about 10 minutes);

• an introduction to the production process modeling (about 10 minutes);

• a document that represents the MultiProLan and Process Modeling Tool tutorial (about 15

minutes to read the document);

• a document that includes tasks that participants need to accomplish (about 45 minutes to
finish the tasks); and

• a questionnaire to evaluate MultiProLan (about 10 minutes).

The tutorial was composed of two parts: (i) the MultiProLan's modeling concepts; and (ii) the

Process Modeling Tool usage. As the participants were unfamiliar with MultiProLan, we had to
describe its basic modeling concepts in the form of an online live tutorial. Afterward, the Process

Modeling Tool user interface was described, and a brief description of how to use the tool was

given to the participants.

The tasks that participants needed to accomplish were given in the form of functional

requirements, presented in Appendix A, alongside the solution of the tasks. The requirements were

presented as a textual description of a wooden box production process. The box is composed of

four wooden planks representing different sides of the box and a thin wooden back side. The four
wooden planks need to be assembled into a frame using wooden pins, and the wooden back side

needs to be hammered into the frame, creating the box. First, the left-bottom and right-upper sides

are assembled in parallel, and then these two intermediate parts are assembled into the frame.
Collaborative activities of holding the frame and hammering the back side into the frame need to

be executed after the frame is assembled, creating the box. Afterward, the box needs to be inspected

for any defects, and if a defect is found, the box needs to be discarded. Otherwise, the box needs to

be stored. We chose the wooden box production example as it is composed of nearly all the basic
modeling concepts of MultiProLan and is simple enough so that participants who are inexperienced

with our tool can finish the tasks in a relatively short time. The tasks were composed of the

following:

• creating a MasL process model of the wooden box production;

• adding four different errors in the previously created MasL process model; and

• creating a part of a DetL process model of the wooden box production.

Participants modeled only two parallel branches in the DetL model example, as there are many

details in DetL models, and it would be time-consuming to model them all. Also, all the DetL

modeling concepts are included in these two parallel branches, i.e., resources, storage,
transportation and configuration process steps, and the rest of the DetL model would be modeled

in a similar way.

Participants had no time limit to finish modeling the example, as we did not measure the

modeling time but the quality of MultiProLan and Process Modeling Tool based on the described
characteristics. During the modeling tasks, participants could ask us any question related to

MultiProLan and the example; however, we did not interfere with how the participants modeled the

given processes.

After participants finished their modeling tasks, they were asked to complete the online

questionnaire, whose questions are presented in Appendix A. We guaranteed that the gathered

164 Evaluation of MultiProLan and Process Modeling Tool

answers were anonymized and that their data would not be given to third parties. The participants
agreed to these terms and, before answering the questions from the questionnaire, were asked to fill

in their name and e-mail address, so we could contact them if we needed any additional information.

Then, they were asked to choose the participant group they belonged to. The questionnaire was

composed of the following sections: (i) participant's experience; (ii) MultiProLan's quality

characteristics; and (iii) free comments.

In the first section, participants were asked about their experience in business process

modeling, production process modeling, and Computer Aided Software Engineering (CASE) tools
in general. We also asked them to populate which languages and CASE tools they have used. As

there were different groups of users, this information was useful when we analyzed the experiment

results and put the answers in a broader context. For each experience-related question, participants
could choose one answer on a five-level Likert scale ranging from 1 – Inexperienced to 5 –

Experienced.

The quality characteristics we evaluated with participants were functional suitability, usability,

reliability, expressiveness, and productivity. Each of these characteristics represents one of the
groups of questions that are defined in FQAD. Participants also needed to choose one answer to

each question on a five-level Likert scale. For the functional suitability characteristic, this scale

ranged from 1 – Very low to 5 – Very high; for the usability, reliability, and expressiveness
characteristics, this scale ranged from 1 – Strongly disagree to 5 – Strongly agree; and for the

productivity characteristic, this scale ranged from 1 – Long to 5 – Short, as it involved the evaluation

of specification time.

In the third section, participants could leave free-form comments on everything we did not ask

them and make suggestions on how to improve MultiProLan and Process Modeling Tool, which

happened to be particularly useful.

As stated at the end of Section 9.1, we may confirm the EHnull hypothesis if there is more than
50% of positive feedback from the evaluation participants per each quality characteristic. To

calculate the percentage of positive feedback for each quality characteristic, we calculated the

percentage of positive feedback answers on each question related to the characteristic. By the
positive feedback answer, we denote each answer to a question having a value of 4 or 5 on the five-

level Likert scale.

9.4 Experiment Results and Data Analysis

After the participants finished the evaluation process by filling in the questionnaire, we summarized

their answers in Table 9.1. In this table, all the questions with answers presented on a five-level

Likert scale are shown, alongside the percentage of each answer. The questions in Table 9.1 are

divided into the following sections: (i) participants' experience; and (ii) MultiProLan's quality
characteristics: functional suitability, usability, reliability, expressiveness, and productivity. Further

in this section, we discuss the evaluation results. First, we discuss the answers and comments

gathered from the questionnaire. Participants wrote various comments, but we only discuss the ones
that constructively criticized MultiProLan and gave us suggestions on what may be improved. We

do not discuss comments that praised MultiProLan or criticized the user interface related to the

Sirius framework. Then we discuss statistical analysis done on the data gathered from the

questionnaire.

E
v
alu

atio
n
 o

f M
u
ltiP

ro
L

an
 an

d
 P

ro
cess M

o
d
elin

g
 T

o
o
l 1

6
5

Table 9.1. The questionnaire statistics.

Experience

Question Inexperienced
Relatively

inexperienced

Medium

experienced

Relatively

experienced
Experienced

How would you describe your previous experience in designing business processes? 20% 12% 40% 20% 8%

How would you describe your previous experience in designing production processes? 56% 20% 16% 4% 4%

How would you describe your previous experience with Computer Aided Software Engineering

(CASE) tools for modeling?
8% 20% 28% 28% 16%

Functional suitability

Question Very low Low Medium High Very high

How would you describe the scope of production process domain concepts and scenarios that can be

expressed in MultiProLan?
0% 0% 0% 64% 36%

How would you describe MultiProLan's level of suitability for the production process specification? 0% 0% 4% 64% 32%

Usability

Question Strongly disagree Disagree No opinion Agree Strongly agree

MultiProLan language elements are understandable. 0% 4% 0% 36% 60%

The concepts and symbols of MultiProLan are learnable and rememberable. 0% 0% 0% 20% 80%

MultiProLan has capability to help users achieve their tasks in an acceptable number of steps. 0% 0% 8% 52% 40%

MultiProLan is appropriate for your needs. 0% 0% 48% 16% 36%

MultiProLan Eclipse environment has elements that facilitate to operate and control the language. 0% 0% 20% 52% 28%

MultiProLan has graphical symbols that are good looking/attractive. 0% 8% 0% 44% 48%

By separating MasL and DetL models, users can model production processes easier. 0% 0% 4% 32% 64%

By creating different modeling layers, models become more readable. 0% 0% 0% 12% 88%

Reliability

Question Strongly disagree Disagree No opinion Agree Strongly agree

MultiProLan protects users against making errors. 0% 0% 16% 60% 24%

MultiProLan has a functional model validator. 0% 4% 28% 32% 36%

Expressiveness

Question Strongly disagree Disagree No opinion Agree Strongly agree

A problem-solving strategy can be mapped into a specification easily. 0% 0% 0% 64% 36%

MultiProLan is at the right abstraction level such that it is not more complex or detailed than

necessary.
0% 0% 0% 52% 48%

MultiProLan provides one and only one good way to express every concept of interest. 0% 12% 20% 48% 20%

Productivity

Question Long Relatively long Medium Relatively short Short

How would you describe the specification time of a production process model with MultiProLan? 0% 4% 28% 52% 16%

166 Evaluation of MultiProLan and Process Modeling Tool

9.4.1 Questionnaire Results

Experience. The participants were mostly medium experienced in business process modeling,

inexperienced in production process modeling, and relatively experienced with CASE tools. For

business process modeling languages, most of the participants stated that they were using BPMN

[30] (17 participants), UML [43] (9 participants), flowcharts [245] (5 participants), PN [46,47] (4
participants), and EPC [53] (1 participant), 3 of them did not answer, and 2 of them answered with

"none". As participants were not experienced in production process modeling, 12 of them did not

answer whether they had used any production process modeling language, and 5 of them answered
with "none". Others stated that they were using BPMN (2 participants), flowcharts, PN, process

sheets [209], FPC [25], BOMO [24], UML, Piping and Instrumentation Diagram (P&ID) [246],

and informal techniques (there was only 1 participant for each of these answers). For the CASE
tools, most participants answered that they were using System Analysis Program Development

(German: Systemanalyse Programmentwicklung, SAP) PowerDesigner [247] (15 participants), and

some of them were using Oracle SQL Developer Data Modeler [248] (6 participants), Camunda

BPM [249] (3 participants), MagicDraw [250] (3 participants), Oracle Designer [251], IIS*Studio
Development Environment [167], Microsoft Visio [252], Yaoqiang BPMN Editor [213], AutoCAD

[253], Enterprise Architect [254] (2 participants for each of these answers) and so on. Only 1

participant answered the question with "none", and only 1 participant did not answer the question.

Functional suitability. Most participants evaluated MultiProLan's functional suitability as high

(64% for both questions) or very high (36% and 32% for the first and the second question,

respectively). They have evaluated that the production process domain can be specified by

MultiProLan and that MultiProLan is suitable for production process modeling. However, in the
free comment section, one of the process engineers stated that MultiProLan should support a few

additional features if it is to be applied in the process industry. The same process engineer stated

that production process modeling should also cover safety aspects, especially if there are human-
machine collaborations. Another comment was that capabilities should not be arbitrarily written but

read from a dictionary, as users may write a capability using another natural language or even slang.

Thus, none of the resources could be matched with a process step that the capability belongs to.

Later, as described in this thesis, we created a capability repository to solve such an issue.

Usability. Different questions were specified for the usability characteristic. Participants mostly

agreed or strongly agreed that MultiProLan's elements are understandable (36% agreed, 60%

strongly agreed) and that MultiProLan's concepts and symbols are easily learned and easily
remembered (20% agreed, 80% strongly agreed). In the free comment section, a few participants

left a negative comment on collaboration modeling. It was confusing where to put an output product

of a collaboration between process steps. We plan to improve the modeling concept of collaboration
in the future. One of the participants suggested that we could create a textual syntax for MultiProLan

and test this syntax, as some of the users may find it easier to use. We will consider the creation of

MultiProLan's textual syntax in the future.

As Process Modeling Tool is created with multiple shortcuts that can be used, participants also

agreed that the tool helps users to achieve tasks in an acceptable number of steps (52% agreed, 40%

strongly agreed). However, two participants left a comment that adding constraints and parameters

were the most time-consuming operations. One of them suggested that constraints and parameters
should be added on double-click and that naming patterns could be used to fill in all the attributes

needed. We fully agree with this statement, and we implemented the suggested features in the tool

after the evaluation process was finished.

Nearly half of the participants had no opinion (48%) on whether MultiProLan is appropriate

for their needs, which is expected as most participants did not have much experience in production

process modeling, discussed later in this section.

Participants also had a positive opinion on the Eclipse environment (52% agreed, 28% strongly
agreed) and the attractiveness of graphical symbols (44% agreed, 48% strongly agreed). In addition,

Evaluation of MultiProLan and Process Modeling Tool 167

participants strongly agreed that separating MasL models from production system details helps
users to model production processes more easily (32% agreed, 64% strongly agreed) and that by

creating different modeling layers, models have become more readable (12% agreed, 88% strongly

agreed). Such participants' approval is important as different detail levels and modeling layers are

some of the most significant features of MultiProLan and Process Modeling Tool. In the free
comment section, a few participants stated that utilizing different modeling layers is very useful in

production process modeling. Two of them suggested that additional modeling layers should be

created for products and capabilities, enabling even more flexibility on what users could show on
diagrams. In the past, we discussed this and decided to create a +/- button on a process step to

show/hide capabilities and products. However, with additional modeling layers, this may be done

more efficiently, and we plan to implement and test additional layers in the future.

Reliability. For the reliability characteristic, participants mostly agreed that MultiProLan protects

users against making errors (60% agreed, 24% strongly agreed). They also mostly agreed that

MultiProLan has a functional model validator (32% agreed, 36% strongly agreed); however, there

were participants who did not fully agree with that statement (4% disagreed, 28% had no opinion).
One participant wrote a comment that error messages were not clear enough to solve problems

quickly in a model. In the future, we plan to improve the model validator.

Expressiveness. Participants also agreed or strongly agreed about the first two questions of the
expressiveness characteristic – that a problem-solving strategy can be mapped into a specification

easily (64% agreed, 36% strongly agreed) and that MultiProLan is at the right abstraction level

(52% agreed, 48% strongly agreed). However, the third question about MultiProLan providing one
and only one good way to express every concept of interest had mixed answers (12% disagreed,

20% had no opinion), but still mostly positive (48% agreed, 20% strongly agreed). Such a response

from participants can be partly explained by the difficulty of claiming that MultiProLan provides

only one good way to model production processes for participants with little experience in the

domain.

Productivity. More than half of the participants (52%) stated that the specification time of a

production process model is relatively short by using MultiProLan. Such a statement can be a
consequence of having nearly all the participants experienced with different CASE tools and many

participants experienced with the BPMN language, which has some similar modeling concepts as

MultiProLan. Also, Process Modeling Tool has different shortcuts to shorten the time needed for

the production process modeling.

For each quality characteristic, we summarized the percentages of each question having

positive feedback from participants and calculated the mean values of positive feedback for quality

characteristics. The evaluation participants mostly agreed that MultiProLan has all the
characteristics tested (the calculated mean values of positive feedback per quality characteristics

are given in parenthesis): functional suitability (98.00%), usability (88.50%), reliability (76.00%),

expressiveness (89.33%), and productivity (68.00%).

9.4.2 Statistical Analysis of the Questionnaire Answers

By using the SciPy library [255] for the Python programming language, we calculated the
Spearman's rank correlation coefficient [256] between all the questions in the questionnaire. We

did not consider correlations with the low coefficient and the p-value higher than 0.05. We also did

not consider trivial correlations with the high coefficient within the same group of questions. For
example, there were high correlations between participants' experience with business or production

process modeling and their experience with CASE tools.

As we found many correlations with the p-value lower or equal to 0.05, we present only some
of the strong correlations with the p-value lower or equal to 0.01. We may state that these selected

correlations are significant, and they are presented in Table 9.2. If we look at the first three rows of

Table 9.2, we may state that participants who found MultiProLan is at the right abstraction level,

168 Evaluation of MultiProLan and Process Modeling Tool

who think that the modeling became easier by separating MasL models from production system
details, and who found MultiProLan symbols good looking, they also think that MultiProLan is

suitable for production process modeling. The last row in Table 9.2 shows that participants with

higher experience in the production process modeling think MultiProLan is appropriate for their

needs. More than 75% of the participants are (relatively) inexperienced in production process
modeling. Therefore, it is not surprising that almost 50% of participants answered with "no opinion"

when asked whether MultiProLan is appropriate for their needs.

Table 9.2. Correlation coefficients and p-values for related questions.

Question 1 Question 2 Correlation P-value

Functional suitability [How would

you describe MultiProLan's level of

suitability for the production process
specification?]

Expressiveness [MultiProLan is at

the right abstraction level such that

it is not more complex or detailed
than necessary.]

0.601 0.001

Functional suitability [How would
you describe MultiProLan's level of

suitability for the production process

specification?]

Usability [By separating MasL and
DetL models, users can model

production processes easier.]

0.582 0.002

Functional suitability [How would

you describe MultiProLan's level of

suitability for the production process

specification?]

Usability [MultiProLan has

graphical symbols that are good

looking/attractive.]

0.539 0.005

Experience [How would you

describe your previous experience in

designing production processes?]

Usability [MultiProLan is

appropriate for your needs.]
0.504 0.010

Based on the analysis made in this section, the evaluation results presented in Section 9.4.1,

and as there is more than 50% of positive feedback from the evaluation participants per each quality
characteristic, we may confirm the EHnull hypothesis found in Section 9.1. Thus, we may state

that MultiProLan can be used in practice as it has all the following quality characteristics: functional

suitability, usability, reliability, expressiveness, and productivity. However, based on the
participants' comments discussed throughout Section 9, MultiProLan can be further improved. The

free comment section proved to be valuable to us during the evaluation process, and we are fully

aware of all the comments that participants have written. Therefore, we applied most suggestions

made by participants and left some for future development.

9.5 Overview of Other Quality Characteristics

There are quality characteristics that require knowledge of MultiProLan's implementation details to

evaluate them. These quality characteristics are maintainability, extensibility, reusability, and
integrability. As the experiment's participants were unfamiliar with MultiProLan's implementation

details, the authors of MultiProLan evaluated these quality characteristics.

MultiProLan was implemented in EMF and Eclipse Sirius frameworks. These frameworks
provide many useful features that help create the tool prototype fast. However, the tool depends on

these frameworks and thus not all its features can be adapted.

Maintainability represents the degree to which a language is easy to maintain, and it comprises

two characteristics:

• modifiability – new functionalities can be added to the language without degrading existing

functionalities; and

• low coupling – a change to one component has minimal impact on other components.

