
УНИВЕРЗИТЕТ У НОВОМ САДУ

ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА

Вероватносно закључивање у
израчунавању и теорији
функционалних типова

ДОКТОРСКА ДИСЕРТАЦИЈА

Probabilistic reasoning in computation
and simple type theory

DOCTORAL DISSERTATION

Ментори: Кандидат:
Проф. др Силвиа Гилезан Симона Прокић
Др Зоран Огњановић

Нови Сад, 2023. године

УНИВЕРЗИТЕТ У НОВОМ САДУ ОБРАЗАЦ – 5а
ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА

КЉУЧНA ДОКУМЕНТАЦИЈСКА ИНФОРМАЦИЈА1

Врста рада: Докторска дисертација

Име и презиме
аутора:

Симона Прокић

Ментор (титула,
име, презиме,
звање, институција)

Проф. др Силвиа Гилезан, редовни професор, Факултет техничких
наука, Универзитет у Новом Саду
др Зоран Огњановић, научни саветник, Математички институт
српске академије наука и уметности, Београд

Наслов рада:
Вероватносно закључивање у израчунавању и теорији
функционалних типова

Језик публикације
(писмо):

Енглески (латиница)

Физички опис рада:

Унети број:
Страница 179
Поглавља 6
Референци 169
Табела 0
Слика 2
Графикона 0
Прилога 0

Научна област: Примењена математика

Ужа научна област
(научна
дисциплина):

Теоријска и примењена математика (Логика у рачунарству)

Кључне речи /
предметна
одредница:

Вероватносно програмирање, ламбда рачун, комбинаторна логика,
теорија типова, Крипкеова семантика, потпуност, вероватносна
логика

Резиме на језику
рада:

Теза истражује два различита приступа за вероватносно
закључивање у моделима израчунавања. Најчешћи приступ се
састоји у проширењу ламбда рачуна вероватносним оператором
избора што резултира вероватносним израчунавањем. То се
показало веома корисним и примењивим у разним областима, на
пример у роботици, обради природног језика и машинском учењу.
Други приступ јесте да проширимо језик рачуна вероватносним
операторима и добијемо модел за вероватносно закључивање о
типизираном рачуну у стилу вероватносне логике.

Најпре проучавамо вероватносни ламбда рачун проширен лет-ин

1 Аутор докторске дисертације потписао је и приложио следеће Обрасце:
5б – Изјава о ауторству;
5в – Изјава o истоветности штампане и електронске верзије и о личним подацима;
5г – Изјава о коришћењу.
Ове Изјаве се чувају на факултету у штампаном и електронском облику и не кориче се са тезом.

оператором где је примењена лења позив-по-имену стратегија
евалуације, и изучавамо проблем еквиваленције програма у овом
окружењу. Како је проблем доказивања контекстне еквиваленције
доста изазован, истраживали смо ефикасне методе за доказивање
еквиваленције програма. Вероватносна апликативна бисимулација
се показала као одговарајући алат за доказивање еквиваленције
програма у вероватносном окружењу. Доказујемо да је
вероватносна апликативна бисимулација потпуно апстрактна у
односу на контекстну еквиваленцију у вероватносном ламбда
рачуну са лет-ин оператором.

Затим уводимо Крипкеову семантику за целу комбинаторну
логику са функционалним типовима, односно комбинаторну
логику са функционалним типовима проширену типовима
производа, типовима суме, празним типом и јединичним типом.
Крипкеову семантику дефинишемо као Крипкеову апликативну
структуру, која је екстензионална и има елементе који одговарају
основним комбинаторима, и којој је придружена валуација
променљивих. Доказујемо да је цела комбинаторна логика са
функционалним типовима сагласна и потпуна у односу на уведене
семантике.

Уводимо логику комбинаторне логике, то јест исказно проширење
комбинаторне логике са функционалним типовима. Доказујемо да
је аксиоматизација логике комбинаторне логике сагласна и
потпуна у односу на предложену семантику. Даље, показујемо да
је уведена семантика нова семантика за комбинаторну логику са
функционалним типовима проширену правилом типизирања које
осигурава да једнаки терми имају исти тип.

На крају, уводимо вероватносно проширење логике комбинаторне
логике. Логику комбинаторне логике смо проширили са
вероватносним операторима и добили модел за вероватносно
закључивање о типизираним комбинаторним термима.
Показујемо да је аксиоматизација логике сагласна и јако потпуна
у односу на предложену семантику.

