(AS STy,
0
0 UNIVERSITY OF NOVI SAD

smm 7
CJC=
: FACULTY OF TECHNICAL SCIENCES

Ipucryn cnemupuxkanuju v
reHepucamy MPOU3BOAHMX MpPoIeca
3aCHOBAaH HA MHIKEH-EPCTBY Bo)eHOM

MOJeJIMMA

A Model-Driven Approach to the
Production Process Specification and
Generation

Ph.D. Thesis

Ph.D. Candidate:
Marko Vjestica

Supervisors:
Dr. Vladimir Dimitrieski, Assistant Professor

Dr. Ivan Lukovi¢, Full Professor

Novi Sad, 2023

Marko Vjestica: A Model-Driven Approach to the Production Process Specification and
Generation, © 2023

Serbian Title:

[Mpuctyn crnemmuKanyju U TeHEpUCamy MPOM3BOAHUX IIPOIEca 3aCHOBAaH Ha HHXKCHEPCTBY
BolhjeHOM MopenTMa

Supervisors:
Dr. Vladimir Dimitrieski, Assistant Professor
Dr. Ivan Lukovi¢, Full Professor

Location:
Novi Sad

Date:
2023

YHUBEP3UTET Y HOBOM CAY

OBPA3AII - 5a

OAKYJITET TEXHUYKHUX HAYKA

K/bYUHA JJIOKYMEHTAIIMJCKA HH®OPMAILIMJA®

Bpcra pana:

JloKTOpCKa arcepTaiija

Nme u npe3ume
ayTopa:

Mapko Bjemrruna

Menropu (TuTyna,
uMe, pe3rMe, 3Bambe,
WHCTHUTYIIH]A)

1p Bnagumup Jlumutpuecku, nouest, YHusep3uteT y Hosom Cany,
dakynTeT TEXHUYKUX HayKa

np ean Jlykosuh, penoBau npodecop, Yuusepsuret y beorpany, ®akynrer
OpraHM3aIOHHUX HayKa

Hacnos pana:

[puctyn cnenudukanyjyu 1 reHeprcamy IPOU3BOJHUX Ipolieca 3aCHOBaH Ha
VMHKEHEPCTBY BO)EHOM MoJIesIMa

Je3uk myOmukarmje
(memo):

CHIJICCKU

DU3NYKK ONKC paja:

YHeru Opoj:
Crpanuna 253
ITornasma 10
Pedepennu 265
Tabena 8
Cnuka 51
JIuctunsu 21
I'paduxona 2
ITpunora 1

Hay4yna obnacr:

EnexTpoTeXHHYKO U pauyHapCKO HHKESHEPCTBO

VYika HayuHa obJsact

(Hay4HA AUCIMILINHA):

[IpumemeHe pauyHapcke Hayke M HHQOpMaTHKa

Kibyune peun /
npeIMeTHa
OIpEAHHUIIA:

MozenoBambe PoU3BOIHUX Tpolieca; V3BpiaBame nporieca; Mumycrpuja
4.0; Hamencku jesunu; Tpancdopmanuje monena; MHxemepcTBO BoheHO
MOJIeJIMa

Pe3ume Ha je3uky
pana:

VY 0B0j mMcepTanuju MPeCTaB/bEH je MPUCTYI CeluPUKALUJH U TEeHepHUCatbY
IIPOM3BOJHUX Mpolieca 3aCHOBAaH Ha HHKCHEPCTBY BoheHOM Mopenuma, y
unby noBehama (QIeKCHOMITHOCTH MocTpojerma y (adprukama u edukacHujer
paspeliaBama n3a3oBa KOju ce 1ojaBibyjy y epu Uuayctpuje 4.0. 3a morpede
(dopmanne crenuduKanyje TPOU3BOIHMX MPOLECa U HUXOBUX BapHjalHja y
ambujenty Uuayctpuje 4.0, KperpaH je HOBH HAMEHCKH jE3WK, YHje MOJeIe
padyHap Moxke aa oOpaiy Ha ayTOMaTW30BaH HauuH. KpenpaHu jesuk nma
MOTYRHOCT MO/IeJIOBaEk-a IPOM3BOTHHX MTPOIeca KOju MOTY OHTH HE3aBHCHH OJ1
MIPOU3BOJHUX CHCTEMa M THUME YNOTPEOJbEHH Y Pa3IMUUTHM IIOCTPOjeHHIMA
win (abpukama, any ¥ TMPOM3BOJHMX Mpolieca KOjU Cy crnenu(uuHd 3a
onpehenu cuctem. Kako Om Mojene NMpoOH3BONHUX IIPOIECa 3aBHCHHX Of
KOHKPETHOT IIPOW3BOJHOI CHCTeMa Owio Moryhie Ha ayToMaTH30BaH HAauuH
TpaHchopMHUCAaTH y WHCTPYKIHjEe KOje pecypcd MPOHM3BOJHOT CHCTEMa
M3BpIABajy, KpeWpaH je TeHepaTop WMHCTpykuwja. Takohe cy Kpewpanum u
TeHepaTopd TEXHWYKE MJOKYMEHTalHje, KOjU Ha ayTOMAaTH30BaH Ha4yHH
TpaHC(HOPMHITY MOJENE MPOU3BOJHUX IpoLeca Y IOKYMEHTE Pa3IHYHTHX
TUTIOBA. YTIOTPeOOM TPEAJIOKEHOT TPHCTYNa, HAMEHCKOT je3uka U
coTBEpCKOT peliema IONPHHOCH ce yBohemy (padprka y mporec TUTuTarHe

! AyTop moKTOpCKE McepTalije MOTIHCAo je u Mprioxkuo cieneche Obpacie:

56 — IzjaBa 0 ayTopCTBY;

5B — M3jaBa 0 MCTOBETHOCTH IITaMIIaHE U €JIEKTPOHCKE BEP3Hje M O IMYHUM MOJallNMa;
5t — UzjaBa o kopuinhemy.
Oge M3jaBe ce 4yBajy Ha (QakyJITeTy y IITAMIAHOM H €IEKTPOHCKOM OOJIMKY M HE KOpPUYE CE Ca TE30M.

tpanchopmanmje. Kako ¢adbpuke y epu Uuamyctpuje 4.0 Mopajy Op30 na ce
MpUJIarojic HOBUM TMPOU3BOMMA M F-UXOBHM BapHjallMjama, HEOIXOIHO je
JUHAMWYKA BOJUTH IPOM3BOAKY M Ha AayTOMAaTH30BaH HAYUH CJIATH
WHCTPYKIHjEe pecypcuMa y (GaOpuiiy, y 3aBUCHOCTH O MPOU3BOJAA KOJU Ce
Kpeupajy y KOHKPETHOM MOCTPOjery. THME IITO je Y MPeoKESHOM MPUCTYITY
Moryhe W3 Momena mpolieca ayTOMATH30BaHO TEHEPHCATH HHCTPYKIHjE H
MOCNATH WX PECypcUMa, IOMPUHOCH C€ KpeHpamy jEeAHOT JAUHAMHYKOT
OKpyXXema y caBpeMeHuM (abOpukama. [lomatHo, ycien Bemukor Opoja
Pa3MYMTHX MPOM3BO/Ia U IPUXOBHX BapHjallrja, IOCTaje H3a30BHO OJp)KaBaTh
HEOIXOJHY TEXHHUYKY IOKYMEHTAIHjy, IITO je y MPEIOKEHOM MPUCTYITY
Moryhe ypaJuTi Ha ayTOMaTH30BaH HAYMH U THUME 3HAYajHO YIITEIETH BpeMe
IpojeKTaHarta mpoueca.

JlaTyMm mpuxBaTama
TEMe OJ1 CTpaHe
HaJuIeKHOT Beha:

26. 1. 2023.

Hatym onOpane:
(ITomymasa
oarosapajyha ciyx6a)

YnaHOBH KOMHCH]E:
(Tutyna, ume,
npe3uMe, 3Bame,
MHCTUTYLIHja)

[Mpencennux: np Comwa Puctuh, penosuu npodecop, Yuusepzuter y Hoom
Cany, ®akynTer TeXHUUKUX HayKa

Ynan: np Musnamun Credanosuh, penosau npodecop, YHUBEP3UTET y
KparyjeBity, @akynTeT HHKEHEPCKUX HayKa

Unan: np Cnaeuna Kopauh, Banpeanu nmpodecop, Yausepsuter y HoBom
Cany, ®akynTer TeXHUUKUX HayKa

Unan, mentop: np WUean Jlykouh, penosau npodecop, YHUBEP3UTET y
beorpany, @akynreT opraHu3allMOHUX HayKa

UnaH, meHTop: 1p Bramumup Jumutpuecky, 1oUeHT, YHUBEp3uTeT y HoBoM
Cany, PakynTeT TEXHUUKHX HayKa

Hanomena:

UNIVERSITY OF NOVI SAD
FACULTY OF TECHNICAL SCIENCES

KEY WORD DOCUMENTATION?

Document type: Doctoral dissertation

Author: Marko Vjestica

Dr. Vladimir Dimitrieski, Assistant Professor, University of Novi Sad, Faculty
of Technical Sciences

Dr. Ivan Lukovi¢, Full Professor, University of Belgrade, Faculty of
Organizational Sciences

A Model-Driven Approach to the Production Process Specification and
Generation

Supervisors (title, first
name, last name,
position, institution)

Thesis title:

Language of text

(script): English language

Number of:
Pages 253
Chapters 10
References 265
Physical description: Tables 8
Figures 51
Listings 21
Graphs 2
Appendices 1

Scientific field: Electrical engineering and computing

Scientific subfield

(scientific discipline): Applied computer science and informatics

Production Process Modeling; Process Execution; Industry 4.0; Domain-

Specific Languages; Model Transformations; Model-Driven Engineering

In this thesis, we present an approach to the production process specification
and generation based on the model-driven paradigm, with the goal to increase
the flexibility of factories and respond to the challenges that emerged in the era
of Industry 4.0 more efficiently. To formally specify production processes and
their variations in the Industry 4.0 environment, we created a novel domain-
specific modeling language, whose models are machine-readable. The created
language can be used to model production processes that can be independent of
any production system, enabling process models to be used in different
production systems, and process models used for the specific production
Abstract in English system. To automatically transform production process models dependent on
language: the specific production system into instructions that are to be executed by
production system resources, we created an instruction generator. Also, we
created generators for different manufacturing documentation, which
automatically transform production process models into manufacturing
documents of different types. The proposed approach, domain-specific
modeling language, and software solution contribute to introducing factories
into the digital transformation process. As factories must rapidly adapt to new
products and their variations in the era of Industry 4.0, production must be
dynamically led and instructions must be automatically sent to factory
resources, depending on products that are to be created on the shop floor. The

Subject, Key words:

2 The author of doctoral dissertation has signed the following Statements:
56 — Statement on the authority,
5B — Statement that the printed and e-version of doctoral dissertation are identical and about personal data,
5t — Statement on copyright licenses.
The paper and e-versions of Statements are held at he faculty and are not included into the printed thesis.

proposed approach contributes to the creation of such a dynamic environment
in contemporary factories, as it allows to automatically generate instructions
from process models and send them to resources for execution. Additionally, as
there are numerous different products and their variations, keeping the required
manufacturing documentation up to date becomes challenging, which can be
done automatically by using the proposed approach and thus significantly lower
process designers' time.

Accepted on Scientific
Board on:

26. 1. 2023.

Defended:
(Filled by the faculty
service)

Thesis Defend Board:
(title, first name, last
name, position,
institution)

President: Dr. Sonja Risti¢, Full Professor, University of Novi Sad, Faculty of
Technical Sciences

Member: Dr. Miladin Stefanovi¢, Full Professor, University of Kragujevac,
Faculty of Engineering

Member: Dr. Slavica Kordi¢, Associate Professor, University of Novi Sad,
Faculty of Technical Sciences

Member, supervisor: Dr. Ivan Lukovi¢, Full Professor, University of
Belgrade, Faculty of Organizational Sciences

Member, supervisor: Dr. Vladimir Dimitrieski, Assistant Professor, University
of Novi Sad, Faculty of Technical Sciences

Note:

Dedication

| dedicate this thesis to my family, for their great patience, support, and love.

| want to express my gratitude to my mentors Dr. Vladimir Dimitrieski and
Prof. Dr. Ivan Lukovi¢ for their immense help, support, patience, and advice
during my Ph.D. studies. | am thankful for their generous efforts in guiding
me through the journey of research and writing the Ph.D. thesis.

| thank my colleagues from the Data Science and Information Systems group
from the Faculty of Technical Sciences who participated in the research
presented in this thesis. I am especially grateful to Prof. Dr. Sonja Risti¢ and
Prof. Dr. Slavica Kordi¢ for their great help throughout my research work.
Their guidance vastly contributed to the research and enrichment of my
knowledge.

| give my thanks to KEBA Group AG for their support during my scientific and
practical work and for the systematic development of projects. | thank
everyone in Linz and Novi Sad who participated in the Digital Factory project.
1 owe special thanks to Thomas Linde and Milan Pisaric for their huge support
in project development and publishing scientific results.

| would like to thank Milica Todorovi¢ and Maksim Lali¢ for their help in
preparing and analyzing the evaluation questionnaire, as well as all the
evaluation participants for their time and valuable feedback. | would also like
to thank Milica Ranisavljev for her help in proofreading various publications
written during the research related to this thesis.

Vil

Abstract

Manufacturing is an essential activity of making products and services, with the goal of satisfying
customer needs. Over time, manufacturing has become more and more sophisticated, and
contemporary manufacturing is mainly done by computer-controlled systems, making a large
number of the same or similar products. Such manufacturing, named mass production, is usually
inappropriate for creating custom products in small numbers, as it would require changing or
rearranging the existing shop floor. With emerging technologies, self-adjustable smart resources,
and smart products, the fourth industrial revolution is happening. This industrial revolution, called
Industry 4.0, aims to enable the production of numerous individualized products for customers,
creating an environment for lot-size-one production while preserving the economic characteristics
of mass production. Lot-size-one production would be hard to implement in contemporary
production systems, as their rigid structure consisting of assembly lines, fixed robots, and machines
cannot support the required production flexibility. Therefore, a new smart environment, consisting
of human workers and smart mobile robots, emerges in the context of Industry 4.0 which requires
a dynamic and automatic orchestration of production. Consequently, the number of product and
process variations increases even more as customers embrace such a dynamic nature of production
and thus raise their expectations. Additionally, due to the large number of variations, manufacturing
documentation required by different standards and procedures increases as well. Each time a
product or its process changes, the documentation of different types must be updated and new
versions created. Accordingly, creating and modifying product and process variations and
manufacturing documentation becomes a burdensome manual task. Also, as various products and
their variations are produced in a factory, human workers must often adapt and create new products.
Thus, a fast and automated knowledge transfer is needed on how to produce all these products and
variations, as well as guided production to lower the time and costs required for human worker
training. Therefore, new solutions are needed to support production flexibility and alleviate such
Industry 4.0 challenges. One way to contribute to production flexibility is by applying Model-
Driven (MD) principles in production systems that consist of smart resources. The solution we
present in this thesis is based on MD principles and utilizes production process models as a single
point of knowledge. These production process models are used to automatically generate executable
resource instructions that are sent to smart resources, schedule their tasks in a production system,
and automatically generate various manufacturing documentation. The main component of our MD
solution is a novel Domain-Specific Modeling Language (DSML) named Multi-Level Production
Process Modeling Language (MultiProLan), created for the Industry 4.0 domain. Such a language
and the whole MD solution are created to contribute to solving the following challenges: (i)
automatic and flexible production of individualized products; (ii) error handling during production;
(iii) a specification of numerous product and process variations; (iv) a single point of creation and
modification of manufacturing documentation in a company; and (v) training and guiding human
workers to produce various products. Also, one of the main challenges of Industry 4.0 production
process specification is that production process models should be machine-readable, allowing
automatic execution of process steps, but also, production process models need to be independent
of any production system in which they are to be executed, enabling production process models to

be used in multiple production systems. MultiProLan is a capability-based modeling language,
having different levels of detail and modeling layers, allowing production processes to be specified
independently of any production system and automatically transformable into executable resource
instructions that are sent to the chosen production system. By introducing different levels of detail,
process designers can specify production processes more easily, as they do not need to know details
related to the specific production system in which production process models are to be executed. In
addition, by introducing different modeling layers, process designers can choose aspects they want
to be focused on while modeling production processes, lowering the number of modeling concepts
they are dealing with. The main goal of the research, presented in this thesis, is to introduce factories
into the digital transformation process, contribute to flexible production, and help process designers
model production processes and create and modify manufacturing documentation in a more
efficient manner. Such a goal is to be achieved by defining a novel methodological approach and a
software solution that utilizes MD principles and a DSML to specify production processes formally.

Keywords: Production Process Modeling; Process Execution; Industry 4.0; Domain-Specific
Languages; Model Transformations; Model-Driven Engineering

Pesume

IIpousBoama mpencraBiba KJby4HY AKTUBHOCT Kpeupama IpeaMera W ycinyra. PasHu amaty,
MaIllMHEe U MaTepHjajii KOPUCTE Ce Yy MPOM3BOJIEHH, KOja IOCTaje CBE CO(UCTUIMpPaHUja YCIIe
KpeHpama PasiuduTHX W CBE CIOKEHHjuX Tpom3Boaa. CaBpeMeHa MPOW3BOA MPUMAPHO Ce
M3BO/IM TOMONY ayTOMAaTH30BaHUX MAIllHA KOjUMa yIpaBiba pauyHap [1,2].

[IpousBoma ce MOXKe IOCMATPATH ca JIBa Pa3IHYUTA ACIIEKTa — TEXHOJIONIKOT M €KOHOMCKOT.
Ca TEeXHOIIOIIKOT aCIeKTa, IPOU3BOIbA MPEJICTaBIba MPUMEHY (PU3NUIKHUX NI XEMHJCKHX ITpolieca
Kako OM ce mMpOMEHHIIa CBOjCTBA MarepHjajia, kpeupajyhu nenose u npoussoje. [IponsBojama ce
M3BpIIaBa NOMONy HHU3a orepaiiMja, y KOjeM CBaka olepaluja JOBOAW MaTepujai Kopak OJmke
¢uHamHOM npon3Boay. Ca eKOHOMCKOT acreKTa, MPOU3BO/IbA MPE/ICTaBIba NpeNa3ak MaTepujaa
y JIeNoBE M TPOW3BOJIE BHINE BpemHocTH. CBaka orepariija y IMPOHW3BOMBH MEHa CBOjCTBA
MarepHjaia, 101ajyhu UM BpeIaHOCT.

Luss mpousBojme je ga Oyay 3aJI0BOJbEHE MOTpeOe KOPHUCHUKA Tako 1mTo he mpousBohaun
KperpaTH oaroBapajyhe mpou3Boje WM Ipy>KUTH oAroBapajyhe yciayre koje Mory npoaaru. Kako
ce BpPEMEHOM MOTpebe KOPHUCHUKA MEHajy, NMPOU3BOIM WM CEPBHCH MOpajy Takolhe OWUTH
KOHTHHYUpaHO yHampehuBaHU. YCIe[CTaTHUX IIPOMEHA, HACTajy pa3InuuTe BapHjardje
MIPOM3BO/Ia KOj€ Cy TpyNHcaHe Y OKBHPY HopouIa mpou3Boaa. CBaka Bapujaiiija mporu3Boaa U3
MIOPO/MIIE MPOU3BOA PA3NIHKYje Ce OJ OCTAIUX BapHjalHja 1O jeAHOM WM BHINE KOPHIITNEHUX
nenoBa i MaTtepujama. Takohe, cBaka BapHjammja IPOU3BOAAa WMa OJroBapajyhy Bapujaiujy
MIPOM3BOJHOT Tmporeca. HacraHkoM HOBe Bapujamyje MPOW3BONa, IocTojehe MPOMU3BOAHO
rocrpojeme y (hadbpurt Mopa 6uti u3MemeHo nin npeypeheno. To je Hajuenthe n3a30BHO jep Cy
IIPOM3BO/IHA TIOCTPOjEha U MPOIECH KOjU Ce Y OKBUPY HUX OJ[BHjajy BEOMa PUTUIHHU U CKYIIH 32
H3MEHY.

YMecTo gecTor MaHyeIHOT npeypehuBama mpor3BOIHOT MOCTPOjeHha, CABPEMEHa ITOCTPO]jeha
Tpebaio Om nma Oymy camomojecuBa, Kako Ou (aOpuke YCIENIHO OATOBOPHIIE Ha 3aXTEBE
KOPHCHHKA 32 MEePCOHANN30BaHNM Tpon3BoanMa. Cee 1o kpaja 20. Beka, MalIiHe U Jajbe HUCY
Omie MOTITYHO HE3aBHCHE U CaMOIIO/IECHBE KaKo OH Ce MPHIIaroIiiie BapHjalrjaMa IPOU3BOJHIX
mporieca. V3MeHe NMPOM3BOJHHX ITOCTPOjera OWie Cy CIIOKEH M AyroTpajaH 3aJaTak Koju je
3aXTEBA0 3ayCTaBJbamb€ NMPOU3BOJIKE JOK ce M3MeHe He HaunHe. Kommanuja O6u ryOmia HoBarl
CBaKkM IyT Kaja je MpOHM3BOJba 3aycTaBjbeHa. CTora, HauMH NPOU3BOAIE Tpebano O6u na Oyne
HU3MEHEH Kako OM ce OArOBOPHIIO Ha 3aXTeBE KOPUCHHMKA 3a BEIMKUM OpojeM BapHjauuja
MIPOM3BOJIa U MpoLeca.

[TojaBa weTBpTE MHIYCTPHjCKE PEBOIYLHMje, Ha3BaHe MHOoycmpuja 4.0, yTude Ha U3MEHE Y
HauMHY MPOU3BO/IBE, YIIOTPEOOM MaMETHNX, HE3aBUCHUX M CAaMOIIO/IECUBUX pecypca y hadpuiy.
Hume Uanpyctpuje 4.0 je 1a omoryhu mpou3BoARKY BETUKOT Opoja pa3TuIuTHX, IEPCOHATM30BAHNX
npou3Bosia 3a kopucHuke (eHri. lot-size-one production), a mga ce yjeaHo 3aapke SKOHOMCKE
KapaKTepPUCTHUKE CEpUjCKe Mpou3Boimbe. MehyTum, TakaB Ha4WH MPOU3BOMLE JOHOCH M pasHe
M3a30Be€ Ha Koje je HOTPeOHO OATrOBOPHUTH.

Xi

IIpodaem ucrpaxuBama. Jenan on rmaBHUX m3a3oBa Muayctpuje 4.0 mpeacTaBba Kpeupame
OKpyKema (IeKCHOUIHE MPOU3BOABE Y K0joj je Moryhe MPOM3BOIUTH Pa3IMuUTE POU3BOJAE U
BHUXOBe Bapujanmje. Kpeupamem OKpyxema 3a IMPOHM3BOJABY BEIHKOT Opoja pa3sIHYMTHX
MPOM3BO/Ia MOJICTHYE MOBehame Opoja Bapujairja mpou3Bo/ia U Mpoleca, jep KOPUCHHIIN CBE BUIIIC
’KeJie HOBe, IEPCOHATM30BaHe MPOU3BO/Ie. 300T TOra je HEONMXOHO JMHAMUYKU U 2y TOMaTH30BaHO
yIpaBJbaTH BEIIMKUM OpOjeM BapHjaiinja MPou3Boaa y (pIeKCuOMIHO] POU3BO Y (hadpuke.

Kako Ou QabOprika mpou3Boania BEIUK Opoj pas3IMYMTHX MPOHM3BOJA, HEONMXOIHO je Ja
NPOM3BO/IKba Teue 0e3 mpekupa. Y CaBpeMEHHMM IMPOM3BOAHUM IOCTPOjeHUMA, M0jaBa IPEIKe
TOKOM IMPOU3BOJIE YECTO MPOY3POKYje 3ayCTaBJbambe MPOU3BOHE JIMHM]jE Kako OU rperika Ouia
OTKIIOWeHA, TipaBehu momatHe TpomkoBe ¢abpui. Jeman on u3azoBa HMunmycrtpuje 4.0 je
crpoBoljeme jacHO NeUHUCAHWX aKTHBHOCTH 32 OTKIamame eekaTa rpeliaka Koje HacTaHy
TOKOM MPOU3BO/IHE, a Ja P TOME He jiol)e 10 3ayCcTaBbamba MPOU3BOIE.

HonatHo, yciie[Beaukor Opoja Bapujaiyja, KOJIMYMHA TEXHUYKE JOKYMEHTAIUje Y
MIPOU3BOJIEHH, YK€ CE TOCTOjalhe 3aXTEBA O]l CTPAHE Pa3IMYUTHX PEryJIaTOPHUX TeJla U MPOIeypa,
takohe ce 3HaTHO moBehaBa. CBakW MyT Kaja ce MPOW3BOJ MM MPOIEC MPOU3BOAKE W3MEHH,
JOKYMEHTH Pa3iIMuUTHX TUIIOBA MOPajy OWUTH a)XypHpaHU U HOBE Bep3Hje JOKyMEHATa KpeHpaHe.
Tume, Kperpame 1 aXypUpamke BapHjalja Iporu3BoIa U poiieca, Kao ¥ TEXHUIKE JIOKYMEeHTAaIHje,
[0CTaje TeKAaK MaHyeIHH 3a/1aTak, IITO MPEACTaBba jeJan o1 n3azosa Uumycrpuje 4.0.

VYcnen Benukor Opoja pasMYMTHX IMPOM3BOJA M HUXOBHUX Baphjalldja MPOU3BEICHHX Y
(habpuiy, paJHHUIIA Y€CTO MOPAjy Jia ce MPUIIarojie M3MeHaMa 1 Kperupajy HoBe npousBoje. Takohe,
KaKO Ce IOCIIeAmHUX ToAnHa Opoj paaHuka y (abprkama cMmamyje, paJHUILA 4€CTO MOpajy na
YYECTBY]Y y IPOU3BO/EHH NIUPOKOT CIIEKTpa Mpon3Boa. HeomxoHo je yIOKUTH ITyHO BpeMeHa y
00yKy pamHuKa 3a ToTpebe ydemha y m3paaw HOBHX MHPOW3BOJA. Jl0gaTHO, MCKYCHH PaJIHHUIH
MOpajy n1a yJIOXKe CBOj€ BpeMe NMPHUIMKOM OOyKe HOBHUX paJHHWKa, KOje OM WHade YIOXKUIU y
Kpeupame COQUCTUIMPAaHUX pou3Boaa y (adpuii. 300r cBera HaBeJACHOT, Op3 U ayTOMaTH30BaH
MIPEHOC 3Hama O HAYMHY MPOU3BOMC HOBUX IPOM3BOJA M HUXOBUX BapHjallfja, Kao M BONHCH
TIPOTIEC MPON3BOIHE, HEOITXOIHU Cy KaKO O C€ CMamUITH BpEME U TPOIIKOBU OTPEOHM 32 00YKY
pazHuKa, IMTO Takohe mpeacTaBiba jenan ox n3aszosa Uuaaycrpuje 4.0.

HcrpaxnBaun MOKyIIaBajy /1a OATOBOpPE HAa HABEJCHE M3a30BE MOCIEABIX TOMHA, Ak jOIII
yBEeK He mocToju oaroBapajyhm mpuctym momohy kojer je moryhe y THOTIHYHOCTH KpempaTh
¢irexcnOMIaH MPOM3BOIAHU CHUCTEM. JemaH o HauMHA Kako OJrOBOPUTH Ha mM3azoBe MHmycTpuje
4.0 1 noTIpUHETH Kpenpamy (IIEKCHOMITHE IPON3BOAE jeCTe YyIOTpeOa MPUHIINIIA HHKEHEPCTBA
Bohenom mopnenuma (exrin. Model-Driven (MD)) y kojuma mozenu 4uHe pedepeHTHO MECTO
cnenu(uKanyje 3Hama O NPOU3BOAKU. Momenn TPOWU3BOJHHX MIporieca MOTIH Ou Out:
ucKopuinheHn Ja BOJE M3BpIIABAKE NMPOM3BOJHMX IIpOIeca Ha HA4YMH Ja CE€ HMHCTPYKIHje
TeHEepHIIy U3 IBUX U [IaJby pecypcuMa Ha n3BpiaBame. MelyTum, TakBu MoJIenu mporeca caapike
JeTajbe O TPOU3BOAHOM CHCTEMY y KojeM he OWTH M3BpIICHH, ITO YHHU MOJETOBAmhE OBAKBUX
mporeca W3a30BHHM, a MoJeJie Be3yje HMCKJbYYHBO 3a jelaH NpPOM3BOJHH CHCTEM. Y epH
Wnnycrpuje 4.0, tpebasio Om nma je moryhe momen MPOW3BOAHOT TPOIEca HCKOPUCTUTH Y
Pa3IMYUTUM MTOCTpOjerMa uith (pabprkama. 300T Tora je jeqan o/ TIIaBHUX M3a30Ba MOETIOBamka
npon3BoHEX mporeca y Maayctpuju 4.0 na 6yae omoryheHo Mo/ienoBame MPOM3BOJHIX IpoIeca
Ha jeJHOCTaBaH HAa4yMH, Ja MOJENW Ipoleca MOTy JIako Aa Oyay YHTJBHBH, Pa3syMJBHBH WU
UCKOPUIINEHH Yy Pa3iM4YUTAM IPOU3BOAHUM CHUCTEMHMA, AJIM M Jla MOTY OMTH ayTOMAaTH30BaHO
TpaHc(hOPMHUCAHHU y MHCTPYKIIMje KOje PeCYpCH N3BPIIaBajy Y 01a0paHOM IPOM3BOAHOM CUCTEMY.

IIpenno:keHo pememe. Y 0BOj AWCEpTalMjU HPEAJIOKEHO je pelIeHhe 3a yOlakaBame WIH
OTKJIakhamke IMOMEHYTHX Hu3a3oBa Muayctpuje 4.0, momyT ayroMaTrnzoBaHe W (IIEKCHOMIHE
MPOM3BO/IE TEPCOHANM30BAHUX IPOW3BOJA, CHENH(UKAIMje BeTUKOr Opoja BapHjammja
MPOM3BO/IA U IPOIIECa, ayTOMaTH30BaHOT OTKJIAkharha TPellaka y IPOU3BO/IibHY, jeANHCTBEHE TAauKe
Kpenpama M aXypupamba TEXHHUYKE JOKYMEHTAIMje Y KOMIIaHWjU, Kao U o0yKe W HaBohema
panHuKa NPUIMKOM Kpeupama pasInuuTHX Iponu3Boaa. TakBO pelehe 3aCHOBAHO je Ha IPUMEHHU
npunnuna MD napanurme u kperpama HOBOTI HaMeHCKoOT jesuka (enrsi. Domain-Specific Modeling
Language (DSML)) Ha3BaHOr BUIlICHUBOBCKH jE3UK 32 MOJICTIOBALE TPOU3BOTHUX MpoIieca (SHII.

xii

Multi-Level Production Process Modeling Language (MultiProLan)) y KoHTEKCTy moMeHa
Wunycrpuje 4.0.

Jla 6u ce oxroBopwiio u3azoBuMa Mumycrpuje 4.0, IpeUIOKEHO pelIehe KOPUCTH MOJIENe
MPOU3BOJHMUX TIpolleca Kako Ou Omino omoryheHo ayToMaTH30BaHO BOhCH:E H3BpIIaBamba
MPOU3BOJHUX TIpolieca. Mojielin IpOU3BOIHUX Ipolieca TPaHC(HOPMUCAHU CY Y MHCTPYKIIMjE Ha
ayTOMaTH30BaH HAa4YMH, a 3aTHM TaKBe WHCTPYKIHje PECypCH H3BPIIABAjy y MPOH3BOJTHOM
noCTpojery. PasHu netasbu Koju ce OJHOCE Ha MPOIeC MTPOU3BOILE U U3BPIIABAkbEe MOPajy OUTH
CKJIAIUIITEHH y MojeianMa. Ha Taj HauMH, MOJENM MPOU3BOIHUX Mpolieca MocTajy pedepeHTHO
MeCTO crhenuduKaiyje MoTpeOHOr 3Hama y cuUcTeMy. MehyTuMm, CKIQIUINTSHEM JeTaba
M3BpIIIaBaba YHyTap Mojielia MPOM3BOIHKX MPOIIeca YNHU MOJICTIOBAbE U3a30BHO 3a MPOjeKTaHTE
nporeca. 30or Tora 6w Tpebdaso TakBe MoJelNie Mpoleca MPEeACTaBIbaTH KPO3 pa3induTe HUBOE
netasbHOCTU. THuMe je Moryhe pa3aBojuTH MoJiesie IPOU3BOIHUX MPOIleca KOjU Cy HE3aBUCHH O]
mpousBoaHor crucrema (Master-Level — MasL), a koje Mozienyjy TpojeKTaHTH Tporieca, 01 MOJIea
MIPOU3BOJIHHX TPOIleca KOjU Cy 3aBUCHH OJI KOHKPETHOT TPOHM3BOAHOT CHCTeMa y KojeM he Outn
m3Bpirenn (Detail-Level — Detl). Kako 6m 6mio wmoryhie Ha ayToMarn3oBaH Ha4YMH
tpanchopmucarn MasL y DetL monene mporeca, HEONXOAHO je JIeQUHUCATH CKYN IpaBHIiIa
TpaHchopmucama. IHTEIMIeHTHU CUCTEM, TTOMYT OPKECTPATOpa, MOKE JIa HCKOPUCTH OBa IPaBuIa
u dopManHo creruuUIMpade Mojese Ipolieca, Kako OM HM3BpIIMO TpaHchopMalnjy usMely
Mo/IejTa Ha Ay TOMaTH30BaH HauuH. JI0aTHO, y OKBUPY MPEIOKEHOT CHCTEMa U HAMEHCKOT je3HKa,
KpEUpaHU Cy M Pa3IMYUTH CJIOjeBH MOJEIOBamba, KOjU MPUKA3yjy WA CaKpUBajy pa3IvunTe
JieTajbe pesieBaHTHE caMo 3a opel)eHe rpyme KopucHUKa.

VYnpaso 300r Tora mTO MOJpPKABAa Pa3IMYATE HUBOE JIETAJbHOCTH W Pa3IMYUTE CIIOjeBe
MojenmoBama, MultiProLan je u mo6umo Ha3uB BHIIEHHBOBCKH je3WK 3@ MOJIETOBAGE MMPOU3BOIHUX
mpolieca, Kako OM ce MCTaKja OBa eroBa BPJIo BaxkHa ocobmua. MultiProLan pasasaja MasL ox
DetL monena mporieca, omoryhasajyhin mpojekTaHTHMA Ipolieca Jia 0y1y (GOKyCHpaHH HUCKIbYUHUBO
Ha KOpake y TpOIlecy MPOU3BOJIHE, YMECTO Ha JeTalhbe M3BPIIABAkha W Ha MPOU3BOJHHU CHCTEM.
Kako pauynap moxe ma obpaau MultiProLan momene Ha ayromMaTH30BaH HA4WMH, M3BPIIHBE
WHCTPYKIIMje MOTY OMTH T€HEpHCaHe W IOClaTe pecypcrMa Koju he WX W3BPIINTH W KpeHpaTu
npousBojie. CirKe, ayIuo W BUJIEO 3aIHCH, KA0 M TEKCTYaIHU OMKCH MPOIECHUX KOpaka Takohe
MOTy OMTH T€HepHCaHW M3 MOJIeNa Tpolleca Ha ayTOMAaTU30BaH HAYWH M MOCIATH PAJHUIIAMA Y
MIPOM3BOIHH, KaKo OW paJHUIM 3HAIH Ha KOJU HA49HH J1a U3BpIIe Kopake. ClrameM jJeIHOT 110 jeIHOT
MIPOLIECHOT KOpaka pagHHINMa, YKJBY4Uyjyhu cirKe, ayquo W BUAEO 3amuce, oMoryheH je BoheH
mpoIiec MPOU3BOAE ¥ 00yKa HOBUX pagHuKa. MoenoBameM MOTEHIIMjATHIX TPeliaka Koje MOTy
Jla ce JI0ToJIe MPUITMKOM M3BpIaBamka MPOU3BOIHUX MpoIieca, Kao U KOpaka 3a yKiamama edekara
rpemraka, moryhe je Takohe W paspemiaBame Tpemiaka TOKOM IPOHM3BOIE HAa ayTOMAaTH30BaH
HaunH. JloaTHO, TEXHWYKa JOKyMEHTalWja Takohje Moke OMTH TeHEpUCaHa W aKyphpaHa Ha
ayTOMaTH30BaH HA4WH, Kaja TOJ HAacTaHe HOBH MPOM3BOJ WM BapHjaldja MPOM3BOJA, WIH CE
M3MEHHU MocTojehn mpom3Boa Wiy HeKa merosa Bapujanuja. Ha Taj HaunmH Moryhe je yKIOHUTH
3axTeBaH MaHYEIHH I10Ca0 KOju 00aBJbajy MPOjEKTaHTH IpOIeca, YAME UM C€ 3HAYajHO IITETH
BpeMe.

VY HacTtaBKy pe3nMea, NPEACTaB/bEHE Cy XUIIOTE3€ U LUJBEBH HCTPAXKHBamka, OUYCKUBAHU
JONPHUHOCH, Ka0 M METOAOJIOTHja UCTPaKUBamba, HAKOH Yera ciene pesyiraTd U Oyayhu mpasou
HUCTPaKUBabA.

Xumnorese HCTPAKUBaMKa. Y3uMajyhu y 0031p HaBeleHE M3a30B€ U MOTHBALM]Y HCTPAKUBAbA,
(hopMupaHa je OCHOBHA XMUIIOTE3a HCTPAXKUBAbA!

Xunoreza 0 (Ho). Moeyhe je kpeupamu pewerwe, 3acnosano Ha Mmoderuma, 3a
cneyugurayujy mooena Npou38oOHUX Npoyeca KOoju Cy He3A8UCHU 00 NPOU3800OHO2
cucmema u Mooena npou3goOHUX Npoyeca Koju ¢y 3a8UCHU 00 KOHKPEMHO2 NPOU3600HO2
cucmema, Kao u pewerse 3a mpancQhopmucarbe maxkeux Mooend y u3epuiuee UHCmpyKyuje
U MEeXHUUKY OOKYMEHMAYUjy Ha aymomMamu308aH Ha4uH.

I'naBHu 3aaTak y HUCTPAXUBAKBLY, HU3BCACH HN3 OCHOBHC XHIIOTE3C, je I[G(I)I/IHI/Icaer
MCTOAOJIOMIKOT IPUCTyIIa U CO(l)TBCpCKOI‘ peuiCkba 3aCHOBAHUX Ha MD NpyuHOUIINMA, Kao U

Xiii

HAMEHCKOT je3MKa 3a (hopMmaiHy crienu(puKalyjy Ipou3BOJAHUX MpoLeca, Kako OM ce JOMPUHEINO
noBehamy (IEKCHOMIHOCTH MTPOU3BO/IEHE M OJITOBOPWIO Ha pactyhe morpebe kymnara. Tume ce
Takoh)e MOMaxke NpojeKTaHTHMa Ipoleca NPHIMKOM MOJENOBamka MPOU3BOJHUX Mpoleca M
Kpeupama 1 axXyprupama TeXHHUKe JoKyMeHTauuje. JoaatHo, GopmanHo cnenuuupany MoIen
MPOU3BOJIHHX TMpoleca MOTy OuTth oOpaljeHu of cTpaHe padyHapa Ha ayTOMaTH30BaH HAYMH YAME
ce oMoryhaBa ayToMaTH30BaHO T€HEPHCAHC U3BPLIMBUX HHCTPYKIMja M TEXHHYKE JOKYMEHTAIHje
W3 MoJieNia mporeca.

Hapenne vetnpu xumnotese u3BeaeHe cy u3 xumnorese Ho kako Ou 60spe OMITM IpeACTaB/bEHU
Pa3INYUTH ACIIEKTH TC OCHOBHE XHUIIOTE3C. HOTprI/IBaHJeM NI OZI6aHI/IBaH)€M HU3BCACHUX
XHurore3a, ouhe morephena win ogdoadeHa xumnoresa Ho.

Xunore3a 1 (Hi). Moeyhe je kpeupamu namencku jesux 3a nompebe mooenosarsa
NPOU3BOOHUX NPoYeca ca C8UM 0emamuMa HeONnXOOHUM 0a Ou ce Ha aymoMamu308an
HAYUH 2eHepucale UHCMpPYKYUje u3 Mooeia npoyeca Koje cy u3gpuiuge Ha pecypcuma.

[IpousBoaHu mporecu Tpebasio Ou aa Oyay MOJCIOBAaHM Ha KOXEPEHTAH M KOHIIM3aH HAYUH
yIOTpeOOM HAMEHCKOT je3WKa, YMMe MOJIEH Ipolleca MOCTajy YNT/BMBH M 0OpaIrBH O] CTpaHE
pauyHapa. JlofaBameM HEONXOHUX JIeTajba Y MOJIeNIE MPOLIeca KOjU Cy TIOTPEOHH 3a U3BPIIIABabEe
MPOU3BOJIHUX Ipolieca, Moryhe je TpanchopMucaTH TakBe MOJIeNie Y HHCTPYKIIHje M3BPIINBE HA
pecypcuMa Ha ayToMaTW30BaH HAa4YWH. TakBe WHCTpyKIje moryhe je mocnatm y MpOM3BOIHO
MOCTPOjerbe Kako Ou Ouiie M3BPIICHE O] CTpaHe ojrosapajyhinx pecypca.

Mojenu poU3BOIHUX MPOIEca KOjU CaJip’Ke HEOIXOTHE JIeTalbe 3a MOTpede ayTOMaTH30BaHe
MIPOU3BO/IEHE, YECTO MOPajy OMTH MOJICIIOBAHHM OJ CTPaHE Pa3IMYUTHX Ipyla KOPUCHUKA, TOMYT
HHXeHepa Mpoleca 1 HHKEhepa KBajuTeTa. TakBU MOJIEINA MOPA]y YKIbYUYUTH Pa3IHUUTE aCIICKTE
W TOTJIe/ic HAa MOJICNIOBAake MPOU3BOJIHUX IpOoIleca, MOMyT aclieKaTa M3BpIIaBarma, YIpaBlhamba
rpeirkaMa, KBaJUTETa W CHTYPHOCTH. PasIWyuTH acmekTd W Toriiend Tpedamo Om ga Oymy
o0jemumeHN YHYyTap jJETHOT MOJeNa IIpolleca, 9YMME Ce€ Kpeupa IEHTPATHO MeCTO 3a
crienuunrpame 3Hama O MPOIeCHMa IMPOU3BOILE, Kao IITO j€ HaBEIEHO Y HapeIHO] U3BEACHO]
XHITOTE3H.

Xumnotesa 2 (Hz). Mozyhe je npeocmasumu paziuuume acnekme npouzeo0HUx npoyeca
Ha 00jedurbel HaUUH, He3a8UCAH 00 NPOU3BOOHOZ CUcmeMd, U mume omo2yhiumu noHo8Hy
ynompeby mooena npoyeca y pasiudUmuM HPOU3BOOHUM cucmemuma He 2yboehu Ha
YUMBUBOCIMU U PA3YMEBAIbY MOOed.

Mopnenn TmpOW3BOAHMUX TpoIeca KOjH Cy CIPEMHH 3a TeHEepHCame WHCTPYKIHja IOCTajy
ornrepeheHn nerajsuMa y Be3HW pecypca Koju he M3BPIIMTH TMPOIECHE KOpake, aKTHBHOCTHMA
JOTUCTHKE y TIPOM3BOAIGM M aKTUBHOCTMMA KOH(UrypHcama MammnHa. PydHo crenmounmpame
TaKBHUX MOJIeNla IPOU3BOAHUX TIpoIieca MpecTaBba n3a3zoB. lIpojexranTu mporieca Tpedao ou aa
crieruIMpajy Moese Iporu3BOJHHX IpoIieca HE3aBUCHO 0J1 KOHKPETHOT IPOM3BOIHOT CHCTEMA,
TUME He y3umajyhu y 003up pecypce, HUTH TPaHCIIOPTHE U KOH(UTYpalnoHe akTHBHOCTH. Mozienn
IpoIrieca He3aBUCHH OJ1 IIPOM3BOIHOT CHCTEMa MOTY OUTH yIIOTPeOJbeHH Y OMIIO KOM ITPOU3BOTHOM
cucTeMy, a Takolje cy jeIHOCTaBHU 3a YHTAE U Pa3yMeBambe.

Wnak, Mozmenu mporeca HE3aBHCHH OJf NPOU3BOJHOT CHCTEMa HE CaJp)Ke JOBOJHHO
nH(popmMarja kako 6u 6mito Moryhe TpanchopMucaTh TakBe MOJEJIe Y HHCTPYKIIM]je U3BPIIMBE Ha
pecypcuma. 300r TOra je Hajpe MOTPeOHO KpeupaTh MOeNe MPOM3BOAHUX MpOLeca 3aBUCHE O
KOHKPETHOT TPOU3BOJHOr cucteMa. To je moryhe yumHutn obOorahmBameM Mojena mporeca
HE3aBHCHOT 0J1 IPOU3BOJHOT CHCTEMA Ca JIeTajbuMa 0a0dpaHor cucTeMa y KojeM he OuTH M3BpIieH.
TakBe oborahene mozaene Moryhe je kpeupaTu pydHO OJ CTpaHe MpojeKTaHaTa IMpoleca, MTo Ou
NPE/ICTaBJbaJIO0 BPJIO 3aXTEBHY aKTUBHOCT, HJIM MX je MOryhe KpeupaTtn Ha ayTOMaTH30BaH HAYHH
OJl CTpaHe WHTEIMICHTHOI CHUCTEMa Kao INTO je opkectpatop. OpKecTparop MpeacTaBiba
co()TBEPCKO pelemhe KOoje je MOKPEHYTO Ha KiIacTepy MHAYCTPHjCKUX pauyHapa, a Koje CIIy>KH Aa
MOBEXKE Pecypce U MPOLECHE KOpake, Kao U J1a pacopean pecypee y ¢padpuiy Ha mto 00JbM HAauuH
[3-5]. Kako 6u KOHIIENTH MOJICIOBaa KOJU C€ OJIHOCE Ha MPOU3BOJIHE CUCTeMe Tpebano aa oyay
YKJbY4YEHHU Y HAMEHCKH je3UK 32 MOJIEJIOBake MPOM3BOJHHUX MPOLIECa, TPOjEKTAHTH MPOLECa MOTY

Xiv

KOPHUCTHTH TaKBE KOHIIENTE Ja PYYHO M3MEHE WK ONTHMH3Yjy Moee MPOU3BOIAHUX MpoIeca
3aBUCHE 0J1 KOHKPETHOT IIPOM3BOJHOT CHCTEMa KOjU Cy HACTaJIM Off CTpaHe opkectparopa. [lorpeda
Jla HAMEHCKH je3HMK CaJp’KU KOHIICNITE KOjU Ce OJHOCE Ha MPOHM3BOJAHE CHCTEME Kako Ou OMIIo
oMoryhieHo pydYHO WM ayToMaTH30BaHO obOorahiBame Mojena mpoleca HE3aBUCHUX OJf
MIPOU3BOHOT CUCTEMa ONKCaHa je y cieaehoj xumoresu.

Xumnoreza 3 (Hs). Moeyhe je xkpeupamu namencku jesux koju obyxeama Kowyenme
MoOdenosarba 3a obocahusare Mooend npoyeca He3asUCHUX 00 RPOU3B00HO2 CUCHEMA Ca
0emamuma 0 KOHKPEMHOM NPOU3800HOM cuUCmemy, uume je mocyhe kpeupamu mooeine
npoyeca 3a8ucHe 00 KOHKDEMHO2 NPOU3800H02 CUCTEMA.

Kako Ou Momenu MPOU3BOJHUX Mpolleca OWJIM HE3aBHCHH OJf KOHKPETHOT MPOW3BOIHOT
cucTeMa, HHXOBO MOJIeloBamke Moryhe je crmpoBecTH y3 MOMON OCHOBHHX KOHIIENaTa
HHKE-EPCTBA 3acHOBaHOM Ha cmocoonoctuma (emrm. Skill-based engineering) [6,7].
HnxemepcTBoO 3aCHOBaHO Ha CITOCOOHOCTHMA MMa 3a IIWJb Jia 00jeJMHN Ha4rH OIHMCca CIOCOOHOCTH
pecypca. CBaku pecypc HY/M CKYIl CIOCOOHOCTH, TOK CBaKH IPOIECHH KOPaK 3axTeBa oapelheHe
CIOCOOHOCTH 3a M3BpIaBame ojroBapajyhe akTUBHOCTH. [loBe3uBameM TPaKEHUX CIIOCOOHOCTH
y MpPOLIECHUM KopaluMa M JOCTYIHHX CIOCOOHOCTH Ha pecypcuMma, Moryhe je pecypcuma
JIOJICTIMTH TIPOIIECHE Kopake Koje Ou Tpedaino na uzspiie. To je Moryhe ypajnTi Ha ayTOMaTH30BaH
HA4YMH, IITO je 3a7aTtak opkecTparopa. [loBe3nBame pecypca W MPOIECHUX KOpaka MOXe OMTH
MPEJICTaB/LEHO Kao TpaHchopMallija Mojiesa jeIHOT TUIa y Mojien apyror tumna. OJJHOCHO, MOXKe
OUTH TIPEeCTaB/bEHO Ka0 ayTOMaTH30BaHa TpaHcopMaliija Mojenia Mpoieca HE3aBHCHHX O
MPOM3BOIHOT CHCTEMA y MOJIeIe TpoIieca 3aBUCHE 01 KOHKPETHHUX MTPOU3BOIHUX CUCTEMA.

[Mopen moBe3uBama pecypca W TPOILECHHX KOpaka, OpKecTparop OW Tpebaino na noja
TPaHCIIOPTHE M KOH(UIYpallMOHE KOpake Takohle Ha ayTOMaTH30BaH HAYWH, a HA OCHOBY
TOTIOJIOTHjE€ W JIOTHCTHKE TPOM3BOTHOr cucTeMa. OpKecTparop ca CBOJUM alTOpHUTMHMa 3a
TIOBE3MBAE M PACIIONENy pecypca HHje €O OBOT HCTPaXHBamka M KOpPHUITheH je Kao TOTOBO
coTBEepCcKO peliewne, 0e3 yaaKema y IeTalbe BheroBe UMILIeMeHTaldje. Buie uadopmaiyja o
opkectpaTopy Mmoryhe je mponahm y mpeTxomgHOM HCTpaXHMBamy y KOJEM je YIeCTBOBAO ayTop
miceprarje [4,5]. AyromaruzoBaHuM oborahmBameM Moeda IIpoleca HE3aBHCHHX O
MPOU3BOJIHUX CHUCTEMa, 3HATHO CE OJIaKIIaBa 3aJlaTak IMpOjeKTaHara IMpoleca, KOju MOry Ja
KpeHpajy Mojelie Mpoleca He3aBHCHE O] MPOU3BOJHUX CHCTEMa W Ha JEJHOCTaBaH HAYMH WX
MIpUIpEMe 3a ayTOMAaTH30BAaHO TeHEepHcame MHCTpyKuuja. Kako 6m mpow3BogHU Tporiecu Owim
W3BPIICHH, FBPUXOBH MOJENH Ou Tpebano aa Oymy TpaHC(OPMHUCAHH Yy HHCTPYKIIH]jE U3BPILIUBE HA
pecypcuMa, IITO je OMFCaHO Y HAPEIHO] XUTIOTE3H.

Xunore3a 4 (Hs). Moeyhe je na aymomamuszoean Hauun 2eHepucamu UHCMpPYyKyuje
U3BpUIUBE HA PECYPCUMA U MEXHUUKY OOKYMEHMAyujy pasiudumux munosa u3 mooeida
NnpOU3B0OHUX Npoyecd.

Ymorpebom reHepaTopa HHCTPYKIIHja ca MpaBIINMa TpaHC(HOpPMUCAmha U3 MOJIENa y TEKCT,
MOJIeN TIPOW3BOJHOT TIPOIlECa 3aBHCHOT Ol 0MabpaHOr IMPOWU3BOJHOT cucTeMa Moryhe je
TpaHc(hOopMHUCaTH Ha ayTOMATH30BaH HAYMH y MHCTPYKIMje H3BPIINBE HAa pecypcuMa. ['eHepucane
MHCTPYKIHje MOTY OUTH IOCIaTe pecypcrMa Ja UX M3BpILe, YNME Ce HCITyHaBa OCHOBHA CBpXa
Kpeupama MoJiella MPOM3BOIHMX TIpolleca — Ja oMoryhe ayToMaTH30BaHO BOheme M3BpIIaBamba
NPOM3BOJHHUX TNpoleca y TPOU3BOAHOM cucreMy. Kako cy pauynapum y MoryhHocTH na
MHTEPIPETHPajy MOJeNle Ipolieca Ha ayTOMAaTH30BaH HAa4YWH, TEXHWYKA JIOKyMEHTaIMja Takohe
MOke OMTH TeHepucaHa M3 Mozena mpoueca. OBa TpaHchopMaluja MOMaXe MPOjeKTaHTHMA
mporeca Ja eIMMUHHUILY PYYHO Kpeupame U aXypupame TEeXHHYKe NOKyMeHTauuje. Ycien
ayTOMaTH30BaHOT TEHepHcama TEXHWYKe JOKyMeHTauuje, Moryhe je ymrenetn Bpeme
IpojeKTaHaTa MpoIeca, 0K IPelIke HacTajle MPUINKOM PYYHOT ITpaBJbeiha TOKyMeHTalHje Moryhe
je n3behmn.

Husp ucrpaskuBama. OBa qucepranrja tpedaigo 6u ga omoryhu ¢opMynanujy TakKBOT MPHUCTYTIa
koju he y epu Huayctpuje 4.0 00e30emuTH NIWHAMHYKO YIPaBJbAKE NPOU3BOIKBOM U
ayTOMaTH30BaHO M3BpILIaBamkE MPOU3BOAHUX IIpolleca Ha OCHOBY Mojena npoueca. Ooe30ehemem
JUHAMHUYKOT yIpaBibamka MPOU3BOAKBOM U ayTOMaTH30BaHOT W3BpILaBama MPOU3BOAHUX MIpoIieca

XV

Moryhe je nonpuHeTH yBohemy (pabpuka y mpoiec iurutainie Tpancopmaliyje, ITo npeacTaBiba
[JIaBHU LWJb CIPOBEACHOT HCTpaXuBama. [JaBHM LWJb HCTpakuBama Moryhe je octBaputu
JoCTH3ameM cinefiehnx KpUTHYHUX (aKTopa ycrexa:

O6e30emuTH 1a jeaaH MoAeN MPOU3BOJHOT IMpolleca MOXKe OWTH ymoTpeOJbeH y BHUIIE
Pa3IUYUTUX TMPOU3BOJAHUX CHCTEMa, KPEUPAheM MoJiesia MIPOU3BOJHHX Mpolieca KOjU cy
HE3aBUCHHU OJ] IPOM3BOJHOT cucTeMa. Tume OM MpojeKTaHTH mpoieca Oumm y MoryhHocTH
JeIHOCTaBHUjE J1a MOJENYjy Mpolece MPOU3BOAKE, 0e3 moTpede a Mmoceayjy 3Hame O
JeTajbuMa TIPOU3BOJHOT CHCTEMa Y KOjeM O mpoliec OMo H3BpIICH.

Ocno0oauTH TpojeKTaHTE Ipolleca MaHyelHOT 3aJaTka Kpeupama Mojenia Mpoleca
CHEeIM(PUYHUX 32 MPOU3BOJHUX CUCTEM, OJHOCHO 00€30eauTH TpaHChOopMUCakhe MOJIENa
MPOU3BOJIHOT MPOIleca HE3aBUCHOT O MPOW3BOJHOT CHCTEMa y MOJIEN IPOHU3BOIHOT
mpolieca 3aBUCHOT 0J] KOHKPETHOT IPOM3BOJJHOT CUCTEMa Ha ayTOMaTH30BaH HaukH. Mnak,
MOTPEOHO je MPYKUTH MOryhHOCT py4YHE M3MEHE OBaKBMX MOjeja Kaja NpPOjeKTaHTH
mporieca MpoleHe Jia MOCTOju MoTpeda 3a TUM.

Mojen mpou3BOJHOT MpoIleca 3aBUCAH OJ1 IPOM3BOJHOT CUCTEMA CaJpKH y ceOH JeTabe
MOMYT TAMETHUX pecypca Koju hie u3BpIIMTH KOpaKke MPOU3BOIE, AKTUBHOCTH JIOTHCTHKE
y MPOW3BOJHOM CHCTEMY, Ka0 M aKTUBHOCTH KOHQUTrypucama MammHa. O6e30enuTu ia
TaKBU MOJIEIH TPOIleca ayTOMAaTH30BaHO BOJIE MPOIIEC TPOU3BOIHEC THME IITO OU MOJICITTH
nporieca Ouil TpaHCcHOPMHUCAHH Y H3BPIIMBE HHCTPYKIIH]j€ HA ayTOMAaTU30BaH HAYMH.
OmoryhuTH OTKpHBaWme W OTK/Iamame JIONIE MOEIOBAaHMX Ipolieca M Ipeliaka Koje
HACTaHy TOKOM IPOU3BOJIh¢ MOMONYy MexaHu3ama 3a mpaheme H3BpIlaBama mpoleca
MIPOU3BOIEHC.

00e30eauTH 1a pa3jInyUTe rpyle KOpUCHUKA MOTY OUTH (OKyCHpaHEe Ha acIeKTe 3a Koje
Cy OJATrOBOpHH, Kpeupajyhm pasnuuure Moriiefie Ha MOJENT HPOM3BOIHOI IIpoleca
YIIOTpeOOM pa3IMUUTUX CII0jeBa MOJeloBama. Ha Taj HauWH, MOZIENT IPOU3BOIHOT
mpolieca npeacraBba pe)epeHTHO MECTO CHEU(UKAIH]e TOTPEOHOT 3Haba, a Pa3InIUTe
rpyIe KOpHCHHKA MOTY 33jeHO Jia YYeCTBYjy y CHelu(UIMpamy pa3InIuTHX acrekara
MIPOM3BOIHOT Tporeca. JlomaBameM WM YKIAmambeM ClI0jeBa MoJella IPOU3BOJIHOT
mporeca, Moryhe je HpHKa3aTH WM CAaKpUTH Pa3IMYUTe aCIeKTe MoJesa, YMMe OHU
[I0CTa]y jaCHUjU M YUTJHUBH]H.

OcnoboanuTty TPoOjeKTaHTe Mpolleca MaHYEIHOT OJpJKaBarma BEIHKOI Opoja AOKymMeHara
pasznmuuTHX THNoBa y (aldpumy, Ha HaYWMH Ja TEXHWYKAa JOKyMEHTanwmja Oyne
ayTOMaTH30BaHO T'€HEpHCaHa M aXypupaHa TpaHC()OpMHCameM MOJENa IMPOM3BOIAHUX
rporeca y A0KyMeHTaIljy.

OwmoryhuTn na cBe Bapujaryje mporu3Bo/a u mpoiieca Oyay ITOCTyIHE Y jeIHOM MOJAETY
npon3BogHOT mporeca. Kako je moryhe ma mocroju Bemmk Opoj Bapujaiuja y MOJIEIy
porieca, IITO YAHU MOJIEN TEIIKAM 32 YHTAmkE U OJIpJKaBame, MOTpeOHO je omoryhutu u
MEXaHW3Me 3a 0/1a0up BapHjalldje Ha KOjy OM MpOojeKTaHT mporieca 6uo GoKyCHpaH.
O06e30equTn ayToMaTH30BaHy IMOMOh HOBHM paJHUIIMMA TPUIHKOM OOyKe W Kpempama
MIPOM3BO/Ia U CMAmbHUTH BpeMe KOje MCKYCHU PaJHHIM MOpPajy Aa YJoxke y o0yKy HOBHX
pamauka. To je moryhe moctuhm ThMe mTO OM MOJIENM TMPOU3BOTHUX Ipolieca OWITH
ynoTpebsbeHH 3a BOHEeH MpoIiec MPOU3BOALE, CIakhbeM HOBUM PaTHHUIIMMA jeTHE TI0 jeTHE
MHCTPYKIHje ca CIMKaMa M BUJICO 3aIMCHMa, HAaCTaJ MM M3 MOJeIa Iporeca.

OuexuBanu nonpuHocu. Kako Om Owmne morBphene wnm ondadeHe HaBEACHE XHUIIOTE3E U
JIOCTUTHYT Ae(pUHUCAHH IHJb, CIPOBEICHO j& HCTPAKUBAKE KOje je OMUCAHO Y OBOj IUCEPTAITHjH.
Kao pesynraT ncrpaxuBama, 04eKyjy ce JOIPHHOCH cienehux Tumosa:

XVi

Teopujcku gonpuHOocH y 00NacTH MOJENOBamka NPOM3BOIAHUX MpoIeca U HHXOBOT

ayTOMaTH30BaHOT W3BPILIABAbA:

o Ilpernex nocrojehux jesnka 3a MOAEIOBAE MPOU3BOJHUX MPOIIECa.

o MWnentuduxanrja OCHOBHMX KOHIIETIATa HEOMXOAHUX 33 KpeHpambe HAMEHCKOT je3HKa
3a MOZEJOBamke NPOM3BOJHMX Mpoleca y KoHTekcTy Muayctpuje 4.0, a umju cy
MOJIEI TIOTOJHM 3a TEHEpUCAe HHCTPYKIHMja W TEXHUYKE IOKYMEHTalHje Ha
ayTOMaTH30BaH HAYMH.

o Cneundukanuja Hoor MD mpuctyma 3a morpebe AWHAMHYKE MPOM3BOAKE MU
ayTOMAaTH30BaHOT TCHEpHCamba MHCTPYKIMja HA OCHOBY MOJENa TNPOM3BOIHUX
mpoleca HacTaluX ymoTpeOoM HaMEHCKOT je3HKa.

o Cneuudukanyja METOAOJOTHjE 3a ayTOMaTH30BaHy TpaHCPOpMalujy Mojena
HE3aBUCHHX O]] TPOM3BOIHOT CHCTEMa y MO/IEJIe 3aBHCHE O] IPOU3BOIHHUX CHCTEMA.

o 006e36ehena moryhHocT npumene MD npuHIuna y 1oMeHy IpoH3BObBE, YuMe O ce
JIOTIPHHENO jEHOCTaBHHJEM MOJICJIOBakbY MPOM3BOJHHUX MpOLECa M HHHXOBOM
ayTOMAaTH30BaHOM H3BPIIABAbY.

JonpuHocu pa3Bojy copTBepcKe MOJAPIIKE 32 MOJIENOBamke MPOM3BOAHUX Ipoleca U

reHepHcambe HHCTPYKIIUja U3BPIIMBUX HA peCypcuMa U TEXHUYKE JOKYMEHTAIIU]e:

o Pa3BHjeH W HMIUIEMEHTHpPaH HOBH COQTBEPCKH ajaT KOju IOJprKaBa YIoTpeOy
KpEHpaHOT HAMEHCKOT je3HKa 32 MOJIEJIOBakhe MTPOM3BOHUX TpoIieca.

o Pa3BHjeH W UMILUIEMEHTHpAH TIEHEPaTOp UHCTPYKIIMja 32 IeHepucame WHCTPYKIHja
M3BPIIMBUX HA PECypCHMa U3 MOJIENa HAMEHCKOT je3MKa Ha ayTOMaTH30BaH HAuMH.

o Pa3BujeH W MMIUIEMEHTHPaH T'€HEpaTop TEXHHUYKE JOKYMEHTAIUje 3a TeHEepUCAIbe
pa3nMumTe TOKyMEHTAIHMje U3 MOJIelia HAMEHCKOT je3UKa Ha ayTOMAaTH30BaH HAYKH.

Jonpunocu npumenn MD npucryna ¥ HaMEHCKOT je3WKa y JOMEHY HpPOU3BOJE, a Y

BHJy CTyIHja Cllydaja M aHAIM3€ M OIICHE je3MKa U ajlaTa 33 MOJEJIOBAE MPOU3BOIHUX

nporieca:

o [Iloka3ana npaktuuHa npuMerHa MD mpucTyna U HaMEHCKOT je3uKa 3a MOJICTIOBambE
MPOM3BOIHHX MPOIECa Y MOHTAXKHO] HH/TY CTPH]H.

o MUsBpuieHa aHanu3a W OIllEHa HOBOT CO(PTBEPCKOI anarta M HAMEHCKOI je3nKa 3a
MO/IEIOBamE MPOM3BOAHUX MPOIIECa O] CTPAHE Pa3InYUTHX IPyIia KOPHCHHUKA.

o [IIpe3eHTOBAaHO HOBO MPAKTHYHO MCKYCTBO, OCTBAPEHO IMPUMEHOM IPEIOKEHOT
METOJIOJIONIKOT MPUCTYTIA, COPTBEPCKOT anarta U MOAPKaHOT HAMEHCKOT je3uKa.

JpymTBeHu JONPUHOCH TIPEICTaBIbajy MOTYRHOCT CTaBJhara Ha jaBHY YIOTPEOyY jeaTHOr

OMNIITEr MoJeNla YIpaBlbarba MPOM3BOJHUM IIPOLECOM, KOjU je TIPUMEHJbUB Y

opraHu3anpjamMa IIAPEr CIeKTpa, Ha HayWH na omoryhaBa 3Havajamje yHampeheme

MPOU3BOJIHOT MPOIeca W TMOJM3ambe OIMIITEr KyMYyJIUPaHOT 3Hamka O TOME Kako ce Ha

CaBpeMEH HauMH MOXKe JIONMPUHETH TOM Ipoliecy YHamnpelema.

OcTBapemeM 0YEeKHBAHUX pPe3yIiTaTa UCTPAKUBAa MOCTIKE Ce JeTHOCTaBHU]E U MPEIH3HM]je
MOJIETIOBab€ MPOM3BOJHMX TMpOIleca, YHjH MOJENH OMoryhaBajy TpHMEHy TpHHIIHIA
(hnexcubOnirHe Mpon3BOIKE U THME 00e30el)yjy Kperame opraHusanyje y cMepy IyHe MpPHMEHe
¢unozopuje Unnycrpuje 4.0. Tume opranmzampja moBehaBa cTemeH CIOCOOHOCTH aa 00Jbe
OZIrOBOPHM Ha CBE MHTCH3MBHHjE 3aXTEBE KyIlalla 3a BHCOKO MEPCOHAIM30BAHUM IPOU3BOIMMA.
OdexknBaHM KOPUCHHIIM ajaTa W je3uKa 32 MOJEJIOBamk-e MPOM3BOJHUX MPOIEca Cy MPOjeKTaHTH
mporeca, Koje YHHE HHKESHEPH MPOoIieca U HHKSHEpH KBAJTHUTETA.

Metonosioruja ncTpaxuBama. VcrpaxxuBame OMMCaHo y OBOj THUCEPTAIHjH CIIPOBEICHO j& KPo3
HapeIHHX [IeCT aKTUBHOCT:

Wnentnduxanmja n3azosa Uamyctpuje 4.0 y mocrojehoj mponsBoamy 1 MOTHBAIH]ja 3a
npy’Kambe TONPUHOCA Y pelliaBamby HICHTH(PHUKOBAHUX N3a30Ba.

Hedunncame mbeBa mpemnoxkeHor MD mpuctyna, HaMeHCKOT je3Wka W aiara 3a
MOJIEIIOBamE MMPOM3BOAHUX MPOIIECa.

[IpojekToBame W pazBoj CO(MTBEPCKOT pelmiema 3a CHenu(puKanujy W H3BPIIABAmE
MPOM3BOHKMX TIpoleca, Koje oOyxBara HameHcku jesuk MultiProLan, meros amar 3a
MOJIEIOBa-E MPOM3BOIHUX TPOIEca M PA3IMIUTE TeHEPaTOpe MHCTPYKIUja U TEXHUYKE
JOKyMEHTaIlHje.

[Mpumena coTBepCKOT perema y 1B CTyAuje Cilydaja MOHTQKHE HHIYCTpH]e.

Amnanmuza u orjeHa HameHckor jesuka MultiProLan u meroBor anmara 3a MoOJEOBame
MPOU3BOIHUX MPOLIEca O] CTpaHe Pa3IMUUTHX rPpyla KOPUCHHUKA.

[IpencraBpame pesynraTa HCTpaXKHBamba aKaJEMCKO] 3ajeJHUIU Ha MehyHapoaHUM
Hay4YHUM KoH(]epeHnrjama u y yaconmcuma [4,5,8-19], kao u peneBaHTHUM KOPHCHHLIIMA

y HHAYCTPH]H.

Xvii

VY HacTaBKy pe3uMea, CYMHpaHHU Cy pe3yaTaTd u Oyayhu mpaBuu ncTpakuBama. Hajmpe cy
MPEICTaB/bCHN PE3yNITaTh Iperjiefa akTYelNHOr cTamba y OO0JacTH, OMUC HMILIEMEHTHPAHOT
peuiema, CTyAuje ciydaja, aHajiu3a M OLleHa HMMIUIEMEHTHpAHOT pemema W Oyayhu mpaBum
HCTpaXUBamba.

Iperaen akryeqHor crama y obaactu. VcrpaxuBama y 00JacTH MOJEIOBamba MPOM3BOIHUX
npoteca, mocebno y Muaycrpuju 4.0, cBe cy uHTeH3uBHHja nocinenmbux roguna [20]. Ha 1o je
yTHUIIaJIa YHUECHHIIA J1a TPOM3BOAHH TPOLECH MOPajy OUTH JTUTHTAIHO TMoapkaHu y Mumyctpuju
4.0 [21], xkako Ou Omio Moryhe MHTErpucaTH UX y OKBUpPY mameTHuX ¢abpuka. [Ipouecu Ou
Tpebano ma Oyay KpeupaHd ca BHUPTYCIHOM PENPE3CHTALMjOM Koja 3axTeBa arcTPaKTHO
pasMHIIUBABE M MOJICIOBahe MOMONyY crierijaan3oBanor cohTepa [22] — agara 3a MOJEIOBaIbE.
MogenoBame mpou3BoAHUX Mporeca y Muaycrpuju 4.0 je u3y3erHO BakHa WHQPOpPMATHUKA
HCTpaKMBAaUKa TEMa, jep je OJ BEJIMKOT 3Hayaja pasyMeTH W ONTHMH30BaTH mporece [23].
MeljyTum, HIje TOBOJBHO CaMO JIOKYMEHTOBATH MIPOMU3BOJIHE MPOIIECE U YyBaTH JOKYMEHTAIH]Y Y
0a3u momaraka (aOpuke. OBa nucepraija Jaje JIONPUHOC CBE MNPUCYTHHUjEM 3aXTEBY Ja
MPOM3BOJHK TIpOIlecH OyIy MOJIEJIOBAaHM TAaKO a ayTOMaTH30BaHO BOJIE MPOIIEC MPOU3BOJILE,
OJIHOCHO 1a Oy/Jy CIpeMHH 3a ayTOMAaTH30BaHO H3BPIIABAE HIM TECHEPUCAE H3BPIIUBHX
WHCTPYKIIMja, alli Ja yjeJJHO He OyIy MPEeBHIe KOMIUIEKCHHU, KaKO O MX YOBEK MOTA0 MPOYUTATH
W pa3yMeTH, U Ja Oyly He3aBUCHHU 01 KOHKPETHOT IMPOU3BOIHOT TIOCTPOjeHba.

VY uctpaxuBamy OIMCAHOM Y OBOj JIUCEPTAIMjH, UCIIUTAHU CY Pa3IMUUTH 1mocTojehn jesunn
Y IPUCTYIIH 32 MOJICIIOBAaLE TIPOIIeca, a KOjH Cy MOTSHIIMjaIHO oroBapajyhu 3a npemioxeHo MD
peleme U THME MOTY Jia IOTIpUHeCy pelaBamy u3azosa Uunycrpuje 4.0. [IpruimmkoM HHUT]aTHOT
nperiieia auTeparype, GOpMHUpaHU Cy 3aXTeBU Koje OM jellaH je3WK 3a MOJeJOoBame Ipoleca
Tpebalo Ja HMCIyHH, a Ydju Mojenn Ou Owin KopuinheHu 3a JIMHAMHYKY OpKECTpalujy
ayTOMAaTHU30BaHO TEHEpHCAame HW3BPIIUBUX WHCTpPYKIWja y epu WHmyctpuje 4.0. 3axTeBu Cy
JeTaJbHO TPECTaBJbEHH Yy MOTTIaBJbY 4, JOK je Y HaCTaBKy IPECTaBJ/beH BUXOB KPaTaK OIHC:

e 3axTeB 1: MOCTOjame MPOIIECHUX KOpaka Koju 00yxXBaTajy yJa3He MPOU3BOC HAll KOjuMa
j€ oTpeOHO M3BPIIUTH OATOBapajyhy aKTHBHOCT, H3J1a3HE IIPOM3BO/IC HACTANIC TIPUMEHOM
oaroapajyhmux akTHBHOCTH HaJl YJIa3HUM IPOU3BOIMMA, CIIOCOOHOCT KOjy j& MOTpeOHO
ITOCEI0BATH 3a M3BPIIABakE¢ MPOICCHOT KOpaka M pecypc Koju Om Tpebayio /1a W3BPIIH
MIPOLIECHH KOPaK, a oceyje TPaKeHy CIIOCOOHOCT.

e 3axTeB 2: TOCTOjab€ KOHTPOJE TOKA AKTHBHOCTH, Kao IITO Cy CEKBEHIa, OIIyKa,
WTepalrja u rnapajieiim3am.

e 3axrteB 3: mocTojare TOKa MaTepHjajia, OAHOCHO 3Hama Ja JH je oApeheHn Mpom3BOa
NOTPeOHO MPEy3eT U3 CKIIAWIITA WM je Pe3yNTaT HEKOT OJl MPETXOJHUX MPOIECHUX
KOpaka.

e 3axTeB 4: MOCTOjake TOKA MOPYKA, OJHOCHO capajme u3Meljy MpolecHUX Kopaka WiIn
pecypca pa3MeHOM MOPyKa.

e 3axrTeB 5: mocrojame Heypel)eHUX MPOIECHUX KOpaka KOju MOTY OWTH M3BpIIEHH OWIIO0
KOJUM PEIOCTIeIOM.

e 3axrTeB 6: mocTojame BapWjalMja MPOM3BOJA W TPOIEca, T/e BapHjallfje MPOHU3BOJA
MPUIIAajy HWCTOj TMOPOAWIM TIPOW3BOJA KOje ce pa3uKyjy 1o onapehernm
KapaKTEepUCTHKAaMa, a BapHjalije mpolieca MPeICTaBlbajy pa3liuke Y HAaUMHY U3BpIIaBama
MPOIECHUX KOpakKa.

e 3axTeB 7: MOCTOjake MOTIPOIECA, YAME je MOTyhe CMamUTH KOMILIEKCHOCT MOjena
mporieca ¥ HCKOPUCTUTH UCTE MPOIECHE KOPAKe y Pa3InuuTHM MPOIIeCUMa.

e 3axrteB 8: mocrojame ynpaBibama IpelIkaMa Koje HacTaHy TOKOM IPOHU3BOJIELE, a Ha KOje
je moTpeOHO OArOBOPUTH OJpeljeHUM aKTHBHOCTH 3a OMOpaBak OJ HEraTHMBHUX edekaTa
HACTAINX rpeliaka.

e 3axrteB 9: MOIeIM TPOU3BOAHUX ITpoIleca Tpebaso Ou Aa OyAy U3BPIIMBYU WK OU Tpedaio
reHepHCcaTH U3BPIIMBE HHCTPYKLHjE U3 MOJeTIa.

e 3axtes 10: Mmozenu npon3BoIHUX Iporeca Tpedasio 6u na Oy 1y HE3aBUCHH O] KOHKPETHOT
MIPOU3BOIHOT CHCTEMA.

Xviii

HaBenenu 3axteBu kKopuiheHH Cy 3a CHCTEMaTH4HY aHAIM3y NOCTOjehrX je3nKa U MpHCTyna
3a MOZEJOBamke Mpoleca, y K0joj je cBakd MpoHal)eHHW je3WK WM MPUCTYN TeCTUpaH Ja JH
UCITyaBa 3axTeBe. [IpoydaBameM JuTepaType WACHTH(PHUKOBAHO je BHIIE je3UKa M MPUCTYMa 3a
MO/ICIIOBamE MPOM3BOAHUX MPOIIEca, KOjU Cy MOJICJbeHH Y ciezehe YeTupu Kareropuje:

e Kareropuja 1: TpaaunuoHa Hu NPUCTYNH cieNH(PUKANUjH MPOU3BOAHUX Mpoleca
(K1) [24-29]. OBu mnpuctynu Hajuemhe Kopucre HepopMalaH TEKCTyaJHU OIIUC,
J@jarpaMe TOKOBa WM TabenapHy QopMy 3amuca Kako Ou OMIIM MpeICTaB/bEHU pa3zHU
aCIeKTH MPOU3BOJHMUX Mporieca. Takse Gopme 3amuca kKopuiiheHe cy roguHama.

e Kareropuja 2: Je3uuu 3a MojJeji0Bam€ Mpoleca KOju HUCY NPUMAPHO KperMpaHu 3a
norpede NMPOM3BOIHUX Mpomeca W wuxoBa npommpema (K2) [30-57]. OBu jesuim
Npe/ICTaBJbajy JAPYTy MO BEIMYMHH KaTeropujy, y kojoj Business Process Model and
Notation (BPMN) ca cBojum npoimpemrMa YHHA je3uK Koju je Hajuernhe kopumheH u
Hajuenhe MpoIIMPHUBaH 3a MOTPeOe OIKca MPOM3BOAHKX MPOLIECa.

e Kareropuja 3: KomOunaumuja pasiumuuTux je3uka 3a moTpede MOJeT0Bamba
npousBoanux npoueca (K3) [58-62]. V oBoj kareropuju mponaljeH je HajMamH OpOj
MPHUCTYIIA U je3uKa. AyTOpH OBHUX MPUCTYIA CYy KOMOMHOBAIM PA3IMUUTE je3UKE KaKo Ou
MO/ICTIOBAIM PA3IMUYNATE ACTIEKTE MPOU3BOHUX TpOIieca.

e Kareropuja 4: Je3unu KpeupaHu a Nojap:Ke Mo/1eJIOBa-€ MPOU3BOTHUX MPOIeca HITH
npousoauux cucrema (K4) [63-92]. OBa kareropuja jesuka je Haj3acTyIUbEHH]a, Y KOjOj
Cy je3ui moceOHO KperpaHH 3a JOMEH Mpou3Bombe. BehinHa oBHMX je3nka mpejcTaBiba
HaMEHCKE je3UKe 32 MOJICIOBAbE.

HaxoH cripoBeneHOr McTpaxunBama, mpuMeheHo je ja moctoju pactyhu TpeH] MOCIeIBIX
ronrHa y Opojy HaydHHX pajoBa 00jaBJbEHHX Ha TEMy MOJIEIOBama Iporeca. Ha ocHOBy
MPUKYIUbEHE IUTepaType, npuMeheHa je noMuHaruja pagosa apyre kareropuje (K2) cse no 2019.
ronuHe. Pa3ior ToMe je mTo je jeAHOCTaBHHU]j€ MPOIUPHUTH IocTojehe je3nKe, HeTo MPaBUTH HOBH
HAaMEHCKH je3WK OJ] TmodeTka. MehyTuM, TakBU je3WIM HHUCY NPUMAapHO KPEHpPaHH 3a JOMCH
MOJICTTOBamka IPOM3BOJHUX TIpoleca M Ouiao OM MOTpeOHO KOPHCTHTH BHINE PA3IAIUTHX
MIPOIHpPEHa je3uka Kako OM ce MOJEIIOBAIN MTPOW3BOIHM IIPOIIECH 3a MOTpede ayTOMaTH30BaHOT
W3BpIIaBama, IMTO OW 3HAYAjHO OTEXANO 3aJaTak IpojeKTaHara Imporeca. Kako je moMeH
MOJIENIOBaka MPOU3BOJHUX MpOIeca KOMIUIEKCAH, a CaMHM THUM jé M KOMIUIEKCHOCT MOesa
MIPOM3BOJHUX MpOIleca BEINKa, UCTPAKUBAUN CBE BUINE KPEHpajy HOBE HaMEHCKe je3mke. 1o je
npumeheHo Ha OCHOBY MPHUKYTIIhEHE TUTEpaType y K0joj 6poj pagoa apyre kareropuje (K2) omaga
HakoH 2019. rogune, nok 6poj pamosa ueTBpre Kareropuje (K4) pacte makon 2019. rogune. OBaj
pactyhu TpeHI MOXe OMTH MPOY3pPOKOBaH ycien MoTpede /la ce MOJAETH MPOM3BOJHUX Ipolieca
W3BpIIIE WK J1a C€ TEHEPHIIy HHCTPYKIMje U3 MOJIeNia, Kao M TeXHUYKa JoKyMeHTanuja. Ctora cy
BaOXHU (OpPMANHM je3WIH YHje MOJENE padyHap MOXKe na oOpaad Ha ayTOMaTH30BaH HAdWH.
HcrpaxuBaun cBe BUIIIE BpeMeHa YIIaxy y Kpeupame HOBUX, (POPMATHUX je3HKa O] TOYeTKa, KOjU
he ycrieTs 1a ce cynpoTcTaBe KOMILIEKCHOCTHMA HACTAJIM YHYTap JOMeHa IMPOU3BOIHUX ITPOLeca.
Mehytum, kpenpanu (HOpMaTHU je3UIN YECTO MOEIY]jy TpoIlece Ha BHCOKOM HHUBOY, 0€3 eTaba
n3BpIIaBama. Yak U Kaja ¢y YKJbYYEHHU JeTalbi W3BpIIaBama MpoIeca, MOJEIN Cy 3aBUCHH Off
MIPOM3BOHOT CHCTEMa, 300T yera He Ou Omino Moryhe yrmoTpeOuTr ux y pa3induTHM CHCTEMHMA.
Jpyru HauWH OATOBOpa Ha KOMIUIEKCHOCT JJOMEHA jecTe ynorpeba pa3InIuThX je3rKa Kako Ou ce
MOJICTIOBAJIM PA3IUYUTH aCMEeKTH MPOM3BOJHUX Tporieca. Mnmak, oBakaB KOMOMHOBaHHM TPUCTYII
(K3) je npucyran y cBera HekoiMKo pagosa ox 2015. roqune. OBaj penaTUBHO Maiii Opoj MpUcTyna
BEPOBATHO j€ TPOY3POKOBAH YHEHCHUIIOM Ja je TMOTPEeOHO JJ0AAaTHO 3HAKE KOje MPOjeKTaHTH
porieca Mopajy Ja MMajy Kako OW MO3HaBaJM Pa3InyUTe je3UKe M aKTUBHO MX KOPHCTUIIH, IITO
YIHY 33/1aTaK MOJIeJIOBama Mpoiieca n3a3oBHUM. lIpBa kareropuja (K1) jesnka u mpucryna Hactana
je 3HATHO paHWje W TPEACTaBJba TPAAUIMOHATHE HAYMHE OIMKCa MPOW3BOJHMX Mporeca. OBU
MpUCTYNH ¥ je3ul oOyxBaTajy Hajuemhe HedopmanmaH wim TabenapaH NpHUKa3 MPOU3BOIHUX
KOpaka, a y CllydyajeBUMa JljarpaMa TOKOBa, MPOLIECHH KOpalM NPeACTaBJbajy caMo rpaduuke
cumbore, 6e3 popmanHe cemManTuke. 300r Tora Ou TakBe creur@uKayje MPOu3BOIHUX Ipoleca
OuJI0 TemKOo 00paAUTH Ha ayTOMAaTU30BaHU HAYMH U TeHEPUCATH MHCTPYKLH]E U3 HHHX.

XiX

OO6nact MozenoBama MPOM3BOJHUX Ipolleca y KoHTekcTy Mumyctpuje 4.0 jomr yBek je
HEZ0BOJBHO HcTpaxkeHa. Behuna je3uka u npuctyna He 00e30ehyje moryhHoCT kpeupama Mojiena
npolieca MOroTHUX 32 TMHAMHYKY POM3BOIbY U ayTOMAaTH30BaHO M3BPIIABAKE HIIH TCHEPHCAHE
W3BPIIMBUX HHCTPYKIH]ja. Y ciIydajeBUMa KaJa je3ULH MOIpyKaBajy ayTOMaTH30BaHO U3BPILIABAbHE
MoJIena Tpolieca, TaKBU MOJICIH CaJp)kKe TEeXHHYKE JeTajbe M3Bende cepBHca, MOMYT ajapeca
cepBuca u OpojeBa nmoproBa. Ha Taj HauuH, 3Ha4ajHO Ce OTEX,aBa paJl MpojeKTaHaTa mpolieca, jep
OHHM MOpajy Ja TI03Hajy JIeTaJbe MOCTpojerha y hadpuiu y kojoj hie mporiec OUTH U3BpIIICH. 3a1aTak
MpojeKTaHaTa rpoiieca je Jia CrieuuIMpajy MpolecHe KOpake 1 Ja He OpUHY O JeTajbuMa y Be3u
MPOM3BOJHOT TIOCTPOjea W M3BpIIaBama. Takohe, momazehu ox JOMHUHAHTHHX CTaBoOBa Yy
JUTEpaTypH, MOJIEIIC MPOM3BOIHKX Tpolieca pauyyHap Ou Tpedayio Ja MpovnTa Ha ayTOMaTH30BaH
HauyMH, YuMe ce oMoryhaBa ayToMaTn30BaHO U3BPIICHE MMPOLIECHUX KOpaKa OMHUCAHUX y MOJIEY,
anu Ou Mojenu mpoiieca Tpebano yjenHo aa Oyny (opMupaHd Tako Ja CYy HE3aBHCHU O]
KOHKPETHOT MOCTpOojema y KojeM he OuTn u3BpliieHu, kako 6u 0mino Moryhe UCTH MOJIEN mpolieca
M3BPIINTH y Pa3InuuTHM MocTpojeruma [65]. Kpeupame Moaena mpou3BOIHHUX Mpolieca Koje
pauyHap Moxe Ja oOpaau ¥ TeHepullle WHCTPYKIUje U3 HBHUX, a KOjU Cy Takolje HEe3aBUCHU O]
MPOM3BOIHOT TIOCTPOjeHba, MPEJCTaB/ba jeflaH O/l INIAaBHUX MPoOIeMa MOIeIOBamka MPOU3BOTHUX
nporneca y epu Uuaycrpuje 4.0.