Adding modeling concepts to the MultiProLan's meta-model does not require manual changes

to the existing modeling concepts, and these novel modeling concepts will be automatically added

Evaluation of MultiProLan and Process Modeling Tool 169

to Process Modeling Tool. Thus, existing functionalities of the language will not be degraded.
However, changing the existing modeling concepts often requires different manual changes, as the

meta-model, graphical syntax, and modeling tool are tightly coupled.

Extensibility represents the degree to which a language has a mechanism for users to add new

features. Users cannot add new features to Process Modeling Tool. Even if that is possible, users
would need to know the implementation details of the whole system as process models are used for

the execution purpose, and thus users would need to extend the execution mechanism to support

newly added features.

Reusability represents the degree to which language constructs can be used in more than one

language. MultiProLan's modeling concepts have been reused in creating languages for production

system modeling [5], human resource modeling [16,17], and collaborative production process
modeling [19]. For example, as mentioned in Section 7.1, modeling concepts such as capabilities,

resources, storage, and material flows have been reused for the production system modeling

language.

Integrability represents the degree to which a language is amenable to integration with other
languages. MultiProLan is being integrated with languages for production system, human resource,

and collaborative production process modeling through the modeling concepts that are shared

between them. The languages for production system and human resource modeling are used to
specify all the necessary details of a production system, and these details are used during the

creation of DetL models. MultiProLan production process models are used as part of collaborative

production process models as well, allowing production process models to be shared between

different collaborative parties.

9.6 Threats to Validity

During the preparation and performance of the experiment, we aimed to minimize threats to the

experiment's validity. However, there are some possible internal, external, and conclusion threats

to validity that need to be discussed.

Internal threats to validity. Participants of the experiment had different experiences in process

modeling. If all the participants were highly experienced or highly inexperienced, the questionnaire
results might be different. For example, most participants stated that the specification time of

production process models with MultiProLan is short (16%) or relatively short (52%). It is possible

that participants would evaluate the specification time as relatively long if they were more
inexperienced with CASE tools and the BPMN language. The participants also belong to various

groups, and it is possible that if some groups had more participants, the results might be different.

As for the implementation-oriented quality characteristics discussed in the previous section

(maintainability, extensibility, reusability, and integrability), we evaluated them as we are the only
ones having insights into how the tool has been developed. Although we tried to stay as objective

as possible, this represents one of the potential threats to the validity of the evaluation process. We

have done the evaluation of these quality characteristics as it was hard to find a participant

experienced both in production process modeling and the Sirius framework.

External threats to validity. We had to do the experiment online due to COVID-19, and it is

possible that the experiment results may be different if we had been able to do the experiment on-

site. Also, participants with different experiences in process modeling had done the same
experiment tasks, which were not tailored for each participant based on their previous experience.

Thus, participants with different experiences may get a different impression of MultiProLan. The

tasks were made to cover most of the MultiProLan's modeling concepts, and some parts of the tasks
were simplified so they could be modeled in a reasonable amount of time. The task with DetL

modeling was simplified the most, as it contained only a part of the whole process since modeling

the whole DetL process model would require a lot of time. If the tasks were of different difficulty,
the experiment results might be different. Finally, as participants were allowed to ask any question

170 Evaluation of MultiProLan and Process Modeling Tool

related to MultiProLan and the tasks, it is possible that some participants got more information

about the language and the tasks than others.

Conclusion threats to validity. There were 25 participants who evaluated MultiProLan and

Process Modeling Tool. It was hard to gather participants with at least basic experience in process

modeling and CASE tools. If there were more participants, the experiment results might be
different. Also, there were only 2 process engineers that evaluated the language and the tool. It

would be better if more of them were participating, and we plan to extend the evaluation with more

process and quality engineers in the future.

9.7 Summary

In this section, we presented the evaluation process and results of testing whether MultiProLan and

Process Modeling Tool can be used in practice. Based on the overall positive feedback gathered
from the evaluation participants, we may state that MultiProLan and Process Modeling Tool can be

used in practice as they have the following quality characteristics: functional suitability, usability,

reliability, expressiveness, and productivity. The participants mostly praised the MultiProLan

domain coverage, the graphical representation of MultiProLan modeling concepts, the easiness of
using MultiProLan through Process Modeling Tool, and the usage of different levels of detail and

modeling layers. They also left various suggestions in the questionnaire's free comment section on

how to improve MultiProLan and Process Modeling Tool, which helped us to make the language
and the tool better. Some of these suggestions are already implemented and presented as part of this

thesis.

Based on our experience from various use cases in the assembly industry and the evaluation
results presented in this section, by using MultiProLan and Process Modeling Tool, process

designers can specify production processes faster, more easily and efficiently, and with fewer faults,

in comparison to the ways they are specifying production processes now. Many process designers

still specify production processes by using textual documents, flowcharts, or spreadsheets. Without
MultiProLan and Process Modeling Tool, process designers would be slowed down, and more faults

may occur when specifying production processes, especially if designers are using some informal

techniques. To prove the MultiProLan and Process Modeling Tool advantages over contemporary
ways of specifying production processes, we plan to conduct a new evaluation process in which

various participants will test the performance of MultiProLan and Process Modeling Tool and

compare them to the production process specification techniques participants are mostly using.

Conclusions and Future Work 171

10 Conclusions and Future Work

In this thesis, we presented a novel MD solution and a DSML for production process modeling and
automatic generation of executable resource instructions and manufacturing documentation. The

presented MD solution and a DSML named MultiProLan are developed to cope with the challenges

(Ch1–Ch5) introduced by Industry 4.0.

This section is structured as follows. In Section 10.1, we discuss the outcome of testing the
hypotheses defined in this thesis. The main contributions of the research presented in this thesis are

outlined in Section 10.2, while future research is discussed in Section 10.3.

10.1 Outcome of Hypotheses Testing

Enabling flexible production, caused by various customer needs, is one of the main challenges that

Industry 4.0 introduces. Customers require individualized and customized products, creating a

disorder in the rigid mass production of a factory that is to produce such products. Accordingly,
contemporary factories need to move from mass production to mass customization, by making

production more flexible and endurable to product changes. A prerequisite for production flexibility

is to have a smart factory with flexible production lines and dynamic resources that can move

through the factory and execute high-level instructions. One way to manage such flexible
production is to have production process models that are machine-readable and thus can be used to

lead the execution of production processes, by executing models or generating executable resource

instructions from them. Furthermore, handling errors during production is highly important in such
a dynamic environment to run production smoothly and prevent losses. Accordingly, exact

procedures to handle errors need to be defined.

Besides the execution of production processes, their models and manufacturing documentation

need to be managed and stored. Individualized products may belong to the same product family
already produced in the factory but vary in a few parts, colors, or dimensions. Therefore, factories

of the future must maintain product families with numerous product and process variations and

rapidly create new variations whenever a customer requires specific products. By having many
processes and their variations, manual process specification becomes a difficult task for process

designers that may lead to numerous specification errors. Another burdensome task for process

designers is maintaining manufacturing documentation of different types in such a flexible
environment with many product and process variations. Whenever there is a change in a production

process, documents of different types must be updated and synchronized. These are time-

consuming manual tasks, and they need to be done automatically to reduce the time required by

process designers and to mitigate specification errors done by process designers due to a lot of

manual work.

To make production more flexible and help factories enter the digital transformation era, we

initiated the research presented in this thesis. To test the main hypothesis H0 of our research,

172 Conclusions and Future Work

formulated in Section 3.2, we created a novel MD solution that comprises a novel methodological
approach and a system, used for production process modeling and automatic transformation of

process models into executable resource instructions and manufacturing documentation. Such a

solution enables a formal specification of both resource-agnostic and resource-aware production

process models that are machine-readable and thus transformable into executable resource
instructions and manufacturing documentation. To confirm or reject the main hypothesis H0, we

discuss the derived hypotheses first.

Within our novel MD solution, we developed a novel DSML – MultiProLan, used for
production process modeling. Such a language is created in a formal and systematic way, fulfilling

the requirements presented in Section 4.2.1. The requirements need to be fulfilled by a process

modeling language for its models to be suitable for dynamic production orchestration and automatic
execution. Thus, MultiProLan is used to model production processes with details required for the

automatic generation of executable resource instructions. Instruction Generator and protocol

transformation components are implemented to automatically transform production process models

into human-readable or machine-specific instructions, sent to resources on the shop floor for

execution. Thus, we may confirm the hypothesis H1.

However, such instruction-generation-ready production process models are dependent on a

specific production system, and it is difficult for process designers to specify such models, as they
need to know all the technological and production system details. Production process models

created by process designers need to be reusable in many production systems and need to be easy

to read and understand. We developed MultiProLan in a way to include necessary modeling
concepts used by process designers to specify resource-agnostic production process models, i.e., to

be independent of any production system. Therefore, such process models can be reused in multiple

production systems. Also, as they do not include production system details, such models are easy

to read and understand. We may say that the readability and understandability of process models
were also confirmed during the evaluation of MultiProLan and Process Modeling Tool, presented

in Section 9. The evaluation participants provided us with positive feedback that MultiProLan

elements are understandable (96%), learnable and rememberable (100%), good looking and
attractive (92%), that process modeling becomes easier by separating resource-agnostic and

resource-aware models (96%), and that models become more readable by creating different

modeling layers (100%). In addition, we managed to represent different aspects of production

process modeling in a uniform way, by having a single production process model that includes an
execution flow, error handling, and different information related to the manufacturing

documentation of different types. Accordingly, by having all the information stored in a single

model, different users, such as process and quality engineers, can work together on the same process
model, specifying details related to their field of expertise. However, as such a process model may

become overwhelmed with information and details, we have implemented different modeling layers

in Process Modeling Tool to show modeling concepts related to the specific user group and hide

concepts not related to the user group. Therefore, we may confirm the hypothesis H2.

As resource-agnostic production process models are independent of any production system,

they can be neither executed nor executable resource instructions can be generated from them.

However, for process models to lead production process execution, they need to include
technological and production system details. Such resource-aware production process models are

overloaded with details about resources, storage, production logistics, and machine configuration

activities, burdening process designers additionally. Thus, it is difficult to specify resource-aware
production process models manually, becoming a burdensome task for process designers. As

MultiProLan is a capability-based process modeling language, providing each process step in a

model with a capability required for a process step to be executed, it is also possible to automatically
transform resource-agnostic process models into resource-aware process models by using an

intelligent system such as Orchestrator. Regardless of whether resource-aware production process

models are created manually or automatically, MultiProLan contains modeling concepts that allow

such an enrichment of resource-agnostic process models. Process designers can choose a production
system in which a production process model is to be executed and automatically create a

Conclusions and Future Work 173

production-system-specific process model with the help of Orchestrator. They can also manually
create such models or change or optimize existing resource-aware production process models

created by Orchestrator. Thus, we may also confirm the hypothesis H3.

Production process models need to be usable for the automatic transformation into executable

resource instructions and manufacturing documentation. As MultiProLan's models are machine-
readable, resource-aware production process models can be automatically transformed into

executable resource instructions, which may be human-readable or machine-specific instructions.

Also, depending on the information needed, both resource-agnostic and resource-aware production
process models can be automatically transformed into manufacturing documentation of different

types. By using Instruction Generator, Documentation Generators, and a set of transformation rules,

these kinds of M2T transformations can be performed. The automatic generation of manufacturing
documentation helps process designers avoid keeping the manufacturing documentation up to date

manually, which is useful especially in the era of Industry 4.0, as many product and process

variations exist. Accordingly, we may confirm the hypothesis H4.

By confirming the derived hypotheses H1, H2, H3, and H4, we may state that the main

hypothesis H0 is also confirmed and that the main goal of this research is met.

Furthermore, we may state that the results of our research have theoretical, development,

application, and socio-economic contributions, discussed in the following section.

10.2 Research Contributions

In this section, we discuss the achieved contributions of the research presented in this thesis. We

divided the contributions into the following four groups: theoretical, development, application, and

socio-economic contributions. Each contribution group is outlined in the following subsections.

10.2.1 Theoretical Contributions

Before the creation of MultiProLan, we investigated the state-of-the-art related to the application

of the MD paradigm and DSLs in ISs and Industry 4.0, and especially production process modeling,

as presented in Section 4. Based on the preliminary research, we formulated requirements for a
production process modeling language whose models would be suitable for dynamic production

orchestration and automatic execution of production processes. Then, we conducted a survey of

existing modeling languages and for each one of them we checked the fulfillment of the
requirements. We also made an analysis of what is covered by the languages and what is missing,

making a basis for future research.

After the investigation of the state-of-the-art, we analyzed the production process modeling

domain and identified the main concepts that a language for production process modeling needs in
the Industry 4.0 context. The domain analysis and concepts are presented in Section 6, by means of

the FODA model, creating a foundation for the creation of a novel DSML for production process

modeling.

During our research, we did not encounter such a formulation of production process modeling

requirements in the context of Industry 4.0, an extensive survey and an analysis of existing

production process modeling languages, and an analysis of the production process modeling
domain. Therefore, these are theoretical contributions that may be used as a basis for future research

endeavors.

The result of our research is a novel MD solution that comprises both the approach and the

system for dynamic production orchestration and automatic generation of executable resource
instructions and manufacturing documentation, based on models created by a novel DSML. Such

an MD solution is presented in Section 5, while a novel, capability-based modeling language –

174 Conclusions and Future Work

MultiProLan, is presented in Section 7. By using Orchestrator and MultiProLan's models created at
two detail levels, we created a novel methodology to automatically transform resource-agnostic into

resource-aware production process models. Thus, a production process model is independent of any

production system, making production process modeling easier for process designers. Such a

production process model can be automatically transformed into process models specific to

different production systems in which they are to be used for automatic execution.

Finally, a theoretical contribution is achieved through applying MD principles in the

production domain, pointing out that it is possible to use the MD paradigm and contribute to

production, making it more flexible.

10.2.2 Development Contributions

The development and implementation of the novel MD solution, language and its modeling tool for

production process modeling, and code generators for automatic generation of executable resource

instructions and manufacturing documentation are the main development contributions. We

summarize their contributions in this section.

The MD solution is developed using the Java programming language and it helps process

designers create production process models independent of any specific production system, making
resource-agnostic process models. With the help of Orchestrator, resource-agnostic process models

can be automatically transformed into resource-aware process models for the specific production

system, which are used by Instruction Generator to automatically generate resource instructions to
execute process operations. By utilizing such an MD solution, process designers only model

production processes without production system details, such as resources that are to execute

process steps, production logistics, and machine configurations, making process modeling easier.

MultiProLan is developed using EMF and Sirius frameworks to support modeling concepts
related to the Industry 4.0 context, such as product and process variations, resource collaboration,

and error handling, among others. The language is built to fulfill the requirements stated in Section

4.2.1. It is a capability-based modeling language, so its models can be independent of any specific
production system. The goal of creating MultiProLan is to support the modeling of all production

details required for the automatic execution but not to be too complex for a human to comprehend.

To achieve this goal, two levels of detail are implemented so that production processes can be
modeled in a generic way. By creating two levels of detail, production process models become

independent of the production system details, and thus efforts needed during the production process

modeling are reduced. MultiProLan is used to:

• speed up and increase the precision with which production processes are designed;

• make fewer faults during process design; and

• enable faster changes in production process models.

Such a language is implemented formally, increasing consistency during modeling, and

decreasing the amount of time needed for the modeling.

Process Modeling Tool is implemented by using the Sirius framework to allow process

designers to model production processes by utilizing MultiProLan. The tool supports various
mechanisms, such as modeling layers and filtering tools, to deal with the scalability problem of

process diagrams. By using modeling layers, users of different profiles can work together on the

same process model and hide modeling concepts that are not relevant to them. Filtering tools can

be used to show only product and process variations that a process designer currently works with
and hide others to keep a process diagram clear. Therefore, by using different mechanisms of

Process Modeling Tool, a production process model can store various information, but also

maintain the process diagram's readability. Furthermore, as the tool is integrated with the MD
solution, it is possible to start production from the tool and monitor the execution of the invoked

process. Therefore, bottlenecks and production process modeling errors can be detected and

mitigated.

Conclusions and Future Work 175

Instruction Generator is developed from scratch using the Java programming language to
automatically transform resource-aware production process models into high-level instructions, that

are transformed into human-readable or machine-specific instructions by protocol transformation

components in Digital Twin. Such a generator, as a part of the MD solution, contributes to flexible

production, as process models are used to lead production process execution by generating
instructions from them. Also, as a part of the MD solution, Instruction Generator makes guided

production possible, sending instructions to human workers, alongside textual descriptions, images,

audio, and videos. Guided production helps novice workers create products during the training
phase and reduces the time experienced workers spend when helping them out. In addition, guided

production may help human workers when they frequently change a product or a product variation

they produce, or when they create complex products that could take hours to produce.

Documentation Generators are implemented by using the Xtend language to automatically

generate, update, and maintain manufacturing documentation of different types from the production

process models. Thus, process designers' efforts to manually perform such tasks are reduced.

10.2.3 Application Contributions

The MD solution and MultiProLan are applied in the production domain, particularly in the
assembly industry. They are applied in a demonstration environment in which human workers,

industrial mobile robots, and research-grade smart robots are used to assemble objects from LEGO®

bricks, as presented in Section 8.2. We also modeled various production processes from the

assembly industry to showcase the usage of MultiProLan, such as the one presented in Section 8.1.