Датум прихватања
теме од стране
надлежног већа:

25. 2. 2021.

Датум одбране:
(Попуњава
одговарајућа
служба)
Чланови комисије:
(титула, име,
презиме, звање,
институција)

Председник:
др Јелена Иветић, ванредни професор, Факултет техничких наука,
Универзитет у Новом Саду

Члан:
др Микеле Пагани, редовни професор, Laboratoire de l’Informatique
du Parallélisme, École Normale Supérieure de Lyon, Француска

Члан:
др Зоран Петрић, научни саветник, Математички институт српске
академије наука и уметности, Београд

Члан:
др Јована Обрадовић, научни сарадник, Математички институт
српске академије наука и уметности, Београд

Члан, ментор:
др Силвиа Гилезан, редовни професор, Факултет техничких наука,
Универзитет у Новом Саду

Члан, ментор:
др Зоран Огњановић, научни саветник, Математички институт
српске академије наука и уметности, Београд

Напомена:

UNIVERSITY OF NOVI SAD
FACULTY OF TECHNICAL SCIENCES

KEY WORD DOCUMENTATION2

Document type: Doctoral dissertation

Author: Simona Prokić

Supervisor (title,
first name, last
name, position,
institution)

Prof. dr. Silvia Ghilezan, Full Professor, Faculty of Technical
Sciences, University of Novi Sad
dr. Zoran Ognjanović, Research Professor, Mathematical Institute of
the Serbian Academy of Sciences and Arts, Belgrade

Thesis title: Probabilistic reasoning in computation and simple type theory

Language of text
(script): English language

Physical description:

Number of:
Pages 179
Chapters 6
References 169
Tables 0
Illustrations 2
Graphs 0
Appendices 0

Scientific field: Applied Mathematics

Scientific subfield
(scientific
discipline):

Theoretical and Applied Mathematics (Logic in Computer Science)

Subject, Key words:
Probabilistic programming, lambda calculus, combinatory logic, type
theory, Kripke-style semantics, completeness, probability logic

Abstract in English
language:

This thesis investigates two different approaches for probabilistic
reasoning in models of computation. The most usual approach is to
extend the language of untyped lambda calculus with probabilistic
choice operator which results in probabilistic computation. This
approach has shown to be very useful and applicable in various fields,
e.g. robotics, natural language processing, and machine learning.
Another approach is to extend the language of a typed lambda calculus
with probability operators and to obtain a framework for probabilistic
reasoning about the typed calculus in the style of probability logic.

First, we study the lazy call-by-name probabilistic lambda calculus
extended with let-in operator, and program equivalence in the calculus.
Since the proof of context equivalence is quite challenging, we

2 The author of doctoral dissertation has signed the following Statements:
 5б – Statement on the authority,
 5в – Statement that the printed and e-version of doctoral dissertation are identical and about personal data,
 5г – Statement on copyright licenses.
 The paper and e-versions of Statements are held at he faculty and are not included into the printed thesis.

investigate some effective methods for proving the program
equivalence. Probabilistic applicative bisimilarity has proved to be a
suitable tool for proving the context equivalence in probabilistic
setting. We prove that the probabilistic applicative bisimilarity is fully
abstract with respect to the context equivalence in the probabilistic
lambda calculus with let-in operator.

Next, we introduce Kripke-style semantics for the full simply typed
combinatory logic, that is, the simply typed combinatory logic
extended with product types, sum types, empty type and unit type. The
Kripke-style semantics is defined as a Kripke applicative structure,
which is extensional and has special elements corresponding to basic
combinators, provided with the valuation of term variables. We prove
that the full simply typed combinatory logic is sound and complete
with respect to the proposed semantics.

We introduce the logic of combinatory logic, that is, a propositional
extension of the simply typed combinatory logic. We prove that the
axiomatization of the logic of combinatory logic is sound and strongly
complete with respect to the proposed semantics. In addition, we prove
that the proposed semantics is the new semantics for the simply typed
combinatory logic containing the typing rule that ensures that equal
terms inhabit the same type.

Finally, we introduce the probabilistic extension of the logic of
combinatory logic. We extend the logic of combinatory logic with
probability operators and obtain a framework for probabilistic
reasoning about typed combinatory terms. We prove that the given
axiomatization of the logic is sound and strongly complete with respect
to the proposed semantics.

Accepted on
Scientific Board on:

25. 2. 2021.

