UNIVERSITY OF NOVI SAD

AS ST
,:3'-:"& WLy 0@0
S ¥ a 7
Z AR
2% $C= FACULTY OF TECHNICAL SCIENCES
NG ST XS NOVI SAD
PUANTE
Application of Deep Learning
Methods in Monitoring and
Optimization of Electric Power
Systems
DOCTORAL DISSERTATION
Advisors: Candidate:
Ognjen Kundacina

prof. dr Dejan Vukobratovi¢
dr DragiSa Miskovi¢

Novi Sad, 2023

smma 7
= OAKYJITET TEXHUYKNX HAYKA Y

YHUBEP3SUTET Y HOBOM CALY

HOBOM CALlY

IIpumMeHa MeTo/ia AyOOKOr yuema 3a
Ha/r/aeame U ONTUMM3AIM]y

e/IeKTPOeHepreTCKux cucremMa

OJOKTOPCKA JUCEPTALIMJA

Kanaupgar:
OrmweH KyHpauvHa

Mentopu:
npod. ap [lejan Byko6paToBuh
np Jparuiiia Muitikosuh

Hosu Capa, 2023. rogune

YHUBEP3UTET Y HOBOM CAJY

OBPA3AIL - 5a

HABECTH HA3UB ®AKYJ/ITETA WIN HEHTPA

K/bYUYHA JOKYMEHTAII1JCKA UH®OPMAIMNJA!

Bpcra paga: JlokTopcka fucepraiiyja
Nwme u npe3ume OrmeH KyHgaunHa
ayropa:

Ip Hejan Bykobparosuh, pesoBau npodecop, PakyaTeT TeXHUUKUX HayKa,
Mentop 1: Yuugep3urer y HoBom Cany

Ip Jparuia Munikosuh, HaydHu capafHUK, McTpa)kuBauKko-pa3sBojHU
Menrop 2: MHCTUTYT 3a BEIUTAuKy uHTemreHujy Cpbuje
Hacnos paga: IMpumMeHa MeTo/ia [yOOKOT yuea 3a Ha/[T/Ie/lalbe U ONTHUMU3AaLUjy

eJIeKTPOeHepreTCKUX CUCTeMa

Jesuk nybnukaryje
(nucmo):

EHryiecku (laTHHUILIA)

PU3NUKM OTIUC paja:

YHeTu 6poj:
Crtpannna 139
Tlornaema 8
Pedepentm 174
Tabena 10
Cruka 31
I'pacukoHa 0
TIpunora 0

Hayuna obmact:

EHeKTpOTEXHI/I‘IKO " pauyHapCKO MHXeHhepCTBO

Y3ka HayuHa obsiact

(HayuHa JUCLIUTTMHA):

TenekoMyHuKaryje u 06pajia curHazna

Kibyune peun / MallMHCKO yuere, e/leKTPOeHepreTCKU CUCTeMH, rpad)OBCKe HeypPOHCKe
rpeJMeTHa MpeXXe, ecTUMallija CTamlba, yuerwe Mo/CTUllajeM, AUHaMruUKa
oJipeJHULIA: pekoH(uUrypalfja ZUCTprOYTUBHE MpeXe

Pe3nme Ha je3uky
paja:

OBa JOKTOpCKa AucepTalyja TeMe/bHO HCIIUTYje YIIoTpe0y TeXHUKa AyboKor
yuema y Wby yHampeljera aaropuraMa Koju ce KOPHUCTe Y HaJrIeamby U
ONTUMU3ALIUjU eJIeKTpOeHepreTckux cucrema. [IpBu fonprHoOC aucepranyje
ce O/IHOCH Ha TIpuMeHY rpa)0BCKMX HEYPOHCKUX MpeXa 3a yHarpehemwe
ecTUMalljje CTamba e/1eKTpoeHepreTCKUX cucreMa. JIpyru K/byuHU acrekT oBe
nuceprauyje ce GoKycupa Ha yroTpeOy yuersa MOACTHLIAjeM 3a JUHAMUUKY
pekoHuryparujy guctpudytuBHe Mpexke. EQUKacHOCT Tpe/ilioKeHHX MeToza
je moTBphjeHa nyteM 06MMHHUX eKCIIEpPUMEeHAaTa ¥ CUMyJlaLuja.

Iatym nprxBaTarmba
TeMe O/ CTpaHe
HajiexxHor Beha:

24.11.2022.

Harym opbpane:
(ITontymaBa
oarosapajyha cyxba)

1 AyTop /IOKTOpCKe A¥icepTaLje MOTIHCAO je 1 mpuosxkio ciegehe O6paciie:

56 — W3jaBa 0 ayTOpCTBY;

5B — /3jaBa 0 MCTOBETHOCTH LITaMIIaHe U eJIeKTPOHCKE Bep3Kje U 0 JINYHUM ToJalnMa;
5r — U3jaBa o kopurnhemy.
Oge U3jaBe ce uyBajy Ha aKy/ITeTy y LITAMIIAHOM U €JIEKTPOHCKOM O0JIMKY U He KOpPHUe Ce Ca Te30M.

UaHOBU KOMHUCH]€:

(TuTyna, ume,
ripe3uMe, 3Bambe,
HHCTUTYLYja)

Ipencennvk: ap Tartjana JlIonuap-Typykano, pefjoBHU npodecop, PakyaTeT
TeXHUYKHX HayKa, YHuBep3urer y Hosom Cagy

Ynax: ap Munaun Panauh, pegosau nipodecop, ®akynreT TeXHUUKUX HayKa,
Yuugep3urer y HoBom Cany

Unan: gp Ilpegpar Bugosuh, BanpegHu npodecop, PakynreT TeXHUUKUX
Hayka, YHuBep3uteT y HoBom Cany

Unan: np Mupcag hocosuh, folieHT, EneKTpoTeXHUUKU (aKyTeT,
Yuugep3uret y CapajeBy

Mewntop: Ap Hejan BykobpaTtoBuh, peoBar npodecop, PakyaTeT TeXHUUKIX
Hayka, YHuBep3uteT y HoBom Cany

Menrop: Ap Hdparuiia Muikosuh, HayYH! CapajHUK, VICTpaXKWBauKo-
DAa3BOjHM MHCTHUTYT 3a BeIUTAuKy UHTenureniujy Cpbuje

HamnowmeHna:

UNIVERSITY OF NOVI SAD
FACULTY OR CENTER

KEY WORD DOCUMENTATION?

Document type:

Doctoral dissertation

Author:

Ognjen Kundacina

Supervisor 1

dr Dejan Vukobratovi¢, full professor, Faculty of Technical Sciences,
University of Novi Sad

Supervisor 2

dr Dragisa Miskovi¢, science associate, The Institute for Artificial Intelligence
Research and Development of Serbia

Thesis title:

Application of Deep Learning Methods in Monitoring and Optimization of
Electric Power Systems

Language of text
(script):

English language (latin)

Physical description:

Number of:
Pages 139
Chapters 8
References 174
Tables 10
Mlustrations 31
Graphs 0
Appendices 0

Scientific field:

Electrical and computer engineering

Scientific subfield
(scientific discipline):

Telecommunications and signal processing

Subject, Key words:

Machine learning, power systems, graph neural networks, state estimation,
reinforcement learning, dynamic distribution network reconfiguration

Abstract in English
language:

This PhD thesis thoroughly examines the utilization of deep learning
techniques as a means to advance the algorithms employed in the monitoring
and optimization of electric power systems. The first major contribution of this
thesis involves the application of graph neural networks to enhance power
system state estimation. The second key aspect of this thesis focuses on
utilizing reinforcement learning for dynamic distribution network
reconfiguration. The effectiveness of the proposed methods is affirmed
through extensive experimentation and simulations.

Accepted on Scientific
Board on:

24.11.2022.

Defended:
(Filled by the faculty
service)

Thesis Defend Board:
(title, first name, last

President: dr Tatjana Loncar Turukalo, full professor, Faculty of Technical
Sciences, University of Novi Sad

2 The author of doctoral dissertation has signed the following Statements:
56 — Statement on the authority,

5B — Statement that the printed and e-version of doctoral dissertation are identical and about personal data,

5r — Statement on copyright licenses.
The paper and e-versions of Statements are held at he faculty and are not included into the printed thesis.

name, position,
institution)

Member: dr Milan Rapai¢, full professor, Faculty of Technical
Sciences, University of Novi Sad

Member: dr Predrag Vidovié, associate professor, Faculty of Technical
Sciences, University of Novi Sad

Member: dr Mirsad Cosovid, assistant professor, Faculty of Electrical
Engineering, University of Sarajevo

Supervisor: dr Dejan Vukobratovi¢, full professor, Faculty of Technical
Sciences, University of Novi Sad

Supervisor: dr Dragisa MiSkovi¢, science associate, The Institute for Artificial
Intelligence Research and Development of Serbia

Note:

Application of Deep Learning Methods
in Monitoring and Optimization
of Electric Power Systems

by
Ognjen Kundacina

M.Sc.EL.Comp.Eng. Power, Electronic and Telecommunication Engineering,
University of Novi Sad, Serbia, 2018.
B.Sc.El.Comp.Eng. Power, Electronic and Telecommunication Engineering,
University of Novi Sad, Serbia, 2017.

for the degree of

Doctor of Technical Sciences

A dissertation submitted to the

Department of Power, Electronics
and Communication Engineering,
Faculty of Technical Sciences,
University of Novi Sad,
Serbia.

Advisors:

Dr DQ] an Vukobratovié, Full Professor
Department of Power, Electronics and Communication Engineering,
University of Novi Sad, Serbia.

Dr Dragisa Miskovi¢, Science Associate
The Institute for Artificial Intelligence Research and Development of Serbia.

Thesis Committee Members:

Dr Tatjana Loncar-Turukalo, Full Professor
Department of Power, Electronics and Communication Engineering,
University of Novi Sad, Serbia.

Dr Milan Rapaié, Full Professor
Department of Computing and Control Engineering,
University of Novi Sad, Serbia.

Dr Predrag VidOVié, Associate Professor
Department of Power, Electronics and Communication Engineering,
University of Novi Sad, Serbia.

Dr Mirsad COSOVié, Assistant Professor,
Faculty of Electrical Engineering,
University of Sarajevo, Bosnia and Herzegovina.

This research has received funding from the European Union’s Horizon 2020
research and innovation programme under Grant Agreement number 856967.

Contents

List of Publications 9
List of Figures 11
List of Tables 15
Abstract 17
Abbreviations 21
1 Introduction 23
1.1 Deep Learning Fundamentals 24
1.2 Convolutional Neural Networks 26
1.3 Recurrent Neural Networks 27
1.4 Graph Neural Networks 28
1.5 Deep Reinforcement Learning 30
1.6 Power System State Estimation using Graph Neural Networks 32
1.7 Dynamic Distribution Network Reconfiguration based on Deep Rein-
forcement Learning 35
I State Estimation and Graph Neural Networks 41

2 Power System State Estimation 43

6 Contents

2.1 Foundational Concepts 43
2.2 Linear State Estimation 46
2.3 Nonlinear State Estimation 48
3 Graph Neural Networks 51
3.1 Overview of Machine Learning on Graphs 51
3.1.1 Graphs 51
3.1.2 Common Tasks of Machine Learning on Graphs 54
3.1.3 The Need for Graph Representation Learning 54
3.1.4 Graph Representation Learning 56
3.1.5 Graph Representation Learning using GNNs 58
3.2 Theoretical Foundations of Spatial Graph Neural Network 61
3.2.1 Graph Attention Networks 64
3.3 Practical Aspects of Graph Neural Networks 65
4 Graph Neural Network-based State Estimation 69
4.1 Power System Factor Graph Augmentation 69
4.2 Proposed GNN Architecture 72
4.2.1 Computational Complexity and Distributed Inference 73
4.3 Numerical results L 74
4.3.1 Linear State Estimation 75
4.3.2 Scalability and Sample Efficiency Analysis of Linear State Esti-
mation e 82
4.3.3 Nonlinear State Estimation 86
4.4 Summary and future work oL oL oL 89

II Dynamic Distribution Network Reconfiguration and Re-

inforcement Learning 93
5 Dynamic Distribution Network Reconfiguration 95
5.1 Distribution Network Reconfiguration 95
5.2 Mathematical Formulation of the DDNR Problem 97
5.2.1 Objective Function 98

5.2.2 Constraints 99

6 Reinforcement Learning 103
6.1 Finite Markov Decision Processes 103
6.2 Q-Learning 106

6.3 Deep Q-learning 107

Contents 7

7 Reinforcement Learning based Dynamic Distribution Network Re-

configuration 109
7.1 Modelling Dynamic Distribution Network Reconfiguration as a Markov

Decision Process o 109

7.2 Training and Evaluation Algorithms 111

7.3 Numerical Results L o 113

7.3.1 Benchmark Test Examples 113

7.3.2 Real-Life Large-Scale Distribution Network 119

7.3.3 1IEEE 33-bus Radial System 120

7.4 Summary and future work Lo 123

8 Conclusions 125

Bibliography 127

List of Publications

Journal Publications:

O. Kundacina, M. Cosovic, D. Miskovic, and D. Vukobratovic, “Graph Neural Net-
works on Factor Graphs for Robust, Fast, and Scalable Linear State Estimation with
PMUs,” in Sustainable Energy, Grids and Networks, 2023.

O. Kundacina, P. Vidovic, and M. Petkovic, “Solving dynamic distribution network
reconfiguration using deep reinforcement learning,” in Electrical Engineering, 2021.

Conference Publications:

O. Kundacina, M. Cosovic, D. Miskovic, and D. Vukobratovic, “Distributed Nonlin-
ear State Estimation in Electric Power Systems using Graph Neural Networks,” in
2022 IEEE International Conference on Communications, Control, and Computing
Technologies for Smart Grids (SmartGridComm), Singapore, 2022, pp. 1-6.

O. Kundacina, M. Forcan, M. Cosovic, D. Raca, M. Dzaferagic, D. Miskovic, M.
Maksimovic, and D. Vukobratovic, “Near Real-Time Distributed State Estimation via
AI/ML-Empowered 5G Networks,” in 2022 IEEE International Conference on Commu-
nications, Control, and Computing Technologies for Smart Grids (SmartGridComm),
Singapore, 2022, pp. 1-6.

0. Kundacina, M. Cosovic, and D. Vukobratovic, “State estimation in electric power
systems leveraging graph neural networks,” in 2022 17th International Conference on
Probabilistic Methods Applied to Power Systems (PMAPS), online, 2022, pp. 1-6.

O. Stanojev, O. Kundacina, U. Markovic, E. Vrettos, P. Aristidou, and G. Hug,
“A reinforcement learning approach for fast frequency control in low-inertia power
systems,” in 52nd North American Power Symposium (NAPS), online, 2021, pp. 1-6.

0. Kundacina, G. Gojic, M. Cosovic, D. Miskovic, and D. Vukobratovic, “Scalability
and Sample Efficiency Analysis of Graph Neural Networks for Power System State
Estimation,” in Sixth International Balkan Conference on Communications and
Networking (BalkanCom), Istanbul, 2023, pp. 1-6.

O. Kundacina, G. Gojic, M. Mitrovic, D. Miskovic, and D. Vukobratovic, “Support-
ing Future Electrical Utilities: Using Deep Learning Methods in EMS and DMS
Algorithms,” in 22nd International Symposium INFOTEH-JAHORINA (INFOTEH),
Jahorina, 2023, pp. 1-6.

List of Figures

1 Introduction
1.1 A simple fully connected neural network containing an input layer, two
hidden layers, and an output layer.

2 Power System State Estimation
2.1 Simple two-bus power system containing a PMU at the bus 1, one legacy
active power flow measurement, and one legacy voltage magnitude
measurement at the bus 2. oL

3 Graph Neural Networks

3.1 Example of the simple undirected graph containing six nodes and seven
edges. . ..

3.2 Node embeddings - a simplified example of graph representation learn-
ing algorithm’s outputs. L L oL

3.3 A GNN layer, which represents a single message passing iteration,
includes multiple trainable functions, depicted as yellow rectangles.
The number of first-order neighbours of the node j is denoted as n;.

4 Graph Neural Network-based State Estimation

23

25

43

46

51

52

56

69

4.1

4.2

4.3

4.4

4.5

4.6

4.7
4.8
4.9

4.10

4.11

4.12

4.13

Subfigure (a) shows a simple two-bus power system with two phasor
measurements from a PMU placed at the bus 1. Subfigure (b) displays
the corresponding factor graph (full-line edges) and augmented factor
graph (all edges). Variable nodes are depicted as circles, and factor
Nodes are as SQUATES. v v v v v e e

Subfigure (a) shows a simple two-bus power system containing a PMU
at the bus 1, one legacy active power flow measurement, and one
legacy voltage magnitude measurement at the bus 2. Subfigure (b)
displays the corresponding factor graph (full-line edges) and augmented
factor graph (all edges). Variable nodes are represented as circles, and
factor nodes are depicted as squares, coloured differently to distinguish
between phasor and legacy measurements.
Subfigure (a) shows a high-level computational graph that starts with
the loss function for the output of a variable node v. Subfigure (b)
depicts the detailed structure of a single GNN Layer. Functions with
trainable parameters are highlighted in yellow.

GNN predictions and labels for one test example with optimally placed

GNN predictions and labels for one test example with phasors from two

neighbouring PMUs removed. Vertical black lines indicate unobserved

buses, while green lines represent buses that are affected by the loss of

measurement data. Lo Lo
Properties of augmented factor graphs along with the system’s mea-
surement redundancy for different test power systems, labelled with

their corresponding number of buses.
Validation losses for trainings on four different training set sizes.

Test set results for various power systems and training set sizes.

A ratio of the execution times for WLS SE and GNN SE inference on

a test set of 100 samples, as a function of the power system size.

The test set MSE between the predictions and the labels per each bus
for voltage magnitudes and angles in the IEEE 30-bus test case.
Average MSEs of test sets created by randomly excluding measurements.
GNN predictions and labels for one test example, with all measurements

connected to two neighbouring buses removed. Dashed lines indicate
the buses in the 1-hop neighbourhood of the excluded measurements. .

GNN predictions and GN based SE solutions for one test example with
corrupted input data.

84
86

86

88

89

89

5 Dynamic Distribution Network Reconfiguration 95

5.1 An example of distribution network before (subfigure a) and after
(subfigure b) the reconfiguration. 97
6 Reinforcement learning 103
6.1 The agent-environment interaction process. 104
6.2 An example of a deep Q-network. oL 107

7 Reinforcement Learning based Dynamic Distribution Network Re-

configuration 109
7.1 The agent-environment interaction process for DDNR. 110
7.2 Single-line diagram for 15-bus test benchmark. 114
7.3 Daily load profiles for three feeders. Full lines represent average load

7.4

7.5
7.6
7.7
7.8

7.9

values, and dashed lines represent limits between which training set
loads are sampled. Lo 115
Average DQN loss per episode (top) and total reward per episode along

with its moving average (bottom). 116
Switch status changes during the 24-hour period. 118
Loss reduction using DDNR. 118
Voltage profile for 15-bus test benchmark. 119
Switch status changes during the 24-hour period when the maximal

number of switch manipulations is two. 120
IEEE 33-bus radial system. 122

7.10 Voltage profile for IEEE 33-bus radial system. 122

3.1

4.1
4.2

4.3

4.4

4.5

7.1

7.2

7.3

List of Tables

Comparison of various deep learning models from the inductive bias
perspective. Lo

List of GNN hyperparameters.
Comparison of GNN and approximative SE test set MSEs for various
measurement Variances. o.u e e e
A comparison of the performance of GNN and DNN models trained
on different training set sizes, as measured by test set MSE and the
number of trainable parameters.,
A comparison of the results of various approaches for two test sets with
different degrees of outlier intensity.
Epoch until validation loss minimum for various power systems and
training set sizes. Lo

Total load, active power losses and switch status changes in the 24-
hour time optimization period for the 15-bus test benchmark (O—open;

Total losses, number of switch status changes, and total cost in the
24-hour time optimization period.
Active power losses and switch status changes in the 24-hour time
optimization period for the large-scale radial distribution network
(O-open; C—close).

59

7.4 Active power losses and switch status changes in the 24-hour time
optimization period for the IEEE 33-bus radial system (O-open; C—close).123

Abstract

Electric power systems consist of generation, distribution, and transmission systems,
which are all traditionally coordinated from the corresponding control centres. System
operators use specialized software solutions for monitoring and optimization of electric
power systems, installed in control centres. Typical algorithms implemented in
mentioned software solutions should satisfy near real-time operation requirements,
while delivering accurate information for power system monitoring and optimizing its
operation.

Modern electric power systems have been increasing in size, complexity, as well as
dynamics due to the growing integration of renewable energy resources, which have
sporadic power generation. This necessitates the development of near real-time power
system algorithms, demanding lower computational complexity regarding the power
system size. Considering the growing trend in the collection of historical measurement
data and recent advances in the rapidly developing deep learning field, the topic
of this dissertation is the application of deep learning algorithms, namely graph
neural networks (GNNs) and deep reinforcement learning (DRL), for monitoring and
optimization of electric power systems.

The first part of this thesis presents a GNN approach to solving the power system
state estimation (SE) problem, which aims to estimate complex bus voltages based
on available measurements. Two formulations of the SE problem are considered: the
first is a linear SE formulation that uses measurements from phasor measurement
units (PMUs), while the second is a nonlinear SE formulation that incorporates both

PMU measurements and legacy measurements from the supervisory control and data
acquisition (SCADA) system.

As PMUs become more widely used in transmission power systems, a fast state
estimation algorithm that can take advantage of their high sampling rates is needed.
To accomplish this, we present a method that uses GNNs to solve the linear formulation
of SE problem by learning complex bus voltage estimates from PMU voltage and
current measurements. We propose an original implementation of GNNs over the
power system’s factor graph to simplify the integration of various types and quantities
of measurements on power system buses and branches. Furthermore, we augment
the factor graph to improve the robustness of GNN predictions. The proposed GNN
model is highly efficient and scalable, as its computational complexity is linear with
respect to the number of nodes in the power system. Training and test examples were
generated by randomly sampling sets of power system measurements and annotating
them with the exact solutions of linear SE with PMUs, obtained using a traditional
weighted least squares-based method. The numerical results demonstrate that the
GNN model provides an accurate approximation of the SE solutions. Furthermore,
errors caused by PMU malfunctions or communication failures that would normally
make the SE problem unobservable have a local effect and do not deteriorate the
results in the rest of the power system.

Alongside the linear SE problem formulation, in this thesis, we consider nonlinear
SE, which takes into account all types of measurements available in the power system,
and is usually solved using the iterative Gauss-Newton (GN) method. The nonlinear
SE formulation presents some difficulties when considering inputs from both PMUs and
SCADA system. These include numerical instabilities, convergence time depending
on the starting point of the iterative method, and the quadratic computational
complexity of a single iteration regarding the number of state variables. Analogously
to the GNN-based linear SE, we apply GNN over the augmented factor graph of the
nonlinear power system SE. Once trained, the proposed regression model has linear
computational complexity during the inference time, with a possibility of distributed
implementation. Since the method is noniterative and non-matrix-based, it is resilient
to the problems that the GN solver is prone to. In addition to good prediction accuracy
on the test set, the proposed model demonstrates robustness during the simulation of
cyberattacks and unobservable scenarios due to communication irregularities.

In the second part of this thesis, we focus on distribution network reconfigura-
tion (DNR), which is critical for enhancing energy efficiency by coordinating switch
operations in the distribution network. The sufficient number of remote switching
devices in the distribution network enables dynamic distribution network reconfigu-
ration (DDNR), which determines the optimal network topologies over a specified

time interval. To achieve this, we propose a data-driven approach for DDNR using
DRL. The proposed DDNR, controller aims to minimize the objective function which
includes active energy losses and the cost of switching manipulations, while ensuring
that all constraints are satisfied. The following constraints are considered: allowed
bus voltages, allowed line apparent powers, a radial network configuration with all
buses being supplied, and the maximal allowed number of switching operations. This
optimization problem is modelled as a Markov decision process by defining the possible
states and actions of the DDNR agent (controller) and rewards that lead the agent to
minimize the objective function while satisfying the constraints. Switching operation
constraints are modelled by modifying the action space definition instead of including
the additional penalty term in the reward function, to increase the computational
efficiency. The proposed algorithm was tested on three test examples: small bench-
mark network, real-life large-scale test system and IEEE 33-bus radial system and
the results confirmed the robustness and scalability of the proposed algorithm.

Abbreviations

CNN Convolutional neural network

DDNR Dynamic distribution network reconfiguration
DMS Distribution management system

DNN Deep neural network

DNR Distribution network reconfiguration
DRL Deep reinforcement learning

DQN Deep Q-network

EMS Energy management system

GAT Graph attention network

GN Gauss-Newton

GNN Graph neural network

GRU Gated recurrent unit

LSTM Long short-term memory

MADRL Multi-agent deep reinforcement learning
MDP Markov decision process

MSE Mean square error

PMU Phasor measurement unit

ReLU Rectified linear unit

RNN Recurrent neural network

RL Reinforcement learning

SCADA Supervisory control and data acquisition
SE State estimation

WAMS Wide area measurement system

WLS Weighted least-squares

5G ... Fifth-Generation

Chapter 1

Introduction

Power systems are undergoing a transition due to the increased integration of renewable
energy resources, and as a result they are facing new challenges in their operations.
These challenges include the unpredictable nature of renewable energy resources,
maintaining stability within the power system, managing the impacts of distributed
generation, and the challenges presented by reverse power flows [1]. Consequently, the
mathematical formulations of traditional algorithms that solve these problems have
become increasingly complex and nonlinear, with larger dimensionality, making their
practical implementation and real-time operation more challenging. These algorithms
are usually implemented as parts of specialized software solutions, such as energy
management systems (EMS) for transmission networks and distribution management
systems (DMS) used in distribution networks, which are installed in power system
control centres and used by power system operators on a daily basis. Some of the
algorithms typically used as EMS and DMS functionalities include state estimation
(SE), fault detection and localization, demand and generation forecast, voltage and
transient stability assessment, voltage control, optimal power flow, economic dispatch,
etc. Increasing amounts of data generated by power systems [2] and collected by EMS
and DMS are enabling the development of new deep learning-based algorithms to
overcome the limitations of traditional ones.

Deep learning is a subfield of artificial intelligence that involves training neural
network models to find patterns and make predictions based on the available set of
data samples [3]. Some of the advantages of employing deep learning methods in the
field of power systems include:

e Speed: Once trained, a deep learning algorithm usually operates quickly, even
when processing large amounts of data [4]. This is crucial for applications where
fast decision-making is required, as is the case in many power system operation
problems.

o Accuracy: Universal approximation theorem [5] states that neural networks can

24 1. Introduction

approximate any function to a desired degree of accuracy, if it consists of a
sufficient number of trainable parameters. Practically, this implies that neural
networks can be employed to tackle a wide range of problems, including those
in power systems, and that different network architectures and sizes can be used
to adapt to the complexity of the problem.

e Adaptability: Deep learning methods are easily adaptable, meaning that they
can be retrained when the underlying data generation process changes [6]. This
makes them suitable for dynamic environments, such as when the power system’s
operating conditions change.

e Robustness: Traditional model-based algorithms can encounter problems when
faced with uncertain or unreliable power system parameters [7]. As a model-free
alternative, deep learning methods alleviate these problems by not relying on
power system parameters.

e Automation: Since deep learning algorithms can learn from human responses
in various situations given enough training data, they can be used to reduce
the need for human intervention in certain power system tasks. For instance,
in applications such as predictive maintenance [8], which are integral parts of
asset management systems, deep learning can be applied within an automated
real-time monitoring system.

In the continuation, we shortly introduce the basic deep learning terminology, de-
scribe the most common deep learning approaches and review their recent applications
in the field of monitoring and optimization of electric power systems [9].

1.1 Deep Learning Fundamentals

Deep learning is a field of machine learning that involves training neural networks on
large datasets [3], with a goal of generating accurate predictions on unseen data samples.
Therefore, neural networks can be seen as trainable function approximators, composed
of interconnected units called neurons, which process and transmit information. In
a simple fully connected neural network, the information processing is organized
in layers, where input information from the previous layer is linearly transformed
using a function f;(-), where ¢ denotes the layer index. The linear transformation is
defined using a matrix of trainable parameters Wj, i.e., the weights of the connections
between the neurons, shown in Fig. 1.1. Trainable parameters also include biases,
which are free terms associated with each neuron, and are omitted in the figure. The
information is then passed through a nontrainable nonlinear function g;(-) to create
the outputs of that layer. Inputs and outputs of the whole neural network are denoted
as x; and y, in Fig. 1.1, where j and k denote the indices of input and output neurons.

1.1. Deep Learning Fundamentals 25

gout(ﬁ)ut(.))
92@')) O

91(()
o

Y1

Vout | -

N |
W, 1@ W
@

XNQ'/”,’ | — Q Yn

Figure 1.1: A simple fully connected neural network containing an input layer, two
hidden layers, and an output layer.

Neural network training assumes adjusting the trainable parameters (i.e., weights
and biases of the neurons) using the knowledge in the collected data, so that accurate
predictions can be performed based on the new inputs. The training process is
formulated as an optimization problem which searches through the trainable parameter
space to minimize the distance function between the predicted output and the true
output. The problem is usually solved using gradient-based optimization methods
such as gradient descent, or some of its variants [10].

In practice, when using deep learning to solve a problem, it is common to train
multiple instances with different neural network model structures. This structure is
defined by hyperparameters, such as the number of layers and the number of neurons
in each layer. By finding the optimal set of hyperparameters, the neural network
structure that best fits the problem being solved can be identified. The hyperparameter
search can be done manually or with the use of specialized optimization methods [11].
Commonly, the collected data is split into three sets: a training set, a validation set,
and a test set. The training set is used in a neural network training process, the
validation set is used to evaluate the performance of a single training instance, and
the test set is used to evaluate the overall performance of the trained model.

Adjusting the architecture of a deep learning model to match the structure of the
input data can enhance training speed and performance and reduce required training
data. For example, convolutional neural networks (CNNs) use shared parameters to
process grid data, exploiting local relations between neighboring pixels and achiev-

26 1. Introduction

ing spatial translation invariance. Recurrent neural networks (RNNs) use shared
parameters to process sequential data, resulting in time translation invariance, while
graph neural networks (GNNs) aim for permutation invariance and are particularly
efficient when applied to graph structured data. Since ordinary, fully connected neural
networks have been widely used for solving power systems problems, we focus on
applications of more advanced deep learning architectures.