MultiProLan and Process Modeling Tool were evaluated by different groups of users,

including process engineers, software developers, researchers, and students. The evaluation results,

as presented in Section 9, provided us with valuable feedback from users, and the evaluation
hypothesis EHnull was confirmed – that MultiProLan can be used in practice as it has all the

following quality characteristics: functional suitability, usability, reliability, expressiveness, and

productivity.

We also presented a new practical experience from applying a novel methodological approach,

a software tool, and a DSML in this thesis.

10.2.4 Socio-Economic Contributions

The MD solution and MultiProLan are put into public use as a general model of production process

management. They are applicable in a wide range of organizations and could enable significant
production process improvements. Also, they raise general accumulated knowledge on how to

contribute to such process improvements.

By applying the newly created solution and modeling language, manufacturing companies can
increase the level of flexibility and automation in their production and move to the digital

transformation era, thus fully applying the Industry 4.0 philosophy. Therefore, the research results

presented in this thesis, which originates from the collaboration between organizations in Serbia
and Austria, can improve production in the context of Industry 4.0, which is one of the key

economic factors of the European Union.

10.3 Future Work

In this section, we present the future work related to the research presented in this thesis. We divide

the future work into three parts described in the following subsections:

• future research in the domain of production process modeling;

176 Conclusions and Future Work

• further development of MultiProLan and Process Modeling Tool; and

• new application domains of MultiProLan.

Parts of the described future work have been already discussed in [11] and [14].

10.3.1 Future Research in the Domain of Production Process Modeling

The domain of production process modeling covers a wide range of different aspects that need to

be considered. In this thesis, we cover the execution and error handling aspects of production

process modeling. However, there are various aspects and extensions that need to be covered in the

future.

In our MD solution, Orchestrator is used to automatically transform resource-agnostic

production process models into resource-aware production process models. Such a transformation

can be achieved by using different matching and scheduling algorithms, based on the knowledge
about a production system stored in Knowledge Base. This knowledge is created by using Resource

Modeling Tool – a prototype modeling tool that uses a custom-built DSML to specify production

systems. The DSML is in the early implementation stage, covering only basic modeling concepts

related to production systems that are required in our solution (i.e., production resources with
capabilities and constraints, as well as interactions between the resources). Model examples created

by such a language are already presented in [5]. However, this language and its modeling tool need

to be further developed and extended with modeling concepts, such as different types of resources,
their interfaces, capabilities, constraints, and storage. Therefore, the extended production system

models can be used by Orchestrator for better allocation of resources in a factory.

In addition, as human characteristics are important in the context of Industry 4.0, it is necessary
to specify human roles, capabilities, and competencies [257]. Human workers need to be modeled

within production system models with more details, as there are different additional constraints

when they perform some tasks. For example, unqualified workers cannot perform some specialized

tasks; due to legal constraints workers cannot lift a heavy object more than a certain number of
times; or color-blind persons cannot perform some tasks. All these human worker characteristics

and constraints need to be carefully modeled, and Orchestrator or a resource manager can use such

knowledge to better allocate resources. Therefore, human skills such as technical, knowledge,
personal, cognitive, and social are considered in Industry 4.0, as well as their health, physical, and

mental capabilities [257]. The foundation for human worker modeling in the context of Industry

4.0, with the aim to achieve better integration of human workers and machines, is already laid out
in [15]. The language prototype of production and organizational perspectives of the human worker

modeling is already presented in [16] and [17], respectively. Human worker models will be

extended with concepts such as roles, skills, competencies, capabilities, and limitations, providing

more information to Orchestrator when matching and scheduling resources in a factory.

Safety, human physical risk factors, and energy consumption aspects are particularly

considered in Industry 4.0, but rarely modeled. These are the modeling concepts that MultiProLan

still lacks and need to be considered in the future. The lack of safety aspects modeling with
MultiProLan is also noted by one of the evaluation participants. The risk factors need to be modeled

for each process step and the decision of which smart resources are to be assigned to process steps

should also depend on these factors, which could be decided by Orchestrator. If a risk is high for a

human worker, a robot needs to be assigned to execute a process step. Energy consumption also
needs to be modeled to estimate the costs of different resources for each process step or to estimate

the costs of the whole process executed in different production systems. Therefore, Orchestrator

could propose or choose the production system in which the production costs will be the lowest.
Both HSE and energy consumption modeling concepts need to be presented as new modeling layers

to lower the complexity of process models.

MultiProLan is designed to model processes to be executed in a single facility and it is not
possible to model production processes that are shared among multiple facilities or smart factories.

Conclusions and Future Work 177

A collaboration between participants is needed to enable execution in multiple factories, creating
various intermediate products and the final product in different facilities and factories. This

collaboration requires a specification of production processes at the BSM level and an

implementation of horizontal integration between the participants. As a product is created in

different factories, the quality of each part must be guaranteed as well as contract fulfillment.
Therefore, Distributed Ledger Technology (DLT) systems and smart contracts can be used to

guarantee the quality of products created by various collaborative parties, to guarantee contract

fulfillment in a trustworthy way, and to supervise the state of production [18]. To model
collaborative production processes, CE-MultiProLan was created [19] based on MultiProLan and

will be further improved to support the modeling of trustworthy collaborative production processes,

the automatic generation of smart contracts and DLT configuration artifacts, and the execution of
such production process models. Smart contracts can be generated from CE-MultiProLan models

and stored in DLT networks, thus distributing production data between collaborative parties to

monitor production in near real-time. The automatic generation of DLT artifacts was already

presented in [258]. The whole MD system that supports CE-MultiProLan and the automatic

generation of smart contracts will be developed and discussed in the future.

 Another research field can cover the automatic extraction of production process models from

product specifications, such as CAD models. There have been a lot of research activities in this
field in past years [259–261], but many research questions are still open. It would be beneficial if

MultiProLan process models could be automatically extracted from product specifications.

Therefore, product designers would need to create a product model, after which process designers
would need to check the extracted process model and optimize it manually whenever necessary, by

using MultiProLan and Process Modeling Tool.

10.3.2 Further Development of MultiProLan and Process Modeling Tool

In this section, we discuss further development of MultiProLan and Process Modeling Tool. These

development improvements are partially gathered as feedback from the evaluation process

presented in Section 9.

Our MD solution allows a production system to be chosen for which a resource-aware process

model is to be created based on a resource-agnostic process model. Currently, there is no
recommendation system that would help process designers choose a production system. The

recommendation should be based on various criteria set by process designers, such as duration of

process execution or energy consumption. The estimation of process step execution duration is

already stored in MultiProLan production process models. Such an estimation, along with the
energy consumption estimation, discussed as a future work in Section 10.3.1, can be used to

estimate the time and costs of a whole process. As a single process can be executed in various

production systems, the recommendation system needs to recommend a production system in which

the process execution will be done with the best performance based on the chosen criteria.

As capabilities and parameters are not yet standardized, we created a repository with a

taxonomy of capabilities and parameters used in our MD solution. Once capabilities and parameters

are standardized, we will replace our capability taxonomy with the standardized one. Therefore, our
system will be compatible with any smart resource that supports the standard, extending

possibilities and application domains of our solution.

Production quality is not discussed in detail in this thesis, as it is out of the thesis's scope but
is quite important. Our MD solution supports the production quality only through completion and

acceptance criteria specified for each process step in MultiProLan models. The production quality

needs to be further discussed, researched, and integrated into MultiProLan and the MD solution,
thus enabling various quality aspects to be specified and consequently increasing the final product

quality.

178 Conclusions and Future Work

A collaboration between resources, especially a human-machine collaboration, is highly
important in Industry 4.0, as many resources need to collaborate to create different products and

their variations. Our MD solution utilizes collaboration through message exchange between

resources, synchronizing their activities. However, MultiProLan currently allows only the basic

modeling of messages between process steps at a high level, such as messages to start or finish
performed activities. As part of future work, more complex communication between resources

needs to be available for modeling using MultiProLan and supported by our MD solution.

Additionally, as mentioned in Section 10.3.1, safety aspects should also be modeled, especially in
cases of human-machine collaboration. This was also stated by one of the process engineers during

the MultiProLan evaluation process.

MultiProLan has graphical syntax created as process designers are mostly used to process
charts. However, it is possible that some process designers could find a textual concrete syntax

more suitable. We plan to create the MultiProLan textual syntax as well, and evaluate, analyze, and

compare the usage of both graphical and textual syntaxes with process designers. The creation of

MultiProLan textual syntax was also proposed by one of the MultiProLan evaluation participants.

During the evaluation process of MultiProLan, we managed to have only two process

engineers join the experiment. Their feedback was of utmost importance, and we plan to extend the

evaluation in the future by gathering more participants, especially process engineers. We also plan
to continue with the evaluation with process engineers from different industry domains. However,

an extension of the evaluation will require additional time to gather process engineers from different

domains. The feedback from process engineers may be useful in the context of domain coverage
and language usage. Additionally, we plan to conduct a new evaluation process in which various

participants will test the performance of MultiProLan and Process Modeling Tool and compare

them to the production process specification techniques they are mostly using.

There were also a few minor comments related to MultiProLan and Process Modeling Tool

left by participants during the evaluation process, such as:

• it was confusing where to put an output product of a collaboration between process steps;

• error messages provided by the model validator were not clear enough to solve problems

quickly in a model; and

• an additional modeling layer may be created for capabilities and products so they can be

shown or hidden at once.

We will consider all the comments gathered from the evaluation process and will improve both

MultiProLan and Process Modeling Tool in the future.

10.3.3 New Application Domains of MultiProLan

MultiProLan aims to be used to model production processes of any kind. Currently, it is used to

model discrete product manufacturing processes, especially the assembly of goods. There are
various new application domains for MultiProLan to be used, and in this section, we discuss these

additional MultiProLan applications.

For MultiProLan to be used in different manufacturing domains, such as process
manufacturing, additional features, like timers or time estimations, are needed. While discussing

with domain experts about the applicability of MultiProLan and Process Modeling Tool outside of

the discrete production of hardware elements domain, their feedback was that most of the

MultiProLan concepts could be applied to process manufacturing as well. Therefore, one of the
most important future research and development steps is to extend the language to support the

modeling of process production, whether it is performed in a fully continuous (e.g., water plants)

or a batch (e.g., breweries, sugar factories, and pharma factories) manner. We also plan further to
evaluate the language in additional industrial use cases to improve the domain concept coverage

and the stability of developed tools.

Conclusions and Future Work 179

We plan to integrate our solution with a detection system used to detect the execution of
process steps in the manufacturing assembly industry, such as the one that utilizes depth cameras

[262]. Currently, human workers must confirm via their tablet, smart watch, or monitor whether a

process step is executed successfully, or an error occurred. By using a detection system, a process

step execution status can be automatically detected and sent as feedback to our system. Therefore,
our system could send instructions one by one automatically, without waiting for a human worker

to confirm the execution status. The detection system also aims to prevent workers from missing

some process steps and thus save the time and costs required to fix the issue. If some process steps
are not performed, it could take hours to reassemble the product as not all steps are easily reversible,

or some parts of a product cannot be easily reached, and in some cases, the whole product needs to

be reassembled [262]. Using our MD solution with the detection system would improve guided
production through the automatic sending of process step execution status, helping workers

assemble products more efficiently. The detection system could send feedback to Process Modeling

Tool as well, updating a process model while monitoring process execution.

In addition, devices supporting Augmented Reality (AR) could be used by human workers
when assembling products, and our MD solution could send them instructions on how to execute

process steps. The AR technology could be a part of improved guided production and help human

workers assemble products. Both AR and Mixed Reality (MR) have been applied by researchers in
recent years for process modeling and execution, in the context of IoT and Industry 4.0, as well as

for guided production [263–265]. The integration of our MD solution and MultiProLan with AR

devices would require further research and development. MultiProLan models could be used for
the automatic generation of human-readable instructions that are enriched with details related to

AR or MR that would be sent to appropriate devices human workers wear.

During process execution, gathered feedback from resources and sensors is stored in storage.

Each process step execution status or error occurrence is stored in the storage and can be used for
various analyses. Stored data can be used for process analysis, leading to the detection of process

anomalies, bottlenecks, and failures. Also, the data can be used for predictive analysis, preventing

shutdowns or material shortages. For example, based on the process execution data, including the
execution time required by various resources to perform process steps, material shortages in storage

can be predicted and materials can be refiled in time. Such a prediction can save the time that a

resource in charge of replacing materials in storage must invest when checking out the materials'

quantity status. Based on different findings, production processes can be optimized and
unscheduled system shutdowns can be prevented as failures can be mitigated. The gathered data

can be used to start new research in the fields of data science and process mining, which could

provide useful knowledge about how processes can be improved, and thus lower the costs of
producing a product or making a product of better quality. For example, when unordered process

steps are specified, various resources may perform these steps in different order. The analysis of

process execution data may provide information on which process steps order is the fastest to
perform. By performing the fastest way of executing unordered process steps, more products can

be produced in the same amount of time or a product price can be lower compared to other ways of

executing the same process steps.

We believe that our MD solution can be further improved and developed to support flexible
production in the industry even more. Therefore, its full potential is yet to be discovered, alongside

new application domains, supporting companies in the digital transformation and Industry 4.0 era.

180 Conclusions and Future Work

References 181

References

[1] M.P. Groover, Fundamentals of Modern Manufacturing: Materials, Processes, and Systems,
4th ed., John Wiley & Sons, Inc., Hoboken, NJ, 2010.

[2] J.T. Black, R.A. Kohser, DeGarmo's Materials and Processes in Manufacturing, 13th ed., John

Wiley & Sons, Inc., Hoboken, NJ, 2019.

[3] N. Keddis, Capability-Based System-Aware Planning and Scheduling of Workflows for
Adaptable Manufacturing Systems, Ph.D. Thesis, Technical University of Munich, 2016.

[4] M. Pisarić, V. Dimitrieski, M. Vještica, G. Krajoski, Towards a Non-Disruptive System for

Dynamic Orchestration of the Shop Floor, in: IFIP Adv. Inf. Commun. Technol. AICT,
Springer Nature, Novi Sad, Serbia, 2020: pp. 469–476.

 https://doi.org/10.1007/978-3-030-57997-5_54.

[5] M. Pisarić, V. Dimitrieski, M. Vještica, G. Krajoski, M. Kapetina, Towards a Flexible Smart

Factory with a Dynamic Resource Orchestration, Appl. Sci. 11 (2021) 7956:1–7956:25.
https://doi.org/10.3390/app11177956.

[6] K. Dorofeev, Skill-Based Engineering in Industrial Automation Domain: Skills Modeling and

Orchestration, in: Proc. ACMIEEE 42nd Int. Conf. Softw. Eng. Companion Proc., Association
for Computing Machinery, Seoul, South Korea, 2020: pp. 158–161.

https://doi.org/10.1145/3377812.3381394.

[7] M. Vathoopan, K. Dorofeev, A. Zoitl, Skill-Based Engineering of Automation Systems: Use
Case and Evaluation, in: R. Drath (Ed.), Autom. Ind. Cookb., De Gruyter Oldenbourg, Berlin,

Boston, 2021: pp. 555–578. https://doi.org/10.1515/9783110745979-033.

[8] M. Vještica, V. Dimitrieski, M. Pisarić, S. Kordić, S. Ristić, I. Luković, Towards a formal

description and automatic execution of production processes, in: Proc. 2019 IEEE 15th Int. Sci.
Conf. Inform., IEEE, Poprad, Slovakia, 2019: pp. 463–468.

https://doi.org/10.1109/Informatics47936.2019.9119314.

[9] M. Vještica, V. Dimitrieski, M. Pisarić, S. Kordić, S. Ristić, I. Luković, Towards a Formal
Specification of Production Processes Suitable for Automatic Execution, Open Comput. Sci.

11 (2021) 161–179. https://doi.org/10.1515/comp-2020-0200.

[10] M. Vještica, V. Dimitrieski, M. Pisarić, S. Kordić, S. Ristić, I. Luković, The Syntax of a Multi-
Level Production Process Modeling Language, in: Proc. 2020 Fed. Conf. Comput. Sci. Inf.

Syst. FedCSIS 2020, Polish Information Processing Society, Sofia, Bulgaria, 2020: pp. 751–

760. https://doi.org/10.15439/2020F176.

[11] M. Vještica, V. Dimitrieski, M. Pisarić, S. Kordić, S. Ristić, I. Luković, Multi-level production
process modeling language, J. Comput. Lang. 66 (2021) 101053:1–101053:26.

https://doi.org/10.1016/j.cola.2021.101053.

[12] M. Todorović, Đ. Ivanišević, M. Vještica, V. Dimitrieski, I. Luković, An Automatic Generation
of Production Documentation from MultiProLan Models, in: Proc. 11th Int. Conf. Inf. Soc.

Technol. ICIST 2021, Information Society of Serbia – ISOS, Kopaonik, Serbia, 2021: pp. 96–

101.

182 References

[13] M. Vještica, V. Dimitrieski, M. Pisarić, S. Kordić, S. Ristić, I. Luković, An Application of a
DSML in Industry 4.0 Production Processes, in: IFIP Adv. Inf. Commun. Technol. AICT,

Springer Nature, Novi Sad, Serbia, 2020: pp. 441–448.

 https://doi.org/10.1007/978-3-030-57993-7_50.