Defended:
(Filled by the faculty
service)

Thesis Defend
Board:
(title, first name, last
name, position,
institution)

President:
dr. Jelena Ivetić, Associate Professor, Faculty of Technical Sciences,
University of Novi Sad

Member:
dr. Michele Pagani, Full Professor, Laboratoire de l’Informatique du
Parallélisme, École Normale Supérieure de Lyon, France

Member:
dr. Zoran Petrić, Research Professor, Mathematical Institute of the
Serbian Academy of Sciences and Arts, Belgrade

Member:
dr. Jovana Obradović, Research Assistant Professor, Mathematical
Institute of the Serbian Academy of Sciences and Arts, Belgrade

Member, Mentor:
dr. Silvia Ghilezan, Full Professor, Faculty of Technical Sciences,
University of Novi Sad

Member, Mentor:
dr. Zoran Ognjanović, Research Professor, Mathematical Institute of
the Serbian Academy of Sciences and Arts, Belgrade

Note:

Acknowledgements

I would like to express my deepest appreciation to my mentors Professor Silvia
Ghilezan and Professor Zoran Ognjanovi¢ for their invaluable advice, contin-
uous support, and patience during my PhD study. Their immense knowledge
and plentiful experience have encouraged me in all the time of my academic
research and daily life. Words cannot express my gratitude to Professor Sil-
via Ghilezan for making the past years much more enjoyable and showing me
that research is much more than writing papers. I am extremely grateful to
Professor Zoran Ognjanovi¢ who was always there for discussions and gave
outstanding feedback.

I could not have undertaken this journey without my family. I am deeply
grateful to my parents Ðor�a and Jovanka for their unwavering support and
boundless love. Your encouragement, sacri�ces and faith in me have been a
constant source of motivation. To my sisters Ður�ina and Sa²ka, thank you
for always being there for me. You have been my rocks, my con�dantes, and
my biggest supporters. I would not be the same without you, and I am lucky
to have grown up with you.

I want to acknowledge my friends for the support that they have given me
over the years. You have been a great source of comfort, love and inspiration.

I also express my gratitude to all the colleagues at the Chair of Mathematics
at Faculty of Technical Sciences for their help and support. Thank you for
being such a wonderful group of people, both in and out of the o�ce.

I would also like to thank the members of my dissertation committee, Pro-
fessor Jelena Iveti¢, Professor Michele Pagani, Professor Zoran Petri¢, and
Professor Jovana Obradovi¢, for their valuable feedback, insights, and sugges-
tions that helped me to improve my work.

Finally, I want to express my deepest appreciation and love to my husband,
Aleksandar, your support, patience, and love have been the foundation upon
which I completed this thesis. Your presence in my life has been the most
cherished and motivating aspect of this journey. Thank you supporting my
dreams, and encouraging me when times are tough.

To my grandfather

Abstract

Over the last decades reasoning about uncertain knowledge has gained an
important role in computer science and arti�cial intelligence. This resulted
in the development of di�erent probabilistic models of uncertainty. Since λ-
calculus and combinatory logic are models of computation that are suitable
for expressing the concepts of programming languages, di�erent approaches of
introducing probabilistic reasoning in λ-calculus and combinatory logic have
been studied.

This thesis investigates two di�erent approaches for probabilistic reason-
ing in these calculi. The most usual approach is to extend the language of
untyped λ-calculus with probabilistic choice operator which results in proba-
bilistic computation. This approach has shown to be very useful and applicable
in various �elds, e.g. robotics, natural language processing, and machine learn-
ing. Another approach is to extend the language of a typed λ-calculus with
probability operators and to obtain a framework for probabilistic reasoning
about the typed calculus in the style of probability logic.

The thesis is organized into six chapters. The �rst chapter describes his-
torical development of the logics that will be studied in the thesis, and the
last chapter concludes the thesis. The remaining chapters present the results
of the research.