1.2 Convolutional Neural Networks

Convolutional Neural Networks are a well studied class of deep learning architectures
primarily designed for analysing spatial patterns in grid-structured data such as
images [3]. They consist of multiple convolutional layers, each of which acts as a
trainable convolutional filter that extracts local information from the image, transforms
it into more abstract, grid-shaped representations, and feeds it into the succeeding
layer. Applying multiple CNN layers enables CNN to extract useful features from an
image, which can then be used for various tasks such as classification or regression.

Although power system data is not inherently arranged in the format of an image,
CNNs have been effectively used to address power system problems, mostly involved
with processing data sequences. To meet the requirements of CNNs, power system
data is transformed and reshaped in various ways, some of which include:

e One approach for dealing with the time-varying nature of power systems is to
utilize 1D CNNs on univariate time series data. For example, in study [12],
1D CNNs were used to predict power system inertia using only frequency
measurements. The process involves stacking time series of changes in frequency
measurements, along with their rates of change, into a one-dimensional array
and then processing it using 1D CNNs.

e A more effective method is to group signals into a matrix, where each row
represents a single univariate signal. By using a 2D CNN to process this matrix,
we can perform multivariate time series analysis, which allows us to analyse
patterns across multiple time series and how they interact with each other.
This approach has been used in recent research, such as in the study [13], to
detect faults in power systems through analysing series of voltage, current, and
frequency measurements.

e Time series data can be subjected to time-frequency transformation, allowing
for analysis of the frequency content of the signal while maintaining its tem-
poral localization. These transformations can be visually represented in two
dimensions, and therefore can be analysed using various image processing tools,
including CNNs. For instance, in [14] a CNN was trained to classify faults in

1.8. Recurrent Neural Networks 27

power systems by analysing 2D scalograms, which were generated by applying
the continuous wavelet transform to time series of phasor measurements.

e Another approach is to use a CNN over the matrix of electrical quantities
created for a single time instance, where each row contains the values of a
specific electrical quantity for each power system element. This approach, which
does not consider time series data, has been shown to be effective in certain
applications. The study [15] solves the DC optimal power flow problem by
using this approach and taking node-level active and reactive power injections
as inputs, with labels obtained using the traditional DC optimal power flow
approach.

It’s important to note that these approaches use only aggregated inputs from all
the elements of the power system, without considering the connectivity between them.

1.3 Recurrent Neural Networks

Recurrent neural networks represent a significant development in deep learning
algorithms, particularly in the processing of sequential data such as speech, text,
and time series. [3]. Each of the recurrent layers acts as a memory cell that takes in
information from previous steps in the sequence, processes it, and generates a hidden
state representation that is passed on to the next step. The final hidden state of RNNs
encapsulates the information of the entire input sequence and can be applied to tasks
such as natural language processing, speech recognition, and time-series prediction.
While 1D CNNs are limited to fixed length sequences, meaning that all time series
in the training and test samples must have the same number of elements, RNNs are
adaptable to varying sequence lengths, making them more versatile and useful for
analysing sequential data.

The fundamental building blocks of RNNs are memory units, such as gated recurrent
units (GRUs) and long short-term memory units (LSTMs) [16]. These architectures
are created to tackle the challenge of longer-term dependencies in sequential data.
Both GRUs and LSTMs include an internal memory, which allows them to selectively
retain or discard information from previous steps in the sequence, thus enhancing their
ability to handle inputs of varying lengths. LSTMs are more complex and powerful,
capable of handling longer-term dependencies, while GRUs are computationally
simpler and faster, yet may not be as effective in certain tasks.

In the field of power demand and generation forecasting, various time series
prediction algorithms, including RNNs, have been utilized. One recent study, [17]
uses LSTM RNNs to predict multistep-ahead solar generation based on recorded
measurement history while also addressing missing records in the input time series.

28 1. Introduction

RNNs can also be used to predict the flexibility of large consumers’ power demand in
response to dynamic market price changes, as demonstrated in [18]. This approach
combines two LSTM RNNs, one for predicting market price and the other for predicting
a consumer’s demand flexibility metric, with a focus on uncommon events such as
price spikes. An interesting technical aspect of this method is that the two RNNs
share some LSTM-based layers, resulting in more efficient and faster training, as well
as improved prediction capabilities.

RNNSs can also be applied to other data available in DMS and EMS, other than
power and energy. The work [19] proposes using an RNN to classify the voltage
stability of a microgrid after a fault, using time series of measurement deviations,
providing power system operators with valuable information, needed to take corrective
actions. The employed RNN architecture is the bidirectional LSTM, which processes
the time series data in both forward and backward directions, allowing the RNN to
consider both past and future context in each step of the sequence when making
predictions. In the study [20], the authors evaluate different deep learning models for
detecting misconfigurations in power systems using time series of operational data.
They compare GRU RNN, LSTM RNN, the transformer architecture [21], which has
been successful in natural language processing tasks, and a hybrid RNN-enhanced
transformer [22]. The results show that the RNN-enhanced transformer is the most
effective architecture, highlighting the potential of attention-based architectures for
solving time series problems in power systems.

1.4 Graph Neural Networks

Graph Neural Networks, particularly spatial GNNs that utilize message passing, are an
increasingly popular deep learning technique that excels at handling graph structured
data, which makes them well-suited for addressing a wide range of power systems
problems. Spatial GNNs process graph structured data by repeatedly applying a
process called message passing between the connected nodes in the graph [23]. The
goal of GNNs is to represent the information from each node and its connections in a
higher-dimensional space, creating a vector representation of each node, also known
as node embeddings. GNNs are made up of multiple layers, each representing one
iteration of message passing. Each message passing iteration is performed by applying
multiple trainable functions (implemented as neural networks) such as a message
function, an aggregation function, and an update function. The message function
calculates the messages being passed between two node embeddings, the aggregation
function combines the incoming messages in a specific way to create an aggregated
message, and the update function calculates the update to each node’s embedding.
This process is repeated a predefined number of times, and the final node embeddings

1.4. Graph Neural Networks 29

are passed through additional neural network layers to generate predictions.

GNNs have several advantages over the other deep learning architectures when
used in power systems. One of them is their permutation invariance property, which
means that they produce the same output for different representations of the same
graph by design. GNNs are able to handle dynamic changes in the topology of power
systems and can effectively operate over graphs with varying numbers of nodes and
edges. This makes them well suited for real-world power systems, which may have
varying topologies. Additionally, GNNs are computationally and memory efficient,
requiring fewer trainable parameters and less storage space than traditional deep
learning methods applied to graph-structured data, which is beneficial in power
system problems where near real-time performance is critical. Spatial GNNs have the
ability to perform distributed inference with only local measurements, which makes it
possible to use the 5G network communication infrastructure and edge computing to
implement this effectively [24]. This enables real-time and low-latency decision-making
in large networks as the computations are done at the network edge, near the data
source, minimizing the amount of data sent over the network.

GNNs have recently been applied to a variety of regression or classification tasks
in the field of power systems. The work [25] proposes using GNNs over the bus-
branch model of power distribution systems, with phasor measurement data as inputs,
to perform the fault location task by identifying the node in the graph where the
fault occurred. The use of GNNs for assessing power system stability has been
explored in [26], where the problem is formulated as a graph-level classification task
to distinguish between rotor angle instability, voltage instability, and stability states,
also based on power system topology and measurements. The paper [27] presents
a hybrid neural network architecture which combines GNNs and RNNs to address
the Short-Term Load Forecasting problem. The RNNs are used to process historical
load data and provide inputs to GNNs, which are then used to extract the spatial
information from users with similar consumption patterns, thus providing a more
comprehensive approach to forecast the power consumption. In [28] the authors
propose a GNN approach for predicting the power system dynamics represented as
time series of power system states after a disturbance or failure occurs. The GNN is
fed with real-time measurements from phasor measurement units that are distributed
along the nodes of the graph. In [29] GNNs are applied over varying power system
topologies to detect unseen false data injection attacks in smart grids.

In the previously mentioned studies, GNNs have been applied to the traditional
bus-branch model of power systems, however, a recent trend in the field has been to
apply GNNs over other topologies representing the connectivity in power system data.
As it will be further discussed in this thesis, GNNs can be applied in combination with

30 1. Introduction

heterogeneous power system factor graphs to solve the SE problem, both linear [30]
and nonlinear [31]. In these approaches, measurements are represented using factor
nodes, while variable nodes are used to predict state variables and calculate training
loss. These approaches are more flexible regarding the input measurement data
compared to traditional deep learning-based SE methods because they provide the
ability to easily integrate or exclude various types of measurements on power system
buses and branches, through the addition or removal of the corresponding nodes in
the factor graph. A different approach that does not use the GNN over the traditional
bus-branch model is presented in [32]. The proposed method solves the power system
event classification problem based on the collected data from phasor measurement
units. The approach starts by using a GNN encoder to infer the relationships between
the measurements, and then employs a GNN decoder on the learned interaction graph
to classify the power system events.

1.5 Deep Reinforcement Learning

So far, we have reviewed deep learning methods that are inherently suited for pre-
dicting discrete or continuous variables based on a set of inputs. In contrast, deep
reinforcement learning (DRL) methods have a direct goal of long-term optimization
of a series of actions that are followed by immediate feedback [33]. Therefore, DRL
methods are powerful tools for multi-objective sequential decision-making, suitable
for application in various EMS and DMS functionalities that involve power system
optimization [34]. In the DRL framework, the agent interacts with the stochastic
environment in discrete time steps and the goal is to find the optimal policy that
maximizes the long-term reward while receiving feedback about its immediate per-
formance. The agent receives state variables from the environment, takes an action,
receives an immediate reward signal and the state variables for the next time step.
The DRL training process involves many episodes that include agent-environment
interaction, during which the agent learns by trial and error. Using the collected data
from these episodes, the agent is able to predict the long term rewards in various
situations using neural networks, and these predictions are then used to generate an
optimal decision-making strategy.

There are many studies that apply DRL in the field of power system optimization
and control. Some of the examples include distribution network reconfiguration [35],
Volt-VAR control in power distribution systems [36], frequency control in low-inertia
power systems [37], and so on. In these studies, an RL agent receives various electrical
measurements as state information and takes a single multidimensional action per
time step, which includes both discrete and continuous set points on controllable
devices within a power system.

1.5. Deep Reinforcement Learning 31

A recent trend in the power system research is transitioning from single agent to
multi-agent deep reinforcement learning (MADRL), which is based on coordinating
multiple agents operating together in a single environment using the mathematical
apparatus developed in the field of game theory [38]. MADRL relies on centralized
training and decentralized execution concept, where a centralized algorithm is respon-
sible for training all the agents at once, allowing for coordination and cooperation
among the agents. This centralized training approach results in faster real-life execu-
tion due to significantly reduced communication delays during decentralized execution,
where each agent can act independently based on the knowledge acquired during the
centralized training. Reducing these communication delays is particularly important
in large transmission power systems where the individual agents may be significantly
geographically separated.

For example, a decentralized Volt-VAR control algorithm for power distribution
systems based on MADRL is proposed in [39]. In this algorithm, the power system
is divided into multiple independent control areas, each of which is controlled by
a corresponding DRL agent. These agents observe only the local measurements of
electrical quantities within their corresponding area, and the action of each agent
contains set points on all the reactive power resources in that area. Similarly, in [40],
a MADRL algorithm is used to solve the secondary voltage control problem in isolated
microgrids in a decentralized fashion by coordinating multiple agents, each of which
corresponds to a distributed generator equipped with a voltage-controlled voltage
source inverter. The action of each agent is a single secondary voltage control set
point of the corresponding generator. The fundamental difference compared to [39] is
that the agent in [40] uses not only the local measurements of electrical quantities
for the state information, but also messages from the neighbouring agents, leading to
improved performance. Work [41] proposes using a MADRL algorithm to perform the
economic dispatch, which minimizes the overall cost of generation while satisfying the
power demand. The agent models an individual power plant in a power system, with
the action being the active power production set point. Another example of using
MADRL for an economic problem in coupled power and transportation networks
is given in [42]. A MADRL method is proposed to model the pricing game and
determine the optimal charging pricing strategies of multiple electric vehicle charging
stations, where each individually-owned EV charging station competes using price
signals to maximize their respective payoffs. In all the aforementioned works, multiple
agents are trained in a centralized manner to optimize the reward function defined
globally based on the nature of the particular problem at hand.

32 1. Introduction

1.6 Power System State Estimation using Graph
Neural Networks

The power system state estimation is a problem of determining the state of the power
system represented as the set of complex bus voltages, given the available set of
measurements [43]. The dominant part of the input data for the SE model consists
of legacy measurements coming from the supervisory control and data acquisition
(SCADA) system, which have relatively high variance, high latency, and low sampling
rates. Increasingly deployed phasor measurement units (PMUs), provided by the
wide area measurement system (WAMS), have low variance and high sampling rates
and are a potential enabler of real-time system monitoring. There are two main
SE formulations that emerge based on the type of input measurements taken into
account:

e Nonlinear SE: Taking into account both legacy and phasor measurements
results in the SE model formulated by the system of nonlinear equations and
is traditionally solved using the iterative Gauss-Newton (GN) method [43].
Different approaches can be used to integrate phasor measurements into the
well established model with legacy measurements. A standard way to include
voltage and current phasors coming from PMUs is to represent them in the
rectangular coordinate system [44]. The main disadvantage of this approach is
related to measurement errors, where measurement errors of a single PMU are
correlated, and the covariance matrix does not have diagonal form. Despite that,
because of the lower computational effort, the measurement error covariance
matrix is usually considered as diagonal matrix, which has the effect on the
accuracy of the nonlinear SE. The diagonal form of the covariance matrix could
be preserved by representing voltage and current phasors coming from PMUs in
the polar coordinate system, which requires a large computational effort with a
convergence time significantly depending on the state variables’ initialization [45].
Additionally, using magnitudes of branch current measurements can cause
numerical instabilities such as undefined Jacobian elements due to the “flat
start” [46, Sec. 9.3]. Furthermore, different orders of magnitude of phasor
and legacy measurement variances can make the SE problem ill-conditioned by
increasing the condition number of the estimator’s gain matrix [44]. A single
iteration of the GN method involves solving a system of linear equations, which
results in near O(n?) computational complexity for sparse matrices, where n is
the number of power system buses.

e Linear SE: When a sufficient number of PMUs is installed in a power system,
the SE algorithm can consider only phasor measurements as inputs, without

1.6. Power System State Estimation using Graph Neural Networks 33

the need to include legacy measurements in the calculation. In this case, the
SE problem can then be expressed as a system of linear equations if both state
variables and phasor measurements are represented in a rectangular coordinate
system. This approach provides non-iterative solutions which are faster than the
nonlinear SE, and utilize high sampling rates of PMUs more. Solving linear SE is
traditionally done by solving a linear weighted least-squares (WLS) problem [44],
which involves matrix inversions or factorizations, which can be difficult in cases
where the matrix is ill-conditioned due to varying orders of magnitudes of power
system parameters. It is common practice to neglect the phasor measurement
covariances represented in rectangular coordinates [44]. This can make the SE
problem much easier to solve, but it also results in a computational complexity
of nearly O(n?) for sparse matrices.

In both SE problem formulations, real-time monitoring of large power systems
can be challenging using traditional approaches due to their high computational
complexity of O(n?) and mentioned numerical difficulties associated with them.
Recent advancements in GNNs [23,47] open up novel possibilities for developing power
system algorithms with linear computational complexity and potential distributed
implementation. GNNs (as well as other deep learning methods) can be particularly
useful for the SE problem because they are not based on the matrix model of the
power system, which eliminates numerical difficulties associated with traditional SE
solvers. These approaches, when trained on relevant datasets, are able to provide
solutions even when traditional methods fail.

Generally, the popularity of deep learning in the field of power systems analysis
has been well-documented in recent research, with several studies showing that it can
be used to learn the solutions to computationally intensive algorithms such as power
system SE. In [48], the authors used a combination of recurrent and feed-forward
neural networks to solve the SE problem using measurement data and the history
of network voltages. Another study, [49], provides an example of training a feed-
forward neural network to initialize the network voltages for a Gauss-Newton power
distribution system SE solver.

As the use of GNNs in power systems becomes more common, several studies
suggest applying GNNs to power flow problems, which are similar to the SE problem in
some aspects. In [50] and [51], power flows in the system are predicted based on power
injection data labelled by a traditional power flow solver. Similarly, [52] suggests using
a trained GNN as an alternative to computationally expensive probabilistic power flow
methods, which calculate probability density functions of unknown variables. Different
approaches propose training a GNN in an unsupervised manner to perform power
flow calculations by minimizing the violation of Kirchhoff’s law [53] or power balance

34 1. Introduction

error [54] at each bus, thus avoiding the need for labelled data from a conventional
power flow solver.

In [55], the authors propose a combined model- and data-based approach using
GNNs for power system parameter and state estimation. The model predicts power
injections and consumptions in nodes where voltage and phase measurements are taken,
but it does not consider branch measurements and other types of node measurements
in its calculations. In [56], the authors train a GNN by propagating simulated or
measured voltages through the graph to learn the voltage labels from a historical
dataset, and then use the GNN as a regularization term in the nonlinear SE loss
function. However, the proposed GNN only uses node voltage measurements and
does not consider other types of measurements, although they are handled in other
parts of the algorithm. Another feed-forward neural network learns the solutions that
minimize the SE loss function, resulting in an acceleration of the nonlinear SE solution
with O(n?) computational complexity at inference time. In [57], state variables are
predicted based on a time-series of node voltage measurements, and the authors solve
the nonlinear SE problem using GNNs with gated recurrent units.

Contributions: This thesis proposes specialized GNN models for solving linear
and nonlinear SE problems in positive sequence power transmission systems. To
provide fast and accurate predictions during the evaluation phase, GNNs is trained
using the inputs and solutions from traditional SE solvers. The following are the main
contributions of our work regarding GNN-based SE, also published in [30,58] and [31]:

e Inspired by [59], we present the first use of GNNs on factor graphs [60] for the
SE problem, instead of using the bus-branch power system model. This enables
trivial integration and exclusion of any type and number of measurements on the
power system buses and branches, by adding or removing the corresponding nodes
in the factor graph, and therefore is applicable to both linear and nonlinear SE
problem formulations. Furthermore, the factor graph is augmented by adding direct
connections between variable nodes that are 2"%-order neighbours to improve infor-
mation propagation during neighbourhood aggregation, particularly in unobservable
scenarios when the loss of the measurement data occurs.

e We present a graph attention network (GAT) [61] model, with the architecture
customized for the proposed heterogeneous augmented factor graph, to solve the SE
problem. GNN layers that aggregate into factor and variable nodes have separate
sets of trainable parameters. Furthermore, separate sets of parameters are used for
variable-to-variable and factor-to-variable message functions in GNN layers that
aggregate into variable nodes.

e Given the sparsity of the power system’s graph, and the fact that node degree

1.7. Dynamic Distribution Network Reconfiguration based on Deep Reinforcement
Learning 35

does not increase with the total number of nodes, the proposed approach has O(n)
computational complexity, making it suitable for large-scale power systems. The
inference of the trained GNN is easy to distribute and parallelize. Even in the case
of centralized SE implementation, the processing can be done using distributed
computation resources, such as graphical-processing units.

e We demonstrate that the number of trainable parameters in the proposed GNN-
based SE model is constant, while it grows quadratically with the number of
measurements in conventional deep learning approaches.

e We evaluated the performance of the proposed method by testing on various
data samples, including unobservable cases caused by communication errors or
measurement device failures, and scenarios corrupted by malicious data injections.
Furthermore, we study the local-processing nature of the proposed model and
show that significant degradation of results in these scenarios affects only the local
neighbourhood of the node where the failure or malicious data injection occurred.

¢ In addition to the standalone application, the proposed GNN-based nonlinear SE
can be used as a fast and accurate initializer of the GN method by providing it
with a starting point near the exact solution.

1.7 Dynamic Distribution Network Reconfiguration
based on Deep Reinforcement Learning

Distribution network reconfiguration (DNR) is a widely used distribution system
optimization procedure, which has the goal of finding the optimal topology of the
distribution network by manipulating the statuses of switching devices. Primarily,
DNR is used to achieve objectives such as the minimization of power loss and voltage
deviations [62,63], and secondarily, it can be used for load balancing, Volt-VAR
optimization, supply restoration, etc. [64]. Therefore, DNR is an important feature
of software systems used for distribution network management. In the research
literature, DNR is a common name for a static formulation of the DNR problem,
which is determined for the fixed operation point, defined by load and generation
in the one time instance. In the cases of limited distribution network automation,
static DNR is performed once per interval ranging up to one year, due to the time-
variability of the distribution system state. The number of possible solutions to
the static DNR problem is 2Vsv, where N, is the number of switches available for
network reconfiguration. The other formulation of the DNR, problem is the dynamic
distribution network reconfiguration (DDNR), which optimizes the network operations
over the specified time period. This makes DDNR suitable for real-time applications
due to the time-varying nature of load, generation, and other network conditions.

36 1. Introduction

Using DDNR instead of static DNR can result in larger benefits and increased network
operation performance, with the drawback of requiring the use of the fully automated
distribution network. Since the aim of developing DDNR is to be executed more
often than the static DNR, it must consider the number of switching manipulations in
the cost and the constraint functions. The large number of switching manipulations
can reduce the life span of switching devices and cause instability in the distribution
network operation in the case of complex topology changes. Therefore, DDNR resolves
the trade-off between performing the optimal reconfiguration too often and changing
the network topology less frequently to reduce the number of switching manipulations.
The DDNR problem introduces discretization of the optimization horizon into T
time intervals, resulting in increased problem complexity with the total of 2Vsw™
possible solutions. Since operation planning based on DDNR can be performed daily
or every hour, the aim of this work is to develop a DDNR algorithm that optimizes the
operation of the distribution network and is fast during the evaluation time, making
it applicable to real-world scenarios.

The first studies on DNR address problems such as power loss reduction [65-67]
and load balancing [67] among distribution feeders in the scope of static DNR. Some
extensions of the standard DNR problem for the optimization over time period have
been developed for the specialized cases like energy loss reduction [68], and operation
cost reduction [69]. The static DNR is often solved using the standard deterministic
optimization tools from the classical optimization theory. For example, DNR based
on the mixed-integer linear programming is presented in [70-74], with the main
advantage of finding the global optimum using the standard solvers, with the expense
of computational complexity. The ”path-to-node” concept for DNR proposed in [75]
efficiently models the radiality of the distribution network and solves the formulated
problem using a mixed-integer linear programming solver. The main drawback of this
concept is the significant increase in the number of decision variables with an increase
in the optimization problem dimension. In [76], DNR integrated with the optimal
power flow based on the Benders decomposition approach is presented.

Heuristic methods utilize physics and engineering knowledge about a specific
problem to produce practically effective solutions. One type of these methods used
for the DNR problem performs a heuristic search through the distribution network
topologies by opening switches with minimal current flows obtained from power
flow solutions [66,77,78]. Branch exchange methods [65,67,79,80] provide a faster
alternative by performing only a local heuristic topology search starting from the
current distribution network topology. These methods are often used in practice
because of their robustness and explainability; however, they do not provide a
theoretical guarantee of optimality because they search only through the subset of all

1.7. Dynamic Distribution Network Reconfiguration based on Deep Reinforcement
Learning 37

possible network topologies.

In addition to performing local and heuristic searches, or applying classical op-
timization techniques or exhaustive searches, one can use stochastic optimization
algorithms that perform approximate searches through the whole search space. There-
fore, a set of tools often used for solving static DNR are nature-inspired metaheuristic
algorithms, which are more computationally efficient than the classical optimization
approaches and can provide better solutions compared to the heuristic algorithms.
Representative metaheuristic algorithms used to solve the DNR problem are the
genetic algorithm [74,81-83], evolutionary algorithms [84, 85], particle swarm op-
timization [86,87], simulated annealing algorithm [88,89], and others. The main
drawbacks of these methods are their stochastic nature and suboptimal solutions
when the problem dimensionality increases.

Ref. [90] uses a different methodology that performs DNR without solving opti-
mization based or power flow-based programs. It presents a simple and fast strategy
specific to the DNR problem for selecting candidate solutions using only primitive
network topology information. Several supervised learning approaches to static DNR
using artificial neural networks have been presented in [91,92]. In both references,
neural networks output the radial distribution network topology given the input set of
variables describing the power system state, directly or indirectly. Neural networks are
trained on datasets labelled by classical optimization-based DNR solvers and try to
mimic them during the evaluation time. Outputs of these methods are deterministic,
and the evaluation time is fast, since it is determined by the computational complexity
of several matrix-vector multiplications. The main drawbacks of these approaches
include the need for DNR solver to the training set, and significantly deteriorated
results in the case where inputs significantly differ from the training set samples.

Besides the typical DNR problem formulation, some extensions regarding the
optimization function and the constraints are emerging. The study [93] presented
the DNR for reducing power loss with a budget limit as a hard constraint for the
planning purposes of distribution networks. The modern distribution network is being
transformed from passive to active due to increasingly deployed renewable energy
resources and, consequently, the use of distributed generators for the DNR problem is
becoming a study of importance [63,94].

A significantly lower number of studies tackle the dynamic DNR problem for-
mulation. Ref. [95] formulates day-ahead scheduling as a mixed-integer nonlinear
optimization problem that minimizes total operational costs. The scheduling problem
consists of control of distributed generations and responsive loads, as well as per-hour
network reconfiguration with switching manipulation constraints, and is solved using

38 1. Introduction

the genetic algorithm. Study [96] also solves DDNR with switching manipulation
constraints in a multi-agent fashion, by dividing the problem into multiple time inter-
vals, generating multiple instances of a problem solved separately by particle swarm
optimization based agents. Both of these studies are numerically tested on small dis-
tribution networks and have the problem of computation time increasing significantly
with the increase of the problem dimension. DNR can reduce active power losses by
being performed hourly, daily, or monthly, as in [97-99]; however, these references do
not consider the limits of the number of switching operations in the mentioned time
periods. DNR studies for annual network reconfiguration that consider variable loads
are presented in [100,101]. The study [100] additionally deals with minimizing the
cost of switching operations using dynamic programming combined with the harmony
search algorithm. While solving the annual DDNR using the genetic algorithm, the
study [101] considers the stochastic power generation of distributed generators. The
study [102] also attempts to solve DDNR using the genetic algorithm, by calculating
the optimal intervals between the two topology changes. Ref. [103] presents the DDNR
based on the rule-based algorithm which ranks per-hour DNR solutions and using that
finds the optimal time for the network reconfiguration. Multi-objective DDNR using
the combination of the heuristic exchange market algorithm and the population-based
wild goats algorithm with the possibility of parallel implementation is presented
in [104]. The proposed method optimizes active power loss and reliability indexes
while satisfying radiality, bus voltage, and branch apparent power constraints, where it
does not consider switching manipulation constraints. References [105,106] proposed
single- and multi-objective formulation of DDNR based on the Lagrange relaxation
approach. In the single-objective formulation, the objective function models the active
power loss reduction, while in the multi-objective formulation, the objective function
minimizes the costs of energy losses, network reliability, and switching operations.
The study [35] presents a data-driven DDNR for active power loss reduction without
using the network parameter information. DDNR is formulated as a Markov decision
process (MDP) and is solved using an off-policy reinforcement learning algorithm
trained on a historical operation data set.

Contributions: This thesis proposes DDNR based on the DRL algorithm. The
proposed expression of the DDNR problem in the RL framework, that is, the definition
of the state variables, leads to lower observability requirements compared to the
approach proposed in [35]. The amount of information needed for the algorithm
execution is decreased since the topology information and the information about
the power flows in the network are compressed into a single set of variables. This
reduces the number of telemetered measurements needed for the possible execution of
the algorithm in the real world. The reduced state size is also convenient from the
algorithm training perspective, since it decreases the required size of the neural network.

1.7. Dynamic Distribution Network Reconfiguration based on Deep Reinforcement
Learning 39

We also propose a way of considering switching operation constraints that improves the
algorithm training computational efficiency. The proposed approach assumes selecting
the actions from the available subset of the action set, which is updated during the
episode, so that switching operation constraints are not violated. This approach
simplifies the reward function when compared to the approach that allows actions
that violate constraints but penalizes them with a large amount of negative reward.
This way of selecting actions can be used for optimization problem constraints whose
violation can be detected without the feedback from the environment (by evaluating
only the agent’s action) and it can be applied to similar power system control and
optimization problems treated with RL such as Volt-VAR optimization, energy storage
scheduling, supply restoration, etc. The total cost benefits and execution times of the
proposed algorithm are compared with the state-of-the-art method from [105]. The
main contributions of our work regarding DDNR, published in [107], are:

e Suggested multi-objective and scalable DRL-based approach is computationally
efficient during the algorithm execution, with the expense of high computation cost
during the algorithm training.

e We introduce a novel definition for the state variables of the RL agent, resulting in
decreased observability requirements.

e We proposed a computationally efficient way of considering switching operation
constraints by creating the available subset of the action set and updating it during
the episode.

In Chapter 5 we introduce the main idea of DNR and formulate the DDNR problem.
Chapter 6 presents the theoretical foundations of MDPs and RL. Chapter 7 presents
the expression of the DDNR problem in the RL framework, description and discussion
of the numerical experiments, and the conclusion along with the possible future work
directions.

Part 1

State Estimation and Graph
Neural Networks

Chapter 2

Power System State Estimation

In this chapter, we review two most common formulations of the power transmission
system SE problem. The SE algorithm is a key component of the energy management
system that provides an accurate and up-to-date representation of the current state
of the power system. Its purpose is to estimate complex bus voltages using available
measurements, power system parameters, and topology information [43,108]. In
this sense, the SE can be seen as a problem of solving large, noisy, sparse, and
generally nonlinear systems of equations. The measurement data used by the SE
algorithm usually come from two sources: the SCADA system and the WAMS system.
The SCADA system provides low-resolution measurements that cannot capture
system dynamics in real-time, while the WAMS system provides high-resolution data
from PMUs that enable real-time monitoring of the system. The SE problem that
considers measurement data from both WAMS and SCADA systems is formulated
in a nonlinear way and traditionally solved in a centralized manner using the Gauss-
Newton method [43]. On the other hand, the SE problem that considers only PMU
data provided by WAMS has a linear formulation, providing faster, non-iterative
solutions. In the following sections, we provide a detailed description of both linear
and nonlinear SE problem formations.

2.1 Foundational Concepts

This section provides the fundamentals of SE state variables and input data, which
are necessary for specific SE problem formulations. For clarity, all variables are
expressed in per unit and all transformer ratios are normalized to unity (cancelled
out). Additionally, without loss of generality, we make the assumption that the power
system does not include phase-shifting transformers.