Hamenckn jesuxk MultiProLan. VYcmen mperxoaHo HaBeleHMX H3a30Ba W HeMoryhHocTH
MpoHajacka oAroBapajyhier jeauka MPUIMKOM Iperjena JUTeparype, KpeupaH je HOBH je3UK 3a
MOJIENIOBaE TIPOU3BOIHUX Ipolieca. MoJieln HOBOT je3rKa cajipike JIOBOJBHO JieTaba MOTPEOHUX
3a TMHAMUYKY TPOU3BOJIbY M ayTOMAaTH30BaHO TE€HEPHCAmhe U3BPIIUBUX HHCTPYKIIM]a, a je3UK
oMoryhaBa mpojekTaHTHMa TIpolleca Jia MOJIENyjy TPOIECHEe Kopake Oe3 JieTalba M3BpIIaBarmba.
Tume je takohe omoryhieHo ga mojenu mpoiieca MOy OWUTH YIOTPEOJBEHH Yy Pa3IHuYUTHM
MIPOU3BOJHHUM ITOCTPOjebUMa. Y TOM IMJbY, KpeUpaHu Cy U oAroapajyhu coTBEpCKH CEpBUCH
KOjU Ha ayTOMaTW30BaH HAYMH TpaHC(HOPMUINY MOJENE TMpolleca KOjU Cy HE3aBHCHH O]
MPOU3BOJTHOT TIOCTPOjCHHa, Y MOJIEIIE KOJU CY 3aBHCHU OJ1 FheTa U CIIPEMHH 32 U3BPIIIABAHE.

Kaxko 6m 6mo kpenpaHn HOBH HAMEHCKH je3UK, TIOTPEOHO je HajIpe aHATN3UPATH IOMEH y KOjeM
he jesuk OuTH mpuMemeH. JIOMEHCKO 3Hame 3a MoTpede MOJENOBaHa MPOU3BOJHUX Ipolieca
MPHUKYIJBCHO j& TOKOM Tperiieia JUTeparype, Kpo3 TEXHUYKY JOKYMEHTAlWjy, pa3He CTyAHje
cllydyaja, Kao M KpO3 PasroBope ca eKCIepTHMa U3 JoMeHa. HakoH MpUKYIJBEHOT HEOIXOJIHOT
3Hama M3 JIOMEHA TPOU3BOIHUX MPOIleca, KOHIIENTH JOMEHA Cy CTPYKTYPHPAHH U TPEACTaBIbEHU
nomohy jesuka Feature-Oriented Domain Analysis (FODA) [93], uuju cy Moesnu 3axTeBa ONMCaH!
y TorjaBJby 6.

Kpeupanu nHamencku jesuk MultiProLan, mpeacraBibeH y OBOj qUCEPTAIH]H, UMITIEMEHTHPAH
je Ha OCHOBY KOHIIeTaTa W3 JIOMEHa TpejcTaBibeHUX y Mojeny FODA, a takohe ucmymaa
MPETXOAHO e HHICAHE 3aXTeBe. MeTa-Mo/Ie OBOT je3uKa, OTHOCHO H-eToBa aliCTpaKkTa CHHTAKCa,
UMIUIEMCHTHpaHa je ToMohy Mera-mera-mojena Ecore, koju je meo pamHor okBupa Eclipse
Modeling Framework (EMF) [94,95]. JlogaTHa orpanudema Koja He MOT'Y OUTH HCKa3aHa moMohy
KOHIIETIaTa MeTa-MeTa-MoJeNa, a II0CTOje y JOMEHY MOJeJOBama IPOM3BOJHHUX IIpoleca,
UMILIEMEHTHpaHa ¢y y3 nomoh jesuka Object Constraint Language (OCL) [96-98]. Ha ocuoBy
KpeupaHe ancTpakTHEe CHHTAKCe, HallpaBJbeHa je KOHKpEeTHA Tpauka CHHTAKCa Kao M MPOTOTHI
anmara, kopucrehu pamau oxksup Eclipse Sirius [99,100]. MultiProLan npBeHCTBEHO je HaMembeH
JOMEHY MOHTa)KHE HHIYCTpPHj€e, aJld MOKe OUTH YHOTPEOJbEH U Y APYTUM JOMEHHMA IPOU3BOIHHE.
[TpojexTanTH mporeca KOPUCTE OBaj je3UK KaKO OM MOJIEIIOBAIM MPOHM3BOJIHE MPOIECe YUjH CY
MOJIEIH:

MIOTO/IHY 33 AyTOMaTH30BaHO T'eHEPHCabe M3BPIIMBUX HHCTPYKIIH]a,

HE3aBHUCHH OJ] KOHKPETHUX MPOU3BOTHHUX CHCTEMA,

KopHIIheH! 3a pyKOBambe TpelikamMa Koje HaCTaHy TOKOM ITPOU3BOJIELE,

caJpye BeJIHMK Opoj BapHjalija MpOU3BOAA U Mpoleca, U

MOTOTHH 332 Ay TOMaTH30BaHO TEHEPHCAIbE U AKyPHPahe TEXHUUYKE JOKYMEHTAIIH]e.

[Mocroje uernpu ocHOBHE KapakTepucTHke jesnka MultiProLan koje ra pasnukyjy o octanux
je3uKa aHaIM3UPaHUX TOKOM IIperiiesia JInTeparype:

XX

e OCHOBHHM CKyIl KOHIleTaTa MoTpedaH 3a crnequduKanyjy Mojela IpOou3BOAHUX Ipoleca
KOjH Cy MOTOJJHM 32 IWHAMUYKY IIPOU3BOAY U ayTOMAaTU30BaHO TeHEPHCALE N3BPIIUBUX
HWHCTPYKILIHja.

e JIBa HMBOA JETAJLHOCTH KOja JA03BOJHABAjy NUCTHUHKIHW]Y MOJENA MPOM3BOJHUX Mpolieca
KOjH Cy HE3aBHUCHHU OJ1 IPOM3BOAHOI CUCTEMa O] MOZEJNa MIPOU3BOAHUX IHpolieca KOju Cy
3aBHUCHH O]l KOHKPETHOT MPOU3BOJIHOT CUCTEMA.

e (OCHOBHH CKyH KOHIIETIaTa MOTPEOHMX 3a yIPaBJbake rPelIKama.

e OO0jenumaBamke KOHIENATa pa3IMYMTUX TUIMOBA TEXHUYKE AOKYMEHTAllWje y jenaH
yHH(UIpaHH MOJAENT NPOM3BOJHOr TMpoleca, mMTo omoryhaBa ayTOMaTH30BaHO
TeHEpUCamhe U aXXypHUpame TEXHUYKE JOKYMEHTAIIHje U3 MOJIelia Tpoiieca.

IMopen HaBemeHHMX TpeaHOCTH M ocobuHa jesuka MultiProLan, mocroje W HeEKoIUKO
MPETIOCTaBKH KOje Cy YBEIeHe, Kao U OrpaHuueHh-a KOjUX MPOjeKTaHT Mmpolieca Mopa OMTH CBECTaH
MPUJINKOM MOJIENIOBakha MPOU3BOJHUX IIPOIIEca:

e [IpousBomHu mporec Moke OUTH MOJICNIOBaH 3a W3BPIIABAKE Y jEAHOM IMPOWU3BOJIHOM
MOCTpOjeby WIH Yy jeqHoj nametHoj ¢abpuin. Huje moryhe mozaenoBatu m3BplaBame
MoJieNia Tpoleca y BHIIE pa3nuuuTux (abprka HCTOBPEMEHO, Kao HHU HHUXOBY
Kostaboparujy.

e Tlocrojehu pecypcu y haOpuiy KOju HU3BpIIABAjy MOJCIOBAHE MIPOIICCHE KOPaKe JOBOJBHO
Cy IIaMETHU JIa Pa3yMejy OCHOBHE MHCTPYKIIMje Ha BUCOKOM HHMBOY, Kao IITO CYy HOKYNU,
nocmasu, kpehu ce u cacmasu.

e [lamerHu pecypcH Npe/ICTaBIbajy Ce CHCTEMY MTPUIIMKOM HBUXOBOT yBoh)erba U mpyxkajy cBe
norpedHe HHPOPMAIHje U CEMAaHTUKY Ha KOJU Ha4WH MOTY JIa € KOPHCTE.

e CxyamuimTa y IPOU3BOJIHOM IIOCTPOjEeHhY MOMYBEHA Cy MaTeprjaIuMa M IeJI0BUMa KOjU
HE MOT'Y OWTH ITOTPOIIICHH.

JlerajbaH ONUC amnCTpakTHE CHHTAaKce, OTpPaHWYeHha, KOHKPETHE CHHTAaKce, anara 3a
MOJIe/ToBambe, ka0 M HaumH Kako MultiProLan wucmymasa mperxomno aeduHHMCAHE 3aXTEBE,
MIPEACTaBIBCH j€ Y TIOTTIABIbY 7.

Crynuje caydaja HoBor corBepckor pemema. Kako cy npencrasibeno MD pemiere u je3uk
MultiProLan mnpBeHCTBEHO KpeWpaHH 3a JUCKPETHY MPOHM3BOMAY, MOCEOHO 33 MOHTAKHY
WHAYCTPH]Y, TPUMEHCHH Cy y CTYAMjUMA CIIy4aja MOHTaXHE MPOU3BOHe. McTpaxkuBaun 4ecTo
TECTHPajy CBOja pellemka yMpaBO Y MOHTaXHO] WHIYCTPUJU jep Mpyka MOTYNHOCT Kpenpama
PENaTHBHO jeHOCTABHUX IPOM3BOJIHUX MpOIleca, ald U BPJIO KoMIUTekcHUX. CTora je MOHTa)XHa
WHIYCTpHja no0ap MOYETHH KOPaK Kako OM HOBO perieme 6muio tectupano. [Ipunpemisene cy nse
cTymuje cay4aja 3a morpede Banmuaanuje MD pemema u jesuka MultiProLan, mpesenToBane y 0Boj
TICEpPTAlHjH y TIOTIIABIBY 8.

[IpBa cryamja ciaydaja KpeupaHa je Kako Om Owie JeMOHCTpUpaHe MOTYNHOCTH je3nka
MultiProLan u anara 3a MomenoBame MPOU3BOJHMX Ipoiieca. Y OBOM IPHMEPY cacTaBjbaHa je
JpBeHA KyTHja, YUjH MOJET IPOHM3BOAHOT IpOIeca CaapKW KOHIENTE IOIYT Pa3IHYUTHX
BapHjallyja Mpou3Boa, capaame n3Mel)y pecypca u mapanesHor H3BpIIaBamka MPOIEeCHUX KopakKa.
Takohe, y 0BOj CTymWju ciydaja MPENCTaBJbEHH Cy W NMPUMEPH TEHEPHUCAHWX WHCTPYKIHja U
TEeXHWYKE JAOKyMeHTauuje. Jlpyra cryamja ciydaja mpencTaBba MOKAa3HO OKPYXKEHE KpPEeupaHo
Kako 6m Ouno Tectmpano komrieTHo MD pelneme NpUIMKOM cKiIanama objekara on LEGO®
KOIIKMI[a, YUME Cy W30ETHYTH TPOIIKOBU KOjH OW HACTAJIM yCJe] Ipellaka IMPHIMKOM CKIanama
peaHOT MPOW3BOJIa Y IMPOU3BOHOM MOCTpojery. Ilojemuan podoTn KopuitheHn y OBOj CTYIUjU
ClIy4aja MpeiCcTaBibhajy WHIYCTPHjCKE MIOKPETHE POOOTE, KOjU Ce KOPUCTE Y PEaTHOj TPOU3BOIH,
Kao ¥ UCTpaXMBavKe rameTHe podoTte kopumheHe y mokasHe cBpxe. Pajgaumnm Takohe ydecTByjy y
0BOj CTYJUjH ClTydaja IpHINKoM ckianama LEGO® konxuna.

Ananau3a u onena jesuxa MultiProLan u anara 3a Moaesi0Bam€e Mpou3BOAHUX npoieca. [Topen
JIBE CTyIHje clydyaja y KojuMa je rmokasaHa ynorpeda nenokymaor MD penieme, ca akiieHTOM Ha
jesux MultiProLan, u3Bpiiena je takohe ananmm3a u omeHa jesuka MultiProLan u anara 3a
MOJIEJIOBAabE MPOM3BOJHMUX IIpolLleca, JeTajbHO omucaHe y mnornasiby 9. Pasmuumre rpyne

XXi

KOPHCHHKA y4eCTBOBaJIE Cy Y MPOLIECY aHAIU3e je3UKa U anaTa, yKJbydyjyhu HHKemepe mpoleca,
uHKemepe codrBepa, ucTpaxkuBade u crynenre. Kopucrehm pamnu okup Framework for
Qualitative Assessment of Domain-specific languages (FQAD) [101], yd4ecHuuu cy Ha
CHCTEMaTH4aH HAa4YMH W3BPLIMJIM aHaiM3y W OleHy jesuka MultiProLan u meroBor amara 3a
MOJIENOBakE MPOU3BOAHKX MIPOLIECa U OCTAaBUJIM BakHe MoBpaTHe MHpopmaruje. Hanpasiben je
eKCIIEPUMEHT y KojeM cy ydecHuiy tectupanu MultiProLan u anat 3a MozenoBame Impoieca u
ouemuBaNy cienehe kapakTepucTuke KBanuTeTa: QyHKIMOHAIHY KOMIUIETHOCT, YIIOTPEOJBUBOCT,
MOY3/1aHOCT, U3PakajHOCT U MPOAYKTUBHOCT. [Topes oBUX KapaKkTepUCTHKa, ayTOp JUCEpPTaLlije ca
KOayTOpHMa H3BPIIMO je OIEHY KapaKTepUCTHKa KBAIMTETa KOja 3aXTEBajy MMIUIEMEHTAIMOHA
3Ha®a, a TO Cy: MOIrYhHOCT oJpXaBama ajara, NPOIIMPHBOCT, IOHOBHA ynoTpeda u MoryhHoct
WHTerpanyje ca IpyruM jesunuma. [locraBibena je ciepeha xumnoresa Ha Kojy je OWiio moTpeOHO
OJITOBOPHUTH HAKOH U3BPILCHOT €KCTIEPUMEHTA:

EHnu — MultiProLan mooce 6umu ynompebmen y npakcu jep uma cee cieoehe
Kapakmepucmuke Keaiumema: QYHKYUOHAIHY KOMNIEMHOCH, Ynompeobusocm,
NOY30aHOC, U3PANCATHOCI U NPOOYKMUBHOCT.

EHait — MultiProLan ne mooice bumu ynompebsber y npakcu jep Hema jeOHy uiu suuie 00
cneoehiux Kapaxmepucmuxa Keanumema: @yuKyuoHanuy KOMNJIEMHOC,
YROMPeb.bUBOCH, ROY3OAHOCH, UZPANCATHOCH UTU NPOOYKMUBHOCHI.

VYkymHo 25 ydecHrKa OUJIO je YKIBYYEHO Y eKCIIEPUMEHT U JIAJIH CY CBOj€ OIICHE Ha MIPETXOTHO
HaBeJIeHEe KapaKTepUCTUKE KBAIMTETA. YUYECHUIM Cy Hajlipe MMald 3a/IaTak Jia Hampase jeiaH
MOJIeI MPOU3BOJIHOT TIPoIleca, HAKOH Yera cy TMONyHaBallkl aHKeTy. AHKeTa je cajipikaia MUTama
KOja Cy ce OJIHOCWJIA Ha TPETXOJHO MCKYCTBO YYECHHKA W Ha MPEICTaB/bCHE KapaKTEPHCTUKE
KBAJIIMTETa, KA0 U CEKIHjy 3a ciao0omaH koMmeHTap. CBa muTama, OCUM CEKIIHje ca KOMEHTApOM,
caapxana cy nonyherne oarosope Ha JInkeptoBoj ckanm o 1 1o 5. Pe3ynratu aHKeTe IeTajbHO CY
ONMCAaHW Yy TIOTNaBJby 9, a CyMHpaHH pe3yNTaTH KOjU c€ OJHOCE Ha TPOIEHAT MO3MTUBHHUX
omrosopa je cnemehu: ¢yrkmuonanHa xommmuretaoct (98,00%), ymorpebssuBoct (88,50%),
moysaanoct (76,00%), uspaxkajaoct (89,33%) u mpomykrusuoct (68,00%). Ha ocHOBY 100MjeHUX
pesyarara, Moryhe je moTBpautu xunoresy EHnui, 1 Time 3akipyuntn ma MultiProLan mocemyje
MpeJCcTaB/beHE KapaKTepUCTHKe KBajuTeTa. MehyTiM, Ha OCHOBY KOMEHTapa Koje cy YUSCHHUIIH
octraBwii, MultiProLan 3axteBa momatHa moGosbiama. CekiMja y aHKeTH Koja ce OJHOCHJIA Ha
cioboHe KOMEHTape Omiia je BpIio 3HauajHa Kako Ou OMJIM OTKPUBEHW HEJOCTAllM je3WKa W ajara
Koje 61 Tpebaso YKIOHUTH.

3ak/pyuak u Oyayhu mpaBum ucrpakuBama. Ha ocHOBY pe3ynrara mpe3eHTOBaHUX Y OBOj
IHICepTalMjy, a KOju IpBEeHCTBeHO oOyxBarajy HOBO MD pemieme ca HOBHM METOMOJOMIKAM
NPUCTYIIOM M HaMeHCKMM je3ukom MultiProLan 3a momenoBame ¥ W3BpIIABAEE MPOU3BOIHUX
nporeca, y noriasiby 10 IMCKyTOBaHO je a JIn Cy XUIOTe3€e AeUHNUCAHE Y YBOIHUM ITOTIIaBJbHMA
aucepraimje notBphene wim onbaudene. Kako je kpewpan namencku jesuk MultiProLan, umju
MOJIeM Tpoleca Y4ecTBYjy Y AMHAMHYKO] NMPOU3BONGU M TIOTOJHM Cy 32 ayTOMAaTH30BAaHO
TeHepUCamhe HM3BPIIMBAX HMHCTPYKIHMja M TEXHUYKE ITOKyMEHTaIje, a Takohe je omoryheHo
MPE/ICTaBUTH MOJIENIEe TIpoIieca HE3aBUCHO O] IPOM3BOIHOT CHCTEMa U IO MOTPEOH MX JOMyHUTH
ca eJleMeHTHMa KOHKPETHOT MPOU3BOAHOr cucTeMa, Moryhe je morBpautu xumote3e Hi, Hy, Ha u
Hs. Tume je Takohe moryhe motBpauty u xumote3y Ho, a Ha Taj HAYMH UCIIYH-EH j€ TTIaBHU 3a/1aTaK
OBOI' UCTpa)XHBamkba W Moryhe je MOTBPAMTH OCTBApeHE TJIABHOT IMJba, OJHOCHO JONPHHOCA
yBohema Qabpuka y mpoliec JUruTaliHe TpaHchopmMaryje.

VY nornasspy 10 Takole cy neTasbHO onMcaHU CBH JIONPHHOCH UCTPaKUBamba MPEACTaBIJbEHOT
y OBOj IucepTauuju, kao u Oyayhu mpaBuu uctpaxuBama. OHU ce JeJie Ha TP OIIITa IpaBla
Oyayher ucrpaxupama:

e Dbyayhe ucrpaxuBame y 00JacTH MOJENOBama MPOU3BOIHUX MPOIEca U MPOU3BOTHHUX
cucrema Koja o0yxBaTajy:

o MHcrpaxuBame y obimacTé MoJeNoBama NMPOM3BOJHMX CHCTEMa, OJHOCHO pecypca,

BUXOBUX CIOCOOHOCTH U OrpaHUYeHa, Kako OM MOJes MPOU3BOAHOT MPOoLeca MOrao

xXii

Ha OoJbM Ha4yMH Ja OyJe W3BpIICH, TMME IITO he WHCTPYKIMje OWUTH Tociare
onrosapajyhum pecypcuma.

HcrpaxuBame y o0nacTu MojeloOBama pajHuKa y (GabpHlM ca UCTUM Pa3IoroM
CIIOMEHYTHM Y TPETXOJIHOj CTaBIM, MehyTUM, paJHUKe je TOTPeOHO MOJICIOBATH ca
3HATHO BHWIIE JeTaha, MOMYT HHUXOBHX KOMIIETEHIIM]ja, MPAaBHUX M 3IPABCTBEHHX
orpaHUueHa U yiora y ¢padpuiu.

HcrpaxuBame y o6IacTiMa MOJICIOBaba PU3UKA 110 PAHUKE TPUIIMKOM U3BpIIABakha
MPOIIECHUX KOpaka, Ka0 W CHTYPHOCHHX acrekara, yuMe OH HHCTPYKIHje Y
Clly4ajeBMMa KOjU Cy PU3HYHHM T10 YOBEKa OMJIe Tociare JPYruM pecypcuMma.
HcrpaxuBame y 0071acTH MOJETIOBamkba YTPOIIKA €HEpPruje MPUIMKOM H3BpIIaBamba
MIPOU3BOHMX TIpoIieca, Kako Ou Ouia obe30eheHa oapkUBOCT (hpadpuke TUME IITO Ou
HMHCTPYKIIMje OUIIe IociiaTe pecypcruma Koju O y3 MambH yTPOILaK eHEePruje n3BPIIIHIIe
3a/1aTaK.

HcrpaxuBame y 001acTH MOJIENIOBamha KOJTa0OpaTHMBHUX MPOU3BOAHUX IpoOIleca, Y
KOjHMa je MPOU3BOIHH MPOLIEC IC/bEH M U3BPIIABaH y pa3IuuuTUM (pabprukama, cTora
je moTpebHo 00e30eauTH oBepeme u3Mel)y habpuka v rapaHTOBaTH Ja fie CBU YCIIOBU
MIPOM3BO/IEE OUTH 33/I0BOJHEHH.

HcrpaxuBambe y 00JacTH ayToMaTH30BaHe TpaHCOpMalldje Mojela MPOU3BO/IA,
momryT Mozeiaa Computer Aided Design (CAD), y Mozen mpou3BoAHOT TIpoIieca, IITo
6u omoryhmio 1a ce cMamu BpeMe TOTPeOHO 32 MOJICIIOBAE TTPOM3BOHIX ITIpoIieca.

Bynyhu passoj jesuxa MultiProLan u anara 3a MozenoBame MPOU3BOIHKX MPOIleca KOju
obyxBara:

o

Pa3Boj cucrema mpernopyke koju OM Ha OCHOBY MOJieNia IMPOW3BOJHOL Ipolieca
HE3aBUCHOT OJ1 MPOHM3BOJHOI CHUCTEMa BPIIMO IPOIEHY BpPEMEHA MPOHM3BOIMBE H
YTPOIIKA CHEPTHje Y pa3InIUuTUM POU3BOJHUM CUCTEMUMA, H MPETIOPYIHBAO Y KOjeM
CHUCTEMY j€ HajIIOTOTHH]€ U3BPITUTH IIPONU3BOIHH ITPOIIEC.

Hakon m3BpmieHe craHapau3alidje CIOCOOHOCTH M Tapamerapa y OyayhHocTH, a
KOjMa Ce OIHCY]y PECypCH Y MPOW3BOIBM W MPOW3BOIHU IPOIIECH, MOTPEOHO je
MPHUIIATOIUTH TPEHYTHH PEMIO3UTOPH)YM CIOCOOHOCTH CTaHIapAN30BaHUM, Kako OH ce
00e30emrIa KOMIATHOMITHOCT ca JPYTHUM CHCTEMHUMA U PEIICHhUMA.

IMpommpeme jesuka MultiProLan konmentuma koju 6u 00e30eanIn MOJIECIOBAHE
KBaJIUTETA MTPOM3BOHE, YiMe Ou Omto Moryhe moBehaT KBanuTET MPOU3BOIIHE.
[Mpommpeme jesuka MultiProLan kommentuma koju Ou 00e30eIUIN MOJETOBARmE
KOMILIEKCHHU]E capaiih¢ u3Mel)y pecypca mpuiInKoM H3BpIaBama PasHUX 3ajIaTaka.
Kpeupame TekcTyaane KOHKpeTHe cuHTakce jesuka MultiProLan u anamisupame ma
T je TeKCTyallHa CHHTakca 0oJba 3a MpOjeKTaHTe MpoIeca y OJHOCY Ha rpadpuuky
CHHTaKCY.

VYuanpelheme jesuka MultiProLan u anara 3a MojienoBame Ha OCHOBY KOMEHTapa Koje
CY OCTaBWJIM YYCCHHIY aHAJM3E U OICHE je3UKa U allaTa, Kao U MPOIIUPECHEC aHAIN3e
Y OIICHE je3WKa U aJlaTa ca HOBHM YUYECHHUIIMMA, MOCEOHO HHKEHEepUMa Mpoiieca.

Hosu momenu npumene jesuka MultiProLan koju o0yxBartajy:

o

IMpumeny jesuka MultiProLan y mporecHoj MHIYCTpHjH, OTHOCHO KOHTHHYAITHO]
MIPOM3BOMBH, IITO OM 3aXTeBalo yBoheme HOBUX KOHIIETIaTa MOJIEIOBama, MOIYT
Mepaya BpeMeHa M IIPOLICHe BpeMeHa U3BpIIaBamka Kopaka MPOH3BO/IbE.
Wnrerpanujy mnpencraBibeHor MD pemema ca cucTeMOM 3a ayTOMaTH30BaHY
JeTEKIMjy U3BpIIaBaka MPOIECHUX KOpaka, Kako paaHUIN y Gpadpuuy He O Mopaiu
kopuctuTu ypehaj ca kojuM OM TOTBPAWIIM N1 JIM je TPOIECHH KOPaK YCIENTHO
3aBpIIEH W THME T'yOmIm 3HadajHo Bpeme. Ha Taj HaumH momatHO ce yOp3aBa oOyka
pagHMKa Kpo3 CHCTEM 3a BolheH Mpolec NMpOW3BOIE, a Takohe ce crpedaBa Ja
pagHUIH 3a00paBe J1a U3BPILE HEKH IPOIIECHHU KOPaK.

[Mpumeny jezuka MultiProLan y npommpeHoj wiu moMenanoj peaiHocTH, y Kojoj ou
HWHCTpYKLHje Ouie nocnate Ha ogrosapajyhu ypehaj kopumhen ox ctpane pagHuka y
¢abpunu. Tume O6m moctojasia MOTyhHOCT OpKer W jeIHOCTaBHHjEI M3BpIIABAamHA
MPOLIECHUX KOpaka, HoceOHO MPUIIMKOM 00yKe HOBHX paJHHKA.

xXXiii

o [Ilpumeny aApyrux Hay4HUX M0Jba, HOMYT HAyKe O MOJAllMMa U pyJapema mpoieca Haj
noJanuMa TMPHUKYIIJBEHUM TOKOM H3BpLIaBaka MPOM3BOJHHUX Mpoleca, 4uMme Ou
MOTEHIMjaTHO OWJie OTKIOHEHE aHOMalHje, HENOCTallM, Ipelike W KOpaud KOju
ycIiopaBajy MU3BpIIaBamke MPOU3BOIHUX MPOLeca.

[pemnoxeno MD pememe, Koje je MPEICTaB/bEHO y OBOj AucepTanuju, Moryhe je aajbe
yHarnpehuBaTH 1 pa3BUjaTH Kako OH 10JIaTHO MOAPKAaJ0 (ICKCUOUIHY IPOU3BOIBY Y HHAYCTPH]H.
Tume OM MyH TOTEHIIMjall OBOT pellea OMo OTKPUBEH, a Takohe Ou HacTalle U MPUMEHE Y HOBUM
JOMEHHMMa, MoJIpKaBajyhn KoMIaHuje y epu qurutaine rpanchopmanuje u Muamycrpuje 4.0.

Kibyune peun: MojenoBame NpOM3BOAHUX Mpolieca; M3BpmaBame nporneca; Muaaycrpuja 4.0;
Hamencku jesunu; Tpanchopmanuje Mmonena; MaxemepcTBO BoheHO Moienuma

XXV

Acknowledgments

The following projects supported the research presented in this thesis:

e "Intelligent Systems for Software Product Development and Business Support Based on
Models", 111-44010, National Project, Ministry of Education, Science and Technological
Development of Republic of Serbia.

e "Innovative scientific and artistic research from the FTS (activity) domain", 451-03-
68/2020-14/200156, 451-03-68/2021-14/200156, 451-03-68/2022-14/200156, 451-03-
47/2023-01/200156, National Project, Ministry of Science, Technological Development
and Innovations of Republic of Serbia.

e "Digital Factory", Industrial R&D Project, KEBA Group AG, Linz, Republic of Austria.

XXV

Contents

LIST OF FIQUIES ...ttt ettt et XXXi
LISE OF GIAPNS ...ttt XXXiii
[T A0 N 1o L= OSSR STSROP XXXV
LIST OF LESTINGS ...ttt ettt ettt et e et nnne s XXXVii
LIST OF ACTONYIMS ..ttt ettt b ettt ettt et e e enes XXXiX
I) oo [1Tox oo P OSSR 1
1.1 Research Challenges, Motivation, Hypothesis and Goalccccoeviiiiiiiiiiiieiicic s 2
1.2 Overview of the Proposed SOIULIONocviiiiiii i 3
1.3 Research Contributions and RESUILScoviiiiiiiiiieii e 4
1.4 TRESIS STTUCKUIE ...ttt ettt ettt e e b be e e nbe e s e enbeens 5

2 Background and Theoretical FOUNAALION.............ccooiiieeiiiiecec e 7
2.1 Relevant Concepts and Technologies in INdustry 4.0..........ccceoiiiiiiii e, 8
2.2 Process Planning and DESIGNcoiveeiiiiii ittt e e sara e e a e anae e 9
2.2.1 Production Process Planningcccveiiiieiiiee it 9
2.2.2 Production Process Design and Skill-Based Engineering...........ccccocevvevvieeiiiecineeennn, 10

2.3 Overview of the MD Paradigm and DSIMLS..........cccoveiiiiiiiiie e 12
2.8 SUIMIMIAIY ...ttt s et et e e st e e e s s st e e e e st e e e e anbbe e e e aasb e e e e e snteeeeesnstaeeeannneees 15

3 Motivation, Research Hypotheses, Goals and Methodologycccceeviviiiiiciiie e, 17
TR 1Y o] (V- o] PSPPSR 17
3.2 RESEAICN HYPONESES ...ttt st e e st e e et e e s be e e s nraeeneeas 19
3.3 RESEAICN GOAIS.....eeiiiiiiie ittt 21
3.4 Expected Contributions and RESUILS..........ccoiiiiiiei e 22
3.5 Research MethodolOgyccveiiiiiiii e 23
3.0 SUMIMAIY Lottt et e e e s s e et e e e e e e e s eas s st e e e eeeeeeessnstraeeaeeeeeeannnnnes 26

S L0 1 Lo A o USSR 27
4.1 Application of the MD Paradigm and DSLScccccocvviiiiiiiiie e 27
4.1.1 InfOrmation SYSEEMSveiiiuiiiiiiie ettt e st e e eba e e s be e e sraeeeanes 28
4.1.1.1 Information System Design Based on the 11S*Case Approachccccccceevneeee 28
4.1.1.2 Integration of Heterogeneous Technical SPaces............ccccoveviiiiiie e 29
4.1.1.3 MD Paradigm and DSLs in Document Engineering and Robot Motion Control .. 30

O o LU Y SO PUSPR 31

XXVii

4.1.2.1 Error Handling in Production PrOCESSEScccueiiiiiieiiieiieiieesieesiee e 31

4.1.2.2 Manufacturing DOCUMENTALIONcoiviiiiiiiiiiie e 32
4.1.2.3 GUIAEd ProQUCTION.ciiiiiie ettt sneee e 33
4.1.2.4 ProcesS MOUEIINGoouviiiieiieiie ettt 33
4.2 Production ProCess MOGEIING........ccueiiiiiiiiieiie e 34
4.2.1 Production Process Modeling Language ReqUIremMents............cocvevvereenienieennesneens 34
4.2.2 Production Process Modeling Languages and Approaches...........cccceeevvvveiiienieninnns 36
4.2.2.1 Traditional Production Process SpecifiCationccccevvveriiiiiieniiniieieesee s 45
4.2.2.2 Process Modeling Languages and EXTENSIONSccocverveiiiiiieniinieenieesee e 46
4.2.2.3 Combining Modeling Languages to Model Production Processes.............c.c........ 58
4.2.2.4 Modeling Languages to Support Production Process or Production System
IMIOTEIING ...ttt 61
4.2.3 Discussion on Production Process Modeling...........cccuouvviiiiiieiiiiiiiiecec e 69
4.3 SUMIMEIY ...ttt etttk etttk h ket e e h bt et bt e e a b et e sh bt e e kb e e eabe e e enbe e e bbeeanbneennree s 76
5 MD Solution for Modeling and Automatic Execution of Production Processes...........c.ccc.u...... 77
5.1 Architecture of the IMD SYSTEMooiiiiiiiii e 77
5.2 Main Steps of the MD APPIrOACH.........coiiiiiiiie et 79
5.2.1 Main Steps of Modeling and Automatic Execution of Production Processes 80
5.2.2 Main Steps of Transforming Production Process Models into Manufacturing
DOCUMENTALION ...ttt ettt et enbe e e e be e enne s 84
5.3 Objectives of the MD SOIULION........c.iiiiiiii e 85
514 SUIMIMAIY ...ttt e e e e s sttt e e et e e e e sa bt e e e e st b e e e e sbeeeeesnsteeeeentaeeeeansaeeeeas 87
6 Analysis of the Production Process Modeling DOmainccceeviveiiieeiiie e 89
6.1 Operational and ReSOUIrCe PEISPECIVESc.viciviiiiiie i 90
6.2 CONLrOI-FIOW PEISPECLIVE.eiiiiic ittt et e e e e ae e e sre e e nnaeeans 93
5.3 SUIMIMIAIY ...etiie ettt s s e e e st e e e e s st e e e e antbe e e e e anbeeaeesssbeeeeasntaeeeeansreeeeas 95
7 Multi-Level Production Process Modeling Languagecc.eeevvveeiieeeiiieeiiieecieeeciee e 97
7.1 Overview and Usage of MUIIPIOLANccccoiiiiiiiic e 97
7.2 Abstract Syntax of MUILIPIOLAN..........coooviiiiiiiii e 100
7.2.1 Master-Level Modeling Concepts at EXecution Layer...........cccccveevveeiieeevinecsveeenne 100
7.2.2 Detail-Level Modeling Concepts at EXeCution Layer.........ccccoovveevveeiieeeviiie s 107
7.2.3 Modeling Concepts at Error Handling Layer..........ccceovviiiieiiiie e 109
7.2.4 Modeling Concepts for the Automatic Generation of Manufacturing Documentation
aNd GUIAEA PrOTUCTIONvviiiiieiie sttt sttt nee e 112
7.3 Concrete SyntaxX of MUItIPIOLAN..........ccoooiiiiiii e 114
7.4 Process Modeling TOOIcueiiiiiiiii e et e e aee s 122
7.5 SUMIMANY ettt e e e s s et e e e e e e e s s sttt e e e eeee e s s ssstaneaaeeeeesannnnneneeas 126
8 Application of the MD Solution and MUItIProLan............cccceovveeiiie i 127
8.1 Example of MultiProLan Models of Customized Wooden Box Assembly 128
8.1.1 Master-Level Process Model of Wooden Box Production.............ccccoeceeveeiniennne 129
8.1.2 Detail-Level Process Model of Assembling the Frame............ccccooiiiiiiiiiecieee 137
8.1.3 Automatically Generated Instructions and Process Monitoringccceccveeeevivvnnnnn 140

XXViii

8.1.4 Automatically Generated Manufacturing Documentationccccecvevveriiennenn 144

8.2 Demonstration Environment wWith LEGO® BIICKSccccveveveveveieeieceeeeeeeeeieeeeeenenans 153
8.2.1 Test Scenarios Performed in the Demonstration Environment.............cccccoevevveinnenns 153
8.2.2 Assembling a Flag from LEGO® BIICKSccceueviviieeieceeeeeeeieee e 156

8.3 SUMIMIAIY ...ttt ettt et e st esr b et e b e e e nn e e aabeeennreeenes 159

9 Evaluation of MultiProLan and Process Modeling Toolccccviiiiiiiniiniieic e 161

9.1 Experiment Objective and HYPOTNESIS............couiiiiiiiiiieiiieieese e 161

9.2 EXPeriment PArtiCIPANTScouviiiieiieiie ittt 162

9.3 Experiment Preparation and EXECULIONcocviiiieiieiiiiiieiie e 163

9.4 Experiment Results and Data ANAIYSIS..........c.coiuiiiieiiiiiiiiieiie e 164
9.4.1 QUESTIONNAITE RESUITSvvveieiie ettt e et eesneee e 166
9.4.2 Statistical Analysis of the QUESLIONNAITE ANSWENScccuvveiieeeiiieeireessieesieeenaee e 167

9.5 Overview of Other Quality CharaCteriStiCs.........coouviiiriiiiiieiie e 168

9.6 THIeatS t0 ValiTiTycoviiiieiieiie e 169

0.7 SUMIMIAIY ..ttt ekttt h et e kbt e eab et e sh b et et bt e e bn e e anbeeennbeeenes 170

10 Conclusions and FULUIE WOTK..........ccoiiiiiiri ettt re e e ae e aneesnaee s 171

10.1 Outcome of HypOtheSES TESTING.........veiviiiiaiieiie ittt 171

10.2 ReSearch CONIIBULIONScciiiiiiiee ettt e e snbaeennns 173
10.2.1 Theoretical CONtIIDULIONS...........ciiiiiiiiieiie e 173
10.2.2 Development CoNtribULIONS.ccvviiiiiiiiec e 174
10.2.3 Application ContribULIONScoiiiiiiiee e e 175
10.2.4 Socio-Economic CONIiBULIONS.ceiiiiiiiiieiie e 175

10,3 FULUIE WOTK ...ttt ettt ettt nneenne e 175
10.3.1 Future Research in the Domain of Production Process Modelingc.ccccvveenee. 176
10.3.2 Further Development of MultiProLan and Process Modeling Tool 177
10.3.3 New Application Domains of MUltiProLanc..cccoeeiiviiiiec i 178

S (=] 1] T =L PSPPI SPROPRPRS 181
Appendix A. Evaluation Experiment Tasks and QUESLIONNAITE............cccccvvveeiiieeciiee i 197

Appendix A.L. EXPEriMENT TASKSccviiiiiiiiie et stre et re e are e snre e 197

Appendix A.2. EXPeriment SOIULIONccviiiiiie et 201

Appendix A.3. EXperiment QUESLIONNAITE.ccvuviiiiee e e ciee s eesve et e e sre e saeeenreeeens 204

XXiX

List of Figures

Figure 2.1.
Figure 2.2.
Figure 3.1.
Figure 4.1.
Figure 4.2.
Figure 4.3.
Figure 5.1.

Figure 6.1.
Figure 6.2.
Figure 7.1.
Figure 7.2.

Figure 7.3.
Figure 7.4.
Figure 7.5.

Figure 7.6.
Figure 7.7.
Figure 7.8.
Figure 7.9.
Figure 7.10.
Figure 7.11.

Figure 8.1.
Figure 8.2.
Figure 8.3.
Figure 8.4.
Figure 8.5.
Figure 8.6.

A manufacturing flow of computer aided production Systems 10
The four-layer infrastructure of model Ievelsccooiiiiiiiiiiiice 13
Critical success factors of the novel MD SOIUtiON...........ccceeviiiiiiiie e, 21
The Plank Sawing model example in BPMNcccccooiiiiiiiiiiiiiiicicee 48
The Plank Sawing model example in UML ADcccociiiiiiiiiiiiiciiciee 53
The Plank Sawing model example in PNccocooiiiiiiiiee, 55
The architecture of the MD solution for production process modeling and
BXECULION ...ttt ettt 78
A FODA model of a production process step suitable for an execution.......... 91
A FODA model of a production process suitable for an execution................. 94
Context and architecture of MUItIProLancccooovvieiiniiniienie e 98
The first part of the meta-model used for MasL model creation at Execution

I Y= RSOSSN 101
The second part of the meta-model used for DetL. model creation at Execution
I Y= RSOSSN 107
The third part of the meta-model used for the error handling modeling at Error
HaNAING LAYEToeeiiieiiiec ettt 109
The fourth part of the meta-model used for the automatic generation of
manufacturing documentation and guided productioncccceevveeenneen. 113
The Process Modeling Tool user interfaceccccceeviveiiieiiiie e, 122
Process Modeling Tool Toolbar.........c..cccoviiiiiiiiic e, 123
The Process Modeling Tool layer button.............cccceeeviveeiiii i, 123
The generate documentation dialog...........ccceviviiiiec e, 124

Tool palette of Process Modeling Tool without additional layers turned on. 125
Tool palette of Process Modeling Tool with both additional layers turned on

... 125
Parts of the wooden box used for the assemblyccccoeeviiiiiiieiiiee e, 128
A variation of the assembled wooden DOX............cceovrieniiiiiiiiiiccee, 129
The main MasL process model of wooden box production................c......... 130
The Assemble frame MasL sub-process modelcccooioiiiiiiiiiieeneene 131
The Hammer back side MasL sub-process model............cccevieiiieinnnne 132
The Glue fabric and dividers and place lid MasL sub-process model........... 134

Figure 8.7.
Figure 8.8.
Figure 8.9.

Figure 8.10.
Figure 8.11.
Figure 8.12.

Figure 8.13.
Figure 8.14.

Figure 8.15.
Figure 8.16.

Figure 8.17.
Figure 8.18.

Figure 8.19.
Figure 8.20.

Figure 8.21.
Figure 8.22.
Figure 8.23.

Figure 8.24.
Figure 8.25.

Figure 8.26.

Figure 8.27.

Figure A.1.
Figure A.2.
Figure A.3.
Figure A.4.

XXXii

The wooden box product variations model............ccccoveviiieiiii i, 135

The wooden boX VariationScceeiieeeiiieeiiee e 135
The Glue fabric and dividers and place lid MasL sub-process model with a
single variation (1.3 BOX_TD_WL)cccoeiiiiiiiiiie e 136
The Assemble frame DetL sub-process modelc.ccovvereiiiiiiienicninns 138
A user interface mockup of the human worker applicationccccccouee. 143
An example of monitoring the execution of the Assemble frame DetL sub-
PrOCESS MOUELot 145
The BOM template used by Instruction Generator...........c.cccccvvevcveercvreennnnn. 147
An automatically generated BOM document from the Glue fabric and dividers
and place lid MasL sub-process model............cccocoviiiiiiiiiiieniciee 147
An automatically generated BOMO document from the Glue fabric and
dividers and place lid MasL sub-process modelc.cccooviiiiiienincninns 148
An automatically generated ASME FPC document from the Glue fabric and
dividers and place lid MasL sub-process modelc.cccoovvriiiiieiiininnns 148
The Glue fabric process step Key pointSccccovvieiieiiiiiienieieeeesee 149
An automatically generated JBS document from the Glue fabric and dividers
and place lid MasL sub-process model............cccocovviiiiiiiiiieniee e, 150
The Insert pins in bottom side process step errors and error handler process

Sl IS ettt 151
An automatically generated PFMEA document from the Assemble frame DetL
SUD-ProCeSS MOGETcc.vieeiiie et 152
The scheme of assembly demonstration environment............c..cccoceevvveennen. 153
The digital twin of assembly demonstration environment................cc..c....... 154
The assembly demonstration environment with research-grade smart robots
.. 155

The assembly demonstration environment with an industrial mobile robot .. 155
The MasL process model of assembling the red-blue-white flag out of LEGO®

DIICKS et 156
The DetL process model of assembling the red-blue-white flag out of LEGO®

DIICKS et 158
The produced red-blue-white flag out of LEGO® bricks..........cccccvevevvneene. 159
The wooden box whose production process is to be modeled 197
The solution of the first experiment taskccccovvveiiiieiiie e, 201
The solution of the second experiment task............cccccveeiieeiieecciee e, 202
The solution of the third experiment taskccccovvviiiiiiiii e, 203

List of Graphs

Graph 4.1. Number of peer-reviewed Papers Per YEAr.........cccecverveireereerieeeniresreeieenines 44
Graph 4.2. Number of peer-reviewed papers per year for the second, third, and fourth
(0oL (o] 1L TP TP PP PR PP 44

XXXIiii

List of Tables

Table 4.1. Search tokens and KEYWOITSc.ooiiiiiiiiieiiciceeee e 36
Table 4.2. Peer-reviewed papers of the reviewed literatureccccoeeveivieevcieesieeene, 39
Table 4.3. The distribution of the presented languages and related papers by categories. 42
Table 4.4. A comparison of process modeling 1anguages...........cccovevvieiieiiieinienie e 73
Table 7.1. The basic modeling concepts of MultiProLancccccevviiiiiiiinieiinee, 114
Table 7.2. MultiProLan requirements fUlfilment............cccooviiiiiiiii i 117
Table 9.1. The questionNNAIre SatiSTICSeeiivveiii e 165
Table 9.2. Correlation coefficients and p-values for related questions..............cccec...... 168

XXXV

List of Listings

Listing 7.1. Constraints related to flow-type and collaboration-type relationships.......... 102
Listing 7.2. The specification of the relational operator domain in product and capability
(010 1S £ U] £ SRR 103
Listing 7.3. Constraints related to the start and end process StePS........ccovvvvvververieerinens 103
Listing 7.4. Constraints related to the startStep relation and the collaboration-type
FRIATIONSNIP. ... 104
Listing 7.5. Constraints related to the pair Of gatesccccevvieiiiiiiiiiere s 105
Listing 7.6. Constraints related to diverging and converging gates.........cccccevvveevvveenen. 105
Listing 7.7. A constraint related to selection and iteration patterns.............ccccoeveevveenne, 106
Listing 7.8. A constraint related to a process element variation............c.cccccceeveveevneeenne, 106
Listing 7.9. Constraints related to an unordered set of StEPS........cccvevvveiiiee v, 106
Listing 7.10. Constraints related to resources and StOragecccoevveevveeiieeesiiveesivee e 108
Listing 7.11. A constraint related to regular StOrage..........ocvvvevveeeiieeiiieeesiee e e 108
Listing 7.12. Constraints related to the start and end process step errorscccceeveernnenn 109
Listing 7.13. Constraints related to local and global error handlersccccccoveevivveenneen. 110
Listing 7.14. A constraint related to a default error handler............c..cccoove i, 110
Listing 7.15. A constraint related to an unordered set of error Steps.........ccoevevvvveevveeenen. 111
Listing 7.16. Constraints related to error-type and flow-type relationships....................... 111
Listing 7.17. Constraints related to gates from the error group..........ccceceeeveeeiieeecvee s, 111
Listing 7.18. Constraints related to the start and end process steps and key points............ 112
Listing 8.1. An example of the Pick right side high-level instructioncc..cccvee. 140
Listing 8.2. An example of the Pick right side machine-specific ROS instruction 141
Listing 8.3. An example of the Assemble left-bottom sides high-level instruction........... 142

XXXVII

List of Acronyms

AAS
ADAPT
AGV
API
APICS
APQP
AR
ASME
ASML
BOM
BOMO
BOO
BPEL
BPM
BPMN
BSM
CAD
CAM
CAPP
CASE

CE-
MultiProLan

CIM
CPPS
CPS
CT
DetL
DIN

DLT
DPT

Asset Administration Shell.............coooviiiiiie e 68
Asset-Decision-Action-Property-relaTionshipccccviiiiiiieniieeiiece 60
Automated Guided VENICIE.........cvveiiiiicie e 82
Application Programming INterface............ccovviiiiiiiiiieiice e 124
American Production and Inventory Control SOCIetYcccevvvvrveiiiieninennn 45
Advanced Product Quality PIanning...........ccocevvieiiiiiiiciecee e 32
AUGMENTEd REAIITLYeeviiiie s 33
American Society of Mechanical ENQINEErsccccveevieeiiieeviiie e 45
Assembly Sequence Modeling Languagecceevveeiiieeiiiee e see e 61
Bill Of MaterialS.........ccviiiiiiiiiie e 32
Bill of Materials and OPerations.............cocvvveiieeeiiieesiiee e 45
Bill Of OPErationscciiiiieiiii e 45
Business Process EXecution LanguUAgEcccvveeiuveeiiiieeiiieeeiieeesieeesiee e 49
Business Process Management............ccveoiveeiiieeeiiieeesiee e siee e svee e snee e 50
Business Process Model and NOtationccccevvviiiiiiniieiienie e 43
Business System MOdEelcccooviiiiiiiiii e 14
Computer AIded DESIGN.......c.eiiiiee e 10
Computer Aided ManufaCturing..........ccccveevieiiiiii e 10
Computer Aided Process Planningccccceevieiiiiec i 10
Computer Aided Software ENgineeringc.ccocvveevieeiviie e 28
Collaborative Extension of Multi-Level Production Process Modeling

IS T [T o< PP URTR P 25
Computation-Independent Modelcoooviiiiiiiiiiiiiee e 14
Cyber-Physical Production SYStem...........ccccveiiiieeiiie e 8
Cyber-Physical SYStEMccciiiiiiie e 8
COMPOSILION TTEE ..eviieiiie ettt e e et re e e sare e s b e e aaes 58
DELAIl-LEVEL ..o 81
Deutsches Institut fur Normung (English: German Institute for
StANdardization)..........cooiei i e 12
Distributed Ledger TEChNOIOgYcccoiiiiieiiiiiiee e erivee e sreeee e 177
Digital ProCess TWIN.......ccoiiiuieeiiiiieeesiieee e s sitee e sitre e e s snees e e s snnaee e e s sneneeeesnnees 67

DSL
DSML
DSR
DSRM
EMF
EPC
ER
FMEA
FODA
FOSD
FPC
FQAD
GenERTICA
GMA

GME
GMPM
GPML
GRAMOSA
GSMSPP
HMI
HMS
HResModLan
HSE
HTTP
14PML
14PMM
IAPMM
IAPMN
IBPM
IDEF
IDEF3
lloT
11S*Case
11S*Studio
loT

Domain-Specific LANQUAGEccvviiieiieiii et 13

Domain-Specific Modeling Languageccceoieriiiiienieiiienie e 3
Design SCIENCE RESEAICN.........cuveiiiiiieie e 23
Design Science Research Methodologyccccceiiiiiiiiieiiiieie e 23
Eclipse Modeling Framework...........cccooieiiiiiieiieniieicsee e 13
Event-driven Process Chain..........cccccvviiieiiie i 51
Entity-RelationShipoovviiiiie 28
Failure Mode and Effect Analysis..........cccooiiiiiiiiiiiiiici e 31
Feature-Oriented Domain ANAlYSiS..........ccoviiiiiiiiiiiiiieiee e 24
Feature-Oriented Software Developmentcccoovvviiiieiieiiieiiece e 89
FIOW PrOCESS CRAITvveiiieeiiie et tee e 32
Framework for Qualitative Assessment of Domain-specific languages.......... 24
Generation of Embedded Real-Time Code based on ASpects.............cccu..... 31
VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik (English:

VDI/VDE Society for Measurement and Automatic Control)..............c.c.cc..... 65
Generic Modeling ENVIFONMENT..........coiiiiiiiieiieee e 31
Green information-based Manufacturing Process Modeling.............cccccc...... 64
General-Purpose Modeling Language...........cooverveiiieiieniiienieenee e 13
GRAphical Modeling and Simulation-based Analysis...........ccccccovvivevieeennn. 62
Graph-based Simulation of Multi-Stage Production Processes 59
Human-Maching INteraCtionccoovuviiiiiiiiiiiiese e 7
Holonic Manufacturing SYSteMcccovii i 68
Human Resource Modeling Language..........cceevveeiiiieeiiiie e 25
Health, Safety, and ENVIFONMENTcccoviiiiie e 70
HyperText Transfer ProtoCol............ccovviiiiiiiii i 51
Industry 4.0 Process Modeling Languageccccevvveivieeiiiee i 60
Industry 4.0 Process Modeling Method.............cccoviiiiiii e, 60
loT-Aware Process Modeling Method............ccccevvviiiii e 60
loT-Aware Process Modeling NOtationcccccevveiiiiiee e 60
Industrial Business Process Management..........ccccevveeevieeiiieeeiiieesnineesvee e 59
Integration DEFINIIONcociiiiiiii e 57
Integration DEFinition method for Process Description Capture.................... 57
Industrial Internet of ThINGSccveiiiiiii e 9
Integrated Information SystemS*Case.........cocevvviiiiieeiiie e 28
Integrated Information Systems*Studio..........cocvveeviiiiiiie e, 29
INtErNEt OF THINGS....ccviii e 7
INEEINEL PrOtOCOL......civviiiieiiie e 67
Integrated Product-Process Modeling Approachcccocvvevieecciee e, 63
INTOrMALioN SYSEEMeiiiiiii et 9
Information TeChNOIOGYccvviiiiieie e 7
JOD Breakdown SNEEL.........ociiiiiee e 112
JavaScript Object NOtatioNooviiiiie e 69

KS A
LCDP
M2M
M2T
MaRCO
MasL
MBSE
MD
MDA
MDD
MDE
MDSD
MDSE
MDSEA
MES
MES-ML
MMPD
MoDEBITE
MOF
MPC
MPIM
MPIMM
MR
MService
MultiProLan
NIST
OCL
OMG
OPC UA
OwL
P&ID
PBM
PFMEA
PIM
PIPE2
PLC
PM-HRC
PMPM
PN

PPR
PPR-SS

Korean Standards ASSOCIALIONiveeeeeeeeiee e et e e e et e e e e eeeeennnans 45

Low-Code Development Platform............ccccoovieiiiniiinieieeeee e 69
MOUEI-EO-MOUEL.......coi e 15
Y oo [T (o Rl I SR RRSURRSTRRORS 15
Manufacturing Resource Capability ONntologycccooverviveniiiieiiieiieniene 62
MASEEI-LEVE .. .eeeeieiie e 80
Model-Based System ENGINEEIING........ccviiuiiriieiiiriieiie e 67
MOUEI-DIIVEN ...ttt eebeeesneee e 2
Model-Driven ArChItECLUIEccouvi et 12
Model-Driven DeVvelOPMENT.........cc.voiiiiiiiiieiie et 12
Model-Driven ENGINEEIING.oiuiiiiiiiiiiieiie e 12
Model-Driven Software Development...........ccccoovviiieiiiiieiiienee e 12
Model-Driven Software ENgineering..........cccocverviiiienieiiiiiesee e 12
Model-Driven System Engineering ArchiteCtureccccevvvvieviienieninene 14
Manufacturing EXeCUtion SYSTEM.........cccooiiiiiiiiiiiiie e 9
Manufacturing Execution System Modeling Language...........cccocevvvervennenne 63
Meta-Model for Production Data.............cccccveiiieeiiiiiiie e 62
Model-Driven Engineering of Bidirectional Transformations via Epsilon..... 89
Meta Object FACHITYcocveiiiie e 13
Manufacturing Planning and Control............cccccoovee e, 9
Manufacturing Process Information Model...........c..cccoveiiiiiiieiiieecee e, 62
Manufacturing Process Information MetaModel..............ccccccoveeiiiiiieeenen, 62
MiXEd REAIILY ..o s 179
MaNUTACIUNING SEIVICEccvvviiiiie it 68
Multi-Level Production Process Modeling Languageccceeveveeviieeesneeennn, 3
National Institute of Standards and Technology..........cccccoeveviiiiiieeeciiee e, 63
Object Constraint LANQUAGEveeiiiveeiiieeiieeeiieeeiee et snee s 97
Object Management GrOUPcueeiiireeiiireeiieesireeeiteeesre e sre e nine e sre e seee s 13
Open Platform Communications Unified Architecture........c..ccooceevvveeinnenne, 54
Web ONtology LanQUAgEcooivieeiiei et 62
Piping and Instrumentation Diagramcccccveiiiieiiic i, 166
Process-Based MOCEliNg.........cccveiiiiiiiieiciic e 59
Process Failure Mode and Effect ANalysiS..........cccccveiieeiiiie e, 46
Platform-Independent Model.............coooveiiiiiiiiii e 14
Platform Independent Petri net EAIitOr 2..........ocoveviieiiiii i 54
Programmable Logic Controller..........cccoovveiiiiiiiiee e 60
Process Model-based Human-Robot Collaboration............ccccccevviiiiieiiennenne 65
Part-flow based Manufacturing Process Modeling..........cccccooveeiiiieiiieeenen. 65
PO INBL .. e 46
Product-ProCess-RESOUICE.coi et 38
Product, Process, Resource, Schedule, and Space.........cccoocveveeiiieeiieeeenen, 59

xli

PQ
PSL
PSM
REST
ROS
RPN
RSD
SAP

S-BPM
SOA

SQL
SysML
SysML AD
T2M

T2T

TIM

TNO

TSM
UML
UML AD
uOB
VDE

VDI

VSM
WS-BPEL
WWW
XMl
XML
YAFMT

xlii

Predictive QUATTLYooiiiiiiiiieiee e 63

Process Specification LangUagE.cocvvivveiieriiiiieniesie e 63
Platform-Specific Model ... 14
REpresentational State Transfer...........ccocoviiiieiie i 29
RODOt OPErating SYSTEM........coiiiiiiiiieiie e 79
Risk Priority NUMDENcoviiiiiic e 151
Rapid Software DevelopmeNntccooiveiiiiiiiie e 122
Systemanalyse Programmentwicklung (English: System Analysis Program
DEVEIOPMENL) ... 166
Subject-oriented Business Process Management...........ccocvevverenniienneniinns 57
Service-Oriented ArChItECIUIEeevive i 69
Structured QUErY LaNQUAGEeeiureieiiiieiiesiie ettt 67
Systems Modeling LanQUAJE........cc.eerviiiieriieiie et 54
Systems Modeling Language Activity Diagram..........ccccovvenieiieniienineninns 54
TEXE-T0-MOUEL......ooeiiee e s 15
TEXE-T0-TEXE. ettt e e e e s s e e e e e e e enaees 83
Technology Independent Modeloooveiiiiiiiiiiii e 14
Nederlandse Organisatie voor Toegepast-Natuurwetenschappelijk Onderzoek
(English: Netherlands Organization for Applied Scientific Research)............ 49
Technology Specific MOdEL............ccovveiiiiiiic e 14
Unified Modeling LanQUage...........coouviiiieeiiiee e e eee et siva e 28
Unified Modeling Language Activity Diagram.........c.ccccceeviieevieeciiie s, 46
UNIt OF BENAVIOT ... s 57
Verband der Elektrotechnik Elektronik Informationstechnik (English:
Association for Electrical, Electronic & Information Technologies).............. 65
Verein Deutscher Ingenieure (English: Association of German Engineers) ...12
Value-Stream MapPingcocvee e 49
Web Services Business Process Execution Language..........ccccocveeviveeeiveennne, 51
WO WiIde WED ... 62
XML Metadata INterchange.........cocovveiiieciiei e 67
Extensible Markup LanQUAGgEccocvviiiieiiiie et 60
Yet Another Feature Modeling Tool..........ccccooviiiiii i 89

Introduction 1

1 Introduction

Manufacturing is a term used for the essential activity of making products and services. The word
manufacture is several centuries old, derived from two Latin words: manus — a hand, and factus —
to make, meaning made by hand. Besides making objects by hands, humans have been using tools
and materials since the Stone Age. Various tools and materials are still used nowadays, and, over
time, manufacturing became more and more sophisticated. Contemporary manufacturing is mainly
done by automated and computer-controlled machinery [1,2].

Manufacturing can be observed from both a technological and an economic viewpoint. From
the technological viewpoint, manufacturing represents an application of physical or chemical
processes to change the properties of materials, creating parts or products. It is carried out by a set
of operations, each transforming materials a step closer to the final product form. From the
economic viewpoint, manufacturing is the transformation of materials into parts or products of
greater value. Each manufacturing operation changes the properties of materials, adding value to
them.

As it is crucial for a country's welfare and a standard of living to sell final products created by
manufacturers in the country, the goal of manufacturing is to satisfy customer needs by making
sellable products or by providing services. As customer needs change over time, a product or a
service needs to be continually improved. Consequently, products and their manufacturing
processes are also continually evolving. Due to product changes, different product variations
emerge and are often grouped inside product families. Each product variation within a product
family differs from others by one or more specific parts or materials. Also, each product variation
has a corresponding production process variation. Every time a new process variation emerges, the
existing shop floor in a manufacturing company needs to be changed and rearranged. This can be,
and often is, challenging as the shop floor and its processes are usually rigid.

Besides manually rearranging shop floors frequently, they may be self-adjustable to meet the
demand for customized products. Until the end of the 20™ century, machines were still not fully
independent and self-adjustable to variations in the production processes. Changing a shop floor
was a burdensome and time-consuming task that required stopping production. Each time
production was stopped, a company lost money. Therefore, the way of manufacturing needs to be
changed in order to respond to customer demands and numerous product and process variations.

In the rest of this section, we provide an overview of the research conducted and presented in
this Ph.D. thesis. This section is structured as follows. In Section 1.1, we discuss research
challenges, motivation, the main hypothesis, and the main goal. A brief overview of the proposed
solution is outlined in Section 1.2, while the expected research results and contributions are
presented in Section 1.3. The section concludes with the thesis structure presented in Section 1.4.

2 Introduction

1.1 Research Challenges, Motivation, Hypothesis and Goal

A new way of manufacturing, providing flexible shop floors, is supposed to be implemented during
the fourth industrial revolution, named Industry 4.0. The aim of Industry 4.0 is to enable the
production of numerous individualized products for customers, creating an environment for lot-
size-one production while preserving the economic characteristics of mass production. However,
with such an environment, the number of product and process variations increases even more, as
customers raise their needs. Therefore, one of the main challenges of Industry 4.0 is:

(Chl) to cope with numerous product and process variations by creating a flexible
environment for lot-size-one production.

In such a dynamic and flexible production, various errors and failures may occur, that can lead
to production being stopped. In contemporary production systems, when an error occurs during
production, a production line needs to be stopped, causing additional costs to factories. In Industry
4.0 flexible production, the exact procedures on how to handle errors must exist and, in most cases,
these error handling procedures must be performed without a need to stop production. Thus, an
important Industry 4.0 challenge is:

(Ch2) to run flexible production smoothly, even if an error occurs, by having well-
established procedures that are automatically performed to minimize damage and costs
caused by errors.

Additionally, due to many variations, manufacturing documentation required by different
standards and procedures increases as well. Each time a product or its process changes, the
documentation of different types must be updated and new versions created, which is a time-
consuming task. To keep the documentation up to date, additional personnel need to be engaged,
raising costs for a manufacturing company. Accordingly, as creating and modifying product and
process variations and keeping the manufacturing documentation up to date becomes a burdensome
manual task, another important Industry 4.0 challenge that needs to be addressed is:

(Ch3) to manage product and process variations easily and keep the manufacturing
documentation up to date automatically.

As various products and their variations are produced in a factory, human workers must adapt
and create new products often. Thus, a fast knowledge transfer is needed on how to produce all
these products and variations. Otherwise, a lot of time needs to be spent in training workers when
creating new products and expert workers need to spend a lot of time training new workers coming
to a factory. In addition, as the number of human workers decreases in factories, they often need to
change their workplace and create various products. Therefore, another important Industry 4.0
challenge is:

(Ch4) to provide automated knowledge transfer and guided production to lower the time
and costs required for human worker training.

Recently, both the research community and the industry are trying to create such a flexible
environment that manages many product and process variations, handles production errors
dynamically, keeps the manufacturing documentation up to date, and provides a fast knowledge
transfer to human workers. However, none have managed to cope with the challenges (Ch1-Ch4)
fully. The creation of dynamic and flexible production is still in its early stages of development,
and researchers apply various existing approaches and create new ones to enable such production.

One way to deal with the challenges (Ch1-Ch4) is by using an intelligent system that is built
on the Model-Driven (MD) principles, having models as central artifacts that lead the production
process execution. Thus, production processes, alongside different product and process variations,
could be specified in the form of formal and machine-readable models with precise semantics.
These formal, machine-readable models could be automatically transformed into executable
resource instructions that the intelligent system dynamically orchestrates and allocates to the shop
floor resources. Whenever these instructions are sent to human workers, the instructions could

Introduction 3

contain descriptions, images and videos, guiding workers to create a product and transfer new
knowledge to them. If process models are enriched with corrective process steps as a response when
an error occurs, the models could be used by the intelligent system to manage error handling. Also,
production process models could be used to automatically generate manufacturing documentation
and keep the documentation up to date by updating it whenever a change appears in a product or its
process.

However, creating such resource-aware production process models with all the details related
to process execution, error handling and manufacturing documentation, makes the modeling
challenging, as it requires factory shop floor details to be included in process models. Creating a
resource-aware production process model with all these details requires process designers to have
knowledge about the shop floor on which the production process model is to be executed. Thus,
process modeling becomes a burdensome and time-consuming task. Additionally, a resource-aware
production process model is dependent on a specific production system. In Industry 4.0, production
process models should be independent of any production system, allowing resource-agnostic
production process models to be reused in different production systems. Accordingly, one of the
biggest challenges in Industry 4.0 related to production process modeling is:

(Chb) to allow the creation of resource-agnostic production process models in a simple
manner, easy to understand, and reusable in multiple production systems, but also
automatically transformable into executable resource instructions.

To transform a resource-agnostic production process model into executable resource
instructions, the model needs to be manually or automatically transformed into a resource-aware
production process model first. The automatic transformation of resource-agnostic into resource-
aware production process models is also one of the important Industry 4.0 challenges but is out of
scope in this thesis.

Many researchers put a lot of effort into solving the production process modeling challenge
(Ch5). Production processes are modeled in different ways, and even if they are suitable for the
automatic generation of executable resource instructions, these models are closely coupled with a
specific production system to which instructions are to be sent, leaving the modeling challenge
(Chb5) still open.

In this thesis, we aim to contribute to solving the research problem discussed through the
research challenges (Ch1-Chb), by creating a novel MD solution for production process modeling
and execution. Thus, we formulate the main hypothesis and the main goal of our research:

Hypothesis 0 (Ho). It is possible to create an MD solution for resource-agnostic and
resource-aware specification of production processes and automatic transformation of
such specifications into executable resource instructions and manufacturing
documentation.

The main goal of our research, derived from the main hypothesis, is to introduce factories
into the digital transformation process, by providing dynamic production management
and automatic production process execution based on process models.

1.2 Overview of the Proposed Solution

To achieve the research goal, we propose a novel methodological approach and a software solution
that utilizes MD principles, and a novel Domain-Specific Modeling Language (DSML), named
Multi-Level Production Process Modeling Language (MultiProLan), to specify production
processes formally in the Industry 4.0 era. The aim of such an MD solution and MultiProLan is also
to help process designers model production processes and keep the manufacturing documentation
up to date in a more efficient manner.

4 Introduction

To cope with the Industry 4.0 challenges (Ch1-Chb5), our solution uses production process
models that automatically lead the execution of production processes by generating and executing
resource instructions from the models. Accordingly, such models need to be machine-readable and
numerous production and execution details need to be stored in the models. However, including
production and execution details in production process models makes manual process modeling
difficult for a process designer. Therefore, these models are presented through different levels of
detail to separate process models that are independent of any production system and modeled by
process designers, and process models that are made for specific production systems in which they
are to be executed. In addition, to cope with numerous details in production process models,
modeling layers need to be created to show or hide different aspects of production processes.

As MultiProLan supports different modeling levels and layers, making them one of the main
features of our language, we named it Multi-Level Production Process Modeling Language to
highlight such an important feature. MultiProLan separates resource-agnostic from resource-aware
production process models, allowing process designers to be focused only on production process
steps instead of execution details and production systems. An intelligent system, named
orchestrator, is used to automatically transform resource-agnostic into resource-aware production
process models. This can be achieved as MultiProLan is a capability-based process modeling
language, meaning that each process step in a model has the capability required to execute the
process step. In the orchestrator, there is information about each resource and the capabilities it
offers, allowing process steps to be allocated to resources based on capabilities.

As MultiProLan models are machine-readable, executable resource instructions can be
automatically generated from resource-aware models and sent to resources to execute instructions
and create products. Production process step images and video footage can be automatically
generated and sent to human workers one by one with textual and audio descriptions on how to
perform each step, enabling guided production and training for them. In addition, manufacturing
documentation can be automatically generated and updated whenever new products or variations
emerge, or existing products or variations change, eliminating such a burdensome manual task from
process designers.

1.3 Research Contributions and Results

The overall research presented in this thesis is expected to have the following contributions.

Theoretical contributions are expected to cover a novel MD approach and a modeling
language in the field of production process modeling, and also a novel methodology for the
automatic transformation of production process models into executable resource instructions and
manufacturing documentation.

Development contributions are expected to cover the development and implementation of a
novel software solution for production process modeling and novel instruction and manufacturing
documentation generators.

Application contributions are expected to cover the application of an MD approach and a
modeling language in the production domain in the form of use cases with practical application in
the assembly industry and the evaluation of the modeling language and the tool for production
process modeling.

In addition to the aforementioned scientific and practical contributions, it is important to
mention the socio-economic contributions expected from the conducted research in the light of
contemporary trends in the world in the development of the Industry 4.0 field. These socio-
economic contributions refer to the possibility of putting into public use a general model of
production process management, applicable in a wide range of organizations in a way that enables
significant production process improvement and raises general accumulated knowledge on how to
contribute to such a process improvement contemporarily.

Introduction 5

The main expected result of our research is easier and simpler formal modeling of production
processes in the era of Industry 4.0. Created models are to lead the process execution in flexible
production and keep the manufacturing documentation up to date automatically, thus responding to
increasing customer demands for individualized products and coping with Industry 4.0 challenges
(Ch1-Chb).

More details about the research motivation, goals, expected contributions and results, and
research methodology are presented in Section 3. Also, besides the main hypothesis presented in
this section, there are four hypotheses derived from the main one, presented in Section 3. All these
details are not presented in the Introduction section to make it clear, concise, and simple. Thus,
before going into details in Section 3, first we introduce the background and theoretical foundations
related to our research in Section 2. The complete overview of the thesis structure is outlined in the
following section.

1.4 Thesis Structure

Apart from Introduction, Conclusion, and Appendix, this thesis is structured as follows.

In Section 2, we present the background and theoretical foundation related to this thesis. First,
we discuss industrial revolutions, especially Industry 4.0 and its relevant concepts and technologies.
Afterward, we present an overview of production process planning and design, and skill-based
engineering. The section ends with an overview of the MD paradigm and DSMLs.

Research challenges, motivation, and goals are presented in detail in Section 3. The main and
four derived hypotheses are presented and discussed in this section, as well as the expected
contributions and results of this research. The research methodology and the activities performed
to conduct the research are also presented in this section.

In Section 4, we present the state-of-the-art of different aspects related to the MD paradigm
and Industry 4.0, with production process modeling and execution as the main aspects. Based on
the preliminary research, industrial use cases we encountered, and the discussion with domain
experts, we specified requirements for a production process modeling language whose models
would be suitable for dynamic orchestration and automatic model execution or generation of
executable instructions. Afterward, the researched languages and approaches are presented in detail,
and divided into four categories we identified. These languages and approaches are tested on
fulfilling the specified requirements. In the Summary subsection, we discuss the requirements
coverage by languages and approaches, the features that are mostly not covered by languages and
approaches, and the future research directions in production process modeling.

Our MD solution, comprised of the novel MD approach and the MD system, is discussed in
detail in Section 5. First, the architecture of our MD system is presented, containing modeling tools,
an orchestrator and a knowledge base, different code generators, and a production system with a
digital twin. Afterward, the main steps of our MD approach are outlined, comprising the
specification of production system models and production process models, and the automatic
transformation of process models into executable resource instructions and manufacturing
documentation. The section ends with the objectives that our MD solution aims to fulfill.

To develop a novel DSML for production process modeling, used as the main component of
our MD system, the relevant domain needs to be analyzed first. We divided the production process
modeling domain into operational, resource, and control-flow perspectives, and presented domain
concepts relevant to a modeling language that aims to model production processes in the context of
Industry 4.0. The production process modeling domain analysis is outlined in Section 6.

In Section 7, we present MultiProLan, the novel DSML for production process modeling. In
this section, we present an overview and the usage of MultiProLan, its detail levels and modeling
layers, as well as the users of the language. Then, we present the abstract and concrete graphical
syntaxes of MultiProLan and a way in which MultiProLan fulfills the requirements specified in

6 Introduction

Section 4. An overview of the process modeling tool that utilizes MultiProLan is presented at the
end of Section 7.

In Section 8, the application of our MD solution and MultiProLan is outlined in order to present
their usability in different use cases. There are two proof-of-concept use cases presented in this
section. In the first use case, a customized wooden box is assembled, having different product
variations. This use case is created to demonstrate the possibilities of MultiProLan and its process
modeling tool. The second use case represents a demonstration environment created to test the
whole solution in assembling objects from LEGO® bricks, avoiding failure costs associated with
the real production system. In this demonstration environment, different robots are used and some
of them are industrial mobile robots, which are used in real production. In this section, various
production process models are presented, as well as automatically generated instructions and
manufacturing documentation.

The evaluation of MultiProLan and its process modeling tool by different user groups is
presented in Section 9. The evaluation participants performed an experiment in which they modeled
production processes and evaluated the following quality characteristics of MultiProLan and the
modeling tool: functional suitability, usability, reliability, expressiveness, and productivity. In this
section, we discuss the experiment objective and hypothesis, user groups that participated in the
experiment, the preparation and execution of the experiment, the results of the evaluation, and
possible threats to validity.

Background and Theoretical Foundation 7

2 Background and Theoretical Foundation

The way of manufacturing has changed over time, especially during industrial revolutions. An
industrial revolution involves fundamental changes, altering different aspects of societies, such as
production and economics. Each industrial revolution significantly impacted countries over the past
three centuries. To this date, three revolutions have happened, triggered by the following
breakthroughs: (i) the James Watt's steam engine in 1784; (ii) the power of electricity and oil with
internal combustion motors in the 1870s; and (iii) electronics and microcontrollers in the 1960s
[102,103]. Although these changes are called industrial revolutions, historians raise concerns over
using the term revolution, as these changes took several decades to modify production [103].
Currently, a new revolution is happening. The fourth industrial revolution has been triggered by
technological advances, such as highly networked devices and new Information Technology (IT)
infrastructure, as well as increasing customer needs for highly customized products. As it began
only a few years ago, we expect it to last for years to come, similar to previous revolutions.

The fourth industrial revolution is also known as Industry 4.0 (German: Industrie 4.0), a term
coined in 2011 by Kagermann et al. [104] when they proposed ideas on how to strengthen the
competitiveness of the German manufacturing industry. Although this particular name was coined
in Germany, other countries also have similar national programs and research projects, albeit named
differently, in the domain of smart manufacturing in order to define and implement its concepts
[105].

Industry 4.0 emerged at the beginning of the 21 century, and companies are moving from
mass production to mass customization. Advanced technologies in the form of smart resources and
smart products represent the basis for Industry 4.0, enabling fast changes of products created in
factories. Industry 4.0 introduces primarily IT-driven changes in existing production systems to
enable the production of individualized products while preserving all beneficial economic
characteristics of mass production [106,107].

Ivanov et al. [108] defined the notion of Industry 4.0 as the industry that integrates
technologies, organizational concepts, and management principles to adapt to rapid production
changes by rearranging and reallocating components and capabilities. The goals of Industry 4.0 are
to [105,109]:

provide IT-enabled mass customization of products;

make an automatic and flexible adaptation of production;

track parts and products during production;

facilitate communication among parts, products, and machines;

apply Human-Machine Interaction (HMI) and ensure the safety of human workers and
machines working together in close proximity;

achieve Internet of Things (loT)-enabled production optimization in factories;

e provide new types of services and business models;

e save energy and reduce lead times, costs, and waste; and

8 Background and Theoretical Foundation

e improve the quality of products and efficiency of production.

To sum up the goals, Industry 4.0 aims to achieve a higher level of operational efficiency,
productivity, and automatization, providing more flexible and lot-size-one production.

However, contemporary production environments and machines are not appropriately
automated, fully independent, and self-adjustable to support such flexible production. Therefore,
the Industry 4.0 goals are yet to be met despite the numerous contributions to smart manufacturing
in recent years.

The MD paradigm can be used to create an environment to make production more flexible and
in which production process models lead the production process execution. Executable instructions
can be automatically generated from process models and sent to Industry 4.0 smart resources for
execution. Therefore, in this section, we outline the background and theoretical foundation related
to the production process modeling in the context of Industry 4.0 and the MD paradigm. The main
concepts and technologies used in the Industry 4.0 context are presented in Section 2.1. The way
production processes are planned and designed is described in Section 2.2. A brief overview of the
MD paradigm and DSMLs is outlined in Section 2.3. The summary of the background and
theoretical foundation is presented in Section 2.4.

2.1 Relevant Concepts and Technologies in Industry 4.0

Numerous technologies are used to bring the Industry 4.0 concepts to life in companies [109,110].
Therefore, to discuss further about the Industry 4.0 context related to our research, in this section
we describe the main concepts and technologies commonly used in Industry 4.0:

e Smart Factory is an intelligent production system based on digital and automated
production, using IT to improve the management and quality of production [111]. A smart
factory realizes flexible manufacturing, dynamic reconfiguration, and production
optimization, adapting to rapid changes in production due to customer needs. It consists of
intelligent and autonomous shop floor entities aiming to decentralize production [112].
These entities represent smart materials or smart products and smart resources, able to store
information of different types, such as their state, position, and history. Smart materials
and smart products are service consumers, processed by smart resources that are service
providers. As these smart entities should be autonomous and independent, a smart factory
should be able to produce customized and small-lot products efficiently and profitably
[113]. Such customized production and a smart environment are enabled by advanced
technologies, such as Cyber-Physical System (CPS) and 10T [114], introduced further in
this section.

e Cyber-Physical System (CPS) is an automated system that integrates both physical and
virtual worlds, networking devices of different types [115,116]. It consists of a control unit,
controlling sensors, and actuators necessary to interact with the real world, with the purpose
of synchronizing physical and virtual worlds [115,117]. There are various fields of
application for CPS, such as medical equipment, driving safety and assistance, autonomous
cars, industrial process control and automation systems, and the smart electric grid. CPS
applied in manufacturing is usually called Cyber-Physical Production System (CPPS). It
relies on computer science, information and communication technologies, and
manufacturing science and technologies, enabling the equipment of a smart factory to
become intelligent and thus leading to smart production [21,118].

¢ Digital Twin is a digital part of a CPS, representing a virtual model of a physical object. It
is a digital representation of an active product or a product-service system, and it comprises
their characteristics, conditions, and behavior [119]. A digital twin can be used to simulate
the object's behavior, while the object can respond to changes made in the simulation [120].
It should be possible to simulate all production steps and depict their influence on
production, enabling product-specific costs to be calculated in advance [121]. Simulations

Background and Theoretical Foundation 9

need to be highly utilized in Industry 4.0 to simulate products, robots, and humans in order
to reduce failures and optimize resource consumption [122]. Accordingly, by testing
production using digital twins and simulations, production failures may be mitigated or
missing production steps detected, lowering costs and wastes due to production failures.

e Internet of Things (IoT) may be seen as a CPS connected to the Internet [115]. It is
considered Internet of the future, consisting of numerous heterogeneously and wirelessly
connected devices that interact without human intervention [123]. loT applied in
manufacturing is usually referred to as Industrial Internet of Things (110T). It covers the
domain of machine-to-machine and industrial communication technologies, enabling
efficient and sustainable production [124]. As the pillar of digital manufacturing, I10T aims
to connect all industrial assets with Information Systems (ISs) and business processes.

e Production orchestration represents diverse activities of scheduling and allocating
operations to resources. These activities should be performed automatically and
dynamically in Industry 4.0, enabling fast adaptation of the production floor to customer
needs. A component named orchestrator can be used in production systems to achieve such
goals. An orchestrator is software run on top of a cluster of industrial computers that can
orchestrate smart resources and assign them process steps for execution [3-5].

e Manufacturing Execution System (MES) provides a common user interface and a data
management system, integrating multiple execution management components into a single
solution [125]. MES assists production by managing activities on the shop floor and serves
as a bridge between planning and control systems [126]. Smart factories utilize MES to
assist human workers and machines in executing their tasks during production.

The presented concepts and technologies are referenced throughout this thesis, but mostly as
a context in which we conduct or apply the research related to the production process modeling.
The following section introduces an overview of production process planning and design as they
are currently performed by manufacturing companies to the best of our knowledge.

2.2 Process Planning and Design

In this section, we describe activities of designing products and processes, planning processes, and
manufacturing products. This section is divided into the following two subsections. In Section 2.2.1,
process planning activities are discussed, while process design and its integration with skill-based
engineering are described in Section 2.2.2.

2.2.1 Production Process Planning

Manufacturing Planning and Control (MPC) comprises a wide range of activities, from managing
materials and scheduling resources to coordinating suppliers and planning customer shipments
[127]. Part of MPC activities is related to designing products and planning production processes,
which are relevant to the research presented in this thesis. Other MPC activities are not considered
in this thesis.

Process planning represents a set of strategies, methods, and activities needed to
systematically determine manufacturing operations required to create a product economically and
competitively [128-132]. Each manufacturing operation needs to be defined in the best possible
way so that created products fulfill the intended quality at a competitive price. The input to process
planning is a product design, such as a product's blueprint, while the output of process planning are
various manufacturing documents, including a production process specification and a plan for how
to produce a product, and the manufacturing of a product.

There are different types of planning, such as: (i) strategic or long-term; (ii) tactical or medium-
term; and (iii) production scheduling or short-term planning [133]. Long-term planning determines
a manufacturing company's supply chain structure, which represents a network of production

10 Background and Theoretical Foundation

facilities and distribution options. Medium-term planning includes decisions such as assigning
production targets to production facilities and transportation logistics from facilities to warehouses.
Short-term planning is performed daily or weekly, and at the production level, it is referred to as
scheduling. Production scheduling represents an allocation of tasks to available production
resources over time, to best satisfy a set of various optimization criteria [134]. In the research
presented in this thesis, we are focused on short-term planning, especially in process design and
execution. Thus, we do not consider the management of production facilities or material handling
at the level of warehouses and facilities in our research.

Since computers are known for their speed and consistency, Niebel [135] first presented the
idea of using them to assist in the determination of process plans in 1965, and the year after, Schenk
[136] discussed the feasibility of automated process planning. Computer Aided Process Planning
(CAPP) has been researched since then, and its purpose is to automate process planning tasks in
order to generate process plans consistently [129]. CAPP is an essential component of a computer
integrated manufacturing environment, and it acts as a bridge between Computer Aided Design
(CAD) and Computer Aided Manufacturing (CAM) [129,137]. CAD uses computer systems to
assist in the creation, modification, analysis, and optimization of a design, increasing the
productivity of designers [138]. Products or parts can be designed using CAD software, and the
output of such software is two-dimensional drawings or three-dimensional models. CAM uses
computer systems to plan, manage, and control operations of production resources in a
manufacturing plant, automating a manufacturing process. Computer integrated manufacturing
utilizes computer systems to integrate concepts such as CAD, CAPP, and CAM into one extensive
system, controlling the entire production. A manufacturing flow from computer aided product
design to manufacturing is presented in Figure 2.1.

A novel methodology that is considered nowadays and is derived from computer aided
planning is the MD process planning. The MD process planning is a methodology in which digital
models are applied to create, represent, and use the information of products, processes, and
resources, supporting process planners in creating process plans [131,132]. The resulting process
plan is digital, and, unlike traditional CAPP plans, it is a computer interpretable model with exact
and precise semantics, defining what and how it will be produced. Furthermore, the MD process
planning enables a comparison between design objectives — as planned, and production and
inspection information — as realized, by gathering feedback from the process execution. Therefore,
structured knowledge is developed, making it possible to improve product and process design.

2.2.2 Production Process Design and Skill-Based Engineering

A manufacturing process design is a part of the process planning phase consisting of process steps
needed to create a product. A manufacturing process is a designed procedure that physically,
mechanically, thermally, electrically, or chemically changes an input material intending to increase
its value [1,139]. Besides materials, the input of a manufacturing process includes machines,
tooling, energy, labor, and knowledge, and after a set of operations is executed, a processed part or

Computer Integrated Manufacturing

|
|
: Product
|

Designer

Figure 2.1. A manufacturing flow of computer aided production systems.

Background and Theoretical Foundation 11

product with scrap, waste, and emissions are the output of such a process [1,140]. Therefore, a
manufacturing process is usually defined as a transformation activity consisting of a collection of
operations in which human workers and machines use energy and information to transform raw
materials into finished products, fulfilling certain requirements [2,32,139]. There is also a term
production process, which is usually referred to as a superset of all kinds of processes in a
manufacturing company. Therefore, it includes all business processes as well as manufacturing
processes in a company [32]. A process operation or a process step is an activity performed to
produce the desired result or effect. Manufacturing processes are divided into discrete and
continuous processes [141]. Discrete processes have an output that can be identified and is
measurable by distinct units, while continuous processes have an output that can be identified and
is measurable by mass or volume.

Manufacturing processes are executed in a manufacturing system or a factory that represents
a complex set of physical elements that includes machines, people, materials-handling equipment,
and tooling [2]. A production system is usually referred to as an enterprise system or an entire
company, including all aspects of commerce, such as sales, advertising, profit, distribution, and a
manufacturing system [2]. For the rest of this thesis, we will use the terms production process and
production system, as we aim to cover different aspects of production in our research, but we mainly
think of manufacturing processes and systems when we use these terms. Also, production process
and production system terms are widely used in the literature and usually stand for manufacturing
processes and systems.

Production process specifications are created by process designers. By the notion of process
designer, we denote a person in charge of transforming a valuable idea or an experiment into an
industrial process in a way to fulfill not only originality, efficiency, quality, and sustainability
criteria but to consider many, often contradictory constraints. It includes all the users participating
in process specification, such as process engineers, quality engineers, and resource managers. We
should note that we use the syntagm "process engineer" to denote someone who specifies
production processes, not only in the process industry but covering a wider range of processes.

As production processes change rapidly and numerous process variations emerge in the era of
Industry 4.0, production systems need to adapt to these changes. Traditionally, to execute
production processes, resources are arranged in a factory to form a production system [2]. However,
to increase the adaptability of production systems, production processes need to be decoupled from
them [65]. Therefore, production processes should be modeled independently from any production
system, and production systems should be flexible enough to support various processes.

Skill-based engineering may be applied to decouple production processes from production
systems. Machines and robots made by different vendors may participate in a single production
system. Some may use low-level instructions at the level of sensors and actuators, while others may
use high-level instructions, such as pick, place, and move. Even at the same abstraction level,
instruction syntax may vary by a resource vendor. There are also human workers working in a
production system that can use instructions in the form of textual descriptions. Managing
production in such a heterogeneous system can be particularly difficult, and it requires specific
knowledge from different domains and can be prone to errors [6]. Accordingly, there is a need to
unify the way how instructions are sent to resources, which may be achieved through skill-based
engineering [6,7]. Vathoopan et al. [7] defined skill-based engineering as "a very new method that
describes the individual components, constituting an automation system as objects with their
respective services, named skills".