The second chapter studies the lazy call-by-name probabilistic λ-calculus
extended with let-in operator Λ⊕,let, and program equivalence in the calcu-
lus. Since the proof of context equivalence is quite challenging, we investigate
some e�ective methods for proving the program equivalence. Probabilistic ap-
plicative bisimilarity has proved to be a suitable tool for proving the context
equivalence in probabilistic setting. We prove that probabilistic applicative
bisimilarity is fully abstract with respect to the context equivalence in Λ⊕,let.
First, we use Howe's method to prove that probabilistic applicative bisimilarity
is a congruence, thus included in the context equivalence. Next, we introduce
the testing equivalence, which coincides with bisimilarity, and prove that the
context equivalence is included in the testing equivalence, meaning that it is

i

ii

included in the probabilistic applicative bisimilarity as well.
The third chapter introduces Kripke-style semantics for the full simply

typed combinatory logic CL→,×,+, that is, the simply typed combinatory
logic extended with product types, sum types, empty type and unit type. We
present CL→,×,+ through its syntax, operational semantics and type assign-
ment system. The Kripke-style semantics is de�ned as a Kripke applicative
structure, which is extensional and has special elements corresponding to ba-
sic combinators, provided with the valuation of term variables. We prove that
CL→,×,+ is sound and complete with respect to the proposed semantics.

The fourth chapter introduces the logic of combinatory logic LCL, that is,
a propositional extension of the simply typed combinatory logic. We present
the syntax, axiomatization and semantics of LCL. The main contributions of
this chapter are the soundness and strong completeness of the logic LCL with
respect to the proposed semantics. First, we prove that the equational theory
of the simply typed combinatory logic is sound and complete with respect
to the presented semantics. Then, we prove that the axiomatization of LCL
is sound and strongly complete with respect to the proposed semantics. In
addition, we prove that the proposed semantics is the new semantics for the
simply typed combinatory logic containing the typing rule that ensures that
equal terms inhabit the same type.

The �fth chapter introduces the probabilistic extension of the logic of com-
binatory logic PCL. We extend the logic LCL with probability operators of
the form P≥s with the intended meaning �probability is at least s�, and ob-
tain a framework for probabilistic reasoning about typed combinatory terms.
The semantics of PCL is based on the possible world approach, where the
set of possible worlds is equipped with a �nitely additive probability measure.
Due to the non-compactness of the logic, we give an in�nitary axiomatization.
We prove that the given axiomatization is sound and strongly complete with
respect to the proposed semantics.

The results of the thesis have been published in:

� S. Ka²terovi¢ and M. Pagani. The discriminating power of the let-in op-
erator in the lazy call-by-name probabilistic lambda-calculus. In H. Geu-
vers, editor, 4th International Conference on Formal Structures for Com-
putation and Deduction, FSCD 2019, June 24-30, 2019, Dortmund, Ger-
many, volume 131 of LIPIcs, pages 26:1�26:20. Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, 2019. doi: 10.4230/LIPIcs.FSCD.2019.26
URL: https://doi.org/10.4230/LIPIcs.FSCD.2019.26.

� S. Ka²terovi¢ and S. Ghilezan. Kripke-style semantics and completeness
for full simply typed lambda calculus. Journal of Logic and Computa-
tion, 30(8):1567�1608, 2020. doi: 10.1093/logcom/exaa055

iii

URL: https://doi.org/10.1093/logcom/exaa055.

� S. Ghilezan, J. Iveti¢, S. Ka²terovi¢, Z. Ognjanovi¢, and N. Savi¢. Prob-
abilistic reasoning about simply typed lambda terms. In S. N. Artemov
and A. Nerode, editors, Logical Foundations of Computer Science - In-
ternational Symposium, LFCS 2018, Deer�eld Beach, FL, USA, January
8-11, 2018, Proceedings, volume 10703 of Lecture Notes in Computer
Science, pages 170�189. Springer, 2018. doi: 10.1007/978-3-319-72056-
2_11. URL: https://doi.org/10.1007/978-3-319-72056-2_11.

� S. Ghilezan, J. Iveti¢, S. Ka²terovi¢, Z. Ognjanovi¢ and N. Savi¢. To-
wards probabilistic reasoning in type theory - the intersection type case.
In A. Herzig and J. Kontinen, editors, Foundations of Information and
Knowledge Systems-11th International Symposium, FoIKS 2020, Dort-
mund, Germany, February 17-21, 2020, Proceedings, volume 12012 of
Lecture Notes in Computer Science, pages 122�139. Springer, 2020. doi:
10.1007/978-3-030-39951-1_8. URL https://doi.org/10.1007/978-3-030-
39951-1_8.

iv

Contents

Abstract i

Rezime vii
Uvod . vii
Verovatnosno izra£unavanje . ix
Kripkeove semantike za ceo ra£un sa funkcionalnim tipovima xi
Logika kombinatorne logike . xiii
Verovatnosno zaklju£ivanje u teoriji funkcionalnih tipova xv
Rezultati . xviii