As mentioned, the outputs of the SE algorithm, i.e., the state variables consist of
voltage phasors of all the buses in the power system, where each voltage phasor is
represented using a complex number. Let H = {1,...,n} represents the set of buses,
where n is the number of buses in the power system. The complex bus voltages can

44 2. Power System State Estimation

be represented both in polar and rectangular coordinate system:
Vi = Vied% = R(V) +iS(Vy), (2.1)

where i € H represents the bus index. V; and 6; represent magnitude and phase
angle, while R(V;) and $(V;) represent real and imaginary parts of the complex bus
voltage V;. Since the state variable vector x is a vector of real numbers, it can also
be represented in polar:

x=[0,V]"
0=1[01,...,0,] (2.2)
V=[Vi,...,Val,

as well as in rectangular coordinate system:

X = [Vrcavim]T
Vie = [ROVY), ... R(V,)] (2.3)
Vim = [S(V1),...,S(V,)].

For simplicity, we omit the concept of the slack bus whose angle value is fixed and
acts as a reference value, as it does not impact the way in which the GNN-based SE
will be realized in Chapter 4.

Traditionally, the input data for the SE algorithm consists of the network topology
and parameters, and measured values obtained from the measurement devices spread
across the power system. The power system network topology is described by the
bus-branch model and can be represented using a graph G = (H, £), where the set of
nodes in the graph is equal to the already defined set of buses in the power system
H, while the set of edges £ C H x H represents the set of branches of the power
network. Power system parameters are characteristics of a power system, such as
impedance, admittance, etc., that describe the system’s behaviour. These parameters
are used to build a set of equations that describe the power system via the two-port
m-model of branches in the network. More precisely, the branch (i, j) € £ between
buses {4, j} € H can be modelled using complex expressions:

|:Jij:| _ |:yij + Ysi —Yij } {\71:| (2.4)
i ~Yij Yij +Ysi) Vil

where the parameter y;; = g;; + jbs; represents the branch series admittance, while
branch shunt admittances are given as ys; = gs; + jbs; and ys; = gs; + jbs;. The
complex expressions J;; and Jj; define branch currents from the bus 7 to the bus j,
and from the bus j to the bus i, respectively. The complex bus voltages at buses

2.1. Foundational Concepts 45

{i,j} are given as V; and V;, respectively.

Input measurements can be placed on various elements in the power system and
measure different electrical quantities. Each measurement is associated with the
measurement value z;, the measurement variance v;, and the measurement function
fi(x). Measurement functions are mathematical models that express individual
measurements in terms of state variables x using the physical laws in the power
system, and can be derived using equations given in (2.4). A typical set of input
measurements includes:

e Legacy measurements: The set of legacy measurements provided by SCADA
includes active and reactive power flow and injection, branch current magnitude,
and bus voltage magnitude measurements. These measurements have low
sampling rates and therefore are not suitable for real-time SE. Measurement
functions that express these measurements are generally nonlinear, regardless of
the coordinate system in which they are represented.

e Phasor measurements: The WAMS supports PMUs and provides phasor mea-
surements of bus voltages and branch currents [109, Sec. 5.6]. More precisely,
phasor measurement is formed by a magnitude, equal to the root-mean-square
value of the signal, and phase angle [109, Sec. 5.6]. The PMU placed at the bus
measures bus voltage phasor and current phasors along all branches incident
to the bus [44]. Phasor measurements have high sampling rates, with values
around 50 samples per second, and also have lower variances compared to legacy
measurements. When phasor measurements and state variables are expressed in
rectangular coordinate system, the corresponding measurement functions are
linear; otherwise they are nonlinear.

Values of both legacy and phasor measurements can be stacked together in a vector
of measurement values z = [z1,...,2,]T. Corresponding measurement functions
form their own vector f(x) = [f1(X), ..., fm(x)]T, where m denotes the number of
measurement values.

An example of a simple two-bus power system is given in Fig.2.1. Its state variables
consist of two complex bus voltages, V; and Vs, and the state variable vector is given
in polar coordinates as:

X = [91,92,V1,V2]T. (25)

The system has a PMU placed at the bus 1 which measures the voltage phasor given
on that bus V1 = Vel and the current phasor J15 = I15¢%112 on the branch
which connects the two buses. The system also contains a legacy active power flow
measurement Pj5 on the same branch and the legacy voltage magnitude measurement

46 2. Power System State Estimation

V2 on the bus 2. The vector of measurement values of this system can be given as:

T
z = [le, Oma, L12,01,,, Va, P12] . (2~6)
V, = Vit YV, = Vael?2
.] |
| 5]
| Jyo=1I19ei%T12 Py |
Bus 1 Bus 2
Vi1 =Vl Vin2

Figure 2.1: Simple two-bus power system containing a PMU at the bus 1, one legacy
active power flow measurement, and one legacy voltage magnitude measurement at
the bus 2.

2.2 Linear State Estimation

Since measurement functions corresponding to phasor measurements can be expressed
as a linear combination of state variables when represented in rectangular coordinate
system, the SE problem formulation which considers only phasor measurements is
linear. This formulation is viable in cases when the power system is fully observable
using PMUs, and a fast SE solver is then needed to fully utilize their high sampling
rates.

PMUs measure complex bus voltages and complex branch currents, and originally
output phasor measurements in polar coordinates. In addition, PMU outputs can
be observed in the rectangular coordinates with real and imaginary parts of the bus
voltage and branch current phasors. In that case, the vector of state variables x
can also be given in rectangular coordinates X = [Vie, Vim]T. Using rectangular
coordinates, we obtain the linear system of equations defined by voltage and current
measurements. The measurement functions corresponding to the bus voltage phasor
measurement on the bus 7 € H are simply equal to:

friv,y(x) = R{V:}

2.7
Fapr(x) = S{Vi}. (2.7)

According to the two-port = branch model (2.4), functions corresponding to the

2.2. Linear State Estimation 47

branch current phasor measurement are given as:
Tr) () = (gij + 9s)R(Vi) — (big + bsi)S(Vi) — gi;R(V;) + bi;S(V;)
I(V;

fs@i) () = (bij + bsi))R(Vi) + (935 + 95:)S(Vi) — bi; R(V;) — g53(V;). 28)

The presented model represents the system of linear equations, where the solution
can be found by solving the linear weighted least-squares problem:

("= 1) x =J3"2" g, (2.9)

where the Jacobian matrix J € R™*2" is defined according to measurement functions
(2.7)-(2.8), m is the total number of linear equations, the measurement error covariance

Rmxm

matrix is given as 3 € , and the vector z € R™ contains measurement values

given in rectangular coordinate system.

The main disadvantage of this approach is that measurement errors are originally
given in polar coordinates (i.e., magnitude and angle errors); therefore, the covariance
matrix must be transformed from polar to rectangular coordinates [110]. As a result,
measurement errors are correlated and the covariance matrix 3 does not have a
diagonal form. Despite that, because of the lower computational effort, the non-
diagonal elements of the covariance matrix X are usually neglected, which has an
effect on the accuracy of the SE [44]. Using the classical theory of propagation of
uncertainty [111], the variance in the rectangular coordinate system can be obtained
using variances in the polar coordinate system. For example, let us observe the
voltage phasor measurement at the bus i, where PMU outputs the voltage magnitude
measurement value zjy;| with corresponding variance vy;|, and voltage phase angle
measurement zp, with variance vg,. Then, variances in the rectangular coordinate
system can be obtained as:

VRV = Vs (cos 26,)% + vy, (2)v;) sin zg,)?

o , (2.10)
Vaqv;y =)y, (sin ze,)” + ve, (2)v;| cos zg,)”.

Analogously, we can easily compute variances related to current measurements vg(s,,3,
Vg{7,,} OF UR{7,,}> U3{1,,}- We will refer to the solution of (2.9) in which measurement
error covariances are neglected to avoid the computationally demanding inversion of
the non-diagonal matrix ¥ as an approzimative WLS SE solution.

In this work, we will investigate if the GNN model trained with measurement
values, variances, and covariances labelled with the exact solutions of (2.9) is more
accurate than the approximative WLS SE, which neglects the covariances. Inference
performed using the trained GNN model scales linearly with the number of power

48 2. Power System State Estimation

system buses, making it significantly faster than both the approximate and the exact
solver of (2.9).

2.3 Nonlinear State Estimation

Today’s power systems are often not fully monitored with PMUs, therefore, SE
that incorporates both phasor and legacy measurements is required. As previously
discussed, that SE formulation is nonlinear and uses state variables expressed in a
polar coordinate system x = [0, V]T.

Below, we present expressions for measurement functions corresponding to legacy
measurements:

e Measurement function for the bus voltage magnitude measurements is simply
given as voltage magnitude state variable corresponding to that bus:

fv.(x) =Vi. (2.11)

e Measurement functions for active and reactive power flow measurements on
branches are given as:

fp, (%) = Vi2(gis + gsi) — ViVj(gij cos 0;5 + bij sin b;)

. (2.12
fau, (%) = =V (bij + bsi) — ViVj(gij sin 05 — by cos 0;;).)

e Measurement function for current magnitude measurements on branches are:
f1,, (%) = [AV? + BV} — 2ViV;(Ce cos 05 — D sin 6;5)]'/2, (2.13)
where the coefficients of the function are given as:

A = (gij + gsi)2 + (ij + bsi)2; B. = gz‘Zj + bf_]
Ce = gij(gij + gsi) + bij(bij +bsi); De = gijbsi — bijgsi-

e Measurement functions for active and reactive power injection measurements
are described as:

fpi (X) = ‘/1 Z ‘/J(GU COS Gij + Bij sin GU)
jENiUi

sz‘ (X) = V; Z ‘/J(GU sin Hz-j — Bij COS 9’ij)7
JEN; Ui

(2.14)

2.3. Nonlinear State Estimation 49

where N; € H is the set containing first order neighbours of the bus i. Gy,
and B;; are the elements of bus admittance matrix often used in power system
analysis [112], and can be calculated using:

> (yij +ysi), if i =4 (diagonal element)
Yij = Gij Jerij = { JEN;
—Yij» if 4 j (non — diagonal element).
(2.15)

Next, we provide expressions for measurement functions corresponding to phasor
measurements expressed in polar coordinate system:

e Measurement functions for bus voltage phasors measurements are given as:

fv.(x) =V, (2.16)
fQi(X) = 92

e The measurement function for the magnitude of the branch current phasor is
given in (2.13), while the function for the measured angle of the branch current
phasor is:

(Aasiné; + B, cosb;)V; — (Cysinb; + D, cos)V
(Aacosb; — Bysind,;)V; — (Cycos; — Dysind;)V; |’
(2.17)

fo,,, (x) = arctan

where the function’s coefficients are as follows:

A, = 9ij + Gsis B, = bij + by
Ca:gij; Da:bij-

Finally, the SE model can be expressed as the following system of nonlinear
equations:
z =f(x) + u, (2.18)

where u € R™ is a vector of uncorrelated measurement errors, where u; ~ N (0, v;)
represents a zero-mean Gaussian distribution with variance v;. The GN method
is typically used to solve the nonlinear SE model (2.18), where the measurement
functions f(x) precisely follow the physical laws derived on the basis of (2.4):

I TR Ix)] ax) = 3(x) TS r(x) (2.192)
KD = x0) | Ax0), (2.19b)

50 2. Power System State Estimation

where v = {0, 1,. .., Umax } i the iteration index and vy is the number of iterations,
Ax®) € R?" is the vector of increments of the state variables, J(x(*)) € R"™*2" is the
Jacobian matrix of measurement functions f(x(*)) at x = x(*), ¥ € R™™ is in this
case a diagonal matrix containing inverses of measurement variances, and r(x(V)) =1z
—f(x(*)) is the vector of residuals. Note that the nonlinear SE represents a nonconvex
problem arising from nonlinear measurement functions f(x) [113]. Due to the fact
that the values of the state variables x usually fluctuate in narrow boundaries, the
GN method can be used.

The SE model (2.18) that considers both legacy and phasor measurements, where
the vector of state variables x = [V, 0]7 and phasor measurements are represented in
the polar coordinate system, is known as simultaneous. The simultaneous SE model
takes measurements provided by PMUs in the same manner as legacy measurements.
More precisely, the PMU generates measurements in the polar coordinate system,
which delivers more accurate state estimates than the other representations [44], but
requires more computing time [45] and produces ill-conditioned problems [44]. To
address these issues, we propose a non-matrix-based and noniterative GNN base SE,
which can be used as a standalone approach to solve (2.18), or as a fast and accurate
initializer of the GN method (2.19).

Chapter 3

Graph Neural Networks

Graph neural networks are an increasingly popular deep learning method used for
efficient learning over graph-structured data. Various real-world objects and phe-
nomena can be represented as graphs; therefore, GNNs found application in a wide
variety of domains, such as chemistry for molecular property prediction [47], antibiotic
discovery [114], social sciences for fake news detection [115], complex physics simu-
lations [116], wireless communications [117], analysis and optimization of electrical
power systems [118], etc. In this chapter, we provide a short overview of machine
learning on graphs, the foundation of the GNN theory used in the rest of the thesis,
and list some practical aspects in using GNNs in real-world applications.

3.1 Overview of Machine Learning on Graphs

The main goal of this section is to provide the context necessary to understand
GNNs. Firstly, we introduce the definition of a graph and categorize the most
common machine learning on graphs tasks. We provide a short reference to the
traditional machine learning on graphs methods to emphasize the necessity for graph
representation learning. Finally, we provide an overview of graph representation
learning methods, including deep learning-based GNNs.

3.1.1 Graphs

Graphs are often used to describe a set of entities and the relationships between
them. Formally, a graph is defined as a tuple (V,), where V denotes the set of
nodes, and £ denotes the set of edges between the nodes. The graph is commonly
represented with the corresponding adjacency matrix A € RIVIXIVI If there is an edge
between the nodes a,b € V, then a matrix element A[a,b] is equal to one; otherwise,
it is equal to zero. Graphs can contain self-loops, i.e., edges that connect nodes to
themselves, resulting in diagonal elements of the adjacency matrix equal to one. An
undirected graph assumes bidirectional connections between all the nodes, resulting
in a symmetric adjacency matrix. An example of a simple undirected graph is given

52 3. Graph Neural Networks

in Fig.3.1, with the corresponding adjacency matrix given in (3.1):

(3.1)

O R O O O
_— o = O R O
O = O = O O

O = O = O =
S OO = OO
= O O O =

Figure 3.1: Example of the simple undirected graph containing six nodes and seven
edges.

There are many extensions of the simplest form of graph presented above. Some
of them are the following:

e Directed graph, in which the adjacency matrix is generally not symmetric
since a connection from one node to another does not imply the existence of a
connection in the reverse direction;

e Heterogeneous and multi-relational graphs, where there can be multiple types
of the nodes and the edges;

e Weighted graphs, which have weights associated with the edges, and consequently
their adjacency matrices contain real number scalars instead of only zeros and
ones.

Real-world graphs can contain a large number of nodes, reaching hundreds of
millions in the cases of the most popular social networks. The adjacency matrices
of these graphs are sparse and space-ineflicient, necessitating a more compact graph
storage. Therefore, in practise large and sparse graphs are usually stored in adjacency
lists, which are implemented as unordered lists of different sizes containing neighbours
of each node.

Additional input data can be incorporated into the graph data structure, usually at
the node level via real-valued feature vectors, introducing the need for machine learning

3.1. Overview of Machine Learning on Graphs 53

methods on graphs. Less often, the input data are provided using the edge-level
features, or at the graph level using a single feature vector. In the case of supervised
learning on nodes, edges, and graphs, training labels are usually concatenated into
the corresponding feature vectors. From the graph signal processing perspective,
node-level features can be viewed as signals on a graph. A vector containing one scalar
feature per node defines a one-channel graph signal x € RIVI'| while multichannel
graph signals can be represented with a matrix X € RIVI'Ne| where N, denotes the

number of input features per node.

Another matrix that represents fundamental properties of a graph and will be
referred to throughout this chapter is the graph Laplacian matrix L € RIVIXIVI defined
as:

L=D-A, (3.2)

where D e RIVI*IVl is diagonal and represents the node degree matrix, whose diagonal
elements are equal to corresponding node degrees. This matrix is positive semi-definite,
and it can always be eigendecomposed. The Laplacian matrix of the graph is given in
Fig. 3.1 is:

2 -1 0 0 -1 0
-1 3 -1 0 -1 0
o -1 3 -1 0 -1
L= .
o 0 -1 1 0 0 (3:3)
-1 -1 0 0 3 -1
|0 0 -1 0 -1 2]
The normalized version of the graph Laplacian is also often used:
L=I-D :AD z. (3.4)

The eigendecomposition of the Laplacian matrix, also known as the spectrum of
the graph Laplacian, is given as follows:

L = UAUT, (3.5)

where A € RVIXIVI is a diagonal matrix containing the eigenvalues, while the columns
of U € RIVI*IVI contain the eigenvectors ordered by their corresponding eigenvalues.
The Laplacian spectrum reveals some information about the grouping of the graph’s
nodes. The multiplicity of null eigenvalues is equal to the number of connected

Tn Chapters 2 and 4, x was used as notation for state variables. In this chapter, it is used to
denote signals on a graph. No overlap in meaning occurs between chapters, avoiding any potential
confusion.

54 3. Graph Neural Networks

components in a graph, while the second-smallest eigenvalue and the corresponding
eigenvector can be used to perform the optimal node clustering into two.

3.1.2 Common Tasks of Machine Learning on Graphs
Generally, learning problems on graphs can be reduced to supervised and unsupervised
problems; however, due to graph-related specificities there is a need for a more detailed
categorization. Before introducing graph representation learning concepts, we provide
descriptions of most common tasks of machine learning on graphs:

e Node-level tasks, in which classification or regression is performed on individual
nodes, based on a dataset containing nodes labelled with target values. Typical
supervised learning approaches perform poorly in this task, as the nodes in a
graph are not independent and identically distributed.

e Edge-level tasks, with the most common being prediction of edge presence in
a graph, also known as link prediction. Models for these tasks are trained on
graphs with an incomplete set of edges to predict the missing edges between the
pairs of nodes. By minimizing the loss similar to logistic regression, this task is
usually reduced to the classification problem, given data from the node pairs as
inputs. Less common tasks are classification and regression of individual edges.

e Node clustering, often also called community detection, is a form of unsupervised
learning with the goal of grouping similar nodes according to their features and
connectivity information.

e Graph-level tasks can also be formulated as supervised and unsupervised learning
problems, once a useful set of graph features is extracted. Supervised learn-
ing on graphs assumes predicting the class or a real-number value associated
with a graph, whereas unsupervised learning on graphs usually involves tasks
that calculate a measure of similarity between pairs of graphs, such as graph
clustering.

¢ Influence maximization, often used for viral marketing purposes, is defined as
the problem of finding the subset of nodes in a graph such as a social network
that maximizes the spread of influence. The main goal of influence maximization
is finding small subsets that provide a high number of affected nodes in the rest
of the graph.

3.1.3 The Need for Graph Representation Learning

In the standard applications, trivial usage of common machine learning models such as
neural networks expect input structured as multidimensional arrays, making the usage
of adjacency lists more difficult. An additional problem with using common machine

3.1. Overview of Machine Learning on Graphs 55

learning models for graph learning problems is that they expect all the node and
connectivity data as an input, yielding machine learning models with a high number
of parameters, which are inefficient from the storage perspective and hard to train
as well. Furthermore, common neural networks are not permutation invariant; the
same graph topology can be represented with multiple different adjacency matrices
or lists, but it can not be ensured that all of them can be mapped to the same
output [119]. Therefore, machine learning algorithms specialized for operating on
graphs that preserve permutation invariance become necessary.

Traditional approaches to machine learning on graphs methods are out of the scope
of this thesis. Based on the overview given in [23], we briefly refer to some of these
methods to motivate the need to develop graph representation learning algorithms:

e Node-level tasks can be solved by extracting multiple node-level features using
common node statistics such as node degree, node centrality, clustering coef-
ficient, etc., and feeding them to the inputs of the common machine learning
algorithms.

¢ Solving graph-level tasks traditionally involves extracting graph-level features
that can be later used in common machine learning models. One of the trivial
graph-level feature extractions is defined as a simple aggregation of node-
level features, which can miss some important global information about the
graph because it is solely based on local node statistics. More advanced graph
kernel methods [120], perform iterative neighbourhood aggregation of node-level
features, to capture global information about the graph. Additional graph-
level information can be provided by counting the number of small subgraph
structures or by analysing various types of paths in the graph. Information
about paths is created by collecting the node statistics along the shortest paths
or random walks on the graph [121].

e Neighbourhood overlap detection methods quantify how much two nodes are
related by analysing similarities between their corresponding neighbourhoods.
These statistics can be used for edge-level relationship prediction tasks [122]. In
addition to trivial £ € N-hop neighbourhoods, more advanced random walk and
shortest path-based neighbourhood functions can be used.

e Node clustering tasks can be traditionally solved using graph Laplacian matrix
and the spectral methods. Many node clustering methods rely on determining
and analysing its eigenvalues and eigenvectors, that is, its spectrum [123]. As
mentioned in 3.1.1, the spectrum of the graph Laplacian can be used to perform
some variants of node clustering. Additionally, the Laplacian spectrum can be
used to create vector representations of nodes in a graph, which can be used as

56 3. Graph Neural Networks

input to a typical clustering algorithm.

The main drawback of these methods is the need for manual feature engineering, which
can be an expensive and time-consuming process. Additionally, designed feature
extractors are inflexible and cannot generalize well on new graphs with different
topologies. In the Subsection 3.1.4 we will consider the most common approaches to
learning node vector representations, instead of extracting them manually.

3.1.4 Graph Representation Learning

The most common objective of a graph representation learning is to create the
representation vectors called node embeddings, that encode the information about
graph’s local structure?. This process can also be interpreted as a transformation of
the graph data into the latent feature space, also known as the embedding space. The
distances between the points in the embedding space reflect the node similarity with
respect to the relative positions of the nodes. Node embeddings can be a direct output
of a graph representation learning algorithm or an intermediate result, as in the case
of end-to-end GNNSs. In either case, node embeddings, their pairs, or aggregated node
embeddings of the whole graph can be used as an input to node, edge, or graph-level
tasks mentioned in Subsection 3.1.2. Fig. 3.2 displays the simplified output of a typical
graph representation learning algorithm, where each node is assigned a corresponding
node embedding of size three.

[0.1;0.4; 3.0] [0.2;0.5; 2.0]

[0.0;0.2; 2.0] [0.3;0.3;1.0]

[0.1;0.3; 3.0] [0.2;0.3;3.0]
Figure 3.2: Node embeddings - a simplified example of graph representation learning
algorithm’s outputs.

Prior to introducing deep learning-based graph representation learning methods,
we will briefly list the types of shallow embedding methods which fundamentally
create unique node embeddings for all the nodes, based on their identifiers and their
neighbourhood structure. All of these methods follow the idea of the graph encoder-
decoder framework, containing an encoder function which maps each node into the
real-number vector representation, and a decoder function which maps learned node
embedding vectors to the structural information of that node. We will consider the

2In this thesis we do not consider less common graph representation learning methods that create
edge and graph-level embeddings.

3.1. Overview of Machine Learning on Graphs 57

most often used pairwise decoders, which take two node embeddings as an input,
and predict some measure of similarity between the two nodes. Encoder-decoder
models defined in this way are trained on pairs of similar nodes by minimizing the
discrepancy between the similarity of the nodes (e.g. the neighbourhood overlap) and
the similarity of the node embeddings obtained as outputs of the decoder. If the
graph structure information can be successfully decoded, the learned node embeddings
represent the graph well, and can be used as inputs to some of the common machine
learning algorithms. The most common types of shallow embedding methods that fit
into the encoder-decoder framework are:

¢ Factorization-based methods that express the encoder-decoder loss in matrix
form and use matrix-factorization algorithms to minimize it. In these methods,
the decoder is usually defined as an L2-norm of the difference between the two
node embeddings [124], or their inner product [125]. An example of the measure
of similarity between two nodes in a matrix form is the Leicht-Holme-Newman
similarity [126], which provides the expected number of paths of all lengths
between two nodes by solving the geometric series of the adjacency matrix.

¢ Random walk embedding methods use stochastic node similarity measures based
on random walk statistics, since similar pairs of nodes should occur together in
short random walks [127,128].

For example, the DeepWalk shallow embedding algorithm [127] embeds the nodes
based on the random walk sequences, similarly like the word2vec algorithm [129]
embeds words based on the set of sentences. After a dataset of short fixed-length
random walks is generated, the model is optimized to closely embed the nodes that
co-occur in the same random walks:

max Z Z log Pr(v|u). (3.6)

u€EV vENpw (u)

Nprw (u) denotes the multiset of nodes visited on random walks starting from the node
u, while V denotes the set of all nodes. H € R*!Vl is the trainable node embedding
matrix, containing the node embeddings for individual nodes h, € R%,v € V, where d
denotes the embedding size. Probability that the node v is in the neighbourhood of
the node u is parametrized using the softmax function and the node embedding inner
products in the following way:

€Xp huThv
ZnEV exp h,'h,

Pr(vju) = (3.7)

In other words, by going through the pairs of nodes that co-occurred in random

58 3. Graph Neural Networks

walks, the algorithm maximizes the inner product of the node embedding pairs,
maximizing the probability that the trained algorithm will categorize those node pairs
as neighbours. The softmax function also enforces the minimization of inner products
of embeddings of nodes that did not co-occur in random walks, making them further
apart in the embedding space.

The main drawback of the listed shallow embedding approaches is that they are
trained to create unique vector representations of all the nodes of one graph, meaning
that they do not have the ability to generalize to new graphs. A more flexible approach
would be to learn a function that encodes the local neighbour structure and can
be trained and used on graphs with different topologies simultaneously. Another
drawback of shallow embedding methods is that they can encode only the graph
structure, without taking into account node, edge, and graph-level input features. In
the following subsection, we will introduce deep learning-based encoders, which map
local node neighbourhoods and all the input feature vectors they contain to node
embeddings.

3.1.5 Graph Representation Learning using GNNs

GNNs are becoming the most popular tool for machine learning on graphs problems
because of their successful application in various domains. Throughout this chapter
we have been motivating the development of specialized machine learning methods
for graphs and methods for learning vector representations of nodes in the graphs,
until we have motivated the need for training deep learning functions to encode the
graph data. Unlike shallow, node embeddings are not the final output of the GNN
algorithm, but an intermediate result in end-to-end machine learning on a graph task,
either supervised or unsupervised.

We make an introduction to GNNs from the deep learning model’s architecture
perspective by comparing them to the other common deep learning approaches in
Table 3.1. Adjusting the model’s architecture to the specific structure of the input
data can increase the training speed and performance and reduce the amount of
needed training data. This way of exploiting the regularity of the input data space by
imposing the structure of the trainable function space is known by the term relational
inductive bias [130]. One of the most successful examples of exploiting relational
inductive biases are CNN layers, producing algorithms that surpass human experts
in many computer vision tasks. CNNs use the same set of trainable parameters
(known as the convolutional kernel) to operate over parts of the input grid data
independently, achieving locality and spatial translation invariance. Locality exploits
the fact that neighbouring grid elements are more related than further ones, while
spatial translation invariance is the ability to map various translations if the input

3.1. Overview of Machine Learning on Graphs 59

Table 3.1: Comparison of various deep learning models from the inductive bias
perspective.

Neural network | Input data Relational Propert
layer type structure inductive bias perty
. Input elements
Fully connected Arbitrary weakly related -
. S . Spatial translation
Convolutional Grids, images Local relation . .
invariance
. . Time translation
Recurrent Sequences Sequential relation . .
invariance
GNN layer Graphs Arbitrary relation Permutamo.n tnvariance
and equivariance

data into the same output. Similarly, recurrent units utilize trainable parameter
sharing to process the segments of the sequential data, resulting in a time translation
invariant algorithm. From an inductive bias perspective, the main goal of GNNs is
to achieve permutation invariance, so that various adjacency matrix representations
of the same graph map into the same output. An additional goal of GNNs is to
achieve permutation equivariance for node and edge-level tasks, so that node and edge
permutations in the input data should manifest only in the corresponding outputs.

The main classification of GNN methods is the following:

e Spectral GNNs are based on trainable graph convolutions in the spectral domain,
achieved using the graph Fourier transform, and involve the eigendecomposition
of the graph Laplacian [131]. In spectral domain, the graph convolution reduces
to element-wise multiplication of the trainable convolution filter with the graph
signal. These methods have some important theoretical implications, but also
a few drawbacks that make them less applicable in practise; therefore they
will not be studied in detail in this thesis. One of the drawbacks is the high
computational cost for large graphs, since the eigendecomposition has a O(|V|?)
computational complexity, and the fact that the number of trainable parameters
grows with the input graph size. Additionally, spectral filters on which they rely
cannot localize in the original domain of the graph, and they cannot generalize
to new graphs whose eigendecompositions are different from the graphs the
model was trained on. Finally, these methods are limited to undirected graphs
which have symmetric Laplacian matrices, and cannot include edge-level input
features.

e Spatial GNNs are a widely used class of GNN methods based on trainable

60 3. Graph Neural Networks

neighbourhood aggregation of node input features, performed in the original
(spatial) domain of the graph. The neighbourhood aggregation process is applied
locally and independently over the parts of the input graph, making the spatial
GNNs easily generalizable to new graphs. Since the spatial GNNs act as local
graph filters, the number of trainable parameters does not grow with the input
graph size and their inference can be distributed, making them convenient for
large scale applications.

Before presenting spatial GNNs in detail, we will give a theoretical overview of
graph convolution operation in spectral domain and derive a spectral GNN layer using
it. The Laplacian matrix eigendecomposition L = UAUT defines a graph Fourier
transform F(-) providing a way to project a graph signal x € RVl into the spectral
domain:

F(x) =UTx. (3.8)

The graph convolutional filter gg € RIVI has the same size as the graph signal, and
when employed in spectral GNNs, its elements are trainable, i.e. learned from data.
In spectral domain, the graph convolution reduces to element-wise multiplication of
the graph signal with the filter F(x) ® F(gp). By performing the inverse Fourier
transform F~1(-) to the signal filtered in the spectral domain, we obtain the result of
the graph convolution g in the original domain:

x*q g =F (F(x)® F(ge)) = U(UTx o Ulgy). (3.9)

This expression can further be simplified by expressing the filter in the spectral domain
UTgy as a diagonal matrix © = diag(UTgy):

x*g g = UOU x. (3.10)

A spectral GNN layer transforms a multichannel input into the multichannel output
by performing multiple graph convolutions and summing them per output channel.
This process is repeated K times, starting with the input multichannel graph signal
X € RVI'Ne and ending with the final node embedding matrix X € RVIfx | where
fr denotes the size of the final node embeddings. Generally, each spectral GNN
layer can have a different number of input and output channels, and a separate set of
trainable parameters. Operations performed in k™™ GNN layer can be described as:

fr—1
Hf =o() U}, UTH), j=12,. .. f (3.11)
=1

3.2. Theoretical Foundations of Spatial Graph Neural Network 61

o represents some nonlinear function, while fy_; and f; denote the number of GNN
layer’s input and output channels. H¥~! € RIVI'fe-1 ig the input graph signal for
k'™ layer, with H? = X. Finally, ©} ; contains trainable filter’s parameters for every
input-output channel combination. The final node embeddings are used as inputs of
the additional trainable functions which perform node, edge, or graph-level tasks, and
the whole model is trained in an end-to-end fashion.