A skill is usually referred to as a synonym for a capability, and a capability is defined as the
"implementation-independent potential of an Industry 4.0 component to achieve an effect within a
domain" [142]. There is also another view on skills and capabilities, indicating that a capability is
a type of skill, and a skill is a parametrized and executable instance of a capability. We will use the
term capability for the rest of this thesis as a synonym for a skill.

Production system resources may be seen as objects with their respective capabilities and
standardized interfaces. Therefore, resources are offering a set of capabilities they have. Production

12 Background and Theoretical Foundation

process steps may require the capabilities needed for their execution. Accordingly, offered and
required capabilities can be matched, thus matching process steps with resources that may perform
them. After the matching process is finished, a system is needed to automatically transform matched
resources and process steps into instructions to execute operations. These instructions can be sent
to resources for execution. By using capabilities to describe resources and process steps, production
process models can be specified independently from any specific production system. Also, process
steps and resources are described in a uniform way, independent of the instructions' abstraction
level and syntax.

To match process steps with resources, capabilities and their parameters should be specified
in a uniform and standardized way [143]. Otherwise, the matching process would be compromised
if synonyms are used for capabilities, the capability name is misspelled, or some unknown
capability parameters are used. A standardization of capabilities and their parameters in a
manufacturer-independent and cross-vendor way is still an open challenge [7,144-146], and such
standardization is necessary to establish production steps for manufacturing [65]. As the
standardization is still a work in progress, researchers have created capability taxonomies based on
the mixture of different existing standards [144], such as the Association of German Engineers' VDI
2860 [147] (German: Verein Deutscher Ingenieure, VDI) for assembly and handling operations,
and the German Institute for Standardization's DIN 8580 [148] (German: Deutsches Institut fiir
Normung, DIN) for manufacturing processes in general. An example of such a capability taxonomy
is presented by Hammerstingl and Reinhart [145]. The authors pointed out the necessity of the
solution-neutral standardization of capabilities and their parameters for cross-vendor
interoperability and proposed the capability taxonomy for assembly and handling operations.
Another example is the SkillPro project [149], which aimed to unify and abstract capabilities
provided by resources and required by production steps.

The Association of German Engineers (VDI) works on a standardized classification of
capabilities in the domain of the assembly industry [7]. The standardization of assembly capabilities
is expected soon under the standard VDI 2860. However, until the standardization of capabilities
becomes realized, a capability repository containing a capability taxonomy with available
parameters for each capability can help process designers specify production processes. Without
the repository, capability names would be specified as arbitrary text, allowing process designers to
misspell a capability or use a synonym for its name. Thus, an orchestrator or another intelligent
system cannot match process steps with resources.

2.3 Overview of the MD Paradigm and DSMLs

Model-Driven* (MD¥*) as a prefix is an umbrella term to indicate, among others: MD Engineering
(MDE), MD Software Engineering (MDSE), MD Development (MDD), MD Software
Development (MDSD), and MD Architecture (MDA) [150], all discussed in this section. According
to the MD paradigm, models represent a central artifact at all stages of system development.
Although models have been used extensively in the software development process for decades, they
were often used just for documentation purposes. Problems of growing complexity, number of
different platforms, and interoperability in system engineering in general, as well as in software
engineering, have motivated a paradigm shift. This shift caused a different usage of models, not
just for documentation purposes but now to lead the system development.

By using MDD principles, software engineers usually want to cope with system complexity
by raising abstraction levels. Therefore, by using the traditional four-layer infrastructure [151,152],
MDD aims to automate many complex tasks. The four-layer infrastructure, depicted in Figure 2.2,
represents a hierarchy of model levels, starting from MO to M3. The bottom level (MO) represents
a system under study in which observed entities exist. The level above (M1) represents a model of
the system under study. A model is a representation of the observed entities, including only relevant
information about each particular entity and particular relationships between such modeled entities.
Therefore, it can be said that a model represents a system under study. A modeling language is

Background and Theoretical Foundation 13

needed to create such models. To create a modeling language, a system under study needs to be
observed, as well as the different types of entities that reside in the world, their relevant properties,
and their relationships. A specification of entity types, relationship types, and their properties is
called a meta-model, and it belongs at the next level of abstraction (M2). Every model created with
a modeling language conforms to its meta-model. Similarly, a meta-model needs to be specified by
using a language called meta-modeling language. Each meta-model is created using the same set
of concepts defined in a meta-meta-model at the next level (M3). Therefore, a meta-model conforms
to a meta-meta-model. Concepts defined in a meta-meta-model are independent of a particular
domain and are defined by the environment in which meta-models are specified. As there is no need
to introduce a level of abstraction above M3, a meta-meta-model is usually defined reflectively
using its own concepts. One frequently used meta-modeling language is the Object Management
Group's (OMG) Meta Object Facility (MOF) meta-meta-model. MOF is a self-defined platform-
independent meta-data management framework that enables the development of model and meta-
data driven systems, such as modeling and development tools [153]. One concrete implementation
of MOF is the Eclipse Modeling Framework's (EMF) Ecore meta-meta-model [94,95].

At the M2 level, modeling languages, commonly referred to as Domain-Specific Languages
(DSLs) or Domain-Specific Modeling Languages (DSMLs), are utilized. A DSL is a language
tailored for a specific domain, in which concrete syntax is usually implemented as textual, such as
the syntax programming languages have. A DSML is a language that can be seen as a specialization
of a wider notion of DSLs [154,155], often providing users with a graphical notation instead of a
textual syntax. The purpose of DSMLs is to bring modeling concepts closer to users familiar with
an application domain, so that they can specify their solution in less time and with fewer errors in
comparison to General-Purpose Modeling Languages (GPMLSs). Solutions are specified faster and
with fewer errors due to the usage of domain-specific modeling concepts that are more related to
users, eliminating accidental complexity caused by a modeling tool or a GPML. The complexity
that needs to be solved using DSMLs is caused by the domain itself and such complexity exists
independently of whether DSMLs or GPMLs are used.

Conforms to

Meta-Meta-Model | M3 Level

\/

7 N
Conforms to

(Meta-Model > M2 Level
A
Conforms to

(Model) M1 Level

/ " -
i‘ System | MO Level

Figure 2.2. The four-layer infrastructure of model levels.

14 Background and Theoretical Foundation

MDSD is a software development paradigm usually built around a DSML. The main goals of
MDSD include [156]:

the increase of development speed through automation and single point of system
definition;

the increase in software quality through formalization;

the increase in component reuse and improved manageability of complexity through
abstraction;

greater domain expert inclusion in the development process; and

better communication between different stakeholders in the software development process.

MDA is currently the most mature formulation of the MDSD paradigm and, according to
Brambilla et al. [157], "the particular vision of MDD" proposed by OMG. MDA is a modeling
framework that proposes the creation of models at different abstraction levels and applies the
transformation methods between these models. There are three levels of abstraction defined in
MDA [157]:

Computation-Independent Model (CIM) — represents the context, requirements, and
purpose of the solution at the highest level of abstraction. CIMs have no bindings to
computational implications and also hide IT-related specifications. Therefore, such models
aim to stay independent of how a system will be implemented. They are usually referred to
as business or domain models, using concepts and terminology from the application
domain.

Platform-Independent Model (PIM) — represents the part of the CIM that will be solved
using a software-based solution. It describes the behavior and structure of the solution,
independent of the implementation platform. Thus, PIM can be mapped to one or more
concrete implementation platforms. PIM includes information and algorithms independent
of the implementation technology.

Platform-Specific Model (PSM) — contains all required information about the behavior and
structure of a system developed on a specific platform, which developers can use to
implement executable code. PSM represents a technology-aware detailed specification of
a system.

A Model-Driven Service Engineering Architecture framework is inspired by MDA and
discussed by Vallespir and Ducq [158]. This framework applies MDA in smart manufacturing and
has attracted increased interest in recent years. Since its original publishing, the framework has
been generalized and renamed into Model-Driven System Engineering Architecture (MDSEA)
[159] and is applied to manufacturing systems. Similar to MDA abstraction levels, MDSEA has
three abstraction levels as well:

Business System Model (BSM) — describes service systems and their communication at a
high level of abstraction. BSMs are independent of the future technologies and skills that
resources will use.

Technology Independent Model (TIM) — the second abstraction level that provides a
detailed specification of the structure, functionality, and operational details of the modeled
service system. TIMs are also independent of the technological details that will be used for
their implementation.

Technology Specific Model (TSM) — enhances a TIM model with the implementation
details, such as a machine technology or a specific person. TSMs are ready for the
implementation of service systems. Based on TSMs, it is possible to implement a designed
system in terms such as applications, services, machines, material handling, or human
resources and organization, ensuring human-related tasks and operations.

Each BSM can be mapped to different TIMSs, and each TIM can be mapped to different TSMs.
The same can be stated for CIM, PIM, and PSM mappings.

MDSE is a methodology that applies the advantages of modeling to software engineering
activities. Models created with DSMLs are changed and transformed over time, and both models

Background and Theoretical Foundation 15

and transformations compose the following equation in the MDSE context: "Models +
Transformations = Software" [157]. Model transformations represent operations on models, and
they are specified once at the level of meta-models as a set of transformation rules and can be
executed multiple times at the level of models. Each transformation has a source meta-model, a
target meta-model, and mappings between their modeling concepts. Model transformations are
specified using a transformation language that can be considered a DSL for model transformations.
Depending on a transformation target, there can be Model-to-Model (M2M) or Model-to-Text
(M2T) transformation types. There are also Text-to-Model (T2M) transformations, which are
usually applied in reverse engineering.

2.4 Summary

In this section, we presented background and theoretical foundations related to the research
presented in this Ph.D. thesis. The research comprises an application of the MD paradigm and
DSMLs in the production process modeling domain in the Industry 4.0 era. Therefore, we presented
an overview of Industry 4.0 and its concepts and technologies, process planning and design, and
the MD paradigm and DSMLSs.

The MD paradigm is already applied in the manufacturing domain, such as the MDSEA
framework that provides different abstraction levels in manufacturing systems. Also, the MD
paradigm is applied in process planning, allowing the creation of digital process plans that are
computer interpretable, having exact and precise semantics on what and how will be produced.
These applications, alongside the usage of skill-based engineering in production process design,
provide us with the foundation to cope with the challenges (Ch1-Ch5) discussed in Section 1 and
reach the main research goal. Therefore, by applying the MD paradigm and skill-based engineering,
dynamic production management and automatic production process execution based on process
models may be achieved, introducing factories into the digital transformation process.

Motivation, Research Hypotheses, Goals and Methodology 17

3 Motivation, Research Hypotheses, Goals and
Methodology

In this section, we present the motivation and define the goals of our research related to production
processes modeling suitable for dynamic production orchestration, automatic instruction
generation, and execution of instructions. We also lay out research hypotheses as well as expected
research results and the expected value of the research contributions.

The research motivation in the domain of production process modeling is presented in Section
3.1. Research hypotheses are outlined in Section 3.2 and the research goals are presented in Section
3.3. Expected contributions and results are discussed in Section 3.4, while the methodology used to
conduct this research is discussed in Section 3.5. This section concludes with a summary presented
in Section 3.6.

3.1 Motivation

Industry 4.0 introduces many challenges traditional production systems must overcome to produce
highly customized products. Producing such customized products in traditional production systems
often requires multiple production lines, or in a case of a single production line, stopping production
to allow the reconfiguration of machines. All of this incurs additional costs. The production needs
to be carried out without stopping a production line for the machine reconfiguration in order to
enable flexible, individualized, lot-size-one production that is economically viable [160].
Therefore, it is necessary to solve the problem of costly and time-consuming machine adaptation to
frequent production changes, which is common in Industry 4.0. To enable such flexibility, the entire
reconfiguration of the production line must be done "on the fly" by the automated mechanisms of
a smart factory and based on the production process models. To be used by the automated
mechanisms of a smart factory, production process models need to be formally described with
attached machine-readable semantics.

The increasing demand for customized products required to be produced in small batches and
in the least amount of time makes manual process planning difficult [132]. Therefore, a high degree
of automation in process planning and manufacturing is necessary to stay profitable and
competitive. However, completely automated process planning has not been fully realized yet due
to the complexity and level of uncertainty in process planning and the difficulty of rationally
capturing a process planner's expertise.

Besides formally specifying and planning production process execution, error handling needs
to be considered in order to run flexible production smoothly. Error handling is not crucial to
support automatic production management and execution, but it is of utmost importance in creating
flexible production. By implementing error handlers within production process models, any known
issue or failure that may occur is formally specified as well as corrective steps on how to solve such

18 Motivation, Research Hypotheses, Goals and Methodology

issues and failures. Therefore, if an error occurs, a well-established procedure will be performed to
minimize damage caused by the error and continue with production as soon as possible to minimize
costs caused by production being stopped. Some errors will still cause production to be stopped,
but the reaction to errors will be nearly instant and automatically performed. In contemporary
production systems, known errors and issues are mostly well documented but written in the form
of textual descriptions and thus cannot be used for the automatic elimination of error effects and
the recovery from an error occurrence.

Additionally, as contemporary customers want their products custom-tailored to fit their needs,
the number of product variations and corresponding production processes increases significantly in
comparison to mass production. Consequently, this increase is followed by an increase in the
number of product and process specifications and required documentation. Therefore, it is essential
that process models are easy to change and adapt to new process and product variations, enabling
automatic generation and update of manufacturing documentation. Due to many products and
product variations in customized, lot-size-one production, keeping manufacturing documentation
up to date manually becomes particularly difficult. Different documents need to be updated if a
product is changed in any way. Having a single point of knowledge stored in production process
models can facilitate the automatic update of documentation or the automatic creation of a new
version of the documentation, decreasing the amount of manual work that needs to be performed
by process designers. Issues associated with keeping the manufacturing documentation up to date
manually include redundant specifications, human-related errors which occur while writing or
modifying documentation, and the long time needed to create such specifications. These issues
could be mitigated with the automatic generation of manufacturing documentation from process
models.

There is also a problem of frequent position changes and relocations of human workers in a
factory [161]. Due to a decreasing number of human workers and an increasing level of automation
in factories, workers are required to perform different tasks. Frequently changing workers' tasks
leads to increased production dynamics and requires fine coordination of workers in a factory, so
their work can be optimized, and production downtime avoided. As workers often switch between
tasks, especially when allocated to a new workplace, fast knowledge transfer is required, so they do
not lose time when changing workplaces. Also, fast knowledge transfer is needed when novice
workers start producing new products, as expert workers need to invest their time in helping
novices. Guided production can be based on production process models, thus sending production
steps one by one to workers, including production descriptions, audio, images, and video footage.
Accordingly, time spent by expert workers when helping novices can be reduced and novice
workers may perform tasks more efficiently.

However, including all the details needed for flexible production, error handling, management
of process and product variations, creation and modification of manufacturing documentation, and
human workers' training and guided production makes production process modeling difficult.
Therefore, different levels of detail and modeling layers need to exist in order to ease the modeling
task done by process designers. With different levels of detail, production process models can be
specified independently of any production system. The separation of production process models
from any specific production system is one of the main challenges of Industry 4.0 production
process specification. A production process model should be machine-readable, allowing automatic
execution of process steps, but also, a production process model should be independent of any
production system in which it is to be executed, enabling production process models to be used in
multiple production systems [65]. To achieve such a goal, process designers should model a
production process without details specific to a production system, and an intelligent system, such
as an orchestrator, should automatically enrich the model with details specific to the production
system which is chosen to execute the production process. Thus, process designers do not need to
think of production resources or production logistics, creating resource-agnostic process models.
Such process models can then be used in various production systems, or different parts of process
models can be used in different production systems. To execute such models, they need to be
enriched with data from specific resources automatically, creating resource-aware process models.

Motivation, Research Hypotheses, Goals and Methodology 19

The execution performance of such process models can be estimated and compared for different
production systems before they are executed, thus providing an option to choose a production
system that would bring the best overall performance.

The research challenges (Ch1-Chb5) presented in Section 1 and the research problem discussed
in this section, motivated us to create a novel solution for production process modeling and
execution. We believe that a novel MD solution with a DSML for production process modeling can
be a basis for improving production flexibility in a smart factory. Such a DSML needs to be used
to create machine-readable models, both resource-agnostic and resource-aware production process
models, allowing the automatic transformation of models into executable resource instructions and
manufacturing documentation. Therefore, production process models are not used just for
documentation purposes but to guide production process execution.

In the following section, we formulate hypotheses related to this research, based on the
motivation discussed in this section.

3.2 Research Hypotheses

Considering the research problem and motivation outlined in the previous section, we formulate the
main hypothesis of our research.

Hypothesis 0 (Ho). It is possible to create an MD solution for resource-agnostic and
resource-aware specification of production processes and automatic transformation of
such specifications into executable resource instructions and manufacturing
documentation.

The main task of our research, derived from the main hypothesis, is to define a methodological
approach and a software solution that utilizes MD principles and a DSML to specify production
processes formally, contributing to flexible production and increasing customer demands, and
helping process designers in modeling production processes and keeping the manufacturing
documentation up to date in a more efficient manner. Furthermore, such formally specified
production process models need to be machine-readable, thus enabling the automatic generation of
executable resource instructions and manufacturing documentation.

The following four hypotheses are derived from the hypothesis Ho to better address different
aspects of the main hypothesis. By confirming or rejecting the derived hypotheses, we will confirm
or reject the main hypothesis Ho.

Hypothesis 1 (H1). It is possible to create a DSML that can be used to model production
processes with all the details required for the automatic generation of executable
resource instructions.

Production processes need to be modeled by using a DSML in a coherent and concise way,
thus creating machine-readable process models. By enriching process models with all the necessary
details needed to execute production processes, such models can be automatically transformed into
executable resource instructions which are then sent to the factory's shop floor.

Production process models that contain enough details to be used for automated production,
often need to be modeled by different users, such as process and quality engineers. Therefore,
models must include different aspects and viewpoints of production process modeling, such as
process execution, error handling, and quality and safety aspects. All these different aspects and
viewpoints need to be unified within a single process model, thus creating a single point of
knowledge about production processes. Therefore, the second derived hypothesis is defined as
follows.

Hypothesis 2 (H.). It is possible to represent different aspects of production processes in
a uniform, resource-agnostic way, thus allowing for model reuse in different production
systems while maintaining model readability and understandability.

20 Motivation, Research Hypotheses, Goals and Methodology

Instruction-generation-ready production process models become overloaded with details about
resources that execute production process steps, production logistic activities, and machine
configuration activities. It would be hard to specify such resource-aware process models manually.
Process designers need to specify production process models independently of any specific
production system, thus not considering resources and transportation and configuration process
steps. Such resource-agnostic process models could be used in any production system and would
be easy to read and understand.

However, resource-agnostic models do not contain enough information to be transformed into
resource instructions to execute process operations. Therefore, resource-aware production process
models need to be created based on resource-agnostic process models and production system details
in which models are to be executed. Resource-aware process models could be created manually by
process designers, which would be a burdensome task, or they can be created automatically by an
intelligent system, such as an orchestrator. As modeling concepts related to production systems
need to be included in the DSML for production process modeling, process designers will use such
concepts to manually change or optimize resource-aware process models created by an orchestrator
whenever necessary. The need for the DSML to contain modeling concepts related to production
systems to enable manual or automatic enrichments of resource-agnostic process models is
presented in the following hypothesis.

Hypothesis 3 (Hs). It is possible to create a DSML comprising modeling concepts that
allow enriching the resource-agnostic production process models with details about a
specific production system, thus creating resource-aware production process models.

To be independent of any production system, the modeling of resource-agnostic production
process models can rest on the main concepts of skill-based engineering. Thus, production process
steps can be described with the capabilities required for their execution. Resources of production
systems can offer a set of capabilities they have. Accordingly, these required and offered
capabilities can be matched automatically, thus matching process steps and resources. An
orchestrator is able to perform such an automatic matching, which can be seen as an M2M
transformation, automatically creating resource-aware process models from resource-agnostic
process models.

Besides matching process steps with resources to execute them, an orchestrator needs to
automatically add transportation and configuration process steps as well, based on the production
system topology and logistics. An orchestrator with its matching algorithms is not a part of this
research and is used as a black box, while more details about the orchestrator can be found in [4,5].
With this automatic enrichment of resource-agnostic process models, process designers can create
production process models independent of a production system yet be able to automatically prepare
them for execution, making the process modeling task easier. To execute production processes,
their models need to be transformed into executable resource instructions, as described in the
following hypothesis.

Hypothesis 4 (Hs). It is possible to automatically generate executable resource
instructions and manufacturing documentation of different types from production process
models.

By using an instruction generator with M2T transformation rules, resource-aware production
process models can be automatically transformed into executable resource instructions. The
generated instructions can be sent to resources for execution, thus completing the main purpose of
creating production process models — to lead production process execution on the shop floor. Also,
as production process models are machine-readable, they can be transformed into manufacturing
documentation. Such a transformation would help process designers avoid keeping the
manufacturing documentation up to date manually. Therefore, process designers' time can be saved
due to the automatic generation of manufacturing documentation, and errors caused by manual
documentation editing can be mitigated.

Motivation, Research Hypotheses, Goals and Methodology 21

In the following section, we discuss research goals and critical success factors derived from
the research hypotheses presented in this section.

3.3 Research Goals

The main goal of our research is to introduce factories into the digital transformation process, by
providing dynamic production management and automatic production process execution based on
process models. To accomplish the main research goal, the following critical success factors should
be achieved, as summarized in Figure 3.1:

e The usage of a single production process model in various production systems should be
provided, by creating a resource-agnostic production process model, independently from
any production system. Thus, process designers can model a production process more
easily, without the need to have knowledge about a production system in which the process
is to be executed.

Process designers should be released from the burdensome manual task of creating a
resource-aware production process model, specific to a production system. Therefore, the
automatic transformation of resource-agnostic into resource-aware production process
models should be provided. However, manual resource-aware model changes should be
allowed whenever seem necessary by process designers.

A resource-aware production process model is enriched with production system details,
such as smart resources, production logistic activities, and machine configuration activities.
Such a production process model should lead production process execution automatically.
Thus, the automatic transformation of a resource-aware production process model into
executable resource-specific instructions should be provided.

Tracking and fixing badly modeled processes and production errors should be enabled with
the mechanisms for production process execution monitoring.

Different user groups should be focused only on production process aspects they are
responsible for, by creating different views on a process model through different modeling
layers. Therefore, a production process model represents a single point of knowledge and
different users can participate together when modeling different aspects of a production
process. By adding or removing modeling layers from a production process model, it should
be possible to show or hide different aspects of a production process, making its model
clearer and more concise.

Single resource-agnostic b & \ :
el " b Clear and concise
NI'OCesSSs model: various m . e
I : = models: multi-lavering
production systems IES) \\ . /
Automatic generation of \ L Automatic generation
A
resource-aware process é A of manufacturing
K models j Critical \ documentation /
Success
/;”Hlll'lﬁ(' generation of o \ Factors /— \
i g ‘ = , Product and process
executable resource- A
PR i variations management
\\p(‘('lll(' instructions = o, / \ /
Process execution "y .
SR Guided production
monitoring

Figure 3.1. Critical success factors of the novel MD solution.

22 Motivation, Research Hypotheses, Goals and Methodology

Process designers should be released from keeping the manufacturing documentation up to
date manually. Numerous manufacturing documents of different types should be generated
and updated automatically, by transforming a production process model into the
documentation.

All product and process variations should be stored in a single production process model.
However, as too many variations may exist in a process model, making it hard to read and
maintain, mechanisms to choose a variation to be focused on should be provided.

Novice workers should be provided with automatic help during the training and creation of
products, and the time spent by expert workers when helping novice ones should be
reduced. This can be achieved by using production process models for guided production,
sending instructions one by one to human workers, alongside images and video footage on
how to perform the instructions, generated from a process model.

In the research presented in this thesis, we utilize MD principles, creating a novel approach to
the production process modeling and execution. Core elements of the approach are a novel DSML
and a tool for production process modeling and code generators for the automatic transformation of
production process models into executable resource instructions and manufacturing documentation.
In the following section, we discuss the expected contributions and results of our research.

3.4 Expected Contributions and Results

We expect the following theoretical, development, application, and socio-economic contributions
from our research:

Theoretical contributions in the fields of production process modeling and automatic

process execution are identified as follows:

o survey on existing languages and approaches for production process modeling;

o identification of main concepts needed to implement a DSML for production process
modeling in the context of Industry 4.0, which models are suitable for the dynamic
orchestration and the automatic generation of executable resource instructions and
manufacturing documentation;

o specification of an MD solution for dynamic orchestration and automatic instruction
and documentation generation based on DSML models;

o specification of a methodology to automatically transform resource-agnostic process
models into resource-aware process models; and

o application of MD principles in the production domain, contributing to easier
production process modeling and automatic execution of processes.

Development contributions by implementing a tool for production process modeling and

code generators for the automatic generation of executable resource instructions and

manufacturing documentation are identified as follows:

o developed and implemented a novel modeling tool that utilizes the DSML for
production process modeling;

o developed and implemented an instruction generator for the automatic generation of
resource instructions to execute process operations based on DSML models; and

o developed and implemented documentation generators for the automatic generation of
different manufacturing documentation based on DSML models.

Application contributions are reflected through several use cases in which the MD

solution is applied and the evaluation process of the DSML and its modeling tool. These

contributions include:

o demonstration of a practical application of the MD solution and the DSML for
production process modeling in the assembly industry;

o evaluation of the DSML and the modeling tool for production process modeling by
users from different user categories; and

Motivation, Research Hypotheses, Goals and Methodology 23

o presentation of a new practical experience from applying a novel methodological
approach, a modeling tool, and a DSML.

e Socio-economic contributions by putting into public use a general model of production
process management, applicable in a wide range of organizations in a way that enables
significant production process improvement and raises general accumulated knowledge on
how to contribute to such a process improvement contemporarily.

The main expected result of our research is easier and simpler formal modeling of production
processes in the era of Industry 4.0. Created models are to lead the process execution in flexible
production and keep the manufacturing documentation up to date automatically, thus responding to
increasing customer demands for individualized products and coping with Industry 4.0 challenges
(Ch1-Ch5). The expected end-users of the production process modeling tool and language are
process designers, consisting of process and quality engineers, who need to specify production
process models.

In the following section, we present a research methodology we follow in order to investigate
the problem domain, design, develop and evaluate the solution, publish the research results, and
confirm or reject the research hypotheses.

3.5 Research Methodology

The real world is being modified by humans as they design and develop tools to change its
environment, making it more artificial [162]. The design of tools is concerned with how developed
artifacts will change the real world to attain specific goals. Nowadays, these tools and artifacts are
usually based on IT, making the world even more artificial. The design of an IT system is required
to make progress in solving real-life problems and understanding how and why the system works.
Researchers in IT need to conceptualize and represent real problems, construct appropriate
techniques for their solution, and implement and evaluate the solution using appropriate criteria
[163]. These steps lead us to the design science paradigm, which aims to develop ways to achieve
human goals. The design science paradigm's goal is to extend the boundaries of human and
organizational capabilities by creating new and innovative artifacts [164].

Hevner et al. [164] described the characteristics of the Design Science Research (DSR)
paradigm in ISs. DSR is a problem-solving paradigm aiming to enhance technology and science
knowledge by creating innovative artifacts that solve real-world problems and improving an
environment in which the artifacts are instantiated [164,165]. The DSR results consist of newly
designed artifacts and design knowledge, providing a better understanding of why the artifacts
contribute or not to the application environment.

There are several process models on how to perform DSR [165], but the most referenced DSR
process model is proposed by Peffers et al. [166]. The authors presented Design Science Research
Methodology (DSRM), incorporating principles, practices, and procedures required to produce and
present research in the IS field. A commonly accepted methodology is provided by the authors for
successfully carrying out design science research. The methodology helps with recognizing and
legitimizing the research, its objectives, processes, and outputs, as researchers follow the commonly
understood methodology instead of doing ad-hoc research. The methodology introduces six
activities when performing the DSR process [165,166], which we utilize in our research to define
the research plan. In the following list, we describe the activities we performed when we conducted
the research presented in this thesis:

e Activity 1. First, we identified research problems that are present in contemporary
production systems aiming to become flexible and responsive to customer needs in the era
of Industry 4.0. The identification of research problems and the motivation corresponds to
the first DSRM activity. Challenges that appear in the era of Industry 4.0 related to our
research and the motivation to cope with these challenges are discussed in Section 1 and
Section 3. The decision to create a novel DSML — MultiProLan is based on the research

24 Motivation, Research Hypotheses, Goals and Methodology

conducted and presented in Section 4. In the research presented in Section 4, we formulated
requirements for a production process modeling language in the era of Industry 4.0 needs
to fulfill and analyzed various existing languages whether they fulfill these requirements.
According to the reviewed literature, technical documentation, interviewed domain experts,
use cases, and the Industry 4.0 environment, we have analyzed a domain of production
process modeling suitable for automatic instruction generation and execution. The domain
analysis has been performed by means of the Feature-Oriented Domain Analysis (FODA)
method [93] and the results are given in Section 6.

e Activity 2. After the research problems were identified, i.e., challenges that Industry 4.0
introduced, we defined the objectives that our proposed solution aims to achieve and the
boundaries of our solution. Defining the objectives of the proposed solution represents the
second DSRM activity. The goals of our research are presented in Section 1 and Section 3,
while the objectives of our MD solution, MultiProLan, and the process modeling tool, are
outlined in Section 5.

e Activity 3. The specification and development of our MD solution, comprising of a novel
DSML — MultiProLan, the production process modeling tool, and various code generators,
are done after their objectives were defined. The design and development of the solution is
part of the third DSRM activity. The design of our MD solution and MultiProLan and the
technologies we use to implement the solution and the language are presented in Section 5.
Implementation details, abstract and concrete syntaxes of MultiProLan, and its process
modeling tool are presented in Section 7.

e Activity 4. Our MD solution and MultiProLan are applied in two proof-of-concept use
cases. In the first use case, a customized wooden box is assembled, demonstrating the
possibilities of MultiProLan. The second use case represents a demonstration environment
created to test the whole solution in assembling objects from LEGO® bricks. These use
cases are presented in Section 8. The demonstration of the solution is part of the fourth
DSRM activity.

e Activity 5. MultiProLan and its modeling tool are the main components of our MD solution
for production process modeling and execution. Therefore, we evaluated their quality
characteristics, by applying the Framework for Qualitative Assessment of Domain-specific
languages (FQAD) [101]. The evaluation participants performed an experiment in which
they modeled production processes and evaluated the following quality characteristics of
MultiProLan and the process modeling tool: functional suitability, usability, reliability,
expressiveness, and productivity. The evaluation results are presented in Section 9. The
evaluation of the solution corresponds to the fifth DSRM activity.

e Activity 6. Research and development results of production process modeling and
execution are presented both within the academic community and in the industry. We
presented our research results in international conferences and journals and gathered
feedback from reviewers and conference participants about our MD solution and
MultiProLan. We also present these results in this thesis. Our research and development
results are discussed with relevant stakeholders in the industry, and we applied the whole
MD solution in an industrial demonstration environment. The presentation and discussion
of contributions and results of the developed solution and the whole research are part of the
sixth DSRM activity.

DSRM activities 1 through 5 related to our research are presented in various sections of this
thesis, while the sixth DSRM activity related to our research results is presented in the rest of this
section. The initial research proposal in the context of Industry 4.0 manufacturing and the first draft
of our MD solution was presented at International Scientific Conference on Informatics
(Informatics) [8]. This research proposal was extended with more details, and an overview of
existing production process modeling languages with a pilot comparative analysis of a few
languages was published in the Open Computer Science journal [9]. The DSML for production
process modeling named MultiProLan was first introduced at Federated Conference on Computer
Science and Information Systems (FedCSIS) with its abstract and concrete syntaxes and the wooden
box production example [10]. The improved abstract and concrete syntaxes were then presented in

Motivation, Research Hypotheses, Goals and Methodology 25

Journal of Computer Languages, alongside the production process modeling domain analysis and
the evaluation of MultiProLan and its process modeling tool [11]. The automatic generation of
manufacturing documentation from MultiProLan models was introduced at International
Conference on Information Society and Technology (ICIST) together with the needed abstract
syntax extensions and a new production process modeling example [12]. An application of
MultiProLan in an assembly use case, creating a customizable flag from LEGO® bricks, was
presented at the Advances in Production Management Systems (APMS) conference [13]. Finally,
an overview of the whole MD solution for production process modeling, with a new assembly use
case and more complex process model examples are presented in International Journal of
Production Research, alongside the introduction of language requirements and a comparison of
process modeling languages based on these requirements [14].

In addition to the papers published during our research, other authors have published research
in which we also participated, and which was inspired by the outcomes and artifacts of our research.
The first overview of the orchestrator's architecture, which we are using in our research, was
presented by Pisari¢ et al. at the Advances in Production Management Systems (APMS) conference
[4]. An extended and more detailed version of the orchestrator's architecture was presented in the
Applied Sciences journal [5]. This paper also includes an assembly use case consisting of
MultiProLan process models and production system models, introduced for the first time, and
created by the resource modeling tool we are using in our MD solution.

In addition to the production process and production system modeling, Antanasijevié¢ et al.
[15] proposed research on human resource modeling in the context of Industry 4.0 and presented it
at International Scientific Conference on Informatics (Informatics). Based on the extensions of
MultiProLan and the production system modeling language, the authors plan to create a new
language for the formal specification of human workers' roles, skills, competencies, capabilities,
and limitations to achieve better integration of human workers and machines in a smart factory. The
DSML named Human Resource Modeling Language (HResModLan) is in the development phase,
aiming at human resource modeling from two different perspectives: production and organizational.
The first prototype of the HResModLan's production perspective, aimed at the formal specification
of a human worker as a production resource, is presented in the Acta Electrotechnica et Informatica
journal [16] and will be further developed in the future. The organizational perspective of the
language named HResModLan:Org is already created and presented in the IPSI Bgd Transactions
on Internet Research journal [17] with the aim to provide the easier and more effective requiring,
selection, hiring and development of human workers within an organization.

A research proposal and an MDSD approach to enable the automatic generation of smart
contracts used by collaborative parties to supervise the state of production was presented by
Todorovi¢ et al. at Federated Conference on Computer Science and Information Systems (FedCSIS)
[18]. This research proposal aims to connect collaborative parties when production is shared
between them and ensure that production is conducted according to the agreed conditions. To model
collaborative production processes in the proposed MDSD approach, a new MultiProLan-based
DSML, named Collaborative Extension of MultiProLan (CE-MultiProLan), was created by
Todorovi¢ et al., and its model examples were presented at International Conference on Innovative
Intelligent Industrial Production and Logistics (IN4PL) [19].

The research results presented in this Ph.D. thesis are also part of the sixth DSRM activity.
The discussed research plan, consisting of six DSRM activities, creates guidelines to achieve the
research goal: to introduce factories into the digital transformation process. Before creating a novel
software solution that aims to help us achieve the research goal, the research problem, motivation,
and objectives of the solution must be precisely defined. After the design and development of the
novel software solution, its performance must be evaluated and demonstrated in various use cases.
By presenting the solution to the academic community and in the industry, useful feedback and
future research directions can be gathered. Therefore, we applied the DSRM methodology in our
research to systematically develop the novel MD solution for modeling and automatic execution of
production processes, discussed in detail in the following sections.

26 Motivation, Research Hypotheses, Goals and Methodology

3.6 Summary

In this section, we presented the research motivation, hypotheses, goals, expected contributions and
results, and the methodology used to conduct the research. To cope with the Industry 4.0 challenges
(Ch1-Ch5) and introduce factories into the digital transformation process, we proposed an
application of the MD paradigm and a DSML to provide a formal specification and execution of
production processes. Accordingly, we formulated the main hypothesis of the research, in which
we stated that it is possible to create a novel MD solution that would provide the specification of
resource-agnostic and resource-aware production process models, used for the automatic generation
of executable resource instructions and manufacturing documentation.

Based on the background and theoretical foundation presented in the previous section, and the
discussion provided in this section, we believe that it is possible to create such an MD solution for
production process modeling and execution. We also investigate the application of the MD
paradigm in 1Ss and Industry 4.0 in the following section, as the proposed MD solution could be
seen as an IS applied in the Industry 4.0 context. The central part of the proposed MD solution
would be a DSML for production process modeling, whose models would be suitable for dynamic
production orchestration and automatic execution. Therefore, in the following section, we also
investigate existing languages and approaches for production process modeling, in order to explore
whether there is an existing language or approach that fits our needs.

State-of-the-Art 27

4 State-of-the-Art

To achieve the research goals presented in the previous section, we examined the literature,
gathering knowledge related to the MD paradigm, DSLs, Industry 4.0, and production process
modeling. Accordingly, we investigated the state-of-the-art presented in this Ph.D. thesis based on
the following aspects related to our research, especially on production process modeling languages
and approaches.

In Section 4.1, we discuss the application of the MD paradigm and DSLs in the ISs and
Industry 4.0 domains. In the domain of ISs, we examined the application of MD principles in the
design and development of ISs, the integration of heterogeneous technical spaces, document
engineering, and measurement and control systems. These aspects are relevant to our research as
we plan to develop a new MD solution that can be seen as an IS used for production process
modeling and execution. In the domain of Industry 4.0, we investigated the application of MD
principles in general, particularly in the aspects related to the challenges we discussed in Section 1.
The aspects related to Industry 4.0 we investigated are error handling in production processes,
manufacturing documentation, guided production, and process modeling.

In Section 4.2, we discuss production process modeling, the main aspect of the state-of-the-art
related to this thesis. As the main part of the proposed MD solution would be a DSML for
production process modeling, we examined whether there is an existing process modeling language
that fits our needs. Therefore, we defined the requirements a production process modeling language
needs to fulfill in order to be used for dynamic production orchestration and automatic execution
of production processes in the Industry 4.0 era. Then we analyzed various existing modeling
languages and approaches that could be used for such a purpose, based on the defined requirements.

The summary of the state-of-the-art related to this Ph.D. thesis is outlined in Section 4.3.

4.1 Application of the MD Paradigm and DSLs

The MD solution for production process specification and execution we propose in this Ph.D. thesis
can be seen as an IS applied in the manufacturing domain of Industry 4.0. Thus, in this section, we
present an overview of the related research and the application of the MD paradigm and DSLs in
ISs and Industry 4.0.

In Section 4.1.1, we discuss the research related to the MD paradigm and DSLs in the field of
ISs, conducted by the Data Science and Information Systems group. In Section 4.1.2, we outline
the related research in the domain of Industry 4.0 and the application of the MD paradigm and DSLs
in such a domain.

28 State-of-the-Art

4.1.1 Information Systems

Research related to the MD paradigm and DSLs in the field of ISs has a long history in the Data
Science and Information Systems group of the Faculty of Technical Sciences, University of Novi
Sad. The group has been applying MD principles and DSLs in the domains of the design and
development of ISs, integration of heterogeneous technical spaces, document engineering, and
measurement and control systems, among others. The research presented in this Ph.D. thesis was
partially conducted in the Data Science and Information Systems group, having foundations on the
knowledge and experience that the group has gathered throughout the years.

In this section, we discuss the research results of the Data Science and Information Systems
group, related to the application of the MD paradigm and DSLs in various domains, presented in
the following subsections. In Section 4.1.1.1, we discuss the 11S*Case approach created for the
design and development of ISs. The integration of heterogeneous technical spaces, based on the
MD paradigm, is outlined in Section 4.1.1.2. The MD paradigm and DSLs in document engineering
and robot motion control are discussed in Section 4.1.1.3.

4.1.1.1 Information System Design Based on the 11S*Case Approach

The Integrated Information Systems*Case (11S*Case) approach and tool have been developed for
decades by researchers from the Data Science and Information Systems group. The tool has been
used for the design and development of various aspects of ISs, and some of these aspects are
discussed in the rest of this section.

To design database schemas, various approaches and techniques can be used, such as Entity-
Relationship (ER) modeling or Unified Modeling Language (UML), with an appropriate Computer
Aided Software Engineering (CASE) tool. However, these approaches and techniques are often
incomprehensible to end-users, which may lead to misunderstandings between designers and end-
users when designing a database schema. To overcome such an issue, Lukovi¢ et al. [167] proposed
a new approach and a CASE tool for automated database schema design based on the concept end-
users are familiar with — the form type concept. It is the central concept of the presented 11S*Case
tool for the design and development of complex database schemas, representing screen forms that
end-users are familiar with when communicating with an 1S. The 11S*Case tool is used to design a
database schema based on form types and generate an implementation of the database schema
automatically. As such an approach and a tool do not require advanced knowledge related to
database schemas, they can simplify the design and development of database schemas, avoid or
alleviate misunderstandings between designers and end-users, save work time, and lower the
designers' required effort.

Besides designing database schemas, 11S*Case is also used for the conceptual modeling of
business applications and for generating application prototypes. Lukovié¢ et al. [168] presented a
DSL and a tool embedded into 11S*Case for the specification of check constraints and complex
functionalities of business applications. The DSL is developed to provide the specification of check
constraints on the PIM level, allowing designers to specify check constraints using problem domain
concepts. Business application functionalities are also specified at the PIM level in [1S*Case in a
visually oriented way. Therefore, designers are not burdened with the implementation details and
can be focused on the problem domain. To automatically transform PIMs of check constraints and
application functionalities into PSMs and program code, M2M and M2T transformations are
implemented. Therefore, fully executable application prototypes can be generated automatically.

The 11S*Case PIM concepts are specified in a formal way through the meta-model by using
the Ecore meta-meta-model [94,95]. Celikovi¢ et al. [169] presented a part of the 11S*Case meta-
model, its concrete textual syntax, and an application of the language by creating an IS model
example. The meta-model can be used for the verification of generated database schemas, enabling
the detection and resolution of formal conflicts at the level of the database model, such as various
constraint collisions.

State-of-the-Art 29

As the database reverse engineering process can be used to transform a physical database
schema into a conceptual or a logical database schema, or even an application prototype, Risti¢ et
al. [170] outlined the importance of using meta-models and transformations in such a process. The
authors presented part of meta-models and the M2M transformation between physical database
schema and generic relational database schema. By integrating meta-models and a chain of M2M
and M2T transformations into 11S*Case, the reverse engineering process can be performed,
allowing 11S*Case to transform legacy relational database schemas into executable application
prototypes.

11S*Case, which was renamed into Integrated Information Systems*Studio (11S*Studio) after
many languages and extensions were integrated into it, has been further improved and developed
nowadays. New technologies and platforms are used to create new versions of 11S*Studio and
introduce novel features. For example, Lukovi¢ et al. [171] presented a part of the 11S*Case PIM
meta-model, its novel graphical concrete syntax, and a code generator developed on the ADOxx
platform [172-174]. The concrete graphical syntax was created as some designers may use it more
efficiently than the textual one. However, the evaluation of the user experience with 11S*Case
textual and graphical syntaxes is left for future research.

Future research and development related to 11S*Case also comprise the support and application
in contemporary fields of the IS development domain. The research conducted by Terzi¢ et al. [175]
resulted in the development of a new approach for the specification of microservice software
architecture. The presented research was derived from the 11S*Case ambient, and the 11S*Case
approach is planned to support the specification of such architectures. Terzi¢ et al. presented
MicroBuilder which comprises MicroDSL and MicroGenerator modules. MicroDSL is a DSL for
the specification of REpresentational State Transfer (REST) microservice software architectures,
while MicroGenerator is a code generator used to generate executable program code from
MicroDSL models. Therefore, the process of microservice software architecture specification and
configuration can be automated and more easily performed.

As the main task of the research presented in this Ph.D. thesis is the development of a novel
MD solution for modeling and automatic execution of production processes, the accumulated
knowledge and experience in developing 11S*Case can help us create such a novel MD solution.
The solution represents an IS that utilizes MD principles and has various DSMLs, modeling tools,
and code generators.

4.1.1.2 Integration of Heterogeneous Technical Spaces

The exchange of models between different modeling tools is necessary as usually various modeling
tools are used to complete a certain task in an organization. Also, the exchange of models is needed
when replacing an old modeling tool with a new one that better fits the users' needs. Therefore,
Kern et al. [176] presented a mapping-based approach to realize the exchange of models between
tools by connecting their meta-models. The central part of the approach is a declarative mapping
language and a tool named AnyMap that allows the specification of mappings between source and
target meta-models. The approach was created to allow efficient and user-oriented import and
export of models in various modeling tools.

In the loT environment, various devices are connected and they need to exchange data
continuously. Accordingly, similar to the exchange of models between tools, different schemas of
transmitted and received data between 10T devices need to be connected. 10T devices often
communicate using different protocols and send data belonging to different technical spaces. Thus,
Dimitrieski et al. [156,177] used the AnyMap language and tool to provide a uniform way of
creating transformations between technical spaces. The authors proposed an algorithm that reuses
previously created mappings to automatize the process of adapting new mappings to the schema
variations, while keeping an option to manually refine the new mappings when needed. The
algorithm is evaluated in a case study related to the integration of sensor devices and MESs.

To enable continuous information flow in Industry 4.0 production, the integration of 1Ss and
machines on the shop floor is required, which is a challenging, time-consuming, and expensive task.

30 State-of-the-Art

Such integration is required as machine interfaces may differ and are often adapted for a certain
domain, manufacturer, or machine itself. Kern et al. [178,179] presented a novel approach and a
framework for a structured, automated, and reusable integration of ISs and machines on the shop
floor. The authors used the AnyMap language and tool, and an intelligent solution for connecting
different systems that rely on the integrated, machine-independent learning mechanism, allowing a
systematic reuse of integration knowledge from previous projects. By using the proposed
framework, a specification of new mapping can be automated when a new machine arrives on the
shop floor, and existing machines can be connected with an IS with minimum impact on the system,
thus preparing them for the Industry 4.0 environment.

The integration of heterogeneous technical spaces is also needed in the research presented in
this thesis. In the proposed MD solution, we plan to match capability-based production process
models with the models of smart resources working on the shop floor. As production process steps
require capabilities for their execution, and smart resources offer various capabilities they have, the
integration of their models can be achieved. Therefore, it would be possible to transform resource-
agnostic into resource-aware production process models automatically.

4.1.1.3 MD Paradigm and DSLs in Document Engineering and Robot Motion
Control

Document engineering refers to the activities of specification, implementation, and usage of
documents in an organization. As documents can be frequently refined and updated, new solutions
are needed to keep the documentation up to date easily. One way to formally specify and render
documents is to use DSLs, thus allowing the automatic update of the documentation. Djuki¢ et al.
[180] proposed a framework and DSLs for the formal and incremental specification and rendering
of documents in directory publishing. The authors presented DSLs used in document engineering,
for the modeling of small advertisements and business activities related to documents and their
content units. The framework that contains these languages enables the automation of document
engineering, by providing the generation of documents in an organization.

Djuki¢ et al. [181] presented an approach in which DSLs and their tools are used as client
applications in the areas of document engineering and measurement and control systems. Action
reports are used in the presented approach as special transformations that, in addition to the
description of M2T transformations, contain commands and rules for invoking commands during
model execution. The usage of the approach with action reports allows the specification of
processes for documenting model validation and the synchronization of actions on a model to the
state of the real system. Such synchronization can be applied in production systems as there is a
need to document each action of business procedures to models or to execute each action on models
by relying on the previously generated documents.

The same authors also presented an approach to handling frequent variations of modeling
languages and models for robot motion control [182]. As there is a need for improvements in
software development in automation and robot control, particularly the development of tools for
formal specification and execution of control processes and the creation and application of robot-
motion control languages, the authors proposed a new MD approach. The approach may contribute
to the development of intelligent robot controllers and the development of measurement and control
systems.

The experience gathered from document engineering, especially in measurement and control
systems, can help us in creating a solution for keeping the manufacturing documentation up to date
effortlessly. The development of an approach for robot motion control also helps us understand the
way robots are utilized, which are particularly used in the Industry 4.0 era.

State-of-the-Art 31

4.1.2 Industry 4.0

In recent years, we are witnessing that the MD paradigm, meta-modeling, and DSLs are
increasingly applied in the context of Industry 4.0 [183]. They are particularly used in:

development and management of CPSs and smart manufacturing [184,185];

integration of heterogeneous technical spaces [156];

fields of 10T, manufacturing systems, and multi-agent systems [186];

fields of robotics, the development of software for robots [187], and mobile robotic systems
[188]; and

o formal description of processes, process information exchange, decision-making support,
simulation of manufacturing systems, and material flow systems [189].

The MD paradigm, DSLs, meta-modeling techniques, and model transformations are helpful
when needed to make a higher abstraction level of a domain problem and contribute to solving
problems systematically. Therefore, we believe that DSLs may contribute to automatic production
by formally defining production process models and automatically generating instructions to
execute process operations using model transformations and following MD principles.

Various technologies and environments for meta-modeling are used in Industry 4.0 in general
and particularly in CPS, loT, robotics, and process modeling domains. Most commonly used
environments and languages to develop DSLs, meta-models, and tools are UML [43], Ecore within
the modeling platform EMF [94,95], Generic Modeling Environment (GME) [190,191], MontiCore
[192,193], MetaEdit+ [194,195], MOF [153], and Xtext [196]. Languages such as Generation of
Embedded Real-Time Code based on Aspects (GenERTICA) [197] and Xtend [198] are used to
implement different types of transformations.

As there are plenty of DSLs and meta-modeling techniques used to address various Industry
4.0 challenges, it may imply that such challenges cannot be addressed properly by using established
modeling techniques. As for Industry 4.0 process modeling, DSLs are the most popular, followed
by the application of knowledge representation techniques, formal methods, and UML [183]. Meta-
modeling is mostly applied in manufacturing to achieve uniformity, standardization, and coherent
and formal description of processes [189]. We may also notice a strong focus on model
transformations, code generations, and the usage of models at runtime.

Accordingly, we believe that applying an appropriate MD approach with DSLs can support
flexible, orchestrated, and highly automated production in the domain of Industry 4.0. In the rest of
this section, we discuss the following Industry 4.0 aspects in more detail: error handling in
production processes (see Section 4.1.2.1), manufacturing documentation (see Section 4.1.2.2),
guided production (see Section 4.1.2.3), and process modeling in general (see Section 4.1.2.4). We
discuss these aspects as they are present in contemporary production systems and the MD paradigm
and DSLs are applied in these aspects. They are also related to the research challenges (Ch1-Ch5)
presented in Section 1.

4.1.2.1 Error Handling in Production Processes

As industrial systems become increasingly complex and expensive, there is less tolerance for any
faults that could cause performance degradation, productivity decrease, or safety hazards [199].
During the process execution, there is a need to detect, classify, and mitigate errors as soon as
possible and implement error handling mechanisms to minimize costs caused by errors. An error
handler represents a set of actions needed to mitigate the effects of an error and avoid failure
scenarios. There are different error handling methods to aid manufacturing systems; however, they
are rarely integrated within a production process, as there is a lack of defined workflow, tools, and
processes [200].

In contemporary manufacturing companies, known errors and failures that could occur during
production are usually specified in textual documents or spreadsheets, such as Failure Mode and
Effect Analysis (FMEA). FMEA is a technique used to define, identify, and eliminate known and

32 State-of-the-Art

potential failures from a system, design, process, or service before they reach a customer [27].
Textual, informal documents cannot be used to automatically derive corrective steps from them and
choose specific resources to perform such steps. In flexible production, negative effects caused by
an occurred error need to be removed by using formally defined corrective steps, automatically
assigned resources to perform the steps, and without stopping production, whenever it is possible
to do so. Thus, detecting any disturbance during production requires error handling, which is
essential as errors can occur at any step of a production process. Accordingly, they need to be
carefully managed and modeled in order to define errors clearly and identify their boundaries [201].

One way to formally specify potential errors and error handlers is to integrate them into
production process models created by means of a DSL. By utilizing appropriate code generators,
such production process models could be used to automatically initiate corrective steps whenever a
known error occurs, leading to better response to production errors and minimizing costs caused by
errors.

4.1.2.2 Manufacturing Documentation

Manufacturing documentation is required by various methodologies and standards that a
manufacturing company utilizes. Creating and modifying the documentation is usually a time-
consuming task that additionally burdens process designers. Especially when there are numerous
product and process variations, keeping manufacturing documentation up to date is challenging.
Manufacturing documentation needs to be updated whenever a product is changed, certain technical
modifications are done in a production system, production volume is adjusted, or production is
optimized. These changes are usually stored as separate documents or, in some cases, can be even
completely undocumented [202]. The documentation must be kept up to date as any additional
change to a product or its maintenance requires accurate documentation. Accordingly, to keep the
documentation up to date, additional personnel need to be engaged, raising the costs for a
manufacturing company and even for a final product. Also, the creation and update of
documentation is usually done in addition to the process planning activities. Therefore, process
designers waste time writing manufacturing documentation using information already created in
the process planning phase [131].

For instance, Advanced Product Quality Planning (APQP) is a structured method for defining
and executing actions required to ensure that a product satisfies a customer — all required steps are
completed on time, with high quality and acceptable cost [29]. Documents such as FMEA
spreadsheets are required to manage APQP in production, resulting in a high workload of teams in
charge of manufacturing documentation writing. FMEA spreadsheets can be large, leading to heavy
manual work due to the lack of a proper tool and the complexity of the documentation writing task
[131]. Such heavy work is usually not effective enough; thus, FMEA is not updated continuously
as changes in production appear. The same statements can also be applied to other document types,
such as Bills of Materials (BOMSs), Flow Process Charts (FPCs), and user manuals. This issue is
additionally emphasized in the context of Industry 4.0, having numerous product and process
variations.

The MD paradigm can be applied to keep the documentation up to date and release process
designers from such a burdensome manual task. For such a purpose, production process models
need to be formally specified and store the information required by the documentation. Storing all
the information in a single place can be useful, as different document types share some information,
such as names of a production process and its steps or the materials used in production process
steps. Therefore, the same information does not need to be written multiple times in documents of
different types but stored once in a production process model. As such a model can be formally
specified by using a DSL, the model can be automatically transformed into the required
documentation, saving the time process designers need to invest and lowering the costs of a
manufacturing company.

State-of-the-Art 33

4.1.2.3 Guided Production

Considering the human workforce in Industry 4.0 manufacturing companies, there are certain
challenges that need to be addressed. As different products and their variations are produced in a
factory, human workers must adapt and often create new products. Therefore, human workers are
reallocated frequently, changing their position, workplace, and products they produce [161].
Additionally, it is possible to lose the know-how in manufacturing companies as increasing
automation in factories may lead to the reduction of the human workforce [203], leaving human
workers to perform a large variety of tasks. Such a need could be seen during the pandemic of
COVID-19 as well, when there were frequent worker replacements and changes of workers' tasks
due to their unplanned absences. Thus, these task changes lead to increased production dynamics
and require fine coordination of workers in a factory, so their work can be optimized, and production
downtime avoided. Accordingly, fast knowledge transfer is required so human workers do not lose
time when changing workplaces, as well as to spend less time training the workers when creating
new products and for expert workers to spend less time training novice workers coming to a factory.

Human workers need to be employed in such a way that their skills and talents are fully realized
in Industry 4.0 [161], thus manufacturing companies need to take special care in reskilling and
upskilling the human workforce [204]. Careful management of training and production tasks is
necessary for Industry 4.0 manufacturing also due to demographic change [205], as elderly workers
are becoming the majority. Although with great experience in manufacturing, they require more
adapted tasks and improved skills.

To achieve a fast knowledge transfer on how to produce different products and their variation
and provide efficient and low-cost human worker training, production process models can be used
to generate resource instructions from them automatically, thus enabling guided production, and
also preserve production knowledge permanently. Accordingly, production process models need to
be specified formally and MD principles need to be applied, creating an environment for the
automatic transformation of production process models into human-readable instructions that
include textual descriptions, images, audio, and videos.

The idea of guiding workers step by step through complex activities based on production
process models has been already discussed by Gorecky et al. [161]. By using a detection system to
recognize the execution of production steps automatically, real-time assistance can be provided to
human workers, sending instructions to them one by one in the form of textual descriptions.
Whenever necessary, human workers can initiate guided production that can include a user manual,
images, audio, or videos to guide them in creating products. Besides receiving instructions through
a mobile device, smart watch, or monitor, human workers can also wear Augmented Reality (AR)
glasses through which they can get instructions by changing their field of vision, receive remote
assistance from expert workers, or receive repair or error handling instructions [206]. Therefore,
various technologies can be used in combination with MD principles and formally specified
production processes to guide and train human workers whenever necessary.

4.1.2.4 Process Modeling

Research in the context of Industry 4.0 has been gaining much attention in recent years. However,
many software specification and development aspects are still not sufficiently covered, such as
standardization and modeling languages. In the Industry 4.0 environment, modeling languages aim
to contribute to solving the challenges of digital representation and integration. Usually, modeling
languages are developed and applied to solve basic challenges in Industry 4.0 but are rarely
evaluated through experiments to investigate their benefits in practice [183].

Research related to process modeling, especially in the Industry 4.0 context, has also grown
over the years [20]. Production processes need to be digitally supported in Industry 4.0 [21], so they
can be integrated within a smart factory. Processes need to be engineered with virtual
representations that require abstract thinking and modeling with the support of specialized software
[22] — a modeling tool.

34 State-of-the-Art

Modeling production processes in Industry 4.0 is an essential industrial informatics research
topic, as it is crucial to understand and optimize the processes [23]. However, it is not enough to
document processes and store them in a factory database, as most contemporary manufacturing
companies are doing it nowadays. Production processes need to be modeled to lead production
process execution, and, at the same time, not too complex for a human to comprehend. Therefore,
production processes need to be formally specified, whose models are machine-readable and thus
can be used for dynamic production orchestration and automatic execution. As production process
modeling is the main aspect of the state-of-the-art of this thesis, we discuss it in more detail in the
following section.

4.2 Production Process Modeling

We have investigated the state-of-the-art in the domain of production process modeling and
presented the investigation results in [9-11,13,14]. As an outcome of the initial investigation, we
have identified requirements for a language that would be used for production process modeling
suitable for dynamic orchestration and automatic model execution or generation of executable
instructions. Based on the identified requirements, we have created a framework for comparing and
analyzing languages and approaches we have found. The framework was presented for the first time
in [14].

This section is structured as follows. In Section 4.2.1, we present the identified production
process modeling language requirements, while the analysis of languages and approaches we have
found are outlined in Section 4.2.2. Discussion and conclusions of the production process modeling
state-of-the-art are given in Section 4.2.3.

4.2.1 Production Process Modeling Language Requirements

During our preliminary research [8,9], we investigated the production process modeling domain
and identified basic concepts for modeling production processes within discrete product
manufacturing. The investigation included information gathering from the literature, an industrial
use case in which we participated, and domain experts we encountered. Based on the investigation,
we have formulated the requirements for a production process modeling language whose models
would be suitable for dynamic production orchestration and automatic model execution or
generation of executable resource instructions. These requirements, first time presented in [14], do
not constitute a complete list of all requirements for production process modeling. They are a core
set of characteristics a production process modeling language should have so that process models
can be dynamically orchestrated, executed or resource instructions generated from them, and
applied in various use cases in the Industry 4.0 context.

The core set of requirements, which need to be fulfilled by a process modeling language whose
models are suitable for dynamic orchestration and automatic execution, is defined as follows:

¢ Requirement 1 (R1): the existence of the process step modeling concept, representing a
single production step needed to execute a production process. It comprises input products,
capability, output products, and resource.

o Requirement 1.1 (R1.1): the existence of the product modeling concept, which can be
an input or an output of process steps. Input products of a process step represent
ingredients, such as materials, parts, and intermediate products needed to create output
products of a process step, representing intermediate or finished products. The
specification of different constraints or properties of a product needs to be supported,
such as dimensions and mass.

o Requirement 1.2 (R1.2): the existence of the capability modeling concept,
representing a skill needed for process step execution. Constraints need to be specified

State-of-the-Art 35

for a capability, such as a gripper's range required to pick a product, and different
parameters, such as storage location from which products need to be picked.

o Requirement 1.3 (R1.3): the existence of the resource modeling concept, representing
a human worker, a machine, or a robot able to execute a process step.

Requirement 2 (R2): the existence of the control flow modeling concept into which

process steps can be organized for execution. Different flow patterns, such as sequence,

decision, iteration, and parallelism, need to be supported.

o Requirement 2.1 (R2.1): the existence of the sequence modeling concept, representing
a flow in which process steps need to be executed one after another.

o Requirement 2.2 (R2.2): the existence of the decision modeling concept, representing
a flow in which different process steps need to be executed based on a condition.

o Requirement 2.3 (R2.3): the existence of the iteration modeling concept, representing
a flow in which process steps are iteratively executed until a termination condition is
fulfilled.

o Requirement 2.4 (R2.4): the existence of the parallelism modeling concept,
representing a flow in which process steps are executed in parallel.

Requirement 3 (R3): the existence of the material flow modeling concept needed to track

materials, parts, and products through a production process. For each input product, it must

be known whether it needs to be taken from storage or represents a result of previous
process steps. Also, for each output product, it must be known whether it needs to be stored
in storage or used in the succeeding steps.

Requirement 4 (R4): the existence of the message flow modeling concept that facilitates

collaboration between different process steps or resources.

Additional requirements exist that need to be fulfilled by a process modeling language to
support a broader array of use cases, especially in Industry 4.0 (e.g., requirements R6 and R8). They
are also needed to semantically enrich process models that participate in production orchestration
and execution. These language requirements are defined as follows:

Requirement 5 (R5): the existence of the unordered steps modeling concept, representing

a set of process steps that can be executed in an arbitrary order.

Requirement 6 (R6): the existence of product and process variations modeling concepts,

representing different sets of process steps that result in multiple products of the same

product family or result in the same intermediate or finished product.

Requirement 7 (R7): the existence of the sub-process modeling concept, representing a

reference to another process, utilized to reduce redundancy and model complexity, and

increase reusability.

Requirement 8 (R8): the existence of the error handler modeling concept needed to

specify errors that could occur during production and process steps needed to handle them.

o Requirement 8.1 (R8.1): the existence of the local error handler modeling concept,
representing a collection of error-specific steps needed to recover from the error
specified at the level of a single process step.

o Requirement 8.2 (R8.2): the existence of the global error handler modeling concept
representing a collection of process steps that can be used to recover from various errors
specified in multiple process steps.

The following two requirements represent overall process modeling language requirements,
fundamental in Industry 4.0 to achieve flexible production. These requirements are defined as

follows:

Requirement 9 (R9): the models written in the language should be executable or suitable
for automatic instruction generation, i.e., models should be transformable into a set of
executable resource instructions via formally defined transformation rules.

Requirement 10 (R10): the models written in the language should be independent of
production systems. A process model should be independent of the production system or
technology details so that they can be easily specified and used in different production

36 State-of-the-Art

systems. Also, such resource-agnostic process models need to be easily and automatically
enriched and transformed into resource-aware process models, adding resources to execute
process steps, production logistics, and machine configuration activities.

Based on the presented requirements, we have checked whether the languages identified in the
literature survey support them or not, as discussed in the following section. We also used these
requirements to evaluate whether MultiProLan fulfills them or not, as presented in Section 7.3.

4.2.2 Production Process Modeling Languages and Approaches

Before searching for the production process modeling literature, we conducted a pilot study to
familiarize ourselves with the domain. We have searched for production process modeling
languages using the Google Scholar search engine and gathered several mostly cited and searched
papers. By reading the papers, we have formulated search tokens, i.e., the main terms for searching
the literature, that we have used to gather literature in a more systematic manner. In Table 4.1, we
present the search tokens and the related keywords we used in search engines.

Table 4.1. Search tokens and keywords.

Tokens Keywords
Production Process
Manufacturing Process
Modeling

Modelling

Model

Modeling Describe

Description

Specify

Specification

Language

Meta-Model

Language Domain-Specific Language
Domain-Specific Modeling Language
Extension

Industry 4.0

Fourth Industrial Revolution
Smart Factory

Industry 4.0 Smart Production

Smart Manufacturing
Digital Factory

Factory of the Future
Execution

Execute

Executable

Instruction

Interpretable
Machine-Readable
Model-Driven Model-Driven

Production Process

Execution

The first two tokens, "Production Process"” and "Modeling”, have always been used when we
searched for literature, as these are the main words of our research related to the production process
modeling domain. Other tokens have been optionally combined with the first two tokens to find
more specific papers. The token "Language" has been optionally used to narrow the search area and

State-of-the-Art 37

papers we got from search engines. The token "Industry 4.0" was also optional as we wanted to find
production process modeling languages before the Industry 4.0 term began to be used. The token
"Execution™ has been optionally used as we aimed to find production process modeling languages
whose models are execution-ready or instruction-generation-ready. Finally, the token "Model-
Driven™ has also been optionally used as we wanted to find languages used in MD approaches that
usually support model transformations and have formal languages. We did not search abbreviations
of the tokens as we assumed that at least once an entire phrase was used in the text. Similarly, we
did not search for plural words, assuming that singular words were used at least once in the text.

We searched for the related literature using the search engines of the following digital libraries:
Institute of Electrical and Electronics Engineers (IEEE) Xplore, Association for Computing
Machinery (ACM) Digital Library, Scopus, Science Direct, Web of Science (WoS), and Google
Scholar. To use the advanced search in these libraries, we had to create complex search strings. The
search strings may vary a bit depending on the syntax used by the search engines, but they all have
keywords written between logical operators. Some search engines have limitations, such as Science
Direct, in which only eight logical operators can be used. An example of the search string is
presented in the following text:

("Production Process" OR "Manufacturing Process™) AND ("Modeling" OR "Modelling" OR
"Model" OR "Describe" OR "Description" OR "Specify" OR "Specification") AND ("Language"
OR "Meta-Model" OR "Domain-Specific Language" OR "Domain-Specific Modeling Language"

OR "Extension™)

Google Scholar has also been used to search for literature, even thou it provides non-peer-
reviewed publications as well, such as presentations and websites. However, we have used it to find
different standards, technical reports, book sections, and Ph.D. theses in which detailed descriptions
of some modeling languages are provided. When we searched for the peer-reviewed literature, we
put 2010 as the lower bound of a publication year, while the implicit upper bound was December
2021, when we conducted the research.

We first applied inclusion and exclusion criteria to the studies when we gathered the literature
from the aforementioned digital libraries. Inclusion criteria consist of:

e peer-reviewed studies published in journals, conferences, and workshops;
e standards, technical reports, book sections, and Ph.D. theses, that may be non-peer-
reviewed studies;

e studies that are accessible electronically; and
e studies that are written in English.

Exclusion criteria consist of;

e non-peer-reviewed studies, such as presentations, informal reports, reviews, editorials,
abstracts, keynotes, posters, informal surveys, and websites;

studies that are not available in English;

studies that we did not have access to;

studies that are not related to production process modeling; and

duplicates.

After applying inclusion and exclusion criteria, we have read the title, keywords, and abstract
of the remaining studies and excluded ones that do not fit in the production process modeling
domain. Whenever we have not been sure whether to exclude a study based on the title, keywords,
and abstract, we read the introduction and conclusion sections of the study to make a final call to
include or exclude the study. Due to the possibility that some of the studies have been omitted, we
have applied the backward and forward snowballing guidelines [207] to the remained studies. The
backward snowballing means that we have used reference lists of the studies to identify the studies
they have referenced. The forward snowballing means that we have identified studies that have
cited studies we have initially gathered. When we have been looking for referenced and citing
studies of the initially gathered ones, we also applied inclusion and exclusion criteria, read the title,

38 State-of-the-Art

keywords, and abstract, and optionally read the introduction and conclusion sections to conclude
whether to keep new studies or not.

The remaining literature includes 51 peer-reviewed studies and 18 non-peer-reviewed studies.
Although not fitting the publication year search criteria, an additional peer-review study [24] from
the year 2000. has been included since the Bill of Materials (BOM) specification is frequently used
in companies. We have used these studies to find answers to the research questions we formulated
in this thesis. The research questions are not the hypotheses presented in Section 3.2 but are related
to the reviewed literature. These questions are:

e Research Question 1 (RQ1): In which areas process modeling languages have been
applied, and which concerns do they address? This question aims to reveal research trends
in process modeling, especially in the context of Industry 4.0.

e Research Question 2 (RQ2): What are the related languages and approaches used for
production process modeling? This question aims to point out relevant languages and
approaches used in the production domain.

e Research Question 3 (RQ3): Which languages and approaches are most frequently used
and extended for the production domain? By answering this question, we aim to identify
languages and approaches applied by researchers, pointing out current trends in production
process modeling.

e Research Question 4 (RQ4): To what degree are identified requirements (c.f. Section
4.2.1) fulfilled by languages and approaches? This question aims to point out what the
concerns and challenges in production process modeling are and what are future research
directions.

o Research Question 4.1 (RQ4.1): How production process models are executed?
This question aims to uncover how production process models are executed or
executable instructions are generated from models, which is one of the biggest
challenges in production process modeling, especially in the Industry 4.0 context.

o Research Question 4.2 (RQ4.2): In which way is the production system
independence achieved in production process models? This question aims to
reveal one of the biggest challenges in production process modeling — how
production system independence can be achieved.

o Research Question 4.3 (RQ4.3): Is there a language that fulfills all the identified
requirements? This question aims to uncover whether there is a language that
fulfills all the requirements and whose models can be used for dynamic production
orchestration and automatic execution.

In Table 4.2, we present only the peer-reviewed conference and journal papers alongside a
language name, a publishing year, tags that describe the content of a paper, and a name of a
conference or a journal in which the paper is published (sorted by the language name and publishing
year). To distinguish between different extensions of the same language, the name of the first author
of the extension is presented in parentheses. Different tags are added to each paper, having the
following meaning:

General — a language used to model production processes in general;

MES — a language used to model production processes in the MES domain;

10T — a language used to model production processes in the 10T domain;

CPS — a language used to model production processes in the CPS domain;

CPPS - a language used to model production processes in the CPPS domain;
Skills —a language uses skill or capability modeling concepts;

Services — a language stores service information in models for execution purposes;
Engines — language models are used as input to engines for execution purposes;
PPR — a language based on the Product-Process-Resource (PPR) concept;
VDI/VDE 3682 — a language based on the VDI/VDE 3682 standard;

MD - a language used in the MD paradigm; and

Combination — a combination of languages is used to model production processes.

Table 4.2. Peer-reviewed papers of the reviewed literature.

Language Year Tags Conference Journal
General, MD, Skills, 2018 IEEE 16th International Conference on Industrial
ADAPT [62] 2018 1 Combination Informatics (INDIN))
ASML [64] 2014 | General i International Journal of Production
Research
BOM/BOO/BOMO [24] 2000 | General - Concurrent Engineering
. 43rd CIRP International Conference on Manufacturing Systems
BPMN ext. (Zor) [31] 2010 | General, Engines (ICMS 2010) -
44th CIRP International Conference on Manufacturing Systems
BPMN ext. (Zor) [32] 2011 | General (ICMS 2011) -
BPMN ext. (Michalik) [37] 2013 MES - Quality Innovation Prosperity
25th International Conference on Advanced Information
BPMN ext. (Meyer) [40] 2013 loT Systems Engineering (CAISE 2013))
27th International Conference on Advanced Information
BPMN ext. (Meyer) [41] 2015 loT Systems Engineering (CAISE 2015))
2016 IEEE 25th International Conference on Enabling
BPMNA4CPS [38] 2016 | CPS Technologies: Infrastructure for Collaborative Enterprises -
(WETICE)
. . 2017 IEEE 14th International Conference on Networking,
BPMN ext. (Bocciarelli) [39] 2017 | CPS, MD Sensing and Control (ICNSC) -
" International Conference on Business Process Management
BPMN ext. (Polderdijk) [33] 2017 | General (BPM 2017) -
BPMN ext. (Ahn) [34] 2018 | General, Engines Advances in Production Management Systems (APMS 2018) -
BPMN ext. (Ahn) [35] 2019 | General, Engines - Sustainability
. 2019 5th International Conference on Optimization and
BPMN ext. (Abouzid) [36] 2019 | General Applications (ICOA) -
BPMN ext. (Schonig) [42] 2020 | loT, Services - Software and Systems Modeling
CT [57] 2012 | General - Advanced Materials Research
DSL for production workflows [65] 2015 | General ?l%lli' ;EEE International Conference on Industrial Technology)
DSML for CPS processes [86] 2015 | CPS, Services - Journal of Computational Science
GMPM [78] 2014 | MES i International Journal of Precision

Engineering and Manufacturing

6E M\-aU)-Jo-91elS

The International Journal of Advanced

GRAMOSA [66] 2015 | General i Manufacturing Technology
A Enterprise Modelling and Information
GSMSPP [58] 2018 | General, Combination - Systems Architectures
. . . 26th IEEE International Conference on Emerging Technologies | _
Hierarchical DSL for CPPS [90] 2021 CPPS, Services and Factory Automation (ETFA)
A 2nd Management and Innovation Technology International)
IAPMM [60] 2015 10T, Combination Conference (MITiCON2015)
A 2016 13th International Joint Conference on Computer Science
14PMM [61] 2016 10T, Combination and Software Engineering (JCSSE) -
. 25th IEEE International Conference on Emerging Technologies |
Information model of DPT [85] 2020 General, VDI/VDE 3682 and Factory Automation (ETFA)
International Journal of Production
IPPMA [71] 2020 | General - Research
LCDP [92] 2021 | General, MD, Services Advances in Production Management Systems (APMS 2021) -
MaRCO [69] 2019 | General, Skills - Journal of Intelligent Manufacturing
MES-ML [74] 2012 MES i IEEE Tra_lnsactlons on Industrial
Informatics
) . 2015 IEEE 20th Conference on Emerging Technologies &)
MES-ML ext. (WeiBenberger) [75] 2015 MES, MD Factory Automation (ETFA)
MES-ML ext. (Chen) [76] 2018 | MES, MD - Computers in Industry
The International Journal of Advanced
MES-ML ext. (Chen) [77] 2021 | MES, MD - Manufacturing Technology
14th CIRP Conference on Intelligent Computation in
MMPD [70] 2020 | General Manufacturing Engineering (ICME'20))
9th International Conference on Digital Enterprise Technology | _
MPIMM/MPIM [67] 2016 General, MD (DET 2016)
MPIMM/MPIM [68] 2018 | General, MD i The Internayonal Journal of Advanced
Manufacturing Technology
MService HMS [91] 2016 | General, Services - Englr}eermg Applications of Artificial
Intelligence
. . . 9th Vienna International Conference on Mathematical
Object PN (Latorre-Biel) [50] 2018 | General, Services Modelling (MATHMOD 2018) -
PBM for ship block assembly 2020 General, PPR, Combination | - Processes

planning [59]

Hv-3yl-jo-arels 0o

PMPM [79] 2018 | General, PPR Advances in Production Management Systems (APMS 2018) -

PMPM [80] 2020 | General, PPR, MD) International Journal of Precision
Engineering and Manufacturing

PN and PN-like models [48] 2019 | General, Skills 52nd CIRP Conference on Manufacturing Systems (CMS) -

General, PPR, VDI/VDE 25th IEEE International Conference on Emerging Technologies |
PPR DSL [83] 2020 3682, CPPS and Factory Automation (ETFA)
General, PPR, VDI/VDE 26th IEEE International Conference on Emerging Technologies
PPRDSL [84] 2021 | 3685 cPPS and Factory Automation (ETFA) -
. The International Journal of Advanced
PSL ext. (Qiao) [73] 2011 | General - Manufacturing Technology
. International Conference on Subject-Oriented Business Process

S-BPM (Fleischmann) [54] 2010 | General Management (S-BPM ONE) -

S-BPM (Fleischmann) [55] 2012 General) Unlyersal Access in the Information
Society

S-BPM (Neubauer) [56] 2017 | General, Services - International Journal of Production
Research

Skill-based meta-model for 2019 | CPS, Skills 39th Central America and Panama Convention (CONCAPAN)

assembly processes [87] XXXIX)

Skill-based meta-model for . 2nd Eurasia Conference on 10T, Communication and

assembly processes [88] 2020 | CPS, Skills Engineering (ECICE))

Skill-based meta-model for . 3rd Eurasia Conference on IOT, Communication and

assembly processes [89] 2021 | CPS, Skills Engineering (ECICE))

SysML (Fallah) [45] 2016 | MES, Services 2016 1st International Workshop on Cyber-Physical Production |

Systems (CPPS)

Ty Mv-8y-Jo-alels

4?2 State-of-the-Art

We analyzed 29 conference papers and 22 journal papers as state-of-the-art in production
process modeling. Based on the reviewed literature, conference papers are primarily published in
IEEE International Conference on Emerging Technologies and Factory Automation (ETFA) (5
papers), Advances in Production Management Systems (APMS) (3 papers), and the International
Academy for Production Engineering, CIRP (French: College International pour la Recherche en
Productique) Conference on Manufacturing Systems (CMS) (3 papers). Other conferences have one
or two papers presented in this thesis. As for the journals, papers are primarily published in The
International Journal of Advanced Manufacturing Technology (4 papers), International Journal of
Production Research (3 papers), and International Journal of Precision Engineering and
Manufacturing (2 papers). Other journals have one paper each.

As presented in Table 4.2, modeling languages were mostly created to support process
modeling in general, CPS/CPPS, IoT, and MES. Various languages utilize the PPR concept, as
products, process operations, and resources are the main concepts for production process modeling.
Skill-based engineering has also been applied recently, as it allows specifying production processes
in a production-system-independent manner. The MD principles have been applied nowadays in
order to automatically transform process models into code or models of different types, and a few
languages are created for the execution of their models.

There are different languages and approaches to modeling production processes and their
various aspects. We divided the languages and approaches into four categories based on which this
section is also divided into four subsections:

e Category 1 (Catl): traditional ways to specify production processes (Section 4.2.2.1);

e Category 2 (Cat2): process modeling languages that are not primarily created for
production process modeling but can be used to accomplish that task, and their extensions
made to fulfill specific production process modeling requirements (Section 4.2.2.2);

e Category 3 (Cat3): a combination of different modeling languages used to model various
aspects of production processes (Section 4.2.2.3); and

e Category 4 (Cat4): modeling languages made with the exact purpose to support production
process or production system modeling (Section 4.2.2.4).

The distribution of the presented languages and related papers by four categories presented in
this section is summarized in Table 4.3. The table includes all the literature we have found and
analyzed, including journal and conference papers, technical reports, book sections, and standards.

Table 4.3. The distribution of the presented languages and related papers by categories.

Category Modeling Language Papers
BOM [24]
BOO [24]
(Catl) Traditional ways to BOMO [24]
specify production processes ASME FPC [25]
KS A 3002 [26]
FMEA/PFMEA [27-29]
BPMN [30]
BPMN extensions [31-42]
UML AD [43]
(Cat2) Process modeling SysML AD [44,45]
languages that are not PN [46,47]
primarily created for the PN and PN-like languages [48]
product_ion process modeling Object PN [49,50]
and their extensions IDEF3 [51,52]
EPC [53]
S-BPM [54-56]

cT [57]

State-of-the-Art 43

GSMSPP [58]
(Cat3) A combination of PBM _for ship block assembly [59]
different modeling languages | Planning
used to model production IAPMM [60]
processes 14PMM [61]
ADAPT [62]
VSM [63]
ASML [64]
DSL for production workflows [65]
GRAMOSA [66]
MPIMM/MPIM [67,68]
MaRCO [69]
MMPD [70]
IPPMA [71]
PSL [72]
_ PSL extension [73]
crated 0 support produation | MES ML (74
process or production system MES-ML extensions [75-77]
modeling GMPM [78]
PMPM [79,80]
VDI/VDE 3682 [81,82]
PPR DSL [83,84]
Information model of DPT [85]
DSML for CPS processes [86]
Skill-based meta-model for assembly [87-89]
processes
Hierarchical DSL for CPPS [90]
MService HMS [91]
LCDP [92]

Traditional ways to describe production processes (Catl), that have been used for years, mostly
use spreadsheets to represent various aspects of processes. The category (Cat2) of languages that
are not primarily made for production process modeling is the second largest, and Business Process
Model and Notation (BPMN), with its extensions, represents the most used language. The third
category (Cat3) represents approaches in which a combination of languages is used to describe
production processes, with only a few such approaches found. The largest category (Cat4)
comprises languages specifically created for the production domain, most of which are DSMLs. All
these languages are discussed in detail in Section 4.2.2.1 throughout Section 4.2.2.4.

In Graph 4.1, the number of peer-reviewed papers per year, distributed from 2010 to 2021, is
presented. Only a single peer-reviewed paper [24] is not presented in Graph 4.1, as it is from 2000
and represents the only outlier that we omitted so as to keep the graph more compact. Based on the
papers found, we can see a rising trend of published papers in production process modeling during
that period, especially from 2015. Furthermore, as our state-of-the-art investigation was finished in
December 2021, there may be additional papers in 2021 that would raise the trend even more.
Therefore, it may be stated that production process modeling has been gaining much attention in
recent years. Such an increase in research intention may be caused by Industry 4.0 and a need to
create flexible production. Also, the rising complexity of production processes and multiple process
variations have probably caused increased production process modeling usage.

More information may be obtained if the number of peer-reviewed papers per year of the
second (Cat2 — 19 papers), the third (Cat3 — 5 papers), and the fourth (Cat4 — 26 papers) categories
are separately presented, as it is in Graph 4.2. The first category (Cat1) mostly includes papers that
are not peer-reviewed, such as book sections and standards; thus, it is not presented in Graph 4.2.

44 State-of-the-Art

Number of papers per year

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

O P N W b~ 01O N 0 ©

W Peer-reviewed papers

Graph 4.1. Number of peer-reviewed papers per year.

Languages from the second category (Cat2) have a rising trend until 2019 and most of them are
based on BPMN and its extensions. BPMN is extensively used not only in the manufacturing
domain but in many other domains as well, as the implementation of a novel DSML from scratch
could be time-consuming [208]. However, as the production process modeling domain is complex
and the complexity of production process models is rising, researchers are creating novel DSMLs
for such a domain. Switching from language extensions to novel DSMLs may be seen in Graph 4.2,
as the second category (Cat2) has a falling trend from 2019, and the fourth category (Cat4) has a
rising trend from 2019. This rising trend may be caused by a need to execute process models and
generate instructions and documentation automatically. Therefore, formal languages with machine-
readable models are required. Thus, researchers invest more time in creating novel, formal
languages from scratch that will cope with a complex domain of production process modeling.
Another way to cope with the complex domain of production process modeling is to combine
various languages to model different aspects of production processes. However, such a combined
approach (Cat3) is present only in a few papers from 2015. The shortage of combined approaches
is probably due to the need for additional knowledge that process designers must have, as using

Number of papers per year

N

[N

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

o

mCat2 mCat3 mCatd

Graph 4.2. Number of peer-reviewed papers per year for the second, third, and fourth categories.

State-of-the-Art 45

various languages requires process designers to know how to use all of them, making process
modeling a more burdensome task.

In the rest of this section, each category, with the representative process languages and
approaches, is discussed in its own subsection in detail.

4.2.2.1 Traditional Production Process Specification

In traditional manufacturing, companies use documentation and models of various types, such as
schemas, drawings, or textual descriptions, to describe production processes. Production process
documents are usually textual, containing a description of how to produce a product. However, such
documents do not have a precise and concise syntax that would lower the amount of text needed
for the description. Such arbitrarily textual documents are not applicable for automatic instruction
generation and execution of the instructions due to their informal description, thus not being
machine-readable. As process designers often create production process specifications in
spreadsheets, this could be time-consuming, and different errors may occur during the writing.
Companies also use manufacturing process charts and Bill of Materials (BOM) to specify
production processes. However, even if they are more structured and formal than arbitrary text,
none of these specifications provide enough data to facilitate an automatic execution.

A BOM specification represents a structured list of parts [24] used in a product's composition
hierarchy. The specification is composed of hierarchy levels with parent items and component
items, and for each component item, a quantity is specified. In American Production and Inventory
Control Society (APICS) Dictionary [209], BOM is defined as "a listing of all the subassemblies,
intermediates, parts, and raw materials that go into a parent assembly showing the quantity of each
required to make an assembly." However, BOM specifications are insufficient to understand a
production flow [34,35], as they only present a product's composition.

Bill of Operations (BOO) or routing as it is also called, represents a production structure of a
product [24]. It provides information on operations and their sequence to produce an item, involved
work centers, and standards for setup and execution. BOO may also provide information on tooling,
workers' skill levels, inspection operations, and testing requirements [209]. In addition to BOM, the
production flow is described through BOO, but products, materials, and their flow during
production are missing.

Although BOM and BOO are separate kinds of documents, they are often used in conjunction
to describe manufacturing. Thus, Bill of Materials and Operations (BOMO) specifications have
been created by integrating product structure and operation information into one document [24].
BOMO covers a sequence of production operations, materials, parts, a final product used in a
process, and information on resources or work centers. However, BOMO specifications are still
insufficient to specify all the necessary production process details, such as communication between
resources.

The American Society of Mechanical Engineers (ASME) Flow Process Charts (FPCs) [25] are
used to specify a production flow. Basic activities are defined in FPCs in the form of operation,
inspection, transportation, and delay. Such classification of activities is done for analytical purposes
and to detect and eliminate inefficiencies in a production process. Storage is also defined, indicating
that the material flow may be specified. However, smart resources and communication between
them cannot be modeled. Additionally, if FPCs are represented in the form of a table, only
sequential processes can be specified. Due to these insufficiencies, FPCs are not suitable for
automatic execution of production processes.

There is also the Korean Standards Association's (KS A) 3002 [26] manufacturing process
chart standard, which provides a set of graphical notations for manufacturing process modeling.
The standard was discussed by Ahn and Chang [34,35], stating that tooling support for modeling
and the possibility to execute models automatically are missing from the KS A 3002 standard.

Failure Mode and Effect Analysis (FMEA) is a method for analysis of known and potential
failures that could occur in a system, service, or process. Performing FMEA in a company may

46 State-of-the-Art

minimize damages caused by failures [27]. The FMEA method aims to identify and evaluate
potential failures of products or processes and identify actions that may eliminate or reduce the
occurrence of potential failures [28]. However, as FMEA focuses only on one component at a time,
it is not suitable to model a combination of component failures, and thus one way is to deal with
the problem via process modeling and simulation [210].

There are different types of FMEA methods [27], and one of them is Process-related FMEA
(PFMEA), which is driven by process functions and product characteristics and is used to analyze
manufacturing and assembly processes. The PFMEA method is used to ensure that process-related
failures and their associated causes are considered and resolved [29]. A PFMEA document is
created after the completion of a production process flow diagram, and the document consists of
identified failure modes, causes and effects, and the risks prioritization and their mitigation plans
in the process [29]. It specifies all the details about the error handling, but its purpose is not to
specify a production process, especially one that will be used for automatic code generation.