1 Introduction 1
1.1 Probabilistic programming . 3
1.2 Possible world semantics . 5
1.3 Probability logics . 6
1.4 Main contributions and the structure of the thesis 7

2 Probabilistic computation 11
2.1 Probabilistic λ-calculus . 13

2.1.1 Syntax . 13
2.1.2 Operational semantics 15
2.1.3 Context equivalence . 19

2.2 Probabilistic applicative bisimulation 22
2.2.1 Similarity is a precoungruence 32

2.3 Full abstraction . 40
2.4 Concluding remarks . 46

3 Kripke-style semantics for full simply typed calculus 49
3.1 Full simply typed combinatory logic 51
3.2 Kripke-style semantics of CL→,×,+ 62
3.3 Soundness and completeness of CL→,×,+ 73

v

vi

3.4 Concluding remarks . 89

4 Logic of combinatory logic 91
4.1 Simply typed combinatory logic 92
4.2 Logic of combinatory logic . 96

4.2.1 Syntax LCL . 96
4.2.2 Axiomatization of LCL 96
4.2.3 Semantics of LCL . 100

4.3 Soundness and completeness of the equational theory 103
4.4 Soundness and strong completeness of the axiomatization of LCL108

4.4.1 Soundness of LCL . 108
4.4.2 Strong completeness of LCL 109

4.5 Soundness and completeness of the simply typed combinatory
logic . 114

4.6 Concluding remarks . 117

5 Probabilistic reasoning in type theory 121
5.1 The logic LPP2 . 122

5.1.1 Syntax LPP2 . 123
5.1.2 Semantics of LPP2 . 124
5.1.3 Axiomatization of LPP2 128
5.1.4 Soundness and strong completeness of LPP2 129

5.2 Syntax PCL . 130
5.3 Semantics of PCL . 131
5.4 Axiomatization of PCL . 136
5.5 Soundness and strong completeness of PCL 140
5.6 Concluding remarks . 150

6 Conclusion 153
6.1 Summary of contributions . 153
6.2 Related work . 156
6.3 Future work . 159

Bibliography 160

Rezime

Uvod

David Hilbert je na me�unarodnom kongresu matemati£ara odrºanom u Parizu
1900. godine odrºao izlaganje koje se smatra jednim od najuticajnijih izlaganja
u oblasti matematike. U tom izlaganju je predstavio program, koji je kasnije
nazvan Hilbertov program, u kome je predstavio 23 matemati£ka problema
za koje je smatrao da treba da budu izu£avani u narednom veku. Jedan od
problema koji je privukao veliku paºnju bio je Problem odlu£ivosti. Hilbert
je verovao da se cela matematika moºe aksiomatizovati. U slu£aju da je to
mogu¢e, postavio je slede¢i problem:

�Da li postoji procedura, tj. algoritam, koji ¢e za proizvoljan
matemati£ki iskaz odlu£iti u kona£no mnogo koraka da li je taj
iskaz ta£an ili neta£an?�

Hilbertova pretpostavka je bila da takav algoritam postoji. Me�utim, ka-
snije je dokazano da takav algoritam ne postoji. Neki od najzna£ajnijih nega-
tivnih odgovora na Problem odlu£ivosti su:

� teoreme nepotpunosti (Kurt Gödel),

� λ-ra£un (Alonzo Church),

� Tjuringove ma²ine (Alan Turing).

Kurt Gödel je 1931. godine objavio dve teoreme nepotpunosti ([68]), ko-
jima je postavio granicu dokazivosti u formalnim aksiomatskim sistemima.
Alonzo Church je ºeleo da postavi osnove matematike koriste¢i pojam funkcije,
umesto skupa. On je uveo λ-ra£un, formalni sistem zasnovan na funkcijama
([27]) i pokazao je da problem jednakosti λ-terma nije odlu£iv. Njegovi u£enici
Kleene i Rosser su pokazali da je taj sistem nekonzistentan ([103]). Ipak, deo si-
stema je bio konzistentan, te je Church izdvojio taj deo i uveo λI-ra£un ([31]).

vii

viii

Nezavisno od Churcha, Alan Turing je uveo novi formalizam, sada poznate
Tjuringove ma²ine ([165]), i pokazao je da problem zaustavljanja Tjuringove
ma²ine (Halting problem) nije odlu£iv. U isto vreme se pojavio jo² jedan
formalni sistem, kombinatorna logika. Osnovne ideje kombinatorne logike je
predstavio jo² Moses Schön�nkel u [155], koje je dalje razvio Haskell Curry
([37]). Ono ²to povezuje sva tri navedena formalna sistema jeste to da su oni
iste izraºajne mo¢i.