To make spectral GNNs applicable to large graphs, approximations using Chebyshev
polynomials of the diagonal matrix of eigenvalues [132] are often employed. Some of
these approximations exhibit spatial GNN properties like localization, which blurs the
border between spatial and spectral GNNs. The best example are graph convolutional
networks [133], whose neighbourhood aggregation process is theoretically equivalent
to the graph convolutional filtering in the original spectral version of the algorithm.

In the next section, we will give the theoretical foundations of spatial GNN methods,
which will be applied to the power system state estimation problem in Chapter 4.

3.2 Theoretical Foundations of Spatial Graph Neu-
ral Network

The spatial GNNs perform recursive neighbourhood aggregation, also known as
message passing [47], over the local subsets of graph-structured inputs to create a
meaningful representation of the connected pieces of data. More precisely, a GNN
acts as a trainable local graph filter which has a goal of transforming the inputs
from each node and its connections to a higher dimensional space, resulting in a
s-dimensional vector embedding h € R® per node. In other words, the goal of the
node embedding is to represent the information about the node’s position in the
graph, as well as its own and the input features of the neighbouring nodes. The GNN
layer, which implements one iteration of the recursive neighbourhood aggregation,
consists of several differentiable functions that can be represented using a trainable
set of parameters, usually in the form of the feed-forward neural networks. These
functions co-operate to produce updated versions of node embeddings based on the
previous ones, as shown in Fig. 3.3. We will discuss the role of each of the functions
and the intermediate values that they exchange in the continuation of the text. In
the rest of the section, nodes into which the messages are aggregated will be denoted
with index j, while their 1-hop neighbours, which are the sources of the messages,
will be denoted with index 1.

The message function Message(-|§Ms528¢) : R2$ — R* outputs the message m; ; €
R" between the embeddings of a pair of connected nodes, h; and h;. Many GNN

architectures do not explicitly define this function, but instead simply use node

62 3. Graph Neural Networks

k—1 k—1
hnj 5 hj

Figure 3.3: A GNN layer, which represents a single message passing iteration, includes
multiple trainable functions, depicted as yellow rectangles. The number of first-order
neighbours of the node j is denoted as n;.

embeddings of the 1-hop neighbours i as messages: Message(h;, h;|gMes528¢) = h,.
The expressive power of a GNN model can be increased by including a set of trainable
parameters §Mes528¢ to the message function definition [47]. The message function can
also be defined in a way to include the data from the edge input features; however,
that consideration is out of the scope of this thesis.

The aggregation function Aggregate(-|gAgsresate) . Rdes()v y R* defines in which
way incoming neighbouring messages are combined, and outputs the aggregated
messages denoted as m; € R* for node j. The aggregation function is designed to take
the set of messages as an input, which makes it permutation invariant. Some of the
commonly used are element-wise average, sum, minimum, and maximum, optionally
followed by some kind of trainable function. In some GNN architectures, the incoming
messages are weighted before being aggregated. For example, in graph convolutional
networks [133], the messages are normalized by the product of node degrees of source
and target nodes. In some of the more advanced aggregation functions, weights for
the messages are learned. One of the most popular examples are GATs [61], which
will be discussed in greater detail in Subsection 3.2.1.

The output of one iteration of the neighbourhood aggregation process is the updated
node embedding obtained by applying the update function Update(-|gUPdate) . Ru+s
R?® on the aggregated messages concatenated with the embedding of the node j prior
to the update. In this way, the update of the node embedding does not rely only on the
aggregated messages, but also on its previous values. When the number of recursive
neighbourhood aggregations is large, this can help a GNN model distinguish node
embeddings of similar nodes®. The update function can be implemented using GRUs

3However, this problem, known as over-smoothing, limits the use of deep GNN models and is still
an open area of GNN research [134].

3.2. Theoretical Foundations of Spatial Graph Neural Network 63

or LSTM units, in which node embedding values are maintained as a hidden state
while aggregated messages are taken as new inputs during multiple neighbourhood
aggregations [135,136].

The recursive neighbourhood aggregation process is repeated a predefined number
of iterations K, also known as the number of GNN layers, where the initial node em-
bedding values are equal to the [-dimensional node input features, linearly transformed
to the initial node embedding hjo € R?. The iteration that the node embeddings and
calculated messages correspond to is indicated by the superscript. One iteration of
the neighbourhood aggregation process for the k** GNN layer, depicted in Fig. 3.3,
can also be described analytically by equations (3.13):

m; ¥ 71 = Message(h;" !, h;F 1)
my" !t = Aggregate({m; ;*~!|i € Nj})
h;* = Update(m;*~!, h;*1)
ke{l,...,K},

(3.12)

where N denotes the 1-hop neighbourhood of the node j, and the vector superscript
corresponds to the message passing iteration. Either the same or different trainable
parameters can be used across different GNN layers; will consider only the former
since it results in a smaller GNN model, and also has a regularization effect (i.e.,
reduces overfitting) due to parameter sharing.

As an example, we present a simple GNN layer architecture in which the message
passing process is described using a single equation:

h* = o | WERH 4 W) Zhik—l . (3.13)

neigh

iEN

This GNN layer uses node embeddings of the 1-hop neighbours h;"* ™! as messages,
while the aggregation function is defined as the sum of messages linearly transformed
using the matrix Wr(lgg
function is defined by applying the nonlinear function o(-) element-wise on the sum of

,, Which contains trainable parameters. Finally, the update

the aggregated messages and the current embedding of the node j linearly transformed

(k)

using an additional trainable matrix W_j;.

The outputs of the message passing process are final node embeddings th which
can be used for the classification or regression over the nodes, edges, or the whole
graph, or can be used directly for the unsupervised node or edge analysis of the

64 3. Graph Neural Networks

graph. In the case of supervised learning over the nodes, the final embeddings are
passed through the additional nonlinear function, creating the outputs that represent
the predictions of the GNN model for the set of inputs fed into the nodes and their
neighbours. GNN training is performed by optimizing the model parameters using
variants of the gradient descent algorithm [137], with the loss function being some
measure of the distance between the labels and the predictions. We refer the reader
to [23] for a more comprehensive introduction to graph representation learning and
GNNs.

It is important to note that since nearby nodes have a significant overlap of the
corresponding k—hop neighbourhoods, GNN’s message passing process results in
similar node embeddings for those nodes by design, even for suboptimal values of
trainable parameters. Works [138,139] report that untrained, randomly initialized
GNNs can match the performance of trained random walk-based shallow embedding
methods.

3.2.1 Graph Attention Networks

An important decision to be made while creating the GNN model is to select the
GNN’s aggregation function. Aggregation functions that are commonly used include
sum, average, minimum and maximum pooling, and graph convolution [133]. One
common drawback of these approaches is that incoming messages from all the node’s
neighbours are weighted equally, or using weights calculated using the structural
properties of the graph (e.g., node degrees) prior to training. GATs [61] propose
using the attention-based aggregation, in which the weights that correspond to
the importance of each neighbour’s message are learned from their corresponding
embeddings, increasing the representational capacity of a GNN model. The weights
are calculated using the attention mechanism [140] which is traditionally used in
transformer models for sequential data [21] and has achieved significant success in the
field of natural language processing.

The attention mechanism introduces an additional set of trainable parameters
in the aggregation function, usually implemented as a feed-forward neural network

Attend(-|9Atend) . R2S s R applied over the concatenated embeddings of the node j
and each of its neighbours:

ei; = Attend(hs, hy|gAttend), (3.14)

We obtain the final attention weights a; ; € R by normalizing the output e; ; € R

3.8. Practical Aspects of Graph Neural Networks 65

using the softmax function:

0. = capleis)
1,5 Zi/eM exp(ei',j)

(3.15)

To add a regularization effect and stabilize the learning process, GAT implementa-
tions usually include the multi-head attention concept [61]. It introduces calculating
multiple attention weights for each message using separate attention layers, which
are trained independently. Multiple replicas of the same message are then aggregated
in some way, usually using concatenation followed by a trainable function such as
feed-forward neural network.

3.3 Practical Aspects of Graph Neural Networks

This section discusses some of the aspects of applying GNNs to real-world problems,
like scalability, mini-batch training, and application to various types of graphs. Addi-
tionally, we discuss graph augmentation methods when the graphs are too sparse or
lack input features, as well as applying GNNs in a semi-supervised and self-supervised
setting, which is useful in the cases of sparsely labelled data.

The GNN model presented in the previous section may suffer from scalability issues
when applied to large graphs in which some of the nodes have very high degrees.
An example of this kind of graph would be social networks, in which nodes that
correspond to popular members have a large number of connections. The problem
arises during the K- hop neighbourhood aggregation process, which would aggregate
neighbours of high-degree nodes multiple times, resulting in large computational
graphs and high training and inference computational complexity. GraphSAGE [141]
is one of the first GNN models successfully applied to large graphs, with one of his
variants deployed at the Pinterest’s recommendation system over the graph containing
3 billion nodes and 18 billion edges [142]. During both the training and inference
processes, GraphSAGE employs stochastic neighbourhood aggregation, in which only
a subset of neighbouring messages is calculated during each message passing iteration.
However, sampling is not done uniformly at random, but with a strategy in which
important neighbours are sampled with a higher probability instead of numerous
low-degree nodes. As a side effect, stochastic neighbourhood aggregation improves
robustness to the changes in the graph during the inference time, but also increases
the variance of the training process, making it less stable.

Deep learning models are usually trained using a mini-batch gradient descent
algorithm, which calculates a loss function and model updates over a group (i.e., a
mini-batch) of training examples rather than over individual examples or a whole

66 3. Graph Neural Networks

training dataset. This strategy can be easily applied in the case of GNNs when graphs
have small sizes, allowing multiple graphs from the dataset to be grouped together in
mini-batches without violating memory constraints of the hardware being used for
the training. The issue of how to split up graph elements into mini-batches arises
in the case of large graphs that require more memory than is available. Making the
subgraphs using graph cuts is a simple solution, but doing so results in the loss of
connectivity information between the nodes in different subgraphs, which disables
message passing between them. GraphSAGE authors [141] propose grouping K-hop
neighbourhoods of nodes into mini-batches, in which each mini-batch can include
multiple nodes with their neighbourhoods. Although this approach may result in the
use of overlapping neighbourhoods, it preserves the message passing in the original
graph while allowing the training process to meet the memory requirements.

The GNN methods previously presented can be tailored to specific types of graphs
that may arise in practise. Without going into too much detail, here are some examples
of how the neighbourhood aggregation process needs to be modified for the specific
use cases:

e Directed graphs introduce a notion of direction to each edge. In social networks,
an example would be the concept of following, in which one member of the
network can be connected to another but not vice versa. In these cases, the
process of aggregation into a node is typically carried out by gathering only the
incoming messages defined by the edge directions.

e Temporal graphs are used to model dynamic networks in which nodes and edges
appear and disappear over time. Temporal graph networks [143] introduce
the spatio-temporal aggregation which gathers the messages from the current
and past 1-hop neighbours in each time step. Every node is given a memory
component that serves as a representation of its interaction history, much like
the hidden state concept in recurrent neural networks. The message between
two nodes is determined by the current values of their memory components,
the interaction time step, and, if present, the edge features. The aggregation
function employs the attention mechanism, which computes the importance
score for all 1-hop neighbours throughout the history.

e Heterogeneous and multi-edge graphs contain different types of nodes and edges.
GNNs can use distinct sets of trainable parameters for aggregation and update
functions that operate over different types of nodes. Likewise, different message
functions can be used for different edge types.

e Graph-structured data can contain hierarchical information, like in the cases
of networks of molecules [144] or object-oriented data models. These data

3.8. Practical Aspects of Graph Neural Networks 67

structures can be efficiently represented as hypernode-based nested graphs [145],
which are composed of hypernodes, which are themselves graphs. Learning
over these types of graphs is done using multiple levels of GNNs, which operate
at different hierarchy levels and exchange information at particular message
passing iterations.

Because data in real-world problems is typically sparsely labelled due to high
labelling costs, techniques that make the best use of both unlabelled and labelled data
samples are required. Semi-supervised learning techniques fall somewhere between
supervised and unsupervised learning, with the goal of making predictions on unseen
data based on small sets of labelled data while utilizing large amounts of unlabelled
data. The self-training method [146], also known as self-labelling, is a simple form
of semi-supervised learning for classification problems in which an initial classifier
is trained on a small labelled dataset and then used to label the rest of the data
using the most confident predictions. Then, using the larger labelled dataset, a
new classifier is trained, and the process is repeated several times. More advanced
approaches employ generative models to learn the distribution of real-world data
from unlabelled samples [147]. Generative models are then used to enrich the labelled
dataset by generating new data samples with the desired label. GNNs can adapt well
to the semi-supervised concept when dealing with node-level prediction problems in
graph-structured data, where labels are only available to a small subset of nodes [133].
In this scenario, the GNN model is trained by backpropagating the supervised learning
loss function calculated using only the labelled nodes. However, because all nodes
and their incident edges participate in the message passing process, the node input
features and connectivity data from unlabelled nodes also contribute to prediction
generation.

Self-supervised learning [148] is another type of methods that falls somewhere
between supervised and unsupervised learning. It uses unlabelled data samples to
create a supervised learning objective using pseudo-labels, resulting in useful data
representations (i.e., embeddings) that can be used as inputs for other, so-called
downstream tasks. Similarly to semi-supervised learning, it became popular because
of its ability to avoid annotating large amounts of data. Because no manual data
labelling is required, some classifications consider self-supervised learning to be a
subset, of unsupervised learning. One of the most common forms of self-supervised
learning is contrastive learning [149], in which data samples are associated with positive
and negative pseudo-labels automatically. A subset of data samples, for example, can
be intentionally corrupted by adding some noise and labelled as negative, whereas
uncorrupted data samples are labelled as positive. Models defined in this manner are
trained using the binary classification loss (e.g., cross-entropy) as a learning objective

68 3. Graph Neural Networks

and produce data representations that can be reused for downstream tasks as an
intermediate result.

To make use of unlabelled graph-structured data, GNNs can also be used in
self-supervised setting. Link prediction can be thought of as a simple form of self-
supervised contrastive learning based on GNNs. It is essentially a binary classification
task in which pairs of nodes are sampled, and classification labels are generated
based on the presence of direct connections between the nodes. This task can be
generalized so that positive pseudo-labels indicate that a pair of nodes is close in
terms of some neighbourhood metric (e.g., k-hop or random walk-based), and negative
pseudo-labels indicate that they are not. Node embeddings obtained using these
positive and negative label definitions can be useful for tasks which rely on local graph
information. To obtain more relevant node embeddings for global tasks, contrastive
learning methods that distinguish between original and corrupted graphs can be
used [138].

We conclude the overview of the practical aspects of GNNs by discussing the
augmentation methods that are commonly used with graph-structured data. In
real-world problems, the original, raw graph data is rarely used as an input for GNNs
without being augmented in some way. Since nodes in a graph can lack input features,
feature augmentation in the form of expanding the node input feature vectors is often
used. Let’s consider a case of a graph in which nodes do not have any input features.
A trivial form of feature augmentation is adding a constant feature (e.g., a scalar with
a value of 1.0) to every node. As a result, the GNN is able to learn the structural
information of a graph using the aggregation function, which is not possible when
aggregating zeroes. More advanced types of feature augmentation, such as one-hot
vector encoding, cycle counts, node centralities, and clustering coefficients, can reveal
more information about the graph structure and increase the expressive power of
GNN. Aside from feature augmentation, graph augmentation is used when the input
graph is either too sparse, making the message passing process inefficient, or has
long-range dependencies between nodes. Some common graph augmentation methods
include connecting pairs of nodes using virtual edges and adding virtual nodes that
connect all the nodes in a certain subset.

Chapter 4

Graph Neural Network-based State
Estimation

In this chapter, we explain how GNNs can be applied to both linear and nonlinear SE,
using the power system factor graph-like structures. Since we used similar methodolo-
gies for both linear and nonlinear formulations, they are presented simultaneously,
with specific differences highlighted as necessary. First, we present the augmentation
techniques for the power system’s factor graph, then the details of the proposed GNN
architecture, and analyse the computational complexity and the distributed imple-
mentation of the GNN model’s inference. Finally, we demonstrate the effectiveness of
our proposed method through numerical evaluations on various test cases.

4.1 Power System Factor Graph Augmentation

Inspired by recent work on using probabilistic graphical models for power system
SE [150], we first create a GNN over a graph with a factor graph topology. This
bipartite graph consists of factor and variable nodes connected by edges, and it is
established in accordance with different SE problem formulations:

e Linear SE: Variable nodes are used to calculate a s-dimensional node embedding
for all real and imaginary parts of the bus voltages, ®(V;) and (V;),i =1,...,n,
using which state variable predictions can be generated. Factor nodes, two per
each measurement phasor, serve as inputs for the measurement values, variances,
and covariances, also given in rectangular coordinates. These values are then
transformed and sent to variable nodes via GNN message passing. Unlike the
approximative WLS SE defined in 2.2, which neglects measurement covariances,
the GNN includes them, leading to accurate solutions without increasing the
computational complexity. The upper subfigure of Fig. 4.1 illustrates a two-bus
power system, with a PMU on the first bus, containing one voltage and one
current phasor measurement. The nodes connected by full lines represent the
corresponding factor graph in the lower subfigure.

70

4. Graph Neural Network-based State Estimation

e Nonlinear SE: In this case, pairs of variable nodes generate s-dimensional

node embeddings for magnitudes V; and phase angles 6; of complex bus voltages
vV, = Vieli. The inputs to the factor nodes are the values and variances of
both phasor and legacy measurements. Phasor measurements are expressed in
polar coordinates, which eliminates any correlation between measurement errors.
Therefore, in contrast to linear SE, in nonlinear SE measurement covariances do
not need to be included as inputs into factor nodes. When creating the factor
graph from the bus-branch power system model, each phasor measurement
generates two factor nodes, while each legacy measurement generates one factor
node. As an example, in the upper subfigure of Fig. 4.2 we consider a simple
two-bus power system, in which we placed one voltage phasor measurement on
the first bus and one legacy voltage magnitude measurement on the second bus.
Additionally, we placed one current phasor measurement and one legacy active
power flow measurement on the branch connecting the two nodes. The factor
graph of this simple power system consists of the generated factor and variable
nodes, connected by full-line edges, as shown in the lower subfigure of Fig. 4.2.

Vi=R(V1) +iS(Vh) Vo=R(V2) +jS(V2)

| J12=R(J12) +jS(J12) |

Bus 1 Bus 2

Vi1 =R(Vin1) +3iS(Vin1)

frev)

Figure 4.1: Subfigure (a) shows a simple two-bus power system with two phasor mea-
surements from a PMU placed at the bus 1. Subfigure (b) displays the corresponding
factor graph (full-line edges) and augmented factor graph (all edges). Variable nodes
are depicted as circles, and factor nodes are as squares.

4.1. Power System Factor Graph Augmentation 71

Vy = Vielts Vy = Vyolte
.]
LI
| J19=I12e012 Pry |
Bus 1 Bus 2
Vim2=Vin1eim Vin2

Figure 4.2: Subfigure (a) shows a simple two-bus power system containing a PMU
at the bus 1, one legacy active power flow measurement, and one legacy voltage
magnitude measurement at the bus 2. Subfigure (b) displays the corresponding factor
graph (full-line edges) and augmented factor graph (all edges). Variable nodes are
represented as circles, and factor nodes are depicted as squares, coloured differently
to distinguish between phasor and legacy measurements.

Unlike approaches that apply GNNs over the bus-branch power system model,
such as in [55,57], the using GNNs over factor-graph-like topology allows for the
incorporation of various types and quantities of measurements on both power system
buses and branches. The ability to simulate the addition or removal of various
measurements can be easily achieved by adding or removing factor nodes from any
location in the graph. In contrast, using a GNN over the bus-branch power system
model would require allocating a single input vector to each bus that includes all
potential measurement data for that bus and its neighbouring branches. This can
cause problems, such as having to fill elements in the input vector with zeros when
not all possible measurements are available, and making the output sensitive to the
order of measurements in the input vector. This can make it difficult to accurately
model the system and generate reliable results.

72 4. Graph Neural Network-based State Estimation

Augmenting the factor graph topology by connecting the variable nodes in the 2-hop
neighbourhood significantly improves the model’s prediction quality in unobservable
scenarios. This is because the graph should remain connected even when we remove
factor nodes to simulate measurement loss. This will allow the messages to be still
propagated in the whole K-hop neighbourhood of the variable node. In other words,
a factor node corresponding to a branch current measurement can be removed while
still preserving the physical connection between the power system buses. This requires
an additional set of trainable parameters for the variable-to-variable message function.
Although the augmented factor graph displayed with both full and dashed lines in
Figs. 4.1 and 4.2 is not a factor graph because it is no longer bipartite, we will still
refer to the nodes as factor and variable nodes for simplicity.

To achieve better representation of node’s neighbourhood structure, we perform
variable node feature augmentation using binary index encoding. Since variable nodes
have no additional input features, this encoding allows the GNN to better capture the
relationships between nodes. Compared to one-hot encoding used in [30], binary index
encoding significantly reduces the number of input neurons and trainable parameters,
as well as training and inference time.

4.2 Proposed GNN Architecture

Since the proposed GNN operates on a heterogeneous graph, we use two different
types of GNN layers: one for aggregation in factor nodes, and one for variable nodes.
These layers, denoted as Layer!(-|gLaver’) : Rdee(f)'s 3 RS and Layer" (-|gLoer”)
Rdeg(v)'s 5 RS have their own sets of trainable parameters gLaver’ and glaver”
allowing their message, aggregation, and update functions to be learned separately.
Additionally, we use different sets of trainable parameters for variable-to-variable
and factor-to-variable node messages, Message fﬁv) : R? — R* and
V_"’(-|9MessageVHv) : R?* — RY, in the Layer¥(-|§%°") layer. In both GNN
layers, we use two-layer feed-forward neural networks as message functions, single layer
neural networks as update functions and the attention mechanism in the aggregation
function. Furthermore, we apply a two-layer neural network Pred(-|¢7™d) : R® s R

f—>v(_ ‘eMessage

Message

to the final node embeddings h® of variable nodes only, to create state variable
predictions xP*®4. For factor and variable nodes with indices f and v, neighbourhood
aggregation and state variable prediction can be described as:

h,* = Layer” ({h;""'|i € N, }|0%e™)
he® = Layer!({h;* i € Ny} |05
xv;m’ed _ Pred(th|9Pred)

ke{l,...,K},

(4.1)

4.2. Proposed GNN Architecture 73

where NV, and N denote the 1-hop neighbourhoods of the nodes v and f. All the
trainable parameters 6 of the GNN are updated by applying gradient descent, using
backpropagation, to a loss function calculated over a mini-batch of graphs. This loss
function is the mean-squared difference between the predicted state variables and
their corresponding ground-truth values:

2nB
L(e) _ 1 Z(xipred _ xilabel)Q
2nB pt

0 = {eLaych U eLaycrf U aPrcd} (42)

eLayerV _ {aMessagef_)V U gMessageV_)V U aAggregateV U eUpdatev}

£ v—f f f
gLayer _ {HMessage UoAggregate UeUpdate }’

where the total number of variable nodes in a graph is 2n, and the number of graphs
in the mini-batch is B. In this work, we chose the loss function for training the
GNN based on the fundamental SE problem, where state variables are obtained from
available measurement information. However, if there is a requirement to include
additional constraints in the SE calculation, it is possible to achieve this by adding
new terms to the loss function defined in (4.2). For example, the loss function can
be augmented with the power balance error at each bus where the constraints are
imposed, in addition to minimizing the prediction error from the labels. A similar
approach has been proposed in [54], where the power flow problem is solved using GNN
by minimizing the power balance errors at each bus. Adding additional constraints
(e.g., zero injection constraints) to the GNN SE loss function can improve the SE
results, especially in distributed power systems with limited measurement coverage.

Fig. 4.3 shows the high-level computational graph for the output of a variable
node from the augmented factor graph given in Fig. 4.1. For simplicity, only one
unrolling of the neighbourhood aggregation is shown, as well as only the details of
the parameters Laver”

4.2.1 Computational Complexity and Distributed Inference

Because the node degree in the power system graph does not increase with the total
number of nodes, the same is true for the node degrees in the augmented factor graph.
This means that the inference time per variable node remains constant, as it only
requires information from the node’s K-hop neighbourhood, whose size also does
not increase with the total number of nodes. This implies that the computational
complexity of inferring all state variables is O(n). To avoid the over-smoothing
problem in GNNs [134], a small value is assigned to K, thus not affecting the overall

74 4. Graph Neural Network-based State Estimation

> Layerf

h K
> Layer" Layer"
label
output
Loss Pred
} I Update¥ } h%
ho K1

Figure 4.3: Subfigure (a) shows a high-level computational graph that starts with the
loss function for the output of a variable node v. Subfigure (b) depicts the detailed
structure of a single GNN Layer¥. Functions with trainable parameters are highlighted
in yellow.

computational complexity of the inference.

To make the best use of the proposed approach for large-scale power systems, the
inference should be performed in a computationally and geographically distributed
manner. This is necessary because the communication delays between the PMUs and
the central processing unit can hinder the full utilization of the PMUs’ high sampling
rates. The distributed implementation is possible as long as all the measurements
within a node’s K-hop neighbourhood in the augmented factor graph are fed into the
computational module that generates the predictions. For any arbitrary K, the GNN
inference method only requires measurements that are physically located within the
[K/2]-hop neighbourhood of the power system bus.

4.3 Numerical results

In this section, we conduct comprehensive numerical tests to evaluate the effectiveness
of proposed augmented factor graph-based GNN approaches for linear and nonlinear
SE problems. We used the IGNNITION framework [151] for building and utilizing
GNN models, with the hyperparameters presented in Table 4.1, the first three of

4.8. Numerical results 75

Table 4.1: List of GNN hyperparameters.

Hyperparameters Values
Node embedding size s 64
Learning rate 4x107%
Minibatch size B 32
Number of GNN layers K 4
Activation functions ReLU
Gradient clipping value 0.5
Optimizer Adam
Batch normalization type Mean

which were obtained with the grid search hyperparameter optimization using the
Tune tool [152]. All the results presented in this section are normalized using the
corresponding nominal voltages in the test power systems and a base power of 100
MVA.

4.3.1 Linear State Estimation

To evaluate the proposed GNN-based linear SE, we create various scenarios using
the ITEEE 30-bus system, the IEEE 300-bus system, and the ACTIVSg 2000-bus
system [153], on which the GNN model is trained and tested. Training, validation,
and test sets are obtained using WLS solutions of the system described in (2.9) to
label various samples of input measurements. Measurements are obtained by adding
Gaussian noise to the exact power flow solutions, with each calculation performed using
a different, randomly sampled load profile to capture a wide range of power system
states. Due to the strong interpolation and extrapolation abilities of GNNs [154], our
method of randomly sampling from a wide diversity of loads for training examples is
effective for generalizing the GNN algorithm for state estimation under varying load
conditions. GNN models are tested in three different situations: i) optimal number of
PMUs (minimal measurement redundancy, for which the WLS SE offers a solution);
ii) underdetermined scenarios; iii) scenarios with maximal measurement redundancy.
We also compare the proposed approach with more conventional deep neural network
(DNN)-based SE algorithms and assess its scalability, sample efficiency, and robustness
to outliers.

Power System With Optimally Placed PMUs

In this subsection, we conduct a series of experiments on the IEEE 30-bus power
system, using measurement variances of 107°, 1073, and 10! for the creation of
the training, validation, and test sets. The number and positions of PMUs are fixed
and determined using the optimal PMU placement algorithm [155], which finds the
smallest set of PMUs that make the system observable. This algorithm has resulted

76 4. Graph Neural Network-based State Estimation

in a total of 10 PMUs and 50 measurement phasors, 10 of which are voltage phasors
and the rest are current phasors.

Table 4.2 shows the 100-sample test set results for all the experiments on the IEEE
30-bus power system, in the form of average mean square errors (MSEs) between
the GNN predictions and the test set labels. These results are compared with the
average MSE between the labels and the approximate WLS SE solutions defined in
Sec. 2.2. The results show that for systems with optimally placed PMUs and low
measurement variances, GNN predictions have very small deviations from the exact
WLS SE, although they are outperformed by the approximate WLS SE. For higher
measurement variances, GNN has a lower estimation error than the approximate WLS
SE, while also having lower computational complexity in all cases.

Table 4.2: Comparison of GNN and approximative SE test set MSEs for various
measurement variances.

Variances GNN Approx. SE
10—° 2.48 x 1076 1.87 x 1078
1073 8.21 x 107° 2.25 x 107°
1071 747Tx 1071 [227 x 1073

In Fig. 4.4, we present the predictions and labels for each of the variable nodes for
one of the samples from the test set created with measurement variance 107°. The
results for the real and imaginary parts of the complex node voltages (shown in the
upper and lower plots, respectively) indicate that GNNs can be used as accurate SE
approximations.

Performance in a Partially Observable Scenario

To further assess the robustness of the proposed model, we test it by excluding several
measurement phasors from the previously used test samples with optimally placed
PMUs, resulting in an underdetermined system of equations that describes the SE
problem. These scenarios are relevant even at higher levels of system redundancy,
where partial grid observability can occur due to multiple component (PMU and
communication link) failures caused by natural disasters or cyberattacks. To exclude a
measurement phasor from the test sample, we remove its real and imaginary parts from
the input data, which is equivalent to removing two factor nodes from the augmented
factor graph. We use the previously used 100-sample test set to create a new test
set by removing selected measurement phasors from each sample while preserving
the same labels obtained as SE solutions of the system with all the measurements
present. As an example, we consider a scenario where two neighbouring PMUs fail
to deliver measurements to the state estimator. In this case, all eight measurement

4.8. Numerical results 7

_1.05 —=— Predictions
= —=— Labels
=)
= 1
&
=

0.95 +

0 .