Traditional methods are commonly used by process designers who are familiar with these
kinds of process specifications. Therefore, due to familiarity with such methods, process designers
are usually not eager to replace them with new approaches, even if these kinds of informal
specifications could slow them down. As these methods are not formal, e.g., specifications in the
form of textual description can be arbitrarily specified, or a spreadsheet’s structure can vary, they
can be time-consuming and prone to errors during specification writing. In addition, due to the
informal specification of production processes and the lack of certain modeling concepts needed
for the automatic generation of instructions, these specifications would be hard to transform into
executable resource instructions.

The presented traditional methods provided us with knowledge of how production processes
are usually specified by process designers. Thus, we plan to use similar concepts when creating a
novel DSML for production process modeling, such as ASME FPC basic activity types, to make
the language more suitable and appealing for process designers. As DSML is a formal language, its
models are machine-readable and thus may be used for the automatic generation of executable
resource instructions.

4.2.2.2 Process Modeling Languages and Extensions

As per research presented by Sott et al. [211], Business Process Model and Notation (BPMN),
Unified Modeling Language (UML), and Petri Net (PN) are identified as some of the most relevant
languages in smart manufacturing. However, by using process modeling languages like BPMN,
UML Activity Diagram (AD), and PN, it is difficult to model production processes primarily as
these languages are not created for that purpose. These difficulties are even more noticeable
whenever the languages need to be used to model all production process concepts required for
automatic execution.

Different annotations in the form of arbitrary text are often used in models to add all
information required for the production domain. However, a custom parser needs to be implemented
to execute such models, as the arbitrary text is not part of a modeling language and needs to be
parsed by the language parser. Even if the language parser is created for such a purpose, it is still
difficult to read and comprehend the text by humans. To solve this problem, researchers extend
existing languages to add missing semantics. Unlike previously mentioned model-level extensions,
these are meta-model-level extensions. However, even these extensions are not sufficient due to the
wide application domain of a language. Thus, instead of extending existing general-purpose
languages, researchers often try to create new domain-specific languages [183], as presented in
Section 4.2.2.4.

In this section, we present an overview of BPMN, UML AD, PN, and their extensions, and
other languages related to process modeling. In addition, we created a production process model
example by using BPMN, UML AD, and PN to present the possibilities and limitations of these
three common languages in the context of production process modeling. We created a model

State-of-the-Art 47

example of wooden plank sawing, presented for the first time in [9], as modeling such a process
requires most of the core production process modeling concepts to be used.

The example named Plank Sawing is constructed in a way not to include too many modeling
concepts but only basic ones from the requirements described in Section 4.2.1, making it possible
to test whether these languages can fulfill the requirements. The Plank Sawing example represents
a process in which two planks need to be sawed and packed. This process is a sub-process of
assembling the wooden box, which needs to be done before the assembling activities. In this
example, we only consider sawing and packaging of these two planks. We assume that the process
will be executed within a smart factory, having smart resources that utilize high-level instructions.

In the example, two planks need to be sawed in parallel. Due to their dimensions, we assume
that the same smart resource cannot simultaneously saw both planks. Moreover, both planks need
to be inspected after they are sawed. If there is any plank defect, a procedure to discard planks needs
to be performed, which should be presented as a sub-process as it is often reused in other processes
as well. Otherwise, if there are no plank defects, planks need to be placed in a box. One smart
resource needs to hold the planks, while another smart resource gets a box from storage and places
it beneath the planks. After that, planks need to be placed in the box, which should be closed
afterward, finishing the Plank Sawing process. To model production processes suitable for
automatic instruction generation, smart resources with their properties need to be specified within
the model as well.

This section is divided into BPMN-based, UML-based, and PN-based languages and
extensions, other languages without any extension presented, and the summary related to presented
languages and extensions. For BPMN, UML AD, and PN languages, the Plank Sawing example is
presented as well.

BPMN-based languages. Business Process Model and Notation (BPMN) [30] is designed by
Object Management Group (OMG) with the goal to provide a notation understandable by various
business and software users, creating a bridge between business process design and implementation.
The language was created to standardize business process modeling, being one of the most
frequently used languages for such a purpose. In the context of production process modeling,
BPMN covers some modeling concepts, such as error handling and a message flow [9,212], i.e.,
communication between process steps or resources. However, it is still insufficient to model
concepts such as a material flow [9,66,212]. Furthermore, smart resources cannot be fully modeled
using BPMN, as the standard BPMN resource definition is abstract without specifying details [39].
They can only be represented by pools and lanes [9,212], but different attributes and constraints
cannot be modeled [9]. Also, BPMN does not support the modeling of process variations [86]. Due
to the large variety of modeling concepts and BPMN's complexity, non-experts struggle with using
such a language [86]. In general, BPMN does not cover all aspects of the manufacturing domain as
it is not tailored for such a domain [35]. Accordingly, it does not have domain-specific modeling
concepts to express different types of flows [58], and it cannot be used to control production
automatically [65]. Still, it is one of the most usable and extendable languages in the production
domain.

The Plank Sawing production process is modeled using BPMN and presented in Figure 4.1.
The BPMN model is created by using Yaogiang BPMN Editor [213]. There are three lanes
representing three smart resources — two robots and a human worker, without the possibility of
specifying resource properties in detail. Parallel process steps to pick and saw planks are assigned
to robots.

Annotations with arbitrary text can be used to specify input and output products and
capabilities for each process step. Also, storage can be specified within annotations whenever a
product is retrieved from storage or placed in storage. Annotations that represent products can be
connected whenever an input product of one process step is an output product of some previous
process step. However, the material flow modeling concept is hard to model when using BPMN,
because:

48 State-of-the-Art

e any annotation can be connected, even ones that represent capabilities;
e connections are not directed; and
e arbitrary text is used to specify products and storage.

In Figure 4.1, annotations are assigned only to parallel process steps to take less space and to
keep the model as simple as possible. To automatically generate instructions, there is a need to
recognize and parse products and capabilities, especially if constraints and parameters are specified

Smart factory
Human worker

Robot 1 Robot 2

Production started

From: Smart Shelf

Input product: Input product
Plank 1 lank 2
Width: 2m Width: 2m
Height: 0.3m Height 0.3m

From: Smart Shelf

A

o Epability
7 |Pick

Capability:
Pick

T

=

Qutput product: i Output product:

Picked plank 1 .| Pickplank 1 Pickplank2 L___ |5ickad plank 2

Width: 2m Width: 2m

Height: 0.3m Height: 0.3m
Input product: Input product:
\Ij’\i_cé(tﬁdzplank 1 mc‘;ﬁdz[;)lank 2

idth: 2m idth: 2m
Height: 0.3m Height: 0.3m

From: pré\nous step = .{From: previous step

Saw plank 2
~/ 7= Capability:
% Saw

. |Width: 1m

Output product Output product
Sawed plank 1 Sawed plank 2
Width: 1m Width: 1m
Height: 0.3m Heigh-t 0.3m

Saw plank 1

Gapabilty =
aw e
Width: 1m ‘/'|'\<

To: Smart Table To: Smart Table

(hasDefect = true
hasDefect = false
F
Hold planks
=
Discard Place planks
planks

Production finished

Figure 4.1. The Plank Sawing model example in BPMN.

State-of-the-Art 49

as arbitrary text in annotations. Using arbitrary text in annotations requires the creation of a parser,
as the text is not formally specified as a part of the modeling language.

In the example presented in Figure 4.1, the Pick plank 1 process step has the input product
Plank 1 that needs to be retrieved from a smart shelf. The same step has the output product Picked
plank 1, which is the same as the input product as it is only picked from the smart shelf and is not
processed in any way. The Saw plank 1 process step has the input product Picked plank 1, which is
the same plank from the previous process step, and has the output product Sawed plank 1, which is
sawed at a smart table.

After the inspection of planks, a decision pattern is modeled, indicating whether planks should
be discarded or placed in a box, depending on whether defects are present. Plank discarding is
modeled as a sub-process, while plank packaging is modeled with concepts to support collaborative
actions. A message flow and a collaboration of smart resources can be modeled using parallelism
gates and message events. The message event indicates that planks should not be placed until the
box is placed under the planks. Afterward, the box should be closed.

There are different types of process steps presented on the process model diagram, such as
operation, transportation, and inspection. However, different process step notations cannot be
modeled and distinguished using BPMN.

Based on the presented example, BPMN can be used to specify some of the basic concepts of
production process modeling. However, it lacks the semantics of production processes, especially
ones whose models are used for dynamic production orchestration and are suitable for the automatic
generation of executable instructions. It is hard to model concepts, such as process steps with all
the details, the material flow, and process variations. Furthermore, to describe products, storage,
constraints, and parameters in BPMN, textual annotations with arbitrary text are used, making it
hard to generate instructions as free-form text is susceptible to frequent errors. The error handling
modeling concept is covered well, but a BPMN modeling tool should support an additional
modeling layer to lower the number of elements on a diagram. BPMN extensions are created to
support different aspects of production process modeling. However, BPMN is still business-
oriented and is not tailored for a production domain.

For the rest of this subsection, BPMN extensions related to the production domain are
discussed.

Zor et al. [31] identified elements that BPMN lacks to represent manufacturing processes, and
they suggested adding a set of concepts to BPMN. The authors were inspired by the Value-Stream
Mapping (VSM) language, whose detailed description is outlined in Section 4.2.2.4, and mapped
VSM material and material flow concepts into BPMN data object and data flow concepts. By
mapping VSM modeling concepts into BPMN, the authors aimed to map BPMN modeling concepts
into Business Process Execution Language (BPEL) and execute processes with BPEL engines.
However, the smart resource modeling concept is not specified, and only the number of workers
needed for process execution is presented within tasks.

Zor et al. [32] then presented BPMN extensions to model production processes. They extended
the language with manufacturing tasks, machines, tools, parts, and material gateways. However, it
is still difficult to model the material flow modeling concept [66]. Additionally, it would be difficult
to model human workers with all the required details as they are represented with pools and lanes.
As production processes are coupled with machines, process models depend on a specific
production system [65]. The tool support for such an extended BPMN is not implemented and is
considered by authors as an ongoing work.

As occupational risk factors are often not supported by process modeling languages, Polderdijk
et al. [33] extended BPMN with human tasks and physical risk properties. These extensions were
created to model and visualize human physical risks, such as lifting and carrying heavy objects or
using vibration tools for too long. Within BPMN, the authors integrated Netherlands Organization
for Applied Scientific Research’ TNO (Dutch: Nederlandse Organisatie voor Toegepast-
Natuurwetenschappelijk Onderzoek, TNO) Checklist Physical Load [214], which is focused on

50 State-of-the-Art

occupational risk factors. With these BPMN extensions, it is possible to fill in a questionnaire dialog
within a modeling tool, stating which risk types are present in each human task. These extensions
aim to allow users to analyze occupational risk factors that should be mitigated by redesigning
production processes. However, the automatic execution of production process models has not been
considered in this paper, and thus most of the BPMN insufficiencies in modeling production
processes remain. Including occupational risk factors in production process models can be useful,
as an intelligent system, such as an orchestrator, can better decide whether to choose a robot or a
human worker to perform a particular process step based on the specified risks.

BPMN extensions are also proposed by Ahn and Chang [34] to calculate a similarity measure
of manufacturing processes, based on production-related operation similarity. Assuming that a
company adopts a Business Process Management (BPM) approach and has many manufacturing
process models stored in a repository, these similarity measures extensions enable a search and
reuse of the models or their parts when designing a new manufacturing process model. The authors
defined a minimal set of BPMN notations as sufficient to model the process examples they
presented. Therefore, not all BPMN modeling concepts are used, e.g., the authors limited notations
to be used only for sequential and parallel control flow patterns. BPMN is extended with operations,
i.e., manufacturing tasks, and components, i.e., materials, parts, and products, but there is no
mention of whether smart resources can be added.

The same authors then extended their work and introduced a similarity-based hierarchical
clustering method for manufacturing process models [35]. The authors described an agglomerative
clustering algorithm for manufacturing process models. If some deficiencies are identified in a
process model, the algorithm can help to detect a cluster of similar process models and eventually
redesign the whole cluster of process models that may also have such deficiencies. Also, the
algorithm can help design new process models by searching a process model cluster of similar
products and thus reusing or referring information from the cluster. The authors presented the
conversion of process models into a textual form that BPM execution systems may execute, but the
model execution is not described in the paper.

Abouzid and Saidi [36] proposed BPMN extensions for modeling manufacturing processes
and presented examples of manufacturing process models in carpentry and textile domains. BPMN
is extended with concepts for modeling the process step scheduling and inventory. The authors
aimed to model the minimum and maximum time needed to complete each process step, making it
possible to calculate the time for the whole process. Furthermore, by adding the inventory modeling
concept, it is possible to model the inventory of goods and materials, providing insight into semi-
finished goods waiting to be used in the following process steps. However, by using these
extensions, process models become complex [36], and all the previously described insufficiencies
of BPMN in the production domain are also present in this version.

Michalik et al. [37] presented an application of BPMN in modeling a flexible production line
at an MES level of information and control systems. The authors presented an example of a BPMN
model for the management maintenance function at MES and technological levels. However, the
production process within the BPMN model is represented as a single task only. Therefore, it is not
clear whether the production process could be executed automatically. Also, all the BPMN
insufficiencies in the context of production process modeling are still present. The authors
concluded that it is not possible to capture the complex technological details of an MES system and
that it is necessary to find new approaches to model these systems, such as a combination of
different existing technologies. However, that may increase the models' complexity and require
knowledge of different technologies from process designers.

Graja et al. [38] implemented the BPMN4CPS language by extending BPMN to model CPS-
aware processes. These BPMN extensions aim to enable process designers to precisely model
different CPS concepts. The authors introduced cyber and physical tasks and different attributes for
tasks, such as the technology that will be used to send or receive messages. Lanes are extended to
represent CPS devices and their constraints and parameters. However, as multiple CPS devices can
be modeled, a diagram's size will rise and become hard to read. Therefore, the authors proposed

State-of-the-Art 51

using colored physical tasks where each color refers to a specific device role written as a comment
in the diagram. Physical entities also need to be modeled, which are relevant to the physical
activities of CPS devices. As the real-world environment is composed of a number of physical
entities, it can be modeled as a pool. However, there are no details on how to execute BPMN4CPS
models [42], how to hide implementation details from the process model, and how to model
concepts such as the material flow.

Bocciarelli et al. [39] also presented BPMN extensions to address the modeling of resources
in the CPS-aware Industry 4.0 business processes. As BPMN lacks modeling concepts to specify
10T devices and CPSs, the BPMN extensions enable the modeling of CPSs as resources associated
with BPMN tasks. Also, the extensions cover the performance and reliability-oriented
characteristics of resources, making it possible to specify them at different abstraction levels. These
extensions are based on the MDA approach, enabling the simulation-based analysis of CPS.
However, production process modeling concepts that BPMN lacks to specify are still missing, and
thus the automatic orchestration and execution of production processes would be hard to achieve.
Also, there is a dependency on a production system by specifying resources and their components,
i.e., control units, communication interfaces, sensors, and actuators, within production process
models.

Meyer et al. [40] analyzed and identified IoT domain concepts and proposed BPMN extensions
to model 10T devices and their native software components, creating loT-aware process models.
The authors chose to extend BPMN as it is more appropriate for 10T extensions in comparison to
Event-driven Process Chain (EPC) (discussed further in this section), UML AD, and Web Services
Business Process Execution Language (WS-BPEL) [215] process notations [216]. Besides humans
participating in business process executions, loT-aware processes also include 10T devices that can
perform some tasks in a smart factory. BPMN is extended with a modeling concept of I0T devices
with parameters represented by a swim lane. The loT devices are added to the process flow as
resources for documentation and automation purposes. Also, BPMN is extended with an IoT
device's native service modeling concept represented with an activity.

Meyer et al. [41] then proposed further BPMN extensions to model physical entities in the
context of 10T as custom participants visualized as collapsed pools in BPMN. Thus, the authors
aimed to make extensions close to the standard BPMN notation. A physical entity or a "thing" of
10T represents a passive object that is a part of a physical environment and is of interest to a process
as its state can be measured or changed by 10T devices. However, other concepts BPMN lacks are
still missing, such as the product and the material flow, and there are no details on how to execute
the models [42].

Schénig et al. [42] proposed an approach for integrating 10T objects with business process
models ready for execution as, per their claim, many languages and approaches provide no details
on how to execute models. They extended BPMN to enable the integration of 10T objects with
process models and to preserve the possibility of executing the models in existing BPM execution
systems. The models are executed as business processes, i.e., HyperText Transfer Protocol (HTTP)
requests are specified in Script and Human tasks, and instructions are sent to machines or human
workers. Thus, technological details need to be implemented within the models, making a
dependency on a production system. In addition, it would be difficult to model concepts such as
material flow, smart resources, storage, products, capabilities, and constraints. Therefore, an
orchestrator would not be able to dynamically and automatically orchestrate the production based
on the models.

BPMN is a process modeling language, commonly used in various domains, especially for
business process modeling. It has good-looking graphical elements and constructs that can be
relatively easily learned. Some of these graphical elements, such as gateways, ad-hoc sub-
processes, and error events, can be used when creating a novel DSML for production process
modeling. Also, BPMN and many of its extensions can be executed in existing BPM execution
systems. However, BPMN is a business process modeling language and is not suitable for
production process modeling.

52 State-of-the-Art

UML-based languages. Unified Modeling Language (UML) [43] is designed by OMG and
represents a family of languages used by system architects, software engineers, and software
developers to analyze, design, and implement software-based systems and also model business and
similar processes. There are several UML diagram types, but UML Activity Diagram (AD) is used
to model a workflow of activities and thus may be used to describe production processes. Vathoopan
et al. [7] mentioned they are using UML AD to create a production workflow as a sequence of skills
in their prototype tool named SystemPlanner, which is used for skill-based engineering. The action
modeling concept of UML AD is used to represent the skills of the production workflow. However,
UML AD models are not suitable for automatic execution as they do not consider automation and
technical requirements [74]. As UML represents a family of languages, it could be possible to use
different UML languages to model production processes and cover some of the insufficiencies of
the sole usage of UML AD. However, this would additionally load process designers as they would
need to be familiar with multiple languages to model production processes. Thus, the complexity
of production process models would grow. According to Lee et al. [78], UML cannot present
process flows, detailed activities and resources, and sustainability information at the same time, as
there are differences between business and production processes.

The UML AD model of the Plank Sawing production process is presented in Figure 4.2. The
UML AD model is created by using the diagrams.net [217] modeling tool. Three lanes are used to
represent smart resources, but using UML AD, it is not possible to model resource properties.

Parallel process steps are specified to pick and saw two planks. A capability is presented within
an activity — a process step, and capability parameters are specified within the activity as input
parameters. Capability constraints need to be added as arbitrary text within annotations.

Input and output products are modeled as objects, while their constraints and storage are
modeled as text annotations attached to objects. Storage properties are hard to specify within
annotations. Like BPMN models, it would be hard to recognize and parse the text from UML AD
annotations to generate instructions automatically and execute them. Objects and activities can be
connected to specify if a product is a result of a previous process step.

In the example presented in Figure 4.2, the Plank 1 object represents the input product of the
Pick plank 1 activity, while the output product of the same activity is the Picked plank 1 object,
which is the same as the input product. However, the name of these two objects is not the same
since the state of the plank changed — from a state in which the plank is stored on a smart shelf to
another state in which the plank is already picked. The Picked plank 1 object is then used in the
Saw plank 1 activity as an input product, and after it is sawed, the output product of the same activity
is the Sawed plank 1 object with a shorter width than it was before the activity.

Material flow modeling requires the usage of different modeling concepts, such as objects,
activities, and annotations. This is more complex compared to BPMN maodels, in which only
annotations are used. Similar to the BPMN Plank Sawing example, input and output products are
only presented for parallel process steps, while others are hidden from the diagram to make the
model as simple as possible.

The decision pattern is modeled after the inspection of planks. A sub-process of discarding
planks can be modeled as a call behavior action. Compared to BPMN, it is harder to represent a
message flow and a collaboration of smart resources, which may be done by means of
synchronization. For example, there is the Send message activity in the Human worker lane, and in
the Robot 2 lane, it must be checked whether the message arrived using the decision pattern. This
solution may be difficult for automatic instruction generation due to a need to continuously check
if the message has arrived. The message flow may also be modeled using signals, but their purpose
is to communicate with an external participant. Similar to modeling with BPMN, process step
notations cannot be modeled.

Like BPMN, UML AD can be used to specify some of the basic concepts, but it lacks the
semantics of production processes. Due to object and parameter modeling concepts, UML AD
provides more concepts to model process steps compared to BPMN. However, by using BPMN, it

State-of-the-Art 53

is possible to model unordered process steps and the message flow can be modeled in more detail
as the message attributes can be specified, and the message flow can be presented more clearly
using relationships. If UML AD is used to model production processes, it would be hard to
dynamically orchestrate production and automatically generate executable instructions based on
models alone.

UML profiles could be created to extend the language with production process modeling
concepts, but too many extensions would need to be created. Using the initial set of modeling
concepts and many language extensions would make the production process modeling difficult.

Smart factory

Robot 1 Human worker Robot 2

Production started

<<Constraint>> ! <<Constraint>>

Width: 2m) v 1 7 Width: 2m

Height: 0.3m H __1 [Height: 0.3m

Plank 1 Plank 2
<<Storage>> o ! | <<Storage>>
From: Smart Shelf |-} “IFrom: Smart Shelf
Pick plank 1 Pick plank 2

<<Constraint>> <<Constraint>>
Width: 2m ----1 Picked plank 1 Picked plank 2 [---\width: 2m

Height: 0.3m Height: 0.3m

Width: 1m Saw plank 1 Saw plank 2 Width: 1m

<<Constraint>> <<Constraint>>

Width: 1m) __{width: 1m
Height: 0.3m “--| Sawed plank 1 Sawed plank 2 Height: 0.3m

<<Storage>> : [] ' | <<Storage>>

Inspect planks

hasDefect = true

"Io: Smart Shelf

To: Smart Shelf L

i
!

Any defect?

hasDefect = false

Send start message)

Hold planks

Y

Discard planksrh

hasArrived = false

Has message
arrived?

hasArrived = true

Place planks

Production finished

Figure 4.2. The Plank Sawing model example in UML AD.

54 State-of-the-Art

For the rest of this subsection, we present UML-based languages and their application in the
production domain.

Systems Modeling Language (SysML) [44] is designed by OMG and represents a GPML for
systems engineering. SysML reuses a subset of UML, making UML a base for SysML modeling
and extends it with modeling concepts for system engineering. The language is supposed to be
customized to model different domain-specific applications, such as automotive, aerospace, and
ISs. It aims to provide simple constructs for modeling a wide range of system engineering problems.
Like UML, SysML contains a collection of different types of diagrams, but SysML does not use all
UML diagram types. A diagram type that may be considered for production process modeling is
the SysML Activity Diagram (AD), which is an extension of UML AD. The scope that SysML AD
covers in production process modeling is similar to UML AD. Therefore, all the insufficiencies of
UML AD in the context of production process modeling are also present in SysML AD.

Fallah et al. [45] proposed a conceptual framework to model a modular MES using SysML.
As there is a need for both flexible and low-cost production, the authors wanted to create a
conceptual approach for the model-integrated service-oriented MES to ease reconfiguration efforts.
Models would be used not only to design MES but also for the execution of operations. The solution
would be built on MDE principles, allowing comprehensive system modeling at different
abstraction levels. SysML MES models would represent platform-independent models, which
would be connected through the platform-specific Open Platform Communications Unified
Architecture (OPC UA) protocol with cell controllers. OPC UA [218,219] is a service-oriented
architecture that provides data exchange in a platform-independent manner. It was developed by
the OPC Foundation, aiming to create a standard way of communication between different systems
and devices through various networks. Fallah et al. aim to model production processes on a higher
abstraction level by developing a modular MES through SysML. However, this framework is not
implemented. Also, neither a code generator for model transformation into executable code nor an
interpreter for direct model execution are implemented. Nevertheless, the idea of creating an MDE
solution and transforming PIMs to PSMs in the MES domain may be applied in the production
process modeling domain as well, transforming resource-agnostic to resource-aware production
process models automatically based on the MD paradigm.

UML represents a family of languages that is utilized in various domains. Different languages
from UML may be used to specify various aspects of production processes but would require
additional knowledge from process designers when modeling production processes. This may lead
to difficulties and errors during modeling. UML AD alone does not provide enough modeling
concepts to cover the production process modeling domain fully.

PN-based languages. Petri Net (PN) [47] has been designed by Carl Adam Petri [46] to visualize
chemical processes. PN is a language with only a few modeling concepts, such as places, transitions,
arcs, and tokens. Places represent passive components such as states; transitions represent active
components such as activities; arcs are used to connect places and transitions; and tokens represent
the current state of a PN system. Due to the limited humber of modeling concepts, PN is easy to
use and can be applied in many domains. However, PN is too generic to be used for modeling
production processes. Fleischmann [54] stated that subjects and objects could only be modeled as
comments using PN, which also applies to resources and products. Therefore, it would be hard to
model these concepts like that. In addition, the complexity of PN models is high, even for simple
production processes containing just a few process steps.

The model of the Plank Sawing production process expressed by the concepts of PN is
presented in Figure 4.3. The PN model is created using the Platform Independent Petri net Editor 2
(PIPE2) [220-222]. Capabilities of process steps can be specified by adding transitions in a PN
model. However, products, smart resources, storage, constraints, and parameters cannot be added
to the model. They can only be specified as arbitrary text attached to each transition. It would be
hard to parse such a text, and it would also be hard to read for humans. Thus, process designers
would have difficulty modeling production processes using the PN language.

State-of-the-Art 55

Transitions with multiple relationships are used to specify parallelism. In the example
presented in Figure 4.3, parallel process steps to pick and saw different planks are modeled between
transitions with multiple relationships. After the inspection of planks, the decision pattern is
modeled using places with multiple relationships.

Production started

Plank 1 is not picked Plank 2 is not picked

< 4 + >
Parallel transition 1
Pick plank 1 Pick plank 2
Plank 1 is picked Plank 2 is picked
Saw plank 1 Saw plank 2
Paralle| transition 2
Plank 1 is sawed Plank 2 is sawed
Planks are sawed
Inspect planks
hasDefec(true hasDefect = false
Any defect?
Planks have no defect
Box is not picked Planks are not held
1
<

Parallel transition 3

Pick box
Y
() Planks have defect Hold planks
Box is picked
1 Place box Planks are held

Start message

Box is placed

Y
I Discard planks
4 Place planks
Send start message
1
Parallel transition 4
4 > 4
t > +
v Message is sent Planks are placed
() Planks are discarded Box is not closed
Close box
1
Box is closed
Y
T Finish production 1 Finish production 2
4 m 4
t > <€ t

Production finished

Figure 4.3. The Plank Sawing model example in PN.

56 State-of-the-Art

As opposed to BPMN and UML AD, sub-processes cannot be modeled using PN, and
consequently, they are modeled as transitions, such as the Discard planks transition. A message
flow can be expressed like other activities in a PN model. In Figure 4.3, the Send start message
transition is used to represent a process step of sending a message after the box is placed and the
Start message place is used to represent the message, which is a precondition for the Place planks
transition. However, no details can be specified for a message, and it cannot be distinguished from
other places in a PN model.

Similar to the conclusions of the BPMN and UML AD examples, it can also be concluded that
it would be hard to orchestrate production and generate executable instructions based on PN
production process models. Likewise, process step notations cannot be modeled by means of PN.
The language can be used to model only a few basic concepts of production processes, as it is too
generic to model any specific concept of the production process domain. This is especially true if
models are specified in detail, as required for dynamic orchestration and automatic instruction
generation. Unlike BPMN, an advantage of PN is that it has only a few basic concepts that process
designers use to model processes, making the modeling easier. However, the consequence of having
only a few modeling concepts is that production process models become too complex, even with a
few process steps.

For the rest of this subsection, we present PN-based languages and their application in the
production domain.

Miiller et al. [48] presented an approach for planning and programming an assembly system
based on the PN language. The approach aims to reduce the implementation effort of flexible
assembly systems. An assembly process is composed of skills, while resources offer a set of skills.
Based on such generic process step descriptions, resources with the required skills can be chosen
via services to perform such steps. Specifications of assembly systems and processes are used as
work instructions for a control system. An assembly process is divided into two types of flows: (i)
a program flow —a logic to perform an assembly process; and (ii) a data flow — a flow of information
during the process. A program flow is expressed as a PN model, in which places represent states
while performing a process, and transitions represent skills needed to perform process steps. A data
flow is expressed with a PN-like model, specifying a connection between different software
functionalities or production equipment with other elements. By introducing different levels of
workflow, the production system's independence can be achieved. Models at the process planning
level are abstract, without any resources. A program flow level contains additional operations and
details about resources needed for process execution, while a data flow level specifies the workflow
fully. Transitions are described with arbitrary text, and such text needs to be interpreted to be
executed. Such a process of interpreting PN model elements may be prone to errors. Also, other
insufficiencies of PN to represent production processes still exist. However, utilizing skill-based
engineering in production process modeling may provide independence of production process
models from a specific production system, which also motivates us to consider applying skill-based
engineering when creating a novel DSML for production process modeling.

Latorre-Biel et al. [50] used Object PN to model an Industry 4.0 manufacturing facility so that
models can be considered for analysis, performance evaluation, and decision making support.
Object PN [49] supports the nets-within-nets paradigm, providing tokens with the structure of PN.
These tokens are called token nets or object nets, and they belong to a surrounding net called a
system net, forming an object net system. Between different token nets and between token nets and
system nets, interaction mechanisms may exist. The authors used a token net to describe a single
product, which can request a list of services, and a system net to describe a manufacturing facility
with its resources, such as robots and conveyor belts. Each product is modeled with a different
token net. Communication between a system net and token nets makes requesting services possible.
This approach focuses on a production facility and a product that changes state as it moves through
the facility. Therefore, there is a possibility to model the material flow, as storage may be modeled
as places called buffers and warehouses. However, it would be difficult to specify different
constraints, parameters, and details about products, resources, and storage.

State-of-the-Art 57

As a general-purpose language, PN has a wide range of application domains. Due to only a
few modeling concepts PN supports, it can be easily learned and applied in various use cases.
However, it would be hard to model production processes using PN, as it does not have semantics
to cover all the required modeling concepts and constructs, and with only a relatively complex
production process, PN model diagrams become large and hard to read. The concept of a token,
used in a PN model to track the state of a system, can be useful in production process modeling,
allowing the tracking of the production process steps execution and monitoring of the whole
production.

Other modeling languages. The Integration DEFinition (IDEF) method for Process Description
Capture (IDEF3) [51] is designed to document and analyze the processes of the existing or proposed
systems. IDEF3 was created to describe sequences of activities, and its goal is to provide a method
used by domain experts to specify the activities of a system or an organization. IDEF3 was recently
used for business process modeling, analysis, reengineering, and management [52] but was also
applied in the manufacturing domain [212]. However, IDEF3 lacks modeling concepts to describe
materials and resources related to activities [73]. Objects could be used to represent products — from
raw materials to packaged goods, and Units of Behavior (UOBS) could be used to represent process
steps [212]. Smart resources could be modeled using the object elements [212], but there would be
a conflict with the representation of products and materials. IDEF3 process models can be easily
understood because of the language's simplicity and the small number of modeling concepts, but it
struggles to represent complex processes [78].

Event-driven Process Chain (EPC) [53] is used to model processes with four types of objects:
events, functions, rules, and resources. These objects form a chain of functions and events. As EPC
was created for business process modeling, it does not provide all the modeling concepts for
execution-ready production processes. Like with previously described languages, it would be hard
to model resources such as humans, robots, and machines with all the details needed for execution.
The material flow concept is neglected [66], and so are the message flow and the error handling.
Thus, the automatic execution of the process models would be hard to achieve.

Subject-oriented Business Process Management (S-BPM) is an approach that combines
different properties of BPM 2.0, including technical perspectives as well as human interaction [54].
This approach recognizes a subject, i.e., an actor, as the starting point for modeling business
processes and focuses on the interaction between the subjects [55]. Thus, communication modeling
is the prime aspect of this language. When modeling with S-BPM, abstract subjects are used instead
of concrete ones, and concrete subjects are assigned when a process is embedded into an
organization, indicating that the independence of the production system may be achieved. However,
products and the material flow are still difficult to model, due to the lack of modeling concepts.
Therefore, the automatic execution of production process models would be hard to achieve. The
assignment of concrete subjects based on abstract ones may be seen as similar to the creation of
resource-aware production process models based on resource-agnostic production process models
we plan to achieve by utilizing skill-based engineering. However, in the approach we plan to create,
the enrichment of resource-agnostic production process models with storage, transportation, and
configuration activities should also be provided.

Neubauer et al. [56] specified requirements for the vertical integration of business and
technical manufacturing processes so that companies could flexibly react to production changes.
The authors investigated the applicability of S-BPM to achieve vertical process integration, and
they modified the language by adding different types of messages. They proposed a generic
modeling pattern for subject-oriented design and execution of production processes. This pattern
comprises three types of subjects: a service, a human, and a coordinator. The service subjects can
represent devices, machines, and web services, while the human subjects can represent employees,
workers, and other human users in the production environment. The coordinator subjects coordinate
the interaction of subjects in the production environment. However, all the insufficiencies of S-
BPM in production process modeling still exist. Their vision of subject-oriented modeling,
especially the usage of a coordinator in the proposed pattern, is similar to what an orchestrator is
supposed to do — to automatically coordinate production.

58 State-of-the-Art

Many intermediate products and materials exist only for a short time during a manufacturing
process and thus do not have any formal name. Wen and Tuffley [57] applied the Composition Tree
(CT) language to solve the naming problem that may appear when:

e aproduct is transformed into a new one;

o different products are combined to form a new one; and

e aproduct is split into new products, or a part is removed from a product that becomes a
product on its own.

CT is a formal language, a part of behavior engineering developed for large software systems.
It may also be applied in the domain of manufacturing processes. The root node of CT is used to
represent a final product, while other nodes under it are used to represent materials needed for the
final product. An ordinal number of a process step to which material belongs is also presented
within a node. Therefore, a sequential process may be concluded from a CT model. There are also
different attributes for each product and material and relationships to other materials and products,
e.g., whether the material needs to be added or mixed with another one. Accordingly, a material
flow can be modeled, but the storage modeling concept is not available. Also, only sequential
processes may be represented. Thus, behavior trees may be needed to model dynamic aspects of
manufacturing processes [57]. The naming issue, discussed by Wen and Tuffley, could be addressed
when creating a novel DSML through the material flow modeling concept that connects all
materials, intermediate parts, and final products of a production process, thus formally specifying
all of them through the process model. A newly created DSML, whose models would be used for
production process execution, needs to allow the specification of all materials and intermediate
parts in order to track the material flow and enable the automatic execution of production processes.

Summary. A common conclusion can be drawn for the presented languages. These languages are
not created to support production process modeling, especially the process models suitable for
dynamic orchestration and automatic execution. Thus, they cannot be used to specify all the
production details. Various authors extended such languages to cover certain aspects of production
process modeling but usually not all the details required for process execution. Due to the
complexity of the production process modeling domain, many different extensions would need to
be used to specify models suitable for execution or automatic instruction generation. Such a
language would be hard to use for process designers as it has its base modeling concepts that are
not tailored for the manufacturing domain. Even if process designers are trained to model
production processes using these languages, none of these languages are conceptually familiar to
them. Therefore, they would need to invest a lot of time and effort in learning to use any of these
languages and their modeling tools. Difficulties in learning to use a modeling tool that supports one
of these languages are not caused by the complexity of the domain but by the complexity of the
modeling language and the tool. Accordingly, if the languages are extended to support production
process modeling concepts they are missing, these languages are still not tailored for such a domain.

As too many extensions need to be created, it is much more efficient to create a novel language
from scratch, adapting it for the production process modeling domain. Therefore, process designers
would use modeling concepts they are familiar with, and such a domain-specific language would
have formal semantics, with exact rules on how to model production processes, minimizing faults
caused during modeling. By using the formally defined language, machine-readable production
process models can be created and automatically transformed into executable resource instructions.
We expect that the creation of an appropriate novel DSML would speed up the specification of
production processes, decrease the number of faults during the specification, and enable faster
changes in models.

4.2.2.3 Combining Modeling Languages to Model Production Processes

Using different modeling languages to specify various aspects of production processes is one way
to deal with the complexity of production process models and the extensive volume of modeling
concepts a single language needs to have to specify production processes. Researchers have created

State-of-the-Art 59

various approaches in which they used a combination of modeling languages to specify production
processes, as discussed in this section.

Bork et al. [58] proposed a procedural framework that guides the design and development of
combined conceptual modeling methods in the context of Industrial Business Process Management
(IBPM). The framework is composed of three abstraction levels:

e approach level — abstract meta-model building blocks;
e concept level — model and functional building blocks; and
e execution level — execution building blocks.

The authors evaluated the proposed framework using the ADOxx meta-modeling platform to
implement a multi-stage manufacturing process simulation environment. ADOxx [172] is a meta-
modeling and configuration platform used to conceptualize modeling methods [173]. A formal
definition for ADOxx meta-modeling concepts can be found in the work of Fill et al. [174]. As the
ideas of IBPM are that there is no single approach applicable to a complex domain and that a
combination of different approaches is needed, the authors proposed the usage of different
languages in the multi-stage manufacturing process simulation environment. Various models of a
production process should be flexible and loosely coupled, representing different views on the
production process. The idea is that different modeling languages are based on the same abstract
meta-model building blocks. Therefore, the authors implemented abstract and concrete building
blocks for Graph-based Simulation of Multi-Stage Production Processes (GSMSPP), and they used
simplified BPMN and simplified block diagrams of concrete building blocks to model production
processes. Based on the presented meta-models, some production process modeling concepts are
not covered, such as resources and products. Modeled processes can be simulated, but it would be
hard to use the models for dynamic orchestration and automatic execution. In this framework
implementation, some flow types are missing, such as material flow, but the framework could be
extended with different languages to support various flows. However, using different modeling
languages comes with risks in consistency, usability, and intuitive understanding [58]. Therefore,
it may be hard for process designers to know how to use different languages, especially as these
languages may not be from the domain they are familiar with. These are some of the main reasons
we propose the creation of a novel DSML — so that process designers use a single language with
modeling concepts familiar to them. The whole domain of production process modeling is complex,
and this justifies the authors' statement that one modeling language is not enough to capture all the
requirements and that multiple modeling languages should be used. However, our opinion is that
the usage of a single language with different levels of detail and different modeling layers can be
applied to cope with the domain complexity problem.

Jeong et al. [59] proposed a Process-Based Modeling (PBM) method to describe the production
processes of ship block assembly planning. This method uses different modeling approaches,
languages, and documents to describe production processes. It consists of four modeling steps:

e creation of a unit model that includes products, processes, and resources for a block;

e design of an integrated network of processes by linking unit models based on a BOM;

e creation of a process-based model describing production processes by combining unit
models; and

e generation of a PN model from a process-based model to simulate and analyze the
productivity of a ship block assembly process and to support model validation.

The PBM method can be used to model Products, Processes, Resources, Schedules, and Spaces
(PPR-SS) needed for block production, and it can identify complex interrelations between
processes. The method combines data from different sources, such as a unit product, BOM, activity
data, and resource data, creating a unit model. Therefore, a process designer must be familiar with
all these sources to specify production process models. Being aware of all these details may be
burdensome for process designers. Since the PBM method does not have a formal description [59],
it would be hard to execute its models.

60 State-of-the-Art

Petrasch and Hentschke [60] presented loT-Aware Process Modeling Method (IAPMM) that
uses languages, such as SysML requirement diagrams, UML use cases, and BPMN extensions
named loT-Aware Process Modeling Notation (IAPMN) in order to model l0T-aware processes.
The goal of this method is to enable the modeling of software systems and software applications
like sensing and actuation. As loT-aware process models are needed to specify system and software
design requirements, a new modeling method is introduced. The authors used existing modeling
concepts and added new ones to model 10T devices, physical entities, 10T activities such as
actuation and sensing tasks, real-world data objects and stores, mobility aspects, and indicators of
whether human beings are involved. Therefore, resources and activities may be modeled, but
products and the material flow modeling concepts are missing.

The same authors created Industry 4.0 Process Modeling Language (14PML) and Industry 4.0
Process Modeling Method (14PMM) [61] by extending IAPMN and IAPMM with Cloud
Computing applications. The language represents an extension of BPMN. By using I14PML, it is
not possible to model all the technological details as its purpose is to model production processes
in a requirements specification and analysis phase. Also, there are no details on how to execute
models of both methods presented by the authors [42]. However, as I14PML represents a UML
profile, it has a formal definition and may be integrated with existing validation and simulation
tools and used as a source for M2M or M2T transformations within code generators.

As many modeling approaches are insufficient to support collaborative tasks of human workers
and machines, Lindorfer et al. [62] presented the Asset-Decision-Action-Property-relaTionship
(ADAPT) modeling approach to model variable work tasks of humans and machines. The approach
is based on a newly created meta-model, and the authors presented the first implementation of a
BPMN-based workflow designer. Such an approach aims to enable the modeling of assembly
workflows, collaboration between human workers and machines, decision-making, and assembly
variations. The authors plan to extend the tool to use a combination of Gantt and flow process charts
to model various assembly tasks. Currently, they only developed a workflow modeler based on the
extensions of the BPMN language to support ADAPT models, enabling the modeling of actions,
decisions, and assets. Assets are used to define many concepts, such as skill profiles, resources,
products, parameters, images, and work instructions. Therefore, it may confuse users on how to use
such a modeling concept. Likewise, a decision concept is used to model both conditional workflows
and product variations. A model may also be specified as an Extensible Markup Language (XML)
file, later used to generate PSMs for different software applications, such as a visualization or a
specific robot system. A code generator is used to transform an XML-based model into an HTML
webpage with work instructions and images that are sent to a worker's smart device. Specific robots
and workers are not modeled by users, indicating that it is possible to separate some of the
production system details from production process models, as they use skill profiles and match
process steps with workers. The material flow modeling concept is missing, and it is unclear how a
collaboration and message exchange between human workers and machines may be modeled. Also,
the authors stated that the Programmable Logic Controller (PLC) program might be generated from
models for different kinds of robots but is considered a future work. Similar to the skill profiles
used in the ADAPT approach, we plan to utilize skill-based engineering to match process steps with
resources but also to separate specific storage, and transportation and configuration activities from
resource-agnostic production process models.

Combining different modeling languages to cover various concepts of production process
modeling is a justified approach. Due to the complexity of the production process modeling domain,
authors used different modeling languages to model various production process aspects, which
would hardly be achieved by using only a single language. However, this approach requires
knowledge from process designers to apply multiple modeling languages. Moreover, they would
need to be trained to actively use different modeling languages, which can be particularly
burdensome.

State-of-the-Art 61

4.2.2.4 Modeling Languages to Support Production Process or Production System
Modeling

The final category of modeling languages represents the ones that can be referred to as DSMLs in
the domain of production process modeling or production system modeling. Even if some DSMLs
are created to support the production system modeling, these languages usually cover modeling
concepts such as operations, activities, or capabilities, thus allowing the specification of production
processes as well. The DSMLs we investigated were created to cover various aspects of the
production domain, as presented in this section.

Value-Stream Mapping (VSM) [63] is a language used to model production processes, having
modeling concepts that can express material and information flows in detail. VSM models are used
to create a production path from customer to supplier, and they are used to identify issues and reduce
waste during production. However, according to Zor et al. [31], VSM models serve documentation
purposes only and cannot be executed automatically. Additionally, VSM is limited to simple linear
process sequences [66] and describes tasks at a high level [212].

Salmi et al. [64] presented a novel Assembly Sequence Modeling Language (ASML) to
support the decision-making process of determining to which level to automate a factory in
assembly manufacturing. ASML is used to represent different assembly sequences and to schedule
their tasks in different ways to determine the optimal level of automation and estimate the assembly
time and cost. The language is built so a user can work on assembly tasks without knowing the
technological details. A resource is defined as a block of process tasks, but it is not presented in the
paper whether any resource details can be specified. An automation optimization algorithm, a
process designer, or a manufacturer will decide the specific resources. Thus, an assembly sequence
without resources and their schedule is given as input to the decision-making process. After testing
different scheduling scenarios, the output is an assembly sequence with resources, their scheduling,
technological details, and cost estimations. However, products, storage, and material flow would
be hard to specify, making dynamic and automatic production orchestration difficult. Also, the
ASML modeling tool was not implemented and is considered future work. As assembly sequences
are modeled without specifying particular resources, and then different scheduling scenarios are
tested, this is one way to create resource-agnostic production process models and their scheduling.
We also aim to create resource-agnostic production process models, but semantically richer in order
to be used by an orchestrator to automatically match resources with process steps and schedule their
allocation automatically. Additionally, an orchestrator should also be able to add production
logistics steps, including the material flow in a facility, and configuration process steps when
needed.

Since manufacturing systems aim to be flexible, reacting quickly to customer changes, Keddis
et al. [65] proposed a DSL for production workflows to address such needs. The authors stated that
flexibility could be increased by separating process descriptions from production systems. Thus,
production process descriptions should not be based on available resources. Instead, a generic
description of processes should be defined once and reused with different factory setups. The goal
of creating such a language is to use workflows in automated planning and scheduling systems to
determine which resources are to execute process steps. This allocation of resources needs to be
done automatically without user intervention. The authors implemented a meta-model of the
language by using EMF. Therefore, production process models are machine-readable, making it
possible to execute such models in the future, but this has not yet been implemented. Process steps
do not include resource-related information but only process operations, input and output products,
and materials. Besides sequence, parallelism, and decision workflows, the language also supports
an arbitrary order of process steps. The error handling modeling concept is considered a future
work. Similar to the language and approach presented by Keddis et al., we also plan to create generic
process descriptions, by using different detail levels to separate resource-agnostic from resource-
aware production process models. However, besides creating resource-agnostic process models as
generic process descriptions, we also plan to separate storage, and transportation and configuration
process steps from such models.

62 State-of-the-Art

To overcome the usual lack of the material flow modeling concept, Litjen and Rippel [66]
proposed the GRAphical MOdeling and Simulation-based Analysis (GRAMOSA) integrated
approach. GRAMOSA is a novel material flow-oriented production process modeling language that
is used to transform factory data models into executable simulation models. The authors
implemented an automatic generation of executable simulation models from factory data models to
reduce the time and errors of manual transformation. GRAMOSA uses symbols from UML class
diagrams but has a profiled UML notation instead of a regular UML one. Processes can be specified
in sequence or parallel, but operations can only be specified in a linear sequence. Materials,
products, and storage can be specified, thus creating a material flow. However, as the authors stated
in the paper, the material flow-oriented approach is complex [66].

Since there is a need for clear and accurate manufacturing process information modeling, Yang
et al. [67] proposed a four-layer framework based on meta-modeling, and extended it two years
later [68]. The framework is formally defined, providing a systematic and standardized method for
manufacturing process information modeling at the process planning stage. The framework is based
on UML and has four layers: meta-meta-model, meta-model, model, and data layer. As the
framework is constructed via UML, the meta-meta-model is represented by the OMG's MOF
modeling infrastructure. The authors presented the meta-model named Manufacturing Process
Information MetaModel (MPIMM) to create models independent of specific products and processes
with a wide range of applications. Based on the MPIMM and the UML profile extension
mechanism, models hamed Manufacturing Process Information Models (MPIMs) can be created,
thus specifying concepts closer to the specific manufacturing domain. With the MDA principles,
MPIM can be transformed into specific data models. Process steps can be fully modeled using the
framework, and for each step, different resources may be specified that have the same or similar
capabilities needed to execute an operation. Therefore, there is no mention of separating production
system details from production process models. Also, the framework does not support modeling
collaboration between humans and robots [62], and the material flow modeling concept is missing.

To support rapid semi-automatic system design, reconfiguration, and auto-configuration of
heterogeneous multi-vendor production systems, Jarvenpéa et al. [69] presented Manufacturing
Resource Capability Ontology (MaRCQ). The proposed ontology is formally based on Web
Ontology Language (OWL) [223], a semantic markup language for publishing and sharing
ontologies on the World Wide Web (WWW). Resource vendors may use MaRCO to describe
offered capabilities, while end-users may use it to identify resource candidates for a specific
production. The presented ontology is used to formally model the capabilities of manufacturing
resources in a vendor-independent manner. MaRCO aims to allow automatic matching and suggests
appropriate resources for specific product requirements. By using the ontology, products, process
steps to create products, resources, and their set of capabilities can be modeled, as well as
matchmaking between process step required functionalities and resource capabilities, i.e., provided
functionalities. The authors presented the Device Blueprint modeling concept representing types of
devices with nominal capabilities. As nominal capabilities and parameters may change during the
usage of resources, there are actual capabilities modeled for individual devices that can refer to a
Device Blueprint. By introducing Device Blueprint and nominal capabilities, the independence of
production system details may be partially achieved. Process variations may be represented through
combined capabilities with the OR operator that may be modeled to represent different variations
of similar capabilities, but product variations are not described. The authors created a capability
catalog, defining a pool of generic capabilities and parameters that are assigned to resources with
resource-specific parameter values. We also consider creating the capability repository, as
capabilities are not standardized yet. Therefore, process designers could use capabilities and
parameters from the repository when specifying production processes. Otherwise, process designers
may use synonyms or slang for the names of capabilities and parameters, or they can misspell the
name unintentionally. All these scenarios lead to the inability of matching process steps and
resources by an orchestrator.

Cramer et al. [70] established the Meta-Model for Production Data (MMPD) for efficient data
integration with multi-step production processes, as usually, meta-information about processes is

State-of-the-Art 63

missing. Creating data-driven models may be used to predict the occurrence of defects in
production, which is called Predictive Quality (PQ). MMPD is a product-centric meta-model that
can be used to specify production data for automated PQ methods. The language contains modeling
concepts, such as products, process steps, machines, tools, and human workers. A process flow
determines a sequence of atomic process steps, meaning even changing a machine tool should be
represented as a new process step. However, MMPD does not support modeling concepts such as
material and message flows. It would be hard to execute MMPD models due to the lack of details,
and such models depend on a specific production system, making the modeling difficult for users.
We also plan to model production processes consisting of atomic process steps in order to allow the
orchestration of each production process step, and not the high-level orchestration. For example, if
a gripper needs to be changed or a robot needs to determine its position, these are all considered
distinct process steps.

Brunoe et al. [71] proposed an approach and a meta-model for modeling components,
processes, equipment, and their relationships. The approach is called an Integrated Product-Process
Modeling Approach (IPPMA), aiming to contribute to increasing manufacturing changeability. The
product-process modeling approach is based on the modeling of products and processes at two
distinct levels:

e generic level — forms a company-specific ontology of components and processes; and
e specific level — based on the generic ontology, specific components and processes in a
company are described.

A generic level is introduced, so that specific components and processes are always described
using the same attributes and relationships between them. However, production system details are
not separated from product-process models. The approach does not include a sequence of
operations, implying that it does not support automated routing. It is only possible to assign
operations needed to produce a component. Also, the approach was not validated in the industry
[71]. Differing from the abstraction levels presented in this approach, we aim to create detail levels
to separate equipment, i.e., smart resources, devices, and storage, from production process models,
alongside the configuration of the equipment and production logistics.

Qiao et al. [73] presented a manufacturing process information modeling method based on
Process Specification Language (PSL) with its extensions related to activities, materials, and
resources. PSL is an interchange format used in various manufacturing application systems, such
as process modeling, process planning, scheduling, simulation, workflow, project management, and
business process re-engineering [72]. The language aims to exchange process information
automatically between such manufacturing application systems by transforming their native format
into PSL. It was created by National Institute of Standards and Technology (NIST) [224] with the
goal to make a standard language with formal semantic definitions to serve as an integration format
between different process-related application systems throughout the manufacturing life cycle. The
authors [73] extended PSL version 2.5 to create a generic representation of manufacturing process
information. The language can represent activities, materials, and resources, with different
relationships between such concepts. One activity may be assigned to multiple resource options in
a process plan, as different resources may perform such a manufacturing task, but only one will
perform it during the process execution. A situation where several resources may be used to execute
a single activity can also be modeled. In addition, there is a possibility to create resource sets that
may substitute each other, as using one resource leads to using other specific resources. Therefore,
these kinds of relationships can be used to create process models that are partially independent of
specific resources, but there are still relations to resources from process models. As PSL models
are machine-interpretable, they can be exchanged and understood by different application systems.
However, certain modeling concepts are missing, such as storage, message flow, and error handling.

Witsch and Vogel-Heuser [74] presented Manufacturing Execution System Modeling
Language (MES-ML), whose purpose is to specify MES through different views so that the model
complexity can be reduced. MES-ML is based on BPMN and covers the modeling of:

e atechnical system, i.e., the technological structure of a plant;

64 State-of-the-Art

e production processes; and
e MES/IT functions.

Integration of these three views is done with an MES-ML linking model. By using links, it is
possible to connect process steps with production system elements, i.e., smart resources, that will
execute the steps. However, such links create a dependency between production process models
and a production system. Due to this dependency, a process designer must take care of connecting
process steps with production system elements during the production process modeling. Such a task
makes the production process modeling more complex and could lead to a higher number of created
errors during the modeling and higher model complexity. The models could be independent if MES
is not implemented for the existing plant but is projected in the early engineering phases — there are
process steps that are not yet linked to the technical system. MES-ML is used for specification,
standardization, testing, and documentation of the MES software, but the automatic execution of
the models would be hard to achieve. In the presented approach, links to connect process steps and
resources need to be defined manually. To avoid connecting process steps and resources manually,
we aim to utilize skill-based engineering in production process modeling and use an orchestrator to
automatically assign process steps to resources and add storage, and transportation and
configuration steps.

According to Weilenberger et al. [75], MES-ML does not support the creation of generic
production process specifications as the semantics of process tasks are insufficiently specified, and
process models are not suitable for code generation. MES-ML models are used as human-readable
text-based MES specifications. To enable the modeling of machine-usable MES specifications
suitable for code generation, the authors implemented a DSML by extending MES-ML. This new
language aims to enable higher independence of production process models from a production
system during the process modeling. Instead of the link used to connect a process step with a
resource of a production system, the authors proposed a list of links to be used for each process
step. At runtime, resources that execute process steps will be determined. However, the dependency
between process steps and production system resources remains, and it is ambiguous which
resources will execute process steps until the runtime. Therefore, process steps are not entirely
independent as they have direct links to the resources of a production system. Such a way to achieve
independence is similar to resource options and resource sets presented by Qiao et al. [73] when
modeling production processes using PSL. Instead of manually specifying a list of links that connect
a process step with resource candidates that may execute the step, we plan to connect process steps
and resources through required and offered capabilities. Thus, we plan to provide the independence
of a production process model from a specific production system.

As an MDE approach for the food and beverage industry domain has not been established for
MES, Chen et al. [76] extended MES-ML further to use it in such a domain. The authors focused
on specifying modeling elements of MES functions that would enable the automatic transformation
of models into operational MES. The MES-ML language [74] and its previous extensions [75] are
further extended with energy consumption and overall equipment effectiveness concepts, as the
food and beverage industry creates a product for human consumption, requiring high quality and
safety standards. The authors applied their approach in the beer brewing context by adding domain-
specific elements to the existing meta-model. However, the authors have not yet implemented a
transformation tool from MES specifications to operational MES solutions.

Afterward, Chen et al. [77] applied the approach in two additional use cases in the processing
and packaging areas of the food and beverage industry to prove its usability. The authors also
presented generated graphical user interfaces from MES-ML models. By using such an MDE
approach, MES customizations do not depend on high programming efforts but on domain-specific
modeling, which is more suitable for MES users.

Considering manufacturing processes' sustainability or energy consumption, Lee et al. [78]
proposed the Green information-based Manufacturing Process Modeling (GMPM) methodology to
support the design of MES functions. The authors also presented a procedure for extracting
functional requirements from GMPM models and mapping them to standardized MES functions.

State-of-the-Art 65

The methodology can be used to effectively design and introduce MES by recommending proper
MES functions based on information gathered from manufacturing process models. GMPM s
designed to include detailed activity information and green information, i.e., manufacturing
processes' sustainability or energy consumption information. It can be used to model process flows,
activities, and energy consumption simultaneously. However, GMPM cannot be used to model
concepts such as material flow, message flow, and error handling.

Lee et al. [79,80] also created the Part-flow based Manufacturing Process Modeling (PMPM)
language to express a process flow and a part flow at the same time. This language has similar
modeling concepts to the GMPM language created by the same authors. The authors used PMPM
in their conceptual framework for the Process Model-based Human-Robot Collaboration (PM-
HRC) system. The system is used for human-robot collaboration in a semi-automation process of
electric motor production [79]. In such a process, a robot assists a human worker during material
handling. As a human worker does not know in advance what part type a robot has picked, there is
a delay when the human worker receives the part as it needs to be identified. Therefore, the authors
applied the AR technology worn by human workers to identify parts in such collaborative
operations. The technology is used to visualize process workflow during the execution and part
information modeled with the PMPM language.

In their subsequent paper [80], Lee et al. also used the PM-HRC system so they could respond
to changes in customer demands and process plans through a collaboration of human workers and
robots. PM-HRC is based on MDE principles and can be used to automatically transform PMPM
models into BOMs, assembly instructions for workers, control codes for cobots, and PN verification
models. Assembly instructions are sent via mobile devices to human workers. Control codes are
sent to cobots and are verified through automatically generated PN models. PMPM is based on the
PPR concept. Therefore, operations, products, and resources can be modeled. By using PMPM,
tasks performed by automated machines and collaborative works of robots and human workers can
be modeled. However, a human-robot collaboration is achieved through modeled process steps and
the usage of AR devices during a part handover at an assembly workstation. A message exchange
between process steps or resources cannot be modeled. Input and output parts of each task can be
modeled, as well as a part flow through process steps, but the storage modeling concept is missing.
Additionally, as operations and parameters of control codes are not synchronized when activity or
part flows change, manual debugging and manual parameter synchronization are necessary [80].
Compared with the authors' approach, we also plan to use code generators and predefined templates
to generate various manufacturing documentation, but also instructions to execute process steps.

VDI/VDE 3682 [81,82] is a standard for formal process descriptions created by the
Association of German Engineers and the Association for Electrical, Electronic & Information
Technologies, VDI/VDE (German: Verein Deutscher Ingenieure/Verband der Elektrotechnik
Elektronik und Informationstechnik) Society for Measurement and Automatic Control (German:
VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik, GMA). Currently, there are two parts
of this standard: (i) Concept and graphic representation [81]; and (ii) Information model [82]. The
other three parts are still in preparation: (i) XML representation; (ii) Application in process industry;
and (iii) Application in the manufacturing industry. The standard aims to apply formalized process
descriptions in technical and non-technical processes, continuous, batch and discrete processes, and
in different manufacturing domains. Requirements are specified in this standard, and thus a process
description should be:

simple;

neutral as regards the branch of industry;

easily understandable for all the functional areas involved; and
usable throughout the life cycle of the system.

Regarding the requirements described in the VDI/VDE 3682 standard, the DSML we propose
also aims to fulfill those requirements. In addition, it is mentioned in the standard that having a
formalized process description creates a basis for:

e checking the quality of processes and products;

66 State-of-the-Art

e analyzing different metrics;
e simulating, validating, and verifying process models; and
e easily importing/exporting information with computer aided systems.

These are some of the reasons why we also propose a formal description of production
processes. When using the VDI/VDE 3682 standard, a process is represented graphically with
symbols only, and additional information, such as attribute values, is added afterward. These
symbols are visually simple, and there are only a few different symbol types, as one of the aims of
the standard's language is to be easily used by users unfamiliar with IT. Production process models
are created using states and process operators connected via directed links. States can represent a
product, energy, or information, and they are changed by process operators with the help of
technical resources, i.e., assets. Connecting products and process operators creates a sequence of
process steps. The standard uses separate flows between process operators and states to represent
process alternatives or partially shared flows between them to represent parallelism. It does not
include additional modeling concepts to represent different control flow types. Therefore,
separating and sharing flows could make the process model harder to read, but the idea of not
creating additional modeling concepts is justified. Process variations can be modeled using
alternative processes, but there is no information on distinguishing decision flows and variations
since there is only the alternative process flow concept. Also, by using the standard, alternative
products can be specified. As for the material flow modeling concept, there is no mention of storage
and locations, but the technical resource modeling concept could probably be used to represent
storage, and process operators could be used to represent activities of transporting materials. The
standard covers different production process modeling concepts, but machines could hardly process
this kind of process representation, especially as PPR constraints are hard to model [83,84].

Meixner et al. [83] proposed a DSL to model and evaluate PPR concepts and constraints
between them. The authors analyzed the VDI/VDE 3682 standard used for visual PPR modeling in
the basic planning phase. They used the standard and part of its extensions as a base for their
language and extended it to create a new textual DSL — PPR DSL. The proposed DSL is used for
modeling PPR and constraints between them, whose models should be readable by domain experts
and processable by machines. The authors also introduced three requirements for the representation
of PPR constraints in CPPS engineering:

e expressiveness of the PPR concepts — the language should support products, processes, and
resources; relationships between them to model process alternatives; and constraints
between PPR;

e computer processability — the language should be readable by a computer, processable for
verification and evaluation, and easy to exchange between platforms; and

¢ usability and usefulness — the language should be usable by and useful for domain experts.
By usability, the authors mean the language is easy to understand, learn and apply, and by
usefulness, they mean the language should provide benefits that exceed the effort to use it.

Meixner et al. focused on the first requirement in this paper and left other requirements for
future research. The PPR DSL tool implementation is considered a future work as well. Regarding
the DSML we propose to create, we also aim to fulfill such requirements by:

e supporting the production process modeling concepts, such as products, process steps,
resources, relationships, and constraints;

e creating the abstract syntax — a formal approach to specify production process models that
can be processable by computers and machines; and

e creating such a concrete syntax that can be easily used by domain experts and by evaluating
the language's usability and usefulness with different user groups.

A year after, Meixner et al. [84] presented a meta-model of the PPR DSL, which is built on
the VDI/VDE 3682 standard and its extensions. As VDI/VDE 3682 process models are not
machine-readable and insufficiently formally defined, the PPR DSL aims to formalize PPR models.
Therefore, the language can specify PPR aspects — products, processes, resources, attributes,

State-of-the-Art 67

relationships, and constraints. The assembly sequence concept can be used to form a production
sequence, but there is no mention of other control flow patterns. PPR aspects can be abstractly
specified with high-level attributes so they can be reused and instantiated in a process model.
Attributes can be specified at the beginning of the textual model, and afterward, they can be used
and reused in PPR concepts. As PPR DSL models are machine-readable, the authors implemented
parsers to map the PPR DSL constraint modeling concept into Structured Query Language (SQL)
queries. They observed whether constraints are violated by executing generated SQL queries in a
relational database. Thus, the authors aimed to evaluate the language by using a technology
frequently applied in industry. The presented design of PPR DSL does not cover all the modeling
concepts covered by the VDI/VDE 3682 standard. However, the advantage of PPR DSL in
comparison to VDI/VDE 3682 is that PPR DSL supports the constraint modeling concept.

A Digital Process Twin (DPT) is a type of digital twin related to manufacturing processes.
Such a digital twin aims to optimize a manufacturing process, thus producing optimal products and
energy consumption and fulfilling certain quality requirements. Caesar et al. [85] presented an
information model of DPT for machining processes. The information model describes the properties
and relationships of relevant data needed to perform a processing task. Both planning and
processing, i.e., execution data, can be used for process analysis and optimization. The proposed
information model is based on the VDI/VDE 3682 standard, which is extended to support
machining operations. According to the presented information model, a detailed specification of
processes, materials, products, resources, tools, parameters, and constraints can be achieved. The
information model has process steps specified in detail, but other modeling concepts are not
considered in this approach, such as the control flow, material flow, and message flow.

Most workflow languages lack the expressiveness and flexibility to model CPS processes.
Therefore, Seiger et al. [86] introduced a novel DSML — an object-oriented workflow language for
formalizing processes in heterogeneous and dynamic environments, enabling a hierarchical
composition of processes and process variations. The language can be used to model process steps
and service calls at the type level, i.e., a service type should be invoked, not a specific service. Thus,
concrete services or devices that will execute process steps do not need to be known during process
modeling. Accordingly, the authors aimed to separate a specific production system from a process
model, as process models may be used in different non-distributed or distributed environments.
Also, resources to execute activities can be specified at both the instance level and the type level,
and it may be a device, a service, or a human worker. Specifying a resource type supports the
authors' future goal — to enable distributed process execution across many ubiquitous systems with
different devices. However, to execute such process models, information about service names,
server Internet Protocol (IP) addresses, HTTP methods, and configuration files need to be specified
inside process steps. The authors created the language and the modeling tool using EMF and
Graphiti [225]. As process models are stored in the XML Metadata Interchange (XMI) format, they
can be used for process execution and monitoring. Thus, the authors plan to develop a process
repository and a process engine for distributed execution of process models. However, this language
does not cover modeling concepts such as material and message flows.

The matching of production resources with production processes needed for creating a product
is usually done manually. Brovkina and Riedel [87] proposed a meta-model for CPS, which
provides high-granularity skill descriptions that, when combined with the manufacturing process
descriptions, allow for automating the matching of process steps with resources. The skill-based
CPS meta-model is designed to model skills, primarily for the assembly industry.

Brovkina and Riedel [88] then presented a data model and an automated system for the design
of assembly lines based on the Model-Based System Engineering (MBSE) principles. Their solution
aims to improve resource selection for an assembly line design, defining which skills are needed to
create a product, which resources have such skills, and which transport elements are connecting
resources. The presented system uses a graph-based description, specifying assembly sequences
with products and capabilities. There are also abstract storage and sources that can be matched with
equipment having a storage skill. The presented graph-based model example of assembly sequences
seems complex, with many nodes and relationships between them. Also, a node can represent any

68 State-of-the-Art

of the modeling concepts, and they are all represented as a circle but with different colors, which
can be hard to read, especially for someone who has difficulties distinguishing colors.

Afterward, Brovkina and Riedel [89] presented a data model for skill definitions of
heterogeneous machines, focusing on standardizing a capability representation. The data model is
abstracted to define a generic assembly process model. Usually, assembly process models are
specified using flow charts and diagrams or using the same data model applied for skill definitions,
allowing automated matching between resources and process steps. However, a common issue is
when having different machines that can perform a process step in different ways, leading to the
specification of multiple models for the same process. Therefore, an abstract process model is
needed in which process steps can be matched with different machine skills. Creating such an
abstract assembly process model and matching it with the skills of resources is the primary goal of
the presented data model. However, the presented data model does not cover modeling concepts,
such as the material and message flows. The authors also defined four requirements for process
descriptions:

e abstraction — a process model is an abstract description of required skills;

e machine-independence — a process model is not attached to any specific machine;

e product-derivability — a process model includes product-relevant parameters that can be
derived from a product description; and

e standardization —a process model is a formal description of a process or is based on existing
standards.

The DSML we propose also aims to fulfill these requirements as:

e a production process model should be composed of process steps that contain abstract
capabilities;

e resource-agnostic production process models and their process steps should not contain any
specific resources that are to execute such process steps;

e process steps should contain products with their set of constraints, which can be extracted
from a product description, but such automatic extraction from a product description is
considered as future work; and

e production process models should be formally specified through the defined meta-model
of the language.

As DSLs for CPPS are not much focused on production-specific details, and process-specific
information from Asset Administration Shell (AAS) has not been integrated with DSL tools so far,
Lehnert et al. [90] proposed a new service-oriented hierarchical DSL for CPPS automation software
design. The language contains elements and rules for modeling service-oriented process tasks,
including information from AAS. This DSL consists of four layers with different abstraction levels
and degrees of detail in models. These layers allow different users, such as process and software
engineers, to work together during the software development process. The AAS contains process
parameters, such as material properties, configurations, and control parameters, and it is used and
integrated within the DSL for parametrization purposes. Thus, program code can be generated using
a code generator leading to the executable services. The authors stated that sequential process steps
could be created, but other control flow patterns are not mentioned. Information about materials
and plant properties can be specified, thus making it possible to specify process steps fully. Similar
to the presented multi-abstraction level approach, we also plan to utilize multiple modeling layers
and levels of detail in order to make the process modeling easier and to include different users when
specifying process models. In addition, as the authors integrated AAS with the DSL, similarly, we
plan to use a capability repository integrated with a modeling tool associated with the DSML we
propose, so that process designers can choose capabilities and appropriate parameters when creating
production process models.

Gamboa Quintanilla et al. [91] proposed a framework for customizable product-process
specifications based on Manufacturing Services (MServices) in Holonic Manufacturing Systems
(HMSs), suitable for product-driven applications. As services were initially built for web

State-of-the-Art 69

applications and needed a new model to be applied in the manufacturing domain, the authors
proposed the usage of a new information model based on the design principles of Service-Oriented
Architectures (SOAs). Manufacturing processes are formed by defining relations between the
composing MServices. Process steps are represented by MServices that are executed by one or
several resources, and they can be reused in multiple processes, as they are independent of a
production system. Resources offer a collection of MServices, while process steps request them.
Service providers and service requests are matched through MServices, similar to what can be done
with skill-based engineering, matching skills requested by process steps and skills offered by
resources. However, there is no mention of separating resources from process models in the
proposed framework, and resources are equipped with all the information needed to execute
operations. The authors did not discuss an invocation of MServices in the framework, but the
services could probably be executed like any other.

Indamutsa et al. [92] proposed a Low-Code Development Platform (LCDP) to support the
planning, development, and execution of model-management workflows of complex systems. The
proposed platform aims to support developers not to manage low-level details, such as discovery,
orchestration, and integration of model management services needed to develop a process. LCDP
is an event-driven platform based on trigger-action programming that supports high-level
abstraction and automation of model management services offered by different providers. By using
a DSL, a user can programmatically specify complex expressions of the workflow, and by using a
graphical modeling tool, it is possible to model nodes that represent microservices orchestrated
when a workflow is executed. A workflow represented in the XML or JavaScript Object Notation
(JSON) format can be transformed and executed by an engine. However, in the context of
production process modeling, the language does not support modeling concepts such as the material
and message flows. Also, LCDP does not have a mechanism to check the terminology used for
naming workflow tasks. We plan to cope with such an issue by using a capability repository when
modeling production process steps.

Languages created to support the production process or production system modeling cover
various aspects of production. They are mainly created to be specific for a particular manufacturing
domain, i.e., they can be classified as DSMLs. Nearly all the presented languages allow the
specification of production steps, operations or capabilities, and the production flow. However, they
usually specify production processes at a high abstraction level. Therefore, the execution details, or
how to perform process steps, are usually omitted, and thus models cannot be used for the automatic
execution or resource instruction generation. Even if some execution details are included in
production process models, they depend on a specific production system.

4.2.3 Discussion on Production Process Modeling

In this section, we analyze the literature found and presented in detail in Section 4.2.2 and discuss
answers to the research questions formulated in the same section. As part of the answers to the
research questions, we also present the investigated languages and approaches and their fulfillment
of the requirements presented in Section 4.2.1, as well as the directions for future development of
DSMLs for the production process modeling domain.

RQ1: In which areas process modeling languages have been applied, and which concerns do they
address? Process modeling languages are mostly used in the domains of MES, 10T, CPS/CPPS,
and for production process modeling in general, covering various aspects in such domains. The
researchers utilized process modeling languages to create models that would be used for simulation,
execution, monitoring, comparison and evaluation of process performances, and for documentation
purposes.

Various languages utilize the PPR concept, as products, process operations, and resources are
essential concepts a production process modeling language needs to have. Recently, researchers are
trying to integrate skill-based engineering with production process modeling, as it allows the
specification of production processes independently of a specific production system, yet production

70 State-of-the-Art

process models can be matched with resources of a chosen system when needed through required
and offered skills or capabilities. Also, the MD paradigm is applied nowadays in production process
modeling, allowing the transformation of production process models into code used for simulation
or execution purposes, documentation of various types, or models of different types.

Most applied languages support modeling concepts such as process operations, control flows,
and sub-processes but lack support for material flow or collaboration between resources. This lack
of support motivated researchers to create novel modeling concepts for existing languages or to
create entirely new languages to support these missing concepts. In addition, as flexible production
is gaining much attention recently, novel modeling concepts are created to support the modeling of
product and process variations. The Health, Safety, and Environment (HSE) management and
energy consumption modeling concepts are also researched and applied in a few languages, as
human physical risk factors, safety, and energy consumption are particularly considered in Industry
4.0. As for the production process domain coverage, many languages are applied in discrete
production, especially in the assembly industry, but languages are also applied in the process
industry.

RQ2: What are the related languages and approaches used for production process modeling? We
have found many languages, approaches, and methods applied in the manufacturing domain, as
presented in Table 4.3, and discussed in detail in Section 4.2.2. Researchers have either applied
existing languages in their original form, extended them, or created novel languages from scratch
to enable production process modeling. Some researchers have applied a combined approach by
using different languages to cover various concepts of production process modeling, as such a
domain is complex. Therefore, various production process aspects are modeled using different
languages. However, this approach requires knowledge from process designers to apply multiple
modeling languages, which can be burdensome.

Traditional methods to specify production processes usually lack certain modeling concepts
needed for the automatic generation of instructions. Also, such methods are usually not formally
defined. They are mostly presented as tables, spreadsheets, arbitrary text, or flow charts with
graphical symbols only and without formal semantics, making it hard to transform such
specifications into executable instructions.

We also analyzed different process modeling languages that are not primarily created for the
manufacturing domain but the business domain or the process modeling in general, and thus they
cannot be used to specify all the production details. Researchers have used and extended such
languages to cover certain aspects of production process modeling and usually not all the details
required for process execution. Due to the complexity of production process modeling, many
different extensions would need to be used to specify models that are suitable for execution or
automatic instruction generation. Such a language would be hard to use by process designers as it
has its base modeling concepts that are not tailored for the manufacturing domain. Even if process
designers are trained to model production processes using these languages, none of the language
concepts are conceptually familiar to them. Therefore, they would need to invest a lot of time and
effort in learning to use any of these languages and their modeling tools. Difficulties in learning to
use a modeling tool that supports one of these languages are not caused by the complexity of the
domain but by the complexity of the modeling language and the tool. Accordingly, if the languages
are extended to support production process modeling concepts they are missing, these languages
are still not tailored for such a domain. As too many extensions need to be created, it would be
better to create a novel language from scratch, adapting it for the production process modeling
domain.

Therefore, to solve this issue, some researchers created domain-specific process modeling
languages for the manufacturing domain. However, process modeling languages created for the
manufacturing domain usually specify production processes at a high abstraction level. Thus, the
execution details are not included, and even if some execution details are included, process models
are dependent on a production system. Accordingly, such resource-aware process models cannot

State-of-the-Art 71

be used in various production systems, and process designers need to put much effort into specifying
such process models that are dependent on a production system, covering all the execution details.

RQ3: Which languages and approaches are most frequently used and extended for the production
domain? According to the reviewed literature, BPMN, UML, PN, MES-ML, and VDI/VDE 3682
are usually extended or used as a base for other languages. BPMN is the most extended language,
with numerous extensions and applications in the context of production process modeling. It has
many extensions created in the production domain, and if they are used together, many of the
presented requirements could be fulfilled. However, too many extensions would need to be applied
simultaneously to specify instruction-generation-ready production process models fully. The
researchers mostly extended BPMN so that production process models could be integrated with
currently used enterprise systems and together be specified with business process details. MES-ML
has been developed for years and influenced researchers to extend it multiple times. Recently, the
VDI/VDE 3682 standard has gained attention from different researchers and has been extended or
used as a base for different languages.

RQ4: To what degree are identified requirements (c.f. Section 4.2.1) fulfilled by languages and
approaches? A comparative analysis of the reviewed languages and approaches with the specified
requirements is presented in Table 4.4. Each cell is filled with both a character and a shading pattern.
The character represents whether a language supports the requirement fully — Y (Yes), partially —
P (Partially), or does not support it at all — N (No). The shading pattern represents the language's
main advantages (horizontal strips) or disadvantages (vertical strips). To distinguish between
different extensions of the same language, the name of the first author of the extension is presented
in parentheses. At the bottom of the table, a percentage of languages and approaches fulfilling each
requirement is presented.

In the following text, we discuss the fulfillment of the requirements presented in Table 4.4:

e R1 (process step): this requirement is the only one that is at least partially covered by each
of the presented languages. Each language has a modeling concept, such as a process step,
an operation, a skill, or a capability. Product and resource modeling concepts are not always
covered. Even if products, resources, and capabilities are covered, only some languages
(21.15%) cover such concepts' attributes, constraints, and parameters. Usually, attributes
are not covered as products, resources, or operations are presented with graphical symbols
only, without additional semantics.

e R2 (control flow): most languages (92.31%) cover at least a sequence of process steps.
Parallelism, decision, or iteration control flow patterns are not supported by all the reviewed
languages, as they usually cover only a sequence of steps, because most of the processes
are sequential in mass production. However, due to the increased flexibility of processes
and a need to change process step execution in runtime, control flow patterns, such as
parallelism, decision, and iteration are required and covered by many existing process
modeling languages (65.39%).

¢ R3 (material flow): the material flow modeling concept is fully covered only by a few
reviewed languages (5.77%). Such a modeling concept is usually not considered at all by
languages (69.23%), and some languages are created especially to model material flows,
as it is essential to know whether a product needs to be retrieved from storage or is a result
of a previous step. As for the partial coverage of such modeling concepts (25.00%), some
languages lack a connection between products, or the storage modeling concept is missing.

¢ R4 (message flow): more than half of the reviewed languages (53.85%) do not cover
collaboration of process steps or resources. However, in recent years, especially in the
context of Industry 4.0, a collaboration between resources, particularly a human-machine
collaboration, is covered by languages. Therefore, the collaboration or message flow
modeling concept will be needed to fully model and perform production processes in the
Industry 4.0 environment. Most reviewed languages that cover such a modeling concept
are based on BPMN.

72 State-of-the-Art

e R5 (unordered steps): this requirement does not have partial fulfillment, as a set of
unordered steps is a simple modeling concept. Only some reviewed languages support such
a modeling concept (25.00%), most of which are based on BPMN. The concept is not
crucial for production process modeling but has different applications whenever the order
of process step execution is not important. Therefore, it allows workers to discover the
optimal order of process steps to execute, if there is one, and thus improve process
execution.

e R6 (product and process variations): product and process variations are the modeling
concepts that are the most unsupported in the reviewed languages (90.39%). These
modeling concepts have a special role in the Industry 4.0 context, as production flexibility
implies multiple product and process variations. Such variations need to be formally
specified as they will be part of dynamic orchestration and production. The VDI/VDE 3682
standard presents product and process variations and will probably influence the further
development of languages.

e R7 (sub-process): similar to the unordered steps modeling concept, this requirement does
not have partial fulfillment due to the simplicity of the modeling concept. Many process
modeling languages support the sub-process modeling concept (61.54%) as it is essential
in reducing the diagram's complexity, increasing the reusability of processes, and
decreasing the redundancy of model elements.

e R8 (error handler): more than half of the reviewed languages (57.69%) do not support
error handling in production processes. Without such a modeling concept, production
process models can be orchestrated and executed, but if an error occurs during production,
an execution system does not have formally defined corrective steps to repair the
consequences of the error. Consequently, this would increase costs during production as it
will be stopped until a production expert arrives to solve the issue. Most of the reviewed
languages that cover such a modeling concept are based on BPMN.

e R9 (executable or suitable for automatic instruction generation): many languages are
created to model production processes for the planning phase or documentation purposes
only. Therefore, they are not suitable for execution or automatic instruction generation
(69.23%). In recent years, machine-readable models have been created as MD principles
are applied and formal languages are developed. Human workers perform the execution of
process models by sending them a textual description of each process step. These kinds of
instructions are informal. However, a formal specification of process steps is required to
send instructions to machines and robots, or specific instructions or services need to be
added to process steps. Most languages that support the execution of process models
integrate service information into process models.

¢ R10 (production system independence): the independence of production process models
from a specific production system is still not fully supported by the reviewed languages.
Most languages do not support such independence (71.15%), and some support it partially
(28.85%). Production system details are required to create process models suitable for
automatic execution or instruction generation. Such required details make it hard for
process designers to create process models and make these models not usable in different
production systems. Therefore, some languages apply different abstraction levels of
modeling concepts, modeling layers, or services on different levels. Researchers usually
create independence from production resources by creating sets of resources that can
execute process steps, links to specific production systems, or capability-based process
models. However, production logistics, transportation steps, specific storage, and steps to
configure machines are not part of such production process independence. Languages
should also consider these concepts to create an independent production process model.

Table 4.4. A comparison of process modeling languages.

Language Rt | R | R | R4 | R | RE | R7 R8 R9 R10
Traditional ways to specify production processes
BOM [24] P N [34,35] P N N N N N N N
BOO [24] P P N N N N N N N N
BOMO [24] P P P N N N N N N N
ASME FPC [25] P Y P N N N N N N N
FMEA/PFMEA [27-29] P N N N N N N Y N N
Process modeling languages that are not primarily created for the production process modeling and their extensions
BPMN [30] P [39] Y N Y Y N [86] Y Y N N
BPMN ext. (Zor) [31] P \4 N \4 Y N Y Y N N
BPMN ext. (Zor) [32] P Y N Y Y N Y Y N N [65]
BPMN ext. (Polderdijk) [33] P Y N \4 Y N Y Y N N
BPMN ext. (Ahn) [34,35] P P N N N N N N P N
BPMN ext. (Abouzid) [36] P Y N Y Y N Y Y N N
BPMN ext. (Michalik) [37] P Y N Y Y N Y Y N N
BPMN4CPS [38] P Y N Y Y N Y Y N [42] N
BPMN ext. (Bocciarelli) [39] P Y N Y Y N Y Y N N
BPMN ext. (Meyer) [40,41] P Y N Y Y N Y Y N [42] N
BPMN ext. (Schonig) [42] P Y N Y Y N Y Y Y N
UML AD [43] P Y H P N N Y Y N N
SysML AD [44,45] P Y H P N N Y Y N N
PN [46,47] P Y N N N N N N N N
PN and PN-like models [48] P Y N N N N N N P P
Object PN [49,50] P Y Y N N N N N N N
IDEF3 [51,52] P [73] Y P N N N Y N N N
EPC [53] P Y N N N N N N N N
S-BPM [54-56] P Y N Y N N Y Y N P
CT [57] P P P N N N N N N N
A combination of different modeling languages used to model production processes

GSMSPP [58] Y P P N N Y P P N
PBM _for ship block assembly p v p N N N v N N N
planning [59]

€L UVv-9yl-j0-alelsS

Language R1 R2 R3 R4 R5 R6 R7 R8 R9 R10
IAPMM [60] P Y N Y Y N Y Y N [42] N
14PML [61] P \4 N Y Y N Y Y N [42] N
ADAPT [62] P P N P N P Y N N P
Modeling languages created to support production process or production system modeling

VSM [63] P P Y [31] Y [31] N N N N N [31] N
ASML [64] P Y N Y N N Y N N P
DSL for production workflows [65] P P N N Y N N N N P
GRAMOSA [66] P P Y N N N N Y P N
MPIMM/MPIM [67,68] Y Y N N N N Y N N N
MaRCO [69] Y P N N N 2 N N P P
MMPD [70] Y P N N N N N N N N
IPPMA [71] Y N N N N N N N N N
PSL ext. (Qiao) [73] Y Y P N N N Y N P)
MES-ML [74] P Y N Y N N Y Y N [75] P
MES-ML ext. (WeiBenberger) [75] P Y N Y N N Y Y P P
MES-ML ext. (Chen) [76,77] P Y N Y N N Y Y P P
GMPM [78] P Y N N N N N N N N
PMPM [79,80] Y Y P P N N Y N P N
VDI/VDE 3682 [81,82] P [83,84] P P N N Y Y N N N
PPR DSL [83,84] Y P P N N N Y N P P
Information model of DPT [85] Y N N N N N N N N N
DSML for CPS processes [86] P Y N N N P Y N Y P
Fs)fggégsaesse%n;fg;]model for assembly vy P N N N p v N p p
Hierarchical DSL for CPPS [90] Y P N P N N Y N Y P
MService HMS [91] Y Y N N N N Y N Y P
LCDP [92] P Y N N N N N P Y N

No 0.00 % 7.69 % 69.23 % 53.85 % 75.00 % 90.39 % 38.46 % 57.69 % 69.23 % 71.15 %

Partial 78.85 % 26.92 % 25.00 % 11.54 % 0.00 % 7.69 % 0.00 % 3.85 % 21.15 % 28.85 %

Yes 21.15 % 65.39 % 5.77 % 34.61 % 25.00 % 1.92 % 61.54 % 38.46 % 9.62 % 0.00 %

UV-3yl-Jo-3rels v/

State-of-the-Art 75

RQ4.1: How production process models are executed? In recent years, many researchers have
applied MD principles in their approaches supporting different aspects of production processes.
Such languages have been formally defined with a meta-model so that models could be machine-
readable and used as input to code generators or model interpreters. The code generators allow to
automatically generate human workers' instructions, machines' program code, simulations, and
manufacturing documentation.

To execute production process models, researchers usually apply their languages in SOA,
adding service information inside process models or making a language domain-specific for the
SOA domain. Integrating service information inside production process models, such as HTTP,
service name, and port makes it possible to execute such models but also creates a dependency on
a specific production system. Also, such service-integrated production process models would be
hard to orchestrate, as process steps are coupled with specific services. In addition, process
designers would struggle to create production process models with all the service information
integrated into production steps.

As for the BPMN extensions, several researchers aimed to use such models in BPM engines
and execute them, but production system details or specific services need to be added to process
models.

RQ4.2: In which way is the production system independence achieved in production process
models? Some of the researchers aimed to separate production process models from a specific
production system. There are four approaches identified in the reviewed papers:

e aprocess step has a set of resources that may execute it;

e aprocess step has a set of links that reference resources from a production system;

e a process step has a resource type, i.e., abstract resource or abstract service needed for
execution; and

e aprocess step has a skill or a capability needed for its execution, and there are resources
with a set of skills or capabilities they have. At runtime, a human or an intelligent system
is needed to determine which specific resources will execute each process step.

The first and second approaches still store information about production systems, the third
approach stores resource types in process models, while the fourth approach makes process models
independent of a specific production system. However, for the fourth approach, capabilities may be
arbitrarily specified by a process designer, which may be prone to errors, or a capability repository
may be created to store the available capabilities of production systems. The latter could make
process models partially dependent on the production systems under consideration, as the repository
or a dictionary contains currently available capabilities that may be used for production process
modeling. This issue could be solved in the future when capabilities and their parameters are
standardized.

The researchers also created languages to support the matching and scheduling of production
processes, as any of the four mentioned approaches requires matching process steps to specific
resources before a process model execution. Also, to create optimal execution in a production
system, the scheduling of production process execution and resources needs to be defined.