[14] M. Vještica, V. Dimitrieski, M.M. Pisarić, S. Kordić, S. Ristić, I. Luković, Production
processes modelling within digital product manufacturing in the context of Industry 4.0, Int. J.

Prod. Res. 61 (2023) 6271–6290. https://doi.org/10.1080/00207543.2022.2125593.

[15] D. Antanasijević, S. Ristić, M. Vještica, V. Dimitrieski, M. Pisarić, Towards a Formal
Specification of Human Worker for Industry 4.0, in: Proc. 2022 IEEE 16th Int. Sci. Conf.

Inform., IEEE, Poprad, Slovakia, 2022: pp. 33–38.

https://doi.org/10.1109/Informatics57926.2022.10083444.
[16] D. Antanasijević, S. Ristić, M. Vještica, D. Stefanović, V. Dimitrieski, M. Pisarić, A Prototype

of a Domain-Specific Modeling Language for Formal Specification of a Human Worker, Acta

Electrotech. Inform. 23 (2023) 33–40. https://doi.org/10.2478/aei-2023-0010.

[17] D. Antanasijević, M. Vještica, L. Grubić-Nešić, V. Dimitrieski, M. Pisarić, S. Ristić, An
Organizational Perspective of Human Resource Modeling, IPSI Bgd Trans. Internet Res. 19

(2023) 64–75. https://doi.org/10.58245/ipsi.tir.2302.08.

[18] N. Todorović, M. Vještica, V. Dimitrieski, M. Zarić, N. Todorović, I. Luković, Towards
Trustworthy Horizontal Integration in Industry 4.0 Based on DLT Networks, in: Proc. 2020

Fed. Conf. Comput. Sci. Inf. Syst. FedCSIS 2020, Polish Information Processing Society,

Sofia, Bulgaria, 2020: pp. 63–69. https://doi.org/10.15439/2020F210.
[19] N. Todorović, M. Vještica, N. Todorović, V. Dimitrieski, I. Luković, A Novel Approach and a

Language for Facilitating Collaborative Production Processes in Virtual Organizations Based

on DLT Networks, in: Proc. 2nd Int. Conf. Innov. Intell. Ind. Prod. Logist. IN4PL 2021,

SciTePress, Science and Technology Publications, Lda, 2021: pp. 197–208.
https://doi.org/10.5220/0010720900003062.

[20] M.K. Sott, L.B. Furstenau, Y.P.R. Rodrigues, L.M. Kipper, G.L. Tortorella, J.R. López-Robles,

M.J. Cobo, Exploring the Evolution Structure of Process Modelling for Industry 4.0: a Science
Mapping for Proposing Research Paths, in: Proc. 2nd South Am. Conf. Ind. Eng. Oper. Manag.,

IEOM Society International, Sao Paulo, Brazil, 2021: pp. 537–550.

[21] L.D. Xu, E.L. Xu, L. Li, Industry 4.0: state of the art and future trends, Int. J. Prod. Res. 56

(2018) 2941–2962. https://doi.org/10.1080/00207543.2018.1444806.
[22] S. Erol, A. Jäger, P. Hold, K. Ott, W. Sihn, Tangible Industry 4.0: A Scenario-Based Approach

to Learning for the Future of Production, in: Proc. 6th CIRP Conf. Learn. Factories, 2016: pp.

13–18. https://doi.org/10.1016/j.procir.2016.03.162.
[23] L.D. Xu, Enterprise Systems: State-of-the-Art and Future Trends, IEEE Trans. Ind. Inform. 7

(2011) 630–640. https://doi.org/10.1109/TII.2011.2167156.

[24] J. Jiao, M.M. Tseng, Q. Ma, Y. Zou, Generic Bill-of-Materials-and-Operations for High-
Variety Production Management, Concurr. Eng. 8 (2000) 297–321.

https://doi.org/10.1177/1063293X0000800404.

[25] American Society of Mechanical Engineers, ASME Standard: Operation and Flow Process

Charts, ASME, New York, 1947.
[26] Korean Standards Association (KSA), KS A 3002 Standard. https://www.kssn.net/en/

(accessed April 5, 2020).

[27] D.H. Stamatis, Failure Mode and Effect Analysis: FMEA from Theory to Execution, 2nd ed.,
American Society for Quality, Quality Press, Milwaukee, Wisconsin, United States, 2003.

[28] Ford Motor Company, Failure Mode and Effects Analysis: FMEA Handbook (with Robustness

Linkages), Version 4.2, Ford Motor Company, Dearborn, Michigan, United States, 2011.
[29] D.H. Stamatis, Advanced Product Quality Planning: The Road to Success, 1st ed., CRC Press,

Taylor & Francis Group, Boca Raton, Florida, United States, 2018.

[30] Object Management Group, Business Process Model and Notation, Version 2.0.2, 2014.

[31] S. Zor, K. Görlach, F. Leymann, Using BPMN for Modeling Manufacturing Processes, in:
Proc. 43rd CIRP Int. Conf. Manuf. Syst. ICMS 2010, Vienna, Austria, 2010: pp. 515–522.

References 183

[32] S. Zor, D. Schumm, F. Leymann, A Proposal of BPMN Extensions for the Manufacturing
Domain, in: Proc. 44th CIRP Int. Conf. Manuf. Syst. ICMS 2011, Madison, Wisconsin, USA,

2011: pp. 1–7.

[33] M. Polderdijk, I. Vanderfeesten, J. Erasmus, K. Traganos, T. Bosch, G. van Rhijn, D. Fahland,

A Visualization of Human Physical Risks in Manufacturing Processes Using BPMN, in: Lect.
Notes Bus. Inf. Process. LNBIP, Springer, Barcelona, Spain, 2017: pp. 732–743.

https://doi.org/10.1007/978-3-319-74030-0_58.

[34] H. Ahn, T.-W. Chang, Measuring Similarity for Manufacturing Process Models, in: IFIP Adv.
Inf. Commun. Technol. AICT, Springer Nature, Seoul, Korea, 2018: pp. 223–231.

https://doi.org/10.1007/978-3-319-99707-0_28.

[35] H. Ahn, T.-W. Chang, A Similarity-Based Hierarchical Clustering Method for Manufacturing
Process Models, Sustainability. 11 (2019) 2560:1–2560:18.

 https://doi.org/10.3390/su11092560.

[36] I. Abouzid, R. Saidi, Proposal of BPMN extensions for modelling manufacturing processes, in:

Proc. 2019 5th Int. Conf. Optim. Appl. ICOA, IEEE, Kenitra, Morocco, 2019: pp. 1–6.
https://doi.org/10.1109/ICOA.2019.8727651.

[37] P. Michalik, J. Štofa, I. Zolotová, The Use of BPMN for Modelling the MES Level in

Information and Control Systems, Qual. Innov. Prosper. 17 (2013) 39–47.
https://doi.org/10.12776/qip.v17i1.68.

[38] I. Graja, S. Kallel, N. Guermouche, A.H. Kacem, BPMN4CPS: A BPMN Extension for

Modeling Cyber-Physical Systems, in: Proc. 2016 IEEE 25th Int. Conf. Enabling Technol.
Infrastruct. Collab. Enterp. WETICE, IEEE, Paris, France, 2016: pp. 152–157.

https://doi.org/10.1109/WETICE.2016.41.

[39] P. Bocciarelli, A. D'Ambrogio, A. Giglio, E. Paglia, A BPMN extension for modeling Cyber-

Physical-Production-Systems in the context of Industry 4.0, in: Proc. 2017 IEEE 14th Int. Conf.
Netw. Sens. Control ICNSC, IEEE, Calabria, Italy, 2017: pp. 599–604.

https://doi.org/10.1109/ICNSC.2017.8000159.

[40] S. Meyer, A. Ruppen, C. Magerkurth, Internet of Things-Aware Process Modeling: Integrating
IoT Devices as Business Process Resources, in: Adv. Inf. Syst. Eng. CAiSE 2013 Lect. Notes

Comput. Sci., Springer International Publishing, Valencia, Spain, 2013: pp. 84–98.

https://doi.org/10.1007/978-3-642-38709-8_6.

[41] S. Meyer, A. Ruppen, L. Hilty, The Things of the Internet of Things in BPMN, in: Adv. Inf.
Syst. Eng. Workshop CAiSE 2015 Lect. Notes Bus. Inf. Process., Springer International

Publishing, Stockholm, Sweden, 2015: pp. 285–297.

 https://doi.org/10.1007/978-3-319-19243-7_27.
[42] S. Schönig, L. Ackermann, S. Jablonski, A. Ermer, IoT meets BPM: a bidirectional

communication architecture for IoT-aware process execution, Softw. Syst. Model. 19 (2020)

1443–1459. https://doi.org/10.1007/s10270-020-00785-7.
[43] Object Management Group, Unified Modeling Language, Version 2.5.1, 2017.

[44] Object Management Group, Systems Modeling Language, Version 1.6, 2019.

[45] S.M. Fallah, S. Wolny, M. Wimmer, Towards model-integrated service-oriented

manufacturing execution system, in: Proc. 2016 1st Int. Workshop Cyber-Phys. Prod. Syst.
CPPS, IEEE, Vienna, Austria, 2016: pp. 1–5. https://doi.org/10.1109/CPPS.2016.7483917.

[46] C.A. Petri, Kommunikationen mit Automaten, Ph.D. Thesis, University of Bonn, 1962.

[47] W. Reisig, Understanding Petri Nets: Modeling Techniques, Analysis Methods, Case Studies,
1st ed., Springer-Verlag, Berlin Heidelberg, 2013. https://doi.org/10.1007/978-3-642-33278-4.

[48] R. Müller, M. Scholer, M. Karkowski, Generic automation task description for flexible

assembly systems, in: Proc. 52nd CIRP Conf. Manuf. Syst. CMS, Elsevier, Ljubljana, Slovenia,
2019: pp. 730–735. https://doi.org/10.1016/j.procir.2019.03.185.

[49] R. Valk, Object Petri Nets: Using the Nets-within-Nets Paradigm, in: J. Desel, W. Reisig, G.

Rozenberg (Eds.), Lect. Concurr. Petri Nets Adv. Petri Nets, Springer, Berlin, Heidelberg,

2004: pp. 819–848. https://doi.org/10.1007/978-3-540-27755-2_23.
[50] J.-I. Latorre-Biel, J. Faulín, A.A. Juan, E. Jiménez-Macías, Petri Net Model of a Smart Factory

in the Frame of Industry 4.0, in: Proc. 9th Vienna Int. Conf. Math. Model. MATHMOD 2018,

Elsevier, Vienna, Austria, 2018: pp. 266–271. https://doi.org/10.1016/j.ifacol.2018.03.046.

184 References

[51] R.J. Mayer, C.P. Menzel, M.K. Painter, P.S. Dewitte, T. Blinn, B. Perakath, IDEF3 Process
Description Capture Method Report, Knowledge Based Systems, Inc., Texas, USA, 1995.

[52] Q. Li, Y.-L. Chen, IDEF3 Process Capture Method, in: Model. Anal. Enterp. Inf. Syst. Requir.

Realiz., Springer, Berlin, Heidelberg, 2009: pp. 159–168.

 https://doi.org/10.1007/978-3-540-89556-5_8.
[53] R. Davis, E. Brabänder, eds., The Event-driven Process Chain, in: ARIS Des. Platf. Get. Started

BPM, Springer, London, 2007: pp. 105–125. https://doi.org/10.1007/978-1-84628-613-1_7.

[54] A. Fleischmann, What Is S-BPM?, in: Commun. Comput. Inf. Sci. CCIS, Springer, Berlin,
Heidelberg, 2010: pp. 85–106. https://doi.org/10.1007/978-3-642-15915-2_7.

[55] A. Fleischmann, C. Stary, Whom to talk to? A stakeholder perspective on business process

development, Univers. Access Inf. Soc. 11 (2012) 125–150.
 https://doi.org/10.1007/s10209-011-0236-x.

[56] M. Neubauer, F. Krenn, D. Majoe, C. Stary, Subject-orientation as design language for

integration across organisational control layers, Int. J. Prod. Res. 55 (2017) 3644–3656.

https://doi.org/10.1080/00207543.2016.1198058.
[57] L. Wen, D. Tuffley, Formalizing Manufacturing Process Modeling Using Composition Trees,

Adv. Mater. Res. 399–401 (2012) 1852–1855.

https://doi.org/10.4028/www.scientific.net/AMR.399-401.1852.
[58] D. Bork, H.-G. Fill, D. Karagiannis, W. Utz, Simulation of Multi-Stage Industrial Business

Processes Using Metamodelling Building Blocks with ADOxx, Enterp. Model. Inf. Syst.

Archit. 13 (2018) 333–344. https://doi.org/10.18417/emisa.si.hcm.25.
[59] D. Jeong, D. Kim, T. Choi, Y. Seo, A Process-Based Modeling Method for Describing

Production Processes of Ship Block Assembly Planning, Processes. 8 (2020) 880:1–880:21.

https://doi.org/10.3390/pr8070880.

[60] R. Petrasch, R. Hentschke, Towards an Internet-of-Things-aware Process Modeling Method:
An Example for a House Suveillance System Process Model, in: Proc. 2nd Manag. Innov.

Technol. Int. Conf. MITiCON 2015, Information Technology Management, Faculty of

Engineering, Mahidol University, Bangkok, Thailand, 2015: pp. 168–172.
[61] R. Petrasch, R. Hentschke, Process modeling for industry 4.0 applications: Towards an industry

4.0 process modeling language and method, in: Proc. 2016 13th Int. Jt. Conf. Comput. Sci.

Softw. Eng. JCSSE, IEEE, Khon Kaen, Thailand, 2016: pp. 1–5.

https://doi.org/10.1109/JCSSE.2016.7748885.
[62] R. Lindorfer, R. Froschauer, G. Schwarz, ADAPT - A decision-model-based Approach for

Modeling Collaborative Assembly and Manufacturing Tasks, in: Proc. 2018 IEEE 16th Int.

Conf. Ind. Inform. INDIN, IEEE, Porto, Portugal, 2018: pp. 559–564.
https://doi.org/10.1109/INDIN.2018.8472064.

[63] M. Rother, J. Shook, Learning to See: Value Stream Mapping to Create Value and Eliminate

MUDA, Version 1.4, Lean Enterprise Institute, Cambridge, MA, USA, 2009.
[64] A. Salmi, P. David, J.D. Summers, E. Blanco, A modelling language for assembly sequences

representation, scheduling and analyses, Int. J. Prod. Res. 52 (2014) 3986–4006.

https://doi.org/10.1080/00207543.2014.916432.

[65] N. Keddis, G. Kainz, A. Zoitl, A. Knoll, Modeling production workflows in a mass
customization era, in: Proc. 2015 IEEE Int. Conf. Ind. Technol. ICIT, IEEE, Seville, Spain,

2015: pp. 1901–1906. https://doi.org/10.1109/ICIT.2015.7125374.

[66] M. Lütjen, D. Rippel, GRAMOSA framework for graphical modelling and simulation-based
analysis of complex production processes, Int. J. Adv. Manuf. Technol. 81 (2015) 171–181.

https://doi.org/10.1007/s00170-015-7037-y.

[67] B. Yang, L. Qiao, Z. Zhu, M. Wulan, A Metamodel for the Manufacturing Process Information
Modeling, in: Proc. 9th Int. Conf. Digit. Enterp. Technol. DET 2016 – Intell. Manuf. Knowl.

Econ. Era, Nanjing, China, 2016: pp. 332–337. https://doi.org/10.1016/j.procir.2016.10.032.

[68] B. Yang, L. Qiao, N. Cai, Z. Zhu, M. Wulan, Manufacturing process information modeling

using a metamodeling approach, Int. J. Adv. Manuf. Technol. 94 (2018) 1579–1596.
https://doi.org/10.1007/s00170-016-9979-0.

References 185

[69] E. Järvenpää, N. Siltala, O. Hylli, M. Lanz, The development of an ontology for describing the
capabilities of manufacturing resources, J. Intell. Manuf. 30 (2019) 959–978.

https://doi.org/10.1007/s10845-018-1427-6.

[70] S. Cramer, M. Hoffmann, P. Schlegel, M. Kemmerling, R.H. Schmitt, Towards a flexible

process-independent meta-model for production data, in: Proc. 14th CIRP Conf. Intell.
Comput. Manuf. Eng. ICME, Elsevier, Gulf of Naples, Italy, 2020: pp. 586–591.

https://doi.org/10.1016/j.procir.2021.03.112.

[71] T.D. Brunoe, A.-L. Andersen, D.G.H. Sorensen, K. Nielsen, M. Bejlegaard, Integrated product-
process modelling for platform-based co-development, Int. J. Prod. Res. 58 (2020) 6185–6201.

https://doi.org/10.1080/00207543.2019.1671628.

[72] C. Schlenoff, M. Gruninger, F. Tissot, J. Valois, J. Lubell, J. Lee, The Process Specification
Language (PSL) Overview and Version 1.0 Specification, National Institute of Standards and

Technology (NIST), 2000. https://doi.org/10.6028/NIST.IR.6459.

[73] L. Qiao, S. Kao, Y. Zhang, Manufacturing process modelling using process specification

language, Int. J. Adv. Manuf. Technol. 55 (2011) 549–563.
 https://doi.org/10.1007/s00170-010-3115-3.