)
8, -0.1
S 0.2
&

-0.3 +

0 5 10 15 20 25 30
Bus index (4)

Figure 4.4: GNN predictions and labels for one test example with optimally placed
PMUs.

phasors associated with the removed PMUs are excluded from the GNN inputs. The
average MSE for the test set of 100 samples created by removing these measurements
from the original test set used in this section is 3.45 x 1073. The predictions and
labels for a single test set sample, per variable node index, are shown in Figure 4.5.
The figure includes vertical black dashed lines that indicate the indices of unobserved
buses 17 and 18. These buses have higher prediction errors due to the lack of input
measurement data. Neighbouring buses that are not unobserved, but are affected by
measurement loss, are indicated with vertical green lines and have lower prediction
errors. It can be observed that significant deviations from the labels occur for some of
the neighbouring buses, while the GNN predictions are a decent fit for the remaining
node labels. This demonstrates the proposed model’s ability to sustain error in the
neighbourhood of the malfunctioning PMU, as well as its robustness in scenarios that
cannot be solved using standard WLS approaches. A possible explanation for the
higher susceptibility to errors in the imaginary parts of the voltage is related to their
variance in the training set. The variance of real parts of voltages is 6.6 x 10™%, while
the variance of imaginary parts of voltages is 4.8 x 1073. This indicates that the
imaginary parts of voltages have a higher variability and may therefore be more prone
to errors in the prediction model.

78 4. Graph Neural Network-based State Estimation

—s— Predictions

—a— Labels

- - - Unobserved buses
- - - Affected buses

0 5 10 15 20 25 30
Bus index (4)

Figure 4.5: GNN predictions and labels for one test example with phasors from two
neighbouring PMUs removed. Vertical black lines indicate unobserved buses, while
green lines represent buses that are affected by the loss of measurement data.

Comparison With the Feed-Forward Deep Neural Network-Based State
Estimation

The main goal of this subsection is to compare the performance of the proposed GNN-
based SE approach with a state-of-the-art deep learning-based approach on a variety
of power systems. We used a 6-layer feed-forward DNN model, proposed by [48], with
the same number of neurons in each layer as the number of input measurement scalars.
This DNN architecture has similar performance as the best architecture proposed in
the same work obtained by unrolling the iterative nonlinear SE solver, which cannot
be applied directly to the linear SE problem we are considering.

We tested both approaches on the IEEE 30-bus, IEEE 118-bus, IEEE 300-bus,
and the ACTIVSg 2000-bus power systems [153], with measurement variances set to
1072, In contrast to previous examples, we used maximal measurement redundancies,
ranging from 3.73 to 4.21. We provide a comparison of the number of trainable
parameters for both GNN and DNN models for various power system sizes, which is
often left out in similar analyses. To compare sample efficiencies between the GNN
and DNN approaches, separate models for each of the test power systems were trained
using smaller and larger datasets, containing 10 and 10000 samples. The results

4.8. Numerical results 79

Table 4.3: A comparison of the performance of GNN and DNN models trained on
different training set sizes, as measured by test set MSE and the number of trainable

parameters.

IEEE 30 IEEE 300 | ACTIVSg 2000
Small training set GNN | 4.73 x 10~% | 5.94 x 10~5 5.08 x 10~4
Small training set DNN | 9.29 x 10=% | 5.92 x 1073 477 x 1073
Large training set GNN | 2.48 x 10~% | 6.62 x 10~ ° 3.91 x 101
Large training set DNN | 6.28 x 10~° 2.91 x 1073 2.61 x 1073
GNN parameters 4.99 x 10* | 4.99 x 107 4.99 x 10%
DNN parameters 3.16 x 10° 3.15 x 107 1.77 x 107

for all test power systems are presented in Table 4.3. The first four rows show the
100-sample test set MSE for GNN and DNN models trained using smaller and larger
datasets. The last two rows of the table show the number of trainable parameters for
both approaches, depending on the power system size.

The results show that the GNN approaches result in higher overall accuracy
compared to the corresponding DNN approaches for all the power system and training
set sizes. Furthermore, the number of trainable parameters (i.e., the model size) is
constant! and relatively low for GNN models, because the number of neurons in a layer
is constant regardless of power system size. In contrast, the number of parameters
grows quadratically for DNN models, because the number of neurons in a layer grows
linearly with the input size, resulting in quadratic growth of the trainable parameter
matrices. When expressed in computer memory units, the GNN models we used had
a significantly smaller memory footprint, taking up only 0.19 MB. In comparison, the
DNN model used for the ACTIVSg 2000 power system required a much larger 6.58
GB of memory, resulting in more challenging training and inference processes. The
high number of trainable parameters required by DNN models increases their storage
requirements, increases the dimensionality of the training process, and directly affects
the inference speed and computational complexity. Since the proposed GNNs have a
linear computational complexity in the prediction process, one training iteration of
GNN also has a linear computational complexity. In contrast, one training iteration of
DNN-based SE would have at least quadratic computational complexity per training
iteration, making the overall training process significantly slower. To recall, the reason

I More precisely, the number of trainable parameters in the proposed GNN model remains nearly
constant as the number of buses in the power system increases. This effect would only be noticeable
for larger power systems. The only exception is the number of input neurons for the binary index
encoding of the variable nodes, which grows logarithmically with the number of variable nodes.
However, this increase is insignificant compared to the total number of GNN parameters.

80 4. Graph Neural Network-based State Estimation

why the GNN has a constant number of parameters and generates predictions with
linear computational complexity is that it takes measurements from a limited K-hop
neighbourhood for every node, regardless of the size of the power system.

The results indicate that the quality of GNN and DNN model predictions improves
with more training data. However, compared to GNNs, DNN models performed
significantly worse on smaller datasets, suggesting that they are less sample efficient
and more prone to overfitting due to their larger number of hyperparameters. While
we used randomly generated training sets in the experiments, narrowing the learning
space by selecting training samples based on historical load consumption data could
potentially result in even better performance with small datasets.

The use of GNNs for power systems analysis has several additional advantages
over using DNNs. One advantage is flexibility: spatial GNNs can produce results
even if the input power system topology changes, whereas conventional DNN methods
are trained and tested on the same topology of the power system. For example, if
some measurements are removed from the inputs (as discussed in Subsection 4.3.1),
a DNN would require retraining from scratch with the new topology. GNNs also
have some theoretical advantages over other deep learning methods in that they are
permutation invariant and equivariant. This means that the output of the GNN is
the same regardless of the order in which the inputs are presented, and that the GNN
output changes in a predictable and consistent way when the inputs are transformed.
This property is useful for problems like SE, where the order of the nodes and edges
is not important and the system can undergo topological changes. In addition, GNNs
incorporate topology information into the learning process by design, whereas many
other deep learning methods in power systems use node-level data as inputs while
ignoring connectivity information. Finally, unlike most deep learning methods, spatial
GNNs can be distributed for evaluation among edge devices.

Similar conclusions can be drawn when comparing GNNs with recurrent and
convolutional neural networks for similar power systems’ analysis algorithms, as
they also require information from the entire power system as input. Overall, this
comparison highlights the potential advantages of using GNNs for power system
modelling and analysis.

Robustness to Outliers

To assess how well the proposed model can handle outliers in input data, we carried
out experiments on two separate test sets, each containing samples with different
degrees of outlier intensity. The experiments followed the setup described in Sec.
4.3.1, with the test samples initially generated using a measurement variance of 107°.
We replaced one of the existing measurements in each test sample with a randomly

4.8. Numerical results 81

generated value, using a variance of either oy = 1.6 or oo = 1.6 - 102. WLS SE
solutions without outliers in the inputs are used as ground-truth values. The results,
shown in Table 4.4, indicate the performance of four different approaches, as well as
the WLS SE and the approximative WLS SE algorithm on the same test sets.

The first approach, which uses the already trained model from Sec. 4.3.1, results in
the highest prediction error on tests set with outliers. The primary factor contributing
to the MSE, particularly in the test set with outliers generated using larger variances,
are significant mismatches from the ground-truth values in the K-hop neighbourhood
of the outlier. This occurs because the ReLLU activation function does not constrain
its inputs during neighbourhood aggregation. To address this problem, we propose
a second approach where we train a GNN model with the same architecture as the
previous one, but which uses the tanh (hyperbolic tangent) activation function instead
of ReLU. As presented in Table 4.4, this approach results in a significantly lower test
set MSE for outliers generated using larger variances compared to the proposed GNN
with ReLU activations, WLS SE, and the approximative WLS SE. The saturation
effect of tanh prevents high values stemming from outliers from propagating through
the GNN, but also reduces the training quality due to the vanishing gradient problem.
Specifically, all the experiments we conducted under the same conditions for GNN
with tanh activations required more epochs to converge to a solution with lower
prediction quality compared to the GNN with ReLU activations. As a third approach,
we propose training a GNN model with ReLLU activations on a dataset in which half
of the samples contain outliers, which are generated in the same manner as the test
samples used in this subsection. This approach turned out to be the most effective for
both test cases because the GNN learns to neutralize the effect of unexpected inputs
from the dataset examples while maintaining accurate predictions in the absence of
outliers in the input data. To confirm the validity of this methodology, we trained the
DNN introduced in the subsection 4.3.1 using the same datasets containing outliers.
DNN was able to neutralize the effect of unexpected inputs because the input power
system is small, resulting in the second-best approach in terms of robustness to
outliers, trailing the GNN trained on the dataset containing outliers.

In summary, as expected, all methods produced better results for the test set
containing outliers with lower variances, while the GNN trained with outliers demon-
strated the best performance for both higher and lower variance outliers. We note
that these are only preliminary efforts to make the GNN model robust to outliers, and
that future research could combine ideas from standard bad data processing methods
in SE with the proposed GNN approach.

82

4. Graph Neural Network-based State Estimation

Table 4.4: A comparison of the results of various approaches for two test sets with

different degrees of outlier intensity.

Approach Test set MSE | Test set MSE
o1 =16 g = 1.6 -102
GNN 0.48 x 1073 1.60 x 10°

GNN with tanh 6.87 x 1073 2.39 x 1072
GNN trained with outliers 4.44 x 10~6 7.99 x 10~°
DNN trained with outliers 1.06 x 10—° 4.21 x 107°
WLS SE 1.43 x 1073 141 x 1071
Approximative WLS SE 1.39 x 1073 1.35 x 1071

4.3.2 Scalability and Sample Efficiency Analysis of Linear State

Estimation

In the previous subsection, the GNN model for linear SE demonstrated good ap-

proximation capabilities under normal operating conditions and performed well in
unobservable and underdetermined scenarios. This subsection extends the previous
one in the following ways:

e We conduct an empirical analysis to investigate how the same GNN architecture

could be used for power systems of various sizes. We use the IEEE 30-bus system,
the IEEE 118-bus system, the IEEE 300-bus system, and the ACTIVSg 2000-bus
system [153], with measurements placed so that measurement redundancy is
maximal. Our main assumption is that the local properties of the graphs in these
systems are similar, leading to local neighbourhoods with similar structures
which can be represented using the same embedding space size and the same
number of GNN layers.

To evaluate the sample efficiency of the GNN model, we run multiple training
experiments on different sizes of training sets. Additionally, we assess the
scalability of the model by training it on various power system sizes and evalu-
ating its accuracy, training convergence properties, inference time, and memory
requirements. For this purpose we create training sets containing 10, 100, 1000,
and 10000 samples for each of the mentioned power systems, while the GNN
models are tested on sets comprising 100 samples.

As a side contribution, the proposed GNN model is tested in scenarios with high
measurement variances, using which we simulate phasor misalignments due to
communication delays [156]. While this is usually simulated by using variance
values that increase over time, as an extreme scenario we fix the measurement
variances to a high value of 5 x 107!.

oo
w

4.8. Numerical results

41 —- Redundancy o
12 || —@— Avsg. Degree /,

[| —A— Avg. Path Length B
10 |- —&— Avg. Cluster Coeff. /’

Power system
graph properties

*
I

o-®

8 300 2000

Number of buses

Figure 4.6: Properties of augmented factor graphs along with the system’s measure-
ment redundancy for different test power systems, labelled with their corresponding
number of buses.

It is important to note that the conclusions that will be made apply to GNN
based-nonlinear SE as well.

Properties of Power System Augmented Factor Graphs

For all four test power systems, we create augmented factor graphs using the method-
ology described in Section 4.2. Fig. 4.6 illustrates how the properties of the augmented
factor graphs, such as average node degree, average path length, average clustering
coefficient, along with the system’s maximal measurement redundancy, vary across
different test power systems.

The average path length is a property that characterizes the global graph structure,
and it tends to increase as the size of the system grows. However, as a design property
of high-voltage networks, the other graph properties such as the average node degree,
average clustering coeflicient, as well as maximal measurement redundancy do not
exhibit a clear trend of change with respect to the size of the power system. This
suggests that the structures of local, K-hop neighbourhoods within the graph are
similar across different power systems, and that they contain similar factor-to-variable
node ratio. Consequently, it is reasonable to use the same GNN architecture (most
importantly, the number of GNN layers and the node embedding size) for all test
power systems, regardless of their size. In this way, the proposed model achieves
scalability, as it applies the same set of operations to the local, K-hop neighbourhoods
of augmented factor graphs of varying sizes without having to adapt to each individual
case.

84 4. Graph Neural Network-based State Estimation

T T
0.1 -—m—10 —e—100 N
@ —4— 1000 —e— 10000
< I |
o
R=t
= 0.05 - B
=
= | |
>
(s |

Epoch

Figure 4.7: Validation losses for trainings on four different training set sizes.

Training Convergence Analysis

First, we analyse the training process for the IEEE 30-bus system with four different
sizes of the training set. As mentioned in 4.2, the training loss is a measure of the
error between the predictions and the ground-truth values for data samples used in
the training process. The validation loss, on the other hand, is a measure of the error
between the predictions and the ground-truth values on a separate validation set. In
this analysis, we used a validation set of 100 samples.

The training losses for all the training processes converged smoothly, so we do not
plot them for the sake of clarity. Figure 4.7 shows the validation losses for 150 epochs
of training on four different training sets. For smaller training sets, the validation
loss decreases initially but then begins to increase, which is a sign of overfitting. In
these cases, a common practice in machine learning is to select the model with the
lowest validation loss value. As it will be shown in 4.3.2, the separate test set results
for models created using small training sets are still satisfactory. As the number
of samples in the training set increases, the training process becomes more stable.
This is because the model has more data to learn from and is therefore less prone to
overfitting.

Next, in Table 4.5, we present the training results for the other power systems
and training sets of various sizes. The numbers in the table represent the number of
epochs after which either the validation loss stopped changing or began to increase.
Similarly to the experiments on the IEEE 30-bus system, the trainings on smaller
training sets exhibited overfitting, while others converged smoothly. For the former,
the number in the table indicates the epoch at which the validation loss reached its
minimum and stopped improving. For the latter, the number in the table represents
the epoch when there were five consecutive validation loss changes less than 1075,

4.8. Numerical results 85

Table 4.5: Epoch until validation loss minimum for various power systems and training
set sizes.

Power system | IEEE 118 | IEEE 300 | ACTIVSg 2000
10 samples 61 400 166
100 samples 38 84 200
1000 samples 24 82 49
10000 samples 12 30 15

Increasing the size of the training set generally results in a lower number of epochs
until the validation loss reaches its minimum. However, the epochs until the validation
loss reaches its minimum vary significantly between the different power systems. This
could be due to differences in the complexity of the systems or the quality of the data
used for training.

Accuracy Assessment

Fig. 4.8 reports the MSEs between the predictions and the ground-truth values on
100-sample sized test sets for all trained models and the approximate WLS SE. These
results indicate that even the GNN models trained on small datasets outperform the
approximate WLS SE, except for the models trained on the IEEE 30-bus system
with 10 and 100 samples. These results suggest that the quality of the GNN model’s
predictions and the generalization capabilities improve as the amount of training
data increases, and the models with the best results (highlighted in bold) have
significantly smaller MSEs compared to the approximate WLS SE. We assume that
using carefully selected training samples based on historical load consumption data
instead of randomly generated ones could potentially lead to even better results with
small datasets.

Inference Time

The plot in Fig. 4.9 shows the ratio of execution times between WLS SE and GNN SE
inference as a function of the number of buses in the system. These times are measured
on a test set of 100 samples. The difference in computational complexity between
GNN, with its linear complexity, and WLS, with more than quadratic complexity,
becomes more apparent on the plot as the number of buses increases. From the results,
it is clear that GNN significantly outperforms WLS in terms of inference time on
larger power systems.

Unlike with GNNs, the hardware implementation of matrix operations in WLS is
a well-established field. However, the hardware implementation of GNNs is an active
area of research, and it is possible that inference times may improve even further in
the future [157].

86 4. Graph Neural Network-based State Estimation

|— Approx. SE (baseline) —e— GNN SE

0.04 B]

0.02 - -

0.04

T

0.02 - -

Test set MSE
Test set MSE

o L I i o L I i i
10 10° 10° 10 10 10° 10* 10*
Number of training samples Number of training samples
(a) IEEE 30 (b) IEEE 118

0.04 |- 5

0.02 »‘\-\'%; 0.02 | .
0 1 L | 1 0 1

10 10> 10° 10* 10 10* 10* 10
Number of training samples Number of training samples

(c) IEEE 300 (d) ACTIVSg 2000

0.04 |- =

Test set MSE
Test set MSE

Figure 4.8: Test set results for various power systems and training set sizes.

64 : ‘ -

10 ,

T

Inference time ratio

30 118 300 2000
Number of buses

Figure 4.9: A ratio of the execution times for WLS SE and GNN SE inference on a
test set of 100 samples, as a function of the power system size.

4.3.3 Nonlinear State Estimation
Finally, in this subsection, we present the numerical results of the proposed approach
for the nonlinear SE problem formulation. We describe the GNN model’s training

4.8. Numerical results 87

process and test the trained model on various examples to validate its accuracy,
and its robustness under measurement data loss due to communication failure and
cyberattacks in the form of malicious data injections.

Demonstration of prediction accuracy

We conducted separate training experiments for IEEE 30 and IEEE 118-bus test
cases, for which we generated a training set containing 10000 samples and validation
and test sets containing 100 samples each. Similarly to the linear SE approach, each
sample is created by randomly sampling the active and reactive power injections and
solving the power flow problem. Measurement values are created by adding Gaussian
noise to the power flow solutions, and the nonlinear SE is solved by GN to label the
input measurement set in each sample. We used a Gaussian noise variance of 107>
for phasor measurements, 10~2 for bus voltage magnitude and active and reactive
power flow legacy measurements, and 10~! for active and reactive injection legacy
measurements.

For the IEEE 30-bus test case, we placed 100 legacy measurements and three PMUs
(i.e., three bus voltage phasors and eight branch current phasors) in each sample,
resulting in 2.03 measurement redundancy. The trained model performed well on
the test set, with the average test set mean square error of 1.233 x 10~° between
predictions and ground truth labels; the average test set MSE for voltage magnitudes
of 5.221 x 1075; the average test set MSE for voltage angles of 1.944 x 10~°. Fig. 4.10
shows the average test MSE per each bus, where the upper plot corresponds to voltage
magnitudes and the lower one to voltage angles.

For the IEEE 118-bus test case, we placed 500 legacy measurements and seven PMUs
(i.e., seven bus voltage phasors and 26 branch current phasors) in each sample, resulting
in 2.39 measurement redundancy. The average test set mean square error equals
2.038 x 1075, with the average test set MSE for voltage magnitudes of 1.572 x 10~
and the average test set MSE for voltage angles of 2.505 x 10~°. Based on the insights
from both experiments, we can conclude that the proposed GNN model is a good
approximator of the nonlinear SE solved by GN.

Robustness to Loss of Input Data

Next, we observe predictions of the GNN models previously trained on IEEE 30 and
IEEE 118-bus test data when exposed to the loss of input data caused by communica-
tion failures or measurement device malfunctions. We simulate the described cases by
randomly removing a percentage of all input measurements, ranging from 0% to 95%
with a step of 5%. We create 20 test sets per IEEE test case, each containing samples
with the same percentage of excluded measurements, and show the average test set
MSEs in Fig. 4.11. Proposed GNN models yields predictions in all examples, with an

88 4. Graph Neural Network-based State Estimation

—_
7
w
T
I

MSE of V;
— =
o o
& &
T T

——CTH
——CTH
p— T
——CTH
F—o~TH
——CTH

——{TH
——CTH
——CTH

e — 1
——CTH
———CTH

— 1
——CTH
——CTH
I I

10_12 ?1 L L L L L 17

1073 ?\ T T T T T \7

: =l

3 o] |
= 0

10_12 ?1 L L L L L 17

1 5 10 15 20 25 30

Bus Index 7

Figure 4.10: The test set MSE between the predictions and the labels per each bus
for voltage magnitudes and angles in the IEEE 30-bus test case.

expected growing trend in MSE as the number of excluded measurements increases.
In comparison, the GN method could not provide a solution for many examples due
to underdetermined and ill-conditioned systems of nonlinear SE equations. A possible
explanation for significantly lower MSEs for the IEEE 118-test case in these scenarios
is that it contains a greater variety of subgraphs for GNN training. To investigate
the GNN predictions further, we create a test set by excluding five measurements
connected to the two directly connected power system buses from each test sample,
resulting in the average test set MSE of 1.488 x 10~%. Fig. 4.12 shows the results
for one test sample, where vertical dashed lines correspond to the buses in the 1-hop
neighbourhood of the excluded measurements. We can observe that the deviation from
the ground truth values manifests mainly in the vicinity of the excluded measurements,
not affecting the prediction accuracy in the rest of the power system.

Behaviour Under Malicious Data Injections

We examine the robustness of the proposed GNN model to malicious data injection
type of cyberattacks by randomly altering the values of five neighbouring measurements
in each test sample. We compare the proposed GNN model’s predictions with the
solutions of the GN method and the ground truth values obtained using the GN
method applied on the uncorrupted measurement data. The GNN model demonstrated
an order of magnitude better performance than the GN method, with the average test
set MSEs 1.281 x 10~ and 1.034 x 103, respectively. Fig. 4.13 depicts the comparison

4.4. Summary and future work 89

10° E
gz 107! o
o 1072 4
& _3
£ 10774 —_IEEE 30
Z 107 - — _IEEE 118
1075]
0 20 40 60 80 100

Percentage of Excluded Measurements

Figure 4.11: Average MSEs of test sets created by randomly excluding measurements.

1.09
1.06
1.03

—=— Predictions

—=— Labels

Voltage Angle §; Voltage Magnitude V;

|
|
|
|
|
|
|
|
|
|
:
5 10 15 20 25 30
Bus Index

Figure 4.12: GNN predictions and labels for one test example, with all measurements
connected to two neighbouring buses removed. Dashed lines indicate the buses in the
1-hop neighbourhood of the excluded measurements.

of the state variable predictions under corrupted input data for one example from the
test set.

4.4 Summary and future work

In this chapter, we introduced methods for linear and nonlinear SE based on the
GNN model specialized for operating on augmented power system factor graphs. The
method avoids the problems that traditional SE solvers face, such as sensitivity to
ill-conditioned cases, numerical instabilities and convergence time depending on the

90 4. Graph Neural Network-based State Estimation

1.12 4 —=— Predictions
—=— GN based SE
—=— Ground truth

Voltage Angle §; Voltage Magnitude V;
o
e}
(=)
|

0 5 10 15 20 25 30
Bus Index ¢

Figure 4.13: GNN predictions and GN based SE solutions for one test example with
corrupted input data.

state variable initialization. By testing the GNN on power systems of various sizes, we
observed the prediction accuracy in the normal operating states of the power system
and the sensitivity when encountering false data injection cyberattacks and input
data loss due to communication irregularities.

The results showed that the proposed approach provides good results for large
power systems, and is an effective approximation method for traditional SE solutions
even with a relatively small number of training samples, indicating its sample efficiency.
The GNN model used in this approach is also fast and maintains constant memory
usage, regardless of the size of the power system. More specifically, the computational
complexity of the proposed GNN model regarding the number of state variables is linear
during the inference phase, and it is possible to distribute the inference computation
across multiple processing units. Given these characteristics, the approach is worthy
of further consideration for real-world applications.

Since the proposed GNN model generates predictions even for underdetermined
systems of equations describing the SE problem, it could be applied to highly unob-
servable distribution power systems. Another application of the proposed model for
nonlinear SE could be the fast and accurate initialization of the traditional nonlinear
SE solver, resulting in a hybrid approach that is both model-based and data-driven.

4.4. Summary and future work 91

While our work shows promising results, an important limitation is the inability
to quantify the uncertainty of the GNN predictions. However, we are encouraged
by ongoing research efforts to address this issue, as quantifying uncertainty for
GNN regression remains an open problem. For instance, [158] proposes a Bayesian
framework that uses assumed density filtering to quantify aleatoric uncertainty and
Monte Carlo dropout to capture epistemic uncertainty in GNN predictions. In light
of this, we believe implementing a similar approach represents a promising future
research direction.

Part 11

Dynamic Distribution
Network Reconfiguration and
Reinforcement Learning

Chapter 5

Dynamic Distribution Network
Reconfiguration

In this chapter, we introduce the foundations of static and dynamic distribution
network reconfiguration, stating their importance in distribution management software.
Furthermore, we provide a mathematical formulation of the dynamic distribution
network reconfiguration problem, which will be transformed into the equivalent
reinforcement learning formulation in Chapter 7*.

5.1 Distribution Network Reconfiguration

The electrical distribution network is the part of the electrical power system which
delivers electric power from the transmission system to individual consumers. Tradi-
tional distribution networks consist of passive elements, with power flows directed
only from the network supply point to the customers. Due to growing power demand,
modern distribution networks exhibit changes such as energy deregulation, increased
installation of the distributed generation coming mainly from renewable energy re-
sources, and the deployment of controllable loads. These changes bring numerous
challenges to the operation of modern distribution networks, such as bidirectional
power flows, increased system dynamics, transient instabilities, short-circuit conditions
supplied by multiple sources, overall operation inefficiency in terms of increased power
losses, decreased reliability, etc.

To overcome these challenges and improve response time in unforeseen situations,
modern distribution networks increase the level of network automation by using
remotely controlled equipment and employing domain-specific software solutions such
as DMS. DMS, which is usually tightly coupled with the SCADA system, is used
for distribution network monitoring, analysis, optimization, and planning [159]. It
includes functionalities like network model management and topology processing, load

LChapters 5, 6, and 7 introduce a new nomenclature.

96 5. Dynamic Distribution Network Reconfiguration

flow, state estimation, short circuit analysis, relay protection-related functionalities,
Volt-VAR optimization, distributed energy resources monitoring and control, etc.

Distribution network reconfiguration is one of the most important DMS function-
alities used for the optimization of distribution network operation. In general form,
DNR minimizes the objective function, which usually includes power loss and voltage
deviation, by changing the network topology using manipulations on the switching
devices [63]. During topology changes, it is necessary to satisfy multiple constraints,
such as not exceeding the bus voltage, the apparent power of the branch, and the
number of switching manipulation limits. Additional constraints related to the net-
work topology are those that enforce the radiality of the network and ensure that all
customer buses are connected to the supply point. Some of the reasons for enforcing
network radiality are lower short circuit currents and simpler relay protection setup
than in the distribution networks containing loops. Fig. 5.1 represents an example of
DNR on a simple 15-bus distribution network consisting of three feeders, with black
squares representing closed switches and white squares representing open switches.
The figure displays two distribution network topologies, before and after the DNR,
both of which are radial and supply all customer buses.

In the scope of the DMS software, DNR functionality can have secondary goals such
as load balancing and Volt-VAR optimization [64], which are achieved by expanding
the DNR objective function. In emergency conditions, DNR can be used to isolate
the part of the distribution network where the fault occurred and restore supply to
the rest of the affected customers. In these cases, since all the customers can not be
supplied, DNR is used to minimize the number of the disconnected customers, or the
amount of energy not supplied. However, in this thesis, we will not consider these
emergency scenarios.

Static DNR is defined as DNR performed at a predefined time point, with fixed
load and generation values. In traditional distribution networks with low network
automation levels, where the customer load patterns change only seasonally, static
DNR was usually performed a few times a year. Due to increasing load and generation
dynamics, caused by controllable loads and renewable energy resources, a need for
more frequent and more flexible DNR arises. Dynamic DNR optimizes the DNR
objective function over the specified time interval by finding the optimal time points
when DNR should be performed. DDNR is enabled by increased levels of network
automation, as frequent changes to the network topology cannot be performed quickly
in a manual way. In a usual formulation, the optimization interval is divided into time
intervals, in each of which a network topology change can be performed. However, since
switching manipulations have their own costs and can cause instabilities during the
topology changes, their number is usually also a subject of minimization, in addition

5.2. Mathematical Formulation of the DDNR Problem 97

0
14Feeder 1 54Feeder2 8 4Feeder 3 0 14Feeder1 S@Feeder2 8@Feeder3
1 5 8 1 5 8
1 5 8 @ Closed switch
24 XS o 15¢ %o 85¢ < Open switch
2 6 9 2 6 9
2 6 9
EY'S 7 104 2 S 6 S ERTYS
3] 12 7] 13 10
12 13 3| 12 12 7| 13 13 10
3 7 10
149 }-‘12 }—?3 11 3 Py }-612 7 %53 peT] 10
4 11
) 14|1 . 4 a1
1 ——
4 4— | 11
14 14
| T
(a) (b)

Figure 5.1: An example of distribution network before (subfigure a) and after (subfigure
b) the reconfiguration.

to being limited in the optimization problem constraints. In other words, as the
switching costs can be larger than the network reconfiguration benefits, DDNR solves
the trade-off problem between finding the optimal topology in each time interval and
performing less frequent network topology changes to reduce the number of switching
manipulations. Operation planning using DDNR can be performed on a daily or
even hourly bases; therefore, it is necessary to develop fast algorithms that produce
high-quality DDNR solutions.

5.2 Mathematical Formulation of the DDNR Prob-
lem

The mathematical model of DDNR, formulated as a mixed-integer nonlinear program-
ming problem like in [72,105] consists of a multi-objective function and constraints.
The multi-objective function defined as the total cost of active energy loss and manip-
ulation of switching devices is minimized, subject to the following constraints: active
and reactive power injection constraints, bus voltage constraints, branch capacity con-
straints, switching operation constraints, and a network radiality constraint. Decision
variables of the optimization problem consist of switch statuses in each of the time
intervals, which define the distribution network topology in that time interval.