RQ4.3: Is there a language that fulfills all the identified requirements? Based on our survey, we
have not identified a modeling language capable of fulfilling all the production process modeling
requirements for dynamic production orchestration and automatic execution of production
processes, formulated in Section 4.2.1. We have found that many languages lack support for
modeling concepts, such as material flow, collaboration and message exchange between resources,
product and process variations, and error handling. These modeling concepts need additional
attention in the future by researchers if production process languages are to be applied in production,
especially in the context of Industry 4.0.

Additionally, human risk factors and safety aspects are most rarely modeled within production
processes. As for the human risk factors, they should be specified so that an intelligent system in
charge of production orchestration and execution can conclude whether a human worker or a

76 State-of-the-Art

machine should execute a production task. Also, as human-machine interaction is gaining attention,
especially in the Industry 4.0 context, the safety aspect should be considered as well. The energy
consumption and time estimations of production process execution also need special attention in
the future in order to allow the evaluation of production process execution in various production
systems, choosing the one with performances that are preferred.

As the reviewed languages do not cover all identified production process modeling concepts,
the specification of production process models with all the execution details would be hard to
achieve. Although some examined languages can be used to specify execution details, they still
incur dependency between production process models and production system details. Thus,
production process models become more complex, burdensome to model by process designers, and
hard to read by any interested parties.

Formal languages with machine-readable models should be utilized to support dynamic
production orchestration and automatic execution of production processes. However, as such
execution-ready or instruction-generation-ready production process models are coupled with a
specific production system, the independence of a production system should be achieved. This
production system independence does not only consider the independence of specific resources that
will execute process steps but also of production logistics and configuration of machines. Therefore,
based on the reviewed literature, capability-based process modeling promises the possibility of
creating production process models suitable for execution but also independent of a specific
production system. Such production process models would be used by matching and scheduling
algorithms of an intelligent system, such as an orchestrator, automatically and dynamically creating
instructions for the resources of a chosen production system.

Every conclusion discussed in this section is based on the reviewed languages. Such
conclusions may provide directions on what should be considered before creating a language whose
models are suitable for dynamic orchestration and automatic execution of production processes in
the Industry 4.0 environment.

4.3 Summary

In this section, we first discussed the research and application of the MD paradigm and DSLs in 1Ss
and Industry 4.0. The largest part of the state-of-the-art investigation is related to the languages and
approaches used for production process modeling. We formulated the requirements a production
process modeling language needs to fulfill in order to be used in the Industry 4.0 context and
analyzed the languages and approaches we found based on these requirements.

According to the state-of-the-art analysis and conclusions made in Section 4.2.3, and as we
could not find a modeling language that fulfills the formulated requirements, we decided to create
a novel DSML for production process modeling. It should be a formal, capability-based modeling
language whose models should be independent of any production system yet suitable to be
automatically enriched with details needed for the automatic generation of executable resource
instructions. Therefore, the DSML should allow the creation of generic production process models
suitable for dynamic production orchestration and automatic generation of resource instructions and
manufacturing documentation, unifying different production process aspects. In this way, process
designers should not need to take care of production system details during the production process
modeling, and they should be entirely focused on modeling process steps. Furthermore, it should
be possible to automatically connect process steps with smart resources at runtime without
additional load to process designers by using an orchestrator.

The design, development, application, and evaluation of the proposed DSML, named
MultiProLan, are discussed in the following sections of the rest of this thesis. The MD solution that
enables the transformation of MultiProLan resource-agnostic process models into MultiProLan
resource-aware process models and then into executable resource instructions and manufacturing
documentation is presented in the following section.

MD Solution for Modeling and Automatic Execution of Production Processes 77

5 MD Solution for Modeling and Automatic
Execution of Production Processes

To contribute to flexible and automatic production, we propose a novel MD solution for modeling
and automatic execution of production processes. Our MD solution was first proposed in [8,9] and
extended in [10,11,13,14]. This MD solution comprises two parts: the MD approach and the MD
system. The MD approach consists of several steps to convert production process models into
manufacturing documentation and executable resource instructions, executed in a digital twin and
on a shop floor. To support the proposed MD approach, our MD system consists of several
components, such as Resource Modeling Tool, Process Modeling Tool, Orchestrator, Knowledge
Base, Instruction Generator, Digital Twin, Production System, Documentation Generators, and
Documentation Storage. The research presented in this thesis focuses on Process Modeling Tool
and Instruction and Documentation Generators, as well as transformation steps from production
process models to executable resource instructions and manufacturing documentation of different

types.

A central component of the MD solution is a novel DSML for production process modeling,
named Multi-Level Production Process Modeling Language (MultiProLan). The aim of
MultiProLan is to help process designers specify production processes in a formal manner, thus
creating process models that can lead the execution of production processes and contribute to
production flexibility. The language is mainly focused on modeling discrete product manufacturing
or, to be more precise, the assembly of discrete products.

This section is structured as follows. The MD system architecture with its components is
discussed in Section 5.1, and the steps used in our MD approach are presented in Section 5.2. The
main objectives of our MD solution, MultiProLan and Process Modeling Tool are outlined in
Section 5.3. The summary of the proposed solution is presented in Section 5.4.

5.1 Architecture of the MD System

In Figure 5.1, we present the architecture of the MD system for production process modeling and
execution. The architecture components, encapsulated with a solid black line in Figure 5.1, are the
main focus of our research, while the components presented outside the black solid enclosure are
given to outline the context of our research and they are part of another research. All these
components are presented in short in this section, while the main components are discussed further
in the following sections. The architecture contains the following components:

¢ Resource Modeling Tool. To create production system models, Resource Modeling Tool
is used by resource managers. We denote a resource manager as a person in charge of
specifying shop floor resources, their capabilities, production logistics, and available
materials and products on the shop floor. Production system models contain all the shop

78 MD Solution for Modeling and Automatic Execution of Production Processes

floor resources and their capabilities, among other details that can be specified. Resource
Modeling Tool contains a DSML for production system modeling, and it is a part of another

research described in [5].

e Process Modeling Tool. To specify production process models, including process steps
and capabilities needed for their execution, production Process Modeling Tool is used by
process designers. Process Modeling Tool contains the MultiProLan language, and as the
tool and the language are the main components of our solution, they are discussed further
in this thesis. Both Process Modeling Tool and MultiProLan are implemented using a
framework for rapid tool prototyping. Frameworks, such as EMF [94,95], are effective in
creating tool prototypes in a relatively short time while allowing for the more detailed and
customized specification of necessary features. We used the Ecore meta-meta-model to
create an abstract syntax of MultiProLan. As process designers are familiar with flow charts
and not so familiar with textual notations, we created a graphical syntax for MultiProLan
using the Eclipse Sirius framework [100]. In addition to graphical concrete syntax creation,
the Sirius framework also enables rapid implementation of a prototype tool [99]. As
MultiProLan is a capability-based process modeling language, our MD solution uses a
capability repository for the specification of process steps. We created the capability
repository, storing capabilities and their parameters, so they can be reused in production
process models. Once the capabilities are standardized by international committees, we will
replace our capability taxonomy stored in the repository with a standard one.

| 2

Resource Modeling
Tool

Process Modeling
Tool

Model

Documentation
Generators

Manufacturing

| Documentation

Documentation
Storage

|
’—] Resource-Agnostic
>

‘ J Model

| Production Process

/ Information Flow

’e
_+7 Activity Initialization
A

Production System
Model

Orchestrator and
Knowledge Base

Resource-Aware
Model

v |

I High-Level

Instructions

>
>

Instruction
Generator

Digital Twin

Resource-Specific

Instructions
T "
ey | |
N
Production

System

Figure 5.1. The architecture of the MD solution for production process modeling and execution.

MD Solution for Modeling and Automatic Execution of Production Processes 79

e Orchestrator. Orchestrator is utilized to automatically match process steps with resources
through required and offered capabilities and to schedule production. Thus, Orchestrator
automatically transforms resource-agnostic into resource-aware production process
models. The development of Orchestrator is not part of this research, but we used the one
presented by Pisari¢ et al. [4,5], which entirely fits our needs.

¢ Knowledge Base. To store data about production systems in which process models can be
executed, Knowledge Base is needed. Orchestrator uses stored knowledge for its matching
and scheduling algorithms. Both resource-agnostic and resource-aware production process
models are stored in Knowledge Base, as well as the capability repository. We utilized
Vaticle TypeDB [226] to store knowledge about production systems, capabilities and their
parameters, and production processes, and to enable reasoning about the connections within
such a knowledge graph.

e Instruction Generator. To automatically transform resource-aware process models into
high-level instructions, Instruction Generator is used. We developed Instruction Generator
and M2T transformations from scratch in the Java programming language.

e Digital Twin. A production system needs to be connected with our MD solution through
its Digital Twin. Digital Twin can be used in two different modes: production and
simulation-only. In the production mode, Digital Twin is used to obtain high-level
instructions sent by Instruction Generator, transform the instructions into machine-specific
or human-readable instructions by using protocol transformation components, and send
such instructions to Production System. In the simulation-only mode, Digital Twin is used
as a simulation environment to test created process models when needed, without sending
instructions to Production System. We utilized the Robot Operating System (ROS)
[227,228] framework to create a bridge across machine-specific instructions that are to be
sent to machines. Human workers use a custom-made mobile application to get human-
readable instructions on their tablets or smart watches. The Gazebo simulator [229,230] is
utilized to create a simulation that is a core part of Digital Twin. Both Digital Twin and the
simulation are part of another research and development [4,5]. Therefore, we use them as
a black box.

e Production System. Production System contains smart resources, both human workers and
machines, working together to produce various products. Smart resources are connected
with our MD solution through Digital Twin, receiving executable instructions based on
production process models.

¢ Documentation Generators. Manufacturing documents of various types are automatically
generated from process models by using Documentation Generators. We used the Xtend
[198] language to develop Documentation Generators and M2T transformations.

¢ Documentation Storage. The automatically generated manufacturing documentation is
permanently stored in a factory Documentation Storage. The generated documentation can
be used by any relevant stakeholder.

In the following section, we discuss the usage of our MD approach, including the main steps
to get executable instructions and manufacturing documentation from MultiProLan models. These
steps are presented in Figure 5.1.

5.2 Main Steps of the MD Approach

To create a novel MD approach for production process modeling and automatic generation of
executable resource instructions and manufacturing documentation, we applied the MDSEA
framework. Production process models independent of a production system — resource-agnostic
process models, can be seen as TIMs, while production process models enriched with resource
information — resource-aware process models, can be seen as TSMs. To automatically transform
resource-agnostic into resource-aware process models, we need M2M transformation rules.
Similarly, to automatically transform resource-aware process models into instructions to execute

80 MD Solution for Modeling and Automatic Execution of Production Processes

process operations and to transform process models into manufacturing documentation, we need
M2T transformation rules. In this section, we discuss our MD approach in which production process
models are used in such M2M and M2T transformations.

The MD approach comprises the five steps of modeling and automatic execution of production
processes and the two additional steps of transforming process models into manufacturing
documentation, described in the following subsections.

5.2.1 Main Steps of Modeling and Automatic Execution of Production
Processes

The developed MD approach comprises the following five steps of modeling production processes
and automatically transforming them into executable resource instructions.

Step | — Specification of production system models. Resource managers use Resource Modeling
Tool to create models of production systems. A production system model is stored in Orchestrator's
Knowledge Base and later used for matching and scheduling algorithms.

Detailed information on a production system needs to be specified first, as Orchestrator
requires them when enhancing existing production process models. Such information is required
by Orchestrator to automatically transform resource-agnostic into resource-aware production
process models. A production system model includes:

resources of a production system;

capabilities that are offered by the resources;

prerequisites needed by a resource to perform a capability;

interactions between the resources, e.g., whether the resources can cooperate or hand over
materials between themselves;

constraints of various types in the production system;

different interfaces and protocols used by the resources;

storage and their locations; and

materials and products stored in the storage.

The production system details can be added manually to Knowledge Base by specifying them
in the form of a Knowledge Base script and executing this script through Knowledge Base
Management System. However, by using Resource Modeling Tool and its DSML, a resource
manager can create a graphical production system model, transform the model into a Knowledge
Base script, and execute the script on Knowledge Base Management System, saving the production
system details in Knowledge Base.

Step Il — Specification of resource-agnostic production process models. Process designers use
Process Modeling Tool that utilizes MultiProLan to create resource-agnostic production process
models, which we denote as Master-Level (MasL) models. These process models may be applied
in various production systems with different production resources. As resource-agnostic models are
independent of any production system, Step | and Step Il of our MD approach may be performed
in parallel.

A MasL production process model represents a technical description of a production process.
It includes specification of process steps without details required for the automatic production, such
as: smart resources required to execute process steps; production logistic activities; specific storage
where products and parts are stored; and machine configuration activities. Therefore, MasL models
do not depend on a specific technological platform, i.e., on a production system in which modeled
production processes are to be executed.

We have implemented a graphical Process Modeling Tool to allow the modeling of production
processes by using MultiProLan. Process designers use the modeling tool to model production
processes without the need to specify execution details. These MasL models include:

MD Solution for Modeling and Automatic Execution of Production Processes 81

e process steps;

e capabilities required to execute process steps, with their parameters and constraints;

input and output products, i.e., raw materials, components, or finished goods, with
constraints and the material flow;

the control flow, i.e., sequence, parallelism, selection, and iteration patterns;

unordered process steps;

collaboration needed between process steps;

product and process variations; and

sub-processes.

In addition to the above, MultiProLan contains modeling concepts aimed at modeling errors
and corrective process steps used to handle these errors. By the notion of a production error, we
denote errors that may occur during the execution of a process. This part of a MasL model is
optional, and if it is specified, it can be visible or hidden within Process Modeling Tool on demand.

By using the services of Knowledge Base Management System, MasL models can be stored
in Knowledge Base, which represents a central place to store process and resource semantics. These
stored MasL models can be reused at any time, as they can be imported into Process Modeling Tool
through Knowledge Base Management System, thus enabling any required MasL model
modifications and optimizations.

Step Il — Enrichment of resource-agnostic production process models. Orchestrator can
automatically enrich resource-agnostic process models with details needed for the process
execution. It uses knowledge about a production system in which processes are to be executed and
enriches resource-agnostic process models, creating resource-aware production process models,
which we denote as Detail-Level (DetL) models.

A production process model created by a process designer needs to be executed within a chosen
production system. Additional information must be placed in a MasL model to be used for the
automatic generation of executable instructions. A MasL model needs to be enriched with the
following elements of a chosen production system:

e specific resources, such as robots, machines, and human workers, that are to perform
process steps;

e production logistic activities, which represent transportation of materials, products, and
resources;

e specific storage where materials, parts, and products are stored; and

e configurations of machines and robots, such as software setup, changing grippers, position
calibration, and plugging into a charger or a workstation.

DetL models can be created either manually or automatically. A process designer conducts the
manual DetL creation by using MasL elements and DetL elements related to a chosen production
system. DetL models are similarly stored in Knowledge Base as it is with MasL models. A process
designer can make additional changes to the existing MasL/DetL model, which is imported from
Knowledge Base, or create a DetL model from scratch using Process Modeling Tool. A process
designer can also import the existing DetL model to check the model, improve, refine, and optimize
it before execution, or monitor its execution. Both import and export of MasL/DetL models are
done via Knowledge Base Management System.

Although manual creation of DetL models is possible, it would be a complex and time-
consuming task as it requires specification of all the technological and production system details
needed to execute the process. During the DetL modeling, a process designer must think about the
production system details — specific resources, storage, production logistics and configuration steps
already specified in Knowledge Base. Therefore, the full potential of our system is reached if
Orchestrator is used to automate this burdensome process.

In our vision of Industry 4.0 production process modeling, production system and production
process models should be separated to enable a high level of product customization. Thus, the

82 MD Solution for Modeling and Automatic Execution of Production Processes

automatic creation of DetL models from the existing MasL models is also supported in our MD
solution and is conducted by means of the Orchestrator software. Our Orchestrator [4,5] comprises
a matching mechanism that connects resources with process steps and storage with products, as
well as a scheduling algorithm to provide an optimal match between resources and process steps.
Therefore, matching and scheduling algorithms of Orchestrator can be seen as M2M
transformations, as MasL models independent of a production system are transformed
automatically into DetL. models dependent on a specific, chosen production system. Orchestrator is
also responsible for adding transportation and configuration process steps to existing process
models. Based on a MasL model and the production system details gathered from Knowledge Base
with the help of Knowledge Base Management System, our Orchestrator can automatically generate
a DetL model. Then, the generated DetL model is sent to Knowledge Base Management System to
store it in Knowledge Base. In the following text, the process of automatic creation of DetL models
is explained.

Knowledge Base needs to provide all the necessary information about a given production
system for Orchestrator to be able to generate DetL models from MasL models automatically. Every
process step specified in a MasL model contains a capability required to execute a process step,
alongside various constraints that need to be fulfilled. It is necessary to add information about a
resource that will execute a process step within the chosen production system. This resource cannot
be just any resource but the resource with the required capability in its set of offered capabilities
and that can fulfill defined constraints. By using Knowledge Base, our Orchestrator can match a
capability that is required in a process step with a capability that a specific resource offers and, in
that way, match the process step with the resource. A capability of one process step could be
matched with the same capability of multiple resources. Orchestrator needs to use optimization
techniques and scheduling algorithms to choose one resource for every process step and to optimize
the work of resources in a factory. Therefore, Orchestrator needs to determine the allocation of
operations to matched resources based on various optimization criteria, supporting real-time
orchestration and capability-based process execution. A process step that is ready to be executed is
composed of:

e input products that are to be used during the process step execution;

e acapability that a resource must have in order to execute the process step;

e asmart resource that has the required capability and is to execute the process step activity
on the input products; and

e output products that are the result of executing the process step activity on input products.

Orchestrator also needs to take care of production logistics. It needs to identify and add storage
containing required materials, parts, and products into a DetL process model and process steps that
facilitate the transportation of materials, parts, and products, and the movement of resources
between storage and workstations. Production logistic activities significantly impact production
processes as they require a lot of time to execute [231], so these activities must be well organized.
Orchestrator also takes care of machine configurations. Based on the knowledge gathered from
Knowledge Base, our Orchestrator can infer whether machine configuration steps need to be added
to the process to enable further activities, e.g., calibrating an Automated Guided Vehicle (AGV)
after movement so the mounted gripper has the required precision. If several process variations are
modeled (e.g., a hole can be made by borer drilling and some sanding, or by laser drilling),
Orchestrator also needs to choose the best option in a current state based on a factory topology,
available resources, or certain custom-made optimization criteria.

In this Ph.D. thesis, we look at Orchestrator as a black box, as it is a part of another research.
It is introduced to provide a context in which MultiProLan is used. An internal structure of
Orchestrator used in our MD solution can be found in [4,5].

Step IV — Generation of high-level instructions. Instruction Generator automatically generates
high-level instructions from a resource-aware production process model. Such an M2T
transformation creates instructions with the same structure, independent of specific resources.

MD Solution for Modeling and Automatic Execution of Production Processes 83

Therefore, if new resource types are added to the production system or some resource types are
replaced with other ones, these high-level instructions do not need to be changed.

The aim of MultiProLan models is not only to serve documentation purposes but also to lead
production process execution in a smart factory. As MultiProLan is created to be a formal language
with exact and precise semantics, modeling concepts are machine-readable and understandable,
enabling the automatic transformation of modeling concepts into instructions to execute process
operations. DetL models have all the technological details needed for the automatic generation of
instructions that resources will execute. A process designer can initiate the automatic generation of
instructions from a DetL model through Process Modeling Tool by choosing the existing model
from Knowledge Base. Another option is the automatic generation of instructions that Orchestrator
can initiate after it finishes the automatic transformation of a MasL model to a DetL model.
Knowledge Base Management System obtains a DetL model from Knowledge Base and sends it to
Instruction Generator, which transforms the model into a set of high-level, generic instructions.
These instructions are serialized as JSON objects that contain information on:

process steps;

required process steps' capabilities with parameters;

input and output products;

specific storage where products are stored or need to be stored, i.e., the material flow; and
smart resources that are to perform process steps with resources' protocols on which
instructions need to be sent;

The high-level, generic instructions are sent to Digital Twin. In our case, Digital Twin can be
used for the simulation only or for forwarding instructions to the Production System's smart
resources through appropriate communication protocols. Using a digital twin in the simulation-only
mode can decrease production failures, provide insight into poorly modeled process steps, and
enable the optimization of resources and processes [122]. Furthermore, running simulations makes
it possible to predict the impact of process steps on the final product [121].

Step V - Transformation of high-level instructions into resource-specific instructions.
Protocol transformation components stored in Digital Twin transform high-level instructions into
resource-specific instructions. Such a Text-to-Text (T2T) transformation creates instructions that
are to be executed by resources. Each resource supports a communication protocol, and if a new
resource type appears in Production System, a new protocol transformation component will be
created.

Whenever Digital Twin is used to forward instructions to Production System, a transformation
of high-level, generic instructions into resource-specific instructions needs to be performed by
protocol transformation components. These resource-specific instructions are then passed to real-
world resources, whether machines or humans, in the order defined by the control flow through an
appropriate communication protocol. An appropriate protocol transformation component is selected
to do the transformation based on a protocol defined for each smart resource in a DetL. model.

Digital Twin has different protocol transformation components that transform high-level
instructions into machine-specific instructions depending on the protocols of the machines.
Whenever a new type of machine is added to the shop floor, a new protocol transformation
component needs to be added to Digital Twin to support the transformation of high-level
instructions into machine-specific instructions for the newly added machine. Also, the knowledge
about a newly added resource needs to be stored in Knowledge Base through Knowledge Base
Management System. The machine-specific instructions are sent wirelessly to machines and robots
to execute them on the shop floor, after machines and robots send feedback about the execution
performance. The feedback is forwarded from Digital Twin to Process Modeling Tool, enabling
monitoring of the process execution. Each process step can be in the execution phase, executed
successfully, or an error can occur. Whenever an error occurs, Digital Twin also forwards
information about it to Orchestrator so the error can be handled, and the executed process can be
reorchestrated.

84 MD Solution for Modeling and Automatic Execution of Production Processes

A human protocol transformation component is also embedded into Digital Twin, transforming
high-level, generic instructions into human-readable instructions. Human workers receive these
instructions on their tablets, monitors, or smart watches, and the workers respond through these
devices and send feedback on whether instructions are executed successfully or an error occurred.
Digital Twin also updates the digital footprint of all resources it manages.

5.2.2 Main Steps of Transforming Production Process Models into
Manufacturing Documentation

Our MD approach comprises the following two steps of automatic generation of manufacturing
documentation. As a precondition to these steps, MultiProLan models have to be created.

Step * — Generation of manufacturing documentation of different types. Documentation
Generators automatically generate manufacturing documentation of different types from resource-
agnostic or resource-aware production process models. Such an M2T transformation creates new
manufacturing documents or updates existing documents and creates new versions of them.

Documents of various types need to be created and stored when specifying production
processes in manufacturing companies. Production processes are mostly described in a textual form,
often without an accompanying graphical model. MultiProLan aims to unify the content of various
manufacturing documentation into a single model, thus providing a single point of knowledge. Due
to different procedures, legal regulations, and internal or external standards in a factory, it may still
be required for the documentation to be stored in a textual form. Therefore, the automatic generation
of manufacturing documents from MultiProLan models is implemented.

The manufacturing documentation needs to be updated whenever a process or a product
changes. In the context of Industry 4.0, where mass customization replaces mass production,
product and process changes are common, so the documentation needs to be updated frequently. In
traditional manufacturing, these changes are often stored as separate documents [202]. This
increases the possibility of human errors while introducing the changes and decreases the level of
documentation quality, as vast amounts of content from previously created documents need to be
rewritten or copied into new documents. Therefore, the automatic generation of manufacturing
documents from MultiProLan models can:

¢ make the documentation modifications easier;

e decrease the documentation creation time;

e increase the documentation consistency and synchronization with actual production
process models; and

e reduce the likelihood of human error.

There are five Documentation Generators implemented to enable M2T transformations — the
generation of: Bill of Materials (BOM), Bill of Materials and Operations (BOMO), Flow Process
Charts (FPCs), Process Failure Mode and Effect Analysis (PFMEA), and user manuals [12]. By
using Process Modeling Tool, a process designer can initiate the generation of the documents based
on the newly created MasL/DetL model or the existing MasL/DetL model imported from
Knowledge Base. Depending on the document chosen to be generated from a MultiProLan model,
appropriate Documentation Generator is initiated, after which the automatically generated
document is ready to be stored. Therefore, it is not necessary to manually create all the documents,
reducing the time needed for the process design phase. As MultiProLan unifies different documents
into a single model, process and quality engineers can work together on modeling processes with a
single language while simultaneously getting the documents required in a company.

Step ** — Manufacturing documentation storage. Generated manufacturing documentation is
stored in Documentation Storage, allowing various stakeholders to access the documentation when
needed.

MD Solution for Modeling and Automatic Execution of Production Processes 85

Generating and storing the manufacturing documentation from MultiProLan models serves for
subsequent production analysis and compliance with procedures, legal regulations, and standards.
The automatic generation of manufacturing documentation can help keep the documentation up to
date while lowering the costs needed for manual creation and update of the documentation.

In the following section, we summarize the objectives our MD solution aims to achieve, with
a special focus on its two main components — MultiProLan and Process Modeling Tool.

5.3 Objectives of the MD Solution

Our MD solution, including MultiProLan and Process Modeling Tool, has multiple objectives it
needs to achieve. These objectives are summarized to better denote the reasons for creating such a
solution and to point out what are the goals of our MD solution and its components. The MD
solution should fulfill the following objectives:

The automatic transformation of MasL into DetL models should help process designers
when modeling processes, as the manual creation of DetL production process models is a
burdensome task. Also, the automatic transformation should enable fast switching between
different production systems as a single MasL model is used, and DetL models can be
automatically created. Therefore, the time-consuming task of manually adapting process
specifications for different production systems can be replaced with the automatic one.
Additionally, an analysis and a comparison of different DetL process models of the same
product should be possible, choosing a production system in which the product will be
produced optimally.

The automatic generation of high-level instructions from DetL models should enable
manufacturing products based on their production process models. Additionally, high-level
instructions that are to be transformed into textual descriptions with images and videos and
sent to human workers one by one via tablets or smart watches should enable guided
production. Such production should help workers, especially the novice ones, to better
understand production processes and perform each process step more easily. Also, such
production can lower the time spent by experts helping novice workers, thus improving
performance in a factory of both these worker categories.

The solution should support a process monitoring feature by gathering feedback from
resources while executing process steps and sending the feedback to Process Modeling
Tool. Therefore, the execution of process steps can be presented in the tool, making it
possible to present successfully executed process steps, currently executed process steps,
and errors that occur during production. Thus, better control of the process execution and
a faster response to occurred errors can be utilized. Also, a current state of the process
execution can be presented to human workers, indicating which exact step they currently
execute and what are the following process steps, gaining an overview of the whole process.
Gathered feedback will also be stored in a database, creating a possibility for process
analysis, which can lead to the detection of process anomalies, bottlenecks, and failures.
Based on these findings, production processes can be optimized, and unscheduled system
shutdowns can be prevented as some failures can be mitigated.

Instead of a time-consuming manual creation of manufacturing documentation of different
types, an automatic generation of such documentation should decrease the time invested by
process designers. Also, the manual creation of documentation is usually error-prone, as
many documents need to be created. The volume of needed documentation increases
significantly in the Industry 4.0 context, where multiple process and product variations
exist. Additionally, as a product or its process may change over time, all manufacturing
documents related to the product must be updated. By using manufacturing Documentation
Generators, versioning and keeping the manufacturing documentation up to date should be
done automatically, reducing the time needed for such tasks and possible errors that may
occur during manual writing.

86 MD Solution for Modeling and Automatic Execution of Production Processes

The MD system should contribute to flexible production in the context of Industry 4.0,
introducing factories to the digital transformation process.

The developed DSML — MultiProLan should fulfill the following objectives:

MultiProLan should be a capability-based production process modeling language, allowing
Orchestrator to match process steps with resources automatically, thus contributing to
flexible production.

MultiProLan should have a core set of concepts to describe production process models
suitable for the automatic generation of executable instructions. Among the core concepts,
the language should cover modeling concepts such as material flow, error handling, and
product and process variations, making models ready to cope with the production flexibility
challenge. In addition, the requirements presented in Section 4.2.1 should be fulfilled by
the language, allowing various processes to be modeled.

MultiProLan should support the modeling of all production details required for the
automatic instruction generation and execution but not be too complex for a human to
comprehend. It would be hard to model production processes with all the details required
for the execution while keeping models clear, concise, and appropriate for initial process
analysis. Accordingly, two levels of detail should be implemented to distinguish between
MasL and DetL process models. By creating two levels of detail, production process
models will become independent of the production system details, and thus efforts needed
during the production process modeling will be reduced, as they will be modeled in a
generic way. Also, such generic process models can be utilized in multiple different
production systems.

MultiProLan should include and unify concepts from different types of manufacturing
documentation to support automatic documentation generation from a single model. A
production process model should store knowledge that is usually stored across different
sheets and documents, making such a model a single point of knowledge. Such unification
should allow various users, such as process and quality engineers, to collaborate on creating
the same model from different viewpoints.

MultiProLan should:

o speed up and increase the precision with which production processes are designed:;

o decrease the number of faults during process design; and

o enable faster changes in production process models.

Process Modeling Tool should fulfill the following objectives:

The tool should support process monitoring, being able to get process execution feedback.

The process model's production steps should change color depending on the execution

status. By presenting execution status to users, they can monitor process execution and

intervene if needed, solving issues during production.

The tool should support mechanisms to lower the complexity of process diagrams, making

them more readable:

o The tool should support different modeling layers, being able to show or hide a set of
modeling concepts related to the specific layer. The usage of layers would allow
different users, such as process and quality engineers, to work together on the same
process model, showing just the modeling concepts relevant to them. Therefore, the
amount of information and modeling elements on a process diagram would be lower
for each class of users, allowing them to model processes more easily and to be focused
only on their modeling task.

o Process modeling elements that are containers for other elements should have a
mechanism to show or hide contained elements, allowing to have more or fewer details
on a process diagram.

o A process model should contain sub-processes, allowing the decomposition of a
process model and the reusability of existing processes. The modeling tool should

MD Solution for Modeling and Automatic Execution of Production Processes 87

allow for easy usage of sub-processes, being able to easily open and present sub-
processes when needed.

o Asthere can be multiple process and product variations presented on a process diagram,
the complexity and volume of the diagram can increase significantly. Therefore, the
tool should have a filter function that would allow a user to choose which process or
product variation to present, hiding all other variations from the diagram. Such a feature
would allow users to be focused only on variations they want to create, view, or update.

o A zoom feature should also be implemented to allow an overview of the whole process
diagram or focus on the part of the diagram.

In order to use MultiProLan, Process Modeling Tool, and the whole MD solution effectively,
the presented objectives should be achieved. Therefore, the full potential of the proposed solution
can be reached.

5.4 Summary

In this section, we presented our MD solution comprising a novel system and an approach for
modeling and automatic execution of production processes. The presented MD solution can be used
by process designers to specify resource-agnostic production process models. These models can be
enriched with details of a chosen production system in which a production process is to be executed.
Such enrichment of resource-agnostic production process models can be done automatically by
Orchestrator, based on production system models stored in Knowledge Base, creating resource-
aware production process models. These models can be automatically transformed into executable
resource instructions by Instruction Generator and protocol transformation components stored in
Digital Twin. Instructions can be sent to the shop floor resources to perform specified production
process steps. Our MD solution can also be used to automatically transform production process
models into manufacturing documentation.

The main component of our MD solution is MultiProLan, a novel DSML for production
process modeling. Before creating a novel DSML, modeling concepts need to be carefully analyzed
and selected. Therefore, a production process modeling domain analysis is conducted and presented
in the following section.

Analysis of the Production Process Modeling Domain 89

6 Analysis of the Production Process Modeling
Domain

Creating a new language requires formulating its abstract syntax based on the relevant identified
domain concepts. Therefore, we analyzed the domain of production process modeling and identified
its main concepts before creating the MultiProLan language. Domain knowledge is gathered from
research papers, technical documentation, use cases, and by talking to domain experts. Feature-
Oriented Domain Analysis (FODA) is used as a domain analysis method [93]. The FODA method
is used to analyze a domain and identify features that are usually expected to support software
development.

A feature model comprises the typical features of a family of systems in the domain and their
relationships [93]. A feature represents a property of a system that directly affects stakeholders that
use the system. Features are connected via structural relationship, meaning features consist of other
features, representing a logical grouping of features. Inside a feature group, alternative features can
exist, representing a specialization of a more general category and indicating that no more than one
specialization can be used. There are also mandatory and optional features, indicating which
features must exist and which ones are optional.

In this thesis, we use the standard FODA notation [93,155] extended to support feature and
group cardinalities in order to create cardinality-based feature models [232]. A feature cardinality
represents how often a sub-feature or an entire sub-tree can be replicated. The feature cardinality is
presented in a form [n..m], indicating that at least n and at most m sub-features need to be replicated.
If no cardinality is presented for a sub-feature, an unfilled circle of a relation represents the [0..1]
cardinality, while a filled circle represents the [1..1] cardinality. A group cardinality can be specified
for a whole group of sub-features, indicating how many sub-features can be selected. The group
cardinality is presented in a form <n..m>, indicating that at least n and at most m group features
need to be selected. If no cardinality is presented for a group, the <1..1> cardinality is assumed.

To create cardinality-based feature models, we used Yet Another Feature Modeling Tool
(YAFMT) [233], representing a collection of Eclipse plug-ins for feature modeling. This tool was
also used by Samimi-Dehkordi et al. [234] when they analyzed a domain for the Model-Driven
Engineering of Bidirectional Transformations via Epsilon (MoDEBITE) language. The only
difference in the syntax of FODA models that we encountered when using YAFMT compared to
the standard FODA notation is that when specifying a group of features, a square is used instead of
a circle at the end of relations. There are also other feature modeling tools, such as FeaturelDE
[235,236] — an Eclipse-based open-source framework for Feature-Oriented Software Development
(FOSD), a paradigm for the construction, customization, and synthesis of software systems.
However, we chose the YAFMT tool due to the good-looking graphical appearance of feature
model diagrams, easiness of use, and cardinality-based feature modeling.

Production processes typically follow a strict set of rules or guidelines in order to turn raw
materials into a quality finished product. They can be described in various ways and at different

90 Analysis of the Production Process Modeling Domain

levels of detail. As we aim to create production process models that can be used for the automatic
instruction generation and execution of the generated instructions, production processes need to be
described with all the details required for the execution. A production process can be understood
from several different perspectives. Here we focus on the operational, resource, and control-flow
perspectives and present them as cardinality-based feature models. It should be noted that these
feature models do not cover all the details of the production processes domain, but a minimal set of
features needed for dynamic production orchestration and automatic process execution and error
handling. The domain analysis of production process modeling and related FODA models were
published in [11].

This section is composed of the following three subsections. In Section 6.1, we present the
cardinality-based feature model of the operational and resource perspectives of production process
steps, while in Section 6.2, we present the control-flow perspective of production processes as the
cardinality-based feature model. The summary of the domain analysis is outlined in Section 6.3.

6.1 Operational and Resource Perspectives

The operational and resource perspectives are presented in Figure 6.1 as a cardinality-based feature
model of a production process step. The operational perspective describes elementary units of work
(Process Step), and the resource perspective provides an organizational structure in the form of
human and machine roles responsible for executing process steps. A process step feature is the root
of the FODA tree in Figure 6.1. A process step requires a capability (Capability) that represents the
"implementation-independent potential of an Industry 4.0 component to achieve an effect within a
domain™ [142], i.e., a skill needed to execute the process step. For example, a robot can have
different capabilities depending on which tools are mounted, and a human worker can have different
capabilities depending on their expertise or completed training. A process step capability can have
different parameters (Capability Parameter) or constraints (Capability Constraint). A capability
parameter is used to specify additionally how a capability needs to be used. Parameters usually
represent conditions, attributes, or settings that can be varied to affect the execution of process steps
[141]. For example, if a product needs to be placed on a pedestal, the coordinates of where the
product is to be placed need to be specified. A capability constraint indicates what is an additional
requirement to execute a process step. For example, for the pick capability, a constraint can be that
a gripper needs to be able to pick up objects wider than 0.5 m. Different robots can all have the pick
capability, but they can pick objects of different sizes, as their grippers are not the same. Also, a
constraint for the pick capability can be defined as a minimal mass that the resource can handle,
e.g., 100 kg. Human workers and some robots can pick objects, but there is a limitation on how
much weight they can lift. Thus, only some of the robots can lift such objects.

A process step can exist without any products (Product). For example, if a process step is a
movement operation of a resource or some of the resources just need to be configured, none of the
products are included as these operations do not require them. A process step can include multiple
products of different kinds (Product Kind): input (Input) and output (Output) products. A process
step capability is used on input products to create output products of the process step. Products can
be of different types (Product Type) [141]:

e raw material (Raw Material) — represents any physical material used in a product creation;

e an intermediate product, a part, or a component (Component) — represents an output of a
process step that is an input to another process step and requires further transformations
within a production system; and

¢ afinished good or a final product (Finished Good) — represents any good or service offered
to satisfy someone's needs.

Capability

% 10.”]

[Capability Parameter] [Capability Constraint]

0."]

Product Kind
[] L1

OQutput Input [0.%]

[0.7]

Product Variation
Resource Type
0 >

Storage
[]

[Product Constraint] [Material Flow]

Machine Human

Product Type

[}

To Next Process Step

s]
T

[Waiting For Execution

Error Appeared

]
Global

>

[Currently Executed] [Execution Finished]

[0.7]

Error

L] []

1
Local Known Unknown

_ <D

{1
Finished Good] [From Previous Process Step] To Storage]

L1

Operation
[Cimoecien |
[1

3

[1
Configuration
[1

Figure 6.1. A FODA model of a production process step suitable for an execution.

T6 urewoq Buljapo $$820.1d UONINPOId 3yl JO SISAeuy

92 Analysis of the Production Process Modeling Domain

For each product, different constraints (Product Constraint) can be specified. Like capability
constraints, product constraints can be used to determine which resources can execute a process
step. A product constraint can be seen as an attribute, as it specifies a product's property, such as
height, width, depth, mass, or color.

It is also important to specify a flow of materials or products (Material Flow) between storage
and execution resources of process steps. A material flow represents products entering from or
leaving to another production system [141], or in the case of a single production process, it
represents materials and products entering from or leaving to another process steps. For each input
product, it must be known whether it needs to be taken from storage (From Storage) or is a result
of a previous process step (From Previous Process Step). Also, for each output product, it must be
known whether it needs to be placed in storage (To Storage) or it will be used in some further
process steps (To Next Process Step). If an input product needs to be taken from storage or an output
product placed in storage, the product needs to include information on which storage (Storage) that
should be.

Each product can have many variations (Product Variation), especially in the context of
Industry 4.0 and lot-size-one production. As customers require various personalized products in
such production, each product variation can differ in the parts and materials it is made. Therefore,
a product with all its variations belongs to the same product family.

A smart resource (Resource) needs to be specified for each process step to enable its execution.
Smart resources can be of different types (Resource Type): a robot or a machine (Machine) or a
human worker (Human). A machine represents a device, a piece of equipment, an instrument, a
tool, a single machine, or a robot, that performs elementary activities, is used for elementary
activities, or makes work easier [141].

Process steps can be represented by using different notations (Notation): (i) operation
(Operation), (ii) inspection (Inspection), (iii) delay (Delay), (iv) transportation (Transportation), or
(v) configuration (Configuration). An operation is an activity needed to change input products and
create output products, e.g., cutting a metal bar. An inspection is an activity needed to check
whether a product fulfills certain requirements, e.g., visually inspecting assembled parts. A delay is
an activity designed to wait for some other process to be finished, e.g., waiting for a metal bar to
cool down. Transportation is an activity needed for changing the location or position of resources
or products between storage, e.g., moving a robot to a smart shelf. These four notations are also
present in the American Society of Mechanical Engineers (ASME) Flow Process Charts (FPCs)
[25], as well as in [2], but without the delay notation. To specify production processes that are
suitable for execution, configuration activities also need to be defined. Configuration is an activity
needed to configure resources in order to finish different tasks. For example, a robot must determine
its position before it executes an operation, change a gripper, or plug itself into a charger.

Various errors (Error) can occur when executing process steps, so error handlers need to be
specified. An error handler has its domain (Error Domain): global (Global) —the same error handler
can be used for different errors, or local (Local) —the error handler is specific to the error and cannot
be used for other errors. For example, a global error handler can be utilized to specify steps to
recycle a plastic product and a local error handler can be used to specify steps for disassembling a
specific product into components. Also, error handlers can be specified for errors of the following
types (Error Type): known errors (Known) — identified errors that can occur in process steps and
process designers are aware of them, or unknown errors (Unknown) — unidentified errors that can
occur in process steps. There can be only one unidentified error handler for each process step and
many identified error handlers.

The status (Status) of each process step needs to be monitored during the execution of a
production process. A process step can be in the following states: (i) not yet executed (Waiting For
Execution), (ii) currently being executed (Currently Executed), (iii) executed successfully
(Execution Finished), and (iv) an error occurred during the execution (Error Appeared).

Analysis of the Production Process Modeling Domain 93

6.2 Control-Flow Perspective

The control-flow perspective is presented in Figure 6.2 as a cardinality-based feature model of a
production process. The control-flow perspective describes activities and their execution ordering
through different constructors (Control Structure), which permit a flow of execution control, e.g.,
sequence, parallelism, decision, and iteration. Activities in an elementary form are atomic units of
work (Process Step), and in a compound form, they are a set of activities that modularize an
execution order.

A production process or a manufacturing process (Process) is the root concept of the FODA
tree presented in Figure 6.2. A process has a starting point (Start), an ending point (End), and a non-
empty array of control structures (Control Structure). Control structures represent different types
of execution flows that contain branches and process steps. They are: (i) sequence (Sequence), (ii)
parallelism (Parallelism), (iii) decision (Decision), (iv) iteration (lteration), (v) collaboration
(Collaboration), (vi) variation (Variation), and (vii) unordered set of steps (Unordered Steps).
During the domain analysis, we encountered multiple examples of these control structures, and
some of these examples are discussed in the following paragraphs.

A sequence (Sequence) is a non-empty array of process steps (Process Step) that must be
executed in the exact order they are presented. For example, a robot needs to move to an assembly
table and proceed to assemble two parts.

Parallelism (Parallelism) has a starting point (Start Parallelism (Fork)), an ending point (End
Parallelism (Join)), and an array of at least two parallel branches (Parallel Branch). Each parallel
branch is a non-empty array of control structures (Control Structure). The branches are to be
executed in parallel. For example, there are different independent parts that can be assembled in
parallel.

A decision (Decision) has two or more branches (Decision Branch), and each of them is an
array of control structures (Control Structure) that can be empty. Every branch has a condition
(Decision Condition) that needs to be met for the branch to be executed. For example, after
inspecting a product, a decision is made whether the product needs to be stored or discarded,
depending on the inspection results.

An iteration (Iteration) has an iteration branch (Iteration Branch) that is a non-empty array of
control structures (Control Structure) placed between a check point (Check Point) and a return point
(Return Point) that needs to be executed as part of the current iteration. The check point comprises
a condition (Iteration Condition) that can be checked before the execution of the iteration branch
(Pre-Condition) or after the execution of the iteration branch (Post-Condition). Thus, it is possible
to create while or do-until loops. For example, a metal bar needs to be heated several times.

A collaboration (Collaboration) has two or more collaboration branches (Collaboration
Branch), and one or more messages (Message). Each collaboration branch is a non-empty array of
control structures (Control Structure). Messages are exchanged between process steps contained in
some of the control structures. Each message has a source process step (Source Process Step) that
sends the message to a target process step (Target Process Step) that receives the message. For
example, one part needs to be held while another one is getting attached to it. The attachment
process step should not start before a message arrives that the first part is being held. The holding
process step should not end until a message arrives that the second part becomes fully attached to
the first one. A collaboration between resources is essential in the context of Industry 4.0, especially
a human-machine or human-robot collaboration. Due to the need for highly flexible production,
resources are meant to collaborate frequently to produce different products and their variations.
Accordingly, a human-robot collaboration combines benefits from both human workers (e.g.,
sensorimotor skills) and robots (e.g., high-precision skills), making production more effective and
efficient [237].

[1.71

Control Structure

S

U Unordered Steps

[1.7]

- Variation] [Process Step]

Process Step

[Start Parallelism (Fork)

)

[2-7]

Parallelism

[End Parallelism (Join)]
[2.%] o [1.%] /[{*] Control Structure
Parallel Branch W [Control Structure] [Check Point] [Collaboration Branch] 1.7

Variation Branch

2.7 Message
/ (0.1 >
L]
[Decision Condition] [Control Structure] [Pre-Condition Post-Condition [Source Process Step] [Target Process Step]

Figure 6.2. A FODA model of a production process suitable for an execution.

urewoq Buljapol $$3901d UonINPoId 3yl Jo SISAleuyY 6

Analysis of the Production Process Modeling Domain 95

A variation (Variation) represents a part of a process with two or more variation branches
(Variation Branch), leading to different product variations in the same product family or the same
product but processed in different ways. Each variation branch is a non-empty array of control
structures (Control Structure). Different product variations can belong to the same product family
but differ in some materials or parts. Each variation branch can represent different product
variations, containing different activities and products that participate in the process. The exact
product variation is chosen before the execution of the process. In addition, an intermediate product
or a finished good can be created in different ways, which is what process variations represent. For
example, a hole in a component can be created by a drilling process step followed by a sanding
process step, or the hole can be made with a laser without needing the sanding afterward. There are
many other ways to create a hole, such as water cutting, plasma cutting, or punching [71]. All these
variations can be specified, and just before the execution of a process, an optimal variation can be
chosen.

An unordered set of steps (Unordered Steps) represents a collection of two or more process
steps (Process Step) that may be executed in any order. For example, two parts need to be picked
from the same storage, and it is not important which one should be picked first. Such arbitrarily
ordered steps can be useful in cases when workers are allowed to assemble certain parts in any
order, and at some time, workers may find out the fastest way to assemble a product, optimizing
their performance and needed time. Arbitrarily ordered steps may also be applied for quality
assurance steps when several tests need to be done for a part or a product [65].

6.3 Summary

To execute a production process model, it should have at least the following features: specified
starting and ending points of the process and, between these two points, a sequence control flow
with at least one specified process step. The process step comprises a single input product, a
capability, a single output product, and a resource. All of the aforementioned represent a minimal
set of features needed to execute a process, assuming that a resource already has an input product
at a workspace and that transportation of the product is not required. However, in practice, storage
and transportation process steps should be specified in the process, as well as the configuration of
resources when needed. Additionally, product and capability constraints and capability parameters
should be specified when they are required.

The domain of production process modeling is much broader and semantically richer than
presented in this thesis. We settled on describing only the given concepts as we focused on a
minimal set of features needed for the automatic execution of production processes and error
handling. Based on the presented features, we created a novel DSML — MultiProLan that covers all
the aforementioned domain concepts, discussed in the following section.

Multi-Level Production Process Modeling Language 97

7 Multi-Level Production Process Modeling
Language

In this section, we present the abstract and concrete syntaxes of Multi-Level Production Process
Modeling Language (MultiProLan) — a DSML for modeling production processes suitable for
dynamic production orchestration and automatic generation of executable resource instructions and
manufacturing documentation.

We used the Ecore meta-meta-model, which is a part of EMF [94,95], to create the abstract
syntax of MultiProLan based on the domain analysis presented in the previous section. Additional
constraints that cannot be expressed by the meta-meta-model concepts, but exist in the production
process modeling domain, are expressed by using Object Constraint Language (OCL) [96]. OCL is
a standard language created by OMG to overcome the limitations of UML by defining various
expressions clearly and unambiguously [97]. It was primarily made to express various constraints
of a system, but the newer OCL versions are also used to define different queries, data manipulation,
business rules, and model transformations [98].

To create the graphical concrete syntax and to enable the simple implementation of a prototype
tool [99], we used the Eclipse Sirius framework [100]. Both MultiProLan and Process Modeling
Tool were developed iteratively.

During the design of MultiProLan, several process engineers were involved as domain experts
and provided us with different model examples specified as ASME FPCs, BOMs, and textual
descriptions. With their help, we identified domain concepts and validated the modeling concepts
of our language.

This section is structured as follows. First, an overview and usage of MultiProLan are
discussed in Section 7.1. Then, the abstract syntax of MultiProLan is presented in Section 7.2, while
its concrete graphical syntax is presented in Section 7.3. Process Modeling Tool, introduced as a
part of our MD system in Section 5.1, is discussed in detail in Section 7.4. The summary of
developing MultiProLan and Process Modeling Tool is outlined in Section 7.5.

A detailed description of the MultiProLan usage was presented in [11] and [14]. The abstract
syntax of MultiProLan was presented for the first time in [10] and extended in [11], while the
MultiProLan's concrete syntax was presented through model examples and figures in [10,11,13]
and in a more detailed manner in [14].

7.1 Overview and Usage of MultiProLan

The main goal of creating MultiProLan is to enable formal specification of production processes
that will allow the automatic generation of executable instructions. This way, we want to automate

98 Multi-Level Production Process Modeling Language

process execution and thus improve production flexibility. The language is created according to the
requirements presented in Section 4.2.1.

MultiProLan is a production process modeling language primarily used in the domain of
hardware assembly. Currently, it does not support other production domains, but it can be extended
to support them in the future. The language unifies different production process aspects and,
therefore, allows the unification of the work from different user groups. At this point of the
MultiProLan development, these user groups comprise process and quality engineers. They use
MultiProLan together to create production process models that are:

suitable for automatic generation of executable instructions;

independent of any production system;

used to handle errors when they occur;

comprised of multiple variations of the process and final product; and

suitable for automatic generation and update of manufacturing documentation.

As manufacturing companies need to have an overview of their processes from different
viewpoints [212], the MultiProLan modeling concepts, at the present stage, are grouped across two
detail levels and two layers, as seen in Figure 7.1. Two detail levels — Master-Level (MasL, i.e.,
resource-agnostic) and Detail-Level (DetL, i.e., resource-aware) — are used to separate modeling
concepts independent of an execution platform, i.e., a specific production system, from those that
are execution platform-specific, respectively. Furthermore, as MultiProLan follows the principles
of skill-based engineering, i.e., process steps are specified through capabilities, MasL models can
be automatically transformed into DetL models. Such an automatic transformation is possible by
using matching mechanisms implemented in Orchestrator, connecting required capabilities from
process steps with offered capabilities from production resources. Assigning resources to MasL
process steps and adding transportation and configuration process steps as well, creates DetL
process models. As capabilities are independent of any specific production system, these two levels
participate in one of the key features of the MultiProLan languages — production process models
need to be independent of any production system so that they can be used in various systems, but
also, process models need to be executable in a chosen production system.

To ease language extensibility, modeling concepts are additionally grouped across so-called
layers. Execution Layer is the default layer. It comprises modeling concepts that are crucial for
production process modeling and execution. This layer is always visible within the graphical
representation of a MasL/DetL. model and is required for other layers to be applied. In Execution

I Execution : Error Handling !
: Layer : Layer :
| | :
: Master-Level O : , |
.) Process | Quality |

! (l Coont .Ce- Engineer | Engineer |
: agnostic) : Production |
——— @000 A - _ Process :
: o : o Modeling
| Detail-Level @ estrator | @ estrator @ | MultiProLan) :
: (resource- ﬁ : ﬁ : |
| aware) Pto.cess I Qu'ahty |
| Engineer i Engineer |
|

Y, Wy e l
A o A A A T A T R R T A e N I
[. l
I Production |
: 5;50““3 System :

vVianager H

| " Modeling
I |

Figure 7.1. Context and architecture of MultiProLan.

Multi-Level Production Process Modeling Language 99

Layer, process steps are modeled with input and output products, capabilities, and resources. Also,
the control flow of process steps and the material and message flows are modeled in this layer, as
well as different process variations. Errors that might occur during production and process steps
needed for their handling are grouped within Error Handling Layer, and these modeling concepts
are used mainly by quality engineers. Most of the time, process and quality engineers collaborate
to create a process model. However, sometimes process and quality engineers want to be focused
only on their part of process modeling. Also, as there may be a significant number of details on a
process model diagram, a mechanism should exist to reduce the level of detail and enable process
and quality engineers to be more focused on their work. Thus, Error Handling Layer can be hidden
from a process engineer and can be made visible to a quality engineer. Hiding layers from other
users enables them only to be focused on their part of the process modeling. However, both layers
can be presented simultaneously so all users can work together and optimize a production process
model. In Figure 7.1, we present user groups that use modeling concepts grouped across detail
levels and currently supported layers. Additional layers are under development, such as Risk
Management Layer, which presents a part of a production process model specifying different risk
factors for each process step and the overall risk associated with resources. This layer will be used
mainly by HSE managers. Modeling various production safety and energy consumption aspects
needs to be considered as well but it is part of our future work.

The two detail levels and two different layers discussed are part of the production process
modeling. To create DetL models from MasL models, a specification of a production system also
needs to be possible. The production system modeling is done by a resource manager, as seen in
the bottom part of Figure 7.1. The language for production system modeling is another language
used in Resource Modeling Tool (introduced in Section 5.1), but it has similar modeling concepts
to MultiProLan, such as capabilities, resources, storage, and material flows. Thus, we can say that
they both belong to the same language family — the languages are compatible, have overlapping
concepts, and complement each other, but they were developed and are considered separately. The
production system modeling language and Resource Modeling Tool are part of another research [5]
and will not be discussed in detail in this thesis.

Four main characteristics that differentiate MultiProLan from the languages and approaches
presented in Section 4.2.2 are:

e A core set of concepts needed to describe production process models suitable for
automatic generation of executable instructions (C1). The first characteristic enables
process designers to use MultiProLan to model production processes ready for automatic
instruction generation and execution.

e Two detail levels that allow distinction between resource-agnostic and resource-aware
production process models (C2). As it is hard to model production processes with all the
details required for the execution while keeping models clear, concise, and appropriate for
initial process analysis, two detail levels are introduced. The second characteristic makes
modeling easier for process designers by allowing them to specify production processes at
a high level, independent of the exact resources that will execute the process. Furthermore,
to automatically enrich these abstract models with specific shop floor details, methods to
transform resource-agnostic into resource-aware models are required.

e A core set of concepts needed to model error handling (C3). The third characteristic
enables process designers to use MultiProLan to model production process errors that may
occur. During the process execution, various errors may occur, and they need to be modeled
alongside the corrective steps to remove the damage caused by the errors.

¢ Unification of concepts from different manufacturing documents, such as BOM, FPC,
and PFMEA, into a single, uniform production process model, allowing automatic
generation and update of manufacturing documentation from the single model (C4).
The fourth characteristic allows various users, such as process and quality engineers, to
collaborate on creating the same model from different viewpoints. Thus, different aspects
of a production process can be integrated into a uniform model instead of having several
documents covering various aspects. Accordingly, having a uniform process model with

100 Multi-Level Production Process Modeling Language

information usually stored in multiple documents makes it possible to automatically
generate and update the manufacturing documentation from such a model.

When modeling a production process by using MultiProLan, there are several assumptions or
constraints in place that a modeler must be aware of:

e A production process may be modeled for execution in a single facility or a single smart
factory. However, multi-facility collaboration is not yet supported.

e Existing factory resources executing modeled process steps are smart enough to understand
basic high-level instructions, such as pick, place, move, or assemble.

e Once online, resources introduce themselves to the system and provide the needed
semantics on how to use them.

e Storage in a production facility, such as smart shelves, is already filled with materials and
parts and cannot be depleted.

In the following sections, the abstract and concrete syntaxes of MultiProLan are described, as
well as Process Modeling Tool.

7.2 Abstract Syntax of MultiProLan

To make the MultiProLan meta-model diagram more concise and easier to understand, we divided
its concepts into four parts. The first two parts of the meta-model cover modeling concepts of MasL
and DetL at Execution Layer. The third part of the meta-model covers modeling concepts at Error
Handling Layer, while the fourth part of the meta-model covers the extensions needed for the
automatic generation of manufacturing documentation. Therefore, we divided this section into four
subsections based on these four meta-model parts.

7.2.1 Master-Level Modeling Concepts at Execution Layer

The MasL part of the MultiProLan meta-model used at Execution Layer is depicted in Figure 7.2.
Process designers use these modeling concepts to create MasL models. A production process is
modeled using the Process class, which represents the root model element. A process version
(version) can be specified as models are stored in Knowledge Base and can be changed or reused
at any time. A process is composed of at least one process element (ProcessElement), and process
elements can come in the form of process steps (ProcessStep), gates (Gate), unordered sets of steps
(UnorderedSteps), or sub-processes (SubProcess). Each process also comprises relationships
(Relationship) between process elements. As the knowledge of the execution starting point is
needed, a start process step must be referenced from a process (startStep).

There are two types (type) of relationships (ERelationshipType):

e FLOW - representing a control flow between process elements; and
e COLLABORATION - representing a message flow between process steps.

Relationships have the message attribute (message) specified whenever a message needs to be
sent between collaboration process steps. Also, relationships have the logical condition
(logicalCondition) specified whenever they are used in selection or iteration patterns. There are
input (inRelationship) and output (outRelationship) relationships connected to a process element,
and each relationship must have its source (source) and target (target) process element.

[0..1] capability

[Parameter

7 key : EString
' value : EString

[0..*] c@nstraints

[0..*] congtraints

[Constraint

o~0-0~-0

physicalDimension : EString

relationalOperator : EString
value : EString
metricUnit : EString

EQ ProcessElement

[1..1] source

[1..1] target

“ EProcessStepNotation “ EProcessStepType “ ERelationshipType] IDNamedElement “ EGateType % EGateFlowType “* EProcessParameterType|
= NONE = REGULAR - FLOW 7 id : EString = DECISION = DIVERGING = INPUT_PARAMETER
= OPERATION = START = COLLABORATION = name : EString = ITERATION = CONVERGING = OUTPUT_PARAMETER
= INSPECTION = END = PARALLELISM
= DELAY = COLLABORATION
ZF = VARIATION
[0..*] eqyivalents [1..*] relationships
Capabilit Product Relationship Process
y
— requiresStorage : 7 catalogld : EString T type : ERelationshipType = FLOW = version : EInt [~
1 -
EBoolean = false 7 quantity : Eint = logicalCondition : EString 7Y —
¥ Y 7 isFinal : EBoolean = false = message : EString =P
T isStored : EBoolean = false [ProcessVariation W
.]] [1..*] variations | 5 semanticld : EString
[0..*] parameters [0..*] pfoducts [0..*] oufProducts [0.*] inRelationships = description : EString
0..*] outRelationships ¢ 1..1] defaultVariati
[0..*] inProducts (0.7 P 1.+ [1..1] defaultVariation

[1..*] vanjations

[0..*] subVariations

[

[ProcessStep

H Gate

| ‘] UnorderedsSteps

[)
[0..1] supefVariation

‘] SsubProcess

type : EProcessStepType = REGULAR
notation : EProcessStepNotation =
OPERATION

= description : EString

= completionCriterion : EString

(=1
1

(=]
1

Figure 7.2.

= acceptanceCriterion : EString

type : EGateType = DECISION
flow : EGateFlowType =
DIVERGING

pairld : EString

0 0 0

{

(]

[0..*]|parameters

[1..*] steps

[1..1] startStep

[ProcessParameter

[0..*] parameters

— type : EProcessParameterType =
* INPUT_PARAMETER
7 isFinal : EBoolean = false

[0.*Tp

arameters|

The first part of the meta-model used for MasL model creation at Execution Layer.

TOT oabenbue Buljapoly $S8201d UONINPOId [9AST-NINIA

102 Multi-Level Production Process Modeling Language

Additional constraints exist when specifying a relationship:

relationship's source and target cannot reference the same process element;

there cannot be two flow-type relationships that have the same source and target elements;
each flow-type relationship cannot have the message attribute specified;

each collaboration-type relationship must have the message attribute specified; and

each collaboration-type relationship cannot have the logicalCondition attribute specified.

These constraints are specified in OCL, which code is implemented inside the Ecore-based
meta-model. The code of these constraints is presented in Listing 7.1.

1 invariant relationshipsCannotBeRecursive('Source and target elements of each
relationship must be different.'):
Relationship.allInstances()->forALL(r | r.source <> r.target);
2 invariant singleFlowRelationshipBetweenElements('There cannot be more than a
single flow-type relationship between the same source and target elements.'):
Relationship.allInstances()->forALL(rl, r2 | ((rl1 <> r2) and
(ri.type = ERelationshipType::FLOW and r2.type = ERelationshipType::FLOW))
implies ((ri.source <> r2.source) or (rl.target <> r2.target)));
3 invariant flowRelationshipCannotHaveMessage('The message attribute cannot be
specified for a flow-type relationship.'):
Relationship.allInstances()->forALL(r | r.type = (ERelationshipType: :FLOW)
implies (r.message = null or r.message = ''));
4 invariant collaborationRelationshipMustHaveMessage('The message attribute must be
specified for each collaboration-type relationship.'):
Relationship.allInstances()->forALL(r |
r.type = (ERelationshipType::COLLABORATION) implies (r.message <> null
and r.message <> ''));
5 invariant collaborationRelationshipCannotHavelLogicalCondition('The logical
condition attribute cannot be specified for a collaboration-type relationship.'):
Relationship.allInstances()->forALL(r |
r.type = (ERelationshipType::COLLABORATION) implies
(r.logicalCondition = null or r.logicalCondition = ''));

Listing 7.1. Constraints related to flow-type and collaboration-type relationships.

A process step is composed of a capability (Capability) required to perform an activity and
products (Product) on which the activity is to be performed. A capability has an indicator of whether
it requires storage (requiresStorage) to be executed in the real world.

Each product has an identifier of a product type it belongs to (catalogld), as well as an indicator
of whether it is a final product (isFinal) or an intermediate one. A process step can have input
products (inProducts), representing products on which an activity is to be performed, and output
products (outProducts), representing products that are the result of performing the activity. There
is also the quantity attribute (quantity), representing the number of products used as input to a
process step or produced as output of the process step.

A material flow should be specified for every product. An input product can be considered as
equivalent (equivalents) to products of some previous process steps, or it can be brought from
storage (isStored). An output product can be used in the following process steps or stored in storage.

Every product and capability may have constraints (Constraint), such are dimensions, color,
and mass. Constraints will be considered by Orchestrator when it decides which smart resources
can perform a process step. A constraint has a physical dimension (physicalDimension), such as
mass and width, a relational operator (relationalOperator), such as =, !=, <, >, <=, >=, and a value
(value). Optionally, it has a metric unit (metricUnit), such as gram and meter, but there is no metric
unit for constraints such as color. A product has constraints with the equivalency relational operator,
as they describe its characteristics (e.g., width = 0.5 meters), while capability constraints can have
any relational operator. For example, if the pick capability has the following constraint: width < 1
meter, it means that a resource with the pick capability is needed to pick a product, and not just any
resource, but the resource that can pick objects whose width is less than 1 meter. The

Multi-Level Production Process Modeling Language 103

relationalOperator attribute domains for product and capability constraints are defined in the
Product and Capability classes by using OCL and they are presented in Listing 7.2.

1 | invariant productConstraintRelationalOperatorDomain('The equivalency (=)

relational operator must be used in product constraints.'):
self.constraints->forAlLL(c | c.relationalOperator = '=');

2 | invariant capabilityConstraintRelationalOperatorDomain('A capability constraint

relational operator must have one of the following values: =, =, <, >, <=, >="):
self.constraints->forAlLL(c | Set{'=", '!=', '<', '>', '<=', '>='}
->includes(c.relationalOperator));

Listing 7.2. The specification of the relational operator domain in product and capability
constraints.

Some capabilities may require parameters (Parameter) to be specified. For example, the
drilling position must be specified to drill a hole. A parameter has two attributes: a key or a name
(key) of the parameter and a value (value) of such a parameter.

Process steps can be of different types (type), having one of the following values
(EProcessStepType):

e START - the first process step;
e END - the last process step; and
e REGULAR - other process steps that may contain capabilities and products.

The start and end process steps have additional constraints implemented using OCL and
presented in Listing 7.3:

e the start and end process steps do not have any capabilities or products;

e exactly one start process step and one end process step have to exist per each production
process model;

e the start process step cannot have any input flow-type relationships (but it is possible for
the start process step to contain input error-type relationships, as discussed in Section
7.2.3), and must contain a single output flow-type relationship; and

e the end process step cannot contain output relationships and must contain a single input
flow-type relationship.

1 invariant startProcessStepCannotContainProductsOrCapability('The start process

step cannot contain products or a capability.'):
ProcessStep.allInstances()->forALL(ps | (ps.type = EProcessStepType::START)
implies (ps.inProducts->isEmpty() and ps.outProducts->isEmpty() and
ps.capability = null));

2 invariant endProcessStepCannotContainProductsOrCapability('The end process step

cannot contain products or a capability.'):
ProcessStep.allInstances()->forALL(ps | (ps.type = EProcessStepType::END)
implies (ps.inProducts->isEmpty() and ps.outProducts->isEmpty() and
ps.capability = null));

3 invariant startProcessStepMustExist('A single start process step must exist.'):

ProcessStep.allInstances()->select(ps | ps.type = EProcessStepType: :START)

->size() = 1;

4 invariant endProcessStepMustExist('A single end process step must exist.'):

ProcessStep.allInstances()->select(ps | ps.type = EProcessStepType: :END)

->size() = 1;

5 invariant startProcessStepCannotContainInputFlowRelationship('The start process

step cannot contain an input flow-type relationship.'):
ProcessStep.allInstances()->forALL(ps | (ps.type = EProcessStepType::START)
implies (ps.inRelationships->forALL(r | r.type <> ERelationshipType::FLOW)));

6 | invariant startProcessStepMustHaveSingleOutputRelationship('The start process

step must have a single output flow-type relationship.'):
ProcessStep.allInstances()->forALL(ps | (ps.type = EProcessStepType::START)
implies (ps.outRelationships->size() = 1));

7 | invariant endProcessStepCannotHaveOutputRelationship('The end process step cannot

have an output relationship.'):

104 Multi-Level Production Process Modeling Language

ProcessStep.allInstances()->forALL(ps | (ps.type = EProcessStepType: :END)

implies (ps.outRelationships->isEmpty()));

8 invariant endProcessStepMustHaveSingleInputFlowRelationship('The end process step

must have a single input flow-type relationship.'):
ProcessStep.allInstances()->forALL(ps | (ps.type = EProcessStepType: :END)
implies (ps.inRelationships->select(r | r.type = ERelationshipType: :FLOW)
->size() = 1));

Listing 7.3. Constraints related to the start and end process steps.
By introducing process step types, two more constraints need to be defined and they are
implemented using OCL as presented in Listing 7.4:

e the startStep relation from the Process class must reference the start process step; and
e acollaboration-type relationship can only be created between regular process steps.

1 invariant startStepRelationMustReferenceStartProcessStep('The startStep relation
from the process must reference the start process step.'):
self.startStep.type = EProcessStepType: :START;
2 invariant collaborationRelationshipMustConnectRegularProcessSteps('Collaboration
relationships must connect only regular process steps.'):
Relationship.allInstances()->forALL(r |
(r.type = ERelationshipType: :COLLABORATION) implies
((ProcessStep.allInstances()->exists(ps | ps.type = EProcessStepType: :REGULAR
and ps = r.source)) and (ProcessStep.allInstances()->exists(ps |
ps.type = EProcessStepType::REGULAR and ps = r.target))));

Listing 7.4. Constraints related to the startStep relation and the collaboration-type relationship.

A process step has a notation (notation), having one of the following values
(EProcessStepNotation):

NONE - a notation needed for the start and end process steps;

OPERATION - an activity that changes input products and creates output products;
INSPECTION - an activity to perform various checks on products; and

DELAY — necessary waiting activities.

A process step can have its description (description) to provide additional information about
it and is used when a human worker executes a process step. A process step can have a completion
criterion (completionCriterion), indicating when a process step is finished. It also can have an
acceptance criterion (acceptanceCriterion), providing boundaries in which completion of the
process step is acceptable. For example, a wooden plank needs to be cut, and its width should be
500 mm, representing the completion criterion. However, it is acceptable to have the wooden plank
cut with a deviation of +/- 1 mm, representing the acceptance criterion — to have the wooden plank
cut between 499 mm and 501 mm. These two attributes are related to production quality and are
currently represented as string attributes. Our meta-model, especially the part on production quality,
can be extended further and is considered a future work.

Besides process steps, gates (Gate) can be used as elements of a control flow. Gates of different
types (type) are needed to specify entry and exit points of (EGateType):

e decision branches (DECISION) — to decide which structured set of process elements to
execute based on a certain condition;

e iteration branches (ITERATION) — to repeat the execution of a structured set of process
elements a certain number of times or until a certain condition is met;

e parallelism branches (PARALLELISM) — to execute structured sets of process elements in
parallel;

e collaboration branches (COLLABORATION) — to execute structured sets of process
elements in parallel, but there are process steps that must not start or finish their activities
before they get a message that other process steps finished their activities; and

Multi-Level Production Process Modeling Language 105

e variation branches (VARIATION) — the same intermediate or finished product can be
produced by executing different structured sets of process elements, representing process
variations, or different intermediate or finished products can be produced by executing
different structured sets of process elements, representing product variations of the same
product family.

Currently, the collaboration flow is based on a message exchange between process steps or
resources and is modeled at a high level of abstraction using MultiProLan. With the collaboration
modeling concept, it is possible to synchronize the actions of different resources. Whenever there
is a collaboration between human workers and machines, safety aspects should also be considered,
but this is part of our future work — to create an additional modeling layer to support the modeling
of safety aspects. Also, as part of our future work, more complex communication between resources
needs to be available for modeling using MultiProLan.

A gate has two additional attributes, which values need to be specified. Gates come in pairs,
having the same pair identifier (pairld) and the same type. In addition, gates in the pair have
different purposes regarding input and output branches (EGateFlowType). One gate is diverging
(DIVERGING), meaning branches are going from the gate, and another one is converging
(CONVERGING), meaning branches are going to the gate, distinguished by the flow attribute. These
constraints are defined by using OCL and presented in Listing 7.5.

1 invariant gateMustHaveItsPair('Each gate must have only one paired gate with the
same pairId.'):
Gate.allInstances()->forAlLL(g | Gate.allInstances()->select(pairGate |
g <> pairGate and g.pairld = pairGate.pairld)->size() = 1);
2 invariant pairGatesMustBeOfTheSameType('Gates in the pair must be of the same
type.'):
Gate.allInstances()->forAlLL(gl, g2 | (g1 <> g2 and gl.pairld = g2.pairId)
implies (gl.type = g2.type));
3 invariant pairGatesMustHaveOppositeFlowPurposes('Gates in the pair must have
opposite flow purposes.'):
Gate.allInstances()->forAlLL(gl, g2 | (g1 <> g2 and gl.pairld = g2.pairId)
implies (gl1.flow <> g2.flow));

Listing 7.5. Constraints related to the pair of gates.

There are two constraints regarding diverging and converging gates, presented in Listing 7.6:

e each diverging gate that is not part of the error handling must have a single input flow-type
relationship and at least two output flow-type relationships (diverging gates that are part of
the error handling use error-type relationships, as discussed in Section 7.2.3); and

e each converging gate that is not part of the error handling must have at least two input flow-
type relationships and a single output flow-type relationship.

1 invariant divergingGateRelationships('A diverging gate must have a single input
and at least two output flow-type relationships.'):
Gate.allInstances()->forALL(g | (not(g.isErrorGroup) and
g.flow = EGateFlowType: :DIVERGING) implies
(g.inRelationships->select(r | r.type = ERelationshipType::FLOW)->size() = 1
and g.outRelationships->select(r | r.type = ERelationshipType::FLOW)->
size() >= 2));
2 | invariant convergingGateRelationships('A converging gate must have at least two
input and a single output flow-type relationships.'):
Gate.allInstances()->forALL(g | (not(g.isErrorGroup) and
g.flow = EGateFlowType: :CONVERGING) implies
(g.inRelationships->select(r | r.type = ERelationshipType::FLOW)->size() >= 2
and g.outRelationships->select(r | r.type = ERelationshipType::FLOW)->
size() = 1));

Listing 7.6. Constraints related to diverging and converging gates.

106 Multi-Level Production Process Modeling Language

There is also an additional constraint regarding the gate's type. Whenever a diverging decision
or a diverging iteration gate is created, all its output relationships must have the logicalCondition
attribute specified, as selection and iteration patterns require a logical condition to be specified for
each output branch. Such a constraint is presented in Listing 7.7.

1 | invariant selectionAndIterationPatternsMustHavelLogicalCondition('A logical
condition must be specified for each output flow-type relationship of diverging
decision and iteration gates.'):

Gate.allInstances()->forAlLL(g | (not(g.isErrorGroup) and

(g.type = EGateType::DECISION or g.type = EGateType::ITERATION) and

g.flow = EGateFlowType: :DIVERGING) implies (g.outRelationships->forALL(r |

(r.type = ERelationshipType::FLOW) implies (r.logicalCondition <> null

and r.logicalCondition <> ''))));

Listing 7.7. A constraint related to selection and iteration patterns.

As stated before, variation branches and gates are used to represent different process or product
variations. Therefore, each process has at least one variation (ProcessVariation), having semantic
identifier (semanticld) and description (description) as attributes. Process variations are
hierarchically organized; each variation has at most one parent variation (superVariation) and may
have many child variations (subVariations). Each process element is assigned to at least one
variation of the process it belongs to but may also be assigned to many variations, as a process
element may appear in different variations. The constraint that restricts process element variations
to only refer to variations of the parent process is implemented by using OCL inside the Process
class and presented in Listing 7.8. Therefore, such a constraint forbids process element variations
to refer to variations from other processes. Similar constraints are defined for other classes (e.g.,
the startStep relation from the Process class cannot reference the start step from another process)
but are not presented in this thesis as they all have the same structure. A process has a default
variation chosen from variations it has, which can help process designers speed up the process
elements modeling by assigning the default variation to the elements automatically.

1 invariant elementVariationMustReferToParentProcess('Each element variation must
refer to a variation of the parent process.'):
self.elements->forAlLlL(e | e.variations->forAlLL(v
self.variations->exists(processVariation | v = processVariation)));

Listing 7.8. A constraint related to a process element variation.

The unordered steps element (UnorderedSteps) contains different process steps that can be
executed in any order. Each unordered set of steps that is not part of error handling must contain at
least two regular process steps that are not part of the error handling elements. Process steps in an
unordered set of steps cannot be connected with any relationships. These constraints are
implemented by using OCL and presented in Listing 7.9.

1 invariant unorderedSetMustContainAtLeastTwoProcessSteps('An unordered set of
steps must contain at least two process steps.'):
UnorderedSteps.allInstances()->forALL(us | us.steps->size() >= 2);
2 invariant unorderedSetMustContainOnlyRegularProcessSteps('An unordered set of
steps must contain only regular process steps that are not from the error
group.'):
UnorderedSteps.allInstances()->forALL (us | (not(us.isErrorGroup)) implies
(us.steps->forAlLL(ps | not(ps.isErrorGroup) and
ps.type = EProcessStepType::REGULAR)));
3 invariant unorderedSetCannotContainRelationships('There are no relationships in
unordered steps.'):
UnorderedSteps.allInstances()->forAlLL(us | us.steps->forAlLL(ps |
ps.inRelationships->isEmpty() and ps.outRelationships->isEmpty()));

Listing 7.9. Constraints related to an unordered set of steps.

Multi-Level Production Process Modeling Language 107

There is also a sub-process (SubProcess) — a process element that references another process
in order to:

e make process models more readable and less complex;
e increase the reusability of processes; and
e decrease the redundancy of process elements.

The material flow must be included in sub-processes, meaning that a sub-process can have
parameters (ProcessParameter) of different types (type), having one of the following values
(EProcessParameterType):

e INPUT_PARAMETER - represents input parameters, i.e., materials or products that are
coming to the sub-process; and

e OUTPUT_PARAMETER - represents output parameters, i.e., materials or products that are
coming from the sub-process as a result.

Sub-process parameters can reference products or other parameters, as sub-processes can be
part of a larger control flow, just like any process element can. A process also contains parameters,
which are referenced from sub-process parameters, and they are connected to other parameters or
products in the process. As a sub-process may be the final process element in a process, its output
parameter can represent the final product (isFinal) of the process.

Finally, most of the presented classes inherit the IDNamedElement class comprising identifier
(id) and name (name) attributes.

7.2.2 Detail-Level Modeling Concepts at Execution Layer

The DetL part of the MultiProLan meta-model used at Execution Layer is depicted in Figure 7.3.
This part of the meta-model is an extension of the MasL part, and together they are used to create
DetL models.

As DetL process models include transportation and configuration activities, process step
notations are extended by:

e TRANSPORTATION — production logistic activities of transporting materials or resources;

and
£ EProcessStepNotation ‘ 2 EProcessEIementStatus{ % IDNamedElement 2 EResourceType £ EResourceStatus l
= NONE = NONE ' id : EString = NONE = STOPPED
= OPERATION = INACTIVE = name : EString - HUMAN = RUNNING
= INSPECTION = ACTIVE = MACHINE = MALFUNCTIONING

- DELAY ~ MAINTAINING
~ TRANSPORTATION : s
~ CONFIGURATION

] ProcessElement

7 status : EProcessElementStatus = INACTIVE

st
2 : Proc

B Resource &3 inRelationships : Relationship
7 isActuator : EBoolean = true &3 outRelationships : Relationship
7 isStorage : EBoolean = false pay
5 type : EResourceType = NONE
[0..1] storage 3 protocol : EStrin. [0..1] resource
[0..*] equivplents 1 P . 9
© status : EResourceStatus = STOPPED
B Product {5 ProcessStep
=)
7 catalogld : EString ' type : EProcessStepType = REGULAR
< quantity : Elnt 2 ion : EProcessStep = OPERATION
7 isFinal : EBoolean = false [0..*] inProducts = description ; ESting
= isStored : EBoolean = false = completionCriterion : EString
T H = s, 2
&2 constraints : Constraint = acceptanceCriterion : EString
=+ capability : Capability

[0..*] outProducts

Figure 7.3. The second part of the meta-model used for DetL model creation at Execution Layer.

108 Multi-Level Production Process Modeling Language

e CONFIGURATION - activities to configure resources, such as changing a griper or
determining the robot's position.

A process step is extended with a resource (resource) that is to execute it using a required
capability. A product is also extended with specific storage (storage) that needs to be defined for
every input product retrieved from storage and for every output product placed in storage. Storage
also represents a resource, as it can be equipped with sensors to monitor materials and products and
with various devices.

A resource (Resource) inherits the IDNamedElement class, and it can be an actuator
(isActuator) — an active resource, i.e., one that performs different activities during production, or
storage (isStorage) — a passive resource, i.e., one that stores products. A resource can be both an
actuator and storage; e.g., some robots can execute different tasks but also have a place on
themselves to temporarily store products. Additional constraints must be defined for resources and
they are implemented using OCL as presented in Listing 7.10:

e aprocess step can reference (resource) only a resource that is an actuator;
e aproduct can reference (storage) only a resource that is storage; and
e start and end process steps cannot reference a resource.

1 invariant processStepMustReferToActuator('A process step must refer to a resource
that is an actuator.'):
ProcessStep.allInstances()->forALL(ps | (ps.resource <> null) implies
(ps.resource.isActuator));
2 invariant productMustReferToStorage('A product must refer to a resource that is
storage.'):
Product.allInstances()->forALL(p | (p.storage <> null) implies
(p.storage.isStorage));
3 invariant startProcessStepCannotContainResource('The start process step cannot
contain a resource.'):
ProcessStep.allInstances()->forALL(ps | (ps.type = EProcessStepType::START)
implies (ps.resource = null));
4 invariant endProcessStepCannotContainResource('The end process step cannot
contain a resource.'):
ProcessStep.allInstances()->forALL(ps | (ps.type = EProcessStepType::END)
implies (ps.resource = null));

Listing 7.10. Constraints related to resources and storage.

Resources can also be classified (type) with the following values (EResourceType):

e HUMAN — a human worker;

e MACHINE — a machine or a robot; and

¢ NONE - a resource is neither a human nor a machine, e.g., a regular storage shelf with no
smart devices or sensors attached.

Whenever a resource type is NONE, the resource must represent storage and it is not an
actuator. Such a constraint is implemented and presented in Listing 7.11.

1 invariant noneTypeResourceMustBeRegularStorage('A resource of the NONE type must
be storage and not an actuator.'):
Resource.allInstances()->forALL(r | (r.type = EResourceType::NONE) implies
(r.isStorage and not(r.isActuator)));

Listing 7.11. A constraint related to regular storage.

A protocol (protocol) must be specified for each resource, which is important information,
especially during instruction generation, as instructions will be sent to protocol transformation
components. Depending on the resource type and protocol, human-readable or machine-specific
instructions will be generated for every process step. A resource's status (status) needs to be known
before and during the process execution, and it can have the following values (EResourceStatus):

Multi-Level Production Process Modeling Language 109

e RUNNING —a resource is running and ready for process steps execution;

e STOPPED - a resource has stopped working;

e MALFUNCTIONING — a resource is malfunctioning and cannot be used before it is
repaired; and

e MAINTAINING —a resource is currently maintained.

A process element also has an execution status (status) through which process monitoring is
implemented, and it can have the following values (EProcessElementStatus):

e NONE — a process element is not yet executed,
e ACTIVE — a process element is currently being executed; and
INACTIVE — a process element has been successfully executed.

When extended with active and passive resources, production logistics, and configuration
activities, process models are ready for the automatic generation of executable instructions.

7.2.3 Modeling Concepts at Error Handling Layer

In Figure 7.4, the third part of the meta-model is presented, representing modeling concepts needed
for error handling at Error Handling Layer. This additional layer to production process models is
used both at MasL and DetL. The central class of this part of the meta-model is an error (Error),
which inherits the IDNamedElement class, and a process step can contain many errors related to it.
However, the start and end process steps cannot contain errors, and such constraints are
implemented using OCL and presented in Listing 7.12.

1 invariant startProcessStepCannotContainErrors('The start process step cannot
contain errors.'):
ProcessStep.allInstances()->forALL(ps | (ps.type = EProcessStepType::START)
implies (ps.errors->isEmpty()));
2 invariant endProcessStepCannotContainErrors('The end process step cannot contain
errors.'):
ProcessStep.allInstances()->forALL(ps | (ps.type = EProcessStepType: :END)
implies (ps.errors->iskmpty()));

Listing 7.12. Constraints related to the start and end process step errors.

< EErrorDomain 2 EErrorType ‘ £ EErrorStatus %] IDNamedElement £ ERelationshipType “ EProcessElementStatus
- LOCAL = DEFAULT = INACTIVE 7 id : EString - FLOW = NONE
= GLOBAL = NAMED_ERROR = ACTIVE = name : EString = COLLABORATION = INACTIVE

= ERROR = ACTIVE

= ERROR i

[0..1] unidentifiedErrorHandler

WU ProcessElement E Process

[0..1] localErrorHandler [0..1] globalErrorHandler

T ' status : EProcessElementStatus = INACTIVE = version : Elnt
T § 7 isErrorGroup : EBoolean = false {3 relationships : Relationship
1% variations : ProcessVariation s = E;ror B B 5 variations : ProcessVariation
&3 inRelationships : Relationship = * defaultVariation : Proc
&2 outRelationships : Relationship 5’ domain : EErrorDomain = LOCAL §% parameters : ProcessParameter
AN - 7 type : EErrorType = NAMED_ERROR
T status : EErrorStatus = INACTIVE
7 code : EString
£l ProcessStep = message : EString
7 type : EProcessStepType = REGULAR = description : EString
P ion : EPro StepN ion = OPERATION
= description : EString [0..*] errors
= completionCriterion : EString
= acceptanceCriterion : EString
= capability : Capability

&7 inProducts : Product
&3 outProducts : Product [1..1] startStep
©» resource : Resource

Figure 7.4. The third part of the meta-model used for the error handling modeling at Error
Handling Layer.

110 Multi-Level Production Process Modeling Language

An error has its domain (domain), which can be (EErrorDomain):

e LOCAL - representing a local error that has the specific handler for the process in which it
occurs; and

e GLOBAL - representing a global error that can occur in multiple process steps of the same
or other processes.

Depending on the selected domain, an error can reference a process element
(localErrorHandler) — starts a control flow of process elements that handle the error, or an error
can reference another process (globalErrorHandler) — a process that is already modeled and
represents a handler for multiple errors. The constraints determining localErrorHandler or
globalErrorHandler to be specified if the LOCAL or GLOBAL domain is chosen are implemented
using OCL and presented in Listing 7.13.

1 invariant localErrorHandlerDependsOnDomain('A local error handler must be
specified for the local domain.'):
Error.allInstances()->forAlLL(e | (e.domain = EErrorDomain::LOCAL) implies
(e.localErrorHandler <> null and e.globalErrorHandler = null));
2 invariant globalErrorHandlerDependsOnDomain('A global error handler must be
specified for the global domain.'):
Error.allInstances()->forAlLL(e | (e.domain = EErrorDomain::GLOBAL) implies
(e.globalErrorHandler <> null and e.localErrorHandler = null));

Listing 7.13. Constraints related to local and global error handlers.

An error also has a type (type), and it can be (EErrorType):

¢ NAMED_ERROR — an error that is known to process designers and can be expected; and
e DEFAULT —an unknown error with a default error handler.

Only asingle default error handler can be specified per process element, and such a constraint
is implemented using OCL and presented in Listing 7.14. If a default error handler is not specified
for a process element, a default error handler at the process level (unidentifiedErrorHandler) will
be used.

1 invariant singleDefaultErrorHandlerPerStepCanExist('Only a single default error
handler per process step can exist.'):

ProcessStep.allInstances()->forALL(ps | ps.errors->select(e |

e.type = EErrorType::DEFAULT)->size() <= 1);

Listing 7.14. A constraint related to a default error handler.

There is also an error status (status) during process execution, having one of the following
values (EErrorStatus):

e INACTIVE - an error has not occurred yet; and
e ACTIVE - an error has occurred and corrective steps are going to be applied.

Also, a process element has a new status value added (ERROR), and this status is active
whenever an error occurs at the process element during the execution. To distinguish default process
elements from process elements specified for local error handlers, there is an indicator
(isErrorGroup) for each process element. Similar to the constraint related to the unordered set of
steps that is not from the error group (discussed in Section 7.2.1), each unordered set of steps that
is from the error group must contain regular process steps that are from the error group. Such a
constraint is implemented using OCL and presented in Listing 7.15.

Multi-Level Production Process Modeling Language 111

invariant errorUnorderedSetMustContainOnlyRegularErrorProcessSteps('An unordered
set of steps from the error group must contain only regular process steps that
are from the error group.'):

UnorderedSteps.allInstances()->forAlLL(us | (us.isErrorGroup) implies

(us.steps->forAlLL(ps | ps.isErrorGroup and

ps.type = EProcessStepType::REGULAR)));

Listing 7.15. A constraint related to an unordered set of error steps.