[74] M. Witsch, B. Vogel-Heuser, Towards a Formal Specification Framework for Manufacturing

Execution Systems, IEEE Trans. Ind. Inform. 8 (2012) 311–320.
https://doi.org/10.1109/TII.2012.2186585.

[75] B. Weißenberger, S. Flad, X. Chen, S. Rösch, T. Voigt, B. Vogel-Heuser, Model driven

engineering of manufacturing execution systems using a formal specification, in: Proc. 2015
IEEE 20th Int. Conf. Emerg. Technol. Fact. Autom. ETFA, IEEE, Luxembourg, 2015: pp. 1–

8. https://doi.org/10.1109/ETFA.2015.7301430.

[76] X. Chen, F. Gemein, S. Flad, T. Voigt, Basis for the model-driven engineering of

manufacturing execution systems: Modeling elements in the domain of beer brewing, Comput.
Ind. 101 (2018) 127–137. https://doi.org/10.1016/j.compind.2018.07.005.

[77] X. Chen, C. Nophut, T. Voigt, A model-driven approach for engineering customizable MES

with the application to the food and beverage industry, Int. J. Adv. Manuf. Technol. 115 (2021)
2607–2622. https://doi.org/10.1007/s00170-021-07317-7.

[78] H. Lee, K. Ryu, Y.-J. Son, Y. Cho, Capturing green information and mapping with MES

functions for increasing manufacturing sustainability, Int. J. Precis. Eng. Manuf. 15 (2014)

1709–1716. https://doi.org/10.1007/s12541-014-0523-6.
[79] H. Lee, Y. Liau, S. Kim, K. Ryu, A Framework for Process Model Based Human-Robot

Collaboration System Using Augmented Reality, in: IFIP Adv. Inf. Commun. Technol. AICT,

Springer Nature, Seoul, Korea, 2018: pp. 482–489.
 https://doi.org/10.1007/978-3-319-99707-0_60.

[80] H. Lee, Y.Y. Liau, S. Kim, K. Ryu, Model-Based Human Robot Collaboration System for

Small Batch Assembly with a Virtual Fence, Int. J. Precis. Eng. Manuf.-Green Technol. 7
(2020) 609–623. https://doi.org/10.1007/s40684-020-00214-6.

[81] The Association of German Engineers, The Association for Electrical, Electronic &

Information Technologies, VDI/VDE 3682 Part 1 – Formalised process descriptions: Concept

and graphic representation, VDI/VDE Society for Measurement and Automatic Control
(GMA), Düsseldorf, Germany, 2015.

[82] The Association of German Engineers, The Association for Electrical, Electronic &

Information Technologies, VDI/VDE 3682 Part 2 – Formalised process descriptions:
Information model, VDI/VDE Society for Measurement and Automatic Control (GMA),

Düsseldorf, Germany, 2015.

[83] K. Meixner, J. Decker, H. Marcher, A. Lüder, S. Biffl, Towards a Domain-Specific Language
for Product-Process-Resource Constraints, in: Proc. 25th IEEE Int. Conf. Emerg. Technol.

Fact. Autom. ETFA, IEEE, Vienna, Austria, 2020: pp. 1405–1408.

https://doi.org/10.1109/ETFA46521.2020.9212063.

[84] K. Meixner, F. Rinker, H. Marcher, J. Decker, S. Biffl, A Domain-Specific Language for
Product-Process-Resource Modeling, in: Proc. 26th IEEE Int. Conf. Emerg. Technol. Fact.

Autom. ETFA, IEEE, Vasteras, Sweden, 2021: pp. 1–8.

https://doi.org/10.1109/ETFA45728.2021.9613674.

186 References

[85] B. Caesar, A. Hänel, E. Wenkler, C. Corinth, S. Ihlenfeldt, A. Fay, Information Model of a
Digital Process Twin for Machining Processes, in: Proc. 25th IEEE Int. Conf. Emerg. Technol.

Fact. Autom. ETFA, IEEE, Vienna, Austria, 2020: pp. 1765–1772.

https://doi.org/10.1109/ETFA46521.2020.9212085.

[86] R. Seiger, C. Keller, F. Niebling, T. Schlegel, Modelling complex and flexible processes for
smart cyber-physical environments, J. Comput. Sci. 10 (2015) 137–148.

https://doi.org/10.1016/j.jocs.2014.07.001.

[87] D. Brovkina, O. Riedel, Skill-based Metamodel for sustaining the process-oriented cyber-
physical System Description, in: Proc. 39th Cent. Am. Panama Conv. CONCAPAN XXXIX,

IEEE, Guatemala City, Guatemala, 2019: pp. 1–6.

https://doi.org/10.1109/CONCAPANXXXIX47272.2019.8976997.
[88] D. Brovkina, O. Riedel, Graph-based Data Model for Assembly-Specific Capability

Description for Fully Automated Assembly Line Design, in: Proc. 2nd Eurasia Conf. IOT

Commun. Eng. ECICE, IEEE, Yunlin, Taiwan, 2020: pp. 381–384.

https://doi.org/10.1109/ECICE50847.2020.9301960.
[89] D. Brovkina, O. Riedel, Assembly Process Model for Automated Assembly Line Design, in:

Proc. 3rd Eurasia Conf. IOT Commun. Eng. ECICE, IEEE, Yunlin, Taiwan, 2021: pp. 588–

594. https://doi.org/10.1109/ECICE52819.2021.9645604.
[90] C. Lehnert, G. Engel, H. Steininger, R. Drath, T. Greiner, A Hierarchical Domain-Specific

Language for Cyber-physical Production Systems Integrating Asset Administration Shells, in:

Proc. 26th IEEE Int. Conf. Emerg. Technol. Fact. Autom. ETFA, IEEE, Vasteras, Sweden,
2021: pp. 1–4. https://doi.org/10.1109/ETFA45728.2021.9613428.

[91] F. Gamboa Quintanilla, O. Cardin, A. L'Anton, P. Castagna, A modeling framework for

manufacturing services in Service-oriented Holonic Manufacturing Systems, Eng. Appl. Artif.

Intell. 55 (2016) 26–36. https://doi.org/10.1016/j.engappai.2016.06.004.
[92] A. Indamutsa, D. Di Ruscio, A. Pierantonio, A Low-Code Development Environment to

Orchestrate Model Management Services, in: IFIP Adv. Inf. Commun. Technol. AICT,

Springer Nature, Nantes, France, 2021: pp. 342–350.
 https://doi.org/10.1007/978-3-030-85874-2_36.

[93] K.C. Kang, S.G. Cohen, J.A. Hess, W.E. Novak, A.S. Peterson, Feature-Oriented Domain

Analysis (FODA) Feasibility Study, Software Engineering Institute, Carnegie Mellon

University, 1990.
[94] D. Steinberg, F. Budinsky, M. Paternostro, E. Merks, EMF: Eclipse Modeling Framework, 2nd

ed., Addison-Wesley Professional, Upper Saddle River, New Jersey, U.S., 2008.

[95] Eclipse Foundation, Eclipse Modeling Framework. https://www.eclipse.org/modeling/emf/
(accessed March 20, 2021).

[96] Object Management Group, Object Constraint Language, Version 2.4, 2014.

[97] J. Warmer, A. Kleppe, The Object Constraint Language: Getting Your Models Ready for
MDA, 2nd ed., Addison-Wesley, Boston, MA, USA, 2003.

[98] J. Cabot, M. Gogolla, Object Constraint Language (OCL): A Definitive Guide, in: Proc. 12th

Int. Sch. Form. Methods Des. Comput. Commun. Softw. Syst., Springer, Bertinoro, Italy, 2012:

pp. 58–90. https://doi.org/10.1007/978-3-642-30982-3_3.
[99] V. Vujović, M. Maksimović, B. Perišić, Sirius: A Rapid Development of DSM Graphical

Editor, in: Proc. IEEE 18th Int. Conf. Intell. Eng. Syst. INES 2014, IEEE, Tihany, Hungary,

2014: pp. 233–238. https://doi.org/10.1109/INES.2014.6909375.
[100] Eclipse Sirius Documentation. https://www.eclipse.org/sirius/doc/ (accessed March 19, 2020).

[101] G. Kahraman, S. Bilgen, A framework for qualitative assessment of domain-specific languages,

Softw. Syst. Model. 14 (2015) 1505–1526. https://doi.org/10.1007/s10270-013-0387-8.
[102] M. Xu, J.M. David, S.H. Kim, The Fourth Industrial Revolution: Opportunities and Challenges,

Int. J. Financ. Res. 9 (2018) 90–95. https://doi.org/10.5430/ijfr.v9n2p90.

[103] P.N. Stearns, The Industrial Revolution in World History, 5th ed., Routledge, Taylor & Francis

Group, New York and London, 2021.
[104] H. Kagermann, W.-D. Lukas, W. Wahlster, Industrie 4.0: Mit dem Internet der Dinge auf dem

Weg zur 4. industriellen Revolution, VDI Nachrichten. 13 (2011).

References 187

[105] K.-D. Thoben, S. Wiesner, T. Wuest, "Industrie 4.0" and Smart Manufacturing – A Review of
Research Issues and Application Examples, Int. J. Autom. Technol. 11 (2017) 4–16.

https://doi.org/10.20965/ijat.2017.p0004.

[106] H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, M. Hoffmann, Industry 4.0, Bus. Inf. Syst. Eng. 6

(2014) 239–242. https://doi.org/10.1007/s12599-014-0334-4.
[107] H. Zhao, L. McLoughlin, V. Adzhiev, A. Pasko, "Why do we not buy mass customised

products?" – An investigation of consumer purchase intention of mass customised products,

Int. J. Ind. Eng. Manag. 10 (2019) 181–190. https://doi.org/10.24867/IJIEM-2019-2-238.
[108] D. Ivanov, C.S. Tang, A. Dolgui, D. Battini, A. Das, Researchers' perspectives on Industry 4.0:

multi-disciplinary analysis and opportunities for operations management, Int. J. Prod. Res. 59

(2021) 2055–2078. https://doi.org/10.1080/00207543.2020.1798035.
[109] Y. Lu, Industry 4.0: A survey on technologies, applications and open research issues, J. Ind.

Inf. Integr. 6 (2017) 1–10. https://doi.org/10.1016/j.jii.2017.04.005.

[110] A.G. Frank, L.S. Dalenogare, N.F. Ayala, Industry 4.0 technologies: Implementation patterns

in manufacturing companies, Int. J. Prod. Econ. 210 (2019) 15–26.
https://doi.org/10.1016/j.ijpe.2019.01.004.

[111] B. Chen, J. Wan, L. Shu, P. Li, M. Mukherjee, B. Yin, Smart Factory of Industry 4.0: Key

Technologies, Application Case, and Challenges, IEEE Access. 6 (2018) 6505–6519.
https://doi.org/10.1109/ACCESS.2017.2783682.

[112] F. Almada-Lobo, The Industry 4.0 revolution and the future of Manufacturing Execution

Systems (MES), J. Innov. Manag. 3 (2015) 16–21.
 https://doi.org/10.24840/2183-0606_003.004_0003.

[113] S. Wang, J. Wan, D. Li, C. Zhang, Implementing Smart Factory of Industrie 4.0: An Outlook,

Int. J. Distrib. Sens. Netw. 12 (2016) 1–10. https://doi.org/10.1155/2016/3159805.

[114] Y. Zhang, C. Qian, J. Lv, Y. Liu, Agent and Cyber-Physical System Based Self-Organizing
and Self-Adaptive Intelligent Shopfloor, IEEE Trans. Ind. Inform. 13 (2017) 737–747.

https://doi.org/10.1109/TII.2016.2618892.

[115] N. Jazdi, Cyber Physical Systems in the Context of Industry 4.0, in: Proc. 2014 IEEE Int. Conf.
Autom. Qual. Test. Robot., IEEE, Cluj-Napoca, Romania, 2014: pp. 1–4.

https://doi.org/10.1109/AQTR.2014.6857843.

[116] E.A. Lee, S.A. Seshia, Introduction to Embedded Systems: A Cyber-Physical Systems

Approach, 2nd ed., MIT Press, 2017.
[117] B.B. Sanchez, R. Alcarria, D. Sanchez-de-Rivera, A. Sanchez-Picot, Enhancing Process

Control in Industry 4.0 Scenarios using Cyber-Physical Systems, J. Wirel. Mob. Netw.

Ubiquitous Comput. Dependable Appl. JoWUA. 7 (2016) 41–64.
https://doi.org/10.22667/JOWUA.2016.12.31.041.

[118] L. Monostori, B. Kádár, T. Bauernhansl, S. Kondoh, S. Kumara, G. Reinhart, O. Sauer, G.

Schuh, W. Sihn, K. Ueda, Cyber-physical systems in manufacturing, CIRP Ann. - Manuf.
Technol. 65 (2016) 621–641. https://doi.org/10.1016/j.cirp.2016.06.005.

[119] R. Stark, T. Damerau, Digital Twin, in: S. Chatti, T. Tolio (Eds.), CIRP Encycl. Prod. Eng.,

Springer, Berlin, Heidelberg, 2019: pp. 1–8.

 https://doi.org/10.1007/978-3-642-35950-7_16870-1.
[120] Q. Qi, F. Tao, Digital Twin and Big Data Towards Smart Manufacturing and Industry 4.0: 360

Degree Comparison, IEEE Access. 6 (2018) 3585–3593.

https://doi.org/10.1109/ACCESS.2018.2793265.
[121] J. Wan, H. Cai, K. Zhou, Industrie 4.0: Enabling Technologies, in: Proc. 2015 Int. Conf. Intell.

Comput. Internet Things ICIT, IEEE, Harbin, China, 2015: pp. 135–140.

https://doi.org/10.1109/ICAIOT.2015.7111555.
[122] S. Vaidya, P. Ambad, S. Bhosle, Industry 4.0 – A Glimpse, in: Procedia Manuf., Maharashtra,

India, 2018: pp. 233–238. https://doi.org/10.1016/j.promfg.2018.02.034.

[123] S. Li, L.D. Xu, S. Zhao, The internet of things: a survey, Inf. Syst. Front. 17 (2015) 243–259.

https://doi.org/10.1007/s10796-014-9492-7.
[124] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, M. Gidlund, Industrial Internet of Things:

Challenges, Opportunities, and Directions, IEEE Trans. Ind. Inform. 14 (2018) 4724–4734.

https://doi.org/10.1109/TII.2018.2852491.

188 References

[125] B. Saenz de Ugarte, A. Artiba, R. Pellerin, Manufacturing execution system – a literature
review, Prod. Plan. Control. 20 (2009) 525–539. https://doi.org/10.1080/09537280902938613.

[126] S. Mantravadi, C. Møller, An Overview of Next-generation Manufacturing Execution Systems:

How important is MES for Industry 4.0?, Procedia Manuf. 30 (2019) 588–595.

https://doi.org/10.1016/j.promfg.2019.02.083.
[127] F.R. Jacobs, W.L. Berry, D.C. Whybark, T.E. Vollmann, Manufacturing Planning and Control

for Supply Chain Management: The CPIM Reference, 2nd ed., McGraw-Hill Education, 2018.

[128] L. Alting, H. Zhang, Computer Aided Process Planning: the state-of-the-art survey, Int. J. Prod.
Res. 27 (1989) 553–585. https://doi.org/10.1080/00207548908942569.

[129] F. Cay, C. Chassapis, An IT view on perspectives of computer aided process planning research,

Comput. Ind. 34 (1997) 307–337. https://doi.org/10.1016/S0166-3615(97)00070-5.
[130] X. Xu, L. Wang, S.T. Newman, Computer-aided process planning – A critical review of recent

developments and future trends, Int. J. Comput. Integr. Manuf. 24 (2011) 1–31.

https://doi.org/10.1080/0951192X.2010.518632.

[131] M. Lundgren, M. Hedlind, T. Kjellberg, Model Driven Manufacturing Process Design and
Managing Quality, in: Proc. 26th CIRP Des. Conf., Elsevier, Stockholm, Sweden, 2016: pp.

299–304. https://doi.org/10.1016/j.procir.2016.07.032.

[132] M. Lundgren, M. Hedlind, G. Sivard, T. Kjellberg, Process Design as Fundament in Efficient
Process Planning, in: Proc. 8th Swed. Prod. Symp. SPS 2018, Elsevier, Stockholm, Sweden,

2018: pp. 487–494. https://doi.org/10.1016/j.promfg.2018.06.126.

[133] C.T. Maravelias, C. Sung, Integration of production planning and scheduling: Overview,
challenges and opportunities, Comput. Chem. Eng. 33 (2009) 1919–1930.

https://doi.org/10.1016/j.compchemeng.2009.06.007.

[134] S.C. Graves, A Review of Production Scheduling, Oper. Res. 29 (1981) 646–675.

https://doi.org/10.1287/opre.29.4.646.
[135] B.W. Niebel, Mechanized process selection for planning new design, ASME Pap. No 737.

(1965).

[136] D.E. Schenk, Feasibility of automated process planning, Ph.D. Thesis, Purdue University,
1966.

[137] Y. Yusof, K. Latif, Survey on computer-aided process planning, Int. J. Adv. Manuf. Technol.

75 (2014) 77–89. https://doi.org/10.1007/s00170-014-6073-3.

[138] C. Elanchezhian, T.S. Selwyn, G.S. Sundar, Computer Aided Manufacturing, 2nd ed., Laxmi
Publications, 2007.