98 5. Dynamic Distribution Network Reconfiguration

5.2.1 Objective Function
The DDNR problem is defined using the following multi-objective function:

T
min Y (Cross Tt Phoss + Csws SW). (5.1)

=1

In (5.1), ¢t € 1...T denotes the index of a time interval, where T is the total number

of time intervals and 7T}, is the duration of a time interval in hours. The decision
variables of the optimization problem are the status of the switches per time interval,

where the status of the switch sw in the time interval ¢ is defined as follows:

1

. if switch sw is closed in time interval t;
X =
o 0, if switch sw is opened in time interval t.

)

(5.2)

ClLoss 1s the cost of energy losses, in $ per kWh, P} . denotes the active power losses
in kW, and Cgy, is the cost in $ of the switching action for the s switch. The
total cost of switching actions in the time interval ¢ is calculated using the number of
switches that had their status changed:

Nsw
SWh= 3"yt (5.3)

sw=1

where sw € 1... Ny, denotes the switch index and Ny, is the total number of switches
in the distribution network. %, indicates the status change of a single switch sw in
time interval t:

" 1, if the switch sw changed its status in time interval ¢;
Ysuw = (5.4)

0, otherwise.
The active and reactive powers of the branches in the time interval ¢ are defined as:

P = (V= Vi Vilapeos(0) = 00 + bysin®s — 0]
Qp = —bju(V))? + V] Vii[bjecos (6] — 0}) — giusin(6] — 6})], '
where b € 1... N, denotes the branch index, IV, is the total number of branches,
while j and k denote indices of buses at the ends of the branch b. V' and 6} denote
the voltage magnitude and the phase angle at the bus j in the time interval ¢, while
gjr and bj, represent elements of the nodal conductance and susceptance matrices,

5.2. Mathematical Formulation of the DDNR Problem 99

respectively. Active power losses in the time interval ¢ are defined as follows:

Ny,

t\2 t\2
Plo =Y ain(P”)(Vt)(f”), (5.6)
b=1 J

where Ry, denotes the resistance of the branch, and o} combines information about
the switch status and the existence of a switch on a branch:

1, if branch b does not have a switch;

ap = (5.7)
xt,, if branch b has the switch with index sw.

5.2.2 Constraints

The formulation of the DDNR problem considers multiple constraints listed below.

e Active and reactive injection constraints, defined by the bus power balances per
time interval, as in the classical load flow model [160]:

N,

Pf = Vjt Z Vi [gjkcos(9§ —0%) + bjksin(9§ —0L)],

k=1

Nn (5.8)
Qf =V} Vigksin(0h — 0;) — bircos(65 — 6})],

k=1

jzla"'7Nna

where N,, represents the number of buses in the network. Active and reactive
power injections are equal to the difference between the corresponding load and
generation in bus j, and they are assumed constant during one time interval ¢.

o Slack bus constraints, which specify the voltage magnitude and the phase angle
in the root bus (i.e., the supply point) of the distribution network:

VOt = Vst ecr
o _5’ (5.9)
0o — Y%

where Vstpec represents the specified slack bus voltage magnitude value at time
interval t. The slack bus provides an angular reference for all other buses and

balances the system’s active and reactive power [160].

100 5. Dynamic Distribution Network Reconfiguration

¢ Bus voltage constraints:
min t mazx
Vit S Vi SV

PRV (5.10)

where ijm and V™" denote the minimum and maximum voltage magnitude
allowed at the bus j.

e Branch capacity constraints:

(Pp)” + (@) < (S"")%,

5.11
b=1,..., Ny, (5.11)

where S7"%" represents the maximum apparent power allowed in the b" branch.

e Switching operation constraints:

T
D laky — et < Noe,
s (5.12)

sw=1,..., Ngy,

where N*¥ represents the maximum number of allowed operations for the
swt? switch during the optimization time interval, which depends on the type
and the lifetime of the switch. 20, are the initial switch statuses, and they
do not belong to the decision variables. Constraints containing absolute value
operators can not be used directly in classical mixed-integer algorithms, but
require reformulation by introducing additional variables. In the proposed RL
approach, we will consider these constraints directly by adding a penalty term
to the reward function, resulting in a simpler formulation of the problem.

e Network radiality constraint, which assures there are no loops in the distribution
network:

Ny
> af =N, -1 (5.13)
b=1

The DDNR problem formulated in this way is NP-hard, since it has 2Vs=7" possible
solutions, and it can not be solved in polynomial time. In the forthcoming chapters,
we will introduce RL algorithms which are trained to search the solution space based
on the agent-environment interaction concept, and yield quality solutions with low
computational effort during the algorithm’s evaluation.

The proposed multi-objective formulation of the DDNR problem aims to minimize

5.2. Mathematical Formulation of the DDNR Problem 101

the total cost of active energy loss and manipulation of switching devices. However, in
many practical applications the DDNR, apart from minimizing the cost of active energy
loss and manipulation of switching devices, the DDNR is used for voltage deviation
minimization [62,63], load balancing, Volt/Var optimization, supply restoration [64],
the distribution network reliability maximization [105], limiting the budget [93], etc.
Extension of the DDNR problem formulation assumes incorporating additional criteria
into the objective function. That is achieved by adding the corresponding terms to
the objective function while preserving the constraints (5.8) - (5.13).

Chapter 6

Reinforcement Learning

Reinforcement learning (RL), as a machine learning technique, deals with how software
agents learn to take actions in an environment through experience and exploration,
with the goal of finding the optimal strategy that maximizes the long-term reward
obtained [33]. In the RL framework, it is assumed that the agent interacts with the
generally stochastic environment in discrete time steps. At the beginning of each
time step, the agent observes the environment, that is, it receives the state variables
from the environment. Based on the state variables, the agent takes an action and
sends it to the environment. The environment then changes its state due to the action
received, as well as due to its internal processes. After that, the environment sends
the immediate reward signal for that time step and the state variables for the next
time step to the agent. The goal of an RL algorithm is to find the (close to) optimal
policy, i.e., the action selection that maximizes the long-term reward, while receiving
feedback about its immediate performance. This chapter presents the theoretical
background of RL in Sections 6.1 and 6.2 and the deep Q-learning algorithm in Section
6.3, which is applied to DDNR in Chapter 7.

6.1 Finite Markov Decision Processes

Finite Markov decision processes are discrete-time stochastic control processes that
model decision-making in situations in which the outcome is partially stochastic and
partially under the control of the decision-maker. The result of the solved MDP is
the optimal sequence of actions, that is, the optimal policy. The RL problem can be
mapped onto the MDP, which is defined as the following tuple:

e S - finite set of states,
e A - finite set of actions,
e R - finite set of immediate rewards,

e p(s'|s,a) =Pr(S; =s"|Si—1 =s,A;_1 = a) - transition probability function.

104 6. Reinforcement Learning

Random variables S;, S;_1, R:, A¢+—1 represent the new state, the previous state,
received immediate reward and the action being taken, respectively, while s’,s € S,
r € R, a € A denote the values of these random variables. The transition function
represents the probability of being in the state s’ on the condition of being in the
state s previously and executing the action a. The agent and the environment interact
in discrete time steps, as shown in Fig. 6.1. In each time step the agent observes
the state s, makes an action a, upon which the environment changes, and sends the
feedback to the agent in the form of reward r, and the next state s’.

action a

reward r

Environment

next state s’

Figure 6.1: The agent-environment interaction process.

Additionally, a problem defined as MDP must satisfy the Markov property, meaning
that the next state s’ depends only on the current state s and the action a, and is
independent of all previous states and actions:

Pr (5180, Ao, S1, A1, ..., Se—1, As—1) = Pr (S| Se—1, Ar—1) (6.1)

Problems that do not satisfy the Markov property can be solved exactly using
traditional MDP methods by expanding the state space with data from previous
states or approximately using the RL methods.

Return in time step t, which represents the long-term reward starting from that
time step, is the subject of optimization:

o0
Gi=Rip1 +YRip2 + V' Rpz+ - = > ¥'Tepisn, (6.2)
i=0

where 7 € [0, 1] represents the discount factor. The case of v = 0 corresponds to the
greedy maximization of the immediate reward, while using v = 1 implies equal weight

6.1. Finite Markov Decision Processes 105

on all rewards in the optimization horizon. Due to convergence problems in the case
of long optimization horizons, the most often used value of the discount factor is
~ €10.9,0.99].

Policy m models the action selection in various states. When optimizing the policy,
the long-term reward is optimized. The policy is in the general case stochastic, i.e., it
maps the probability distribution of actions to states w(als) = Pr(4; = a|S; = s), but
it can be also defined in a deterministic way a = 7(s). The quality of a policy 7 in a
state s is usually expressed as an expectation of the discounted long-term reward G
given the state s, enabling the way to compare different policies and optimize them.
This quantity is called the state value function, and it assigns higher values to the
more desirable states in terms of the long-term reward, if following the policy 7':

o0

v(s) =E[G¢| Sy =s] =E D V' Rigiga| S = 5. (6.3)

=0

Similarly, the action value function (Q-function) is a mapping of states-action
pairs to the real numbers, where the value of the state-action pair represents the
expected discounted long-term reward starting from that state, taking that action,
and following a concrete policy 7 afterward:

¢"(s,0) =E[G:| S = 5, Ay = a] = E D V' Rigira| S =5, A, = al. (6.4)
=0

The state value function has a more compact representation, while the Q-function
provides a simpler way to determine the action that leads to the most desirable future
state. The state value function and the Q-function can be recursively expressed using
the Bellman equations:

v"(s) = E[Ret1 +70"(Se41) [St = 5]
Z (a]s)(r—i—'yz (s'|s,a)v™(s")), (6:5)
€A

s'eS

q"(s,a) = E [Re41 + 74" (Se41, Aeg1) | St = o]
—r—|—72p "I's,a Z 7w (a'|s")q" (s, a"). (6:6)

s'eS a’€eA

LSuperscript 7 denotes that the quantity is calculated with the assumption that the agent takes
actions according to the policy .

106 6. Reinforcement Learning

Finding the optimal state value function or the optimal Q-function results in
finding the optimal policy. The optimal policy can be generated from e.g. the optimal
Q-function by selecting the action with the largest Q-function value in each state. If
the problem is formulated as an MDP, then at least one optimal solution exists, and
an iterative procedure based on dynamic programming and the Bellman equations
that converges to one of those solutions can be established. Some of the commonly
used algorithms are the value iteration algorithm [161], and the policy iteration
algorithm [162].

To find the exact solution to the MDP, it has to be fully defined, i.e., all transition
probabilities and immediate rewards have to be known, and it has to satisfy the
Markov property. Additionally, for large state and action spaces, solving MDPs
exactly could be computationally infeasible. Partial observability of the environment
state additionally increases the computational time of the traditional algorithms that
solve MDPs [163]. The main idea of RL is to overcome these problems by learning
(close to) optimal policies based on the history of interactions of the agent with the
environment.

6.2 Q-Learning

Our work considers model-free off-policy RL algorithms, where the optimal policy is
learned directly from the accumulated experience, i.e., the history of the interaction
process between the agent and the environment. On the other hand, in the model-
based RL, the MDP, or the transition probabilities and immediate rewards for all
state-action-next state triplets are learned from the accumulated experience and
solved to obtain the policy.

Q-learning is a basic model-free RL algorithm, where the values of the Q-function
for each state-action pair are stored in the Q-table and updated during algorithm
training [164]. During the evaluation of the algorithm, for each state the agent receives
from the environment, the action with the greatest Q-function value in the table
is selected. During the algorithm training, actions are selected randomly with the
probability €, and the actions with the largest Q-function values for the corresponding
states are selected with the probability 1 — e, where € € [0,1] is the exploration
hyperparameter. This way the agent searches the state-action space and avoids the
local optima problem. Algorithm training is performed by repeating the predefined
number of episodes, which consist of time steps. One time step contains information
about one interaction of the agent with the environment: the current state, the action
selected by the agent, the received reward, and the next state. The length of episodes,
i.e., the number of time steps in them, is generally variable.

6.3. Deep Q-learning 107

Upon one interaction of the agent with the environment, the values in the Q-table
are updated using the following rule, obtained using the idea from the Bellman
equations:

q(s,a) := (1 —a)q(s,a) + afr +~ max q(s’,a")], (6.7)

where « is the learning rate hyperparameter. As well as MDPs, the Q-learning
algorithm assumes discrete state and action spaces and for large state and action
spaces it may be infeasible to learn the Q-function value for all state-action pairs.

6.3 Deep Q-learning

The deep Q-Learning algorithm is one of the basic DRL algorithms, that utilizes the
advances in the deep learning field to improve the traditional RL algorithms. The
idea of the algorithm is to use a deep neural network, also called the deep Q-network
(DQN), as an approximator of the Q-function [165]. Inputs to the DQN are state
variables, while output neurons provide the approximation of Q-function values for
each of the actions and for the input state. Therefore, the state variables can be
continuous, which makes the learning feasible for large continuous state spaces which
would have to be discretized when using the Q-learning algorithm. In deep Q-learning,
the action space must be discrete and finite, since the number of output neurons is
limited. An example of a DQN is shown in Fig. 6.2, where Q(s, a;) denotes the DQN
output when the agent takes action a;,7 = 1,..., z, while being in the state s, where
z = |A| denotes the number of possible actions.

O
O

O Qsay)
Ol esaz)

states

O Q(sa,)

O

| & @ © o]

Figure 6.2: An example of a deep Q-network.

Deep Q-learning algorithm introduces target DQN Q¢qrger Which has the same
model architecture as DQN and in which the parameters of DQN are copied at the
predefined period during the training process. Target DQN is used for determining
the labels for the DQN training, as defined in (6.8), which significantly improves the
training process stability [165]. It reduces the oscillations of the training by fixing the

108 6. Reinforcement Learning

label generation process during multiple training steps, allowing the DQN network
weights to be updated steadily. Target networks are a widely used technique in RL,
and recent RL algorithms propose more advanced variations, such as continuously
updating the time-delayed target network [166].

On-policy RL algorithms [33] are trained by updating the same policy using which
the sequence of actions is generated, which results in unstable and sample inefficient
training due to correlation between the actions in the sequence. Deep Q-learning is
an example of an off-policy RL algorithm, which stores the history of the agent’s
interaction with the environment in the experience replay memory [167], and samples
data randomly from it to perform the DQN training in a supervised learning manner.
At each time step, tuple (s, a,r,s’) is stored in the replay memory, from which i.i.d.
mini-batch data for DQN training is sampled.

Labels for DQN training are calculated in the following way, using the idea from
the Bellman equations, similarly to the Q-learning algorithm:

Qlabel(sa a) =r+v HZE}X Qtarget(sla a/|9QtargEt)' (68)

6@ and §%tarset denote the parameters (weights and biases) of the DQN and the target
DQN. DQN is trained using the mini-batch gradient descent algorithm [168], which
minimizes the squared error loss function that expresses the distance between the
labels and the DQN output during training:

N
L(69) = Nib > (Quaver(si,ai) — Q(si,ai | 69)). (6.9)
mo =1

A trained DQN is evaluated by forwarding the input state s through the network
layers, obtaining the Q-function approximates Q(s, a;) for all actions a;,i =1,...,|A|,
and selecting the action with the largest Q-function value.

Chapter 7

Reinforcement Learning based Dynamic
Distribution Network Reconfiguration

This chapter describes the way DDNR is expressed as an RL problem, how the
objective function and constraints are considered, and the training and evaluation
algorithms of the proposed DQN-based method. Finally, we evaluate the performance
of the proposed approach on three distribution networks: 15-bus test benchmark,
real-life large-scale distribution network, and the IEEE 33-bus network.

7.1 Modelling Dynamic Distribution Network Re-
configuration as a Markov Decision Process

The information flow between the DDNR agent and the environment during their
interaction is presented in Fig. 7.1. Episodes consist of T' time steps, where each
episode corresponds to a separate instance of the DDNR applied to the one-day
interval, and each RL agent’s time step corresponds to the beginning of one time
interval in DDNR, problem formulation (5.1). At each time step, active and reactive
power consumption data for the next hour are loaded. Then, the power flow calculation

is executed to create the state variables, which contain the time interval index ¢ and
t

sw?

the apparent powers of all switches in the network S
(7.1):

sw € 1,..., Ngy, as shown in

st:(t,Sf,...,Swa). (7.1)

This choice of state variables, motivated by the fact that switch statuses, and hence
the network topology can be reconstructed using the apparent powers of the switches,
reduces the state space dimensionality and DQN size. The current network configura-
tion and power flow results are compressed into a single set of variables, from which
the agent can make its own representation of the environment, and use it as an input
in the decision-making process.

The action space contains all the switch combinations that lead the network in

110 7. Reinforcement Learning based Dynamic Distribution Network Reconfiguration

4[Agent: DDNR controllerj

Reward: State:
- LDIDINIES Gleyjsrai - Time step index

- Voltage constraints
- Apparent powers
- Branch power .
of switches

constraints
Environment:
consumption data +
power flow calculation

Figure 7.1: The agent-environment interaction process for DDNR.

Action: switch
combination

a feasible radial configuration, in which all the buses are energized. These switch
combinations are enumerated uniquely so that one output neuron corresponds to one
feasible radial combination. This action space definition implies that the radiality
network constraint stated in (5.13) is always satisfied, which accelerates the learning
process.

The reward value for each time interval t is equal to the negative sum of the
following terms:

e Price of active energy losses Cros,1}, , Pt used to model the first term in the

wnt~ Loss?’

DDNR objective function stated in (5.1);

e Price of the switching manipulations needed to conduct the network from the
previous configuration to the current one Cgyy s SW?, used to model the second
term in the DDNR objective function stated in (5.1);

e Predefined penalty value Cy; if the bus voltage constraint is violated in any of
the buses, used to model the bus voltage constraints in (5.10);

e Predefined penalty value Cg if the branch capacity constraint is violated for
any of the branches, used to model the branch capacity constraints in (5.11).

As an alternative to adding the predefined penalty to the reward function if the
number of switch manipulations exceeds the predefined limit for any of the switches,
we propose the following way to consider the switching operation constraints in (5.12):

e The subset of available actions is created at the beginning of each episode and

7.2. Training and Evaluation Algorithms 111

is initially equal to the action set (i.e., all the switch combinations that lead the
network into a feasible radial configuration, in which all the buses are energized);

e During the episode, the number of operations of each switch in that episode
is updated. Prior to action selection, actions that would violate the switching
operation constraints if selected are removed from the subset of available actions;

e In each time interval, the action with the largest Q-value is selected from the
subset of available actions, instead of from the action set.

This approach improves the training efficiency compared to the approach that would
penalize the exceeded number of switch operations. Since the actions that violate the
switching operation constraints cannot be selected in the first place, the computational
effort needed to learn Q-function values for those state-action pairs is eliminated.
It is convenient to consider the switching operation constraints using this approach
since only the selected action (switch combination) needs to be known, to conclude
if the constraint is violated. The subset of available actions can be determined
without executing the actions. Bus voltage and branch capacity constraints cannot
be modelled using this approach generally, since the action must be executed and
feedback from the environment is required for any conclusions about the constraint
violations. Active and reactive injection constraints in (5.8), as well as slack bus
constraints in (5.9) are satisfied by the design of the power flow calculation [160] and,
therefore, are not considered in the reward function. Values of the state variables and
rewards are normalized, for the purpose of improving the numerical stability of neural
network training.

7.2 Training and Evaluation Algorithms

During the algorithm training N episodes are repeated, with each episode consisting
of a predefined number of time steps T, where in each time step the interaction
between the agent and the environment takes place, as described in 7.1. The variety
of training scenarios is created by randomly sampling the daily load curves from some
predefined distribution. The way the exploration hyperparameter € is updated during
the training can also be tuned. In this work, we used the linear decrease of e until
the 0.8 N*t" episode, and the constant value afterward. A detailed representation of
the agent training procedure is displayed in Algorithm 1.

Once trained, the deep Q-network model can be evaluated multiple times by
loading the saved trainable parameters, as shown in Algorithm 2. Note that during
the algorithm evaluation target deep Q-network, experience replay buffer, neural
network parameter updates, and the random exploration strategy are not used,
reducing the memory storage and computational requirements per episode, when

112 7. Reinforcement Learning based Dynamic Distribution Network Reconfiguration

Algorithm 1: Deep Q-network training

Initialize the deep Q-network’s Q(s | #9) parameters randomly

Initialize the target deep Q-network’s Q’(s | §@tarset) parameters using the
original network’s parameters

Initialize the experience replay buffer

for episode =1,2,..., N do

Sample daily load curves randomly

Initialize €

Initialize the subset of available actions to the action set

Run the initial power flow calculation

Send the initial state s; to the agent

fort=1,2,...,7 do

rand = random number between 0 and 1

if rand > ¢ then
Based on the current state s; select the action a; with the largest

Q-value in the subset of available actions
else
‘ Select random action a; from the subset of available actions
end
Update the subset of available actions
Update the network configuration according to a;
Run the power flow calculation
Collect the immediate reward r; and the next state s;y; data
Store tuple (s, as, T, S¢+1) in the experience replay buffer
Sample the mini-batch of tuples from the experience replay buffer
Create labels for deep Q-network training using (6.8)
Update deep Q-network parameters by minimizing the loss function given
in (6.9)
Set loads for the next time interval for each bus

end

if update target network period then
‘ thaTget — QQ

Update €

end

compared to the training algorithm. The trained algorithm’s evaluation reduces to
T + 1 power flow calculations and T neural network evaluations, which are almost
instantaneous, resulting in a computationally efficient control procedure, which can be
used either standalone or as a part of the more complex power systems’ application.

7.3. Numerical Results 113

Algorithm 2: Deep Q-network evaluation

Load previously saved parameters of the trained deep Q-network Q(s | <)

Generate daily load curves for the evaluation example

Initialize the subset of available actions to the action set

Run the initial power flow calculation

Send the initial state s; to the agent

fort=1,2,...,7 do

Based on the current state s; select the action a; with the largest Q-value in
the subset of available actions

Update the subset of available actions

Update the network configuration according to a;

Run the power flow calculation

Retrieve the next state s;41

Set loads for the next time interval for each bus

end

7.3 Numerical Results

In this section, results and discussion are presented for benchmark test examples —
7.3.1, real-life large-scale distribution network — 7.3.2, and the IEEE 33-bus radial
system — 7.3.3, along with the choice of RL and deep learning hyperparameters.
The proposed algorithms were implemented in Python, deep neural networks were
modelled and trained using the PyTorch deep learning framework, and power system-
related modelling and calculations were completed using OpenDSSDirect, the Python
interface to OpenDSS distribution system simulation software [169]. The algorithms
were executed on a 64-bit Windows 10 with the following hardware configuration:
AMD A8-6410 APU with AMD Radeon R5 Graphics 2.00 GHz, 4 cores, and 8 GB of
RAM.

7.3.1 Benchmark Test Examples

Fig. 7.2 illustrates a 15-bus test benchmark where a slack bus is the bus with the
marker 0 and the other 14 buses are of the PQ type. Loads are defined by the
chronological daily diagrams, which are sampled uniformly from the intervals defined
by dashed lines in Fig. 7.3. The length of all branches is 4.5km. All branches are
balanced with the direct sequence impedance r + jz = (0.224 + j0.109)Q2/km. All
branches have switching devices, and the number of switch manipulations is not
constrained.

Penalty values used to model the bus voltage constraints in (5.10) and the branch
capacity constraints in (5.11) are: Cy = Cs = 10. The costs of energy losses and

114 7. Reinforcement Learning based Dynamic Distribution Network Reconfiguration

0
149Feeder1 54¢Feeder2 8 4pFeeder 3
1 5 8
@ Closed switch
1—5— 5—f— 8—5— ,
2¢ 6@ eR 4 <& Open switch
2 6 9

Figure 7.2: Single-line diagram for 15-bus test benchmark.

switching operations in the time interval are [100,170]:
e Cost of energy losses (CrLoss): $6.5625 cents/kWh;
e Cost of switching manipulations (Cs,): $1 per manipulation.

DQN used for this test example consists of the input layer, four hidden layers,
and the output layer. The input layer has 15 neurons, one for the time step index
variable, and 14 for the apparent powers of each switch. Each hidden layer has 256
neurons, and the output layer consists of 186 neurons, one for each switch combination
that leads to a feasible radial configuration. Rectified Linear Unit (ReLU) activation
function is applied to each of the hidden layers and the output layer. The neural
network is trained using the Adam optimizer, with a learning rate of 10™® and a
mini-batch size of 128. We experimented with adding batch normalization on several
hidden layers, but it neither improved nor deteriorated the training results.

The number of training episodes we used is 60000. During the training, loads for
each hour were uniformly sampled from the intervals defined by dashed curves in
Fig. 7.3. The target DQN update frequency is 10 episodes and the mini-batches for
DQN training were sampled from experience replay memory, which has the capacity
of 108 samples. The initial value of the exploration parameter € is 1 and decreases
linearly to the episode index until it reaches the value 0.1 in 48000*" episode. The

7.3. Numerical Results 115

1.4
1.2
17

Load [MW]
(e}
0.9}
|

129 —— Feeder 2 load / S

- - - Limits

Load [MW]

—— Feeder 3 load

- - - Limits

Load [MW]

12 14 16 18 20 22
Hour [h]

Figure 7.3: Daily load profiles for three feeders. Full lines represent average load
values, and dashed lines represent limits between which training set loads are sampled.

value of the discount factor «y is 0.99, as in [165].

Fig. 7.4. presents the average value of the DQN loss function, defined in (6.9),
over the episodes. As the training advances, the DQN loss decreases, which implies
that the Q-function is being approximated successfully. Additionally, the testing
performance of the RL algorithm with increasing training episodes is presented in
Fig. 7.4 by displaying the amount of the normalized received reward per episode and
its moving average. These rewards were obtained by executing the episodes with
the exploration parameter € equal to zero, after each training episode. The training
demonstrated asymptotic convergence within 20000 episodes.

Table 7.1 presents load, losses, and switch status changes for the proposed approach
in 24-hour optimization horizon, as well as the comparison of the same results with

116 7. Reinforcement Learning based Dynamic Distribution Network Reconfiguration

0.025
0.020 4
o 0015 1
3 0.010 |

0.005 k

0.000 T T T ; ;
0 10 20 30 40 50 60

Episode number (x10%)

-1.6 T T T T T
0 10 20 30 40 50 60

Episode number (x103)

Figure 7.4: Average DQN loss per episode (top) and total reward per episode along
with its moving average (bottom).

the state-of-the-art method from [105]. The method from [105] minimizes the costs
of energy losses, switching manipulations, and outages. For this comparison, the
method from [105] is executed with the cost of outages set to zero. A graphical
representation of switch statuses is presented in Fig. 7.5. The results are additionally
compared with the method from [75], as is presented in Table 7.2. By comparing the
results of the proposed algorithm and the method from [105], it can be concluded
that the proposed switching actions are not the same, but the total costs only differ
slightly. The execution time of the proposed algorithm is 0.148s, which is two orders
of magnitude smaller than the execution time of the method from [105].

Based on Table 7.2, it can be concluded that the proposed approach and the
method from [105] provide better solutions than the method from [75]. Solutions from
the proposed approach and the method from [105] provide greater cost savings, and
they achieve it with a lower number of switch manipulations.

Total losses in the time period of 24 hours for 15-bus test benchmark without DNR,
are 6477.81kW, with the total cost of $425.1. With the proposed DDNR, losses are
reduced to 5978.48kW and the total cost is reduced to $402.3. Fig. 7.6 compares
loss reduction per hour for the proposed approach and for the method from [105]. In
Fig. 7.6 it can be seen that there is no reduction of losses in the interval from 10 to 16

7.3. Numerical Results

117

Table 7.1: Total load, active power losses and switch status changes in the 24-hour

time optimization period for the 15-bus test benchmark (O—-open; C—close).

Proposed approach Method from [105]
Hour | Load [kW] | Losses [kW] Switch status Losses [kW] Switch status
changes changes
0 4554.0 114.06 4(0), 14(C) 131.73 No changes
1 4305.0 101.79 No changes 115.32 No changes
2 3876.0 82.49 No changes 89.97 No changes
3 3326.0 61.20 No changes 62.95 No changes
4 3205.0 57.03 No changes 57.81 No changes
b) 3693.0 75.01 No changes 80.35 No changes
10(0), 14(0),
6 7542.0 316.63 4(C), 13(C) 316.63 10(0), 13(C)
7 7909.0 348.71 No changes 348.71 No changes
8 8279.0 384.08 No changes 384.08 No changes
9 6067.0 213.94 10(C), 13(0) | 220.01 No changes
10 9369.0 465.82 No changes 465.82 10(C), 13(0)
11 9054.0 440.61 No changes 440.61 No changes
12 8823.0 423.20 No changes 423.20 No changes
13 8823.0 423.20 No changes 423.20 No changes
14 7670.0 375.02 No changes 324.18 10(0), 13(C)
15 9801.0 493.87 No changes 493.87 10(C), 13(0)
16 7440.0 278.42 4(0), 14(C) 278.42 4(0), 14(C)
17 7049.0 252.96 No changes 252.96 No changes
18 7317.0 276.55 No changes 276.55 No changes
19 6643.0 227.18 No changes 227.18 No changes
20 5651.0 178.27 No changes 178.27 No changes
21 5163.0 147.68 No changes 147.68 No changes
22 4793.0 126.72 No changes 126.72 No changes
23 4554.0 114.06 No changes 114.06 No changes

Table 7.2: Total losses, number of switch status changes, and total cost in the 24-hour
time optimization period.

Proposed approach | Method from [105] | Method from [75]
Total losses [kW] | 5978.48 5980.28 5967.56
Number of switch 10 10 99
status changes
Total cost [$] 402.3 402.4 413.6

118 7. Reinforcement Learning based Dynamic Distribution Network Reconfiguration

1 l ‘ = QOther

0
z1 | | | | — Switch 14
5!
<0 ’ I I ‘ —— Switch 13
ER | —— Switch 12
N 0

1 | | | | — Switch 10

0

1 | | | | —— Switch 4

0

0 5 10 15 20

Figure 7.5: Switch status changes during the 24-hour period.

hours. In Table 7.1 it can be seen that the network configuration from 10 to 16 hours
is the same as the basic network configuration, as in Fig. 7.2 (in the first hour switch
4 was opened and switch 14 was closed; in the seventh hour switch 4 was closed and
switch 14 was opened and switch 10 was opened and switch 13 was closed; in the
tenth hour switch 10 was closed and switch 13 was opened). Consequently, there is no
reduction of losses from 10 to 16 hours. For the method from [105] in the 10*® hour,
there is a negative loss reduction (see Table 7.1). From 17 to 24 hours, loss reduction
is the same for both methods, because network configuration in that interval is the
same, too.