An additional relationship type (ERROR) is added to connect error process elements. There
are also constraints related to error-type and flow-type relationships, presented in Listing 7.16:

there cannot be two error-type relationships that have the same source and target elements;
an error-type relationship source element must be from the error group, but a target element
does not have to be from the error group (e.g., after some corrective steps, an error flow
returns to the main process steps);

each error-type relationship cannot have the message attribute specified; and

a flow-type relationship source and target elements cannot be from the error group.

invariant singleErrorRelationshipBetweenElements('There cannot be more than a

single error-type relationship between the same source and target elements.'):
Relationship.allInstances()->forALL(rl, r2 | ((rl1 <> r2) and
(ri.type = ERelationshipType::ERROR and r2.type = ERelationshipType::ERROR))
implies ((ri.source <> r2.source) or (rl.target <> r2.target)));

invariant errorRelationshipSourceMustBeErrorElement('A source of an error-type

relationship must be an element from the error group.'):
Relationship.allInstances()->forALL(r | (r.type = ERelationshipType: :ERROR)
implies (r.source.isErrorGroup));

invariant errorRelationshipCannotHaveMessage('The message attribute cannot be

specified for an error-type relationship.'):
Relationship.allInstances()->forALL(r | r.type = (ERelationshipType::ERROR)
implies (r.message = null or r.message = ''));

invariant flowRelationshipCannotConnectErrorElements('A flow-type relationship

cannot connect elements from the error group.'):
Relationship.allInstances()->forALL(r | (r.type = ERelationshipType: :FLOW)
implies (not(r.source.isErrorGroup or r.target.isErrorGroup)));

Listing 7.16. Constraints related to error-type and flow-type relationships.

Gates from the error group have similar constraints to the gates that are not from the error
group (discussed in Section 7.2.1), and they are presented in Listing 7.17:

Each diverging gate from the error group must have at least two output error-type
relationships. There is no additional constraint for input relationships as a diverging gate
from the error group can have no input relationships whenever it is only referenced from
an error, or it can have multiple input relationships if some corrective steps are going back
to the gate to repeat some steps.

Each converging gate from the error group must have at least two input error-type
relationships and a single output error-type relationship.

Output error-type relationships from a diverging decision or a diverging iteration gate must
have the logicalCondition attribute specified.

invariant errorDivergingGateRelationships('A diverging gate from the error group
must have at least two output error-type relationships.'):
Gate.allInstances()->forALL(g | (g.isErrorGroup and
g.flow = EGateFlowType: :DIVERGING) implies (g.outRelationships->select(r |
r.type = ERelationshipType::ERROR)->size() >= 2));
invariant errorConvergingGateRelationships('A converging gate from the error
group must have at least two input and a single output error-type
relationships.'):
Gate.allInstances()->forALL(g | (g.isErrorGroup and
g.flow = EGateFlowType: :CONVERGING) implies (g.inRelationships->select(r |

112 Multi-Level Production Process Modeling Language

r.type = ERelationshipType::ERROR)->size() >= 2 and
g.outRelationships->select(r | r.type = ERelationshipType::ERROR)->
size() = 1));
3 invariant errorSelectionAndIterationPatternsMustHavelLogicalCondition('A logical
condition must be specified for each output error-type relationship of diverging
decision and iteration gates from the error group.'):
Gate.allInstances()->forAlLL(g | (g.isErrorGroup and
(g.type = EGateType::DECISION or g.type = EGateType::ITERATION) and
g.flow = EGateFlowType: :DIVERGING) implies (g.outRelationships->forALL(r |
(r.type = ERelationshipType::ERROR) implies (r.logicalCondition <> null and
r.logicalCondition <> '"))));

Listing 7.17. Constraints related to gates from the error group.

Each error has a code — an identifier of an error type it belongs to (code), a message (message),
and a description (description) that will be presented to supervisors who monitor process execution
after the error occurs.

7.2.4 Modeling Concepts for the Automatic Generation of Manufacturing
Documentation and Guided Production

In Figure 7.5, the fourth and the last part of the meta-model is presented, representing modeling
concepts or meta-model extensions needed for the automatic generation of manufacturing
documentation of different types and for guided production.

The Process class is extended with the following attributes, which are used in most generated
documents:

company — a name of a company in which a process model is created,;

author — a name of an author or authors who created a process model;

date — a date when a process model is created; and

isProposedProcess — an indicator of whether a process model is a proposal or is already
finished and approved by stakeholders.

The Process class is also extended with image (image) and video (video) links related to the
whole process of producing the final product. These attributes are needed for guided production to
export images and videos and send them to human workers. The ProcessStep, UnorderedSteps, and
SubProcess classes are also extended with the image (image) and video (video) attributes for the
same purpose, but also for the worker-manual-like documentation, such as Job Breakdown Sheets
(JBSs) [238].

Expert workers or instructors use JBS to train new workers to create products. Therefore, each
process step needs to be described, and images need to be included to visually present what needs
to be done. Also, each process step can include key points (KeyPoint), indicating the details workers
need to pay attention to while performing process steps. However, the start and end process steps
cannot contain key points. These constraints are implemented using OCL and presented in Listing
7.18.

1 invariant startProcessStepCannotContainKeyPoints('The start process step cannot
contain key points."'):
ProcessStep.allInstances()->forALL(ps | (ps.type = EProcessStepType: :START)
implies (ps.keypoints->isEmpty()));
2 invariant endProcessStepCannotContainKeyPoints('The end process step cannot
contain key points."'):
ProcessStep.allInstances()->forALL(ps | (ps.type = EProcessStepType::END)
implies (ps.keypoints->isEmpty()));

Listing 7.18. Constraints related to the start and end process steps and key points.

Multi-Level Production Process Modeling Language 113

A key point has a type (type), including one of the following values (EKeyPointType):

e COMPLETE_JOB — how to perform a process step to complete the task;

e COMPLETE_JOB_EASIER — how to perform a process step to complete it easier;

e BREAK_JOB — what and how not to do as it could compromise the successful finishing of
the task; and

e INJURE_WORKER - what could cause an injury to a worker.

The KeyPoint class inherits the IDNamedElement class, and each key point has a reason
(reason) to be considered during a process step execution. Key points can also be used in guided
production to help workers during production.

The ProcessStep class is extended with time (time) and work center (workCenter) attributes.
Estimation of the process step's duration and the name of the work center in which the process step
is to be performed are needed by documents, such as BOMO.

To automatically generate PFMEA spreadsheets, the Error class needs to be extended with the
following attributes [28]:

e mode — a potential failure mode representing a manner in which process step requirements
may potentially fail to be met;

o effect — a potential effect of a failure on the product, customer, worker, machine, or the
following operations;

“ EKeyPointType %] IDNamedElement
= COMPLETE_JOB 7 id : EString
= COMPLETE_JOB_EASIER = name : EString
-~ BREAK_JOB
= INJURE_WORKER [0..1] unidentifiedErrorHandler
.’T‘A
i
| KeyPoint = Error | Process

7 type : EKeyPointType = COMPLETE_JOB ' domain : EErrorDomain = LOCAL = version : Eint

= reason : EString 5 type: EErrorType = NAMED_ERROR = company: EString
T status : EErrorStatus = INACTIVE = author: EString
' code: EStn‘ng‘ 0.1 globalErrorHandler | = ‘date : EString

[0.."] keypoints =] mess.?gg : EString o !sProposed?rocess : EBoolean = true
© description : EString © image : EString
= mode : EString = video : EString
o effect : EString {52 relationships : Relationship
© severity: EInt = variations : ProcessVariation
= classification : EString 5* defaultVariation : ProcessVariation
© cause : EString &% parameters : ProcessParameter
© occurrence : Elnt
= prevention : EString [1..1] process
= detectionDescription : EString
= detection : Eint [1..*] elements
[0..*] errors E{_; ProcessElement

7 status : EProcessElementStatus = INACTIVE
5 isErrorGroup : EBoolean = false

5 variations : ProcessVariation

&2 inRelationships : Relationship

&2 outRelationships : Relationship

[0..1] localErrorHandler

3
[ProcessStep [UnorderedSteps | ‘ [SubProcess

7' type : EProcessStepType = REGULAR = image : EString © image : EString

: ion : EProc F ion = OPERATION © video : EString © video : EString

= description : EString &% parameters : ProcessParameter

= completionCriterion : EString

= acceptanceCriterion : EString y

= time : ELlong

= workCenter : EString
© image : EString

© video : EString

= capability : Capability
&% inProducts : Product
&2 outProducts : Product [1..1] startStep
= resource : Resource

[1..*] steps

Figure 7.5. The fourth part of the meta-model used for the automatic generation of manufacturing
documentation and guided production.

114 Multi-Level Production Process Modeling Language

e severity — represents a relative ranking of how serious the effect is, usually ranging from 1
to 10;

e classification — used to classify any product or process characteristic;

e cause — a potential cause of a failure represents how the failure can occur;

e occurrence — represents a relative ranking of the likelihood of a failure to occur, usually
ranging from 1 to 10;

e prevention — a description of control to prevent a failure from occurring;

e detectionDescription — a description of how to detect a failure; and

e detection — represents a relative ranking of a failure to be detected, usually ranging from 1
to 10.

In the following section, the concrete graphical syntax of MultiProLan is presented, which is
created based on the abstract syntax presented in this section.

7.3 Concrete Syntax of MultiProLan

There are two types of concrete syntaxes — textual and graphical, but there is no general answer to
which one is better overall [239]. We decided to create a graphical syntax for MultiProLan to make
the modeling easier for process designers as they are already familiar with other graphical
languages, such as ASME FPC [25]. The decision was also made to enable visualized process
monitoring, as well as to enable visualization of detected errors during production. As BPMN [30]
is commonly used to model processes of different kinds, and as it is easy to interpret its models
[240], some BPMN concepts, such as activities and gateways, are used in the graphical syntax of
MultiProLan. The graphical syntax is also inspired by ASME FPC as process designers are used to
these charts. Some FPC elements are used in process step notations, such as operation,
transportation, inspection, and delay. Also, the storage element is used within a product, indicating
that a product should be retrieved from storage or placed in storage.

The graphical symbols used for the MultiProLan's concrete syntax are presented and described
in Table 7.1, starting with MasL modeling concepts at Execution Layer and Error Handling Layer
and ending with DetL modeling concepts at both layers. All the MasL modeling concepts are used
for DetL modeling as well.

Table 7.1. The basic modeling concepts of MultiProLan.

Description | Symbol
Master-Level modeling concepts at Execution Layer
PannlN

The Start (a) and End (b) process steps (Start‘l
indicate the starting and finishing points i/
of the process execution. ==

(a) (b)
Regular process steps can be an operation
(@), inspection (b), or delay (c). These Assemble Dlnspect Wait for
process step notations indicate to process frame box glue to dry
designers what kinds of activities need
execution. @) (b) (c)
Gates are used as a control flow
mechanism, forming a decision (a),
iteration (b), parallelism (c),
collaboration (d), or product/process
variations (e). @) (b) (c) (d) (e)

.,.v

Relationships are used to form a control ,*’
flow (a) or a collaboration (b). »

(@) (b)

Multi-Level Production Process Modeling Language 115

A capability is specified for each regular

[Assemble]

process step. Different parameters can be v
specified as key-value properties. A key i
represents a parameter's name. r:0.07m
An input product represents a material, a)
IN: Wooden lid v IN: Wooden lid

part, or an intermediate product. It can be
an output from a previous process step (a)
or be retrieved from storage, which is
indicated by a triangle icon (b). Different
constraints can be specified for an input

Width = 1.06 m
Length = 0.56 m
Thickness = 0.03 m

Width = 1.06 m
Length = 0.56 m
‘Thickness =003 m |

product. €] (b)

An output product represents an B] i (

intermediate or finished product. It can e / ouT: Box
be used as an input for a subsequent step Width = 1.06 m Width = 1.06 m

(@) or stored in storage, which is
indicated by a triangle icon (b). Different
constraints can be specified for an output
product.

Length = 0.56 m
Thickness = 0.23 m

@)

Length = 0.56 m
LThickness =023 m

(b)

A product equivalency link is used to
represent equivalent products, i.e., when

. . ¢
an input product of a process step is the ’
same product that was present in a y».3
previous process step.
-El Pick L-B planks and
wooden dowel pins
" o Pick left
A dered set of steps includ side ;
n unordered set of steps includes)
process steps that can be executed in any P'Ck;'B F;Ia”ksl And
order (a). Process steps can be hidden Pick bottom wopdsh dowel pins
using a +/- button to reduce model side
complexity (b).
Pick wooden
dowel pins

(a) (b)
A sub-process (a) is used to reference i i E i
another process model. It is a mechanism | 1 ; 1 I :]

X . D) db

for reducing the complexity of a model. | | % BERG 2 i % BiasaTd be i
A sub-process (b) can be equipped with | +________________ |] i e \
input and output parameters.

(@) (b)
Input parameters (a) are used to send
products to sub-processes, and output
parameters (b) are used to receive
products from sub-processes. They are
also used in processes to connect with
products or sub-process parameters. @) (b)
A parameter link connects a parameter P

L4

with a product or with another parameter.

116 Multi-Level Production Process Modeling Language

Key points indicate to workers how to
successfully perform a process step (a),

®

Process elements that are part of a local
error handler in MasL. These elements
are from the error group, and they are
marked with a red border.

how to perform a process step easier (b), () (b) (c) (d)
what could make a process step fail (c), [F i
and what could injure workers while QG'“e fabric
performing a process step (d). Key points
can be added to a process step they are 0 O e
related to (e).
(e)
v * Assemble Wooden Box
h .1 1 Wooden Box Base
‘1 11 Box_SD WL
‘1 1.2 Box_SD WGL
. 1.3 Box_TD_WL
Product and process variations are ‘1 o
hierarchically presented within a tree 01 1.4 Box TD WGL
structure (a). The root node is a process
model (b), having variations as sub- ‘1 1.5 Box_CD_WL
nodes (c). Each variation can have many
sub-variations. ‘1 1.6 Box_CD_WGL
(a)
(b) (c)
Master-Level modeling concepts at Error Handling Layer
Production errors can be modeled within
local error handlers with action steps as T T
part of the current model (a) or within g I % . I %
global error handlers as separate "’ H ..' '.’ H '.'
processes (b). Unidentified errors can ahe fot
also be modeled within local error
handlers (c) or global error handlers (d). @) (b) (c) (d)
Error relationships are used to link errors
and error handler process elements.
Assemble D Inspect Wait for
frame box glue to dry

©

+

wooden dowel pins

|' @ Pick L-B planks and

Multi-Level Production Process Modeling Language 117

Additional modeling concepts for Detail-Level at Execution Layer

Additional types of process steps are Move to Determine
added to support transportation (a) and smart shelf location
configuration (b) activities.

() (b)

Active smart resources can be attached to

process steps representing a human (a) or @ Q\ v

a machine/robot (b). Passive smart

resources can be attached to products

representing storage (c). @) (b) (c)
Additional modeling concepts for Detail-Level at Error Handling Layer

As new types of process steps are added

in DetL, additional process step types are
added to a local error handler as well.

Move to Determine
smart shelf location

A classification of MultiProLan features according to already introduced production process
modeling requirements in Section 4.2.1 is outlined in Table 7.2. Therefore, a way in which
MultiProLan fulfills the requirements is presented in the table.

Table 7.2. MultiProLan requirements fulfilment.

Requirement Description Figure
IN: Left-Bottom side |IN: Right-Upper sidel
Width = 1 m Width = 1m
Length = 0.5 m Length = 0.5 m

Thickness = 0.195 m Thickness = 0.195 m

Assemble —>—|7 C
Assemble Assemble
n:4 frame frame

r:0.07 m /

A MasL process step
contains input and output OUT: Frame
products and a capability (2). | [width = 1 m
In addition to the MasL | |length=05m
process step, a DetL process | | hickness = 0.195m
R1 step also contains a smart @) (b)
process step | resource (c). Products and a
Capab|||ty can be hidden by IN: Left-Bottom side ’IN: Right-Upper sidel
using a process step's +/- | |[Width=1m Width =1 m
button (b, d) to make a #E?cires:sojoﬂgs m #i?i;hes:sojoﬁ% m
process model diagram more I
readable. T Acmis |

= +
Assemble Assemble
n:4 frame @ frame
r:0.07 m
OUT: Frame
Width = 1 m
Length = 0.5 m

Thickness = 0.195 m

(©) (d)
T |
1]
i %Assemble frame E
.)
A sequence is represented by e
R2.1 two or more process
sequence elements connected with a . e

flow-type relationship.
% Hammer back side

-

118 Multi-Level Production Process Modeling Language

hasDefect = true

hasDefect = false

DEC
A decision is created R —— —— , F—
R2 2 between two decision gates | ! ! ! !
decision with two or more conditional | | @ piscard box 1 | @storebox |
branches and process | { __ | I R g
elements between them.
DEC)<
+%
0 Heat
An iteration is created metal bar
R2.3 similarly to a decision, with
iteration one branch returning to the)
converging iteration gate. <9
l i=5
- ,
Wait for metal
bar to cool down
PAR
- . + +/
Parallelism IS created @ Insert pins in O Insert pins in
between two parallelism bottom side upper side
R2.4 gates with two or more l l
parallelism | parallel branches and . =
process elements between Assemble Assemble
them. L-B sides R-U sides
‘/P\A>‘
A materia.l fIOW iS - Levng‘I::; OV:o:den dowel pins I—_DL:\‘I.lg‘tt:\i\/c(;o;e:‘dowelpins v
represented by products | | |(pemeter=00sm | (Bismeteri= 0006 m
retrieved from or placed in [Pick J _{‘@z.ckwlogde" ; Pick ’_|'©Zickvio;dgn &
lowel pins i lowel pins
storage and product S —— ; ‘
equivalency links, indicating b il o o e
that a product of one process ik 10 Lm0l ml
step is the same product of — :
R3 IN: 4x Wooden dowel pins IN: 4x Wooden dowel pins’

material flow

another process step. In
MasL models, particular
storage is not specified but
just an indicator that storage
is needed (a), while in DetL
models, storage is specified
with all the necessary details

(b).

" Length = 0.04 m
Diameter = 0.006 m

OUT: Bottom side with pins

Width = 0.94 m
Length = 0.195 m
Thickness = 0.05 m

(@)

Place g e

nsert pins in

nd ®bonom side
r:007 m

" 7Length = 0.04 m
Diameter = 0.006 m

OUT: Bottom side with pins

Width = 0.94 m
Length = 0.195 m
Thickness = 0.05 m

(b)

_@ Insert pins in
bottom side

G

Multi-Level Production Process Modeling Language 119

A message flow is created
between two collaboration
gates with two or more
branches and process steps Q
between them. Process steps \/
are also_ connected with Shart
R4 colla_borat_lon-type _ [t Hold D T t T
message flow relationships representing frame R — 1 back side
message exchange between End
them. For example, one
process step cannot start
before another one is started, > COL)<
or one process step cannot
finish before another one is
finished.
g Pick L-B planks and
wooden dowel pins
, " o Pick left
An unordered set of steps is e
R5 created with an element
unordered containing different process _Ig——
steps steps that can be executed in <ide
any order.
Pick wooden
dowel pins
Product and process v * Assemble Wooden Box
variations are defined in a
hierarchical structure (a). In v ‘1 1 Wooden Box Base
a process model, variations
are specified between two ‘1 1.1 Box_SD WL
variation gates with two or
more branches and process .1 1.2 Box_SD_WGL
elements between them.
Each process element in a ‘1 1.3 Box TD_WL
process model references
variations it belongs to from .1 14 Box_TD_WGL
R6 the previously defined tree 01 15 Box CD WL
product and | structure. Therefore, each T
process branch represents a different ‘1 1.6 Box_CD_WGL
variations variation. There are two
types of variations: product ()
and process variations.
Product variations (b) refer —
to differences in products
from the same product 3 e
family. For example, a Oplacz - ’ FLace_ ‘r’]"ocl’de”
wooden box can have a fully e et gides
wooden lid or a wooden lid
with a glass opening in the ®<
middle. Process variations
(c) refer to different ways of (b)

120 Multi-Level Production Process Modeling Language

creating the same product.
For example, a hole can be
created by borer drilling and
some sanding, or it can be
made just by laser drilling.

&

[Borer
drill

Sand
@ hole

1+
Laser
drill

R7
sub-process

A sub-process (a) is
represented by a single
process element containing a
reference to another process
model (b).

A local error handler is
specified within a process
model. There are handlers of

+
Disassemble
box

R8.1 :
local error known errors (at the
handler Assemble box process step) e
and handlers of unknown fabric -
errors (at the Glue fabric — @
process step). _L
| P R e]
() i i
End i [6 Recycle box |
| S——— |
,,——~ " ,,,-. "
! start) ! start)
7 7
\s~ o’ \\-_¢'
A global error handler is a ‘
process model (b), that is S e [Remove pins
nsert pins in £ Bk
referenced from another Dotoncide rom plan
R8.2 process model (a). There are g%
' handlers of known errors (at G| e L IR
global error S .
handler the Insert pins in bottom side ¥

process step) and handlers of
unknown errors (at the Insert
pins in upper side process

step).

Insert pins in
” upper side

]
[}
1
E GB Recycle plank
1
L

(b)

Multi-Level Production Process Modeling Language 121

IN: Left-Bottom side 'l'——\\l IN: Right-Upper side
Width = 1 m vy Width = 1 m
. Length = 0.5 m b Length = 0.5 m
RO A process model suitable for Thickness = 0.195 m Thickness = 0.195 m
automatic execution s
executable or PRI
suitable for composed of the Start and Assemble = p—
. End process steps and at n:4 frame @
automatic r:0.07 m
|) least one regular process i
Instruction step with roducts, a
generation P P i OUT: Frame
capability, and a resource. :
Width = 1 m
Length = 0.5 m
Thickness = 0.195 m End
&
| Move B ove to
| location : smart shelf h :Amart ‘shell
The independence of a s
- etermine = =
production process model [wpeiocaton | Socaion
from the specific production I
system is achieved through ‘_ @3 pick upper plank and wooden dowel pins
two detail levels. A MasL W IN: 4x Wooden dowel pins (Sm\) _ !Nolglpperswde
- Length = 0.04 m \ . ===} - p| Width = 09 m
production process model | |sanew = oo R _

. & Pick upper
contains only process steps || W7 m: upperse ; Q.. "™
with input and output | et V8 b [naxvesdendowion] | [re)

RlO d d bl Thickness = 0.05 m PRT + i HETE EF- Length = 0.04m v l I
production products an a capa ility (a). |(es00m @ron] | 7D‘amr;o_owm
A DetL production process ft i @ rkwoosen
system . ne b dowerpns | B
; model is created by |lcoom i
independence Co —= o
enriching a MasL model |[ourusperside witpins [x Wooden dowel i
with transportation and ||imgn-omsen m [T
configuration process steps, | =20 ; e X
resources, gr_wd storage (b). S T \\’o'u“,;;;
These additional elements Thidness = 005 m
are related to the production T e) /
system in which the process Fio07m
is to be executed. (0T Upper sde wit s
Langth - 0195 m O
Thickness = 0,05 m e
(a) (b)

As we created the graphical concrete syntax for MultiProLan, we had to create different
mechanisms to reduce the diagram complexity and make it more readable when multiple modeling
elements exist. At the level of language syntax, MultiProLan's complexity of model diagrams is
addressed similarly to programming languages with a functional decomposition approach, e.g., by
using sub-processes and global error handlers. At the modeling tool level, there are mechanisms to
hide some parts of a diagram to simplify the view of the diagram and deal with the scalability
problem. Such mechanisms are different modeling layers, +/- buttons within process steps and
unordered sets of steps, the zoom feature, and element-type filtering tools.

The product family variability also needs to be addressed in production process modeling,
especially in the context of Industry 4.0, but it increases the complexity of model diagrams.
Variation gates with several branches between them are used to distinguish different product
variations of the same product family. The sub-process modeling concept can address the variability
of product families, as the same sub-process can be used in different product variations. Also,
filtering tools can be used to choose a product variation to be presented and hide other variations
from a diagram.

In the following section, we present an overview of Process Modeling Tool, which utilizes the
MultiProLan language, and describe the tool's main components.

122 Multi-Level Production Process Modeling Language

7.4 Process Modeling Tool

Process Modeling Tool, described in this section, is the one presented as a part of the architecture
outlined in Figure 5.1. The tool utilizes MultiProLan and helps process designers model production
processes. It was created in accordance with the principles of Rapid Software Development (RSD)
[241] and by using the Eclipse Sirius framework. RSD aims to minimize the gap between software
development and deployment by developing software in short rapid parallel cycles. It is built on
agile practices, such as continuous integration and fast value delivery, making rapid and continuous
experimentation on the software possible. As the requirements and development of MultiProLan
and Process Modeling Tool were frequently changing during our research, due to the new and
dynamic area of Industry 4.0, RSD fitted to such a changing and dynamic development process. In
the rest of this section, we describe the main parts and features of Process Modeling Tool.

The user interface of Process Modeling Tool is presented in Figure 7.6. The tool is composed

of the following:

i) Working area — a canvas in which process designers create MultiProLan models;
ii) Toolbar — an array of action buttons leading to various features;
iii) Tool palette — a palette containing tools for the creation of various elements and

relationships;

iv) Properties panel — a panel with a changeable set of properties depending on the selected

diagram, element type, or relationship type;

v) Diagram overview — an area representing the whole diagram, even if the diagram is too

large for Working area; and

vi) Model explorer — a set of projects containing MultiProLan models.

Eileln u.mala-le-leammmoses 1l - Toolbar

oy ¢
5
3
®
2

V - Diagram L
overview 0 i

ymchronized disgram

VI - Model I - Working area
explorer v N i (Canvas)
= Width = 1.06 m
Inspect 1 Length = 0.56 m
ype w;ua\ foe” Thickness = 023 m
@ @) piscard box E E @)store box @ e
@17 & e
| : [11 - Tool
"""""""""""""""""""""""""""""""" palette
o =i perties ooy Problem: ; mien
b= e o [V - Properties panel
= =
@ =5 Behaviors -
T, (-

Figure 7.6. The Process Modeling Tool user interface.

Multi-Level Production Process Modeling Language 123

The Sirius framework automatically generates Working area; Toolbar with predefined action
buttons discussed further in this section; empty Tool palette; Properties panel for each element and
relationship type, as well as for the diagram; Diagram overview and Model explorer areas. Toolbar
can be extended by adding new action buttons and Properties panel can be customized by changing
which properties need to be shown or hidden or by changing their interface. Tool palette is the only
tool part that needs to be fully implemented.

Toolbar has automatically generated action buttons, such as ones to arrange elements on a
diagram, refresh a diagram, choose modeling layers, filter diagram elements, zoom in and out, and
export a diagram as an image. In Figure 7.7, we present Process Modeling Tool Toolbar, while
newly added or changed action buttons are framed. The action button that is modified is the
modeling layers button, presented in Figure 7.8, with Error Handling Layer turned on. Execution
Layer is the default one and is always visible, while Error Handling Layer and the layer with key
points are optionally visible. The key points layer contains only the key point modeling concept
and as a rather small layer, we considered it as a part of Execution Layer when mentioned in
previous sections. It is created in Process Modeling Tool only to make a model diagram more
readable. By turning on or off some modeling layer, a model diagram changes by showing or hiding
elements related to the layer. Tool palette changes as well, which is discussed further in this section.
There are four action buttons added to Toolbar:

a) Orchestrate MasL process model — a MasL process model presented in Working area is
sent to Orchestrator, after which it is automatically transformed into a DetL. model. Both
MasL and DetL models are stored in Knowledge Base. Afterward, high-level instructions
are generated by Instruction Generator and sent to Digital Twin for execution.

b) Execute DetL process model — a DetL process model presented in Working area is sent to
Instruction Generator to automatically transform it into high-level instructions. These high-
level instructions are then sent to Digital Twin for execution.

c) Generate documentation — a MasL or DetL process model presented in Working area is
automatically transformed into manufacturing documentation of various types. After the
Generate documentation button is selected, a dialog is opened as presented in Figure 7.9.
A user can choose various documentation to be generated, which product or process
variation to use for the generation, and a location to save the generated documentation.

d) Filter variations —a MasL process model presented in Working area is filtered based on the
chosen product or process variation. A user can choose a product or process variation and
choose whether this variation is to be used as the default one, meaning that each new
element created on a diagram is going to belong to the chosen default variation. After a
variation is chosen, elements and relationships belonging to other variations are hidden.
Therefore, only the chosen variation and its super variations are presented to a user.

Tool palette is presented in Figure 7.10, and it consists of the following sections: (i) process
steps; (ii) gates; (iii) sub-processes and parameters; (iv) capabilities and products, alongside
parameters and constraints; (v) resources and storage (if a DetL process model is being created,
otherwise this section is hidden); and (vi) relationships. Each tool has a tooltip, providing additional
information to users on how to use the tool. There are also various shortcuts that help users model

gu AssembleBoxMasLDiagram = ABCD
B-%i-|¢|[E]w-lmtla-l@-laalux | m[C06 V]

Figure 7.7. Process Modeling Tool Toolbar.

- -
|=

==

~ ErrorHandling

KeyPoints

Figure 7.8. The Process Modeling Tool layer button.

124 Multi-Level Production Process Modeling Language

production processes faster, such as when creating product equivalents, a product equivalent link
can be used to connect a process step and a product of some previous process step, thus
automatically creating an input product for the chosen step with same properties as the previous
one. Another example is when creating capability parameters or product constraints which can be
done by double clicking a capability or a product, after the parameter or constraint properties can
be inserted by typing their values with a space as a delimiter for each property value.

Tool palette changes whenever a modeling layer is turned on or off. As presented in Figure
7.11, when Error Handling Layer is turned on, Tool palette is extended with the errors and error
elements sections, while when the key points layer is turned on, Tool palette is extended with the
key points section. The feature of extending or collapsing Tool palette based on the activation status
of modeling layers helps process designers when modeling production processes, as tools not used
by a particular user group are hidden from them, lowering the level of details in Process Modeling
Tool. For example, process engineers only see basic Tool palette with key points optionally, while
guality engineers see the error tools as well. Therefore, a particular user group is not burdened by
the tools that the users do not use.

As process designers need to communicate with Knowledge Base to store new process models
or retrieve the existing ones, Process Modeling Tool has import and export features as well. By
choosing a process model located in the Model explorer area of Process Modeling Tool, a user can
start the export feature. Afterward, a user can choose a server and a port of Orchestrator with
Knowledge Base to which a process model should be sent. Then, a process model is automatically
transformed into a JSON file, which is sent to the location of Orchestrator's Application
Programming Interface (API) that waits for the process model in the JSON format. The
Orchestrator's inner components automatically transform a JSON process model into a format
appropriate for Vaticle TypeDB and programmatically store the process model in Knowledge Base
permanently.

Production process models stored in Knowledge Base can be imported into Process Modeling
Tool via the import feature. By choosing a modeling project located in the Model explorer area of
Process Modeling Tool, a user can start the import feature. A user can choose a server and a port of
Orchestrator with Knowledge Base from which a process model should be received. Afterward, a
user can choose a process model from Knowledge Base that needs to be imported into Process
Modeling Tool. The process model is programmatically read from Vaticle TypeDB Knowledge

& Generate Documentation O *

Generate Documentation

Generate manufacturing documentation from a process model

Choose document types to be generated:
Bill of Materials
Bill of Materials and Operations
Flow Process Charts
[+] Job Brakedown Sheets
Process Failure Mode and Effect Analysis

Choose process |
variaticn:

Save location: | | Browse

(7} Finish Cancel

Figure 7.9. The generate documentation dialog.

Multi-Level Production Process Modeling Language 125

Base by Orchestrator's inner components and automatically transformed into the JSON file. The
JSON process model is sent to Process Modeling Tool's API, after which it is automatically
transformed into the production process model and stored in the chosen modeling project.

.2 Palette [
heaD-¥-
= Process Steps &
Regular (B unantered steps
OStEp |
Regular Unordered
= Gates
® © o
Decision Iteration Parallel...
@
Collab... Wariation
= Sub-Processes L)
By 5un-Frocess E @
______________ d
Sub-Process Input
Parameter
Output
Parameter
[= Capabilities and Products £
Capabiity [ot
Capability Input Product
<JUT: Product [rr——
+C
Output Product Conctraint
Capabiity
+P
Parameter

(= Resources

@E%V

Hurman Machine Storage
Worker
(= Relationships &
/ v e’
Flow Collab... Product
Equival...
»
Parame...
Link

Figure 7.10. Tool palette of Process Modeling
Tool without additional layers turned on.

oo Palette [+
heaaDd-¥ot-
(= Process Steps €0
Regular [EEunarsered steps
OStEp |
Regular Unordered
(= Gates 0
EaN
® o @
Decision [teration Parallel...
(= Sub-Processes 0
By5un-Frocess E @
______________ d
Sub-Process Input
Paramneter
= Capabilities and Products &
[copatiiy | [meeraduet |
Capability Input Product
Iml -y
Resources &
Human Machine Storage
Worker
= Relationships &

- *
/ B .
i 4

Flow Collab... Product
Equival...
= Errors 0
Local Glu.:ui:lal Local
Errar Error Default
= Erear
= Error Elements 0
Regular B Unandorad Sepe
OStEp
Regular Unordered
i [T i o Ar\r\}
= Key Points &
o ™
Compl.. Compl.. Break
lab lab Jab

Fackr

Figure 7.11. Tool palette of Process Modeling
Tool with both additional layers turned on.

126 Multi-Level Production Process Modeling Language

7.5 Summary

In this section, we presented MultiProLan, a DSML for production process modeling, whose
models are suitable for dynamic production orchestration and automatic generation of executable
resource instructions and manufacturing documentation. First, we presented the abstract syntax of
MultiProLan and various constraints as part of the syntax. The abstract syntax is developed based
on the FODA models related to production process modeling, discussed in the previous section.
Then, we presented the concrete graphical syntax that is implemented based on the presented
abstract syntax. The graphical syntax was chosen over the textual syntax as process designers are
already familiar with various process charts. MultiProLan is created in a way to fulfill the
requirements defined in Section 4.2.1, thus allowing the creation of resource-agnostic production
process models that can be easily orchestrated in a chosen production system and transformed into
resource-aware production process models and executable resource instructions. The modeling of
production processes by means of MultiProLan is possible through Process Modeling Tool that is
discussed at the end of this section. Process Modeling Tool covers various features that provide
easier production process modeling and make process model diagrams more readable and
understandable.

To test the usability of MultiProLan, Process Modeling Tool, and the whole MD solution in
the assembly industry, we created two proof-of-concept use cases. The first use case demonstrates
the possibilities of MultiProLan and Process Modeling Tool in creating production process models
with different product variations. The second use case demonstrates the usability of the whole MD
solution in creating objects from LEGO® bricks. Different robots, including industrial mobile
robots, and human workers participated in the second use case in which they received instructions
from our MD solution and assembled objects from the bricks. These two use cases are presented in
detail in Section 8.

Besides demonstrating the usage of our MD solution in various use cases, it needs to be tested
by users from different user groups. MultiProLan and Process Modeling Tool, as the core elements
of our MD solution, were evaluated by participants of the experiment, in which they modeled
production processes. The evaluation participants tested whether MultiProLan and Process
Modeling Tool fulfill certain quality characteristics. The evaluation process and results are
described in Section 9.

Application of the MD Solution and MultiProLan 127

8 Application of the MD Solution and MultiProLan

Our MD solution and MultiProLan are tailored primarily for discrete product manufacturing,
especially for the assembly industry, but can be used for production process modeling in general.
Therefore, our solution is mainly applied in assembly production, with the potential to be applied
in the process industry as well. Many researchers have also been applying their solutions in
assembly production, as such production can range from a relatively easy production process with
a few simple process steps to a very complex production process with numerous steps. Therefore,
assembly production can be a good starting point to make a proof-of-concept of a novel solution,
as it has discrete and precise process steps included in more or less complex production processes.
To validate our MD solution and MultiProLan, we applied them in two proof-of-concept use cases
and presented them in this section.

The first use case is created to demonstrate the possibilities of MultiProLan and Process
Modeling Tool. In this use case, a customized wooden box is assembled, whose production process
model includes concepts, such as different product and process variations, collaboration between
resources, and parallel execution of process steps.

The second use case represents a demonstration environment created to test the solution in
assembling objects from LEGO® bricks, avoiding failure costs associated with the real production
system. In this demonstration environment, different robots are used. Some robots are industrial
mobile robots, which are often used in real production, and some are research-grade smart robots
used for demonstration purposes. Human workers are also present in this use case in order to
assemble LEGO® bricks.

Our demonstration environment supports the assembly of objects from LEGO® bricks, whose
production processes do not require the full potential of MultiProLan, as only a few MultiProLan
modeling concepts are used to model these processes. Also, the manufacturing documentation
automatically generated from such production process models does not have too much content to
present. Therefore, we created the use case of assembling a customized wooden box, which is not
a part of the demonstration environment, to present various MultiProLan modeling concepts, and
instructions and documentation generated from the created models.

First, we present the use case related to the customized wooden box production in Section 8.1,
to introduce the usage of MultiProLan with its full potential. Afterward, the use case related to the
demonstration environment is covered in Section 8.2, to present the usage of the whole MD solution
in practice. The summary of these two proof-of-concept use cases is discussed in Section 8.3.

128 Application of the MD Solution and MultiProLan

8.1 Example of MultiProLan Models of Customized Wooden Box
Assembly

In this section, we present a process of wooden box production modeled using MultiProLan and
Process Modeling Tool. The wooden box MultiProLan process models were already discussed in
[10,11], and in this thesis, they are extended and discussed in more detail. The box is composed of
the following parts, presented in Figure 8.1:

i)
i)
iii)
iv)
v)

four wooden planks that represent different sides of the box;
a thin wooden back side;

a piece of fabric that is to be glued on the back side;
dividers that separate the space inside the box; and

a lid that is to be placed on the top of the box.

First, the four wooden planks are assembled into a frame using wooden dowel pins, and the
wooden back side is hammered into the frame, creating the box. A piece of fabric is then glued at
the bottom of the box. Afterward, various dividers can be chosen and glued inside the box, and a
lid of the selected type is placed at the top of the box. An example of the produced box is presented
in Figure 8.2. Production of wooden boxes is performed in a smart factory, which is composed of:

the smart shelf — storage where wooden planks, dowel pins, fabrics, dividers, and lids are
stored;

the first assembly table — storage used to assemble four wooden sides;

the second assembly table — storage used to hammer the back side into the frame;

the third assembly table — storage used to glue fabric and dividers and place lids;

the recycle bin — storage for impaired parts;

the finishing area — storage for finished boxes; and

human workers and mobile robots — smart resources able to perform required activities.

This section is divided into the following subsections. In Section 8.1.1, a MasL process model
of wooden box production created by process designers is presented. A DetL process model of

Figure 8.1. Parts of the wooden box used for the assembly.

Application of the MD Solution and MultiProLan 129

Figure 8.2. A variation of the assembled wooden box.

assembling the frame, created by Orchestrator, is presented in Section 8.1.2. Based on the presented
DetL process model, the automatically generated high-level and resource-specific instructions are
presented in Section 8.1.3, as well as the process monitoring. In Section 8.1.4, the automatically
generated manufacturing documentation from created process models is outlined.

8.1.1 Master-Level Process Model of Wooden Box Production

In this section, we present a MasL process model of wooden box production, composed of the main
process model and several sub-process models. The main MasL model of wooden box production
is presented in Figure 8.3. It is composed of the following elements:

the Start process step;

the sub-process of assembling a frame of the box;

the sub-process of hammering a back side into the frame;

the sub-process of gluing a piece of fabric and dividers into the box and placing a lid on the

top of the box;

the visual inspection of the box;

e based on the inspection result, the created wooden box is discarded if there is any defect
identified, or the box is stored if there is no defect identified on the box; and

e the End process step.

The output of the Assemble frame sub-process represents a frame, which is the input to the
Hammer back side sub-process, and the output of this sub-process is the frame with the fixed back
side, used in the following Glue fabric and dividers and place lid sub-process as the input. Outputs
and inputs of sub-processes are connected via sub-process parameters and parameter links. After
the box is completed, it is used in the Inspect box process step to visually detect if there is any
defect. In the Inspect box process step, an input product is the same as the output of the previous
sub-process, and they are connected through the parameter link between the input product and the
output parameter. Finally, between the decision gates, a choice is made whether the box is to be
discarded or stored based on the inspection results.

130 Application of the MD Solution and MultiProLan

In the rest of this section, we describe the first three sub-processes in detail. The first sub-
process has parallel process steps of assembling the frame and is used to demonstrate the creation
of the DetL process model and resource instructions, as well as to demonstrate process execution
and monitoring. The second sub-process has collaborative activities to hammer the back side into
the frame. The third sub-process has different variations of dividers and lids; thus, it is used to
demonstrate product variations, as well as the automatic generation of the documentation.

The Assemble frame sub-process is presented in Figure 8.4. This MasL process model is
composed of the following elements:

e the Start process step;

e inserting wooden dowel pins into wooden sides and assembling left-bottom and right-upper
sides in parallel;

e assembling the frame with the previously assembled left-bottom and right-upper sides; and

e the output process parameter and the End process step.

Caml
’ N,
4

fieom
L. Start A

Seae

1
1
== == =P @ Glue fabric and i
: dividers and place lid !
1

IN: Box

Width = 1.06 m

Length = 0.56 m r .

Thickness = 0.23 m = OUT: Inspected box |

;s el Width = 1.06 m "
Inspect box Length = 0.56 m
- Thickness = 0.23 m

type : visual

hasDefect = true / hasDefect = false

_________ L _ v 1

v
=
0O
)
=
o
o
o
<
& :
w
s
o
=
o
o
o
B3

Figure 8.3. The main MasL process model of wooden box production.

Application of the MD Solution and MultiProLan 131

The process starts with two branches placed between parallelism gates. These two branches
have equivalent process steps of inserting wooden dowel pins into one wooden side and assembling
two wooden sides into half of the frame. Therefore, only the assembly of the left-bottom sides is
discussed in detail, and the assembly of the right-upper sides is done similarly.

The first process step in the left-hand side branch is to insert wooden dowel pins into the
bottom side. The process step represents an operation as it is depicted with a circle icon to the left
of the process step name. It has two input products, the frame's bottom side, and four wooden dowel
pins, all retrieved from storage. The inverted triangle icon to the left of a product name represents
that an input product should be retrieved from storage. Two input products have various constraints
that are to be considered by Orchestrator when it assigns smart resources able to perform tasks. The
bottom side has width, length, and thickness constraints, representing the dimensions of the plank,
later used to determine which smart resources are able to pick or place it. Similarly, wooden dowel
pins have length and diameter constraints. There are also additional constraints, such as the mass
of the planks, but they are not presented in the diagram to make it as simple as possible. The same
process step has the Place capability with parameters representing four wooden dowel pins with
0.07 m of space between them, while two pins are inserted into the left side of the wooden plank,
and other two are inserted into the right side of the plank. The output product of this process step is
the bottom side with wooden dowel pins, which will not be stored but used by the following process
step. The following step is the assembly of the bottom and left sides. The input of such a process
step is the bottom side from the previous process step and the left side that needs to be retrieved

v IN: Upper side

Width = 0.9 m
Length = 0.195 m
Thickness = 0.05 m

v IN: Bottom side

Width = 0.9 m
Length = 0.195 m
Thickness = 0.05 m

7’

‘ v IN: 4x Wooden dowel pins}

Length = 0.04 m
Diameter = 0.006 m

=~ { v IN: 4x Wooden dowel pins |

Length = 0.04 m
Diameter = 0.006 m

i \

{ Start |

\ 7
' ’

~—

Place PAR Place
n:4 n:4
r:0.07 m r:0.07 m
- -
OUT: Bottom side with pins | OUT: Upper side with pins
=~ P Width = 0.94 m "~ Insert pins in b Insert pins in Width = 0.94 m ===
! Length = 0.195 m bottom side upper side Length = 0.195 m !
1 Thickness = 0.05 m Thickness = 0.05 m 1
1 1
1 1
[]N: Bottom side with pins v IN: Left side v IN: Right side IN: Upper side with pins |
Width = 0.94 m Width = 0.5 m Width = 0.5 m Width = 0.94 m
Length = 0.195 m Length = 0.195 m Length = 0.195 m Length = 0.195 m
Thickness = 0.05 m Thickness = 0.05 m Thickness = 0.05 m Thickness = 0.05 m
Assemble = = Assemble
- Assemble Assemble -
n:2 L-B sides R-U sides n:2
r:0.07 m r:0.07m
OUT: Left-Bottom side OUT: Right-Upper side
Width = T m Width = 1T m
Length = 0.5 m Length = 0.5 m
Thickness = 0.195 m PAR Thickness = 0.195 m
—
5 IN: Left-Bottom side IN: Right-Upper side :
o Width = 1 m Width = 1 m o
Length = 0.5 m Length = 0.5 m
Thickness = 0.195 m I~ Thickness = 0.195 m
R Assemble
OUT: Frame frame I~ Assemble
Width = T m n:4
Length = 0.5 m r:0.07 m
Thickness = 0.195 m e

Figure 8.4. The Assemble frame MasL sub-process model.

132 Application of the MD Solution and MultiProLan

from storage. The process step has the Assemble capability with parameters similar to the Place
capability, and the output of such a process step is the assembled left-bottom side of the frame.

The assembly of the right-upper sides is represented with two process steps equivalent to the
process steps of assembling the left-bottom sides. Inserting wooden dowel pins and assembling
each half of the frame are process steps that can be executed in parallel, as they are modeled between
two parallelism gates. After each half of the frame is assembled, the following process step
(Assemble frame) is to assemble the frame, having two input products, the left-bottom and right-
upper sides, resulting from the previous two process steps. These input products are not retrieved
from storage but are equivalent to the previous process steps' output products, as depicted by the
directed dashed lines in the process diagram. This process step has the Assemble capability and the
frame as the output product. The output product is sent to the output parameter and used in the
following sub-process (Hammer back side) of the main process (see Figure 8.3).

The Hammer back side sub-process is depicted in Figure 8.5. The MasL model presented in
the figure is composed of the following elements:

e the input process parameter and the Start process step;

e collaborative activities of hammering the back side into the frame produced in the previous
sub-process;

e the visual inspection of the frame with the back side;

e based on the inspection result, the created frame is discarded if there is any defect identified,
or the sub-process ends and the frame is sent to the following sub-process; and

e the output process parameter and the End process step.

@ N/ IN: 8x Nails 4d
' PASERN Length = 0.038 m
1 / \
& (\ St) Diameter = 0.002 m
IN: Frame e
Width = 1 m /K v IN: Back side
Lehgth =05m coL Width = 1 m
Thickness = 0.195 m Length = 0.5 m
S Thickness = 0.005 m
Hold = Start - N ———
Hold o m—— Hammer
— frame T — back side [Hammer
End n:8
OUT: Frame with back side]
> CoL
Width = 1 m
Length = 0.5 m
Thickness = 0.2 m
A

OUT: Inspected frame with back side |

IN: Frame with back side L"_ [nspect Width = 1 m |
frame

Length = 0.5 m
Thickness = 0.2 m

Length = 0.5 m
Thickness = 0.2 m

o« __lwidth=1m |

Inspect hasDefect = true

DEC ‘L '
] .
hasDefect = false ! @
i % Discard frame |
1

EC B -I] __ _:

et

type : visual

(o)

End

Figure 8.5. The Hammer back side MasL sub-process model.

Application of the MD Solution and MultiProLan 133

The sub-process starts with collaborative activities of holding the frame and hammering the
back side into the frame. These activities are presented as process steps in two branches between
collaboration gates. The Hold frame process step has the frame as the input product, and this frame
is the one assembled in the Assemble frame sub-process, imported through the input parameter.
This process step has the Hold capability and the frame with the back side as the output product.
Another collaborative process step is Hammer back side, which is the hammering of the back side
into the frame that is held. The input products of the Hammer back side process step are the back
side and eight nails needed for hammering. These input products are retrieved from storage. This
process step has the Hammer capability, having a predefined number of nails that should be
hammered, e.g., eight. It does not have an output product, as the back side is going to be hammered
into the frame, and thus, the output product is modeled only in the Hold frame process step. The
Hold frame and Hammer back side process steps are collaborative process steps, meaning they are
done in a parallel but in a synchronized manner. Hammering the back side should not start before
the message arrives that the frame is being held. The frame should be held until the message arrives
that the hammering is finished. Such a message exchange is presented in the process diagram with
dotted-line relationships between those two process steps. After the collaborative process steps are
finished, the frame with the back side is inspected for any deformation. The Inspect frame process
step requires a visual inspection of the frame, and the inspected frame is sent to the output
parameter, used in the following sub-process (Glue fabric and dividers and place lid) of the main
process (see Figure 8.3). The decision to discard the frame or finish the sub-process depends on
whether the frame passes all checks.

The inspected frame that passes visual checks in the Hammer back side sub-process is used in
the Glue fabric and dividers and place lid sub-process, presented in Figure 8.6. The MasL model
presented in the figure is composed of the following elements:

the input process parameter and the Start process step;
gluing a piece of fabric onto the bottom of the frame;
variations of gluing dividers of different types;
waiting for the glue to dry;

variations of placing lids of different types; and

the output process parameter and the End process step.

Before discussing the process model presented in Figure 8.6, the wooden box product
variations need to be mentioned. The wooden box can have dividers of different types: (i) a single
divider that vertically divides the box into two halves; (ii) two single dividers that vertically divide
the box into three thirds; and (iii) a cross divider that divides the box into four quarters. The wooden
box can have lids of different types: (i) a fully wooden lid; and (ii) a wooden lid with a glass opening
in the middle. The wooden box can have any combination of dividers and lids. Therefore, six
product variations of the wooden box are modeled and presented in Figure 8.7, and the images of
these six product variations are presented in Figure 8.8.

Each process element in the wooden box production process model has variations assigned in
which the elements appear. For example, in the Glue fabric and dividers and place lid sub-process
model, presented in Figure 8.6, the Place wooden lid process step has three variations assigned: 1.1
Box_SD WL, 1.3 Box_TD_WL, and 1.5 Box_CD_WL, meaning that the wooden lid can be used in
any divider type previously used. However, the Wait for glue to dry process step has all the
variations assigned, as this process step must be executed independently of any variation. The
assigned variations to process elements are considered during the process execution and the
documentation generation when the desired product variation is chosen. In addition, the process
model diagram, presented in Figure 8.6, is burdened with details, even with only a few variations,
which can make the diagram hard to read by process designers. By using the Filter variations
function, outlined in Section 7.4, the complexity of the process model diagram can be reduced; thus,
process designers can be focused only on a single variation. For example, in Figure 8.9, we present
a process model diagram after the Filter variations function is executed, choosing the variation in
which two single dividers are glued, and the fully wooden lid is placed.

134 Application of the MD Solution and MultiProLan

O,

: N/ IN: Fabric
]
v Width = 0.9 m
IN: Inspected frame with back side | Length = 0.4 m
- Thickness = 0.001 m
Width = 1 m
Length = 0.5 m

IN: Frame with

Width = 1 m
Length = 0.5 m Width = 0.4 m
Thickness = 0.2 m Length = 0.2 m

Glue

fabric| ——m7o—
v IN: Single divider

Thickness = 0.05 m

éUT: Frame with single divider|

Width = 1 m
Length = 0.5 m
Thickness = 0.2 m

A

Thickness = 0.2 m I Glue _
[OUT: Frame with fabric
RS S Width = 1m e
: Length = 0.5 m
| E— Thickness = 0.2 m
IN: Frame with fabric A
Width = 1 m 1 VAR
Length = 0.5 m i —————
Thickness = 0.2 m L Glue
E— : dx1 =
S IN: single divider ' dy1 Glue single
Width = 04 m : oz |- divider

Glue

NN O N

Thickness = 0.05 m

He

Width = 1 m
Length = 0.5 m

[
Glue single

divider

OUT: Frame with dividers |

Width = 1m
Length = 0.5 m
Thickness = 0.2 m

Width = 0.9 m

Length = 0.4 m
Thickness = 0.2 m

Thickness = 0.2 m

v IN: Cross divider

A aOMNMNMNDON

=
‘ Glue cross

divider

\

| IN: Frame with single divider

Width = 1 m
Length = 0.5 m
Thickness = 0.2 m

v IN: Single divider

Width = 0.4 m
Length = 0.2 m

 Glue single
divider

Thickness = 0.05 m

{ OUT: Frame with dividers |

Width = 1 m
Length =
Thickness = 0.2 m

05m

p

IN: Frame with dried glue |

OUT: Frame with dividers

Width = 1 m
Length = 0.5 m

Thickness = 0.2 m

: VAR
IN: Frame with dividers]
Width=1m [T TToTTToT T
Length = 0.5
T(:\:fl'(ness i 0"; & [OUT: Frame with dried glue]
= : Width = 1 m
V‘l’a" :°’ . Length = 0.5 m
- FUS O Thickness = 0.2 m
time : 30s
X
L}
VAR

Width = 1m
Length = 0.5 m
Thickness = 0.2 m

C

S —

Place

e —

OUT: Box

Width = 1.06 m
Length = 0.56 m
Thickness = 0.23 m

(=
‘ Place
1 wooden lid

[v IN: Wooden Iid] ‘ v IN: Wooden-glass Iidl

(IN: Frame with dried glue
Width = 1 m

Length = 0.5 m

Thickness = 0.2 m

g
F Place
Width = 1.06 m Width = 1.06 m r:jacg :\voc;den | |
Length = 0.56 m Length = 0.56 m id with glass
Thickness = 0.03 m Thickness = 0.03 m
OUT: Box
/VAR\ Width = 1.06 m
Length = 0.56 m
Thickness = 0.23 m

Figure 8.6. The Glue fabric and dividers and place lid MasL sub-process model.

Application of the MD Solution and MultiProLan 135

hd * Assemble Wooden Box

b .1 1 Wooden Box Base

1.1 Box_SD_WL 1.2 Box_SD_WGL

1.3 Box_TD_WL 1.4 Box_TD_WGL

1.5Box_CD_WL 1.6 Box_CD_WGL

Figure 8.8. The wooden box variations.

136 Application of the MD Solution and MultiProLan

Al
i start)
i N/ IN: Fabric R IN: Frame with fabric| —
; Width=09m Width e im v IN: Single divider
IN: Inspected frame with back side] Length = 0.4 m Lendti=i0om Width = 0.4 m
- Thickness = 0.001 m Thickness = 0.2 m Length = 0.2 m
Width = 1 m Thickness = 0.05 m
Length = 0.5 m = ——
Thickness = 0.2 m T e Glue
fabric method : full
| QUT: Frame with fabric
Width = 1 m] S T s
Length = 0.5 m
Thickness = 0.2 m
. éUT: Frame with single divider|
VAR Width = 1m
Length = 0.5 m
Thickness = 0.2 m
= Y
Glue single
divider -
| IN: Frame with single divider
Width = 1m
Length = 0.5 m
Thickness = 0.2 m
v IN: Single divider
Width = 04 m
= Length = 0.2 m
. Glue single Thickness = 0.05 m
divider
Glue
dx1:3
dy1:0
dx2:3
dy2:2
| OUT: Frame with dividers
VAR
T Width = 1 m
IN: Frame with dividers | ____________________________________ Length = 0.5 m
Width = 1m Thickness = 0.2 m
Length = 0.5 m
Thicgkness - 02m [OUT: Frame with dried glue |
~— Wait for pich =_1 o
Wait e oldny Length = 0.5 m
= 9 Thickness = 0.2 m
time : 30s
7:y
1
s —————— e L e e
IN: Frame with dried glue]
Width = 1 m VAR
Length = 0.5 m

Thickness = 0.2 m

Place

OUT: Box

Width = 1.06 m
Length = 0.56 m
Thickness = 0.23 m

}
r . Place
wooden lid

Width = 1.06 m

Length = 0.56 m
Thickness = 0.03

v IN: Wooden lid

m

VAR

Figure 8.9. The Glue fabric and dividers and place lid MasL sub-process model with a single
variation (1.3 Box_TD_WL).

Application of the MD Solution and MultiProLan 137

For the rest of this section, we describe the Glue fabric and dividers and place lid sub-process
model presented in Figure 8.6. The sub-process starts with gluing a piece of fabric onto the bottom
of the frame with the hammered back side. The input products of the Glue fabric process step are
the inspected frame, which results from the previous sub-process, imported through the input
parameter, and a piece of fabric retrieved from storage. The process step has the Glue capability,
with a parameter that indicates that gluing needs to be applied fully on the piece of fabric and the
bottom of the box. The output product of the Glue fabric process step is the frame with the piece of
fabric glued, which is used in one of the following variations.

After the Glue fabric process step, there are three branches between variation gates, each
representing a single option of modeled dividers that can be glued in the box. The left-hand side
branch contains the Glue single divider process step, which divides the box into two halves. The
input products are the frame with the fabric, created in the previous process step, as well as the
single divider retrieved from storage. The Glue capability does not have the method parameter but
the coordinates of two points on which the glue is to be applied and placed in the box. The output
of this process step is the frame with the glued divider. The middle branch contains the Glue cross
divider process step, which divides the box into four quarters. The process step has similar input
and output products and the Glue capability. The difference is that a cross divider is used instead of
a single divider, and the glue needs to be applied on the four points and placed in the box. The right-
hand side branch contains two Glue single divider process steps, each gluing a single divider, but
in different places in the box, dividing the box into three thirds. After the fabric and dividers are
glued, the process step of waiting for the glue to dry for 30 seconds is performed. This process step
represents a delay activity, as depicted with the icon to the left of the process step name. The input
product of such a process step is the frame with glued fabric and dividers, which is the output
product from one of the previous process steps from different variations. The Wait for glue to dry
process step has the Wait capability, with a parameter representing the waiting time, and the output
product of the process step is the frame with the dried glue.

The frame is then used in one of two following branches placed between two variation gates.
Both represent the activity of placing a lid at the top of the frame, creating the box as a final product.
A fully wooden lid is used in the left-hand side branch, while in the right-hand branch, a wooden
lid with a glass opening in the middle is used. As an output product of these two process steps, the
box is sent to the output parameter and used in the main process for the inspection activity and the
decision of whether to discard or store the box.

Based on the presented MasL process models, DetlL process models are automatically
generated. The Assemble frame DetL process model is discussed in the following section to present
the automatic generation of such models and to demonstrate differences between MasL and DetL
process models.

8.1.2 Detail-Level Process Model of Assembling the Frame

Based on the presented MasL models and production system knowledge from Knowledge Base,
Orchestrator automatically generates DetL models of wooden box production for the chosen
production system. For example, the Assemble frame DetL sub-process model, presented in Figure
8.10, is automatically generated from the MasL sub-process model presented in Figure 8.4. Other
sub-processes are created in a similar manner and thus are not discussed further in this thesis. To
lower the complexity of the presented model diagram in Figure 8.10, products and capabilities are
depicted just for process steps in the left-hand side parallelism branch, while for other process steps,
they are modeled but hidden in the diagram using the +/- buttons.

The generated DetL model comprises process steps similar to the related MasL model, but the
DetL model is extended with additional details and new process steps, such as production logistic
activities and mobile robot configurations. These new process steps are needed to produce the box
automatically.

138 Application of the MD Solution and MultiProLan

l"-N\\
i start]
b
1 PAR l
=l J
Move | Move to Move to
location : smart shelf J— smart shelf @ smart shelf 9
i} !
i g Pick L-B planks and wooden dowel pins
[
Determine
IN: Left side v [Pick location m\
Width = 0.5 m [
Length = 0.195 m = 7
Thickness = 0.05 m i Pick left @
side B gPick R-U planks and
g wooden dowel pins
IN: Bottom side v Pick &
Pick right
-} & Width = 0.9 m J (@) il g&
Length = 0.195 m 2 /
Thickness = 0.05 m | g Pick bott +
.si';e = @ Pick upper
side m\
IN: 4x Wooden dowel pins v Pick e Pidkwaoden
~P Length = 0.04 m L dowel pins g"
Diameter = 0.006 m = /
" Pick wooden
dowel pins @
= & &
Move = Move to " Move to
location : assem. table 1 assembly table 1 e assembly table 1 gx
IN: 4x Wooden dowel pins
®
< Length = 0.04 m ‘ Determine
Diameter = 0.006 m location g&
IN: Bottom side
4 Width = 0.9 m
Length = 0.195 m
Thickness = 0.05 m =) F
Insert pins in . Insert pins in
s bottom side @ upper side g”'
n:4
r: 007 m
OUT: Bottom side with pins
| Width = 0.94 m
Length = 0.195 m
Thickness = 0.05 m
IN: Bottom side with pins
4 Width = 0.94 m
Length = 0.195 m
Thickness = 0.05 m
IN: Left side
_____ Width = 0.5 m
Length = 0.195 m
Thickness = 0.05 m = e
Assemble Assemble
Aesembla L-B sides @ R-U sides g%
n:2 |
r:0.07 m PAR
QOUT: Left-Bottom side
Width = 1 m
_';:?3(::‘3:50;50"‘;95 " IN: Left-Bottom side [~ | [IN:Right-Upper side
y.y Width = 1 m - Assemble Width = 1 m
' Length = 0.5 m frame @ Length = 0.5 m

EEEE

Thickness = 0.195 m

QOUT: Frame

Thickness = 0.195 m

Assemble

Width = 1 m
Length = 0.5 m
Thickness = 0.195 m

n:4
r:0.07 m

Figure 8.10. The Assemble frame DetL sub-process model.

Application of the MD Solution and MultiProLan 139

The Assemble frame DetL sub-process model is composed of the following elements:

the Start process step;

moving to the smart shelf and determining resource position when needed,;

picking up input products from the smart shelf in any order;

moving to the first assembly table and determining resource position when needed:;
inserting wooden dowel pins into wooden sides and assembling left-bottom and right-upper
sides in parallel;

e assembling the frame with the previously assembled left-bottom and right-upper sides; and
e the output process parameter and the End process step.

The assembly of left-bottom and right-upper sides are assigned in parallel to a human worker
and a mobile robot, respectively. In both parallel branches, transportation process steps are added,
which are depicted with the arrow icon to the left of the process step name. To assemble the left-
bottom side, the human worker needs to move to the smart shelf, pick the left and bottom sides and
wooden dowel pins in any order, move to the first assembly table, insert pins into the bottom side,
and assemble the left and bottom sides. Transportation process steps only have the Move capability
with the location parameter, as this capability requires no input or output products. The Pick process
steps have a capability and an input product, but an output product does not exist, as it is the same
as the input product. Unlike the MasL model, in which input products have general, i.e., abstract
storage as an indicator that the products need to be retrieved from it, the DetL model input products
have specific storage, such as the specific smart shelf, from which the products need to be retrieved.
The inverse triangle objects set on input products depict the specific storage. By selecting storage,
it is possible to specify or change the values of the storage attributes. The same can be done with
resources set on process steps. As for the Insert pins in bottom side process step input products,
they are equivalent to the previously picked bottom side and wooden dowel pins. Such equivalent
links are denoted with the directed dashed lines between equivalent products. Similarly, the
Assemble left-bottom sides process step input products are equivalent to the previously picked left
side and the produced bottom side with wooden dowel pins. These two process steps' capabilities
and output products are the same as in the MasL model.

The second parallel branch represents the assembly of the right-upper sides by the mobile
robot. The process steps in this branch are similar to those of the previously described branch,
except for the configuration process steps. As the mobile robot assigned to these process steps is
not equipped with a machine vision module, it must calibrate itself after each movement to
determine its position. The gear icon to the left of the process step name can differentiate
configuration process steps from others.

After the left-bottom and right-upper sides are assembled, the same human worker assembles
the frame. This activity does not require any transportation process steps as the human worker and
the required input products are already at the first assembly table. The assembled frame is used in
the following sub-process (Hammer back side), as it is sent via the output parameter to the main
process model (see Figure 8.3).

Such a DetL process model is ready for the automatic generation of instructions, as it contains
all the necessary information related to a process and a production system. In the following section,
we present an example of generated instructions as well as process monitoring during the execution
of the process.

140 Application of the MD Solution and MultiProLan

8.1.3 Automatically Generated Instructions and Process Monitoring

The DetL model, presented in Figure 8.10, is suitable for the automatic generation of instructions.
Instruction Generator generates high-level instructions from the DetL model and passes the
instructions to Digital Twin. By using protocol transformation components, Digital Twin
transforms high-level instructions into resource-specific instructions, i.e., human-readable or
machine-specific instructions, and sends them to smart resources for execution. In this section, we
present automatically generated instructions for a smart mobile robot and a human worker.

As an example, we demonstrate the instruction generation for the Pick right side process step,
which is similar to the Pick left side process step presented in detail in Figure 8.10. It contains the
Pick capability without any parameters, and the Right side input product with constraints and the
specific storage, the smart shelf, from which it is to be retrieved. There is also the smart mobile
robot assigned to execute such a process step.

From such a DetL process step, Instruction Generator can automatically generate a high-level
instruction. An example of such a high-level instruction in a JSON format is presented in Listing
8.1. The instruction starts with the order identifier, which Orchestrator adds, indicating to which
customer order the process and process step belongs. Other instruction attributes are automatically
generated from the process model except for the scheduled time. After the process identifier is
specified, which relates to the executed process, the Pick right side process step attributes are
presented in Listing 8.1, such as the identifier, name, description, image path, and video path of the
process step. Afterward, the Pick capability object is specified, alongside its identifier, name,
indicator of whether it requires storage, and parameters. The parameters array is empty as the
modeled Pick capability does not have one specified. Input products and output products arrays are
specified next, with the output products array empty as there is no output product for the Pick right
side process step. Each product object in input and output products arrays has the following
attributes specified: identifier, name, quantity, and an indicator of whether the product is stored or
is the result of some previous process step. Based on the indicator value, the storage or the
equivalent object is specified. As the Right side input product is stored on the smart shelf, the
storage object is specified, as presented in Listing 8.1, and the equivalent object is empty. The smart
shelf storage object has the following attributes specified: identifier, name, and indicators of
whether the storage is an actuator as well or is storage only. The resource object is specified next.
A smart mobile robot is assigned to execute the instruction, and the following attributes are
specified for it: identifier, name, indicators of whether the resource is an actuator and whether it has
local storage on it, and the protocol to which the instruction is to be sent. The instruction ends with
the scheduled time attribute, automatically added by Orchestrator, indicating the estimation time
when the process step is to be executed.

114

2 "orderId": "720f89365d3a",

3 "processId": "b6624c68-709d-4afa-a59a-8b0178af8f73",

4 "processStepId": "2177e6b8-a653-4ebe-9cf2-fcf55d5a2b65",
5 "name": "Pick right side",

6 "description”: "Pick a frame's right-side wooden plank.",
7 "image": "<path>/PickRightSide.jpg",

8 "video": "<path>/PickRightSide.avi",

9 "capability": {

10 "id": "ela68dce-698c-41fc-af@d-20ff9elaco93”,

11 "name": "Pick",

12 "requiresStorage": true,

13 "parameters": []

14 1,

15 "inputProducts": [{

16 "id": "31b93c3f-7acl-4116-blf5-b69a730f9b24",

17 "name": "Right side",

18 "quantity": 1,

19 "isStored": true,

20 "storage": {

Application of the MD Solution and MultiProLan 141

21 "id": "88d376a8-ee43-4ca3-alaf-ff5ee7192d2f",
22 "name": "Smart shelf",

23 "isActuator": false,

24 "isStorage": true

25 }s

26 "equivalent": {}

27 11

28 "outputProducts": [],

29 "resource": {

30 "id": "91a3f687-feld-4897-909a-53bd63f0ef37",
31 "name": "Mobile Robot M7",

32 "isActuator": true,

33 "isStorage": false,

34 "protocol”: "ROS"

35 1

36 "scheduledTime": "2023-02-14T13:45:30+00:00"

37 |}

Listing 8.1. An example of the Pick right side high-level instruction.

The presented high-level instruction is sent to Digital Twin for execution in a simulation. It
can also be transformed into a machine-specific instruction automatically, which is sent to a shop
floor to be physically executed by a smart resource. As the resource protocol indicates that the high-
level instruction is to be sent through the ROS [227,228] protocol, the high-level instruction is
transformed into the ROS instruction. The smart mobile robot runs ROS and thus can perform
various ROS instructions.

An example of the Pick ROS instruction is presented in Listing 8.2, in a structured textual
form. The Pick instruction is to be sent to the service address composed of the smart resource's
name and the command to be executed or, in this case, the MobileRobotM7/Pick address. The
specific resource, such as Mobile Robot M7, has an action server and waits for a command to arrive,
after which the resource can send the feedback to an action client that sent the instruction. The
instruction begins with an indicator of whether a product is to be picked from the smart robot itself
or storage. The marker identifier refers to the storage location from which a product is to be picked,
e.g., the location of the smart shelf from which the right-side plank is to be picked. The instruction
ends with two more attributes related to the coordinates from which a product is to be picked. First,
the reference point in the coordinate system is specified, and then the related coordinates from the
reference point are specified, as well as the orientation of the product. In Listing 8.2, the smart shelf
marker position is specified as the reference point. The right-side planks are stored at the top of the
smart shelf, and their position is defined in the instruction. In addition, the orientation of the product
indicates that the right-side planks are not rotated but placed in line with the smart shelf.

1 isPickFromSelf: false
2 markerId: MarkerSSol
3 referencePoint: MarkerSsel
4 referencePose:

5 position:

6 X: 0

7 y: 6

8 z: 2

9 orientation:

10 X: 0

11 y: 0

12 z: 0

13 w: 1

Listing 8.2. An example of the Pick right side machine-specific ROS instruction.

Another example of a high-level instruction is generated from the Assemble left-bottom sides
process step. It contains the Assemble capability with two parameters. The input products are

142 Application of the MD Solution and MultiProLan

equivalent to products of previous process steps, and the output product represents the assembled
Left-Bottom side. A human worker is assigned to execute such a process step.

A high-level instruction is automatically generated from such a process step and is presented
in Listing 8.3. This high-level instruction has a similar structure to the one presented in Listing 8.1.
However, there are a few differences that need to be discussed further. The Assemble capability has
two parameters specified in the process model. Therefore, these parameters must be part of the
instruction, as presented in lines 13 through 19. Each parameter has its key and value specified in
the instruction. Another difference is that input products result from previous process steps and not
storage. The isStored indicator is false, and the storage object is empty. Instead, the equivalent
object is specified as presented in lines 27 through 30 and 37 through 40. The output product is
presented in this instruction and specified in lines 42 through 49. Finally, compared to the
instruction presented in Listing 8.1, the last important difference this instruction introduces is the
human worker resource. In this instruction, a human worker is assigned, and the protocol of such a
resource is a human interface, referring that the instruction is to be sent to a human worker device.

1 1q

2 "orderId": "720f89365d3a",

3 "processId": "b6624c68-709d-4afa-a59a-8b0178af8f73",

4 "processStepId": "b6851c5e-2941-4568-8cdf-eldfa67e300b",

5 "name": "Assemble left-bottom sides",

6 "description”: "Assemble frame's left-side and bottom-side wooden planks. Two
wooden dowel pins from the bottom-side plank need to be inserted into holes
of the left-side plank.",

7 "image": "<path>/AssemblelLeftBottomSides.jpg",

8 "video": "<path>/AssemblelLeftBottomSides.avi",

9 "capability": {

10 "id": "982dbb73-53ad-4e21-b5f9-81fb803244",

11 "name": "Assemble",

12 "requiresStorage": true,

13 "parameters": [{

14 "key": "n",

15 "value": "2"

16 oA

17 "key": "r",

18 "value": "0.07 m"

19 b

20 1,

21 "inputProducts": [{

22 "id": "6805e009-fc63-4a38-825a-e41d3326271124",

23 "name": "Left side",

24 "quantity": 1,

25 "isStored": false,

26 "storage": {},

27 "equivalent": {

28 "id": "3c89890d-8dc7-4a92-90bc-abec598978eb",

29 "name": "Left side"

30 }

31 A

32 "id": "@985589e-0al19-4213-9153-04d0@sadgq21c68",

33 "name": "Bottom side with pins",

34 "quantity": 1,

35 "isStored": false,

36 "storage": {},

37 "equivalents": {

38 "id": "99dd7833-ad56-45e5-a677-14d7258175f3",

39 "name": "Bottom side with pins"

40 }

41 P

42 "outputProducts": [{

43 "id": "el26c8cl1-c38f-4756-a018-66506b04727e",

44 "name": "Left-Bottom side",

45 "quantity": 1,

Application of the MD Solution and MultiProLan 143

46 "isStored": false,

47 "storage": {},

48 "equivalent": {}

49 P

50 "resource": {

51 "id": "ff30ac13-4bde-4690-839e-b6c7c725ea74",
52 "name": "Jovan Jovanovic",

53 "isActuator": true,

54 "isStorage": false,

55 "protocol”: "human interface"

56 1

57 "scheduledTime": "2023-02-14T13:51:00+00:00"
58 | }

Listing 8.3. An example of the Assemble left-bottom sides high-level instruction.

The Assemble left-bottom sides high-level instruction is sent to Digital Twin for execution in
a simulation. It can also be transformed into a human-readable instruction and sent to a human
worker to execute it on a shop floor. The high-level instruction needs to be transformed into a format
easily readable by human workers. It can be sent to an application running on a tablet, a smart
watch, a computer connected to a monitor in front of aworker, or an AR device. The human worker
application needs to contain the following elements:

e atextual description of a process step with key points helping a human worker perform a
task more easily;

an image of how to perform a process step;

a video of performing a process step played by a human worker whenever needed:;

an overview of a process model indicating the process status; and

buttons to send feedback by a human worker when a process step is performed successfully,
or when an error appears.

A user interface mockup of the human worker application is presented in Figure 8.11. The user
interface varies depending on the device that is used. For example, if a monitor is used, all the
process step content can be presented. However, if a smart watch is used, only a process step name
and buttons for a completion status are presented.

After a DetL process model is transformed into instructions and the instructions are sent for
execution, the process execution status can be monitored. Monitoring can be done in Process
Modeling Tool by gathering the execution feedback from Digital Twin. Based on the gathered

: Process
Video Image
Model

Mol Feedback

Description

Figure 8.11. A user interface mockup of the human worker application.

144 Application of the MD Solution and MultiProLan

feedback, the background color of process steps is changing. Process steps can be presented with
one of the four background colors, representing their status:

white — a process step has not been executed yet;

blue — a process step is currently being executed;

red — an error has occurred during the execution; and
green — a process step has been executed successfully.

In addition, when an error occurs, the error background color changes to red, indicating which
error occurred.

An example of monitoring the execution of the Assemble frame DetL sub-process model is
presented in Figure 8.12. To make the process model diagram as simple as possible, all capabilities
and products are hidden from it. The process monitoring snapshots are taken at five points in time:

e (t1) The Assemble frame process execution is started, and all process steps have a white
background, indicating they are not executed yet.

e (t2) Both the human worker and smart mobile robot are executing unordered process steps.
The human worker performed more tasks than the robot, as the robot had to be calibrated
after moving to the smart shelf.

e (t3) The human worker assembles the left and bottom sides while the mobile robot
determines its position in parallel.

e (ts) Parallel process steps are finished, and the human worker assembles the frame.

e (ts) The Assemble frame process execution is finished.

The process monitoring feature can help process designers detect and mitigate potential
bottlenecks and production process modeling errors. Such a feature is particularly useful when
Digital Twin is used in a simulation-only mode. Accordingly, potential bottlenecks and modeling
errors can be mitigated before they reach real production.

Besides the automatic instruction generation from process models, the manufacturing
documentation can also be automatically generated. The automatic generation and update of the
manufacturing documentation can reduce the time spent by process designers to keep the
documentation up to date manually. An example of the generated manufacturing documentation is
presented in the following section.

8.1.4 Automatically Generated Manufacturing Documentation

After process models are created by using MultiProLan and Process Modeling Tool, they can be
used by Documentation Generators to automatically generate and update the manufacturing
documentation. The automatic generation of manufacturing documentation can be particularly
useful when there are many product variations. Whenever an existing product changes or a new
product variation emerges, the documentation needs to be updated, which can happen frequently.
Thus, process designers need to spend much time manually changing it.

In this section, we present an example of automatically generated manufacturing
documentation based on the previously described process models. The manufacturing
documentation is automatically generated for the whole process model of wooden box production,
presented in Figure 8.3. However, for demonstration purposes, we present only the documentation
generated from the Glue fabric and dividers and place lid MasL and Assemble frame DetL sub-
process models in this section. More precisely, we present the documentation generated for the 1.3
Box_TD_WL product variation presented in Figure 8.9. In such a product variation, a piece of fabric
and two single dividers are glued, and after the glue is dried, the fully wooden lid is placed. These
are five sequential process steps enriched with all the necessary details required for generating the
manufacturing documentation.

=,

i start)
r
| 1 ! & PAR PAR
@ #] + +
Move to Move to Move to Move to Move to Move to Move to Move to Move to Move to
smart shelf smart shelf 9 smart shelf smart shelf 9 smart shelf smart shelf 9 smart shelf smart shelf ﬂ smart shelf smart shelf 9

Determine
location

Determine

location

Determine
location

Determine
location

i Q@ Pck L8 planks and
wooden dowel pins

i Qg Pick R-U planis and

wooden dowel pins

i Q@ Pick L8 plaris and
wooden dowel pins

[Qg Pk R-U plariks and

wooden dowel pins

i Q@ Pick L8 plarks and
wooden dowel pins

3 Qg Pick R-U planks and
wooden dowel pins

i Q@ Pick L8 planis and

wooden dowel pins

I @ Pk R-U plaris and

wooden dowel pins

i Q@ Pick LB planks and

wooden dowel pins

i Q@ Pk R-U plaris and

wooden dowel pins

B Pick left r . Pick right Pick left F . Pick right Pick left e . Pick right Pick left . Pick right Pick left . Pick right
side @ | ©Dsice !"- side @ side 9 side @ side ﬂ side @ side !X side @ side ﬂ
-y g) + i s # - 3
Pick bottom | . Pick upper Pick bottom . Pick upper Pick bottom ‘ Pick upper Pick bottom . Pick upper . Pick bottom!| . Pick upper
side ‘ side 9 side side 9 side side 9 side side ﬁ side side ﬂ
+ ") & # 5
Pick woode: Pick woodel Pick wooder Pick woode! Pick woodel Pick woodes Pick wooder Pick woodel Pick wooder Pick woode
dowel pins @ dowel pins !5- dowel pins @ dowel pins dowel pins G dowel pins dowel pins dowel pins ﬁ dowel pins dowel pins n
" .. Move to assem Move to assem Move to assem s Move to assem| : Move 1o assem, Move to assem. Move to assem. Move to assem. Move to assem Move to assem.
table 1 table 1 table 1 @ table 1 ﬁ table 1 table 1 !’* table 1 e table 1 9 table 1 table 1 ﬂ
Determine Determine De\ermme Determine
location location locauon 9 location

&
. Insert pins in
bottom side

. Insert pins in
upper side

Insert pins in
bottom side

Assemble
L-B sides

Assemble
R-U sides

Assemble

frame

Assemble
L-B sides

. Insert pins in
upper side

Assemble
R-U sides

PAR,

Assemble
frame

.Imen pins in
bottom side

Assemble
L-B sides

.
.lnsert pins in
ippersie |ER

Assemble
R-U sides

0

PAR

Assemble

frame

!.lmert pins in
bottom side @

Assemble
L-B sides

Insert pins in
apperside | G

|

. Insert pins in
bottom side @

Assemble
R-U sides

Assemble
frame

Assemble
L-B sides

Insevt pins in
upper side

Assemble
R-U sides

Assemble

frame

Figure 8.12. An example of monitoring the execution of the Assemble frame DetL sub-process model.

-~V

GpT URTOIdNINIA PUe UoNN|oS AIA 8y} Jo uoneoljddy

146 Application of the MD Solution and MultiProLan

From the Glue fabric and dividers and place lid MasL sub-process model, BOM, BOMO,
ASME FPC, and JBS documentation is generated. We start with the BOM document generated
from the model. First, in Figure 8.13, we present a template used for the automatic generation of
BOM documents. The BOM template represents a table with labels, presented as black-colored
text, and variables, presented as red-colored text. Labels are the same in any BOM document, but
variables depend on the values stored in a process model. The BOM template has a header with
three variable sections:

e a checkbox for whether a process is proposed or present, depending on the value of the
isProposedProcess attributed to a process;

e the name of the final product or parameter, based on the result of the findFinalProductName
function; and

e acompany name retrieved from a process model.

The findFinalProductName function iterates through all products and process parameters of
the chosen product variation and finds the one that has the isFinal attribute with the true value. The
body or the main part of the BOM document is represented by a hierarchy level, a product (i.e., an
output product in a process step), a component (i.e., an input product in a process step) that is a part
of the product, and quantity of the component in the product. To display all products and
components in the correct hierarchy order, an algorithm in Documentation Generator finds the final
product in a process model, searches back all related input and output products in the process model,
and connects them in an array of product-component objects. Each product-component object has
a hierarchy level, calculated by the algorithm, a product, and a related component, with the quantity
of that component in the product. Each product-component object is displayed in the BOM
document. In the first column, the calculateDots function returns dots depending on the hierarchy
level and merges them with the hierarchy level of the product-component. A product name, a
component name, and the component quantity are displayed in the following columns. The BOM
document ends with its footer, containing the authors of the process model and the date of the
process model creation, both values retrieved from the process model.

Based on the Documentation Generator algorithms and the presented template, BOM
documents can be automatically created from process models. An example of the automatically
generated BOM document from the Glue fabric and dividers and place lid MasL sub-process model
(product variation 1.3) is presented in Figure 8.14. BOMO and ASME FPC documents are
automatically generated in a similar manner; thus, we do not present their templates. Examples of
BOMO and table formatted FPC of the same process model and product variation are presented in
Figure 8.15 and Figure 8.16, respectively.

BOMO and ASME FPC documents have the same header and footer sections as the BOM
document, and only the body section is different. Both BOMO and ASME FPC generators begin
with the same algorithm that goes from the start of a process model to the end of the process model,
detects each process step of the chosen product variation, and adds an appropriate identifier. The
first column of BOMO and ASME PFC documents is the process step identifier, starting with the
value ten, and each new process step identifier increments by ten. Next, a process step hame and
work center (i.e., an abstract work center, not the specific one that is to be added by Orchestrator in
DetL models) columns are defined. Other columns are different in BOMO and FPC documents.
BOMO documents have the following columns: estimated duration of creating a product in minutes,
materials (i.e., input products in a process step) and their quantity needed to create the product, and
the product (i.e., an output product in a process step) with its quantity. The following columns of
ASME FPC documents are related to a process step type, i.e., whether a process step is an operation,
an inspection, transportation, a delay, or storage. There is an empty symbol for each process step
type, and they are filled whenever a process step is of that type. For example, the Glue fabric process
step is an operation, but it also has a storage symbol filled, as some of the input products are to be
retrieved from storage. Another example is the Wait for glue to dry process step, which is of the
delay type only.

BOM chart

IF «process.isProposedProcess»
THEN Proposed Process checked
IF «!process.isProposedProcess»
THEN Present Process checked

Final Product

«findFinalProductName()»

«process.company»

Hierarchy Level

Product

Component

Quantity

«calculateDots(productComponent.level)

+ productComponent.level»

«productComponent.product.name»

«productComponent.component.name»

«productComponent.component.quantity»

Author

Date

<<pl’OCBSS.‘dUThOD>

«process.date»

Figure 8.13. The BOM template used by Instruction Generator.

BOM chart Proposed Process Final Product FIN
Present Process Box
Hierarchy Level Product Component Quantity
1 Box Wooden lid 1
1 Box Frame with dried glue 1
2 Frame with dried glue Frame with dividers 1
.3 Frame with dividers Single divider 1
.3 Frame with dividers Frame with single divider 1
4 Frame with single divider Single divider 1
4 Frame with single divider Frame with fabric 1
5 Frame with fabric Fabric 1
.5 Frame with fabric Inspected frame with back side 1
Author Date
Marko Vjestica 2.1.2023.

Figure 8.14. An automatically generated BOM document from the Glue fabric and dividers and place lid MasL sub-process model.

LT UBTTOIdIINIAL PUB UOBN|OS QIAl 3Y} JO uoned|ddy

o Final Product
BOMO chart Proposed Process FIN
Present Process Box
Process Step ID Process Step Name Work Center Duration (min/item) Material Product
10 Glue fabric Assembly table 0.30 L Iuspe_cted frame with back side x1 1. Frame with fabric x1
2. Fabric x1

20 Glue single divider Assembly table 0.20 L F%'ame “tm.] fabric x1 1. Frame with single divider x1

= 2. Single divider x1 =
30 Glue single divider Assembly table 0.20 L F%'ame “:m.] single divider x1 1. Frame with dividers x1

= 2. Single divider x1
40 Wait for glue to dry Assembly table 0.50 1. Frame with dividers x1 1. Frame with dried glue x1
< i . ! 1. Frame with dried glue x1
50 Place wooden lid Assembly table 0.10 3 Wooden lid x1 1. Box x1

Author Date
Marko Vjestica 2.1.2023.

Figure 8.15. An automatically generated BOMO document from the Glue fabric and dividers and place lid MasL sub-process model.

- Final Product
FPC chart Proposed Process FIN
Present Process Box
Process Step ID Process Step Name ‘Work Center Operation Inspection Transport Delay Storage
10 Glue fabric Assembly table . D => D V
20 Glue single divider Assembly table [] L] = D v
30 Glue single divider Assembly table o L] = D \4
40 Wait for glue to dry Assembly table O L] = » Y4
50 Place wooden lid Assembly table . D => D V
Author Date
Marko Vjestica 2.1.2023.

Figure 8.16. An automatically generated ASME FPC document from the Glue fabric and dividers and place lid MasL sub-process model.

UBTTOIdIINIA| PUB UOKN|OS QIAI 8Yp JO uoneolddy 8T

Application of the MD Solution and MultiProLan 149

Another automatically generated documentation type is JBS, whose documents can be used as
work instructions for human workers. Before the automatic generation of the JBS document from
the Glue fabric and dividers and place lid MasL sub-process model (product variation 1.3), we
added two key points to the Glue fabric process step, presented in Figure 8.17 to demonstrate the
usage of key points in JBS. Key points can be added to any process step, providing workers with
additional information on how to perform a process step, but to make the model simple, we only
present key points in a single process step. The first key point, with the icon of the thumb up,
provides information that the glue areas must be clean to perform the process step successfully.
Another key point, with the icon of thumb down, provides information that there must be no air
bubbles after gluing the fabric, indicating what can go wrong. Key points can be added to a process
model when the key point modeling layer is turned on.