[139] M. Mani, J. Madan, J.H. Lee, K.W. Lyons, S.K. Gupta, Sustainability characterisation for

manufacturing processes, Int. J. Prod. Res. 52 (2014) 5895–5912.
https://doi.org/10.1080/00207543.2014.886788.

[140] F. Jovane, E. Westkämper, D. Williams, The ManuFuture Road: Towards Competitive and

Sustainable High-Adding-Value Manufacturing, 1st ed., Springer, Berlin, Heidelberg, 2009.
https://doi.org/10.1007/978-3-540-77012-1.

[141] I.C. Garretson, M. Mani, S. Leong, K.W. Lyons, K.R. Haapala, Terminology to support

manufacturing process characterization and assessment for sustainable production, J. Clean.

Prod. 139 (2016) 986–1000. https://doi.org/10.1016/j.jclepro.2016.08.103.
[142] Platform Industrie 4.0, ZVEI, Details of the Asset Administration Shell. Part 1 – The exchange

of information between partners in the value chain of Industrie 4.0 (Version 3.0RC01), Federal

Ministry for Economic Affairs and Energy (BMWi), Berlin, Germany, 2020.
[143] C. Diedrich, A. Belyaev, R. Blumenfeld, J. Bock, S. Grimm, J. Hermann, T. Klausmann, A.

Köcher, M. Maurmaier, K. Meixner, J. Peschke, M. Schleipen, S. Schmitt, B. Schnebel, G.

Stephan, M. Volkmann, A. Wannagat, K. Watson, M. Winter, P. Zimmermann, Information
Model for Capabilities, Skills & Services, Plattform Industrie 4.0, Berlin, Germany, 2022.

[144] S. Malakuti, J. Bock, M. Weser, P. Venet, P. Zimmermann, M. Wiegand, J. Grothoff, C.

Wagner, A. Bayha, Challenges in Skill-based Engineering of Industrial Automation Systems,

in: Proc. 23rd Int. Conf. Emerg. Technol. Fact. Autom. ETFA, IEEE, Turin, Italy, 2018: pp.
67–74. https://doi.org/10.1109/ETFA.2018.8502635.

[145] V. Hammerstingl, G. Reinhart, Skills in Assembly, Version 1.1, Institute for Machine Tools

and Industrial Management (iwb), Technical University of Munich, Munich, Germany, 2018.

References 189

[146] P. Zimmermann, E. Axmann, B. Brandenbourger, K. Dorofeev, A. Mankowski, P. Zanini,
Skill-based Engineering and Control on Field-Device-Level with OPC UA, in: Proc. 24th IEEE

Int. Conf. Emerg. Technol. Fact. Autom. ETFA, IEEE, Zaragoza, Spain, 2019: pp. 1101–1108.

https://doi.org/10.1109/ETFA.2019.8869473.

[147] The Association of German Engineers, VDI 2860 – Assembly and handling; handling
functions, handling units; terminology, definitions and symbols, VDI-Gesellschaft

Produktionstechnik (ADB), Düsseldorf, Germany, 1990.

[148] The German Institute for Standardization, DIN 8580 – Manufacturing processes: Terms and
definitions, division, The DIN Standards Committee Technical Fundamentals (NATG), Berlin,

Germany, 2003.

[149] J. Pfrommer, D. Stogl, K. Aleksandrov, V. Schubert, B. Hein, Modelling and orchestration of
service-based manufacturing systems via skills, in: Proc. 19th Int. Conf. Emerg. Technol. Fact.

Autom. ETFA, IEEE, Barcelona, Spain, 2014: pp. 1–4.

https://doi.org/10.1109/ETFA.2014.7005285.

[150] T. Stahl, M. Voelter, K. Czarnecki, Model-Driven Software Development: Technology,
Engineering, Management, 1st ed., John Wiley and Sons, Ltd., Chichester, England, 2006.

[151] J. Bezivin, O. Gerbe, Towards a Precise Definition of the OMG/MDA Framework, in: Proc.

16th Annu. Int. Conf. Autom. Softw. Eng. ASE 2001, IEEE, San Diego, CA, USA, 2001: pp.
273–280. https://doi.org/10.1109/ASE.2001.989813.

[152] C. Atkinson, T. Kuhne, Model-Driven Development: A Metamodeling Foundation, IEEE

Softw. 20 (2003) 36–41. https://doi.org/10.1109/MS.2003.1231149.
[153] Object Management Group, Meta Object Facility, Version 2.5.1, 2016.

[154] A. van Deursen, P. Klint, J. Visser, Domain-Specific Languages: An Annotated Bibliography,

ACM SIGPLAN Not. 35 (2000) 26–36. https://doi.org/10.1145/352029.352035.

[155] M. Mernik, J. Heering, A.M. Sloane, When and how to develop domain-specific languages,
ACM Comput. Surv. 37 (2005) 316–344. https://doi.org/10.1145/1118890.1118892.

[156] V. Dimitrieski, Model-Driven Technical Space Integration Based on a Mapping Approach,

Ph.D. Thesis, University of Novi Sad, Faculty of Technical Sciences, 2017.
[157] M. Brambilla, J. Cabot, M. Wimmer, Model-Driven Software Engineering in Practice, 2nd ed.,

Morgan & Claypool Publishers, 2017.

https://doi.org/10.2200/S00751ED2V01Y201701SWE004.

[158] B. Vallespir, Y. Ducq, Enterprise modelling: from early languages to models transformation,
Int. J. Prod. Res. 56 (2018) 2878–2896. https://doi.org/10.1080/00207543.2017.1418985.

[159] G. Zacharewicz, N. Daclin, G. Doumeingts, H. Haidar, Model Driven Interoperability for

System Engineering, Modelling. 1 (2020) 94–121. https://doi.org/10.3390/modelling1020007.
[160] K. Dorofeev, S. Profanter, J. Cabral, P. Ferreira, A. Zoitl, Agile Operational Behavior for the

Control-Level Devices in Plug&Produce Production Environments, in: Proc. 24th IEEE Int.

Conf. Emerg. Technol. Fact. Autom. ETFA, IEEE, Zaragoza, Spain, 2019: pp. 49–56.
https://doi.org/10.1109/ETFA.2019.8869208.

[161] D. Gorecky, M. Schmitt, M. Loskyll, D. Zühlke, Human-Machine-Interaction in the Industry

4.0 Era, in: Proc. 12th IEEE Int. Conf. Ind. Inform. INDIN, IEEE, Porto Alegre, Brazil, 2014:

pp. 289–294. https://doi.org/10.1109/INDIN.2014.6945523.
[162] H.A. Simon, The Sciences of the Artificial, 3rd ed., MIT Press, Cambridge, MA, USA, 1996.

[163] S.T. March, G.F. Smith, Design and natural science research on information technology, Decis.

Support Syst. 15 (1995) 251–266. https://doi.org/10.1016/0167-9236(94)00041-2.
[164] A.R. Hevner, S.T. March, J. Park, S. Ram, Design Science in Information Systems Research,

MIS Q. 28 (2004) 75–105. https://doi.org/10.2307/25148625.

[165] J. vom Brocke, A. Hevner, A. Maedche, Introduction to Design Science Research, in: J. vom
Brocke, A. Hevner, A. Maedche (Eds.), Des. Sci. Res. Cases, Springer, Cham, 2020: pp. 1–13.

https://doi.org/10.1007/978-3-030-46781-4_1.

[166] K. Peffers, T. Tuunanen, M.A. Rothenberger, S. Chatterjee, A Design Science Research

Methodology for Information Systems Research, J. Manag. Inf. Syst. 24 (2007) 45–77.
https://doi.org/10.2753/MIS0742-1222240302.

190 References

[167] I. Luković, P. Mogin, J. Pavićević, S. Ristić, An approach to developing complex database
schemas using form types, Softw. Pract. Exp. 37 (2007) 1621–1656.

https://doi.org/10.1002/spe.820.

[168] I. Luković, A. Popović, J. Mostić, S. Ristić, A tool for modeling form type check constraints

and complex functionalities of business applications, Comput. Sci. Inf. Syst. 7 (2010) 359–385.
https://doi.org/10.2298/CSIS1002359L.

[169] M. Čeliković, I. Luković, S. Aleksić, V. Ivančević, A MOF based meta-model and a concrete

DSL syntax of IIS*Case PIM concepts, Comput. Sci. Inf. Syst. 9 (2012) 1075–1103.
https://doi.org/10.2298/CSIS120203034C.

[170] S. Ristić, S. Aleksić, M. Čeliković, V. Dimitrieski, I. Luković, Database reverse engineering

based on meta-models, Open Comput. Sci. 4 (2014) 150–159.
 https://doi.org/10.2478/s13537-014-0218-1.

[171] I. Luković, M. Čeliković, S. Kordić, M. Vještica, An Approach to the Information System

Conceptual Modeling Based on the Form Types, in: D. Karagiannis, M. Lee, K. Hinkelmann,

W. Utz (Eds.), Domain-Specific Conceptual Modeling: Concepts, Methods and ADOxx Tools,
1st ed., Springer International Publishing, Cham, 2022: pp. 589–614.

https://doi.org/10.1007/978-3-030-93547-4_26.

[172] ADOxx, ADOxx Modeling and Configuration Platform. https://www.adoxx.org/live/home
(accessed March 20, 2021).

[173] H.-G. Fill, D. Karagiannis, On the Conceptualisation of Modelling Methods Using the ADOxx

Meta Modelling Platform, Enterp. Model. Inf. Syst. Archit. 8 (2013) 4–25.
https://doi.org/10.1007/BF03345926.

[174] H.-G. Fill, T. Redmond, D. Karagiannis, FDMM: A Formalism for Describing ADOxx Meta

Models and Models, in: Proc. 14th Int. Conf. Enterp. Inf. Syst., SciTePress – Science and

Technology Publications, Wroclaw, Poland, 2012: pp. 133–144.
https://doi.org/10.5220/0003971201330144.

[175] B. Terzić, V. Dimitrieski, S. Kordić, G. Milosavljević, I. Luković, Development and evaluation

of MicroBuilder: a Model-Driven tool for the specification of REST Microservice Software
Architectures, Enterp. Inf. Syst. 12 (2018) 1034–1057.

https://doi.org/10.1080/17517575.2018.1460766.

[176] H. Kern, F. Stefan, V. Dimitrieski, M. Čeliković, Mapping-Based Exchange of Models

Between Meta-Modeling Tools, in: Proc. 14th Workshop Domain-Specif. Model., ACM,
Portland, Oregon, USA, 2014: pp. 29–34. https://doi.org/10.1145/2688447.2688453.

[177] V. Dimitrieski, M. Čeliković, N. Igić, H. Kern, F. Stefan, Reuse of Rules in a Mapping-Based

Integration Tool, in: Commun. Comput. Inf. Sci., Springer, Naples, Italy, 2015: pp. 269–281.
https://doi.org/10.1007/978-3-319-22689-7_20.

[178] H. Kern, F. Stefan, K.-P. Fähnrich, V. Dimitrieski, A Mapping-Based Framework for the

Integration of Machine Data and Information Systems, in: Proc. 8th IADIS Int. Conf. Inf. Syst.,
2015: pp. 113–120.

[179] H. Kern, F. Stefan, V. Dimitrieski, Intelligent and Self-Adapting Integration Between

Machines and Information Systems, IADIS Int. J. Comput. Sci. Inf. Syst. 10 (2015) 47–63.

[180] V. Djukić, I. Luković, A. Popović, Domain-Specific Modeling in Document Engineering, in:
Proc. 2011 Fed. Conf. Comput. Sci. Inf. Syst. FedCSIS 2011, Polish Information Processing

Society, Szczecin, Poland, 2011: pp. 817–824.

[181] V. Djukić, I. Luković, A. Popović, V. Ivančević, Model execution: An approach based on
extending domain-specific modeling with action reports, Comput. Sci. Inf. Syst. 10 (2013)

1585–1620. https://doi.org/10.2298/CSIS121228059D.

[182] V. Djukić, A. Popović, I. Luković, V. Ivančević, Model Variations and Automated Refinement
of Domain-Specific Modeling Languages for Robot-Motion Control, Comput. Inform. 38

(2019) 497–524. https://doi.org/10.31577/cai_2019_2_497.

[183] A. Wortmann, O. Barais, B. Combemale, M. Wimmer, Modeling Languages in Industry 4.0:

An Extended Systematic Mapping Study, Softw. Syst. Model. 19 (2020) 67–94.
https://doi.org/10.1007/s10270-019-00757-6.

References 191

[184] M.A. Mohamed, M. Challenger, G. Kardas, Applications of model-driven engineering in
cyber-physical systems: A systematic mapping study, J. Comput. Lang. 59 (2020) 100972:1–

100972:19. https://doi.org/10.1016/j.cola.2020.100972.

[185] M.A. Mohamed, G. Kardas, M. Challenger, Model-Driven Engineering Tools and Languages

for Cyber-Physical Systems–A Systematic Literature Review, IEEE Access. 9 (2021) 48605–
48630. https://doi.org/10.1109/ACCESS.2021.3068358.

[186] G. Sebastián, J.A. Gallud, R. Tesoriero, Code generation using model driven architecture: A

systematic mapping study, J. Comput. Lang. 56 (2020) 100935:1–100935:11.
https://doi.org/10.1016/j.cola.2019.100935.

[187] E. de Araújo Silva, E. Valentin, J.R.H. Carvalho, R. da Silva Barreto, A survey of Model

Driven Engineering in robotics, J. Comput. Lang. 62 (2021) 101021:1–101021:14.
https://doi.org/10.1016/j.cola.2020.101021.

[188] G.L. Casalaro, G. Cattivera, F. Ciccozzi, I. Malavolta, A. Wortmann, P. Pelliccione, Model-

driven engineering for mobile robotic systems: a systematic mapping study, Softw. Syst.

Model. 21 (2022) 19–49. https://doi.org/10.1007/s10270-021-00908-8.
[189] C. Raith, M. Woschank, H. Zsifkovits, Metamodeling in Manufacturing Systems: Literature

Review and Trends, in: Proc. 11th Int. Conf. Ind. Eng. Oper. Manag., IEOM Society

International, Singapore, 2021: pp. 831–842.
[190] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thomason, G. Nordstrom, J.

Sprinkle, P. Volgyesi, The Generic Modeling Environment, in: Proc. IEEE Int. Workshop

Intell. Signal Process. WISP2001, IEEE, Budapest, Hungary, 2001.
[191] Vanderbilt University, Institute for Software Integrated Systems, GME: Generic Modeling

Environment. https://www.isis.vanderbilt.edu/projects/GME (accessed April 22, 2022).

[192] H. Krahn, B. Rumpe, S. Völkel, MontiCore: a framework for compositional development of

domain specific languages, Int. J. Softw. Tools Technol. Transf. 12 (2010) 353–372.
https://doi.org/10.1007/s10009-010-0142-1.

[193] MontiCore. https://monticore.github.io/monticore/ (accessed April 22, 2022).

[194] S. Kelly, K. Lyytinen, M. Rossi, MetaEdit+ A Fully Configurable Multi-User and Multi-Tool
CASE and CAME Environment, in: Adv. Inf. Syst. Eng., Springer, Berlin, Heidelberg, 1996:

pp. 1–21. https://doi.org/10.1007/3-540-61292-0_1.

[195] MetaCase, MetaEdit+ Domain-Specific Modeling (DSM) environment.

https://www.metacase.com/products.html (accessed April 24, 2022).
[196] Eclipse Foundation, Xtext. https://www.eclipse.org/Xtext/ (accessed December 29, 2021).

[197] M.A. Wehrmeister, E.P. Freitas, C.E. Pereira, F. Rammig, GenERTiCA: A Tool for Code

Generation and Aspects Weaving, in: Proc. 11th IEEE Int. Symp. Object Compon.-Oriented
Real-Time Distrib. Comput. ISORC, IEEE, Orlando, FL, USA, 2008: pp. 234–238.

https://doi.org/10.1109/ISORC.2008.67.

[198] Eclipse Foundation, Xtend. https://www.eclipse.org/xtend/ (accessed March 20, 2021).
[199] Z. Gao, C. Cecati, S.X. Ding, A Survey of Fault Diagnosis and Fault-Tolerant Techniques—

Part I: Fault Diagnosis With Model-Based and Signal-Based Approaches, IEEE Trans. Ind.

Electron. 62 (2015) 3757–3767. https://doi.org/10.1109/TIE.2015.2417501.

[200] A. Farooqui, P. Bergagard, P. Falkman, M. Fabian, Error handling within highly automated
automotive industry: Current practice and research needs, in: Proc. 2016 IEEE 21st Int. Conf.

Emerg. Technol. Fact. Autom. ETFA, IEEE, Berlin, Germany, 2016: pp. 1–4.

https://doi.org/10.1109/ETFA.2016.7733628.
[201] M. Švingerová, M. Melichar, Evaluation of Process Risks in Industry 4.0 Environment, in:

Proc. 28th DAAAM Int. Symp. Intell. Manuf. Autom., DAAAM International, Zadar, Croatia,

2017: pp. 1021–1029. https://doi.org/10.2507/28th.daaam.proceedings.142.
[202] A. Barthelmey, D. Störkle, B. Kuhlenkötter, J. Deuse, Cyber Physical Systems for Life Cycle

Continuous Technical Documentation of Manufacturing Facilities, in: Proc. 47th CIRP Conf.