08 Proposed approach Ji Method from [105] ‘ A :

60

T

50 |- um M - |

40 N N |

T

Loss reduction [kW]
[\
o
T
|

10 |

Al HUMD__HD *********

0123456 78 91011121314151617181920 21 2223
Hour [h]
Figure 7.6: Loss reduction using DDNR.

7.3. Numerical Results 119

Fig. 7.7 shows the voltage profile before and after reconfiguration. It is noted that
the voltage profile is improved after applying the configuration found by the proposed
algorithm. Bus loads are taken from the daily load profile presented in Fig. 7.3 at
17" hour.

Next, we present the results of the proposed approach when the number of switch
manipulations is limited to two. A graphical representation of the switch status
changes in this case is given in Fig. 7.8. The cost of losses is equal to $403.5, while
the switching manipulation cost is $12, summing up to the total cost of $415.5, which
means that this solution is more expensive than the solution presented in Table 7.1.

1 —— Base case
—— After reconfiguration

Bus voltages [p.u.]

0 2 4 6 8 10 12 14
Bus index
Figure 7.7: Voltage profile for 15-bus test benchmark.

7.3.2 Real-Life Large-Scale Distribution Network

To assess the scalability of the proposed approach, we evaluate its results using a
real-life large-scale radial distribution network, which consists of four feeders, 1015
branches, and 1008 loads. The distribution network is equipped with 31 remotely
controlled switches, where 24 of them are normally closed and seven are normally
open. This large number of remotely controlled switches is used to demonstrate how
well does the developed algorithm scale with the increase in the number of decision
variables. DQN used for this test example consists of the input layer, four hidden
layers, and the output layer. The input layer has 32 neurons, one for the time step
index variable and 31 for the apparent powers of each switch. Each hidden layer
has 1024 neurons, and the output layer consists of 3567 neurons, one for each switch
combination that leads to a feasible radial configuration. The algorithm was trained
on 100000 episodes. The initial value of the exploration parameter € is 1 and decreases
linearly to the episode index, until it reaches the value 0.1 in 80000*" episode. The rest

120 7. Reinforcement Learning based Dynamic Distribution Network Reconfiguration

1 l ‘ = QOther
0
z1 | | | — Switch 14
S
<0 ‘ Switch 13
ST | —— Switch 12
N 0
1 | | — Switch 11
0
1 | | | | — Switch 10
0
1 .
0 ’ I I ‘ — Switch 7
1 | | | — Switch 4
0

0 5 10 15 20

Figure 7.8: Switch status changes during the 24-hour period when the maximal
number of switch manipulations is two.

of the parameters are the same as in the case of the 15-bus test benchmark network.
Costs of energy losses and switching manipulations are set to the same values as in
Section 7.3.1.

Table 7.3 presents the resulting losses and switch manipulations of the proposed
approach for the 24-hour optimization horizon. The execution time of the proposed
algorithm is 3.635s, which is two orders of magnitude smaller than the execution time
of the method from [105] when used for networks with 31 remotely controlled switches.
The training of the RL algorithm demonstrated convergence after 30000 episodes, as
evidenced by the analysis of its test time performance after each training episode.

The total active power losses are equal to 13342.49 kW, with a cost of $875.6. The
switching manipulation cost is equal to $24, which sums up to the total cost of $899.6.
The results demonstrate that the proposed DDNR is applicable to real-life large-scale
distribution networks.

7.3.3 1IEEE 33-bus Radial System

In this section, a numerical test is performed by using the IEEE 33-bus radial
system [171], displayed in Fig. 7.9. We used the same branch resistances, reactances,
and peak loads as in [171]. The loads between buses 2 and 18 are scaled with the blue
full line in Fig. 7.3, loads between buses 19 and 25 are scaled with the black full line
in Fig. 7.3, and the loads between buses 26 and 33 are scaled with the red full line
in Fig. 7.3. This network is modified to match the developed DDNR. The IEEE33

7.3. Numerical Results 121

Table 7.3: Active power losses and switch status changes in the 24-hour time opti-
mization period for the large-scale radial distribution network (O—open; C—close).

Hour | Losses [kW] | Switch status changes

0 182.30 238(0), 900 (O), 994(0), 1011 (C), 1013(C), 1014 (C)
1 160.98 No changes

2 127.19 No changes

3 92.46 No changes

4 86.08 No changes

5 196.43 No changes

6 742.05 695(0), 742(0), 900 (C), 1015 (C)
7 783.53 No changes

8 826.54 No changes

9 368.21 947 (O), 1014 (0), 695 (C), 994 (C)
10 1008.27 No changes

11 965.66 No changes

12 932.39 No changes

13 891.17 1011 (O), 1013 (0O), 238 (C), 947 (C)
14 746.81 No changes

15 1044.24 No changes

16 786.83 947 (O), 1013 (C)

17 553.33 No changes

18 744.87 No changes

19 645.53 1015 (0O), 1014 (C)

20 509.13 191 (O), 1010 (C)

21 455.83 No changes

22 313.87 No changes

23 178.78 No changes

test system is equipped with 20 remotely controlled switches, where 15 of them are
normally closed and 5 are normally open, as shown in Fig. 7.9. Remotely controlled
switches are marked with ”s” and the unique index. If the remotely controlled switch
is placed on the full line, it is closed, otherwise, it is open. Five lines were added to
the original scheme and are presented with dashed lines in Fig. 7.9. Costs of energy
losses and switching manipulations are the same as in Section 7.3.1.

The algorithm was trained with the same training hyperparameters as in the case
of the 15-bus test benchmark network. Table 7.4 presents the losses and switch
manipulations for the proposed approach in the 24-hour time optimization period.
The execution time of the algorithm is 0.272s.

122 7. Reinforcement Learning based Dynamic Distribution Network Reconfiguration

23 24 25 37
—o—o------Tloo.. .
523

15 16 17 18

Figure 7.9: IEEE 33-bus radial system.

Total active power losses are equal to 1347.95 kW, with a cost of $88.5. The cost
of switching manipulation is equal to $8, which sums up to the total cost of $96.5.
The RL algorithm was found to converge after 15000 training episodes, as determined
by an analysis of the test time performance with increasing episodes. Fig. 7.10 shows
the voltage profile before and after the reconfiguration. It is noted that in most of
the buses, the voltage profile is enhanced after applying the configuration found by
the proposed algorithm. Bus loads are taken from the daily load profile presented in
Fig. 7.3 at 17" hour.

—— Base case
—— After reconfiguration

Bus voltages [p.u.]

() 5 1‘0 1‘5 2‘0 2‘5 3‘0
Bus index
Figure 7.10: Voltage profile for IEEE 33-bus radial system.

7.4. Summary and future work 123

Table 7.4: Active power losses and switch status changes in the 24-hour time opti-
mization period for the IEEE 33-bus radial system (O-open; C—close).

Hour | Losses [kW] | Switch status changes
0 34.87 6 (O), 35 (C)
1 30.41 No changes

2 23.50 No changes

3 16.03 No changes

4 14.60 No changes

5 20.85 No changes

6 56.49 No changes

7 62.11 8 (0), 33 (C)
8 70.44 No changes

9 50.05 No changes
10 95.42 14 (0), 34 (C)
11 87.05 No changes

12 81.22 No changes

13 81.22 No changes
14 57.06 No changes

15 108.47 No changes

16 86.87 27 (0), 37 (C)
17 75.20 No changes

18 81.43 No changes

19 65.80 No changes
20 47.51 No changes

21 38.90 No changes
22 33.00 No changes
23 29.45 No changes

7.4 Summary and future work

In this chapter, we present a multi-objective formulation of the DDNR aimed at
reducing the total cost of energy losses and switching operations. Our solution is
based on DRL, and we demonstrate that the proposed definition of state variables,
which demands lower observability, enables successful treatment of the DDNR problem
within the RL framework. Additionally, the proposed computationally efficient method
of addressing switching operation constraints by creating a subset of available actions
and updating it during the episode was proven to be effective for this problem. The
ideas from the suggested way of modelling the DDNR problem as MDP can be used for
solving similar power system control and optimization problems as well. Once trained,
the RL algorithm demonstrates faster execution compared to the state-of-the-art

124 7. Reinforcement Learning based Dynamic Distribution Network Reconfiguration

method, while yielding approximately equal total cost savings. The presented results
indicate that the developed algorithm is scalable, i.e., the computation time does not
increase exponentially with the problem dimension. Therefore, the developed DDNR
algorithm can handle large-scale real-life distribution networks well.

The major drawback of applying typical RL algorithms in power systems is the
need for the usage of power system simulators that enable the exploration process of
an RL agent. Training an RL agent on a real-world power system is not a common
practice due to the high cost of exploration actions. On the other hand, power system
simulators do not represent the real-world power system ideally, which can cause the
lower performance of a trained RL model when deployed in reality. A possible solution
and a topic for future work could be using offline reinforcement learning [172], which
eliminates the need for using the action exploration, by optimizing the policy based on
the variety of historical actions, collected during the real-world distribution network
operation. Another promising area of research is using safe reinforcement learning [173]
and worst-case reinforcement learning [174], which enables safe exploration during
the training while guaranteeing the constraint satisfaction, therefore causing no harm
to the power system.

Chapter 8

Conclusions

Deep learning has demonstrated great potential to improve various tasks in power
systems, including monitoring tasks such as stability assessment and fault detection, as
well as for optimization tasks like Volt-Var optimization, optimal power flow, etc. One
of the current trends in the field is the use of GNNs and DRL. In this thesis, we applied
these methods to SE and DDNR problems and shown that these methods exhibit
high levels of accuracy and improved performance when compared to traditionally
used techniques. As the field continues to evolve, it is expected that more research
and development will be conducted in these areas, with a focus on implementing these
techniques in real-world power systems to demonstrate their practical potential.

This thesis presents two main contributions. As the first one, we investigate how
GNN can be used as fast and accurate solvers of linear and nonlinear SE. The proposed
graph attention network-based model, specialized for the newly introduced heteroge-
neous augmented factor graphs, recursively propagates the input measurements from
the factor nodes to generate predictions in the variable nodes. Evaluating the trained
model on unseen data samples confirms that the proposed GNN approach can be used
as a highly accurate approximator of the traditional SE solutions, with the added
benefit of linear computational complexity at inference time. The model is robust in
unobservable scenarios that are not solvable using traditional SE and deep learning
methods, such as when individual measurements or entire measurement units fail to
deliver measurement data to the proposed SE solver. Furthermore, the GNN model
performs well when measurement variances are high or outliers are present in the
input data. The proposed approach demonstrates scalability and sample efficiency
when tested on power systems of various sizes, as it makes good predictions even when
trained on a small number of randomly generated samples. Finally, the proposed
GNN model outperforms the more conventional deep learning-based SE approach in
terms of prediction accuracy and significantly lower number of trainable parameters,
especially as the size of the power system grows. In this work, we focused on using
GNNSs to solve a linear and nonlinear transmission system SE model. However, the

126 8. Conclusions

proposed learning framework, graph augmentation techniques, and conclusions can
be applied to a wide range of SE formulations. For example, the GNN’s ability to
provide relevant solutions in underdetermined scenarios suggests that it could be
useful for GNN-based SE in highly unobservable distribution systems.

As a second main contribution, this thesis has explored a multi-objective formulation
for DDNR, aimed at minimizing the total cost of energy losses and switching operations.
The proposed solution, based on DRL, demonstrated successful treatment of DDNR
as an MDP through the use of state variables with reduced observability requirements
and a computationally efficient approach for handling switching operation constraints.
The results showed that the developed algorithm is scalable, performs faster than
the state-of-the-art method while yielding comparable cost savings, and is capable
of handling large-scale real-world distribution networks. This work contributes to
the field of power system control and optimization by providing a novel and effective
solution for DDNR.

1]

Bibliography

J. R. Aguero, E. Takayesu, D. Novosel, and R. Masiello, “Modernizing the grid:
Challenges and opportunities for a sustainable future,” IEEFE Power Energy Mayg.,
vol. 15, no. 3, pp. 74-83, 2017.

S. Rusitschka, K. Eger, and C. Gerdes, “Smart grid data cloud: A model for utilizing
cloud computing in the smart grid domain,” in Proc. SmartGridComm. IEEE, 2010,
pp. 483-488.

I. J. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, MA, USA:
MIT Press, 2016.

I. H. Sarker, “Deep learning: A comprehensive overview on techniques, taxonomy,
applications and research directions,” SN comput. sci., vol. 2, 2021.

K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are
universal approximators,” Neural Netw., vol. 2, no. 5, p. 359-366, july 1989.

J. Quionero-Candela, M. Sugiyama, A. Schwaighofer, and N. D. Lawrence, Dataset
Shift in Machine Learning. The MIT Press, 2009.

G. D’Antona, “Power system static-state estimation with uncertain network parameters
as input data,” IEEE Trans. Instrum. Meas., vol. 65, no. 11, pp. 2485-2494, 2016.

W. Zhang, D. Yang, and H. Wang, “Data-driven methods for predictive maintenance
of industrial equipment: A survey,” IEEE Syst. J., vol. 13, no. 3, pp. 2213-2227, 2019.

0. Kundacina, G. Gojic, M. Mitrovic, D. Miskovic, and D. Vukobratovic, “Supporting
future electrical utilities: Using deep learning methods in ems and dms algorithms,” in
Proc. Infoteh-Jahorina, 2023, pp. 1-6.

128

BIBLIOGRAPHY

[10]

[11]

[12]

[20]

21]

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Proc.
ICLR, Y. Bengio and Y. LeCun, Eds., 2015.

J. Bergstra, D. Yamins, and D. D. Cox, “Making a science of model search: Hyper-
parameter optimization in hundreds of dimensions for vision architectures,” in Proc.
ICML, 2013.

A. Poudyal, R. S. Fourney, R. Tonkoski, T. M. Hansen, U. Tamrakar, and R. D.
Trevizan, “Convolutional neural network-based inertia estimation using local frequency
measurements,” Proc. NAPS, pp. 1-6, 2021.

M. Alqudah, M. Pavlovski, T. Dokic, M. Kezunovic, Y. Hu, and Z. Obradovic, “Fault
detection utilizing convolution neural network on timeseries synchrophasor data from
phasor measurement units,” IEEFE Trans. Power Syst., vol. 37, no. 5, pp. 3434-3442,
2022.

S. Wang, P. Dehghanian, and L. Li, “Power grid online surveillance through pmu-
embedded convolutional neural networks,” IEEE Trans. Ind. Appl., vol. 56, no. 2, pp.
1146-1155, 2020.

H. Wu and Z. Xu, “Fast dc optimal power flow based on deep convolutional neural
network,” in Proc. CIEEC. 1EEE, 2022, pp. 2508-2512.

R. Jozefowicz, W. Zaremba, and I. Sutskever, “An empirical exploration of recurrent
network architectures,” in Proc. ICML, 2015, p. 2342-2350.

Q. Li, Y. Xu, B. S. H. Chew, H. Ding, and G. Zhao, “An integrated missing-data
tolerant model for probabilistic pv power generation forecasting,” IEEE Trans. Power
Syst., vol. 37, no. 6, pp. 4447-4459, 2022.

G. Ruan, D. S. Kirschen, H. Zhong, Q. Xia, and C. Kang, “Estimating demand
flexibility using siamese lstm neural networks,” IEEE Trans. Power Syst., vol. 37,
no. 3, pp. 2360-2370, 2022.

Y. Seyedi, H. Karimi, and J. Mahseredjian, “A data-driven method for prediction of
post-fault voltage stability in hybrid ac/dc microgrids,” IEEE Trans. Power Syst.,
vol. 37, no. 5, pp. 3758-3768, 2022.

D. Fellner, T. I. Strasser, and W. Kastner, “Applying deep learning-based concepts for
the detection of device misconfigurations in power systems,” Sustain. Energy Grids
Netw., vol. 32, p. 100851, 2022.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin, “Attention is all you need,” in Proc. NIPS, Red Hook, NY, USA,
2017, p. 6000-6010.

Z. Wang, Y. Ma, Z. Liu, and J. Tang, “R-transformer: Recurrent neural network
enhanced transformer,” arXiv preprint arXiv:1907.05572, 2019.

W. L. Hamilton, “Graph representation learning,” Synthesis Lectures on Artificial
Intelligence and Machine Learning, vol. 14, no. 3, pp. 1-159, 2020.

BIBLIOGRAPHY 129

24]

[25]

[26]

O. Kundacina, M. Forcan, M. Cosovic, D. Raca, M. Dzaferagic, D. Miskovic, M. Mak-
simovic, and D. Vukobratovic, “Near real-time distributed state estimation via ai/ml-
empowered 5g networks,” in Proc. SmartGridComm. IEEE, 2022, pp. 284-289.

K. Chen, J. Hu, Y. Zhang, Z. Yu, and J. He, “Fault location in power distribution
systems via deep graph convolutional networks,” IEEE J. Sel. Areas Commun., vol. 38,
no. 1, pp. 119-131, 2020.

R. Zhang, W. Yao, Z. Shi, L. Zeng, Y. Tang, and J. Wen, “A graph attention networks-
based model to distinguish the transient rotor angle instability and short-term voltage
instability in power systems,” Int. J. Electr. Power Energy Syst., vol. 137, p. 107783,
2022.

S. Arastehfar, M. Matinkia, and M. R. Jabbarpour, “Short-term residential load
forecasting using graph convolutional recurrent neural networks,” Eng. Appl. Artif.
Intell., vol. 116, p. 105358, 2022.

T. Zhao, M. Yue, and J. Wang, “Structure-informed graph learning of networked
dependencies for online prediction of power system transient dynamics,” IEEE Trans.
Power Syst., vol. 37, no. 6, pp. 4885-4895, 2022.

A. Takiddin, R. Atat, M. Ismail, O. Boyaci, K. R. Davis, and E. Serpedin, “Generalized
graph neural network-based detection of false data injection attacks in smart grids,”
IEEE Trans. Emerg. Top. Comput. Intell., pp. 1-13, 2023.

O. Kundacina, M. Cosovic, and D. Vukobratovic, “State estimation in electric power
systems leveraging graph neural networks,” in Proc. PMAPS, 2022, pp. 1-6.

O. Kundacina, M. Cosovic, D. Miskovic, and D. Vukobratovic, “Distributed nonlinear
state estimation in electric power systems using graph neural networks,” in Proc.
SmartGridComm. 1EEE, 2022, pp. 8-13.

Y. Yuan, Z. Wang, and Y. Wang, “Learning latent interactions for event classification
via graph neural networks and pmu data,” IEEE Trans. Power Syst., vol. 38, no. 1,
pp. 617-629, 2023.

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, 2nd ed. The
MIT Press, 2018.

M. Glavic, “(deep) reinforcement learning for electric power system control and related
problems: A short review and perspectives,” Annu. Rev. Control, 2019.

Y. Gao, J. Shi, W. Wang, and N. Yu, “Dynamic distribution network reconfiguration
using reinforcement learning,” in Proc. SmartGridComm. IEEE, 2019, pp. 1-7.

W. Wang, N. Yu, Y. Gao, and J. Shi, “Safe off-policy deep reinforcement learning
algorithm for volt-var control in power distribution systems,” IEEE Trans. Smart Grid,
vol. 11, no. 4, pp. 3008-3018, 2020.

O. Stanojev, O. Kundacina, U. Markovic, E. Vrettos, P. Aristidou, and G. Hug, “A
reinforcement learning approach for fast frequency control in low-inertia power systems,”
in Proc. NAPS, 2021, pp. 1-6.

130

BIBLIOGRAPHY

[38]

39]

[46]

(47]

(48]

L. Busoniu, R. Babuska, and B. De Schutter, “A comprehensive survey of multiagent
reinforcement learning,” IEEE Trans. Syst. Man Cybern., vol. 38, no. 2, pp. 156-172,
2008.

H. Liu and W. Wu, “Online multi-agent reinforcement learning for decentralized
inverter-based volt-var control,” IEEE Trans. Smart Grid, vol. 12, no. 4, pp. 2980
2990, 2021.

D. Chen, K. Chen, Z. Li, T. Chu, R. Yao, F. Qiu, and K. Lin, “Powernet: Multi-agent
deep reinforcement learning for scalable powergrid control,” IEEE Trans. Power Syst.,
vol. 37, no. 2, pp. 1007-1017, 2022.

L. Ding, Z. Lin, X. Shi, and G. Yan, “Target-value-competition-based multi-agent deep
reinforcement learning algorithm for distributed nonconvex economic dispatch,” IFEE
Trans. Power Syst., vol. 38, no. 1, pp. 204217, 2023.

T. Qian, C. Shao, X. Li, X. Wang, Z. Chen, and M. Shahidehpour, “Multi-agent deep
reinforcement learning method for ev charging station game,” IEEE Trans. Power
Syst., vol. 37, no. 3, pp. 1682-1694, 2022.

A. Monticelli, “Electric power system state estimation,” Proc. IEEE, vol. 83, no. 2, pp.
262-282, 2000.

A. Gomez-Exposito, A. Abur, P. Rousseaux, A. de la Villa Jaen, and C. Gomez-Quiles,
“On the use of PMUs in power system state estimation,” in Proc. PSCC, 2011.

G. N. Korres and N. M. Manousakis, “State estimation and observability analysis for
phasor measurement unit measured systems,” IET Gener. Transm. Dis., vol. 6, no. 9,
pp- 902-913, September 2012.

A. Abur and A. Expdésito, Power System State Estimation: Theory and Implementation,
ser. Power Engineering. Taylor & Francis, 2004.

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural message
passing for quantum chemistry,” in Proc. ICML, 06-11 Aug 2017, pp. 1263-1272.

L. Zhang, G. Wang, and G. B. Giannakis, “Real-time power system state estimation
and forecasting via deep unrolled neural networks,” IEEE Trans. Signal Process.,
vol. 67, no. 15, pp. 4069-4077, 2019.

A.S. Zamzam, X. Fu, and N. D. Sidiropoulos, “Data-driven learning-based optimization
for distribution system state estimation,” IEEE Trans. Power Syst., vol. 34, no. 6, pp.
4796-4805, 2019.

B. Donon, B. Donnot, I. Guyon, and A. Marot, “Graph neural solver for power systems,”
in Proc. IJCNN, 2019, pp. 1-8.

V. Bolz, J. RueB}, and A. Zell, “Power flow approximation based on graph convolutional
networks,” in Proc. ICMLA. IEEE, 2019, pp. 1679-1686.

D. Wang, K. Zheng, Q. Chen, G. Luo, and X. Zhang, “Probabilistic power flow solution
with graph convolutional network,” in Proc. ISGT FEurope. IEEE, 2020, pp. 650-654.

BIBLIOGRAPHY 131

[53]

[54]

[55]

[56]

[60]
[61]

[62]

B. Donon, R. Clément, B. Donnot, A. Marot, . Guyon, and M. Schoenauer, “Neural
networks for power flow: Graph neural solver,” Electr. Power Syst. Res., vol. 189, p.
106547, 2020.

T. B. Lopez-Garcia and J. A. Dominguez-Navarro, “Power flow analysis via typed
graph neural networks,” Eng. Appl. Artif. Intell., vol. 117, p. 105567, 2023.

L. Pagnier and M. Chertkov, “Physics-informed graphical neural network for parameter
& state estimations in power systems,” arXiv, 2021.

Q. Yang, A. Sadeghi, and G. Wang, “Data-driven priors for robust psse via gauss-
newton unrolled neural networks,” IEEE J. Emerg. Sel. Top. Clircuits Syst., vol. PP,
pp- 1-1, 01 2022.

M. J. Hossain and M. Rahnamay-Naeini, “State estimation in smart grids using
temporal graph convolution networks,” in Proc. NAPS, 2021, pp. 01-05.

0. Kundacina, M. Cosovic, D. Miskovic, and D. Vukobratovic, “Graph neural networks
on factor graphs for robust, fast, and scalable linear state estimation with PMUs,”
Sustain. Energy Grids Netw., vol. 34, p. 101056, 2023.

V. G. Satorras and M. Welling, “Neural enhanced belief propagation on factor graphs,”
in Proc. AISTATS, 2021.

F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor graphs and the sum-product
algorithm,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 498-519, 2001.

P. Velickovié, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph
Attention Networks,” in Proc. ICLR, 2018.

M. A. Samman, H. Mokhlis, N. N. Mansor, H. Mohamad, H. Suyono, and N. M. Sapari,
“Fast optimal network reconfiguration with guided initialization based on a simplified
network approach,” IEEE Access, vol. 8, pp. 11948-11 963, 2020.

V. Fathi, H. Seyedi, and B. M. Ivatloo, “Reconfiguration of distribution systems in the
presence of distributed generation considering protective constraints and uncertainties,”
Int. Trans. Electr. Energy Syst., vol. 30, no. 5, p. €12346, 2020.

S. Mishra, D. Das, and S. Paul, “A comprehensive review on power distribution network
reconfiguration,” Energy Syst., vol. 8, pp. 227-284, 2017.

S. Civanlar, J. Grainger, H. Yin, and S. Lee, “Distribution feeder reconfiguration for
loss reduction,” IEEE Trans. Power Deliv., vol. 3, no. 3, pp. 1217-1223, 1988.

D. Shirmohammadi and H. Hong, “Reconfiguration of electric distribution networks for
resistive line losses reduction,” IEEE Trans. Power Deliv., vol. 4, no. 2, pp. 1492-1498,
1989.

M. E. Baran and F. F. Wu, “Network reconfiguration in distribution systems for loss
reduction and load balancing,” IEEE Power Eng. Rev., vol. 9, no. 4, pp. 101-102,
1989.

R. Taleski and D. Rajicic, “Distribution network reconfiguration for energy loss
reduction,” IEEE Trans. Power Syst., vol. 12, no. 1, pp. 398-406, 1997.

132

BIBLIOGRAPHY

[69]

[70]

(71]

[72]

73]

[77]

[78]

[79]

(80]

Q. Zhou, D. Shirmohammadi, and W.-H. Liu, “Distribution feeder reconfiguration for
operation cost reduction,” IEEE Trans. Power Syst., vol. 12, no. 2, pp. 730-735, 1997.

A. Borghetti, “A mixed-integer linear programming approach for the computation of
the minimum-losses radial configuration of electrical distribution networks,” IEFE
Trans. Power Syst., vol. 27, no. 3, pp. 1264-1273, 2012.

H. Ahmadi and J. R. Marti, “Distribution system optimization based on a linear
power-flow formulation,” IEEE Trans. Power Deliv., vol. 30, no. 1, pp. 25-33, 2015.

M. Lavorato, J. F. Franco, M. J. Rider, and R. Romero, “Imposing radiality constraints
in distribution system optimization problems,” IEEE Trans. Power Syst., vol. 27, no. 1,
pp- 172-180, 2012.

R. A. Jabr, R. Singh, and B. C. Pal, “Minimum loss network reconfiguration using
mixed-integer convex programming,” IEEE Trans. Power Syst., vol. 27, no. 2, pp.
1106-1115, 2012.

H. Haghighat and B. Zeng, “Distribution system reconfiguration under uncertain load
and renewable generation,” IEEE Trans. Power Syst., vol. 31, no. 4, pp. 2666-2675,
2016.

E. Ramos, A. Exposito, J. Santos, and F. Iborra, “Path-based distribution network
modeling: application to reconfiguration for loss reduction,” IEEE Trans. Power Syst.,
vol. 20, no. 2, pp. 556-564, 2005.

H. M. Khodr, J. Martinez-Crespo, M. A. Matos, and J. Pereira, “Distribution systems
reconfiguration based on opf using benders decomposition,” IEEE Trans. Power Deliv.,
vol. 24, no. 4, pp. 21662176, 2009.

A. Merlin and H. Back, “Search for a minimal-loss operating spanning tree configuration
in an urban power distribution system,” in Proc. PSCC, vol. 1, 09 1975.

V. Borozan, D. Rajicic, and R. Ackovski, “Improved method for loss minimization in
distribution networks,” IEFEE Trans. Power Syst., vol. 10, no. 3, pp. 14201425, 1995.

C. T. Huddleston, R. P. Broadwater, and A. Chandrasekaran, “Reconfiguration algo-
rithm for minimizing losses in radial electric distribution systems,” Electr. Power Syst.
Res., vol. 18, no. 1, pp. 57-66, 1990.

I. Roytelman, V. Melnik, S. Lee, and R. Lugtu, “Multi-objective feeder reconfiguration
by distribution management system,” IFEFE Trans. Power Syst., vol. 11, no. 2, pp.
661-667, 1996.

N. Gupta, A. Swarnkar, and K. R. Niazi, “Distribution network reconfiguration for
power quality and reliability improvement using genetic algorithms,” Int. J. Electr.
Power Energy Syst., vol. 54, pp. 664—-671, 2014.

K. Nara, A. Shiose, M. Kitagawa, and T. Ishihara, “Implementation of genetic algorithm
for distribution systems loss minimum re-configuration,” IEEE Trans. Power Syst.,
vol. 7, no. 3, pp. 1044-1051, 1992.

BIBLIOGRAPHY 133

[83]

[84]

(85]

(86]

W.-M. Lin, F. S. Cheng, and M. T. Tsay, “Distribution feeder reconfiguration with
refined genetic algorithm,” IET. Gener. Transm. Dis., vol. 147, pp. 349-354(5),
November 2000.

M.-S. Tsai and F.-Y. Hsu, “Application of grey correlation analysis in evolutionary
programming for distribution system feeder reconfiguration,” IEEE Trans. Power Syst.,
vol. 25, no. 2, pp. 1126-1133, 2010.

A. Delbem, A. de Carvalho, and N. Bretas, “Main chain representation for evolutionary
algorithms applied to distribution system reconfiguration,” IEEE Trans. Power Syst.,
vol. 20, no. 1, pp. 425-436, 2005.

W.-C. Wu and M.-S. Tsai, “Application of enhanced integer coded particle swarm
optimization for distribution system feeder reconfiguration,” IEEE Trans. Power Syst.,
vol. 26, no. 3, pp. 1591-1599, 2011.

S. Sivanagaraju, J. V. Rao, and P. S. Raju, “Discrete particle swarm optimization to
network reconfiguration for loss reduction and load balancing,” Electr. Power Compon.
Syst., vol. 36, no. 5, pp. 513-524, 2008.

Y.-J. Jeon, J.-C. Kim, J.-O. Kim, J.-R. Shin, and K. Lee, “An efficient simulated
annealing algorithm for network reconfiguration in large-scale distribution systems,”
IEEFE Trans. Power Deliv., vol. 17, no. 4, pp. 1070-1078, 2002.

H.-C. Chang and C.-C. Kuo, “Network reconfiguration in distribution systems using
simulated annealing,” FElectr. Power Syst. Res., vol. 29, no. 3, pp. 227-238, 1994.