An example of the automatically generated JBS document is presented in Figure 8.18. It has
the same header and footer sections as previously presented document types, with the footer
extended by indicators of what each key point type means. The main section has the following
columns: an image of a process step, a process step identifier, such as the one presented in BOMO
and ASME FPC, with a process step name, a key point icon, and a key point description. If there is
no key point for a process step, the key point icon and description are replaced with the message
that there are no key points for a process step.

The last document type that we automatically generate from process models is PFMEA.
Potential production errors and failures must be modeled to generate a PFMEA document.
Production errors can be specified both at the level of MasL and the level of DetL. Any error
specified in the MasL process model needs to be propagated to the related DetL process model by
Orchestrator. However, some errors need to be specified manually by process designers, as different
process steps are added or changed in the DetL model, such as transportation and configuration
steps. It is not always possible to automatically enrich process models with production errors, as
Orchestrator does not always have the additional domain knowledge required to do it. For example,
new production errors that can occur during transportation activities need to be added manually, as
process designers possess the required domain knowledge, i.e., in which situations certain errors
may occur.

To demonstrate the manual creation of production process errors and the automatic generation
of the PFMEA documents, we added two errors into the Assemble frame DetL process model. In
Figure 8.19, we present only part of the Assemble frame DetL model with two errors specified in
the Insert pins in bottom side process step to keep the model readable while presenting all relevant
language concepts. Products and capabilities are hidden from the diagram as well to make it more
readable. There are two errors with local error handlers added to the Insert pins in bottom side
process step, each error having the same corrective process steps. The first error is related to the
case when, due to excessive use of force, the bottom-side plank cracks; thus, the plank cannot be

-
) \ Start |

. { 5/ IN: Fabric s

A 4 Width = 0.9 m
l IN: Inspected frame with back side] Length = 0.4 m
Width = 1 Thickness = 0.001 m
idth=1m)
Length = 0.5 m \>— { —]
Thickness = 0.2 m \ Glue
fabric _Lmethod : full J

[OUT: Frame with fabric

Width = 1 m
Length = 0.5 m
Thickness = 0.2 m

L X 1 J

Figure 8.17. The Glue fabric process step key points.

150 Application of the MD Solution and MultiProLan

used further. The second error relates to the case when holes are badly drilled; thus, wooden pins
cannot be inserted appropriately. If any of these errors occur, the same sequence of corrective
process steps is to be performed. The human worker needs to discard the bottom-side plank to the
recycle bin near the assembly table, then move to the smart shelf, and pick a new bottom-side plank.
After the human worker performs these error handling process steps, the process execution returns
to the regular flow of process steps, meaning that the human worker needs to move to the first
assembly table again and insert wooden dowel pins into the new bottom-side plank. The process
execution then continues its regular flow. All these errors and error handlers are modeled within
Error Handling Layer. The layer can be turned off so that the diagram becomes more readable
compared to when the layer is turned on.

10. Glue fabric

Final Product
JBS chart Proposed Process FIN
Present Process Box
Process Step Key Points Explanations
I‘ Glue areas must be clean.

There must be no air bubbles after gluing the fabric.

20. Glue single divider

Process step has no key points.

30. Glue single divider

Process step has no key points.

40. Wait for glue to dry

Process step has no key points.

50. Place wooden lid

Process step has no key points.

Author

Date

Marko Vjestica

2.1.2023.

o - Complete Job

M _ Complete Job Easier
"% - Break Job

A - Injure Worker

Figure 8.18. An automatically generated JBS document from the Glue fabric and dividers and
place lid MasL sub-process model.

Application of the MD Solution and MultiProLan 151

Move to assem.
| table 1 @
Pick bottom
side @

3

Move to
smart shelf

Discard - Insert pins in
bottom side @ bottom side @

t]

Figure 8.19. The Insert pins in bottom side process step errors and error handler process steps.

In Figure 8.20, we present the automatically generated PFMEA document based on the errors
modeled in the Assemble frame DetL sub-process model. The PFMEA document has the header
and the main sections. The header section includes an item or a process name, a core team or process
authors, and a key date or a process creation date. These values are automatically generated from
the process model. Other attributes in the header section have placeholders to be filled in later. The
main or the body section has columns related to potential failures, mostly described in Section 7.2.4.
These columns are a process step hame, failure (i.e., error) mode, effect, severity, classification,
cause, occurrence, prevention, detection description, and detection value, all generated from an
error. The last filled column is the Risk Priority Number (RPN), calculated in Documentation
Generator by multiplying severity, occurrence, and detection values. RPN indicates whether an
error is severe enough to take some recommended actions to reduce its severity or occurrence or
become more easily detectable. A company can define a threshold for when to take some actions to
reduce the effect of an error. The following columns of the document are empty as they require
recommended actions to be applied and new values to be measured. At the time of the PFMEA
generation, these recommendations have not been applied yet.

We developed Documentation Generators to generate documents of five different types
automatically. Adding new generators to automatically generate documents of new types is
possible. To achieve the automatic generation of documents of new types, the MultiProLan meta-
model can be extended, new documentation templates created, and new algorithms, i.e.,
transformation rules, implemented. By extending our solution with new Documentation Generators,
various standards and regulations requiring certain documents in a company can be fulfilled, and
the number of manual tasks performed by process designers can be lowered.

Item: Assemble frame

Potential
Failure Mode and Effect Analysis
Process FMEA

Process Responsibility:

FMEA number:
Page: 1 of |

Prepared By:

Model Year(s)/Programs(s): Key Date: 2.1.2023. FMEA Date: (Orig.) (Rev.)
Core Team: Marko Vjestica
£ ° Current Control Action Results
Process Potential Potential z = Potential Cause(s) g : ; Responsibility 4 =
; £ S g £ Z | R ded P ; & z g .
Function Failure Effect(s) of § '-E / Mechanism(s) of g .) 4 ~ ecnm.men ® and Target Actions = S £ z
N 1 T] : 2 Prevention Detection -] o Action(s) : g = 2 a
Requirements Mode Failure > z Failure 2 = Completion Date | Taken z E 2 5
= ~ - B 2 2 -
~ Q =]
Insert pins in Bottom.side Blorrom and left Excessive use of Add worker's
. plank has | sides cannot be 10 A - 2 L - 1 20
bottom side force training
been cracked assembled =
Bottom and left Add additional | Add additional
Insert pins in Holes has sides may not tests after check of wooden
s been badly - 8 B Badly drilled holes 3 5 ¢ . 3 72
bottom side i be properly ! bottom sides are | dowel pins after
made M C X
assembled made their insertion

Figure 8.20

. An automatically generated PFMEA document from the Assemble frame DetL sub-process model.

UBTTOIdIINIA PUB UOKN|OS QIAI 8Yp JO uoneolddy ZGT

Application of the MD Solution and MultiProLan 153

8.2 Demonstration Environment with LEGO® Bricks

The demonstration environment, with its topology presented in Figure 8.21, comprises a fenced
area with two AGVs, two smart shelves, and two material areas. A human worker and an assembly
table are located outside the fenced area. Each smart shelf stores LEGO® bricks of various colors
and sizes needed for assembly. With the notion of AGV in Figure 8.21, we denote three types of
resources that can be placed in the environment: a research-grade smart robot, a cobot, or an
industrial mobile robot. An AGV moves inside the fenced area, picking LEGO® bricks from a smart
shelf and placing them on a material area. Therefore, AGVs are used to retrieve bricks from storage
and bring them close to the human worker in charge of the assembly, creating a human-machine
collaboration through material handling. LEGO® bricks of different types are stored on smart
shelves, and depending on the final product, required bricks may be retrieved from both shelves if
needed. The human worker picks bricks from material areas and assembles them on the assembly
table. The table has a brick pedestal on which LEGO® bricks can be assembled. Both material areas
are positioned between AGV and human worker areas, making it possible for AGVs and the human
worker to pick and place bricks in the area while adhering to all necessary safety protocols and
measures in place. Even if AGVs are cobots, having multiple sensors to detect objects around them,
we separated cobots from the worker with the fence, as we want to lower the influence of complex
safety mechanisms on the demonstration.

In the following subsections, we discuss two test scenarios performed in the demonstration
environment (see Section 8.2.1). Afterward, we present MasL and DetL process models of
assembling a flag out of LEGO® bricks in such an environment (see Section 8.2.2). Production
process models of assembling a flag out of LEGO® bricks were already presented in [13], and in
this thesis, they are discussed in more detail.

8.2.1 Test Scenarios Performed in the Demonstration Environment

The presented assembly demonstration environment is created to test the core functionalities of our
MD solution and MultiProLan. Process Modeling Tool utilizing MultiProLan is used to create
production process models of the brick assembly. From such models, machine-specific instructions
are generated and sent to AGVs. Also, human-readable instructions are generated and sent to the

Material
Area l

|
|
v

BR

ETQ

« — — > SEES o — —

Smart)
Shelf 1 AGV 1

Eiis i Assembly
Worker Table
4
|
_ |
Material
Smart) Area2
Shelf 2 AGV 2

Figure 8.21. The scheme of assembly demonstration environment.

154 Application of the MD Solution and MultiProLan

human worker when required. The human worker uses a tablet or a smart watch to receive
instructions and send feedback. Therefore, in this use case, multiple components of our solution are
used:

e Process Modeling Tool and MultiProLan are used by process designers to create MasL
process models;

o Orchestrator is used to automatically transform MasL into DetL process models;

e Instruction Generator is used to automatically generate high-level instructions from DetL
process models;

o Digital Twin with embedded protocol transformation components is used to transform
high-level instructions into machine-specific and human-readable instructions; and

o the tablet or smart watch applications are used by the human worker to receive instructions
and provide feedback.

It should be pointed out that Orchestrator, Digital Twin with embedded protocol
transformation components, and the tablet and smart watch applications are developed as part of
related research and development efforts as described in Pisari¢ et al. [4,5], but not as part of this
research. Instead, we consider them as black box components in this thesis.

The Digital Twin visualization, presented in Figure 8.22, is developed by using the Gazebo
simulator [229,230]. It reflects the physical, real demonstration environment in which we tested our
solution. There are two test scenarios we used in such a demonstration environment.

The first test scenario includes research-grade smart robots as AGVs, presented in Figure 8.23.
These robots use ROS [227,228] and each high-level instruction sent to Digital Twin is then
transformed into ROS-based instructions specific to such robots. Research-grade smart robots are
used to pick and place required LEGO® bricks in this test scenario, but we also tested them to
assemble objects from LEGO® bricks.

The second test scenario includes industrial mobile robots as AGVs, presented in Figure 8.24.
These robots are used in the real production of assembling various products. They can pick, place,
and assemble different objects and we tested them by using our solution. The solution generated
high-level instructions, which are then transformed into specific ROS instructions understandable
by a digital twin of a specific robot. The digital twin then transforms these ROS instructions into
machine-specific instructions. The robots do not have a machine vision module installed; thus, they
must calibrate themselves each time they move between shelves and material areas to determine
their position. Both research-grade smart robots and industrial mobile robots receive instructions

Figure 8.22. The digital twin of assembly demonstration environment.

Application of the MD Solution and MultiProLan 155

Figure 8.23. The assembly demonstration environment with research-grade smart robots.

wirelessly via an appropriate protocol and in a similar manner they send the execution status and
feedback to our MD system.

A human worker that is a part of both test scenarios, receives instructions through a tablet or a
smart watch, with process steps descriptions, images, audio, and videos. After each instruction

Figure 8.24. The assembly demonstration environment with an industrial mobile robot.

156 Application of the MD Solution and MultiProLan

execution, the human worker must confirm the execution status through the same device the
instructions are received.

In both test scenarios, the same process models are used to create objects from LEGO® bricks.
In the following section, we present MasL and DetL models of assembling a flag from LEGO®
bricks.

8.2.2 Assembling a Flag from LEGO® Bricks

In this section, we present an example of assembling a flag from LEGO® bricks. The flag is to be
made using three bricks of different colors. They are assembled one on top of another, making a
sequence of activities — the bottom brick must be first assembled on the brick pedestal, then the
middle brick on the top of the bottom brick, and, in the end, the upper brick on the top of the middle
brick.

The MasL process model of assembling a flag, created by a process designer, is presented in
Figure 8.25. This process model represents a sequence of assembly process steps, starting with the

2775

v IN: White brick
Width = 0.016 m

\h_’l
Length = 0.016 m -
Thickness = 0.011 m|™~_ S/ OUT: Partial flag 1]

F \
{ Start)
\ U

m::r;lo;oolzassggs Assemble Width = 0.016 m

e L white brick Length = 0.016 m

1 — Thickness = 0.011 m
Assemble (Mass = 0.0025 kg

dx:0

dy:0

dz:0

v IN: Blue brick

Width = 0.016 m

Length = 0.016 m -

Thickness = 0.011 m </ OUT: Partial flag 2

et | ") Assemble Width = 0.016 m

Ul 5 o blue brick Length = 0.016 m

— 5 Thickness = 0.022 m

Assemble (Mass = 0.005 kg

dx:0

dy: 1

dz: 0

v IN: Red brick

Width = 0.016 m

Length = 0.016 m -

Thickness = 0.011 m \ S/ OUT: Flag

m:::ri:alo;oolzass;?s " Assemble Width = 0.016 m

il red brick Length = 0.016 m

3 - . Thickness = 0.033 m
Assemble (Mass = 0.0075 kg

dx:0

dy:2
dz: 0

Figure 8.25. The MasL process model of assembling the red-blue-white flag out of LEGO®
bricks.

Application of the MD Solution and MultiProLan 157

assembly of a white LEGO® brick. The Assemble white brick process step has an input product
representing a white brick that needs to be retrieved from storage. It has the following constraints:
(i) dimensions, i.e., width, length, and thickness; (ii) mass; (iii) material; and (iv) color. These
constraints are considered by Orchestrator when it matches appropriate resources with assembly
process steps. In both test scenarios, AGVs can pick, place, and assemble LEGO® bricks having the
presented constraints. The Assemble white brick process step has the Assemble capability with
parameters representing relative coordinates where to assemble a brick related to the brick pedestal.
Therefore, the white brick needs to be assembled on the center of the brick pedestal. The output
product of the Assemble white brick process step is the partially assembled flag, having only the
white LEGO® brick. The storage icon on the output product means that the product is to be placed
in storage, or in this case, on the top of the brick pedestal located at Assembly Table. The constraints
of such an output product are dimensions and mass equivalent to the ones of the white brick.

The following process step in the assembly sequence is the assembly of a blue LEGO® brick.
The Assemble blue brick process step has a blue brick as an input product that needs to be retrieved
from storage, similar to the previous process step input product, with the value of color constraint
as the only difference. The process step has the Assemble capability with parameters similar to the
capability of the previous process step. The only difference is in the dy relative coordinate, meaning
that the blue brick is to be assembled on the previously assembled white brick. The output product
of the Assemble blue brick process step is the partially assembled flag, having blue and white
LEGO® bricks, placed on the brick pedestal. The width and the length of this partially assembled
flag are the same as it is in the output product of the previous process step. However, as the blue
brick is added on top of the previously partially assembled flag, the thickness and the mass of the
output product are doubled.

The final process step in the assembly sequence, before the process ends, is the assembly of a
red LEGO® brick. The Assemble red brick process step has a red brick as an input product that
needs to be retrieved from storage, similar to the input products of the previous two process steps.
The process step has the Assemble capability, with parameters similar to the ones of the previous
two process step capabilities, differencing only in the dy relative coordinate, meaning that the red
brick is to be assembled on top of the previously assembled blue brick. The output product of the
Assemble red brick process step is the final product — the red-blue-white flag out of LEGO® bricks,
placed on the brick pedestal. In comparison to the output product of the previous process step (i.e.,
the partially assembled blue-white flag), the width and the length of the red-blue-white flag are the
same, but the thickness and the mass are higher as the red brick is added on the top of the previously
partially assembled flag.

To execute a process automatically, a MasL process model needs to be transformed into a DetL
process model related to the specific production system in which the process is to be executed. In
our case, the production system is one of the discussed test scenarios in the demonstration
environment. The previously modeled MasL process model is sent to Orchestrator to automatically
create the DetL process model, presented in Figure 8.26. Products and capabilities are specified in
the DetL process model but are hidden from the diagram to make it more readable. In the rest of
this section, we discuss the DetL process model and production of the final product.

In our demonstration environment, for this particular case of assembling the red-blue-white
flag out of LEGO® bricks, white bricks are stored on Smart Shelf 1, while blue and red bricks are
stored on Smart Shelf 2. Therefore, AGV 1 needs to retrieve a white brick from Smart Shelf 1,
while AGV 2 needs to retrieve blue and red bricks from Smart Shelf 2. The DetL process model
starts with a parallelism gate, representing the retrieving of LEGO® bricks done in parallel by
AGVs. In the left-hand side branch between parallelism gates, the retrieving of the white brick is
modeled. First, AGV 1 needs to move to Smart Shelf 1 and determine its location. After the
configuration activity is finished, AGV 1 needs to pick a white brick and place the brick in its local
storage. AGV 1 then moves to Material Area 1, determines its location, picks the white brick from
its local storage, and places the brick on Material Area 1. In the right-hand side branch between
parallelism gates, AGV 2 needs to pick blue and red bricks from Smart Shelf 2 and place them on
Material Area 2. These activities are similar to the ones in the left-hand side branch, with the only

158 Application of the MD Solution and MultiProLan

difference being that AGV 2 needs to pick two bricks after moving to Smart Shelf 2 and place both
of them after moving to Material Area 2.

After red, blue, and white bricks are placed on the material areas, the human worker needs to
move to Material Area 1, pick the white brick, then move to Material Area 2, and pick blue and red

27T

\
\ Start)
h /

157}

B Move to
smart shelf 1

[E
Determine
location 9

|

W Pick white
brick

}

+
Place white
brick

=+

Move to
material area 1

$

|

:
Determine
location

}

S Fick white
brick

|

+
Place white
brick

= = B

+/
Move to
smart shelf 2

}

2] :
Determine
location

}

B Pick blue
brick

}

+
Place blue
brick

}

+
Pick red
brick

l

§ Place red
brick

|

SIS

Move to
material area 2

4

| pa Determine
location

|

= o Pick blue
brick

l

i Place blue
brick

}

£
Pick red
brick

|

+
Place red
brick

s3] 3] 3]s

PAR

Move to
material area 1

W

I}

" Pick white
brick

W

5]

Move to
material area 2

W

|

* & Pick blue
brick

|

+
Pick red
brick

l

© @

)

Move to
assembly table

W

|

E Assemble
white brick

|

F
Assemble
blue brick

|

P Assemble
red brick

© @ @

Figure 8.26. The DetL process model of assembling the red-blue-white flag out of LEGO®

bricks.

Application of the MD Solution and MultiProLan 159

bricks. The human worker then needs to move to Assembly Table and assemble white, blue, and
red bricks in that order, producing the red-blue-white flag out of LEGO® bricks.

By using Instruction Generator, high-level instructions can be automatically generated from
the DetL process model, after they are transformed into machine-specific instructions for AGVs
and human-readable instructions for the human worker. All these high-level and resource-specific
instructions are similar to the ones presented in Section 8.1.3, and thus they are not presented in
this section. After executing resource-specific instructions by the resources in our demonstration
environment, the red-blue-white flag out of LEGO® bricks is produced, as presented in Figure 8.27.

8.3 Summary

In this section, we presented the application of our MD solution with a focus on MultiProLan and
Process Modeling Tool. Thus, we aimed to make a proof-of-concept of our solution for production
process modeling and execution. We modeled various production processes in the assembly
industry, and some of these models were presented in this section through the use cases. Based on
our experience in production process modeling, one of the biggest challenges when using a
modeling language with concrete graphical syntax is the readability of process diagrams. When
there is a relatively complex production process model with many process steps, or there are too
many errors that need to be specified, or there are numerous product variations present in a process
model, the process diagram becomes overwhelmed with details. We managed to deal with the model
diagram complexity through different MultiProLan concepts created for such a purpose and through
various mechanisms implemented in Process Modeling Tool, as discussed in this section. The whole
MD solution is tested in our demonstration environment, but to model and execute more complex
production processes, especially in the industry outside the assembly domain, the MD solution,
including MultiProLan and Process Modeling Tool, would need to be further developed.

Based on the experience we gathered while modeling various production processes in different
assembly use cases, we believe that MultiProLan and Process Modeling Tool can be used in practice
as:

Figure 8.27. The produced red-blue-white flag out of LEGO® bricks.

160 Application of the MD Solution and MultiProLan

the main concepts needed for production process modeling are covered;

the language and the tool are easy to use;

their process models are readable and understandable;

users are protected from making errors during modeling; and

users are provided with mechanisms to deal with the model diagram complexity.

However, besides applying MultiProLan and Process Modeling Tool in the assembly use
cases, providing a proof-of-concept and presenting our experience, they must be tested by other
users. Therefore, MultiProLan and Process Modeling Tool were evaluated by users from various
user groups. In the following section, we present the results of the evaluation process, in which
users tested whether MultiProLan and Process Modeling Tool can be used in practice by
investigating the following quality characteristics: functional suitability, usability, reliability,
expressiveness, and productivity. We gathered useful feedback from the evaluation participants,
which helped us improve MultiProLan and Process Modeling Tool.

Evaluation of MultiProLan and Process Modeling Tool 161

9 Evaluation of MultiProLan and Process Modeling
Tool

Users of various profiles need to be included in the evaluation process to systematically evaluate a
language and a modeling tool and gather broader feedback. According to Salman et al. [242], when
applying new technology or a new approach in a software engineering experiment, there is no
significant difference whether students or professionals are involved. Thus, we included researchers
and students from the academic community, as well as process engineers and software developers
from the industry in the evaluation process. Each participant type has different skills related to the
production process modeling and tool development. We created an experiment in which participants
evaluated MultiProLan and Process Modeling Tool based on their functional suitability, usability,
reliability, expressiveness, and productivity characteristics. We also evaluated implementation-
related characteristics, such as maintainability, extensibility, reusability, and integrability. Quality
characteristics evaluated by participants are analyzed, and conclusions on how to improve
MultiProLan and Process Modeling Tool are presented in this section.

In this section, we discuss: (i) the experiment objective and hypothesis (see Section 9.1); (ii)
the experiment participants (see Section 9.2); (iii) the experiment preparation and execution (see
Section 9.3); (iv) the experiment results and data analysis (see Section 9.4); (v) an overview of other
quality characteristics (see Section 9.5); (vi) threats to validity (see Section 9.6); and (vii) a
summary of the evaluation process (see Section 9.7). The evaluation results were already presented
in [11].

9.1 Experiment Objective and Hypothesis

MultiProLan is used in a small-scale assembly use case [13] and is developed iteratively based on
the process designers' feedback. As we plan to apply MultiProLan in additional industry use cases,
various users, such as students, researchers, software developers, and process engineers, have
participated in the evaluation process.

To evaluate MultiProLan and Process Modeling Tool, we applied the Framework for
Qualitative Assessment of Domain-specific languages (FQAD) [101] and chose a subset of the
proposed characteristics already being applied to a DSML evaluation [243]. The framework has
been used to determine the evaluator's perspective on fundamental DSL quality characteristics and
to guide the evaluator through the evaluation process. These characteristics are adapted and
integrated from the international system and software quality standard ISO/IEC 25010:2011 [244].

Participants of the experiment evaluated their experience in using MultiProLan based on the
following characteristics:

e functional suitability — a degree to which MultiProLan supports developing solutions to
meet the needs of the production process modeling domain;

162 Evaluation of MultiProLan and Process Modeling Tool

e usability — a degree to which users can use MultiProLan to achieve specified goals;

o reliability — a property of MultiProLan that aids in productizing reliable programs, i.e.,
model checking ability;

e expressiveness — a degree to which a problem-solving strategy can be mapped onto a
program naturally; and

e productivity — a characteristic related to the number of resources that users spend to
achieve specified goals.

Other characteristics proposed in FQAD also need to be analyzed; however, these
characteristics require implementation knowledge. Thus, they are discussed and evaluated by the
authors of MultiProLan. These characteristics are:

e maintainability — the degree to which MultiProLan is easy to maintain;

e extensibility — the degree to which MultiProLan has general mechanisms for users to add
new features;

e reusability — the degree to which MultiProLan's constructs can be used in more than one
language; and

e integrability — the degree to which MultiProLan is amenable to integration with other
languages.

This experiment was created to evaluate the user experience with MultiProLan based on the
presented characteristics. The experiment's goal is to check whether MultiProLan can be used in
practice in the domain of Industry 4.0 assembly production, with positive user experience from
different user groups. Thus, we investigated the following hypothesis.

EHnui — MultiProLan can be used in practice as it has all the following quality
characteristics: functional suitability, usability, reliability, expressiveness, and
productivity.

EHa: — MultiProLan cannot be used in practice as it does not have one or more of the
following quality characteristics: functional suitability, usability, reliability,
expressiveness, or productivity.

We may confirm the EHaui hypothesis if there is more than 50% of positive feedback from the
evaluation participants per each quality characteristic. If there is a single quality characteristic that
does not have more than 50% of positive feedback, we may reject the EHqui hypothesis and confirm
the EHai hypothesis. The way that positive feedback is calculated is discussed in Section 9.3.

9.2 Experiment Participants

At the time of the experiment execution, all participants had at least a B.Sc. in computer science.
There were 25 participants in the experiment, and they can be categorized into four disjunct groups:

e process engineers — participants who are experienced in production process modeling;

o software developers — participants who are experienced in the engineering of various
modeling tools;

e researchers — participants with Ph.D. in computer science, most of which are experienced
in business process modeling; and

e students — M.Sc. and Ph.D. students with previous experience in process modeling.

In the first group, there were 2 participants who were experts in production process modeling.
These two process engineers are not the same as those who participated in language development.
In the second group, there were 5 participants who tested and developed modeling tools in the
industry. In the third group, there were 6 participants who investigated different areas of computer
science and possessed experience in business process modeling. In the fourth group, there were 12
students — 5 M.Sc. students and 7 Ph.D. students who all had experience in process modeling using

Evaluation of MultiProLan and Process Modeling Tool 163

BPMN, UML, and PN. All the students attended master's courses covering business process
modeling and domain-specific modeling and languages.

9.3 Experiment Preparation and Execution

Due to the pandemic of COVID-19, we had to perform the evaluation experiment online via video
conferencing tools. We performed the experiment in a controlled environment where each
participant did the evaluation separately. The whole experiment lasted about 90 minutes per person.
The evaluation process was divided into five phases, and each participant had:

e an overview of the experiment (about 10 minutes);

e anintroduction to the production process modeling (about 10 minutes);

e adocument that represents the MultiProLan and Process Modeling Tool tutorial (about 15
minutes to read the document);

e a document that includes tasks that participants need to accomplish (about 45 minutes to
finish the tasks); and

e aquestionnaire to evaluate MultiProLan (about 10 minutes).

The tutorial was composed of two parts: (i) the MultiProLan's modeling concepts; and (ii) the
Process Modeling Tool usage. As the participants were unfamiliar with MultiProLan, we had to
describe its basic modeling concepts in the form of an online live tutorial. Afterward, the Process
Modeling Tool user interface was described, and a brief description of how to use the tool was
given to the participants.

The tasks that participants needed to accomplish were given in the form of functional
requirements, presented in Appendix A, alongside the solution of the tasks. The requirements were
presented as a textual description of a wooden box production process. The box is composed of
four wooden planks representing different sides of the box and a thin wooden back side. The four
wooden planks need to be assembled into a frame using wooden pins, and the wooden back side
needs to be hammered into the frame, creating the box. First, the left-bottom and right-upper sides
are assembled in parallel, and then these two intermediate parts are assembled into the frame.
Collaborative activities of holding the frame and hammering the back side into the frame need to
be executed after the frame is assembled, creating the box. Afterward, the box needs to be inspected
for any defects, and if a defect is found, the box needs to be discarded. Otherwise, the box needs to
be stored. We chose the wooden box production example as it is composed of nearly all the basic
modeling concepts of MultiProLan and is simple enough so that participants who are inexperienced
with our tool can finish the tasks in a relatively short time. The tasks were composed of the
following:

e creating a MasL process model of the wooden box production;
e adding four different errors in the previously created MasL process model; and
e creating a part of a DetL process model of the wooden box production.

Participants modeled only two parallel branches in the DetL model example, as there are many
details in DetL models, and it would be time-consuming to model them all. Also, all the DetL
modeling concepts are included in these two parallel branches, i.e., resources, storage,
transportation and configuration process steps, and the rest of the DetL. model would be modeled
in a similar way.

Participants had no time limit to finish modeling the example, as we did not measure the
modeling time but the quality of MultiProLan and Process Modeling Tool based on the described
characteristics. During the modeling tasks, participants could ask us any question related to
MultiProLan and the example; however, we did not interfere with how the participants modeled the
given processes.

After participants finished their modeling tasks, they were asked to complete the online
guestionnaire, whose questions are presented in Appendix A. We guaranteed that the gathered

164 Evaluation of MultiProLan and Process Modeling Tool

answers were anonymized and that their data would not be given to third parties. The participants
agreed to these terms and, before answering the questions from the questionnaire, were asked to fill
in their name and e-mail address, so we could contact them if we needed any additional information.
Then, they were asked to choose the participant group they belonged to. The questionnaire was
composed of the following sections: (i) participant's experience; (ii) MultiProLan's quality
characteristics; and (iii) free comments.

In the first section, participants were asked about their experience in business process
modeling, production process modeling, and Computer Aided Software Engineering (CASE) tools
in general. We also asked them to populate which languages and CASE tools they have used. As
there were different groups of users, this information was useful when we analyzed the experiment
results and put the answers in a broader context. For each experience-related question, participants
could choose one answer on a five-level Likert scale ranging from 1 — Inexperienced to 5 —
Experienced.

The quality characteristics we evaluated with participants were functional suitability, usability,
reliability, expressiveness, and productivity. Each of these characteristics represents one of the
groups of questions that are defined in FQAD. Participants also needed to choose one answer to
each question on a five-level Likert scale. For the functional suitability characteristic, this scale
ranged from 1 — Very low to 5 — Very high; for the usability, reliability, and expressiveness
characteristics, this scale ranged from 1 — Strongly disagree to 5 — Strongly agree; and for the
productivity characteristic, this scale ranged from 1 — Long to 5 — Short, as it involved the evaluation
of specification time.

In the third section, participants could leave free-form comments on everything we did not ask
them and make suggestions on how to improve MultiProLan and Process Modeling Tool, which
happened to be particularly useful.

As stated at the end of Section 9.1, we may confirm the EHnui hypothesis if there is more than
50% of positive feedback from the evaluation participants per each quality characteristic. To
calculate the percentage of positive feedback for each quality characteristic, we calculated the
percentage of positive feedback answers on each question related to the characteristic. By the
positive feedback answer, we denote each answer to a question having a value of 4 or 5 on the five-
level Likert scale.

9.4 Experiment Results and Data Analysis

After the participants finished the evaluation process by filling in the questionnaire, we summarized
their answers in Table 9.1. In this table, all the questions with answers presented on a five-level
Likert scale are shown, alongside the percentage of each answer. The questions in Table 9.1 are
divided into the following sections: (i) participants' experience; and (ii) MultiProLan's quality
characteristics: functional suitability, usability, reliability, expressiveness, and productivity. Further
in this section, we discuss the evaluation results. First, we discuss the answers and comments
gathered from the questionnaire. Participants wrote various comments, but we only discuss the ones
that constructively criticized MultiProLan and gave us suggestions on what may be improved. We
do not discuss comments that praised MultiProLan or criticized the user interface related to the
Sirius framework. Then we discuss statistical analysis done on the data gathered from the
guestionnaire.

Table 9.1. The questionnaire statistics.

Experience
Question Inexperienced . Relatl_vely Meo_llum Relayvely Experienced
inexperienced experienced experienced
How would you describe your previous experience in designing business processes? 20% 12% 40% 20% 8%
How would you describe your previous experience in designing production processes? 56% 20% 16% 4% 4%
How would you describfe your previous experience with Computer Aided Software Engineering 8% 20% 28% 28% 16%
(CASE) tools for modeling?
Functional suitability

Question Very low Low Medium High Very high
How Woulq you d_escribe the scope of production process domain concepts and scenarios that can be 0% 0% 0% 64% 36%
expressed in MultiProLan?
How would you describe MultiProLan's level of suitability for the production process specification? 0% 0% 4% 64% 32%

Usability

Question Strongly disagree Disagree No opinion Agree Strongly agree
MultiProLan language elements are understandable. 0% 4% 0% 36% 60%
The concepts and symbols of MultiProLan are learnable and rememberable. 0% 0% 0% 20% 80%
MultiProLan has capability to help users achieve their tasks in an acceptable number of steps. 0% 0% 8% 52% 40%
MultiProLan is appropriate for your needs. 0% 0% 48% 16% 36%
MultiProLan Eclipse environment has elements that facilitate to operate and control the language. 0% 0% 20% 52% 28%
MultiProLan has graphical symbols that are good looking/attractive. 0% 8% 0% 44% 48%
By separating MasL and DetL models, users can model production processes easier. 0% 0% 4% 32% 64%
By creating different modeling layers, models become more readable. 0% 0% 0% 12% 88%

Reliability

Question Strongly disagree Disagree No opinion Agree Strongly agree
MultiProLan protects users against making errors. 0% 0% 16% 60% 24%
MultiProLan has a functional model validator. 0% 4% 28% 32% 36%

Expressiveness

Question Strongly disagree Disagree No opinion Agree Strongly agree
A problem-solving strategy can be mapped into a specification easily. 0% 0% 0% 64% 36%
MultiProLan is at the right abstraction level such that it is not more complex or detailed than 0% 0% 0% 5204 48%
necessary.
MultiProLan provides one and only one good way to express every concept of interest. 0% 12% 20% 48% 20%

Productivity

Question Long Relatively long Medium Relatively short Short

How would you describe the specification time of a production process model with MultiProLan? 0% 4% 28% 52% 16%

GOT 1001 BuljapolA SS820.1d pue ueoidnniA JO uonenjens

166 Evaluation of MultiProLan and Process Modeling Tool

9.4.1 Questionnaire Results

Experience. The participants were mostly medium experienced in business process modeling,
inexperienced in production process modeling, and relatively experienced with CASE tools. For
business process modeling languages, most of the participants stated that they were using BPMN
[30] (17 participants), UML [43] (9 participants), flowcharts [245] (5 participants), PN [46,47] (4
participants), and EPC [53] (1 participant), 3 of them did not answer, and 2 of them answered with
"none". As participants were not experienced in production process modeling, 12 of them did not
answer whether they had used any production process modeling language, and 5 of them answered
with "none". Others stated that they were using BPMN (2 participants), flowcharts, PN, process
sheets [209], FPC [25], BOMO [24], UML, Piping and Instrumentation Diagram (P&ID) [246],
and informal techniques (there was only 1 participant for each of these answers). For the CASE
tools, most participants answered that they were using System Analysis Program Development
(German: Systemanalyse Programmentwicklung, SAP) PowerDesigner [247] (15 participants), and
some of them were using Oracle SQL Developer Data Modeler [248] (6 participants), Camunda
BPM [249] (3 participants), MagicDraw [250] (3 participants), Oracle Designer [251], 11S*Studio
Development Environment [167], Microsoft Visio [252], Yaogiang BPMN Editor [213], AutoCAD
[253], Enterprise Architect [254] (2 participants for each of these answers) and so on. Only 1
participant answered the question with "none", and only 1 participant did not answer the question.

Functional suitability. Most participants evaluated MultiProLan's functional suitability as high
(64% for both questions) or very high (36% and 32% for the first and the second question,
respectively). They have evaluated that the production process domain can be specified by
MultiProLan and that MultiProLan is suitable for production process modeling. However, in the
free comment section, one of the process engineers stated that MultiProLan should support a few
additional features if it is to be applied in the process industry. The same process engineer stated
that production process modeling should also cover safety aspects, especially if there are human-
machine collaborations. Another comment was that capabilities should not be arbitrarily written but
read from a dictionary, as users may write a capability using another natural language or even slang.
Thus, none of the resources could be matched with a process step that the capability belongs to.
Later, as described in this thesis, we created a capability repository to solve such an issue.

Usability. Different questions were specified for the usability characteristic. Participants mostly
agreed or strongly agreed that MultiProLan's elements are understandable (36% agreed, 60%
strongly agreed) and that MultiProLan's concepts and symbols are easily learned and easily
remembered (20% agreed, 80% strongly agreed). In the free comment section, a few participants
left a negative comment on collaboration modeling. It was confusing where to put an output product
of a collaboration between process steps. We plan to improve the modeling concept of collaboration
in the future. One of the participants suggested that we could create a textual syntax for MultiProLan
and test this syntax, as some of the users may find it easier to use. We will consider the creation of
MultiProLan's textual syntax in the future.

As Process Modeling Tool is created with multiple shortcuts that can be used, participants also
agreed that the tool helps users to achieve tasks in an acceptable number of steps (52% agreed, 40%
strongly agreed). However, two participants left a comment that adding constraints and parameters
were the most time-consuming operations. One of them suggested that constraints and parameters
should be added on double-click and that naming patterns could be used to fill in all the attributes
needed. We fully agree with this statement, and we implemented the suggested features in the tool
after the evaluation process was finished.

Nearly half of the participants had no opinion (48%) on whether MultiProLan is appropriate
for their needs, which is expected as most participants did not have much experience in production
process modeling, discussed later in this section.

Participants also had a positive opinion on the Eclipse environment (52% agreed, 28% strongly
agreed) and the attractiveness of graphical symbols (44% agreed, 48% strongly agreed). In addition,

Evaluation of MultiProLan and Process Modeling Tool 167

participants strongly agreed that separating MasL models from production system details helps
users to model production processes more easily (32% agreed, 64% strongly agreed) and that by
creating different modeling layers, models have become more readable (12% agreed, 88% strongly
agreed). Such participants' approval is important as different detail levels and modeling layers are
some of the most significant features of MultiProLan and Process Modeling Tool. In the free
comment section, a few participants stated that utilizing different modeling layers is very useful in
production process modeling. Two of them suggested that additional modeling layers should be
created for products and capabilities, enabling even more flexibility on what users could show on
diagrams. In the past, we discussed this and decided to create a +/- button on a process step to
show/hide capabilities and products. However, with additional modeling layers, this may be done
more efficiently, and we plan to implement and test additional layers in the future.

Reliability. For the reliability characteristic, participants mostly agreed that MultiProLan protects
users against making errors (60% agreed, 24% strongly agreed). They also mostly agreed that
MultiProLan has a functional model validator (32% agreed, 36% strongly agreed); however, there
were participants who did not fully agree with that statement (4% disagreed, 28% had no opinion).
One participant wrote a comment that error messages were not clear enough to solve problems
quickly in a model. In the future, we plan to improve the model validator.

Expressiveness. Participants also agreed or strongly agreed about the first two questions of the
expressiveness characteristic — that a problem-solving strategy can be mapped into a specification
easily (64% agreed, 36% strongly agreed) and that MultiProLan is at the right abstraction level
(52% agreed, 48% strongly agreed). However, the third question about MultiProLan providing one
and only one good way to express every concept of interest had mixed answers (12% disagreed,
20% had no opinion), but still mostly positive (48% agreed, 20% strongly agreed). Such a response
from participants can be partly explained by the difficulty of claiming that MultiProLan provides
only one good way to model production processes for participants with little experience in the
domain.

Productivity. More than half of the participants (52%) stated that the specification time of a
production process model is relatively short by using MultiProLan. Such a statement can be a
consequence of having nearly all the participants experienced with different CASE tools and many
participants experienced with the BPMN language, which has some similar modeling concepts as
MultiProLan. Also, Process Modeling Tool has different shortcuts to shorten the time needed for
the production process modeling.

For each quality characteristic, we summarized the percentages of each question having
positive feedback from participants and calculated the mean values of positive feedback for quality
characteristics. The evaluation participants mostly agreed that MultiProLan has all the
characteristics tested (the calculated mean values of positive feedback per quality characteristics
are given in parenthesis): functional suitability (98.00%), usability (88.50%), reliability (76.00%),
expressiveness (89.33%), and productivity (68.00%).

9.4.2 Statistical Analysis of the Questionnaire Answers

By using the SciPy library [255] for the Python programming language, we calculated the
Spearman's rank correlation coefficient [256] between all the questions in the questionnaire. We
did not consider correlations with the low coefficient and the p-value higher than 0.05. We also did
not consider trivial correlations with the high coefficient within the same group of questions. For
example, there were high correlations between participants' experience with business or production
process modeling and their experience with CASE tools.

As we found many correlations with the p-value lower or equal to 0.05, we present only some
of the strong correlations with the p-value lower or equal to 0.01. We may state that these selected
correlations are significant, and they are presented in Table 9.2. If we look at the first three rows of
Table 9.2, we may state that participants who found MultiProLan is at the right abstraction level,

168 Evaluation of MultiProLan and Process Modeling Tool

who think that the modeling became easier by separating MasL models from production system
details, and who found MultiProLan symbols good looking, they also think that MultiProLan is
suitable for production process modeling. The last row in Table 9.2 shows that participants with
higher experience in the production process modeling think MultiProLan is appropriate for their
needs. More than 75% of the participants are (relatively) inexperienced in production process
modeling. Therefore, it is not surprising that almost 50% of participants answered with "no opinion™
when asked whether MultiProLan is appropriate for their needs.

Table 9.2. Correlation coefficients and p-values for related questions.

Question 1 Question 2 Correlation P-value

Functional suitability [How would Expressiveness [MultiProLan is at
you describe MultiProLan's level of | the right abstraction level such that
suitability for the production process | it is not more complex or detailed
specification?] than necessary.]

Functional suitability [How would
you describe MultiProLan's level of
suitability for the production process
specification?]

Functional suitability [How would
you describe MultiProLan's level of
suitability for the production process
specification?]

Experience [How would you
describe your previous experience in
designing production processes?]

0.601 0.001

Usability [By separating MasL and
DetL models, users can model 0.582 0.002
production processes easier.]

Usability [MultiProLan has
graphical symbols that are good 0.539 0.005
looking/attractive.]

Usability [MultiProLan is

: 0.504 0.010
appropriate for your needs.]

Based on the analysis made in this section, the evaluation results presented in Section 9.4.1,
and as there is more than 50% of positive feedback from the evaluation participants per each quality
characteristic, we may confirm the EH,ui hypothesis found in Section 9.1. Thus, we may state
that MultiProLan can be used in practice as it has all the following quality characteristics: functional
suitability, usability, reliability, expressiveness, and productivity. However, based on the
participants' comments discussed throughout Section 9, MultiProLan can be further improved. The
free comment section proved to be valuable to us during the evaluation process, and we are fully
aware of all the comments that participants have written. Therefore, we applied most suggestions
made by participants and left some for future development.

9.5 Overview of Other Quality Characteristics

There are quality characteristics that require knowledge of MultiProLan's implementation details to
evaluate them. These quality characteristics are maintainability, extensibility, reusability, and
integrability. As the experiment's participants were unfamiliar with MultiProLan's implementation
details, the authors of MultiProLan evaluated these quality characteristics.

MultiProLan was implemented in EMF and Eclipse Sirius frameworks. These frameworks
provide many useful features that help create the tool prototype fast. However, the tool depends on
these frameworks and thus not all its features can be adapted.

Maintainability represents the degree to which a language is easy to maintain, and it comprises
two characteristics:

¢ modifiability — new functionalities can be added to the language without degrading existing
functionalities; and
e low coupling — a change to one component has minimal impact on other components.

Adding modeling concepts to the MultiProLan's meta-model does not require manual changes
to the existing modeling concepts, and these novel modeling concepts will be automatically added

Evaluation of MultiProLan and Process Modeling Tool 169

to Process Modeling Tool. Thus, existing functionalities of the language will not be degraded.
However, changing the existing modeling concepts often requires different manual changes, as the
meta-model, graphical syntax, and modeling tool are tightly coupled.

Extensibility represents the degree to which a language has a mechanism for users to add new
features. Users cannot add new features to Process Modeling Tool. Even if that is possible, users
would need to know the implementation details of the whole system as process models are used for
the execution purpose, and thus users would need to extend the execution mechanism to support
newly added features.

Reusability represents the degree to which language constructs can be used in more than one
language. MultiProLan's modeling concepts have been reused in creating languages for production
system modeling [5], human resource modeling [16,17], and collaborative production process
modeling [19]. For example, as mentioned in Section 7.1, modeling concepts such as capabilities,
resources, storage, and material flows have been reused for the production system modeling
language.

Integrability represents the degree to which a language is amenable to integration with other
languages. MultiProLan is being integrated with languages for production system, human resource,
and collaborative production process modeling through the modeling concepts that are shared
between them. The languages for production system and human resource modeling are used to
specify all the necessary details of a production system, and these details are used during the
creation of DetL models. MultiProLan production process models are used as part of collaborative
production process models as well, allowing production process models to be shared between
different collaborative parties.

9.6 Threats to Validity

During the preparation and performance of the experiment, we aimed to minimize threats to the
experiment's validity. However, there are some possible internal, external, and conclusion threats
to validity that need to be discussed.

Internal threats to validity. Participants of the experiment had different experiences in process
modeling. If all the participants were highly experienced or highly inexperienced, the questionnaire
results might be different. For example, most participants stated that the specification time of
production process models with MultiProLan is short (16%) or relatively short (52%). It is possible
that participants would evaluate the specification time as relatively long if they were more
inexperienced with CASE tools and the BPMN language. The participants also belong to various
groups, and it is possible that if some groups had more participants, the results might be different.
As for the implementation-oriented quality characteristics discussed in the previous section
(maintainability, extensibility, reusability, and integrability), we evaluated them as we are the only
ones having insights into how the tool has been developed. Although we tried to stay as objective
as possible, this represents one of the potential threats to the validity of the evaluation process. We
have done the evaluation of these quality characteristics as it was hard to find a participant
experienced both in production process modeling and the Sirius framework.

External threats to validity. We had to do the experiment online due to COVID-19, and it is
possible that the experiment results may be different if we had been able to do the experiment on-
site. Also, participants with different experiences in process modeling had done the same
experiment tasks, which were not tailored for each participant based on their previous experience.
Thus, participants with different experiences may get a different impression of MultiProLan. The
tasks were made to cover most of the MultiProLan's modeling concepts, and some parts of the tasks
were simplified so they could be modeled in a reasonable amount of time. The task with DetL
modeling was simplified the most, as it contained only a part of the whole process since modeling
the whole DetL process model would require a lot of time. If the tasks were of different difficulty,
the experiment results might be different. Finally, as participants were allowed to ask any question

170 Evaluation of MultiProLan and Process Modeling Tool

related to MultiProLan and the tasks, it is possible that some participants got more information
about the language and the tasks than others.

Conclusion threats to validity. There were 25 participants who evaluated MultiProLan and
Process Modeling Tool. It was hard to gather participants with at least basic experience in process
modeling and CASE tools. If there were more participants, the experiment results might be
different. Also, there were only 2 process engineers that evaluated the language and the tool. It
would be better if more of them were participating, and we plan to extend the evaluation with more
process and quality engineers in the future.

9.7 Summary

In this section, we presented the evaluation process and results of testing whether MultiProLan and
Process Modeling Tool can be used in practice. Based on the overall positive feedback gathered
from the evaluation participants, we may state that MultiProLan and Process Modeling Tool can be
used in practice as they have the following quality characteristics: functional suitability, usability,
reliability, expressiveness, and productivity. The participants mostly praised the MultiProLan
domain coverage, the graphical representation of MultiProLan modeling concepts, the easiness of
using MultiProLan through Process Modeling Tool, and the usage of different levels of detail and
modeling layers. They also left various suggestions in the questionnaire's free comment section on
how to improve MultiProLan and Process Modeling Tool, which helped us to make the language
and the tool better. Some of these suggestions are already implemented and presented as part of this
thesis.

Based on our experience from various use cases in the assembly industry and the evaluation
results presented in this section, by using MultiProLan and Process Modeling Tool, process
designers can specify production processes faster, more easily and efficiently, and with fewer faults,
in comparison to the ways they are specifying production processes now. Many process designers
still specify production processes by using textual documents, flowcharts, or spreadsheets. Without
MultiProLan and Process Modeling Tool, process designers would be slowed down, and more faults
may occur when specifying production processes, especially if designers are using some informal
techniques. To prove the MultiProLan and Process Modeling Tool advantages over contemporary
ways of specifying production processes, we plan to conduct a new evaluation process in which
various participants will test the performance of MultiProLan and Process Modeling Tool and
compare them to the production process specification techniques participants are mostly using.

Conclusions and Future Work 171

10 Conclusions and Future Work

In this thesis, we presented a novel MD solution and a DSML for production process modeling and
automatic generation of executable resource instructions and manufacturing documentation. The
presented MD solution and a DSML named MultiProLan are developed to cope with the challenges
(Ch1-Chb) introduced by Industry 4.0.

This section is structured as follows. In Section 10.1, we discuss the outcome of testing the
hypotheses defined in this thesis. The main contributions of the research presented in this thesis are
outlined in Section 10.2, while future research is discussed in Section 10.3.

10.1 Outcome of Hypotheses Testing

Enabling flexible production, caused by various customer needs, is one of the main challenges that
Industry 4.0 introduces. Customers require individualized and customized products, creating a
disorder in the rigid mass production of a factory that is to produce such products. Accordingly,
contemporary factories need to move from mass production to mass customization, by making
production more flexible and endurable to product changes. A prerequisite for production flexibility
is to have a smart factory with flexible production lines and dynamic resources that can move
through the factory and execute high-level instructions. One way to manage such flexible
production is to have production process models that are machine-readable and thus can be used to
lead the execution of production processes, by executing models or generating executable resource
instructions from them. Furthermore, handling errors during production is highly important in such
a dynamic environment to run production smoothly and prevent losses. Accordingly, exact
procedures to handle errors need to be defined.

Besides the execution of production processes, their models and manufacturing documentation
need to be managed and stored. Individualized products may belong to the same product family
already produced in the factory but vary in a few parts, colors, or dimensions. Therefore, factories
of the future must maintain product families with numerous product and process variations and
rapidly create new variations whenever a customer requires specific products. By having many
processes and their variations, manual process specification becomes a difficult task for process
designers that may lead to numerous specification errors. Another burdensome task for process
designers is maintaining manufacturing documentation of different types in such a flexible
environment with many product and process variations. Whenever there is a change in a production
process, documents of different types must be updated and synchronized. These are time-
consuming manual tasks, and they need to be done automatically to reduce the time required by
process designers and to mitigate specification errors done by process designers due to a lot of
manual work.

To make production more flexible and help factories enter the digital transformation era, we
initiated the research presented in this thesis. To test the main hypothesis Ho of our research,

172 Conclusions and Future Work

formulated in Section 3.2, we created a novel MD solution that comprises a novel methodological
approach and a system, used for production process modeling and automatic transformation of
process models into executable resource instructions and manufacturing documentation. Such a
solution enables a formal specification of both resource-agnostic and resource-aware production
process models that are machine-readable and thus transformable into executable resource
instructions and manufacturing documentation. To confirm or reject the main hypothesis Ho, we
discuss the derived hypotheses first.

Within our novel MD solution, we developed a novel DSML — MultiProLan, used for
production process modeling. Such a language is created in a formal and systematic way, fulfilling
the requirements presented in Section 4.2.1. The requirements need to be fulfilled by a process
modeling language for its models to be suitable for dynamic production orchestration and automatic
execution. Thus, MultiProLan is used to model production processes with details required for the
automatic generation of executable resource instructions. Instruction Generator and protocol
transformation components are implemented to automatically transform production process models
into human-readable or machine-specific instructions, sent to resources on the shop floor for
execution. Thus, we may confirm the hypothesis H.

However, such instruction-generation-ready production process models are dependent on a
specific production system, and it is difficult for process designers to specify such models, as they
need to know all the technological and production system details. Production process models
created by process designers need to be reusable in many production systems and need to be easy
to read and understand. We developed MultiProLan in a way to include necessary modeling
concepts used by process designers to specify resource-agnostic production process models, i.e., to
be independent of any production system. Therefore, such process models can be reused in multiple
production systems. Also, as they do not include production system details, such models are easy
to read and understand. We may say that the readability and understandability of process models
were also confirmed during the evaluation of MultiProLan and Process Modeling Tool, presented
in Section 9. The evaluation participants provided us with positive feedback that MultiProLan
elements are understandable (96%), learnable and rememberable (100%), good looking and
attractive (92%), that process modeling becomes easier by separating resource-agnostic and
resource-aware models (96%), and that models become more readable by creating different
modeling layers (100%). In addition, we managed to represent different aspects of production
process modeling in a uniform way, by having a single production process model that includes an
execution flow, error handling, and different information related to the manufacturing
documentation of different types. Accordingly, by having all the information stored in a single
model, different users, such as process and quality engineers, can work together on the same process
model, specifying details related to their field of expertise. However, as such a process model may
become overwhelmed with information and details, we have implemented different modeling layers
in Process Modeling Tool to show modeling concepts related to the specific user group and hide
concepts not related to the user group. Therefore, we may confirm the hypothesis H..

As resource-agnostic production process models are independent of any production system,
they can be neither executed nor executable resource instructions can be generated from them.
However, for process models to lead production process execution, they need to include
technological and production system details. Such resource-aware production process models are
overloaded with details about resources, storage, production logistics, and machine configuration
activities, burdening process designers additionally. Thus, it is difficult to specify resource-aware
production process models manually, becoming a burdensome task for process designers. As
MultiProLan is a capability-based process modeling language, providing each process step in a
model with a capability required for a process step to be executed, it is also possible to automatically
transform resource-agnostic process models into resource-aware process models by using an
intelligent system such as Orchestrator. Regardless of whether resource-aware production process
models are created manually or automatically, MultiProLan contains modeling concepts that allow
such an enrichment of resource-agnostic process models. Process designers can choose a production
system in which a production process model is to be executed and automatically create a

Conclusions and Future Work 173

production-system-specific process model with the help of Orchestrator. They can also manually
create such models or change or optimize existing resource-aware production process models
created by Orchestrator. Thus, we may also confirm the hypothesis Ha.

Production process models need to be usable for the automatic transformation into executable
resource instructions and manufacturing documentation. As MultiProLan's models are machine-
readable, resource-aware production process models can be automatically transformed into
executable resource instructions, which may be human-readable or machine-specific instructions.
Also, depending on the information needed, both resource-agnostic and resource-aware production
process models can be automatically transformed into manufacturing documentation of different
types. By using Instruction Generator, Documentation Generators, and a set of transformation rules,
these kinds of M2T transformations can be performed. The automatic generation of manufacturing
documentation helps process designers avoid keeping the manufacturing documentation up to date
manually, which is useful especially in the era of Industry 4.0, as many product and process
variations exist. Accordingly, we may confirm the hypothesis Ha.

By confirming the derived hypotheses Hi, Hz, Hs, and Ha, we may state that the main
hypothesis Ho is also confirmed and that the main goal of this research is met.

Furthermore, we may state that the results of our research have theoretical, development,
application, and socio-economic contributions, discussed in the following section.

10.2 Research Contributions

In this section, we discuss the achieved contributions of the research presented in this thesis. We
divided the contributions into the following four groups: theoretical, development, application, and
socio-economic contributions. Each contribution group is outlined in the following subsections.

10.2.1 Theoretical Contributions

Before the creation of MultiProLan, we investigated the state-of-the-art related to the application
of the MD paradigm and DSLs in I1Ss and Industry 4.0, and especially production process modeling,
as presented in Section 4. Based on the preliminary research, we formulated requirements for a
production process modeling language whose models would be suitable for dynamic production
orchestration and automatic execution of production processes. Then, we conducted a survey of
existing modeling languages and for each one of them we checked the fulfillment of the
requirements. We also made an analysis of what is covered by the languages and what is missing,
making a basis for future research.

After the investigation of the state-of-the-art, we analyzed the production process modeling
domain and identified the main concepts that a language for production process modeling needs in
the Industry 4.0 context. The domain analysis and concepts are presented in Section 6, by means of
the FODA model, creating a foundation for the creation of a novel DSML for production process
modeling.

During our research, we did not encounter such a formulation of production process modeling
requirements in the context of Industry 4.0, an extensive survey and an analysis of existing
production process modeling languages, and an analysis of the production process modeling
domain. Therefore, these are theoretical contributions that may be used as a basis for future research
endeavors.

The result of our research is a novel MD solution that comprises both the approach and the
system for dynamic production orchestration and automatic generation of executable resource
instructions and manufacturing documentation, based on models created by a novel DSML. Such
an MD solution is presented in Section 5, while a novel, capability-based modeling language —

174 Conclusions and Future Work

MultiProLan, is presented in Section 7. By using Orchestrator and MultiProLan's models created at
two detail levels, we created a novel methodology to automatically transform resource-agnostic into
resource-aware production process models. Thus, a production process model is independent of any
production system, making production process modeling easier for process designers. Such a
production process model can be automatically transformed into process models specific to
different production systems in which they are to be used for automatic execution.

Finally, a theoretical contribution is achieved through applying MD principles in the
production domain, pointing out that it is possible to use the MD paradigm and contribute to
production, making it more flexible.

10.2.2 Development Contributions

The development and implementation of the novel MD solution, language and its modeling tool for
production process modeling, and code generators for automatic generation of executable resource
instructions and manufacturing documentation are the main development contributions. We
summarize their contributions in this section.

The MD solution is developed using the Java programming language and it helps process
designers create production process models independent of any specific production system, making
resource-agnostic process models. With the help of Orchestrator, resource-agnostic process models
can be automatically transformed into resource-aware process models for the specific production
system, which are used by Instruction Generator to automatically generate resource instructions to
execute process operations. By utilizing such an MD solution, process designers only model
production processes without production system details, such as resources that are to execute
process steps, production logistics, and machine configurations, making process modeling easier.

MultiProLan is developed using EMF and Sirius frameworks to support modeling concepts
related to the Industry 4.0 context, such as product and process variations, resource collaboration,
and error handling, among others. The language is built to fulfill the requirements stated in Section
4.2.1. It is a capability-based modeling language, so its models can be independent of any specific
production system. The goal of creating MultiProLan is to support the modeling of all production
details required for the automatic execution but not to be too complex for a human to comprehend.
To achieve this goal, two levels of detail are implemented so that production processes can be
modeled in a generic way. By creating two levels of detail, production process models become
independent of the production system details, and thus efforts needed during the production process
modeling are reduced. MultiProLan is used to:

e speed up and increase the precision with which production processes are designed:;
e make fewer faults during process design; and
e enable faster changes in production process models.

Such a language is implemented formally, increasing consistency during modeling, and
decreasing the amount of time needed for the modeling.

Process Modeling Tool is implemented by using the Sirius framework to allow process
designers to model production processes by utilizing MultiProLan. The tool supports various
mechanisms, such as modeling layers and filtering tools, to deal with the scalability problem of
process diagrams. By using modeling layers, users of different profiles can work together on the
same process model and hide modeling concepts that are not relevant to them. Filtering tools can
be used to show only product and process variations that a process designer currently works with
and hide others to keep a process diagram clear. Therefore, by using different mechanisms of
Process Modeling Tool, a production process model can store various information, but also
maintain the process diagram's readability. Furthermore, as the tool is integrated with the MD
solution, it is possible to start production from the tool and monitor the execution of the invoked
process. Therefore, bottlenecks and production process modeling errors can be detected and
mitigated.

Conclusions and Future Work 175

Instruction Generator is developed from scratch using the Java programming language to
automatically transform resource-aware production process models into high-level instructions, that
are transformed into human-readable or machine-specific instructions by protocol transformation
components in Digital Twin. Such a generator, as a part of the MD solution, contributes to flexible
production, as process models are used to lead production process execution by generating
instructions from them. Also, as a part of the MD solution, Instruction Generator makes guided
production possible, sending instructions to human workers, alongside textual descriptions, images,
audio, and videos. Guided production helps novice workers create products during the training
phase and reduces the time experienced workers spend when helping them out. In addition, guided
production may help human workers when they frequently change a product or a product variation
they produce, or when they create complex products that could take hours to produce.

Documentation Generators are implemented by using the Xtend language to automatically
generate, update, and maintain manufacturing documentation of different types from the production
process models. Thus, process designers' efforts to manually perform such tasks are reduced.

10.2.3 Application Contributions

The MD solution and MultiProLan are applied in the production domain, particularly in the
assembly industry. They are applied in a demonstration environment in which human workers,
industrial mobile robots, and research-grade smart robots are used to assemble objects from LEGO®
bricks, as presented in Section 8.2. We also modeled various production processes from the
assembly industry to showcase the usage of MultiProLan, such as the one presented in Section 8.1.

MultiProLan and Process Modeling Tool were evaluated by different groups of users,
including process engineers, software developers, researchers, and students. The evaluation results,
as presented in Section 9, provided us with valuable feedback from users, and the evaluation
hypothesis EHni was confirmed — that MultiProLan can be used in practice as it has all the
following quality characteristics: functional suitability, usability, reliability, expressiveness, and
productivity.

We also presented a new practical experience from applying a novel methodological approach,
a software tool, and a DSML in this thesis.

10.2.4 Socio-Economic Contributions

The MD solution and MultiProLan are put into public use as a general model of production process
management. They are applicable in a wide range of organizations and could enable significant
production process improvements. Also, they raise general accumulated knowledge on how to
contribute to such process improvements.

By applying the newly created solution and modeling language, manufacturing companies can
increase the level of flexibility and automation in their production and move to the digital
transformation era, thus fully applying the Industry 4.0 philosophy. Therefore, the research results
presented in this thesis, which originates from the collaboration between organizations in Serbia
and Austria, can improve production in the context of Industry 4.0, which is one of the key
economic factors of the European Union.

10.3 Future Work

In this section, we present the future work related to the research presented in this thesis. We divide
the future work into three parts described in the following subsections:

e future research in the domain of production process modeling;

176 Conclusions and Future Work

e further development of MultiProLan and Process Modeling Tool; and
e new application domains of MultiProLan.

Parts of the described future work have been already discussed in [11] and [14].

10.3.1 Future Research in the Domain of Production Process Modeling

The domain of production process modeling covers a wide range of different aspects that need to
be considered. In this thesis, we cover the execution and error handling aspects of production
process modeling. However, there are various aspects and extensions that need to be covered in the
future.

In our MD solution, Orchestrator is used to automatically transform resource-agnostic
production process models into resource-aware production process models. Such a transformation
can be achieved by using different matching and scheduling algorithms, based on the knowledge
about a production system stored in Knowledge Base. This knowledge is created by using Resource
Modeling Tool — a prototype modeling tool that uses a custom-built DSML to specify production
systems. The DSML is in the early implementation stage, covering only basic modeling concepts
related to production systems that are required in our solution (i.e., production resources with
capabilities and constraints, as well as interactions between the resources). Model examples created
by such a language are already presented in [5]. However, this language and its modeling tool need
to be further developed and extended with modeling concepts, such as different types of resources,
their interfaces, capabilities, constraints, and storage. Therefore, the extended production system
models can be used by Orchestrator for better allocation of resources in a factory.

In addition, as human characteristics are important in the context of Industry 4.0, it is necessary
to specify human roles, capabilities, and competencies [257]. Human workers need to be modeled
within production system models with more details, as there are different additional constraints
when they perform some tasks. For example, unqualified workers cannot perform some specialized
tasks; due to legal constraints workers cannot lift a heavy object more than a certain number of
times; or color-blind persons cannot perform some tasks. All these human worker characteristics
and constraints need to be carefully modeled, and Orchestrator or a resource manager can use such
knowledge to better allocate resources. Therefore, human skills such as technical, knowledge,
personal, cognitive, and social are considered in Industry 4.0, as well as their health, physical, and
mental capabilities [257]. The foundation for human worker modeling in the context of Industry
4.0, with the aim to achieve better integration of human workers and machines, is already laid out
in [15]. The language prototype of production and organizational perspectives of the human worker
modeling is already presented in [16] and [17], respectively. Human worker models will be
extended with concepts such as roles, skills, competencies, capabilities, and limitations, providing
more information to Orchestrator when matching and scheduling resources in a factory.

Safety, human physical risk factors, and energy consumption aspects are particularly
considered in Industry 4.0, but rarely modeled. These are the modeling concepts that MultiProLan
still lacks and need to be considered in the future. The lack of safety aspects modeling with
MultiProLan is also noted by one of the evaluation participants. The risk factors need to be modeled
for each process step and the decision of which smart resources are to be assigned to process steps
should also depend on these factors, which could be decided by Orchestrator. If a risk is high for a
human worker, a robot needs to be assigned to execute a process step. Energy consumption also
needs to be modeled to estimate the costs of different resources for each process step or to estimate
the costs of the whole process executed in different production systems. Therefore, Orchestrator
could propose or choose the production system in which the production costs will be the lowest.
Both HSE and energy consumption modeling concepts need to be presented as new modeling layers
to lower the complexity of process models.

MultiProLan is designed to model processes to be executed in a single facility and it is not
possible to model production processes that are shared among multiple facilities or smart factories.

Conclusions and Future Work 177

A collaboration between participants is needed to enable execution in multiple factories, creating
various intermediate products and the final product in different facilities and factories. This
collaboration requires a specification of production processes at the BSM level and an
implementation of horizontal integration between the participants. As a product is created in
different factories, the quality of each part must be guaranteed as well as contract fulfillment.
Therefore, Distributed Ledger Technology (DLT) systems and smart contracts can be used to
guarantee the quality of products created by various collaborative parties, to guarantee contract
fulfillment in a trustworthy way, and to supervise the state of production [18]. To model
collaborative production processes, CE-MultiProLan was created [19] based on MultiProLan and
will be further improved to support the modeling of trustworthy collaborative production processes,
the automatic generation of smart contracts and DLT configuration artifacts, and the execution of
such production process models. Smart contracts can be generated from CE-MultiProLan models
and stored in DLT networks, thus distributing production data between collaborative parties to
monitor production in near real-time. The automatic generation of DLT artifacts was already
presented in [258]. The whole MD system that supports CE-MultiProLan and the automatic
generation of smart contracts will be developed and discussed in the future.

Another research field can cover the automatic extraction of production process models from
product specifications, such as CAD models. There have been a lot of research activities in this
field in past years [259-261], but many research questions are still open. It would be beneficial if
MultiProLan process models could be automatically extracted from product specifications.
Therefore, product designers would need to create a product model, after which process designers
would need to check the extracted process model and optimize it manually whenever necessary, by
using MultiProLan and Process Modeling Tool.

10.3.2 Further Development of MultiProLan and Process Modeling Tool

In this section, we discuss further development of MultiProLan and Process Modeling Tool. These
development improvements are partially gathered as feedback from the evaluation process
presented in Section 9.

Our MD solution allows a production system to be chosen for which a resource-aware process
model is to be created based on a resource-agnostic process model. Currently, there is no
recommendation system that would help process designers choose a production system. The
recommendation should be based on various criteria set by process designers, such as duration of
process execution or energy consumption. The estimation of process step execution duration is
already stored in MultiProLan production process models. Such an estimation, along with the
energy consumption estimation, discussed as a future work in Section 10.3.1, can be used to
estimate the time and costs of a whole process. As a single process can be executed in various
production systems, the recommendation system needs to recommend a production system in which
the process execution will be done with the best performance based on the chosen criteria.

As capabilities and parameters are not yet standardized, we created a repository with a
taxonomy of capabilities and parameters used in our MD solution. Once capabilities and parameters
are standardized, we will replace our capability taxonomy with the standardized one. Therefore, our
system will be compatible with any smart resource that supports the standard, extending
possibilities and application domains of our solution.

Production quality is not discussed in detail in this thesis, as it is out of the thesis's scope but
is quite important. Our MD solution supports the production quality only through completion and
acceptance criteria specified for each process step in MultiProLan models. The production quality
needs to be further discussed, researched, and integrated into MultiProLan and the MD solution,
thus enabling various quality aspects to be specified and consequently increasing the final product
quality.

178 Conclusions and Future Work

A collaboration between resources, especially a human-machine collaboration, is highly
important in Industry 4.0, as many resources need to collaborate to create different products and
their variations. Our MD solution utilizes collaboration through message exchange between
resources, synchronizing their activities. However, MultiProLan currently allows only the basic
modeling of messages between process steps at a high level, such as messages to start or finish
performed activities. As part of future work, more complex communication between resources
needs to be available for modeling using MultiProLan and supported by our MD solution.
Additionally, as mentioned in Section 10.3.1, safety aspects should also be modeled, especially in
cases of human-machine collaboration. This was also stated by one of the process engineers during
the MultiProLan evaluation process.

MultiProLan has graphical syntax created as process designers are mostly used to process
charts. However, it is possible that some process designers could find a textual concrete syntax
more suitable. We plan to create the MultiProLan textual syntax as well, and evaluate, analyze, and
compare the usage of both graphical and textual syntaxes with process designers. The creation of
MultiProLan textual syntax was also proposed by one of the MultiProLan evaluation participants.

During the evaluation process of MultiProLan, we managed to have only two process
engineers join the experiment. Their feedback was of utmost importance, and we plan to extend the
evaluation in the future by gathering more participants, especially process engineers. We also plan
to continue with the evaluation with process engineers from different industry domains. However,
an extension of the evaluation will require additional time to gather process engineers from different
domains. The feedback from process engineers may be useful in the context of domain coverage
and language usage. Additionally, we plan to conduct a new evaluation process in which various
participants will test the performance of MultiProLan and Process Modeling Tool and compare
them to the production process specification techniques they are mostly using.

There were also a few minor comments related to MultiProLan and Process Modeling Tool
left by participants during the evaluation process, such as:

e it was confusing where to put an output product of a collaboration between process steps;

e error messages provided by the model validator were not clear enough to solve problems
quickly in a model; and

e an additional modeling layer may be created for capabilities and products so they can be
shown or hidden at once.

We will consider all the comments gathered from the evaluation process and will improve both
MultiProLan and Process Modeling Tool in the future.

10.3.3 New Application Domains of MultiProLan

MultiProLan aims to be used to model production processes of any kind. Currently, it is used to
model discrete product manufacturing processes, especially the assembly of goods. There are
various new application domains for MultiProLan to be used, and in this section, we discuss these
additional MultiProLan applications.

For MultiProLan to be used in different manufacturing domains, such as process
manufacturing, additional features, like timers or time estimations, are needed. While discussing
with domain experts about the applicability of MultiProLan and Process Modeling Tool outside of
the discrete production of hardware elements domain, their feedback was that most of the
MultiProLan concepts could be applied to process manufacturing as well. Therefore, one of the
most important future research and development steps is to extend the language to support the
modeling of process production, whether it is performed in a fully continuous (e.g., water plants)
or a batch (e.g., breweries, sugar factories, and pharma factories) manner. We also plan further to
evaluate the language in additional industrial use cases to improve the domain concept coverage
and the stability of developed tools.

Conclusions and Future Work 179

We plan to integrate our solution with a detection system used to detect the execution of
process steps in the manufacturing assembly industry, such as the one that utilizes depth cameras
[262]. Currently, human workers must confirm via their tablet, smart watch, or monitor whether a
process step is executed successfully, or an error occurred. By using a detection system, a process
step execution status can be automatically detected and sent as feedback to our system. Therefore,
our system could send instructions one by one automatically, without waiting for a human worker
to confirm the execution status. The detection system also aims to prevent workers from missing
some process steps and thus save the time and costs required to fix the issue. If some process steps
are not performed, it could take hours to reassemble the product as not all steps are easily reversible,
or some parts of a product cannot be easily reached, and in some cases, the whole product needs to
be reassembled [262]. Using our MD solution with the detection system would improve guided
production through the automatic sending of process step execution status, helping workers
assemble products more efficiently. The detection system could send feedback to Process Modeling
Tool as well, updating a process model while monitoring process execution.

In addition, devices supporting Augmented Reality (AR) could be used by human workers
when assembling products, and our MD solution could send them instructions on how to execute
process steps. The AR technology could be a part of improved guided production and help human
workers assemble products. Both AR and Mixed Reality (MR) have been applied by researchers in
recent years for process modeling and execution, in the context of 10T and Industry 4.0, as well as
for guided production [263-265]. The integration of our MD solution and MultiProLan with AR
devices would require further research and development. MultiProLan models could be used for
the automatic generation of human-readable instructions that are enriched with details related to
AR or MR that would be sent to appropriate devices human workers wear.

During process execution, gathered feedback from resources and sensors is stored in storage.
Each process step execution status or error occurrence is stored in the storage and can be used for
various analyses. Stored data can be used for process analysis, leading to the detection of process
anomalies, bottlenecks, and failures. Also, the data can be used for predictive analysis, preventing
shutdowns or material shortages. For example, based on the process execution data, including the
execution time required by various resources to perform process steps, material shortages in storage
can be predicted and materials can be refiled in time. Such a prediction can save the time that a
resource in charge of replacing materials in storage must invest when checking out the materials'
quantity status. Based on different findings, production processes can be optimized and
unscheduled system shutdowns can be prevented as failures can be mitigated. The gathered data
can be used to start new research in the fields of data science and process mining, which could
provide useful knowledge about how processes can be improved, and thus lower the costs of
producing a product or making a product of better quality. For example, when unordered process
steps are specified, various resources may perform these steps in different order. The analysis of
process execution data may provide information on which process steps order is the fastest to
perform. By performing the fastest way of executing unordered process steps, more products can
be produced in the same amount of time or a product price can be lower compared to other ways of
executing the same process steps.

We believe that our MD solution can be further improved and developed to support flexible
production in the industry even more. Therefore, its full potential is yet to be discovered, alongside
new application domains, supporting companies in the digital transformation and Industry 4.0 era.

References 181

References

[1] M.P. Groover, Fundamentals of Modern Manufacturing: Materials, Processes, and Systems,
4th ed., John Wiley & Sons, Inc., Hoboken, NJ, 2010.

[2] J.T.Black, R.A. Kohser, DeGarmo's Materials and Processes in Manufacturing, 13th ed., John
Wiley & Sons, Inc., Hoboken, NJ, 2019.

[3] N. Keddis, Capability-Based System-Aware Planning and Scheduling of Workflows for
Adaptable Manufacturing Systems, Ph.D. Thesis, Technical University of Munich, 2016.

[4] M. Pisari¢, V. Dimitrieski, M. Vjestica, G. Krajoski, Towards a Non-Disruptive System for
Dynamic Orchestration of the Shop Floor, in: IFIP Adv. Inf. Commun. Technol. AICT,
Springer Nature, Novi Sad, Serbia, 2020: pp. 469-476.
https://doi.org/10.1007/978-3-030-57997-5_54.

[5] M. Pisari¢, V. Dimitrieski, M. Vjestica, G. Krajoski, M. Kapetina, Towards a Flexible Smart
Factory with a Dynamic Resource Orchestration, Appl. Sci. 11 (2021) 7956:1-7956:25.
https://doi.org/10.3390/app11177956.

[6] K. Dorofeev, Skill-Based Engineering in Industrial Automation Domain: Skills Modeling and
Orchestration, in: Proc. ACMIEEE 42nd Int. Conf. Softw. Eng. Companion Proc., Association
for Computing Machinery, Seoul, South Korea, 2020: pp. 158-161.
https://doi.org/10.1145/3377812.3381394.

[71 M. Vathoopan, K. Dorofeev, A. Zoitl, Skill-Based Engineering of Automation Systems: Use
Case and Evaluation, in: R. Drath (Ed.), Autom. Ind. Cookb., De Gruyter Oldenbourg, Berlin,
Boston, 2021: pp. 555-578. https://doi.org/10.1515/9783110745979-033.

[8] M. Vjestica, V. Dimitrieski, M. Pisari¢, S. Kordi¢, S. Risti¢, I. Lukovi¢, Towards a formal
description and automatic execution of production processes, in: Proc. 2019 IEEE 15th Int. Sci.
Conf. Inform., IEEE, Poprad, Slovakia, 2019: pp. 463-468.
https://doi.org/10.1109/Informatics47936.2019.9119314.

[9] M. Vjestica, V. Dimitrieski, M. Pisari¢, S. Kordi¢, S. Risti¢, I. Lukovi¢, Towards a Formal
Specification of Production Processes Suitable for Automatic Execution, Open Comput. Sci.
11 (2021) 161-179. https://doi.org/10.1515/comp-2020-0200.

[10] M. Vjestica, V. Dimitrieski, M. Pisari¢, S. Kordi¢, S. Risti¢, I. Lukovi¢, The Syntax of a Multi-
Level Production Process Modeling Language, in: Proc. 2020 Fed. Conf. Comput. Sci. Inf.
Syst. FedCSIS 2020, Polish Information Processing Society, Sofia, Bulgaria, 2020: pp. 751—
760. https://doi.org/10.15439/2020F176.

[11] M. Vjestica, V. Dimitrieski, M. Pisari¢, S. Kordi¢, S. Risti¢, I. Lukovi¢, Multi-level production
process modeling language, J. Comput. Lang. 66 (2021) 101053:1-101053:26.
https://doi.org/10.1016/j.cola.2021.101053.

[12] M. Todorovi¢, b. IvaniSevi¢, M. Vjestica, V. Dimitrieski, I. Lukovi¢, An Automatic Generation

of Production Documentation from MultiProLan Models, in: Proc. 11th Int. Conf. Inf. Soc.
Technol. ICIST 2021, Information Society of Serbia — ISOS, Kopaonik, Serbia, 2021: pp. 96—
101.

182 References

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]
[27]
[28]
[29]

[30]
[31]

M. Vjestica, V. Dimitrieski, M. Pisari¢, S. Kordi¢, S. Risti¢, I. Lukovi¢, An Application of a
DSML in Industry 4.0 Production Processes, in: IFIP Adv. Inf. Commun. Technol. AICT,
Springer Nature, Novi Sad, Serbia, 2020: pp. 441-448.
https://doi.org/10.1007/978-3-030-57993-7_50.

M. Vjestica, V. Dimitrieski, M.M. Pisari¢, S. Kordi¢, S. Risti¢, I. Lukovié, Production
processes modelling within digital product manufacturing in the context of Industry 4.0, Int. J.
Prod. Res. 61 (2023) 6271-6290. https://doi.org/10.1080/00207543.2022.2125593.

D. Antanasijevi¢, S. Risti¢, M. Vjestica, V. Dimitrieski, M. Pisari¢, Towards a Formal
Specification of Human Worker for Industry 4.0, in: Proc. 2022 IEEE 16th Int. Sci. Conf.
Inform., IEEE, Poprad, Slovakia, 2022: pp. 33-38.
https://doi.org/10.1109/Informatics57926.2022.10083444.

D. Antanasijevi¢, S. Risti¢, M. Vjestica, D. Stefanovi¢, V. Dimitrieski, M. Pisari¢, A Prototype
of a Domain-Specific Modeling Language for Formal Specification of a Human Worker, Acta
Electrotech. Inform. 23 (2023) 33—40. https://doi.org/10.2478/aei-2023-0010.

D. Antanasijevi¢, M. Vjestica, L. Grubi¢-Nesi¢, V. Dimitrieski, M. Pisari¢, S. Risti¢, An
Organizational Perspective of Human Resource Modeling, IPSI Bgd Trans. Internet Res. 19
(2023) 64-75. https://doi.org/10.58245/ipsi.tir.2302.08.

N. Todorovi¢, M. Vjestica, V. Dimitrieski, M. Zari¢, N. Todorovi¢, 1. Lukovié¢, Towards
Trustworthy Horizontal Integration in Industry 4.0 Based on DLT Networks, in: Proc. 2020
Fed. Conf. Comput. Sci. Inf. Syst. FedCSIS 2020, Polish Information Processing Society,
Sofia, Bulgaria, 2020: pp. 63-69. https://doi.org/10.15439/2020F210.

N. Todorovi¢, M. Vjestica, N. Todorovié, V. Dimitrieski, 1. Lukovi¢, A Novel Approach and a
Language for Facilitating Collaborative Production Processes in Virtual Organizations Based
on DLT Networks, in: Proc. 2nd Int. Conf. Innov. Intell. Ind. Prod. Logist. IN4PL 2021,
SciTePress, Science and Technology Publications, Lda, 2021: pp. 197-208.
https://doi.org/10.5220/0010720900003062.

M.K. Sott, L.B. Furstenau, Y.P.R. Rodrigues, L.M. Kipper, G.L. Tortorella, J.R. Lépez-Robles,
M.J. Cobo, Exploring the Evolution Structure of Process Modelling for Industry 4.0: a Science
Mapping for Proposing Research Paths, in: Proc. 2nd South Am. Conf. Ind. Eng. Oper. Manag.,
IEOM Society International, Sao Paulo, Brazil, 2021: pp. 537-550.

L.D. Xu, E.L. Xu, L. Li, Industry 4.0: state of the art and future trends, Int. J. Prod. Res. 56
(2018) 2941-2962. https://doi.org/10.1080/00207543.2018.1444806.

S. Erol, A. Jager, P. Hold, K. Ott, W. Sihn, Tangible Industry 4.0: A Scenario-Based Approach
to Learning for the Future of Production, in: Proc. 6th CIRP Conf. Learn. Factories, 2016: pp.
13-18. https://doi.org/10.1016/j.procir.2016.03.162.

L.D. Xu, Enterprise Systems: State-of-the-Art and Future Trends, IEEE Trans. Ind. Inform. 7
(2011) 630-640. https://doi.org/10.1109/T11.2011.2167156.

J. Jiao, M.M. Tseng, Q. Ma, Y. Zou, Generic Bill-of-Materials-and-Operations for High-
Variety Production Management, Concurr. Eng. 8 (2000) 297-321.
https://doi.org/10.1177/1063293X0000800404.

American Society of Mechanical Engineers, ASME Standard: Operation and Flow Process
Charts, ASME, New York, 1947.

Korean Standards Association (KSA), KS A 3002 Standard. https://www.kssn.net/en/
(accessed April 5, 2020).

D.H. Stamatis, Failure Mode and Effect Analysis: FMEA from Theory to Execution, 2nd ed.,
American Society for Quality, Quality Press, Milwaukee, Wisconsin, United States, 2003.
Ford Motor Company, Failure Mode and Effects Analysis: FMEA Handbook (with Robustness
Linkages), Version 4.2, Ford Motor Company, Dearborn, Michigan, United States, 2011.
D.H. Stamatis, Advanced Product Quality Planning: The Road to Success, 1st ed., CRC Press,
Taylor & Francis Group, Boca Raton, Florida, United States, 2018.

Object Management Group, Business Process Model and Notation, Version 2.0.2, 2014.

S. Zor, K. Gorlach, F. Leymann, Using BPMN for Modeling Manufacturing Processes, in:
Proc. 43rd CIRP Int. Conf. Manuf. Syst. ICMS 2010, Vienna, Austria, 2010: pp. 515-522.

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]
[44]
[45]

[46]
[47]
[48]

[49]

[50]

References 183

S. Zor, D. Schumm, F. Leymann, A Proposal of BPMN Extensions for the Manufacturing
Domain, in: Proc. 44th CIRP Int. Conf. Manuf. Syst. ICMS 2011, Madison, Wisconsin, USA,
2011: pp. 1-7.

M. Polderdijk, I. Vanderfeesten, J. Erasmus, K. Traganos, T. Bosch, G. van Rhijn, D. Fahland,
A Visualization of Human Physical Risks in Manufacturing Processes Using BPMN, in: Lect.
Notes Bus. Inf. Process. LNBIP, Springer, Barcelona, Spain, 2017: pp. 732—-743.
https://doi.org/10.1007/978-3-319-74030-0_58.

H. Ahn, T.-W. Chang, Measuring Similarity for Manufacturing Process Models, in: IFIP Adv.
Inf. Commun. Technol. AICT, Springer Nature, Seoul, Korea, 2018: pp. 223-231.
https://doi.org/10.1007/978-3-319-99707-0_28.

H. Ahn, T.-W. Chang, A Similarity-Based Hierarchical Clustering Method for Manufacturing
Process Models, Sustainability. 11 (2019) 2560:1-2560:18.
https://doi.org/10.3390/su11092560.

I. Abouzid, R. Saidi, Proposal of BPMN extensions for modelling manufacturing processes, in:
Proc. 2019 5th Int. Conf. Optim. Appl. ICOA, IEEE, Kenitra, Morocco, 2019: pp. 1-6.
https://doi.org/10.1109/ICOA.2019.8727651.

P. Michalik, J. Stofa, I. Zolotova, The Use of BPMN for Modelling the MES Level in
Information and Control Systems, Qual. Innov. Prosper. 17 (2013) 39-47.
https://doi.org/10.12776/qip.v17i1.68.

I. Graja, S. Kallel, N. Guermouche, A.H. Kacem, BPMN4CPS: A BPMN Extension for
Modeling Cyber-Physical Systems, in: Proc. 2016 IEEE 25th Int. Conf. Enabling Technol.
Infrastruct. Collab. Enterp. WETICE, IEEE, Paris, France, 2016: pp. 152-157.
https://doi.org/10.1109/WETICE.2016.41.

P. Bocciarelli, A. D'Ambrogio, A. Giglio, E. Paglia, A BPMN extension for modeling Cyber-
Physical-Production-Systems in the context of Industry 4.0, in: Proc. 2017 IEEE 14th Int. Conf,
Netw. Sens. Control ICNSC, IEEE, Calabria, Italy, 2017: pp. 599-604.
https://doi.org/10.1109/ICNSC.2017.8000159.

S. Meyer, A. Ruppen, C. Magerkurth, Internet of Things-Aware Process Modeling: Integrating
10T Devices as Business Process Resources, in: Adv. Inf. Syst. Eng. CAISE 2013 Lect. Notes
Comput. Sci., Springer International Publishing, Valencia, Spain, 2013: pp. 84-98.
https://doi.org/10.1007/978-3-642-38709-8_6.

S. Meyer, A. Ruppen, L. Hilty, The Things of the Internet of Things in BPMN, in: Adv. Inf,
Syst. Eng. Workshop CAISE 2015 Lect. Notes Bus. Inf. Process., Springer International
Publishing, Stockholm, Sweden, 2015: pp. 285-297.
https://doi.org/10.1007/978-3-319-19243-7_27.

S. Schonig, L. Ackermann, S. Jablonski, A. Ermer, loT meets BPM: a bidirectional
communication architecture for loT-aware process execution, Softw. Syst. Model. 19 (2020)
1443-1459. https://doi.org/10.1007/s10270-020-00785-7.

Object Management Group, Unified Modeling Language, Version 2.5.1, 2017.

Object Management Group, Systems Modeling Language, Version 1.6, 2019.

S.M. Fallah, S. Wolny, M. Wimmer, Towards model-integrated service-oriented
manufacturing execution system, in: Proc. 2016 1st Int. Workshop Cyber-Phys. Prod. Syst.
CPPS, IEEE, Vienna, Austria, 2016: pp. 1-5. https://doi.org/10.1109/CPPS.2016.7483917.
C.A. Petri, Kommunikationen mit Automaten, Ph.D. Thesis, University of Bonn, 1962.