Manuf. Syst., Elsevier, 2014: pp. 207–211. https://doi.org/10.1016/j.procir.2014.01.050.

[203] E.G. Margherita, A.M. Braccini, Industry 4.0 Technologies in Flexible Manufacturing for
Sustainable Organizational Value: Reflections from a Multiple Case Study of Italian

Manufacturers, Inf. Syst. Front. 25 (2023) 995–1016.

 https://doi.org/10.1007/s10796-020-10047-y.

192 References

[204] L. Li, Reskilling and Upskilling the Future-ready Workforce for Industry 4.0 and Beyond, Inf.
Syst. Front. (2022). https://doi.org/10.1007/s10796-022-10308-y.

[205] M. Wolf, M. Kleindienst, C. Ramsauer, C. Zierler, E. Winter, Current and Future Industrial

Challenges: Demographic Change and Measures for Elderly Workers in Industry 4.0, Ann. Fac.

Eng. Hunedoara – Int. J. Eng. 16 (2018) 67–76.
[206] M. Nardo, D. Forino, T. Murino, The evolution of man–machine interaction: the role of human

in Industry 4.0 paradigm, Prod. Manuf. Res. 8 (2020) 20–34.

https://doi.org/10.1080/21693277.2020.1737592.
[207] C. Wohlin, Guidelines for Snowballing in Systematic Literature Studies and a Replication in

Software Engineering, in: Proc. 18th Int. Conf. Eval. Assess. Softw. Eng. EASE 14,

Association for Computing Machinery, London, England, United Kingdom, 2014: pp. 38:1–
38:10. https://doi.org/10.1145/2601248.2601268.

[208] K. Zarour, D. Benmerzoug, N. Guermouche, K. Drira, A systematic literature review on BPMN

extensions, Bus. Process Manag. J. 26 (2019) 1473–1503.

 https://doi.org/10.1108/BPMJ-01-2019-0040.
[209] American Production and Inventory Control Society, APICS Dictionary: The essential supply

chain reference, 14th ed., APICS, Chicago, USA, 2013.

[210] L.A. Shah, A. Etienne, A. Siadat, F. Vernadat, Process-oriented risk assessment methodology
for manufacturing process evaluation, Int. J. Prod. Res. 55 (2017) 4516–4529.

https://doi.org/10.1080/00207543.2016.1268728.

[211] M.K. Sott, L.B. Furstenau, L.M. Kipper, Y.P. Reckziegel Rodrigues, J.R. López-Robles, F.D.
Giraldo, M.J. Cobo, Process modeling for smart factories: using science mapping to understand

the strategic themes, main challenges and future trends, Bus. Process Manag. J. 27 (2021)

1391–1417. https://doi.org/10.1108/BPMJ-05-2020-0181.

[212] A. García-Domínguez, M. Marcos-Bárcena, I. Medina-Bulo, A Comparison of BPMN 2.0 with
Other Notations for Manufacturing Processes, in: Proc. 4th Manuf. Eng. Soc. Int. Conf. MESIC

2011, AIP Publishing, Cadiz, Spain, 2012: pp. 593–600. https://doi.org/10.1063/1.4707613.

[213] Yaoqiang BPMN Editor, Version 5.5.1. http://bpmn.sourceforge.net/ (accessed January 9,
2022).

[214] Netherlands Organization for Applied Scientific Research (TNO), Checklist Physical Load.

https://www.fysiekebelasting.tno.nl/en/instrumenten/checklist-physical-load/

 (accessed September 25, 2020).
[215] OASIS, Web Services Business Process Execution Language, Version 2.0, 2007.

[216] S. Meyer, K. Sperner, C. Magerkurth, J. Pasquier, Towards modeling real-world aware

business processes, in: Proc. Second Int. Workshop Web Things, Association for Computing
Machinery, San Francisco, California, USA, 2011: pp. 8:1–8:6.

https://doi.org/10.1145/1993966.1993978.

[217] JGraph Ltd, diagrams.net – Diagram Software and Flowchart Maker, Version 16.2.4.
https://www.diagrams.net/ (accessed January 9, 2022).

[218] W. Mahnke, S.-H. Leitner, M. Damm, OPC Unified Architecture, Springer, Berlin, Heidelberg,

2009. https://doi.org/10.1007/978-3-540-68899-0.

[219] OPC Foundation, Open Platform Communications Unified Architecture.
https://opcfoundation.org/about/opc-technologies/opc-ua/ (accessed March 13, 2022).

[220] Platform Independent Petri net Editor 2 – PIPE2, Version 4.3.0. http://pipe2.sourceforge.net/

(accessed January 9, 2022).
[221] P. Bonet, C.M. Llado, R. Puigjaner, W.J. Knottenbelt, PIPE v2.5: a Petri Net Tool for

Performance Modeling, in: Proc. 23rd Lat. Am. Conf. Inform. CLEI 2007, San Jose, Costa

Rica, 2007: pp. 1–12.
[222] N.J. Dingle, W.J. Knottenbelt, T. Suto, PIPE2: A Tool for the Performance Evaluation of

Generalised Stochastic Petri Nets, ACM SIGMETRICS Perform. Eval. Rev. 36 (2009) 34–39.

https://doi.org/10.1145/1530873.1530881.

[223] S. Bechhofer, F. Van Harmelen, J. Hendler, I. Horrocks, D.L. McGuinness, P.F. Patel-
Schneider, L.A. Stein, OWL Web Ontology Language Reference, W3C Recommendation,

2004.

References 193

[224] U.S. Department of Commerce, National Institute of Standards and Technology (NIST).
https://www.nist.gov/ (accessed February 19, 2022).

[225] Eclipse Foundation, Graphiti. https://www.eclipse.org/graphiti/ (accessed February 22, 2022).

[226] Vaticle, TypeDB. https://vaticle.com/ (accessed April 14, 2022).

[227] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler, A. Ng,
ROS: an open-source Robot Operating System, in: Proc. IEEE Int. Conf. Robot. Autom.

ICRA2009 Workshop Open Source Softw., IEEE, Kobe, Japan, 2009: pp. 1–6.

[228] Open Robotics, Robot Operating System (ROS). https://www.ros.org/ (accessed April 14,
2022).

[229] N. Koenig, A. Howard, Design and use paradigms for Gazebo, an open-source multi-robot

simulator, in: Proc. 2004 IEEERSJ Int. Conf. Intell. Robots Syst. IROS, IEEE, Sendai, Japan,
2004: pp. 2149–2154. https://doi.org/10.1109/IROS.2004.1389727.

[230] Open Source Robotics Foundation, Gazebo. http://gazebosim.org/ (accessed April 15, 2022).

[231] T. Qu, S.P. Lei, Z.Z. Wang, D.X. Nie, X. Chen, G.Q. Huang, IoT-based real-time production

logistics synchronization system under smart cloud manufacturing, Int. J. Adv. Manuf.
Technol. 84 (2016) 147–164. https://doi.org/10.1007/s00170-015-7220-1.

[232] K. Czarnecki, S. Helsen, U. Eisenecker, Formalizing cardinality-based feature models and their

specialization, Softw. Process Improv. Pract. 10 (2005) 7–29. https://doi.org/10.1002/spip.213.
[233] J. Pikl, A. Bossert, Yet Another Feature Modeling Tool (YAFMT), (2017).

https://github.com/anb0s/YAFMT (accessed March 10, 2023).

[234] L. Samimi-Dehkordi, B. Zamani, S. Kolahdouz-Rahimi, Leveraging product line engineering
for the development of domain-specific metamodeling languages, J. Comput. Lang. 51 (2019)

193–213. https://doi.org/10.1016/j.cola.2019.02.006.

[235] METOP GmbH, Otto-von-Guericke-University Magdeburg, FeatureIDE.

https://www.featureide.de/ (accessed August 12, 2022).
[236] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake, T. Leich, FeatureIDE: An extensible

framework for feature-oriented software development, Sci. Comput. Program. 79 (2014) 70–

85. https://doi.org/10.1016/j.scico.2012.06.002.
[237] M. Faber, J. Bützler, C.M. Schlick, Human-robot Cooperation in Future Production Systems:

Analysis of Requirements for Designing an Ergonomic Work System, in: Proc. 6th Int. Conf.

Appl. Hum. Factors Ergon. AHFE 2015 Affil. Conf., Elsevier, Las Vegas, Nevada, USA, 2015:

pp. 510–517. https://doi.org/10.1016/j.promfg.2015.07.215.
[238] D.A. Dinero, Training Within Industry: The Foundation of Lean, 1st ed., CRC Press, Taylor &

Francis Group, New York, 2005. https://doi.org/10.1201/b18692.

[239] I. Dejanovic, M. Tumbas, G. Milosavljevic, B. Perisic, Comparison of Textual and Visual
Notations of DOMMLite Domain-Specific Language, in: Local Proc. Fourteenth East-Eur.

Conf. Adv. Databases Inf. Syst., Novi Sad, Serbia, 2010: pp. 131–136.

[240] M. Kocbek, G. Jošt, M. Heričko, G. Polančič, Business process model and notation: The current
state of affairs, Comput. Sci. Inf. Syst. 12 (2015) 509–539.

https://doi.org/10.2298/CSIS140610006K.

[241] W. Behutiye, P. Karhapää, L. López, X. Burgués, S. Martínez-Fernández, A.M. Vollmer, P.

Rodríguez, X. Franch, M. Oivo, Management of quality requirements in agile and rapid
software development: A systematic mapping study, Inf. Softw. Technol. 123 (2020)

106225:1–106225:23. https://doi.org/10.1016/j.infsof.2019.106225.

[242] I. Salman, A.T. Misirli, N. Juristo, Are Students Representatives of Professionals in Software
Engineering Experiments?, in: Proc. 2015 IEEEACM 37th IEEE Int. Conf. Softw. Eng., IEEE,

Florence, Italy, 2015: pp. 666–676. https://doi.org/10.1109/ICSE.2015.82.

[243] V. Dimitrieski, M. Čeliković, S. Aleksić, S. Ristić, A. Alargt, I. Luković, Concepts and
evaluation of the extended entity-relationship approach to database design in a multi-paradigm

information system modeling tool, Comput. Lang. Syst. Struct. 44 (2015) 299–318.

https://doi.org/10.1016/j.cl.2015.08.011.

[244] International Organization for Standardization and International Electrotechnical Commission,
ISO/IEC 25010:2011, Systems and software engineering – Systems and software Quality

Requirements and Evaluation (SQuaRE) – System and software quality models, 2011.

194 References

[245] A.B. Chaudhuri, Flowchart and Algorithm Basics: The Art of Programming, Mercury Learning
and Information, Dulles, VA, 2020.

[246] M. Toghraei, Piping and Instrumentation Diagram Development, 1st ed., John Wiley & Sons,

Inc., Hoboken, NJ, USA, 2019. https://doi.org/10.1002/9781119329503.

[247] Novalys, SAP PowerDesigner. https://www.powerdesigner.biz/ (accessed September 30,
2022).

[248] Oracle, Oracle SQL Developer Data Modeler.

https://www.oracle.com/database/sqldeveloper/technologies/sql-data-modeler/
 (accessed September 30, 2022).

[249] Camunda, Camunda Platform. https://camunda.com/ (accessed October 2, 2022).

[250] Dassault Systèmes, CATIA – No Magic.
 https://www.3ds.com/products-services/catia/products/no-magic/ (accessed October 2, 2022).

[251] Oracle, Oracle Designer.

 https://www.oracle.com/database/technologies/developer-tools/designer.html

 (accessed October 2, 2022).
[252] Microsoft, Microsoft Visio.

 https://www.microsoft.com/en-us/microsoft-365/visio/flowchart-software (accessed October

2, 2022).
[253] Autodesk, AutoCAD. https://web.autocad.com/ (accessed October 2, 2022).

[254] Sparx Systems, Enterprise Architect. https://sparxsystems.com/ (accessed October 2, 2022).

[255] P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E.
Burovski, P. Peterson, W. Weckesser, J. Bright, S.J. van der Walt, M. Brett, J. Wilson, K.J.

Millman, N. Mayorov, A.R.J. Nelson, E. Jones, R. Kern, E. Larson, C.J. Carey, İ. Polat, Y.

Feng, E.W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E.A.

Quintero, C.R. Harris, A.M. Archibald, A.H. Ribeiro, F. Pedregosa, P. van Mulbregt, SciPy
1.0: fundamental algorithms for scientific computing in Python, Nat. Methods. 17 (2020) 261–

272. https://doi.org/10.1038/s41592-019-0686-2.

[256] C. Spearman, The proof and measurement of association between two things, Am. J. Psychol.
15 (1904) 72–101. https://doi.org/10.2307/1412159.

[257] D. Narandžić, I. Spasojević, T. Lolić, D. Stefanović, S. Ristić, Human Roles, Competencies

and Skills in Industry 4.0: Systematic Literature Review, in: Proc. 32nd Cent. Eur. Conf. Inf.

Intell. Syst. CECIIS, University of Zagreb, Faculty of Organization and Informatics, Varaždin,
Croatia, 2021: pp. 359–369.

[258] G. Kiš, N. Todorović, V. Dimitrieski, A Model-Driven Approach to Establishment of DLT

Networks Based on a Description of Collaborative Production Processes, in: Proc. 12th Int.
Conf. Inf. Soc. Technol. ICIST 2022, Information Society of Serbia – ISOS, Kopaonik, Serbia,

2022: pp. 110–115.

[259] A. Neb, Review on Approaches to Generate Assembly Sequences by Extraction of Assembly
Features from 3D Models, in: Proc. 52nd CIRP Conf. Manuf. Syst. CMS, Elsevier, Ljubljana,

Slovenia, 2019: pp. 856–861. https://doi.org/10.1016/j.procir.2019.03.213.

[260] D. Gors, J. Put, B. Vanherle, M. Witters, K. Luyten, Semi-automatic extraction of digital work

instructions from CAD models, in: Proc. 8th CIRP Conf. Assem. Technol. Syst., Elsevier,
Athens, Greece, 2020: pp. 39–44. https://doi.org/10.1016/j.procir.2020.05.202.

[261] C. Gonnermann, D. Gebauer, R. Daub, CAD-Based Feature Recognition for Process

Monitoring Planning in Assembly, Appl. Sci. 13 (2023) 990:1–990:19.
https://doi.org/10.3390/app13020990.

[262] A. Ahmad, M. Haslgrübler, A. Ferscha, B. Ettinger, J. Cho, Macro workstep detection for

assembly manufacturing, in: Proc. 13th ACM Int. Conf. PErvasive Technol. Relat. Assist.
Environ. PETRA 20, ACM, Corfu, Greece, 2020: pp. 41:1–41:6.

https://doi.org/10.1145/3389189.3397976.

[263] R. Seiger, R. Kühn, M. Korzetz, U. Aßmann, HoloFlows: modelling of processes for the

Internet of Things in mixed reality, Softw. Syst. Model. 20 (2021) 1465–1489.
https://doi.org/10.1007/s10270-020-00859-6.

[264] S. Hoffmann, A.F. Pinatti de Carvalho, M. Schweitzer, N.D. Abele, V. Wulf, Producing and

Consuming Instructional Material in Manufacturing Contexts: Evaluation of an AR-based

References 195

Cyber-Physical Production System for Supporting Knowledge and Expertise Sharing, Proc.
ACM Hum.-Comput. Interact. 6 (2022) 366:1–366:36. https://doi.org/10.1145/3555091.

[265] T. Lavric, E. Bricard, M. Preda, T. Zaharia, A Low-Cost AR Training System for Manual

Assembly Operations, Comput. Sci. Inf. Syst. 19 (2022) 1047–1073.

https://doi.org/10.2298/CSIS211123013L.

196 References

Evaluation Experiment Tasks and Questionnaire 197

Appendix A. Evaluation Experiment Tasks and

Questionnaire

In this appendix, we present the tasks given to the participants of the experiment as part of the

evaluation process, discussed in Section 9, to test MultiProLan and Process Modeling Tool (see

Appendix A.1). We also present the solution to these tasks in the form of MultiProLan process
models, that the participants were meant to create (see Appendix A.2). After the participants

finished the tasks and tested the possibilities of MultiProLan and Process Modeling Tool, they were

asked to complete the questionnaire (see Appendix A.3).

Appendix A.1. Experiment Tasks

The following text represents the document with the tasks that were given to the experiment

participants to test MultiProLan and Process Modeling Tool. These tasks represent a simplified
version of the wooden box assembly production process models, presented in Section 8.1. These

simplified production process models are similar to the ones presented in our previously published

paper [11].

MultiProLan Tasks

The tasks on top of which the MultiProLan tool evaluation is performed are given in this document.

You are a process engineer working in a carpentry factory and you are given a task to model a

production process to assemble a wooden box, presented in Figure A.1. The box frame is composed

Figure A.1. The wooden box whose production process is to be modeled.

198 Evaluation Experiment Tasks and Questionnaire

of four wooden planks – four sides, that have wooden pins and holes for the assembly. The back
side wooden panel needs to be hammered into the assembled frame to create the box. Afterward,

an inspection of the box needs to be performed to check whether there is any damage or defect. If

damage is detected, the box should be discarded, otherwise, it should be put in storage.