H. Karimianfard and H. Haghighat, “An initial-point strategy for optimizing distribu-
tion system reconfiguration,” Electr. Power Syst. Res., vol. 176, p. 105943, 2019.

H. Kim, Y. Ko, and K.-H. Jung, “Artificial neural-network based feeder reconfiguration
for loss reduction in distribution systems,” IEEE Trans. Power Deliv., vol. 8, no. 3,
pp- 1356-1366, 1993.

H. Salazar, R. Gallego, and R. Romero, “Artificial neural networks and clustering
techniques applied in the reconfiguration of distribution systems,” IEEE Trans. Power
Deliv., vol. 21, no. 3, pp. 1735-1742, 2006.

I. Ahmadi, M. Ahmadigorji, and E. Tohidifar, “A novel approach for power loss
reduction in distribution networks considering budget constraint,” Int. Trans. Electr.
Energy Syst., vol. 28, no. 12, p. €2635, 2018.

Z. Liu, Y. Liu, G. Qu, X. Wang, and X. Wang, “Intra-day dynamic network reconfig-
uration based on probability analysis considering the deployment of remote control
switches,” IEEE Access, vol. 7, pp. 145272-145281, 2019.

S. Golshannavaz, S. Afsharnia, and F. Aminifar, “Smart distribution grid: Optimal
day-ahead scheduling with reconfigurable topology,” IEEE Trans. Smart Grid, vol. 5,
no. 5, pp. 2402-2411, 2014.

Z. Li, X. Chen, K. Yu, B. Zhao, and H. Liu, “A novel approach for dynamic reconfigu-
ration of the distribution network via multi-agent system,” in Proc. DRPT. IEEE,
2008, pp. 1305-1311.

134

BIBLIOGRAPHY

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105)

[106]

[107)

[108]

[109]

R. Broadwater, A. Khan, H. Shaalan, and R. Lee, “Time varying load analysis to
reduce distribution losses through reconfiguration,” IEEE Trans. Power Deliv., vol. 8,
no. 1, pp. 294-300, 1993.

C.-S. Chen and M.-Y. Cho, “Energy loss reduction by critical switches,” IEEE Trans.
Power Deliv., vol. 8, no. 3, pp. 1246-1253, 1993.

E. Lopez, H. Opazo, L. Garcia, and P. Bastard, “Online reconfiguration considering
variability demand: applications to real networks,” IEEE Trans. Power Syst., vol. 19,
no. 1, pp. 549-553, 2004.

M.-H. Shariatkhah, M.-R. Haghifam, J. Salehi, and A. Moser, “Duration based recon-
figuration of electric distribution networks using dynamic programming and harmony
search algorithm,” Int. J. Electr. Power Energy Syst., vol. 41, no. 1, pp. 1-10, 2012.

A. Zidan and E. F. El-Saadany, “Distribution system reconfiguration for energy loss
reduction considering the variability of load and local renewable generation,” Energy,
vol. 59, pp. 698-707, 2013.

A. E. Milani and M. R. Haghifam, “An evolutionary approach for optimal time interval
determination in distribution network reconfiguration under variable load,” Math.
Comput. Model., vol. 57, no. 1, pp. 68-77, 2013.

A. Mazza, G. Chicco, H. Andrei, and M. Rubino, “Determination of the relevant
periods for intraday distribution system minimum loss reconfiguration,” Int. Trans.
Electr. Energy Syst., vol. 25, no. 10, pp. 1992-2023, 2015.

A. Jafari, H. Ganjeh Ganjehlou, F. Baghal Darbandi, B. Mohammadi-Ivatloo, and
M. Abapour, “Dynamic and multi-objective reconfiguration of distribution network
using a novel hybrid algorithm with parallel processing capability,” Appl. Soft Comput.,
vol. 90, p. 106146, 2020.

N. V. Kovacki, P. M. Vidovié¢, and A. T. Sari¢, “Scalable algorithm for the dynamic
reconfiguration of the distribution network using the lagrange relaxation approach,”
Int. J. Electr. Power Energy Syst., vol. 94, pp. 188-202, 2018.

N. Kovacki, “Operativno planiranje rekonfiguracije distributivnih mreza primenom
visekriterijumske optimizacije,” Ph.D. dissertation, University of Novi Sad (Serbia),
2018.

O. B. Kundagina, P. M. Vidovié¢, and M. R. Petkovié¢, “Solving dynamic distribution
network reconfiguration using deep reinforcement learning,” FElectr. Eng., vol. 104,
no. 3, pp. 1487-1501, 2022.

M. Cosovic, “Distributed state estimation in power systems using probabilistic graphical
models,” Ph.D. dissertation, University of Novi Sad, 2019.

J. De La Ree, V. Centeno, J. S. Thorp, and A. G. Phadke, “Synchronized phasor
measurement applications in power systems,” IEEE Trans. Smart Grid, vol. 1, no. 1,
pp- 20-27, 2010.

BIBLIOGRAPHY 135

[110]

[111]

[112]
[113]

[114]

[115]

[116]

[117]

[118]

[119]
[120]
[121]
[122]
[123]
[124]

[125]

M. Zhou, V. Centeno, J. Thorp, and A. Phadke, “An alternative for including phasor
measurements in state estimators,” IEEE Trans. Power Syst., vol. 21, no. 4, pp.
1930-1937, 2006.

P. R. Bevington and D. K. Robinson, Data reduction and error analysis for the physical
sciences; 3rd ed. New York, NY: McGraw-Hill, 2003.

P. Kundur, Power System Stability and Control. McGraw-Hill Inc., 2022.

Y. Weng, R. Negi, and M. Ilic, “Graphical model for state estimation in electric power
systems,” in Proc. SmartGridComm. IEEE, Oct. 2013, pp. 103-108.

J. M. Stokes, K. Yang, K. Swanson, W. Jin, A. Cubillos-Ruiz, N. M. Donghia, C. R.
MacNair, S. French, L. A. Carfrae, Z. Bloom-Ackermann, V. M. Tran, A. Chiappino-
Pepe, A. H. Badran, I. W. Andrews, E. J. Chory, G. M. Church, E. D. Brown, T. S.
Jaakkola, R. Barzilay, and J. J. Collins, “A deep learning approach to antibiotic
discovery,” Cell, vol. 180, no. 4, pp. 688-702.e13, 2020.

F. Monti, F. Frasca, D. Eynard, D. Mannion, and M. M. Bronstein, “Fake news
detection on social media using geometric deep learning,” ArXiv, vol. abs/1902.06673,
2019.

A. Sanchez-Gonzalez, J. Godwin, T. Pfaff, R. Ying, J. Leskovec, and P. W. Battaglia,
“Learning to simulate complex physics with graph networks,” in Proc. ICML, 2020.

S. He, S. Xiong, Y. Ou, J. Zhang, J. Wang, Y. Huang, and Y. Zhang, “An overview
on the application of graph neural networks in wireless networks,” IEEE Open J.
Commun. Soc., vol. 2, pp. 2547-2565, 2021.

W. Liao, B. Bak-Jensen, J. R. Pillai, Y. Wang, and Y. Wang, “A review of graph
neural networks and their applications in power systems,” ArXiv, vol. abs/2101.10025,
2022.

B. Sanchez-Lengeling, E. Reif, A. Pearce, and A. B. Wiltschko, “A gentle introduction
to graph neural networks,” Distill, 2021, https://distill.pub/2021/gnn-intro.

N. M. Kriege, F. D. Johansson, and C. Morris, “A survey on graph kernels,” Appl.
Netw. Sci., vol. 5, pp. 1-42, 2020.

i

H. Kashima, K. Tsuda, and A. Inokuchi, “Marginalized kernels between labeled graphs,’
in Proc. ICML, 2003, p. 321-328.

L. Li and T. Zhou, “Link prediction in complex networks: A survey,” Phys. A: Stat.
Mech. Appl., vol. 390, no. 6, pp. 1150-1170, 2011.

U. Luxburg, “A tutorial on spectral clustering,” Stat. Comput, vol. 17, pp. 395-416, 01
2004.

M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques for embedding
and clustering,” in Proc. NIPS, ser. NIPS’01, Cambridge, MA, USA, 2001, p. 585-591.

A. Ahmed, N. Shervashidze, S. Narayanamurthy, V. Josifovski, and A. J. Smola,
“Distributed large-scale natural graph factorization,” in Proc. WWW. New York, NY,
USA: ACM, 2013, p. 37-48.

136

BIBLIOGRAPHY

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

E. A. Leicht, P. Holme, and M. E. J. Newman, “Vertex similarity in networks.” Phys.
Rev. E Stat. Nonlin. Soft Matter Phys., vol. 73 2 Pt 2, p. 026120, 2006.

B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of social represen-
tations,” in Proc. ACM SIGKDD. New York, NY, USA: ACM, 2014, p. 701-710.

A. Grover and J. Leskovec, “Node2vec: Scalable feature learning for networks,” in
Proc. ACM SIGKDD. New York, NY, USA: ACM, 2016, p. 855-864.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed represen-
tations of words and phrases and their compositionality,” in Proc. NIPS, C. Burges,
L. Bottou, M. Welling, Z. Ghahramani, and K. Weinberger, Eds., vol. 26, 2013.

P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. F. Zambaldi,
M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, C. Giilgehre,
H. F. Song, A. J. Ballard, J. Gilmer, G. E. Dahl, A. Vaswani, K. R. Allen, C. Nash,
V. Langston, C. Dyer, N. Heess, D. Wierstra, P. Kohli, M. M. Botvinick, O. Vinyals,
Y. Li, and R. Pascanu, “Relational inductive biases, deep learning, and graph networks,”
CoRR, vol. abs/1806.01261, 2018.

J. Bruna, W. Zaremba, A. D. Szlam, and Y. LeCun, “Spectral networks and locally
connected networks on graphs,” in Proc. ICLR, 2014.

M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks
on graphs with fast localized spectral filtering,” in Proc. NIPS, Red Hook, NY, USA,
2016, p. 3844-3852.

T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional
networks,” in Proc. ICLR, 2017.

D. Chen, Y. Lin, W. Li, P. Li, J. Zhou, and X. Sun, “Measuring and relieving the

i

over-smoothing problem for graph neural networks from the topological view,” in Proc.

AAAI 2020.

Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph sequence neural
networks,” in Proc. ICLR, 2015.

D. Selsam, M. Lamm, B. Biinz, P. Liang, L.. de Moura, and D. L. Dill, “Learning a sat
solver from single-bit supervision,” in Proc. ICLR, 2019.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by
back-propagating errors,” Nature, vol. 323, pp. 533536, 1986.

P. Velickovi¢, W. Fedus, W. L. Hamilton, P. Lio, Y. Bengio, and R. D. Hjelm, “Deep
Graph Infomax,” in Proc. ICLR, 2019.

F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger, “Simplifying graph
convolutional networks,” in Proc. ICML, vol. 97, 2019, pp. 6861-6871.

D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning
to align and translate,” in Proc. ICLR, 2015.

BIBLIOGRAPHY 137

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large
graphs,” in Proc. NIPS, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds., 2017.

R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec, “Graph
convolutional neural networks for web-scale recommender systems,” in Proc. ACM
SIGKDD. New York, NY, USA: ACM, 2018.

E. Rossi, B. Chamberlain, F. Frasca, D. Eynard, F. Monti, and M. Bronstein, “Temporal
graph networks for deep learning on dynamic graphs,” in Proc. ICML, 2020.

M. Zitnik, M. Agrawal, and J. Leskovec, “Modeling polypharmacy side effects with
graph convolutional networks,” J. Bioinform., vol. 34, no. 13, pp. 1457-1466, 2018.

A. Poulovassilis and M. Levene, “A nested-graph model for the representation and
manipulation of complex objects,” ACM Trans. Inf. Syst., vol. 12, no. 1, 1994.

S. Fralick, “Learning to recognize patterns without a teacher,” IEEE Trans. Inf. Theory,
vol. 13, no. 1, pp. 57-64, 1967.

A. Odena, “Semi-supervised learning with generative adversarial networks,” arXiv
preprint arXiv:1807.05118, 2016.

X. Liu, F. Zhang, Z. Hou, L. Mian, Z. Wang, J. Zhang, and J. Tang, “Self-supervised
learning: Generative or contrastive,” IEEE Trans. Knowl. Data Eng., pp. 1-1, 2021.

T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for contrastive
learning of visual representations,” in Proc. ICML, 2020.

M. Cosovic and D. Vukobratovic, “Distributed Gauss—Newton method for state estima-
tion using belief propagation,” IEEE Trans. Power Syst., vol. 34, no. 1, pp. 648658,
2019.

D. Pujol-Perich, J. Suarez-Varela, M. Ferriol, S. Xiao, B. Wu, A. Cabellos-Aparicio,
and P. Barlet-Ros, “Ignnition: Bridging the gap between graph neural networks and
networking systems,” Netwrk. Mag. of Global Internetwkg., vol. 35, no. 6, p. 171-177,
nov 2021.

R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez, and I. Stoica, “Tune:
A research platform for distributed model selection and training,” arXiv preprint
arXiw:1807.05118, 2018.

A. B. Birchfield, T. Xu, K. M. Gegner, K. S. Shetye, and T. J. Overbye, “Grid
structural characteristics as validation criteria for synthetic networks,” IEEE Trans.
Power Syst., vol. 32, no. 4, pp. 3258-3265, 2017.

K. Xu, M. Zhang, J. Li, S. S. Du, K.-I. Kawarabayashi, and S. Jegelka, “How neural
networks extrapolate: From feedforward to graph neural networks,” in Proc. ICLR,
2021.

B. Gou, “Optimal placement of pmus by integer linear programming,” IEEE Trans.
Power Syst., vol. 23, pp. 1525 — 1526, 09 2008.

138

BIBLIOGRAPHY

[156]

[157]

[158]

[159]

[160]

[161
[162]
[163

[164]
[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

J. Zhao, A. Gémez-Expdsito, M. Netto, L. Mili, A. Abur, V. Terzija, I. Kamwa, B. Pal,
A. K. Singh, J. Qi et al., “Power system dynamic state estimation: Motivations,
definitions, methodologies, and future work,” IEEE Trans. Power Syst., vol. 34, no. 4,
pp. 3188-3198, 2019.

A. Auten, M. Tomei, and R. Kumar, “Hardware acceleration of graph neural networks,”

in Proc. DAC. ACM/IEEE, 2020, pp. 1-6.

S. Munikoti, D. Agarwal, L. Das, and B. Natarajan, “A general framework for quanti-
fying aleatoric and epistemic uncertainty in graph neural networks,” Neurocomputing,
vol. 521, pp. 1-10, 2023.

R. C. Dugan, R. F. Arritt, T. E. McDermott, S. M. Brahma, and K. Schneider,
“Distribution system analysis to support the smart grid,” in Proc. PESGM. IEEE,
2010, pp. 1-8.

D. Shirmohammadi, H. Hong, A. Semlyen, and G. Luo, “A compensation-based power
flow method for weakly meshed distribution and transmission networks,” IEEE Trans.
Power Syst., vol. 3, no. 2, pp. 753-762, 1988.

R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731, pp. 34-37, 1966.
R. A. Howard, Dynamic programming and markov processes. John Wiley, 1960.

Astrom, Karl Johan, “Optimal Control of Markov Processes with Incomplete State
Information 1,” J. Math. Anal. Appl., vol. 10, pp. 174-205, 1965.

C. J. C. H. Watkins and P. Dayan, “Q-learning,” Mach. Learn., pp. 279-292, 1992.

V. Mnih et al., “Human-level control through deep reinforcement learning,” Nature,
vol. 518, no. 7540, pp. 529-533, Feb. 2015.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, “Continuous control with deep reinforcement learning.” in Proc. ICLR,
2016.

W. Fedus, P. Ramachandran, R. Agarwal, Y. Bengio, H. Larochelle, M. Rowland, and
W. Dabney, “Revisiting fundamentals of experience replay,” in Proc. ICML, 2020.

M. Li, T. Zhang, Y. Chen, and A. J. Smola, “Efficient mini-batch training for stochastic
optimization,” in Proc. ACM SIGKDD. ACM, 2014, p. 661-670.

R. C. Dugan and T. E. McDermott, “An open source platform for collaborating on
smart grid research,” in Proc. PESGM. 1EEE, 2011, pp. 1-7.

S.-A. Yin and C.-N. Lu, “Distribution feeder scheduling considering variable load
profile and outage costs,” IEEE Trans. Power Syst., vol. 24, no. 2, pp. 652-660, 2009.

M. Kashem, V. Ganapathy, G. Jasmon, and M. Buhari, “A novel method for loss
minimization in distribution networks,” in Proc. DRPT, 2000, pp. 251-256.

S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement learning: Tutorial,
review, and perspectives on open problems,” 2020.

BIBLIOGRAPHY 139

[173] J. Garcia and F. Ferndndez, “A comprehensive survey on safe reinforcement learning,”
J. Mach. Learn. Res., vol. 16, pp. 1437-1480, 2015.

[174] Q. Yang, T. D. Simao, S. Tindemans, and M. T. J. Spaan, “Wecsac: Worst-case soft
actor critic for safety-constrained reinforcement learning,” in Proc. AAAI 2021.

Oeaj O6pazay uuHu caciuagHu geo JoKiIIOpCKe gucepiuayuje, OGHOCHO
goKillopcKOl yMeltiHUUKOI UipojeKitia Koju ce bpaHu Ha YHugep3uiteilly y Hosom
Cagy. Ioiuywen Obpa3ay ykopuuuitiu u3a ilekcitia gokitiopcke gucepiuayuje,
OgHOCHO JOKUOPCKOI yMEUHUYKOI UpojeKuld.

MNnaH TpeTMaHa NofaTaka

Ha3uB npojekTa/ucTpakuBama

ITpumeHa MeTozia AyOOKOr yuera 3a Hafrjefame M ONTHMU3ALMjy e/eKTPOeHepreTCKUX CHCTeMa
(Application of Deep Learning Methods in Monitoring and Optimization of Electric Power Systems)

Ha3uB HHCTHTYLHje/HHCTUTYLMja Y OKBHPY KOJUX Ce CIIPOBOAM HCTPAXXUBaHe

a) dakynTeT TeXHUUKUX HayKa, Y HuBep3uTteT y HoBom Cany

0) McTpakrBauko-pa3BojHA MHCTUTYT 3a BeILTauKy WHTenureHujy Cpouje

Ha3uB nporpama y 0KBHPY KOT Ce pea/iu3yje HCTPaKHBaHbe

UcTpakuBame ce peanusyje y OKBUDY U3pajie JOKTOPCKe JAucepTalLuje Ha CTYJ1jCKOM

nporpamy EHepreTuka, e/leKTpOHHKA U TelleKOMyHHUKaLIHje.

1. Onuc nmogaTraka

1.1 Bpcra cryguje

Ykpaiuiko otiucatiu tull citiyguje y okeupy Koje ce logayu Upuxkyisbajy

Y oBoj cTyAHju HUCY NPUKYIUbaHU MOJALH.

1.2 Bpcre noparaka
a) KBaHTUTaTUBHU

0) KBaJIMTAaTUBHU

1.3. HauuH npuKyIbama rnojaraka
a) aHKeTe, YITUTHULY, TeCTOBU
0) K/IMHUYKeE MPOLieHe, MeAULIMHCKY 3aTIiCH, e/IeKTPOHCKH 3/IpaBCTBEHH 3aTUCH

B) T€HOTUIIOBH: HaBE€CTU BPCTY

F) dIMUHUCTPATUBHU T10JdLIN: HABECTU BPCTY

[l) y30pLi TKMBA: HAaBeCTH BPCTY.

1)) caumiy, dhotorpaduje: HaBeCTH BPCTY

€) TeKCT, HaBeCTH BPCTY

Ha].[l/IOHEl]IHI/I TMopTal OTBOPEHE HaykKe — open.ac.rs

’K) Maria, HaBeCTH BPCTY

3) 0CTaJI0: OMMCaTH

1.3 @opMaT rnogaTaka, yTIOTpE6]'beHe CKaJie, KOJIMUKHAa I10/jaTaKa

1.3.1 ¥Ynotpe6/benu codTBep U hopmMaT JaToTeke:

a) Excel dajn, maroteka

b) SPSS dajn, naroreka

¢) PDF cajn, gatoreka

d) Tekct dajs1, maToTeKka

e) JPG dajs, matoTeka

f) Ocrano, garoreka

1.3.2. Bpoj 3anuca (Ko KBaHTUTAaTUBHUX T0/jaTaKa)

a) 6poj Bapujabsn

0) 6poj Mepema (MCMUTAaHUKA, MPOI[eHa, CHUMAaKa U CJ1.)
1.3.3. IloHOB/bEHA Mepema
a) Ja

0) He

YKo/uKo je 0Ar0BOD A, OATOBOPUTH Ha crejieha muTama:

a) BPeMEHCKU pa3MaK U3Me/ljy IIOHOB/beHUX Mepa je

0) BapujabJie Koje ce BHIIIe ITyTa Mepe 0JJHOCe Ce Ha

B) HOBe Bep3uje (aj/ioBa Kojy caJpyke TIOHOB/beHA Mepetha Cy UMEeHOBaHe Kao
Haromene:

Ha nu popmaitiu u codpiugep omoiyhasajy gemerse U gylopouHy anugHociu logaiuaka?
a) /a
6) He

Ako je ogiosop He, 0bpazodicuitiu

HaupoHasiHu rmopTan 0TBOpeHe HayKe — Open.ac.rs

2. IIpuxyiubame nojaraka

2.1 Metogoioryja 3a NpUKyIlbambe/TeHepucame rojaraka

2.1.1. Y oKBHpY KOI' UCTPa)KMBaUKOI HallpTa Cy NOJaLy IPUKYTJbEHU?

El) €KCIIepUMEHT, HABeCTH TUII

0) Kope/ariuoHO UCTPAXKHUBakhe, HABECTH THII

11) aHa/IM3a TeKCTa, HaBeCTH THUII

Il) 0CTaso0, HaBeCTH I1ITa

2.1.2 Haseciliu 8pcille MepHUXx UHCIIpyMeHaila uau ciiaHgapge iiogaiuaka ciieyuguunux 3a ogpeleHy
HayuHy gucyuiltuHy (ako tiocitoje).

2.2 KBasvreT nojiaTaka v CTaHAapau

2.2.1. TpetMaH HefjocTajyhux rojaraka

a) [la 1 martpua cafip>xu HegocTajyhe nozjatke? [la He

AKo je oaroBOp /1a, OATOBOPUTHU Ha cjiefieha rmuTama:

a) Konuku je 6poj HegocTajyhux rmojaTaka?
0) Ia nv ce KOPUCHUKY MaTpuLie Tpernopyyyje 3amMeHa HefiocTajyhux nozpartaka? la He
B) AKo je oAroBOp [la, HABECTH CyTecTHje 3a TpeTMaH 3aMeHe HeZiocTajyhux mojaTaka

2.2.2. Ha KOju HauMH je KOHTPOJIMCAH KBa/IMTeT rnogaraka? Onucatu

HaryoHa/HY 1I0pTan OTBOpEeHe HayKe — Open.ac.rs

2.2.3. Ha Koju HauMH je M3BpLLIeHa KOHTPO/Ia YHOCA [oJaTaka y MaTpuLly?

3. Tperman nojaraka u npareha fokymeHranuja

3.1. TpeTMaH 1 yyBame rojaTaka

3.1.1. IMTogayu he 6uitiu gelioHO8AHU y peuto3utiopujym.

3.1.2. URL agpeca

3.1.3. DOI

3.1.4. /Ta au he fiogayu 6uituu y otugopeHom upucityity ?

a) Ja
6) Ha, anu tiocne embapia koju he tipajaitiu go
8) He

AKo je oglosop He, Hasecilu pasnol

3.1.5. IMogayu Hehe buitiu gelioHosaHu y pelio3uitiopujym, aiu he 6uitiu yyeaHu.

Obpasnodicerse

3.2 MeTtanofauy 1 JOKyMeHTaLja rnojaraka

3.2.1. Koju cTangap/, 3a Metarnoatke he OUTH mpuMermeH?

3.2.1. HaBectu MeTamno/iaTke Ha OCHOBY KOJUX Cy M0O/laLiy IeTIOHOBaHU Y PellO3UTOPHjYM.

HaryoHa/HY 1I0pTan OTBOpEeHe HayKe — Open.ac.rs

AKo je liolipebHo, Haseciliu Meilioge Koje ce Kopucilie 3a tipey3umarse ogallaka, aHaauttiuuke u
fipoyegypante uHopmayuje, wUxo080 KOgupare, geilid/bHe oliuce eapujabau, 3aiiuca uiug.

3.3 CTpareruja u cTaHZapy 3a YyBamwe IMojaTaka

3.3.1. o kor niepuoga he mogauy OUTH UyBaHU y PETIO3UTOPUjyMY?

3.3.2. la nu he mozaru 6uty feroHoBaHM o mMdpom? Ta He

3.3.3. [a nu he mmdpa 6utk goctynHa ogpefieHoMm Kpyry uctpakuBava? [la He

3.3.4. [la v ce nofai MOPajy YKJIOHWTU U3 OTBOPEHOT TIPUCTYTA M0C/Ie N3BECHOT BpeMeHa?
Ha He

O06pasnoKUTH

4. Be30eJHOCT MO/jaTaKa M 3aIITHTA MOBep/HUBUX UH(OpMaIHja

Ogaj oge/bak MOPA OuTH TTOIYH:-€H aKO Ballly TIOJAM YK/BYUYjy JIMUHE TI0/jaTKe KOjUu Ce OJHOCe Ha
YyUeCHHKE Y UCTPaKMBamby. 3a Ipyra UCTpaKUBamba Tpeba Takolje pa3sMOTPUTH 3aIlITUTY U CUTYPHOCT
roJlaTaka.

4.1 dopmaHM CTaHAAP/Y 3a CUTYPHOCT MH(OPMalyja/mogaTaka

VcTpakvBauu KOjU CIIPOBOJE UCITMTHBAbA C JbyJUMa MOpPajy Jia Cce TPU/pyKaBajy 3akoHa O 3alliTUTH
rofiaTaka o uuHocTH (https://www.paragraf.rs/propisi/zakon o _zastiti podataka o licnosti.html) u
oJiroBapajyher MHCTUTYI[MOHATHOT KO/IEKCA O aKaJ[eMCKOM UHTErPUTETY .

4.1.2. [1a nv je ucTpakuBarmbe 0100peHo o7 cTpaHe eTHuke Komucuje? [la He

AKxo je ogrosop [la, HaBeCTH JaTyM U Ha3WB eTHUKe KOMHUCHje Koja je 000pusia NCTpakKuBambe

HaryoHa/HY 1I0pTan OTBOpEeHe HayKe — Open.ac.rs

4.1.2. Ja nv nnojauy yK/byuyjy JIMUHe T0/jaTKe yYeCHUKa y UcTpakusamwy? Ila He

AKo je oaroBOp [la, HaBeUTE Ha KOjU HAUMH CTe€ OCUTYPaJIH TIOBEP/BUBOCT M CUTYPHOCT MH(MOpMaIiyja
Be3aHUX 3a UCIUTAHUKeE:

a) IMogaty HUCY y OTBOPEHOM MPUCTYITY
0) [Mogauy cy aHOHUMHU3UPaHU
1) Ocrarno, HaBeCTH IITa

5. locTynHOCT mojaTaka

5.1. ITogayu he 6uiuu
a) jagHo gociuyiiHu
6) gociuyiiHu camo yckom Kpyly ucitipaxcueaua y ogpeljeHoj HayuHoj obaacitiu

Uy) 3aiugopeHu

AKo cy tlogayu gocilyluHU camo YCKOM KpyLy Uclipajugaud, Hagectlu Uog KOjuM yca08umd Moly ga ux
Kopuctue:

Ako cy llogayu gocilyiiHu camo YCKOM KpyLy UCtpax)cugayd, Hageciiu Ha Koju HaYuH Moly
upuctuytiutuu togayuma:

5.4. Haeecitiu auyeHyy tiog kojom he tipukyii/beHu ogayu buitiu apxueupaHu.

6. Yiore v 0AT0OBOPHOCT

6.1. Hasecitiu ume u iipe3ume u meja agpecy eadcHuka (ayituopa) iogatiaka

HaryoHa/HY 1I0pTan OTBOpEeHe HayKe — Open.ac.rs n

6.2. Hasecitiu ume u fipe3ume u meja agpecy ocobe Koja ogpacaga maitipuyy ¢ iiogayuma

6.3. Hagecitiu ume u Upe3ume u Meja agpecy ocobe Koja omoiyhyje Upucitiyli logayuma gpyium

ucwpancusayuma

HaupoHasiHu rmopTan 0TBOpeHe HayKe — Open.ac.rs

	List of Publications
	List of Figures
	List of Tables
	Abstract
	Abbreviations
	Introduction
	Deep Learning Fundamentals
	Convolutional Neural Networks
	Recurrent Neural Networks
	Graph Neural Networks
	Deep Reinforcement Learning
	Power System State Estimation using Graph Neural Networks
	Dynamic Distribution Network Reconfiguration based on Deep Reinforcement Learning

	I State Estimation and Graph Neural Networks
	Power System State Estimation
	Foundational Concepts
	Linear State Estimation
	Nonlinear State Estimation

	Graph Neural Networks
	Overview of Machine Learning on Graphs
	Graphs
	Common Tasks of Machine Learning on Graphs
	The Need for Graph Representation Learning
	Graph Representation Learning
	Graph Representation Learning using GNNs

	Theoretical Foundations of Spatial Graph Neural Network
	Graph Attention Networks

	Practical Aspects of Graph Neural Networks

	Graph Neural Network-based State Estimation
	Power System Factor Graph Augmentation
	Proposed GNN Architecture
	Computational Complexity and Distributed Inference

	Numerical results
	Linear State Estimation
	Scalability and Sample Efficiency Analysis of Linear State Estimation
	Nonlinear State Estimation

	Summary and future work

	II Dynamic Distribution Network Reconfiguration and Reinforcement Learning
	Dynamic Distribution Network Reconfiguration
	Distribution Network Reconfiguration
	Mathematical Formulation of the DDNR Problem
	Objective Function
	Constraints

	Reinforcement Learning
	Finite Markov Decision Processes
	Q-Learning
	Deep Q-learning

	Reinforcement Learning based Dynamic Distribution Network Reconfiguration
	Modelling Dynamic Distribution Network Reconfiguration as a Markov Decision Process
	Training and Evaluation Algorithms
	Numerical Results
	Benchmark Test Examples
	Real-Life Large-Scale Distribution Network
	IEEE 33-bus Radial System

	Summary and future work

	Conclusions
	Bibliography