W. Reisig, Understanding Petri Nets: Modeling Techniques, Analysis Methods, Case Studies,
1st ed., Springer-Verlag, Berlin Heidelberg, 2013. https://doi.org/10.1007/978-3-642-33278-4.
R. Miller, M. Scholer, M. Karkowski, Generic automation task description for flexible
assembly systems, in: Proc. 52nd CIRP Conf. Manuf. Syst. CMS, Elsevier, Ljubljana, Slovenia,
2019: pp. 730-735. https://doi.org/10.1016/j.procir.2019.03.185.

R. Valk, Object Petri Nets: Using the Nets-within-Nets Paradigm, in: J. Desel, W. Reisig, G.
Rozenberg (Eds.), Lect. Concurr. Petri Nets Adv. Petri Nets, Springer, Berlin, Heidelberg,
2004: pp. 819-848. https://doi.org/10.1007/978-3-540-27755-2_23.

J.-1. Latorre-Biel, J. Faulin, A.A. Juan, E. Jiménez-Macias, Petri Net Model of a Smart Factory
in the Frame of Industry 4.0, in: Proc. 9th Vienna Int. Conf. Math. Model. MATHMOD 2018,
Elsevier, Vienna, Austria, 2018: pp. 266—271. https://doi.org/10.1016/j.ifacol.2018.03.046.

184 References

[51]

[52]

[53]
[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

R.J. Mayer, C.P. Menzel, M.K. Painter, P.S. Dewitte, T. Blinn, B. Perakath, IDEF3 Process
Description Capture Method Report, Knowledge Based Systems, Inc., Texas, USA, 1995.

Q. Li, Y.-L. Chen, IDEF3 Process Capture Method, in: Model. Anal. Enterp. Inf. Syst. Requir.
Realiz., Springer, Berlin, Heidelberg, 2009: pp. 159-168.
https://doi.org/10.1007/978-3-540-89556-5_8.

R. Davis, E. Brabander, eds., The Event-driven Process Chain, in: ARIS Des. Platf. Get. Started
BPM, Springer, London, 2007: pp. 105-125. https://doi.org/10.1007/978-1-84628-613-1 7.
A. Fleischmann, What Is S-BPM?, in: Commun. Comput. Inf. Sci. CCIS, Springer, Berlin,
Heidelberg, 2010: pp. 85-106. https://doi.org/10.1007/978-3-642-15915-2_7.

A. Fleischmann, C. Stary, Whom to talk to? A stakeholder perspective on business process
development, Univers. Access Inf. Soc. 11 (2012) 125-150.
https://doi.org/10.1007/s10209-011-0236-X.

M. Neubauer, F. Krenn, D. Majoe, C. Stary, Subject-orientation as design language for
integration across organisational control layers, Int. J. Prod. Res. 55 (2017) 3644—3656.
https://doi.org/10.1080/00207543.2016.1198058.

L. Wen, D. Tuffley, Formalizing Manufacturing Process Modeling Using Composition Trees,
Adv. Mater. Res. 399-401 (2012) 1852-1855.

https://doi.org/10.4028/www.scientific.net/ AMR.399-401.1852.

D. Bork, H.-G. Fill, D. Karagiannis, W. Utz, Simulation of Multi-Stage Industrial Business
Processes Using Metamodelling Building Blocks with ADOxx, Enterp. Model. Inf. Syst.
Archit. 13 (2018) 333-344. https://doi.org/10.18417/emisa.si.hcm.25.

D. Jeong, D. Kim, T. Choi, Y. Seo, A Process-Based Modeling Method for Describing
Production Processes of Ship Block Assembly Planning, Processes. 8 (2020) 880:1-880:21.
https://doi.org/10.3390/pr8070880.

R. Petrasch, R. Hentschke, Towards an Internet-of-Things-aware Process Modeling Method:
An Example for a House Suveillance System Process Model, in: Proc. 2nd Manag. Innov.
Technol. Int. Conf. MITICON 2015, Information Technology Management, Faculty of
Engineering, Mahidol University, Bangkok, Thailand, 2015: pp. 168-172.

R. Petrasch, R. Hentschke, Process modeling for industry 4.0 applications: Towards an industry
4.0 process modeling language and method, in: Proc. 2016 13th Int. Jt. Conf. Comput. Sci.
Softw. Eng. JCSSE, IEEE, Khon Kaen, Thailand, 2016: pp. 1-5.
https://doi.org/10.1109/JCSSE.2016.7748885.

R. Lindorfer, R. Froschauer, G. Schwarz, ADAPT - A decision-model-based Approach for
Modeling Collaborative Assembly and Manufacturing Tasks, in: Proc. 2018 IEEE 16th Int.
Conf. Ind. Inform. INDIN, IEEE, Porto, Portugal, 2018: pp. 559-564.
https://doi.org/10.1109/INDIN.2018.8472064.

M. Rother, J. Shook, Learning to See: Value Stream Mapping to Create Value and Eliminate
MUDA, Version 1.4, Lean Enterprise Institute, Cambridge, MA, USA, 2009.

A. Salmi, P. David, J.D. Summers, E. Blanco, A modelling language for assembly sequences
representation, scheduling and analyses, Int. J. Prod. Res. 52 (2014) 3986—-4006.
https://doi.org/10.1080/00207543.2014.916432.

N. Keddis, G. Kainz, A. Zoitl, A. Knoll, Modeling production workflows in a mass
customization era, in: Proc. 2015 IEEE Int. Conf. Ind. Technol. ICIT, IEEE, Seville, Spain,
2015: pp. 1901-1906. https://doi.org/10.1109/1CIT.2015.7125374.

M. Litjen, D. Rippel, GRAMOSA framework for graphical modelling and simulation-based
analysis of complex production processes, Int. J. Adv. Manuf. Technol. 81 (2015) 171-181.
https://doi.org/10.1007/s00170-015-7037-y.

B. Yang, L. Qiao, Z. Zhu, M. Wulan, A Metamodel for the Manufacturing Process Information
Modeling, in: Proc. 9th Int. Conf. Digit. Enterp. Technol. DET 2016 — Intell. Manuf. Knowl.
Econ. Era, Nanjing, China, 2016: pp. 332-337. https://doi.org/10.1016/j.procir.2016.10.032.
B. Yang, L. Qiao, N. Cai, Z. Zhu, M. Wulan, Manufacturing process information modeling
using a metamodeling approach, Int. J. Adv. Manuf. Technol. 94 (2018) 1579-1596.
https://doi.org/10.1007/s00170-016-9979-0.

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

References 185

E. Jarvenpad, N. Siltala, O. Hylli, M. Lanz, The development of an ontology for describing the
capabilities of manufacturing resources, J. Intell. Manuf. 30 (2019) 959-978.
https://doi.org/10.1007/s10845-018-1427-6.

S. Cramer, M. Hoffmann, P. Schlegel, M. Kemmerling, R.H. Schmitt, Towards a flexible
process-independent meta-model for production data, in: Proc. 14th CIRP Conf. Intell.
Comput. Manuf. Eng. ICME, Elsevier, Gulf of Naples, Italy, 2020: pp. 586-591.
https://doi.org/10.1016/j.procir.2021.03.112.

T.D. Brunoe, A.-L. Andersen, D.G.H. Sorensen, K. Nielsen, M. Bejlegaard, Integrated product-
process modelling for platform-based co-development, Int. J. Prod. Res. 58 (2020) 6185-6201.
https://doi.org/10.1080/00207543.2019.1671628.

C. Schlenoff, M. Gruninger, F. Tissot, J. Valois, J. Lubell, J. Lee, The Process Specification
Language (PSL) Overview and Version 1.0 Specification, National Institute of Standards and
Technology (NIST), 2000. https://doi.org/10.6028/NIST.IR.6459.

L. Qiao, S. Kao, Y. Zhang, Manufacturing process modelling using process specification
language, Int. J. Adv. Manuf. Technol. 55 (2011) 549-563.
https://doi.org/10.1007/s00170-010-3115-3.

M. Witsch, B. Vogel-Heuser, Towards a Formal Specification Framework for Manufacturing
Execution Systems, IEEE Trans. Ind. Inform. 8 (2012) 311-320.
https://doi.org/10.1109/T11.2012.2186585.

B. Weillenberger, S. Flad, X. Chen, S. Rosch, T. Voigt, B. Vogel-Heuser, Model driven
engineering of manufacturing execution systems using a formal specification, in: Proc. 2015
IEEE 20th Int. Conf. Emerg. Technol. Fact. Autom. ETFA, IEEE, Luxembourg, 2015: pp. 1-
8. https://doi.org/10.1109/ETFA.2015.7301430.

X. Chen, F. Gemein, S. Flad, T. Voigt, Basis for the model-driven engineering of
manufacturing execution systems: Modeling elements in the domain of beer brewing, Comput.
Ind. 101 (2018) 127-137. https://doi.org/10.1016/j.compind.2018.07.005.

X. Chen, C. Nophut, T. Voigt, A model-driven approach for engineering customizable MES
with the application to the food and beverage industry, Int. J. Adv. Manuf. Technol. 115 (2021)
2607-2622. https://doi.org/10.1007/s00170-021-07317-7.

H. Lee, K. Ryu, Y.-J. Son, Y. Cho, Capturing green information and mapping with MES
functions for increasing manufacturing sustainability, Int. J. Precis. Eng. Manuf. 15 (2014)
1709-1716. https://doi.org/10.1007/s12541-014-0523-6.

H. Lee, Y. Liau, S. Kim, K. Ryu, A Framework for Process Model Based Human-Robot
Collaboration System Using Augmented Reality, in: IFIP Adv. Inf. Commun. Technol. AICT,
Springer Nature, Seoul, Korea, 2018: pp. 482-489.
https://doi.org/10.1007/978-3-319-99707-0_60.

H. Lee, Y.Y. Liau, S. Kim, K. Ryu, Model-Based Human Robot Collaboration System for
Small Batch Assembly with a Virtual Fence, Int. J. Precis. Eng. Manuf.-Green Technol. 7
(2020) 609-623. https://doi.org/10.1007/s40684-020-00214-6.

The Association of German Engineers, The Association for Electrical, Electronic &
Information Technologies, VDI/VDE 3682 Part 1 — Formalised process descriptions: Concept
and graphic representation, VDI/VDE Society for Measurement and Automatic Control
(GMA), Dusseldorf, Germany, 2015.

The Association of German Engineers, The Association for Electrical, Electronic &
Information Technologies, VDI/VDE 3682 Part 2 — Formalised process descriptions:
Information model, VDI/VDE Society for Measurement and Automatic Control (GMA),
Dusseldorf, Germany, 2015.

K. Meixner, J. Decker, H. Marcher, A. Lider, S. Biffl, Towards a Domain-Specific Language
for Product-Process-Resource Constraints, in: Proc. 25th IEEE Int. Conf. Emerg. Technol.
Fact. Autom. ETFA, IEEE, Vienna, Austria, 2020: pp. 1405-1408.
https://doi.org/10.1109/ETFA46521.2020.9212063.

K. Meixner, F. Rinker, H. Marcher, J. Decker, S. Biffl, A Domain-Specific Language for
Product-Process-Resource Modeling, in: Proc. 26th IEEE Int. Conf. Emerg. Technol. Fact.
Autom. ETFA, IEEE, Vasteras, Sweden, 2021: pp. 1-8.
https://doi.org/10.1109/ETFA45728.2021.9613674.

186 References

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]
[95]

[96]
[97]

[98]

[99]

B. Caesar, A. Hanel, E. Wenkler, C. Corinth, S. Ihlenfeldt, A. Fay, Information Model of a
Digital Process Twin for Machining Processes, in: Proc. 25th IEEE Int. Conf. Emerg. Technol.
Fact. Autom. ETFA, IEEE, Vienna, Austria, 2020: pp. 1765-1772.
https://doi.org/10.1109/ETFA46521.2020.9212085.

R. Seiger, C. Keller, F. Niebling, T. Schlegel, Modelling complex and flexible processes for
smart cyber-physical environments, J. Comput. Sci. 10 (2015) 137-148.
https://doi.org/10.1016/j.jocs.2014.07.001.

D. Brovkina, O. Riedel, Skill-based Metamodel for sustaining the process-oriented cyber-
physical System Description, in: Proc. 39th Cent. Am. Panama Conv. CONCAPAN XXXIX,
IEEE, Guatemala City, Guatemala, 2019: pp. 1-6.
https://doi.org/10.1109/CONCAPANXXX1X47272.2019.8976997.

D. Brovkina, O. Riedel, Graph-based Data Model for Assembly-Specific Capability
Description for Fully Automated Assembly Line Design, in: Proc. 2nd Eurasia Conf. 10T
Commun. Eng. ECICE, IEEE, Yunlin, Taiwan, 2020: pp. 381-384.
https://doi.org/10.1109/ECICE50847.2020.9301960.

D. Brovkina, O. Riedel, Assembly Process Model for Automated Assembly Line Design, in:
Proc. 3rd Eurasia Conf. IOT Commun. Eng. ECICE, IEEE, Yunlin, Taiwan, 2021: pp. 588—
594. https://doi.org/10.1109/ECICE52819.2021.9645604.

C. Lehnert, G. Engel, H. Steininger, R. Drath, T. Greiner, A Hierarchical Domain-Specific
Language for Cyber-physical Production Systems Integrating Asset Administration Shells, in:
Proc. 26th IEEE Int. Conf. Emerg. Technol. Fact. Autom. ETFA, IEEE, Vasteras, Sweden,
2021: pp. 1-4. https://doi.org/10.1109/ETFA45728.2021.9613428.

F. Gamboa Quintanilla, O. Cardin, A. L'Anton, P. Castagna, A modeling framework for
manufacturing services in Service-oriented Holonic Manufacturing Systems, Eng. Appl. Artif.
Intell. 55 (2016) 26-36. https://doi.org/10.1016/j.engappai.2016.06.004.

A. Indamutsa, D. Di Ruscio, A. Pierantonio, A Low-Code Development Environment to
Orchestrate Model Management Services, in: IFIP Adv. Inf. Commun. Technol. AICT,
Springer Nature, Nantes, France, 2021: pp. 342-350.
https://doi.org/10.1007/978-3-030-85874-2_36.

K.C. Kang, S.G. Cohen, J.A. Hess, W.E. Novak, A.S. Peterson, Feature-Oriented Domain
Analysis (FODA) Feasibility Study, Software Engineering Institute, Carnegie Mellon
University, 1990.

D. Steinberg, F. Budinsky, M. Paternostro, E. Merks, EMF: Eclipse Modeling Framework, 2nd
ed., Addison-Wesley Professional, Upper Saddle River, New Jersey, U.S., 2008.

Eclipse Foundation, Eclipse Modeling Framework. https://www.eclipse.org/modeling/emf/
(accessed March 20, 2021).

Object Management Group, Object Constraint Language, Version 2.4, 2014.

J. Warmer, A. Kleppe, The Object Constraint Language: Getting Your Models Ready for
MDA, 2nd ed., Addison-Wesley, Boston, MA, USA, 2003.

J. Cabot, M. Gogolla, Object Constraint Language (OCL): A Definitive Guide, in: Proc. 12th
Int. Sch. Form. Methods Des. Comput. Commun. Softw. Syst., Springer, Bertinoro, Italy, 2012:
pp. 58-90. https://doi.org/10.1007/978-3-642-30982-3_3.

V. Vuyjovi¢, M. Maksimovi¢, B. Perisi¢, Sirius: A Rapid Development of DSM Graphical
Editor, in: Proc. IEEE 18th Int. Conf. Intell. Eng. Syst. INES 2014, IEEE, Tihany, Hungary,
2014: pp. 233-238. https://doi.org/10.1109/INES.2014.6909375.

[100] Eclipse Sirius Documentation. https://www.eclipse.org/sirius/doc/ (accessed March 19, 2020).
[101] G. Kahraman, S. Bilgen, A framework for qualitative assessment of domain-specific languages,

Softw. Syst. Model. 14 (2015) 1505-1526. https://doi.org/10.1007/s10270-013-0387-8.

[102] M. Xu, J.M. David, S.H. Kim, The Fourth Industrial Revolution: Opportunities and Challenges,

Int. J. Financ. Res. 9 (2018) 90-95. https://doi.org/10.5430/ijfr.v9n2p90.

[103] P.N. Stearns, The Industrial Revolution in World History, 5th ed., Routledge, Taylor & Francis

Group, New York and London, 2021.

[104] H. Kagermann, W.-D. Lukas, W. Wahlster, Industrie 4.0: Mit dem Internet der Dinge auf dem

Weg zur 4. industriellen Revolution, VDI Nachrichten. 13 (2011).

References 187

[105] K.-D. Thoben, S. Wiesner, T. Wuest, "Industrie 4.0" and Smart Manufacturing — A Review of
Research Issues and Application Examples, Int. J. Autom. Technol. 11 (2017) 4-16.
https://doi.org/10.20965/ijat.2017.p0004.

[106] H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, M. Hoffmann, Industry 4.0, Bus. Inf. Syst. Eng. 6
(2014) 239-242. https://doi.org/10.1007/s12599-014-0334-4.

[107] H. Zhao, L. McLoughlin, V. Adzhiev, A. Pasko, "Why do we not buy mass customised
products?" — An investigation of consumer purchase intention of mass customised products,
Int. J. Ind. Eng. Manag. 10 (2019) 181-190. https://doi.org/10.24867/1JIEM-2019-2-238.

[108] D. Ivanov, C.S. Tang, A. Dolgui, D. Battini, A. Das, Researchers' perspectives on Industry 4.0:
multi-disciplinary analysis and opportunities for operations management, Int. J. Prod. Res. 59
(2021) 2055-2078. https://doi.org/10.1080/00207543.2020.1798035.

[109] Y. Lu, Industry 4.0: A survey on technologies, applications and open research issues, J. Ind.
Inf. Integr. 6 (2017) 1-10. https://doi.org/10.1016/j.jii.2017.04.005.

[110] A.G. Frank, L.S. Dalenogare, N.F. Ayala, Industry 4.0 technologies: Implementation patterns
in manufacturing companies, Int. J. Prod. Econ. 210 (2019) 15-26.
https://doi.org/10.1016/j.ijpe.2019.01.004.

[111] B. Chen, J. Wan, L. Shu, P. Li, M. Mukherjee, B. Yin, Smart Factory of Industry 4.0: Key
Technologies, Application Case, and Challenges, IEEE Access. 6 (2018) 6505-6519.
https://doi.org/10.1109/ACCESS.2017.2783682.

[112] F. Almada-Lobo, The Industry 4.0 revolution and the future of Manufacturing Execution
Systems (MES), J. Innov. Manag. 3 (2015) 16-21.
https://doi.org/10.24840/2183-0606_003.004_0003.

[113] S. Wang, J. Wan, D. Li, C. Zhang, Implementing Smart Factory of Industrie 4.0: An Outlook,
Int. J. Distrib. Sens. Netw. 12 (2016) 1-10. https://doi.org/10.1155/2016/3159805.

[114] Y. Zhang, C. Qian, J. Lv, Y. Liu, Agent and Cyber-Physical System Based Self-Organizing
and Self-Adaptive Intelligent Shopfloor, IEEE Trans. Ind. Inform. 13 (2017) 737-747.
https://doi.org/10.1109/T11.2016.2618892.

[115] N.Jazdi, Cyber Physical Systems in the Context of Industry 4.0, in: Proc. 2014 IEEE Int. Conf.
Autom. Qual. Test. Robot., IEEE, Cluj-Napoca, Romania, 2014: pp. 1-4.
https://doi.org/10.1109/AQTR.2014.6857843.

[116] E.A. Lee, S.A. Seshia, Introduction to Embedded Systems: A Cyber-Physical Systems
Approach, 2nd ed., MIT Press, 2017.

[117] B.B. Sanchez, R. Alcarria, D. Sanchez-de-Rivera, A. Sanchez-Picot, Enhancing Process
Control in Industry 4.0 Scenarios using Cyber-Physical Systems, J. Wirel. Mob. Netw.
Ubiquitous Comput. Dependable Appl. JOWUA. 7 (2016) 41-64.
https://doi.org/10.22667/JOWUA.2016.12.31.041.

[118] L. Monostori, B. Kadar, T. Bauernhansl, S. Kondoh, S. Kumara, G. Reinhart, O. Sauer, G.
Schuh, W. Sihn, K. Ueda, Cyber-physical systems in manufacturing, CIRP Ann. - Manuf.
Technol. 65 (2016) 621-641. https://doi.org/10.1016/j.cirp.2016.06.005.

[119] R. Stark, T. Damerau, Digital Twin, in: S. Chatti, T. Tolio (Eds.), CIRP Encycl. Prod. Eng.,
Springer, Berlin, Heidelberg, 2019: pp. 1-8.
https://doi.org/10.1007/978-3-642-35950-7_16870-1.

[120] Q. Qi, F. Tao, Digital Twin and Big Data Towards Smart Manufacturing and Industry 4.0: 360
Degree Comparison, IEEE Access. 6 (2018) 3585-3593.
https://doi.org/10.1109/ACCESS.2018.2793265.

[121] J. Wan, H. Cai, K. Zhou, Industrie 4.0: Enabling Technologies, in: Proc. 2015 Int. Conf. Intell.
Comput. Internet Things ICIT, IEEE, Harbin, China, 2015: pp. 135-140.
https://doi.org/10.1109/ICAIOT.2015.7111555.

[122] S. Vaidya, P. Ambad, S. Bhosle, Industry 4.0 — A Glimpse, in: Procedia Manuf., Maharashtra,
India, 2018: pp. 233-238. https://doi.org/10.1016/j.promfg.2018.02.034.

[123] S. Li, L.D. Xu, S. Zhao, The internet of things: a survey, Inf. Syst. Front. 17 (2015) 243-2509.
https://doi.org/10.1007/s10796-014-9492-7.

[124] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, M. Gidlund, Industrial Internet of Things:
Challenges, Opportunities, and Directions, IEEE Trans. Ind. Inform. 14 (2018) 4724-4734.
https://doi.org/10.1109/T11.2018.2852491.

188 References

[125] B. Saenz de Ugarte, A. Artiba, R. Pellerin, Manufacturing execution system — a literature
review, Prod. Plan. Control. 20 (2009) 525-539. https://doi.org/10.1080/09537280902938613.

[126] S. Mantravadi, C. Mgller, An Overview of Next-generation Manufacturing Execution Systems:
How important is MES for Industry 4.0?, Procedia Manuf. 30 (2019) 588-595.
https://doi.org/10.1016/j.promfg.2019.02.083.

[127] F.R. Jacobs, W.L. Berry, D.C. Whybark, T.E. Vollmann, Manufacturing Planning and Control
for Supply Chain Management: The CPIM Reference, 2nd ed., McGraw-Hill Education, 2018.

[128] L. Alting, H. Zhang, Computer Aided Process Planning: the state-of-the-art survey, Int. J. Prod.
Res. 27 (1989) 553-585. https://doi.org/10.1080/00207548908942569.

[129] F. Cay, C. Chassapis, An IT view on perspectives of computer aided process planning research,
Comput. Ind. 34 (1997) 307-337. https://doi.org/10.1016/S0166-3615(97)00070-5.

[130] X. Xu, L. Wang, S.T. Newman, Computer-aided process planning — A critical review of recent
developments and future trends, Int. J. Comput. Integr. Manuf. 24 (2011) 1-31.
https://doi.org/10.1080/0951192X.2010.518632.

[131] M. Lundgren, M. Hedlind, T. Kjellberg, Model Driven Manufacturing Process Design and
Managing Quality, in: Proc. 26th CIRP Des. Conf., Elsevier, Stockholm, Sweden, 2016: pp.
299-304. https://doi.org/10.1016/j.procir.2016.07.032.

[132] M. Lundgren, M. Hedlind, G. Sivard, T. Kjellberg, Process Design as Fundament in Efficient
Process Planning, in: Proc. 8th Swed. Prod. Symp. SPS 2018, Elsevier, Stockholm, Sweden,
2018: pp. 487-494. https://doi.org/10.1016/j.promfg.2018.06.126.

[133] C.T. Maravelias, C. Sung, Integration of production planning and scheduling: Overview,
challenges and opportunities, Comput. Chem. Eng. 33 (2009) 1919-1930.
https://doi.org/10.1016/j.compchemeng.2009.06.007.

[134] S.C. Graves, A Review of Production Scheduling, Oper. Res. 29 (1981) 646-675.
https://doi.org/10.1287/opre.29.4.646.

[135] B.W. Niebel, Mechanized process selection for planning new design, ASME Pap. No 737.
(1965).

[136] D.E. Schenk, Feasibility of automated process planning, Ph.D. Thesis, Purdue University,
1966.

[137] Y. Yusof, K. Latif, Survey on computer-aided process planning, Int. J. Adv. Manuf. Technol.
75 (2014) 77-89. https://doi.org/10.1007/s00170-014-6073-3.

[138] C. Elanchezhian, T.S. Selwyn, G.S. Sundar, Computer Aided Manufacturing, 2nd ed., Laxmi
Publications, 2007.

[139] M. Mani, J. Madan, J.H. Lee, K.W. Lyons, S.K. Gupta, Sustainability characterisation for
manufacturing processes, Int. J. Prod. Res. 52 (2014) 5895-5912.
https://doi.org/10.1080/00207543.2014.886788.

[140] F. Jovane, E. Westkamper, D. Williams, The ManuFuture Road: Towards Competitive and
Sustainable High-Adding-Value Manufacturing, 1st ed., Springer, Berlin, Heidelberg, 20009.
https://doi.org/10.1007/978-3-540-77012-1.

[141] 1.C. Garretson, M. Mani, S. Leong, K.W. Lyons, K.R. Haapala, Terminology to support
manufacturing process characterization and assessment for sustainable production, J. Clean.
Prod. 139 (2016) 986-1000. https://doi.org/10.1016/j.jclepro.2016.08.103.

[142] Platform Industrie 4.0, ZVEI, Details of the Asset Administration Shell. Part 1 — The exchange
of information between partners in the value chain of Industrie 4.0 (Version 3.0RCO01), Federal
Ministry for Economic Affairs and Energy (BMWi), Berlin, Germany, 2020.

[143] C. Diedrich, A. Belyaev, R. Blumenfeld, J. Bock, S. Grimm, J. Hermann, T. Klausmann, A.
Kocher, M. Maurmaier, K. Meixner, J. Peschke, M. Schleipen, S. Schmitt, B. Schnebel, G.
Stephan, M. Volkmann, A. Wannagat, K. Watson, M. Winter, P. Zimmermann, Information
Model for Capabilities, Skills & Services, Plattform Industrie 4.0, Berlin, Germany, 2022.

[144] S. Malakuti, J. Bock, M. Weser, P. Venet, P. Zimmermann, M. Wiegand, J. Grothoff, C.
Wagner, A. Bayha, Challenges in Skill-based Engineering of Industrial Automation Systems,
in: Proc. 23rd Int. Conf. Emerg. Technol. Fact. Autom. ETFA, IEEE, Turin, Italy, 2018: pp.
67-74. https://doi.org/10.1109/ETFA.2018.8502635.

[145] V. Hammerstingl, G. Reinhart, Skills in Assembly, Version 1.1, Institute for Machine Tools
and Industrial Management (iwb), Technical University of Munich, Munich, Germany, 2018.

References 189

[146] P. Zimmermann, E. Axmann, B. Brandenbourger, K. Dorofeev, A. Mankowski, P. Zanini,
Skill-based Engineering and Control on Field-Device-Level with OPC UA, in: Proc. 24th IEEE
Int. Conf. Emerg. Technol. Fact. Autom. ETFA, IEEE, Zaragoza, Spain, 2019: pp. 1101-1108.
https://doi.org/10.1109/ETFA.2019.8869473.

[147] The Association of German Engineers, VDI 2860 — Assembly and handling; handling
functions, handling units; terminology, definitions and symbols, VDI-Gesellschaft
Produktionstechnik (ADB), Dusseldorf, Germany, 1990.

[148] The German Institute for Standardization, DIN 8580 — Manufacturing processes: Terms and
definitions, division, The DIN Standards Committee Technical Fundamentals (NATG), Berlin,
Germany, 2003.

[149] J. Pfrommer, D. Stogl, K. Aleksandrov, V. Schubert, B. Hein, Modelling and orchestration of
service-based manufacturing systems via skills, in: Proc. 19th Int. Conf. Emerg. Technol. Fact.
Autom. ETFA, IEEE, Barcelona, Spain, 2014: pp. 1-4.
https://doi.org/10.1109/ETFA.2014.7005285.

[150] T. Stahl, M. Voelter, K. Czarnecki, Model-Driven Software Development: Technology,
Engineering, Management, 1st ed., John Wiley and Sons, Ltd., Chichester, England, 2006.

[151] J. Bezivin, O. Gerbe, Towards a Precise Definition of the OMG/MDA Framework, in: Proc.
16th Annu. Int. Conf. Autom. Softw. Eng. ASE 2001, IEEE, San Diego, CA, USA, 2001: pp.
273-280. https://doi.org/10.1109/ASE.2001.989813.

[152] C. Atkinson, T. Kuhne, Model-Driven Development: A Metamodeling Foundation, IEEE
Softw. 20 (2003) 36-41. https://doi.org/10.1109/MS.2003.1231149.

[153] Object Management Group, Meta Object Facility, Version 2.5.1, 2016.

[154] A. van Deursen, P. Klint, J. Visser, Domain-Specific Languages: An Annotated Bibliography,
ACM SIGPLAN Not. 35 (2000) 26-36. https://doi.org/10.1145/352029.352035.

[155] M. Mernik, J. Heering, A.M. Sloane, When and how to develop domain-specific languages,
ACM Comput. Surv. 37 (2005) 316-344. https://doi.org/10.1145/1118890.1118892.

[156] V. Dimitrieski, Model-Driven Technical Space Integration Based on a Mapping Approach,
Ph.D. Thesis, University of Novi Sad, Faculty of Technical Sciences, 2017.

[157] M. Brambilla, J. Cabot, M. Wimmer, Model-Driven Software Engineering in Practice, 2nd ed.,
Morgan & Claypool Publishers, 2017.
https://doi.org/10.2200/S00751ED2V01Y201701SWEQ04.

[158] B. Vallespir, Y. Ducq, Enterprise modelling: from early languages to models transformation,
Int. J. Prod. Res. 56 (2018) 2878-2896. https://doi.org/10.1080/00207543.2017.1418985.

[159] G. Zacharewicz, N. Daclin, G. Doumeingts, H. Haidar, Model Driven Interoperability for
System Engineering, Modelling. 1 (2020) 94-121. https://doi.org/10.3390/modelling1020007.

[160] K. Dorofeev, S. Profanter, J. Cabral, P. Ferreira, A. Zoitl, Agile Operational Behavior for the
Control-Level Devices in Plug&Produce Production Environments, in: Proc. 24th IEEE Int.
Conf. Emerg. Technol. Fact. Autom. ETFA, IEEE, Zaragoza, Spain, 2019: pp. 49-56.
https://doi.org/10.1109/ETFA.2019.8869208.

[161] D. Gorecky, M. Schmitt, M. Loskyll, D. Ziihlke, Human-Machine-Interaction in the Industry
4.0 Era, in: Proc. 12th IEEE Int. Conf. Ind. Inform. INDIN, IEEE, Porto Alegre, Brazil, 2014:
pp. 289-294. https://doi.org/10.1109/INDIN.2014.6945523.

[162] H.A. Simon, The Sciences of the Artificial, 3rd ed., MIT Press, Cambridge, MA, USA, 1996.

[163] S.T. March, G.F. Smith, Design and natural science research on information technology, Decis.
Support Syst. 15 (1995) 251-266. https://doi.org/10.1016/0167-9236(94)00041-2.

[164] A.R. Hevner, S.T. March, J. Park, S. Ram, Design Science in Information Systems Research,
MIS Q. 28 (2004) 75-105. https://doi.org/10.2307/25148625.

[165] J. vom Brocke, A. Hevner, A. Maedche, Introduction to Design Science Research, in: J. vom
Brocke, A. Hevner, A. Maedche (Eds.), Des. Sci. Res. Cases, Springer, Cham, 2020: pp. 1-13.
https://doi.org/10.1007/978-3-030-46781-4_1.

[166] K. Peffers, T. Tuunanen, M.A. Rothenberger, S. Chatterjee, A Design Science Research
Methodology for Information Systems Research, J. Manag. Inf. Syst. 24 (2007) 45-77.
https://doi.org/10.2753/MI1S0742-1222240302.

190 References

[167] 1. Lukovi¢, P. Mogin, J. Pavicevi¢, S. Risti¢, An approach to developing complex database
schemas using form types, Softw. Pract. Exp. 37 (2007) 1621-1656.
https://doi.org/10.1002/spe.820.

[168] I. Lukovi¢, A. Popovi¢, J. Mosti¢, S. Risti¢, A tool for modeling form type check constraints
and complex functionalities of business applications, Comput. Sci. Inf. Syst. 7 (2010) 359-385.
https://doi.org/10.2298/CS1S1002359L.

[169] M. Celikovi¢, I. Lukovié, S. Aleksi¢, V. Ivanéevié, A MOF based meta-model and a concrete
DSL syntax of 11S*Case PIM concepts, Comput. Sci. Inf. Syst. 9 (2012) 1075-1103.
https://doi.org/10.2298/CS1S120203034C.

[170] S. Risti¢, S. Aleksi¢, M. Celikovi¢, V. Dimitrieski, I. Lukovié, Database reverse engineering
based on meta-models, Open Comput. Sci. 4 (2014) 150-159.
https://doi.org/10.2478/s13537-014-0218-1.

[171] L. Lukovié, M. Celikovié, S. Kordi¢, M. Vjestica, An Approach to the Information System
Conceptual Modeling Based on the Form Types, in: D. Karagiannis, M. Lee, K. Hinkelmann,
W. Utz (Eds.), Domain-Specific Conceptual Modeling: Concepts, Methods and ADOxx Tools,
1st ed., Springer International Publishing, Cham, 2022: pp. 589-614.
https://doi.org/10.1007/978-3-030-93547-4_26.

[172] ADOxx, ADOxx Modeling and Configuration Platform. https://www.adoxx.org/live/home
(accessed March 20, 2021).

[173] H.-G. Fill, D. Karagiannis, On the Conceptualisation of Modelling Methods Using the ADOxx
Meta Modelling Platform, Enterp. Model. Inf. Syst. Archit. 8 (2013) 4-25.
https://doi.org/10.1007/BF03345926.

[174] H.-G. Fill, T. Redmond, D. Karagiannis, FDMM: A Formalism for Describing ADOxx Meta
Models and Models, in: Proc. 14th Int. Conf. Enterp. Inf. Syst., SciTePress — Science and
Technology Publications, Wroclaw, Poland, 2012: pp. 133-144.
https://doi.org/10.5220/0003971201330144.

[175] B. Terzi¢, V. Dimitrieski, S. Kordi¢, G. Milosavljevi¢, I. Lukovié, Development and evaluation
of MicroBuilder: a Model-Driven tool for the specification of REST Microservice Software
Architectures, Enterp. Inf. Syst. 12 (2018) 1034-1057.
https://doi.org/10.1080/17517575.2018.1460766.

[176] H. Kern, F. Stefan, V. Dimitrieski, M. Celikovi¢, Mapping-Based Exchange of Models
Between Meta-Modeling Tools, in: Proc. 14th Workshop Domain-Specif. Model., ACM,
Portland, Oregon, USA, 2014: pp. 29-34. https://doi.org/10.1145/2688447.2688453.

[177] V. Dimitrieski, M. Celikovié, N. Igi¢, H. Kern, F. Stefan, Reuse of Rules in a Mapping-Based
Integration Tool, in: Commun. Comput. Inf. Sci., Springer, Naples, Italy, 2015: pp. 269-281.
https://doi.org/10.1007/978-3-319-22689-7_20.

[178] H. Kern, F. Stefan, K.-P. Fahnrich, V. Dimitrieski, A Mapping-Based Framework for the
Integration of Machine Data and Information Systems, in: Proc. 8th IADIS Int. Conf. Inf. Syst.,
2015: pp. 113-120.

[179] H. Kern, F. Stefan, V. Dimitrieski, Intelligent and Self-Adapting Integration Between
Machines and Information Systems, IADIS Int. J. Comput. Sci. Inf. Syst. 10 (2015) 47-63.

[180] V. Djuki¢, I. Lukovié, A. Popovié¢, Domain-Specific Modeling in Document Engineering, in:
Proc. 2011 Fed. Conf. Comput. Sci. Inf. Syst. FedCSIS 2011, Polish Information Processing
Society, Szczecin, Poland, 2011: pp. 817-824.

[181] V. Djuki¢, 1. Lukovi¢, A. Popovi¢, V. Ivancevi¢, Model execution: An approach based on
extending domain-specific modeling with action reports, Comput. Sci. Inf. Syst. 10 (2013)
1585-1620. https://doi.org/10.2298/CS15121228059D.

[182] V. Djuki¢, A. Popovi¢, I. Lukovi¢, V. Ivanéevi¢, Model Variations and Automated Refinement
of Domain-Specific Modeling Languages for Robot-Motion Control, Comput. Inform. 38
(2019) 497-524. https://doi.org/10.31577/cai_2019 _2_497.

[183] A. Wortmann, O. Barais, B. Combemale, M. Wimmer, Modeling Languages in Industry 4.0:
An Extended Systematic Mapping Study, Softw. Syst. Model. 19 (2020) 67-94.
https://doi.org/10.1007/s10270-019-00757-6.

References 191

[184] M.A. Mohamed, M. Challenger, G. Kardas, Applications of model-driven engineering in
cyber-physical systems: A systematic mapping study, J. Comput. Lang. 59 (2020) 100972:1—
100972:19. https://doi.org/10.1016/j.cola.2020.100972.

[185] M.A. Mohamed, G. Kardas, M. Challenger, Model-Driven Engineering Tools and Languages
for Cyber-Physical Systems—A Systematic Literature Review, IEEE Access. 9 (2021) 48605—
48630. https://doi.org/10.1109/ACCESS.2021.3068358.

[186] G. Sebastian, J.A. Gallud, R. Tesoriero, Code generation using model driven architecture: A
systematic mapping study, J. Comput. Lang. 56 (2020) 100935:1-100935:11.
https://doi.org/10.1016/j.cola.2019.100935.

[187] E. de Aradjo Silva, E. Valentin, J.R.H. Carvalho, R. da Silva Barreto, A survey of Model
Driven Engineering in robotics, J. Comput. Lang. 62 (2021) 101021:1-101021:14.
https://doi.org/10.1016/j.cola.2020.101021.

[188] G.L. Casalaro, G. Cattivera, F. Ciccozzi, I. Malavolta, A. Wortmann, P. Pelliccione, Model-
driven engineering for mobile robotic systems: a systematic mapping study, Softw. Syst.
Model. 21 (2022) 19-49. https://doi.org/10.1007/s10270-021-00908-8.

[189] C. Raith, M. Woschank, H. Zsifkovits, Metamodeling in Manufacturing Systems: Literature
Review and Trends, in: Proc. 11th Int. Conf. Ind. Eng. Oper. Manag., IEOM Society
International, Singapore, 2021: pp. 831-842.

[190] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thomason, G. Nordstrom, J.
Sprinkle, P. Volgyesi, The Generic Modeling Environment, in: Proc. IEEE Int. Workshop
Intell. Signal Process. WISP2001, IEEE, Budapest, Hungary, 2001.

[191] Vanderbilt University, Institute for Software Integrated Systems, GME: Generic Modeling
Environment. https://www.isis.vanderbilt.edu/projects/GME (accessed April 22, 2022).

[192] H. Krahn, B. Rumpe, S. Volkel, MontiCore: a framework for compositional development of
domain specific languages, Int. J. Softw. Tools Technol. Transf. 12 (2010) 353-372.
https://doi.org/10.1007/s10009-010-0142-1.

[193] MontiCore. https://monticore.github.io/monticore/ (accessed April 22, 2022).

[194] S. Kelly, K. Lyytinen, M. Rossi, MetaEdit+ A Fully Configurable Multi-User and Multi-Tool
CASE and CAME Environment, in: Adv. Inf. Syst. Eng., Springer, Berlin, Heidelberg, 1996:
pp. 1-21. https://doi.org/10.1007/3-540-61292-0 1.

[195] MetaCase, MetaEdit+ Domain-Specific Modeling (DSM) environment.
https://www.metacase.com/products.html (accessed April 24, 2022).

[196] Eclipse Foundation, Xtext. https://www.eclipse.org/Xtext/ (accessed December 29, 2021).

[197] M.A. Wehrmeister, E.P. Freitas, C.E. Pereira, F. Rammig, GenERTiCA: A Tool for Code
Generation and Aspects Weaving, in: Proc. 11th IEEE Int. Symp. Object Compon.-Oriented
Real-Time Distrib. Comput. ISORC, IEEE, Orlando, FL, USA, 2008: pp. 234-238.
https://doi.org/10.1109/ISORC.2008.67.

[198] Eclipse Foundation, Xtend. https://www.eclipse.org/xtend/ (accessed March 20, 2021).

[199] Z. Gao, C. Cecati, S.X. Ding, A Survey of Fault Diagnosis and Fault-Tolerant Techniques—
Part I: Fault Diagnosis With Model-Based and Signal-Based Approaches, IEEE Trans. Ind.
Electron. 62 (2015) 3757-3767. https://doi.org/10.1109/TIE.2015.2417501.

[200] A. Farooqui, P. Bergagard, P. Falkman, M. Fabian, Error handling within highly automated
automotive industry: Current practice and research needs, in: Proc. 2016 IEEE 21st Int. Conf.
Emerg. Technol. Fact. Autom. ETFA, IEEE, Berlin, Germany, 2016: pp. 1-4.
https://doi.org/10.1109/ETFA.2016.7733628.

[201] M. Svingerova, M. Melichar, Evaluation of Process Risks in Industry 4.0 Environment, in:
Proc. 28th DAAAM Int. Symp. Intell. Manuf. Autom., DAAAM International, Zadar, Croatia,
2017: pp. 1021-1029. https://doi.org/10.2507/28th.daaam.proceedings.142.

[202] A. Barthelmey, D. Storkle, B. Kuhlenkétter, J. Deuse, Cyber Physical Systems for Life Cycle
Continuous Technical Documentation of Manufacturing Facilities, in: Proc. 47th CIRP Conf.
Manuf. Syst., Elsevier, 2014: pp. 207-211. https://doi.org/10.1016/j.procir.2014.01.050.

[203] E.G. Margherita, A.M. Braccini, Industry 4.0 Technologies in Flexible Manufacturing for
Sustainable Organizational Value: Reflections from a Multiple Case Study of Italian
Manufacturers, Inf. Syst. Front. 25 (2023) 995-1016.
https://doi.org/10.1007/s10796-020-10047-y.

192 References

[204] L. Li, Reskilling and Upskilling the Future-ready Workforce for Industry 4.0 and Beyond, Inf.
Syst. Front. (2022). https://doi.org/10.1007/s10796-022-10308-y.

[205] M. Wolf, M. Kleindienst, C. Ramsauer, C. Zierler, E. Winter, Current and Future Industrial
Challenges: Demographic Change and Measures for Elderly Workers in Industry 4.0, Ann. Fac.
Eng. Hunedoara — Int. J. Eng. 16 (2018) 67—76.

[206] M. Nardo, D. Forino, T. Murino, The evolution of man—-machine interaction: the role of human
in Industry 4.0 paradigm, Prod. Manuf. Res. 8 (2020) 20-34.
https://doi.org/10.1080/21693277.2020.1737592.

[207] C. Wohlin, Guidelines for Snowballing in Systematic Literature Studies and a Replication in
Software Engineering, in: Proc. 18th Int. Conf. Eval. Assess. Softw. Eng. EASE 14,
Association for Computing Machinery, London, England, United Kingdom, 2014: pp. 38:1-
38:10. https://doi.org/10.1145/2601248.2601268.

[208] K. Zarour, D. Benmerzoug, N. Guermouche, K. Drira, A systematic literature review on BPMN
extensions, Bus. Process Manag. J. 26 (2019) 1473-1503.
https://doi.org/10.1108/BPMJ-01-2019-0040.

[209] American Production and Inventory Control Society, APICS Dictionary: The essential supply
chain reference, 14th ed., APICS, Chicago, USA, 2013.

[210] L.A. Shah, A. Etienne, A. Siadat, F. Vernadat, Process-oriented risk assessment methodology
for manufacturing process evaluation, Int. J. Prod. Res. 55 (2017) 4516-4529.
https://doi.org/10.1080/00207543.2016.1268728.

[211] M.K. Sott, L.B. Furstenau, L.M. Kipper, Y.P. Reckziegel Rodrigues, J.R. Lépez-Robles, F.D.
Giraldo, M.J. Cobo, Process modeling for smart factories: using science mapping to understand
the strategic themes, main challenges and future trends, Bus. Process Manag. J. 27 (2021)
1391-1417. https://doi.org/10.1108/BPMJ-05-2020-0181.

[212] A. Garcia-Dominguez, M. Marcos-Bércena, I. Medina-Bulo, A Comparison of BPMN 2.0 with
Other Notations for Manufacturing Processes, in: Proc. 4th Manuf. Eng. Soc. Int. Conf. MESIC
2011, AIP Publishing, Cadiz, Spain, 2012: pp. 593-600. https://doi.org/10.1063/1.4707613.

[213] Yaogiang BPMN Editor, Version 5.5.1. http://bpmn.sourceforge.net/ (accessed January 9,
2022).

[214] Netherlands Organization for Applied Scientific Research (TNO), Checklist Physical Load.
https://iwww.fysiekebelasting.tho.nl/en/instrumenten/checklist-physical-load/

(accessed September 25, 2020).

[215] OASIS, Web Services Business Process Execution Language, Version 2.0, 2007.

[216] S. Meyer, K. Sperner, C. Magerkurth, J. Pasquier, Towards modeling real-world aware
business processes, in: Proc. Second Int. Workshop Web Things, Association for Computing
Machinery, San Francisco, California, USA, 2011: pp. 8:1-8:6.
https://doi.org/10.1145/1993966.1993978.

[217] JGraph Ltd, diagrams.net — Diagram Software and Flowchart Maker, Version 16.2.4.
https://www.diagrams.net/ (accessed January 9, 2022).

[218] W. Mahnke, S.-H. Leitner, M. Damm, OPC Unified Architecture, Springer, Berlin, Heidelberg,
2009. https://doi.org/10.1007/978-3-540-68899-0.

[219] OPC Foundation, Open Platform Communications Unified Architecture.
https://opcfoundation.org/about/opc-technologies/opc-ua/ (accessed March 13, 2022).

[220] Platform Independent Petri net Editor 2 — PIPE2, Version 4.3.0. http://pipe2.sourceforge.net/
(accessed January 9, 2022).

[221] P. Bonet, C.M. Llado, R. Puigjaner, W.J. Knottenbelt, PIPE v2.5: a Petri Net Tool for
Performance Modeling, in: Proc. 23rd Lat. Am. Conf. Inform. CLEI 2007, San Jose, Costa
Rica, 2007: pp. 1-12.

[222] N.J. Dingle, W.J. Knottenbelt, T. Suto, PIPE2: A Tool for the Performance Evaluation of
Generalised Stochastic Petri Nets, ACM SIGMETRICS Perform. Eval. Rev. 36 (2009) 34-39.
https://doi.org/10.1145/1530873.1530881.

[223] S. Bechhofer, F. VVan Harmelen, J. Hendler, I. Horrocks, D.L. McGuinness, P.F. Patel-
Schneider, L.A. Stein, OWL Web Ontology Language Reference, W3C Recommendation,
2004.

References 193

[224] U.S. Department of Commerce, National Institute of Standards and Technology (NIST).
https://www.nist.gov/ (accessed February 19, 2022).

[225] Eclipse Foundation, Graphiti. https://www.eclipse.org/graphiti/ (accessed February 22, 2022).

[226] Vaticle, TypeDB. https://vaticle.com/ (accessed April 14, 2022).

[227] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler, A. Ng,
ROS: an open-source Robot Operating System, in: Proc. IEEE Int. Conf. Robot. Autom.
ICRA2009 Workshop Open Source Softw., IEEE, Kobe, Japan, 2009: pp. 1-6.

[228] Open Robotics, Robot Operating System (ROS). https://www.ros.org/ (accessed April 14,
2022).

[229] N. Koenig, A. Howard, Design and use paradigms for Gazebo, an open-source multi-robot
simulator, in: Proc. 2004 IEEERSJ Int. Conf. Intell. Robots Syst. IROS, IEEE, Sendai, Japan,
2004: pp. 2149-2154. https://doi.org/10.1109/IR0S.2004.1389727.

[230] Open Source Robotics Foundation, Gazebo. http://gazebosim.org/ (accessed April 15, 2022).

[231] T. Qu, S.P. Lei, Z.Z. Wang, D.X. Nie, X. Chen, G.Q. Huang, loT-based real-time production
logistics synchronization system under smart cloud manufacturing, Int. J. Adv. Manuf.
Technol. 84 (2016) 147-164. https://doi.org/10.1007/s00170-015-7220-1.

[232] K. Czarnecki, S. Helsen, U. Eisenecker, Formalizing cardinality-based feature models and their
specialization, Softw. Process Improv. Pract. 10 (2005) 7—29. https://doi.org/10.1002/spip.213.

[233] J. Pikl, A. Bossert, Yet Another Feature Modeling Tool (YAFMT), (2017).
https://github.com/anb0s/Y AFMT (accessed March 10, 2023).

[234] L. Samimi-Dehkordi, B. Zamani, S. Kolahdouz-Rahimi, Leveraging product line engineering
for the development of domain-specific metamodeling languages, J. Comput. Lang. 51 (2019)
193-213. https://doi.org/10.1016/j.cola.2019.02.006.

[235] METOP GmbH, Otto-von-Guericke-University Magdeburg, FeaturelDE.
https://lwww.featureide.de/ (accessed August 12, 2022).

[236] T. Thim, C. Kastner, F. Benduhn, J. Meinicke, G. Saake, T. Leich, FeaturelDE: An extensible
framework for feature-oriented software development, Sci. Comput. Program. 79 (2014) 70—
85. https://doi.org/10.1016/j.scico.2012.06.002.

[237] M. Faber, J. Bitzler, C.M. Schlick, Human-robot Cooperation in Future Production Systems:
Analysis of Requirements for Designing an Ergonomic Work System, in: Proc. 6th Int. Conf.
Appl. Hum. Factors Ergon. AHFE 2015 Affil. Conf., Elsevier, Las Vegas, Nevada, USA, 2015:
pp. 510-517. https://doi.org/10.1016/j.promfg.2015.07.215.

[238] D.A. Dinero, Training Within Industry: The Foundation of Lean, 1st ed., CRC Press, Taylor &
Francis Group, New York, 2005. https://doi.org/10.1201/b18692.

[239] I. Dejanovic, M. Tumbas, G. Milosavljevic, B. Perisic, Comparison of Textual and Visual
Notations of DOMMLite Domain-Specific Language, in: Local Proc. Fourteenth East-Eur.
Conf. Adv. Databases Inf. Syst., Novi Sad, Serbia, 2010: pp. 131-136.

[240] M. Kocbek, G. Jost, M. Heric¢ko, G. Polan¢i¢, Business process model and notation: The current
state of affairs, Comput. Sci. Inf. Syst. 12 (2015) 509-539.
https://doi.org/10.2298/CS1S140610006K.

[241] W. Behutiye, P. Karhapéad, L. Lopez, X. Burgués, S. Martinez-Fernandez, A.M. Vollmer, P.
Rodriguez, X. Franch, M. Oivo, Management of quality requirements in agile and rapid
software development: A systematic mapping study, Inf. Softw. Technol. 123 (2020)
106225:1-106225:23. https://doi.org/10.1016/j.infsof.2019.106225.

[242] 1. Salman, A.T. Misirli, N. Juristo, Are Students Representatives of Professionals in Software
Engineering Experiments?, in: Proc. 2015 IEEEACM 37th IEEE Int. Conf. Softw. Eng., IEEE,
Florence, Italy, 2015: pp. 666—676. https://doi.org/10.1109/ICSE.2015.82.

[243] V. Dimitrieski, M. Celikovié, S. Aleksi¢, S. Risti¢, A. Alargt, I. Lukovié¢, Concepts and
evaluation of the extended entity-relationship approach to database design in a multi-paradigm
information system modeling tool, Comput. Lang. Syst. Struct. 44 (2015) 299-318.
https://doi.org/10.1016/j.cl.2015.08.011.

[244] International Organization for Standardization and International Electrotechnical Commission,
ISO/IEC 25010:2011, Systems and software engineering — Systems and software Quality
Requirements and Evaluation (SQuaRE) — System and software quality models, 2011.

194 References

[245] A.B. Chaudhuri, Flowchart and Algorithm Basics: The Art of Programming, Mercury Learning
and Information, Dulles, VA, 2020.

[246] M. Toghraei, Piping and Instrumentation Diagram Development, 1st ed., John Wiley & Sons,
Inc., Hoboken, NJ, USA, 2019. https://doi.org/10.1002/9781119329503.

[247] Novalys, SAP PowerDesigner. https://www.powerdesigner.biz/ (accessed September 30,
2022).

[248] Oracle, Oracle SQL Developer Data Modeler.
https://www.oracle.com/database/sqldeveloper/technologies/sgl-data-modeler/

(accessed September 30, 2022).

[249] Camunda, Camunda Platform. https://camunda.com/ (accessed October 2, 2022).

[250] Dassault Systémes, CATIA — No Magic.
https://lwww.3ds.com/products-services/catia/products/no-magic/ (accessed October 2, 2022).

[251] Oracle, Oracle Designer.
https://www.oracle.com/database/technologies/developer-tools/designer.html
(accessed October 2, 2022).

[252] Microsoft, Microsoft Visio.
https://www.microsoft.com/en-us/microsoft-365/visio/flowchart-software (accessed October
2, 2022).

[253] Autodesk, AutoCAD. https://web.autocad.com/ (accessed October 2, 2022).

[254] Sparx Systems, Enterprise Architect. https://sparxsystems.com/ (accessed October 2, 2022).

[255] P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E.
Burovski, P. Peterson, W. Weckesser, J. Bright, S.J. van der Walt, M. Brett, J. Wilson, K.J.
Millman, N. Mayorov, A.R.J. Nelson, E. Jones, R. Kern, E. Larson, C.J. Carey, 1. Polat, Y.
Feng, E.W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E.A.
Quintero, C.R. Harris, A.M. Archibald, A.H. Ribeiro, F. Pedregosa, P. van Mulbregt, SciPy
1.0: fundamental algorithms for scientific computing in Python, Nat. Methods. 17 (2020) 261
272. https://doi.org/10.1038/s41592-019-0686-2.

[256] C. Spearman, The proof and measurement of association between two things, Am. J. Psychol.
15 (1904) 72-101. https://doi.org/10.2307/1412159.

[257] D. Narandzié, 1. Spasojevi¢, T. Loli¢, D. Stefanovi¢, S. Risti¢, Human Roles, Competencies
and Skills in Industry 4.0: Systematic Literature Review, in: Proc. 32nd Cent. Eur. Conf. Inf.
Intell. Syst. CECIIS, University of Zagreb, Faculty of Organization and Informatics, Varazdin,
Croatia, 2021: pp. 359-369.

[258] G. Ki§, N. Todorovi¢, V. Dimitrieski, A Model-Driven Approach to Establishment of DLT
Networks Based on a Description of Collaborative Production Processes, in: Proc. 12th Int.
Conf. Inf. Soc. Technol. ICIST 2022, Information Society of Serbia — ISOS, Kopaonik, Serbia,
2022: pp. 110-115.

[259] A. Neb, Review on Approaches to Generate Assembly Sequences by Extraction of Assembly
Features from 3D Models, in: Proc. 52nd CIRP Conf. Manuf. Syst. CMS, Elsevier, Ljubljana,
Slovenia, 2019: pp. 856-861. https://doi.org/10.1016/j.procir.2019.03.213.

[260] D. Gors, J. Put, B. Vanherle, M. Witters, K. Luyten, Semi-automatic extraction of digital work
instructions from CAD models, in: Proc. 8th CIRP Conf. Assem. Technol. Syst., Elsevier,
Athens, Greece, 2020: pp. 39-44. https://doi.org/10.1016/j.procir.2020.05.202.

[261] C. Gonnermann, D. Gebauer, R. Daub, CAD-Based Feature Recognition for Process
Monitoring Planning in Assembly, Appl. Sci. 13 (2023) 990:1-990:19.
https://doi.org/10.3390/app13020990.

[262] A. Ahmad, M. Haslgribler, A. Ferscha, B. Ettinger, J. Cho, Macro workstep detection for
assembly manufacturing, in: Proc. 13th ACM Int. Conf. PErvasive Technol. Relat. Assist.
Environ. PETRA 20, ACM, Corfu, Greece, 2020: pp. 41:1-41:6.
https://doi.org/10.1145/3389189.3397976.

[263] R. Seiger, R. Kihn, M. Korzetz, U. ABmann, HoloFlows: modelling of processes for the
Internet of Things in mixed reality, Softw. Syst. Model. 20 (2021) 1465-1489.
https://doi.org/10.1007/s10270-020-00859-6.

[264] S. Hoffmann, A.F. Pinatti de Carvalho, M. Schweitzer, N.D. Abele, V. Wulf, Producing and
Consuming Instructional Material in Manufacturing Contexts: Evaluation of an AR-based

References 195

Cyber-Physical Production System for Supporting Knowledge and Expertise Sharing, Proc.
ACM Hum.-Comput. Interact. 6 (2022) 366:1-366:36. https://doi.org/10.1145/3555091.

[265] T. Lavric, E. Bricard, M. Preda, T. Zaharia, A Low-Cost AR Training System for Manual
Assembly Operations, Comput. Sci. Inf. Syst. 19 (2022) 1047-1073.
https://doi.org/10.2298/CS1S211123013L.

Evaluation Experiment Tasks and Questionnaire 197

Appendix A. Evaluation Experiment Tasks and
Questionnaire

In this appendix, we present the tasks given to the participants of the experiment as part of the
evaluation process, discussed in Section 9, to test MultiProLan and Process Modeling Tool (see
Appendix A.1). We also present the solution to these tasks in the form of MultiProLan process
models, that the participants were meant to create (see Appendix A.2). After the participants
finished the tasks and tested the possibilities of MultiProLan and Process Modeling Tool, they were
asked to complete the questionnaire (see Appendix A.3).

Appendix A.1. Experiment Tasks

The following text represents the document with the tasks that were given to the experiment
participants to test MultiProLan and Process Modeling Tool. These tasks represent a simplified
version of the wooden box assembly production process models, presented in Section 8.1. These
simplified production process models are similar to the ones presented in our previously published
paper [11].

MultiProLan Tasks

The tasks on top of which the MultiProLan tool evaluation is performed are given in this document.

You are a process engineer working in a carpentry factory and you are given a task to model a
production process to assemble a wooden box, presented in Figure A.1. The box frame is composed

Figure A.1. The wooden box whose production process is to be modeled.

198 Evaluation Experiment Tasks and Questionnaire

of four wooden planks — four sides, that have wooden pins and holes for the assembly. The back
side wooden panel needs to be hammered into the assembled frame to create the box. Afterward,
an inspection of the box needs to be performed to check whether there is any damage or defect. If
damage is detected, the box should be discarded, otherwise, it should be put in storage.

There are three tasks that need to be completed: (i) create a Master-Level (MasL) model; (ii)
specify production errors on the previously created MasL model; and (iii) create a part of a Detail-
Level (DetL) model.

| Create a Master-Level Model

First, the MasL model of the wooden box production process needs to be created by using the
MultiProLan tool. Further in this section, a textual description of the task is provided:

e The wooden box production process model has arbitrary values for ID, name, and version.

e The wooden box production process starts with the assembly of a left-bottom frame side
and a right-upper frame side:

o To assemble the left-bottom frame side, the following items are needed:
= The left plank (width 0.5 m, length 0.2 m) retrieved from storage.
= The bottom plank (width 1 m, length 0.2 m) retrieved from storage.
= The Assemble capability with parameters: n: 2 (a number of wooden pins) and r:

0.07 m (space between pins).
= The output should be the assembled left-bottom frame side (width 1 m, length 0.5
m, thickness 0.2 m).

o The assembly of the right-upper side is equivalent to the previously described assembly
of the left-bottom side, except that right and upper planks are used. The assembly of
the left-bottom side and the right-upper side can be done independently.

e After the left-bottom side and the right-upper side are assembled individually, they need to
be assembled to create a frame. To assemble the frame, the following items are needed:

o The left-bottom and right-upper sides that are assembled in the previous process steps.

o The Assemble capability with parameters: n: 4 (a number of wooden pins) and r: 0.07
m (space between pins).

o The assembled frame (width 1 m, length 0.5 m, thickness 0.2 m).

e Afterwards, a back side needs to be hammered into the frame, so that the box is created.
For such an activity, collaboration is needed:

o One activity in the collaboration is to hold the frame, and the following items are
needed:
= The frame that is assembled in the previous process step.
= The Hold capability.
= The assembled box (width 1 m, length 0.5 m, thickness 0.2 m).

o Another activity in the collaboration is to hammer the back side into the frame, and the
following items are needed:
= The back side (width 1 m, length 0.5 m) retrieved from storage.
= The Hammer capability with a parameter: n: 8 (a number of nails).
= The back side will be a part of the assembled box created in the first process step

of the collaboration.

o Hammering of the back side into the frame must not start before the frame is being
held. Also, holding the frame must not end before the hammering of the back side is
finished.

e After the box is assembled, an inspection of the box is needed to check whether there is
any damage or defect on the box that occurred during production. To inspect the box, the
following items are needed:

o The box that is assembled in the previous process step.

o The Inspection capability with a parameter: type: visual.

o The inspected box (width 1 m, length 0.5 m, thickness 0.2 m).

Evaluation Experiment Tasks and Questionnaire 199

e After the box is inspected, a decision needs to be made whether the box is to be discarded
or stored:
o If there is no damage or defect on the box, it should be stored in storage. To store the
inspected box represents a separate process.
= Note: it is possible to reference a process from a sub-process, but to reduce the
volume of the task, this is not required. Optionally, a new process model can be
created, with 1D, name, and version set, and referenced from a sub-process.
o If there is any damage or defect on the box, it should be discarded. To discard the
inspected box represents a separate process.
e After the decision is made, the wooden box production process is finished.

Il Specify Production Errors at a Master-Level Model

To add production errors in the MasL process model created in the previous task, the error handling
modeling layer needs to be turned on. To reduce the volume of the task, only a few production
errors are going to be modeled.

The following production errors need to be modeled:

e During the assembly of the frame, it is possible that the left-bottom and right-upper sides
are not fitting well. Thus, it is needed to disassemble the frame into the sides, and then try
again to assemble the frame.

e If an unidentified error occurs during the assembly of the frame, it is necessary to remove
the frame and stop the process.

e When the frame is being held, it is possible for the frame to crack. If this happens, it is
necessary to reference another process for discarding and recycling a product that is defined
by another process engineer.

o Note: itis possible to reference a process from an error, but to reduce the volume of the
task, this is not required. Optionally, a new process model can be created, with ID,
name, and version set, and referenced from an error.

o If an unidentified error occurs during the hammering of the back side, it is necessary to call
the process for discarding and recycling a product.

Il Create a Part of a Detail-Level Model

DetL models contain the same modeling concepts as there are in MasL models, but there are also
some additional modeling concepts. DetL. models are much more complex than MasL models as
they have more details included in the models, i.e., details that are specific to a production system
in which the models are to be executed. As DetL. models are much larger than MasL models, only
a part of the wooden box production process will be modeled. The rest of the process is modeled in
a similar manner.

An assembly of the left-bottom side and right-upper side of the previously described wooden
box production process is going to be modeled.

Mary Smith is assigned to assemble the left and bottom sides. To achieve this, it is necessary
to:

e Move to the Shelf with ID 123. The following item is needed:
o The Move capability with a parameter: location: shelf 123.

e Pick the left side and the bottom side in any order. The following items are needed:
o The left side (width 0.5 m, length 0.2 m) retrieved from the Shelf 123 storage.
o The bottom side (width 1 m, length 0.2 m) retrieved from the Shelf 123 storage.
o The Pick capability for both process steps.

e Move to Assembly Table 456. The following item is needed:
o The Move capability with a parameter: location: assembly table 456.

200 Evaluation Experiment Tasks and Questionnaire

e Assemble the left-bottom side. The following items are needed:
o The left side and the bottom side picked in the previous process steps.
o The Assemble capability with parameters: n: 2 (a number of wooden pins) and r: 0.07
m (space between pins).
o The assembled left-bottom side (width 1 m, length 0.5 m, thickness 0.2 m).

Robot 789 is assigned to assemble the right and upper sides. The assembly of the right-upper
side is similar to the assembly of the left-bottom side, except that additional configuration process
steps are needed. The robot must determine its position after any movement, as it is not equipped
with a machine vision module. To configure a robot, only the Determine capability is needed with
a parameter: type: position.

Evaluation Experiment Tasks and Questionnaire 201

Appendix A.2. Experiment Solution

v IN: Bottom side ‘ v IN: Left side] '/S \l ‘ v IN: Right side | v IN: Upper side
v Start
Width = 1 m Width = 0.5 m Ne_./ |Width=05m Width = 1 m
Length = 0.2 m Length = 0.2 m /K Length = 0.2 m Length = 0.2 m
Assemble PAR Assemble
n:2 n:2
TE {7 Assemble | = Assemble — 1
 ———— L-B sides R-U sides S —————
OUT: Left-Bottom side | = OUT: Right-Upper side
Width = 1 m PAR Width = 1m
Length = 0.5 m Length = 0.5 m
Thickness = 0.2 m Thickness = 0.2 m
A e ———— e A
' IN: Left-Bottom side IN: Right-Upper side :
1
Lo IWidth=1m Width = 1 m
Length = 0.5 m Length = 0.5 m
Thickness = 0.2 m I~ —"| Thickness = 0.2 m
R Assemble
frame
OUT: Frame I~ Assemble
o Width=1m n:4
! Length = 0.5 m r:0.07m
1 Thickness = 0.2 m
PR
INEIRETIE v IN: Back side
Width = 1 m e
Length = 0.5 m coL et h_- m
Thickness = 0.2 m Leiglin = 5 i
Start =
Hold Hold Eammer Hammer
frame back side n:8
End RS,
OUT: Box
Width = 1 m CcoL
Length = 0.5 m
Thickness = 0.2 m
—————
- IN: Box
1
o _Jlwidth=1m
Length = 0.5 m

[OUT: Inspected box

I~~~
D Inspect Width = 1 m L
box Length = 0.5 m
Thickness = 0.2 m
type : visual 7y
]
1
1
]
]

Thickness = 0.2 m

Inspection

hasDefect = true hasDefect = false

DEC

DEC

1

1

1

1

1

1

1

1

1

1

'

i i '
U 1
% Discard box % Store box @ !
i :

1

1

1

1

1

1

1

1

1

1

Figure A.2. The solution of the first experiment task.

202 Evaluation Experiment Tasks and Questionnaire

OUT: Right-Upper side

PAR

Assemble
R-U sides

Width = 1m
Length = 0.5 m ‘/PI}<
Thickness = 0.2 m
... 2
OUT: Left-Bottom side IN: Left-Bottom side IN: Right-Upper side
Width = 1 m - - - {Width =1 m Width = 1m
Length = 0.5 m Length = 0.5 m Length = 0.5 m
Thickness = 0.2 m Thickness = 0.2 m = —| Thickness = 0.2 m
Assemble
) frame
IN: Frame OUT: Frame I~ Assemble
Width = 1 m L .. Width=1m n:4
Length = 0.5 m Length = 0.5 m r:0.07 m
Thickness = 0.2 m Thickness = 0.2 m
= Z < A

Disassemble
frame

| Disassemble]

hasDefect = true /

+
Inspect
box

[IN: Frame |
Width = 1 m
Length = 0.5 m

Thickness = 0.2 m

Y

‘J

Remove
frame

rd

[Remove

(

|
J

hasDefect = false

DEC

i
U

@ %Discard box
1

L
®

% Store box @
I

=1
©

DEC

End

Figure A.3. The solution of the second experiment task.

Evaluation Experiment Tasks and Questionnaire 203

PAR

Ml © Move to iteres i Move to

location : shelf 123 shelf e location : shelf 123 shelf g%
!
———
i =]

D Determine

type : position position g‘

3 Pick left and bottom sides @ Pick right and upper sides

IN: Left side v Pick IN: Right side v Pick |
=== F ~Plwidth = 05 m “= 1" Plwidth = 05 m
Length = 0.2 m ~—_, Length = 0.2 m "
) Pick left @ Fickrioht
side @ side

IN: Bottom side v Pick IN: Upper side v Pick
=1~ P Width =1 m =1- P Width=1m
Length = 0.2 m

Length = 0.2 m |
G-

|

1
'
'
1
'
'
'
'
1
'
'
: o
. o
[} =] . L} =l
: | Pick bottom i ~. Pick upper
' side . side
' '
. o
1 5o 1
: o
1 1 1}
! M] = o] &)
! gl Move to : 4 Roye Move to
' location : assembly table 456J— table @ 5 location : assembly table 456J— table 9
1
. o
: ' l
' i Determine g
: P Determine
; L type : position position g&
‘ '
| o
' IN: Bottom side £ IN: Upper side
'
- Width = 1m ;" Width=1m
Length = 0.2 m : Length = 0.2 m
'
'
IN: Left side A IN: Right side
=== Width = 05m EEEEE Width = 0.5 m
Length = 0.2 m =] = =
g—’ Assemble w Assemble
L-B sides @) R-U sides ﬁ
Assemble Assemble
nE2 niz2
r:0.07 m r:007 m
ceee s - @@
OUT: Left-Bottom side OUT: Right-Upper side
Width = 1T m Width = T m
Length = 0.5 m Length = 0.5 m
Thickness = 0.2 m Thickness = 0.2 m

PAR

Figure A.4. The solution of the third experiment task.

204 Evaluation Experiment Tasks and Questionnaire

Appendix A.3. Experiment Questionnaire

Name and surname

E-mail

Affiliation Other:

Process engineer, Quality engineer, Software developer, Researcher, Ph.D. Student, M.Sc. Student,

Section 1: Previous experience

Experience
Question Inexperienced | . Relatl_vely Meo_llum Relayvely Experienced
inexperienced | experienced | experienced
How would you describe your previous
- - L . 1 2 3 4 5
experience in designing business processes?
Which business process modeling languages
or methods have you used?
How would you describe your previous
experience in designing production 1 2 3 4 5
processes?
Which production process modeling
languages or methods have you used?
How would you describe your previous
experience with Computer Aided Software 1 2 3 4 5
Engineering (CASE) tools for modeling?
Which CASE tools for modeling have you
used?
Section 2: MultiProLan quality characteristics
Functional suitability
Question Very low Low Medium High Very high
How would you describe the scope of
production process domain concepts and
. . 1 2 3 4 5
scenarios that can be expressed in
MultiProLan?
How would you describe MultiProLan's level
of suitability for the production process 1 2 3 4 5
specification?
Usability
Question SFroneg Disagree No opinion Agree SIS
disagree agree
MultiProLan language elements are 1 2 3 4 5
understandable.
The concepts and symbols of MultiProLan
1 2 3 4 5
are learnable and rememberable.
MultiProLan has capability to help users
achieve their tasks in an acceptable number 1 2 3 4 5
of steps.
MultiProLan is appropriate for your needs. 1 2 3 4 5
MultiProLan Eclipse environment has
elements that facilitate to operate and control 1 2 3 4 5
the language.
MultiProLan has graphical symbols that are
. ; 1 2 3 4 5
good looking/attractive.
By separating MasL and DetL models, users
. . 1 2 3 4 5
can model production processes easier.
By creating different modeling layers, models
1 2 3 4 5
become more readable.

Evaluation Experiment Tasks and Questionnaire 205

Reliability
Question SFroneg Disagree No opinion Agree SRl
disagree agree
MultiProLan protects users against making 1 2 3 4 5
errors.
MultiProLan has a functional model 1 2 3 4 5
validator.
Expressiveness
. Strongly . . Strongly
Question disagree Disagree No opinion Agree agree
A problem-solving strategy can be mapped 1 2 3 4 5

into a specification easily.

MultiProLan is at the right abstraction level
such that it is not more complex or detailed 1 2 3 4 5
than necessary.

MultiProLan provides one and only one good

. 1 2 3 4 5
way to express every concept of interest.
Productivity
. Relatively . Relatively
Question Long long Medium short Short

How would you describe the specification
time of a production process model with 1 2 3 4 5
MultiProLan?

Section 3: Free comments

Additional
comments

[Inan TpeTmaHa nmogaraka

Ha3us npojexTa/mcrpaxnBama

[puctyn cnenmupukanmju U TeHepUCAlky MPOU3BOAHUX IMPOIECa 3aCHOBAaH Ha HHKECHECPCTBY
Boherom moaenuma (errit. A Model-Driven Approach to the Production Process Specification and
Generation)

Ha3uB nHCTUTYMje/MHCTUTYIMja Y OKBHPY KOjHX ce CIIPOBO/IM HCTPAKUBAE

a) Yuusepsurer y HoBom Cajy, @akynTeT TeXHHUKUX HayKa
0) KEBA Group AG, Jlunn, Peny6nuka Aycrpuja

B)

Ha3uB nporpama y oKBHPY KOT Ce peajin3yje HCTPa:KHBaHe

HcrpaxkuBarme je pealn30oBaHO y OKBUPY HM3paje JOKTOPCKE JHcepTalyje Ha CTYJIHjCKOM
nporpamy PadyHnapctBo u ayromaruka. Takole, ucTpaknBame je moJpkaHo of cTpaHe cienehux
mpojekara:

e "IIHTEIMIeHTHU CHUCTEMH 3a Pa3Boj CO(PTBEPCKUX NPOM3BOJAA M IMOJPIIKY IOCIOBAA
3acHoBaHM Ha Mosienuma ', UMN-44010, MunrcTapcTBO IPOCBETE, HAYKE U TEXHOJIOIIKOT
pasBoja Penyonuke Cpouje.

e "llHOBaTMBHa HayYyHA M YMETHWYKA MCIUTHBama U3 AoMeHa nemarHoctn @TH-a", 451-
03-68/2020-14/200156, 451-03-68/2021-14/200156, 451-03-68/2022-14/200156, 451-03-
47/2023-01/200156, MuHKCTapcTBO HayKe, TEXHOJOMIKOT pa3Boja M HHOBAIlHja
Peny6inke Cpbuje.

e "JlururanHa Gadpuka”, MHIyCcTpHjCcKU HCTpaknBavKko-pa3Bojuu npojekat, KEBA Group
AG, Jlunn, Penybmuka Aycrpuja.

1. Onuc nmogaraka

1.1. Bpcra cryauje

Yxpamxo onucamu mun cmyouje y okeupy Koje ce nooayu npuxyn/oajy

VY 0BOj AOKTOPCKO] OHCEpTALMju NPEACTaBJbEHA j€ aHANM3a OLEHAa Pa3IMYUTUX YUYECHHKA O
HAaMEHCKOM j€3UKy U CO()TBEPCKOM aJIaTy 3a MOJAEIOBakE MPOU3BOAHUX IpoLeca.

1.2. Bpcre mogaraka

a) KBAHTUTATHBHHU
0) KBAJIMTATUBHH

1.3. Haunn npukynbama nojaraka

a) aHKeTe, YIUTHUIH, TeCTOBH

0) KIMHUYKE NPOLEHE, MEIUIMHCKH 3aMMCH, SIEKTPOHCKHU 3[PaBCTBEHH 3alUCH
B) TEHOTHIIOBH: HAaBECTH BPCTY
I') aIMUHUCTPATUBHY NOAALM: HABECTH BPCTY
1) y30pLIY TKHBA: HABECTH BPCTY
h) caumim, pororpaduje: HaBeCTH BPCTY
€) TeKCT, HABECTH BPCTY

HanuoHaiHu nopran oTBOPeHe Hayke — OPen.ac.rs 207

) Mara, HaBeCTH BPCTY
3) OCTaJIO: OMUCATH

1.4. ®opmar nogaraka, ynotpedsbeHe cKalle, KOJMMYMHA IToAaTaKa

1.4.1. Ynorpebsbenu codtBep 1 opMaT 1aTOTEKE:
a) Excel daji, naToreka .XIsx

0) SPSS ¢ajn, natoreka
B) PDF ¢ajn, natoteka
r) Tekcr dajn, narorexa
n) JPG daji, naToreka
h) Ocrago, narorexa Google Forms, .csv

1.4.2. bpoj 3ammca (KoJl KBAHTUTATUBHUX T01aTaKa)

a) opoj Bapujadam 19
0) 0poj Mepema (MCNIUTAHNKA, MPOIIEHA, CHUMAKA H ¢J1.) 25

1.4.3. [loHOBJBEHA MEPECHHA
a) ma
0) He

YKOJIHMKO je OJrOBOp J1a, OJrOBOPUTH Ha clieaeha nmurama:
a) BPEMEHCKH pa3Mak u3Mel)y IOHOBIbEHHX Mepa je
0) BapwujaOe KOje ce BHIIE ITyTa MEepe OJHOCE CE Ha
B) HOBE Bep3Hje (ajaoBa KOju caaprke MOHOBJbEHA MEPEH-a Cy MIMEHOBAHE Kao

Hanowmene:

Ha nu popmamu u cogpmeep omozyhasajy oemerve u 0y20pouHy 8arUOHOCH NOOAMaKa?

a) Ua
6) He
Axko je o02080p He, 0bpasznodicumu

2. IIpukymbame noaTaKka

2.1. Meromomnoryja 3a MPUKYTIbakbe/TeHEPUCAbEe TToIaTaKa

2.1.1. Y okBHpY KOT HCTPaKUBAYKOT HAIpPTa CY IMOAAH MPUKYILJbEHN?

a) eKcrnepuMEeHT TIONYHaBamke YIUTHHKA O] CTPaHE YUECHUKA OllEHE HAMEHCKOT je3HKa
co(TBEPCKOT ajaTa 3a MOJIENIOBakhe IIPON3BOTHUX TIpoIieca

0) KopeJalMOHO UCTPakUBabe pauyHare CIMPMaHOBOI KOSQHIIMjeHTa Kopeanyje

B) aHaJIM3a TEKCTa, HABECTH THIT
I) 0CTAJIO0 JICCKPHUIITHBHA aHAIIM3a KOMEHTapa U3 NOIMYHhEHNX YITUTHUKA

2.1.2. Hasecmu 8pcme MepHUX UHCIPYMEHAma Uil CMandapoe nooamaxa cneyupuunux 3a
o00pelieny HayyHy OUCYUNIUHY (aKo nocmoje).

Kpeupan je ynutHuk y3 nomoh miardgopme Google Forms, koju cy ydecHHIM OljeHE HAMEHCKOT
je3uKa M ajara 3a MOJIeJIOBa-e IPOU3BOAHUX MPOLIECa MOMYHABAIH EJIEKTPOHCKUM ITyTEM.

2.2. KBanureT nmoparaka u cTaHiapan

208 Hauuonanuu noprasn 0TBOpeHe HayKe — OPeN.ac.rs

2.2.1. Tperman HenocTajyhux mojaraka
a) [la mu marpuria caapxu Henoctajyhe nmonarke? Jla He

AKo je oIroBop J1a, OITOBOPUTH Ha ciiezicha nmuTama:
a) Komnuku je 0poj HenocTajyhux momaraka?
0) /Jla nu ce KOpPUCHUKY MaTpHUIle Ipenopyyyje 3aMeHa Henoctajyhux monaraka? Jla He
B) AKO je OATOBOp /ia, HABECTH CYTrecTHje 3a TpETMaH 3aMeHe HelocTajyhux moparaka

2.2.2. Ha KOju Ha4Y¥H je KOHTPOJMCAH KBATUTET mojaaTaka? Onucatu

Behuna nurama (19 on 23) campxkana je monyheHne oaroBope y BHAy mnetocrenene Jlukeprose
ckame. ITmatrdopma Google Forms omemoryhaBa yHOC OWMI0 KakBMX APYTHX IMOJATaka OCHM
0JIrOBOpA JIaTHX Ha rnerocreneHoj Jiukeproroj ckainu. [Ipeocrana nutama (4 ox 23) caupskana cy
cioboaHy (GopMy 3a YHOC TEKCTa, YHjU Cy OJIOBOPH YJIA3UJIH HCK/BYYHBO Yy JICCKPUIITHBHY
aHaJIN3Yy.

2.2.3. Ha xoju Ha4¥H je u3BpIleHa KOHTPOJIA YHOCA M0jIaTaka y MaTpUIly?

ITnardopma Google FOrms Ha ayromMaTtn3oBaH HA4MH TPAHC(HOPMHUIIIE OATOBOPE MPHUKYILBEHE O
yuecHHKa y .CSV (comma-separated values) matorexy.

3. TpermaHn nojgaraka u npareha qjokymenTanuja

3.1. TperMaH u dyBame Mojaraka

3.1.1. Ilooayu he bumu denonosanu y Penozumopujym dokmopckux oucepmayuja
Ynusepsumema y Hosom Cady.

3.1.2. URL aopeca: https://www.cris.uns.ac.rs/dmi.jsf

3.1.3. DOI

3.1.4. Jla nu he nooayu bumu y omeopeHom npucmyny?

a) Ua
6) [Ma, anu nocne embapea xoju he mpajamu 0o
8) He

Axo je 002080p He, Hasecmu paznoe

3.1.5. Ilooayu Hehie 6umu 0enoHo8auu y peno3umopujym, aiu he oumu yyeaHu.
Obpasnoscerve

3.2. Meranojanu 1 JOKyMeHTaIl{ja mojaTaka

3.2.1. Koju crangapna 3a meranogatke he Outu npumemen? Ctanaap Koju IpUMemyje
Penosuropujym Yuusepsutera y HoBom Cany

3.2.2. HaBectu MerarioiaTke Ha OCHOBY KOjHX CY HOJIAIlH JICIOHOBAHU Y PEIIO3UTOPH]jYM.

Hanuonannu noprail oTBOpeHe HayKe — Open.ac.rs 209

Mapxko Bjemrtuna, [lpuctyn crenudukanuju 1 reaepucamy TPOM3BOAHUX MPOLeca 3aCHOBAaH Ha
HWHXEHEPCTBY BO)EHOM MOJETMa

Ako je nompebHo, Hasecmu memooe Koje ce Kopucme 3a npey3umarbe nooamaxd, AHaiumuyxe u
npoyedypanne uHpopmayuje, UXo80 KOOUparbe, 0emasshe Onuce 8apujadiu, 3anuca umo.

3.3. Crpareruja u cTaHapIy 3a UyBabe IMoJaTaka

3.3.1. o kor nepuoja he nogany OutH 4yyBaHu y penozutopujymy? Heorpanuieno

3.3.2. Jla iu hie momarm Outk nenonoBanu nox mugppom? Jla He

3.3.3. Jla iu hie mmdpa Outu mocrymnua oapehernom kpyry ucrpakusaua? Jla He

3.3.4. Jla i1 ce rmojaiid MOpajy YKJIOHUTH U3 OTBOPEHOT IPUCTYIIA MOCIIEe W3BECHOT BpeMeHa?
Hda He

O0pa3noxuTH

4. be30eqHOCT MOIaTaKa U 3aIITHTA MOBePbLUBUX HHGOpPMAaLHja

Ogaj onesbak MOPA OuTH momymeH ako Balllk MOJAIH YKIbYUY]y JHYHE MOAATKE KOJU Ce
OJTHOCE Ha YUECHUKE y HCTPAKUBAY. 3a Apyra HCTpaKuBama Tpeda Takohe pa3sMoTpuTu
3aIUTHTY U CUTYPHOCT ITO/IaTaKa.

4.1. dopmMaIHK CTaHAAPIU 338 CUTYPHOCT HH(OPMaIHja/mogaTaKa

HcTpaxmBadn Koju CIpOBOIe HCITUTHBAKA C JbYANMA MOPajy Jia ce IpUIpKaBajy 3aKoHa O
3aIITHTH [TOJIaTaKa O JTMYHOCTH
(https://www.paragraf.rs/propisi/zakon_o_zastiti_podataka_o_licnosti.html) u oarosapajyher
MHCTUTYIMOHATHOT KOAEKCa O aKaJJeMCKOM HHTETPUTETY .

4.1.1. la v je ucTpaxkuBame 0JI00peHo of] cTpane eTnuke kKomucuje? la He
Ako je onrosop [la, HaBecTH JaTyM U Ha3UB €TUYKE KOMHCH]E KOja je 0100puiIa HCTPaKUBabE

4.1.2. Jla 1 moia1yl YKJbY4yjy JMYHE TI0JaTKe yIeCHUKa y uctpaxusamy? Jda He

AKO je 0IroBop 11a, HaBeIUTE Ha KOjH HAYUH CTE OCUTYPAIX OBEPJHUBOCT M CUTYPHOCT
nH(popMaIija Be3aHUX 3a UCIUTAHUKE:

a) Ilomamu HUCY Y OTBOPEHOM MPUCTYITY

0) Iloxaum cy aHOHUMHU3HPAHU

B) Ocrayio, HaBeCTH IITa

5. locTynHoCT moaaTaka

5.1. Ilooayu he bumu
a) jasno docmynnu

210 Hanuonannu nopran oTBopeHe Hayke — OPeN.ac.rs

https://www.paragraf.rs/propisi/zakon_o_zastiti_podataka_o_licnosti.html

6) doCmynHU Camo YCKOM Kpyey ucmpaxcusaya y oopehenoj Hayunoj ooaacmu
8) 3ameopeHu

AKo ¢y nooayu 00cmynHu camo YCKOM Kpyey UCmpancusaid, Hagecmu noo KOjum ycio8uma mozy
da ux Kopucme:

Axo cy nooayu 00Cmynuu camo YCKOM Kpyay UCmpanicudayd, Hagecmu Ha KOju HA4uH Mo2y
NPUCYRUmMuy no0ayuma:

5.2. Hasecmu nuyenyy noo kojom he npuxynmsenu nooayu bumu apxusupaHu.

AyTOpCTBO — HEKOMEPIHjalTHO — 0€3 Tpepajie

6. Yore n oaroBopHoct

6.1. Hasecmu ume u npesume u meji aopecy 61aCHUKA (aymopa) nooamaxa

Mapko Bjemrruiia, marko.vjestica@uns.ac.rs

6.2. Hasecmu ume u npesume u mejn aopecy ocobe Koja o0picasa Mampuyy ¢ nooayuma

Mapxko Bjemruria, marko.vjestica@uns.ac.rs

6.3. Hasecmu ume u npesume u mejn aopecy ocobe xoja omocyhyje npucmyn nooayuma opyaum
ucmpaxcusaiuma

Mapxko Bjemruiia, marko.vjestica@uns.ac.rs

HarmoHaTH| OPTaI OTBOPEHE HAYKe — OPEN.ac.Is 211