There are three tasks that need to be completed: (i) create a Master-Level (MasL) model; (ii)
specify production errors on the previously created MasL model; and (iii) create a part of a Detail-

Level (DetL) model.

I Create a Master-Level Model

First, the MasL model of the wooden box production process needs to be created by using the

MultiProLan tool. Further in this section, a textual description of the task is provided:

• The wooden box production process model has arbitrary values for ID, name, and version.

• The wooden box production process starts with the assembly of a left-bottom frame side

and a right-upper frame side:

o To assemble the left-bottom frame side, the following items are needed:

▪ The left plank (width 0.5 m, length 0.2 m) retrieved from storage.
▪ The bottom plank (width 1 m, length 0.2 m) retrieved from storage.

▪ The Assemble capability with parameters: n: 2 (a number of wooden pins) and r:

0.07 m (space between pins).
▪ The output should be the assembled left-bottom frame side (width 1 m, length 0.5

m, thickness 0.2 m).

o The assembly of the right-upper side is equivalent to the previously described assembly
of the left-bottom side, except that right and upper planks are used. The assembly of

the left-bottom side and the right-upper side can be done independently.

• After the left-bottom side and the right-upper side are assembled individually, they need to

be assembled to create a frame. To assemble the frame, the following items are needed:

o The left-bottom and right-upper sides that are assembled in the previous process steps.
o The Assemble capability with parameters: n: 4 (a number of wooden pins) and r: 0.07

m (space between pins).

o The assembled frame (width 1 m, length 0.5 m, thickness 0.2 m).

• Afterwards, a back side needs to be hammered into the frame, so that the box is created.
For such an activity, collaboration is needed:

o One activity in the collaboration is to hold the frame, and the following items are

needed:
▪ The frame that is assembled in the previous process step.

▪ The Hold capability.

▪ The assembled box (width 1 m, length 0.5 m, thickness 0.2 m).

o Another activity in the collaboration is to hammer the back side into the frame, and the
following items are needed:

▪ The back side (width 1 m, length 0.5 m) retrieved from storage.

▪ The Hammer capability with a parameter: n: 8 (a number of nails).
▪ The back side will be a part of the assembled box created in the first process step

of the collaboration.

o Hammering of the back side into the frame must not start before the frame is being

held. Also, holding the frame must not end before the hammering of the back side is
finished.

• After the box is assembled, an inspection of the box is needed to check whether there is

any damage or defect on the box that occurred during production. To inspect the box, the

following items are needed:
o The box that is assembled in the previous process step.

o The Inspection capability with a parameter: type: visual.

o The inspected box (width 1 m, length 0.5 m, thickness 0.2 m).

Evaluation Experiment Tasks and Questionnaire 199

• After the box is inspected, a decision needs to be made whether the box is to be discarded

or stored:
o If there is no damage or defect on the box, it should be stored in storage. To store the

inspected box represents a separate process.

▪ Note: it is possible to reference a process from a sub-process, but to reduce the

volume of the task, this is not required. Optionally, a new process model can be
created, with ID, name, and version set, and referenced from a sub-process.

o If there is any damage or defect on the box, it should be discarded. To discard the

inspected box represents a separate process.

• After the decision is made, the wooden box production process is finished.

II Specify Production Errors at a Master-Level Model

To add production errors in the MasL process model created in the previous task, the error handling

modeling layer needs to be turned on. To reduce the volume of the task, only a few production

errors are going to be modeled.

The following production errors need to be modeled:

• During the assembly of the frame, it is possible that the left-bottom and right-upper sides
are not fitting well. Thus, it is needed to disassemble the frame into the sides, and then try

again to assemble the frame.

• If an unidentified error occurs during the assembly of the frame, it is necessary to remove

the frame and stop the process.

• When the frame is being held, it is possible for the frame to crack. If this happens, it is
necessary to reference another process for discarding and recycling a product that is defined

by another process engineer.

o Note: it is possible to reference a process from an error, but to reduce the volume of the
task, this is not required. Optionally, a new process model can be created, with ID,

name, and version set, and referenced from an error.

• If an unidentified error occurs during the hammering of the back side, it is necessary to call

the process for discarding and recycling a product.

III Create a Part of a Detail-Level Model

DetL models contain the same modeling concepts as there are in MasL models, but there are also
some additional modeling concepts. DetL models are much more complex than MasL models as

they have more details included in the models, i.e., details that are specific to a production system

in which the models are to be executed. As DetL models are much larger than MasL models, only
a part of the wooden box production process will be modeled. The rest of the process is modeled in

a similar manner.

An assembly of the left-bottom side and right-upper side of the previously described wooden

box production process is going to be modeled.

Mary Smith is assigned to assemble the left and bottom sides. To achieve this, it is necessary

to:

• Move to the Shelf with ID 123. The following item is needed:

o The Move capability with a parameter: location: shelf 123.

• Pick the left side and the bottom side in any order. The following items are needed:
o The left side (width 0.5 m, length 0.2 m) retrieved from the Shelf 123 storage.

o The bottom side (width 1 m, length 0.2 m) retrieved from the Shelf 123 storage.

o The Pick capability for both process steps.

• Move to Assembly Table 456. The following item is needed:
o The Move capability with a parameter: location: assembly table 456.

200 Evaluation Experiment Tasks and Questionnaire

• Assemble the left-bottom side. The following items are needed:

o The left side and the bottom side picked in the previous process steps.
o The Assemble capability with parameters: n: 2 (a number of wooden pins) and r: 0.07

m (space between pins).

o The assembled left-bottom side (width 1 m, length 0.5 m, thickness 0.2 m).

Robot 789 is assigned to assemble the right and upper sides. The assembly of the right-upper
side is similar to the assembly of the left-bottom side, except that additional configuration process

steps are needed. The robot must determine its position after any movement, as it is not equipped

with a machine vision module. To configure a robot, only the Determine capability is needed with

a parameter: type: position.

Evaluation Experiment Tasks and Questionnaire 201

Appendix A.2. Experiment Solution

Figure A.2. The solution of the first experiment task.

202 Evaluation Experiment Tasks and Questionnaire

Figure A.3. The solution of the second experiment task.

Evaluation Experiment Tasks and Questionnaire 203

Figure A.4. The solution of the third experiment task.

204 Evaluation Experiment Tasks and Questionnaire

Appendix A.3. Experiment Questionnaire

Name and surname ____________________________________

E-mail ____________________________________

Affiliation
Process engineer, Quality engineer, Software developer, Researcher, Ph.D. Student, M.Sc. Student,

Other: _______________________________

Section 1: Previous experience

Experience

Question Inexperienced
Relatively

inexperienced

Medium

experienced

Relatively

experienced
Experienced

How would you describe your previous

experience in designing business processes?
1 2 3 4 5

Which business process modeling languages

or methods have you used?

How would you describe your previous

experience in designing production

processes?

1 2 3 4 5

Which production process modeling

languages or methods have you used?

How would you describe your previous

experience with Computer Aided Software

Engineering (CASE) tools for modeling?

1 2 3 4 5

Which CASE tools for modeling have you

used?

Section 2: MultiProLan quality characteristics

Functional suitability

Question Very low Low Medium High Very high

How would you describe the scope of

production process domain concepts and

scenarios that can be expressed in

MultiProLan?

1 2 3 4 5

How would you describe MultiProLan's level

of suitability for the production process

specification?

1 2 3 4 5

Usability

Question
Strongly

disagree
Disagree No opinion Agree

Strongly

agree

MultiProLan language elements are

understandable.
1 2 3 4 5

The concepts and symbols of MultiProLan

are learnable and rememberable.
1 2 3 4 5

MultiProLan has capability to help users

achieve their tasks in an acceptable number

of steps.

1 2 3 4 5

MultiProLan is appropriate for your needs. 1 2 3 4 5

MultiProLan Eclipse environment has

elements that facilitate to operate and control

the language.

1 2 3 4 5

MultiProLan has graphical symbols that are

good looking/attractive.
1 2 3 4 5

By separating MasL and DetL models, users

can model production processes easier.
1 2 3 4 5

By creating different modeling layers, models

become more readable.
1 2 3 4 5

Evaluation Experiment Tasks and Questionnaire 205

Reliability

Question
Strongly

disagree
Disagree No opinion Agree

Strongly

agree

MultiProLan protects users against making

errors.
1 2 3 4 5

MultiProLan has a functional model

validator.
1 2 3 4 5

Expressiveness

Question
Strongly

disagree
Disagree No opinion Agree

Strongly

agree

A problem-solving strategy can be mapped

into a specification easily.
1 2 3 4 5

MultiProLan is at the right abstraction level

such that it is not more complex or detailed

than necessary.

1 2 3 4 5

MultiProLan provides one and only one good

way to express every concept of interest.
1 2 3 4 5

Productivity

Question Long
Relatively

long
Medium

Relatively

short
Short

How would you describe the specification

time of a production process model with

MultiProLan?

1 2 3 4 5

Section 3: Free comments

Additional

comments

206 Evaluation Experiment Tasks and Questionnaire

Национални портал отворене науке – open.ac.rs 207

План третмана података

Назив пројекта/истраживања

Приступ спецификацији и генерисању производних процеса заснован на инжењерству
вођеном моделима (енгл. A Model-Driven Approach to the Production Process Specification and

Generation)

Назив институције/институција у оквиру којих се спроводи истраживање

a) Универзитет у Новом Саду, Факултет техничких наука
б) KEBA Group AG, Линц, Република Аустрија

в)

Назив програма у оквиру ког се реализује истраживање

Истраживање је реализовано у оквиру израде докторске дисертације на студијском
програму Рачунарство и аутоматика. Такође, истраживање је подржано од стране следећих

пројеката:

• "Интелигентни системи за развој софтверских производа и подршку пословања

засновани на моделима ", ИИИ-44010, Министарство просвете, науке и технолошког
развоја Републике Србије.

• "Иновативна научна и уметничка испитивања из домена делатности ФТН-а", 451-

03-68/2020-14/200156, 451-03-68/2021-14/200156, 451-03-68/2022-14/200156, 451-03-

47/2023-01/200156, Министарство науке, технолошког развоја и иновација

Републике Србије.

• "Дигитална фабрика", Индустријски истраживачко-развојни пројекат, KEBA Group

AG, Линц, Република Аустрија.

1. Опис података

1.1. Врста студије

Укратко описати тип студије у оквиру које се подаци прикупљају

У овој докторској дисертацији представљена је анализа оцена различитих учесника о

наменском језику и софтверском алату за моделовање производних процеса.

1.2. Врсте података

а) квантитативни
б) квалитативни

1.3. Начин прикупљања података

а) анкете, упитници, тестови

б) клиничке процене, медицински записи, електронски здравствени записи
в) генотипови: навести врсту ________________________________

г) административни подаци: навести врсту _______________________

д) узорци ткива: навести врсту_________________________________

ђ) снимци, фотографије: навести врсту_____________________________
е) текст, навести врсту _______________________________________

Национални портал отворене науке – open.ac.rs 208

ж) мапа, навести врсту ______________________________________
з) остало: описати ___

1.4. Формат података, употребљене скале, количина података

1.4.1. Употребљени софтвер и формат датотеке:

а) Excel фајл, датотека .xlsx

б) SPSS фајл, датотека __________________
в) PDF фајл, датотека ___________________

г) Текст фајл, датотека __________________

д) JPG фајл, датотека ___________________

ђ) Остало, датотека Google Forms, .csv

1.4.2. Број записа (код квантитативних података)

а) број варијабли 19

б) број мерења (испитаника, процена, снимака и сл.) 25

1.4.3. Поновљена мерења

а) да

б) не

Уколико је одговор да, одговорити на следећа питања:

а) временски размак између поновљених мера је ______________________________

б) варијабле које се више пута мере односе се на ________________________________
в) нове верзије фајлова који садрже поновљена мерења су именоване као ____________

Напомене: __

Да ли формати и софтвер омогућавају дељење и дугорочну валидност података?

а) Да

б) Не
Ако је одговор не, образложити __

2. Прикупљање података

2.1. Методологија за прикупљање/генерисање података

2.1.1. У оквиру ког истраживачког нацрта су подаци прикупљени?

а) експеримент попуњавање упитника од стране учесника оцене наменског језика и

софтверског алата за моделовање производних процеса

б) корелационо истраживање рачунање Спирмановог коефицијента корелације
в) анализа текста, навести тип __

г) остало дескриптивна анализа коментара из попуњених упитника

2.1.2. Навести врсте мерних инструмената или стандарде података специфичних за

одређену научну дисциплину (ако постоје).

Креиран је упитник уз помоћ платформе Google Forms, који су учесници оцене наменског

језика и алата за моделовање производних процеса попуњавали електронским путем.

2.2. Квалитет података и стандарди

Национални портал отворене науке – open.ac.rs 209

2.2.1. Третман недостајућих података
а) Да ли матрица садржи недостајуће податке? Да Не

Ако је одговор да, одговорити на следећа питања:

а) Колики је број недостајућих података? __________________________
б) Да ли се кориснику матрице препоручује замена недостајућих података? Да Не

в) Ако је одговор да, навести сугестије за третман замене недостајућих података

__

2.2.2. На који начин је контролисан квалитет података? Описати

Већина питања (19 од 23) садржала је понуђене одговоре у виду петостепене Ликертове
скале. Платформа Google Forms онемогућава унос било каквих других података осим

одговора датих на петостепеној Ликертовој скали. Преостала питања (4 од 23) садржала су

слободну форму за унос текста, чији су одговори улазили искључиво у дескриптивну
анализу.

2.2.3. На који начин је извршена контрола уноса података у матрицу?

Платформа Google Forms на аутоматизован начин трансформише одговоре прикупљене од

учесника у .csv (comma-separated values) датотеку.

3. Третман података и пратећа документација

3.1. Третман и чување података

3.1.1. Подаци ће бити депоновани у Репозиторијум докторских дисертација

Универзитета у Новом Саду.

3.1.2. URL адреса: https://www.cris.uns.ac.rs/dmi.jsf
3.1.3. DOI

__

3.1.4. Да ли ће подаци бити у отвореном приступу?

а) Да

б) Да, али после ембарга који ће трајати до ___________________________________

в) Не

Ако је одговор не, навести разлог __

3.1.5. Подаци неће бити депоновани у репозиторијум, али ће бити чувани.

Образложење

__

__

3.2. Метаподаци и документација података

3.2.1. Који стандард за метаподатке ће бити примењен? Стандард који примењује
Репозиторијум Универзитета у Новом Саду

3.2.2. Навести метаподатке на основу којих су подаци депоновани у репозиторијум.

Национални портал отворене науке – open.ac.rs 210

Марко Вјештица, Приступ спецификацији и генерисању производних процеса заснован на
инжењерству вођеном моделима

Ако је потребно, навести методе које се користе за преузимање података, аналитичке и

процедуралне информације, њихово кодирање, детаљне описе варијабли, записа итд.
__

__

__

__

3.3. Стратегија и стандарди за чување података
3.3.1. До ког периода ће подаци бити чувани у репозиторијуму? Неограничено

3.3.2. Да ли ће подаци бити депоновани под шифром? Да Не

3.3.3. Да ли ће шифра бити доступна одређеном кругу истраживача? Да Не
3.3.4. Да ли се подаци морају уклонити из отвореног приступа после извесног времена?

Да Не

Образложити

__

__

4. Безбедност података и заштита поверљивих информација

Овај одељак МОРА бити попуњен ако ваши подаци укључују личне податке који се

односе на учеснике у истраживању. За друга истраживања треба такође размотрити
заштиту и сигурност података.

4.1. Формални стандарди за сигурност информација/података

Истраживачи који спроводе испитивања с људима морају да се придржавају Закона о

заштити података о личности
(https://www.paragraf.rs/propisi/zakon_o_zastiti_podataka_o_licnosti.html) и одговарајућег

институционалног кодекса о академском интегритету.

4.1.1. Да ли је истраживање одобрено од стране етичке комисије? Да Не

Ако је одговор Да, навести датум и назив етичке комисије која је одобрила истраживање
__

4.1.2. Да ли подаци укључују личне податке учесника у истраживању? Да Не

Ако је одговор да, наведите на који начин сте осигурали поверљивост и сигурност
информација везаних за испитанике:

а) Подаци нису у отвореном приступу

б) Подаци су анонимизирани
в) Остало, навести шта

__

__

5. Доступност података

5.1. Подаци ће бити

а) јавно доступни

https://www.paragraf.rs/propisi/zakon_o_zastiti_podataka_o_licnosti.html

Национални портал отворене науке – open.ac.rs 211

б) доступни само уском кругу истраживача у одређеној научној области
в) затворени

Ако су подаци доступни само уском кругу истраживача, навести под којим условима могу

да их користе:
__

__

Ако су подаци доступни само уском кругу истраживача, навести на који начин могу

приступити подацима:

__

__

5.2. Навести лиценцу под којом ће прикупљени подаци бити архивирани.

Ауторство – некомерцијално – без прераде

6. Улоге и одговорност

6.1. Навести име и презиме и мејл адресу власника (аутора) података

Марко Вјештица, marko.vjestica@uns.ac.rs

6.2. Навести име и презиме и мејл адресу особе која одржава матрицу с подацимa

Марко Вјештица, marko.vjestica@uns.ac.rs

6.3. Навести име и презиме и мејл адресу особе која омогућује приступ подацима другим

истраживачима

Марко Вјештица, marko.vjestica@uns.ac.rs