� λ-ra£un i rekurzivne funkcije su ekvivalentni. (Kleene)

� λ-ra£un i Tjuringove ma²ine su ekvivalentni. (Turing)

� λ-ra£un i kombinatorna logika su ekvivalentni. (Curry)

Razvoj ovih formalnih sistema je nastavljen uvo�enjem tipova. Tipove je
u kombinatornu logiku uveo Curry ([38]) da bi kontrolisao primenu funkcija.
Prvi koji su uveli tipove u logiku bili su Russell i Whitehead ([168]). U-
pro²¢avanjem njihovog tipskog sistema nastali su funkcionalni tipovi ([144]),
koji su bili osnova za razvoj mnogih tipskih sistema za λ-ra£un ([30]). Pre-
gled razvoja tipova od njihovog uvo�enja u Principia Mathematica ([168]) do
razvoja funkcionalnih tipova u λ-ra£unu ([30]) je predstavljen u [90]. Nakon pr-
vog tipskog sistema za λ-ra£un i kombinatornu logiku, razvijeni su razni tipski
sistemi kao ²to su tipovi sa presekom, polimorfni tipovi, zavisni tipovi i drugi.
Svi ovi tipski sistemi su prona²li primenu u raznim oblastima kao ²to su au-
tomatsko dokazivanje teorema, interaktivno dokazivanje teorema, programski
jezici.

U ovoj tezi predstavljena su i istraºivana £etiri razli£ita formalna sistema:
netipizirani verovatnosni λ-ra£un Λ⊕,let, cela kombinatorna logika CL→,×,+,
logika kombinatorne logike LCL i verovatnosno pro²irenje logike kombinatorne
logike PCL.

Teza je organizovana u ²est poglavlja.
U poglavlju 1 dat je pregled istorijskog razvoja formalnih sistema koji su

izu£avani u tezi. Ovo poglavlje je podeljeno u tri celine. Najpre je dat kratak
uvod u razvoj i zna£aj verovatnosnih programa. Zatim je opisan jedan od
osnovnih problema u ovoj programskoj paradigmi, a to je ekvivalentnost pro-
grama. Dalje, detaljno je opisan istorijski razvoj semantika mogu¢ih svetova
pri £emu su istaknute osnovne karakteristike ovih semantika. Navedeni su
neki od najzna£ajnijih dokaza potpunosti raznih logika u odnosu na semantike
mogu¢ih svetova. Nagla²en je zna£aj Kripkeovih semantika, koje su nastale
kao semantike za modalne logike, ali su kasnije prilago�ene za intuicionisti£ku
logiku, druge neklasi£ne logike, kao i za tipizirani lambda ra£un. Na kraju
ovog poglavlja, opisan je razvoj verovatnosnih logika od anti£kog vremena do
danas.

ix

Verovatnosno izra£unavanje

Poglavlje 2 izu£ava verovatnosni λ-ra£un. Tokom poslednjih decenija zaklju£i-
vanje u prisustvu neizvesnosti je dobilo vaºnu ulogu u ra£unarstvu i ve²ta£koj
inteligenciji. To je rezultiralo razvojem razli£itih alata koji se bave neizve-
sno²¢u i jedan primer takvih alata su verovatnosni modeli. Verovatnosni mo-
deli su veoma korisni i primenjivi u razli£itim oblastima, kao ²to su robotika
([163]), ma²insko u£enje ([135]) i obrada prirodnog jezika ([117]). Da bi se
opisali verovatnosni modeli, razvijeni su verovatnosni programski jezici, koji
su inspirisani razli£itim programskim paradigmama (funkcionalna, impera-
tivna, objektno-orijentisana i druge). Dodavanjem verovatnosnog operatora
deterministi£kom jeziku dobijamo novu programsku paradigmu verovatnosno
izra£unavanje. Vrsta deterministi£kih jezika pogodnih za verovatnosna izra£u-
navanja jesu funkcionalni programski jezici. Kako su funkcionalni programski
jezici bazirani na λ-ra£unu, verovatnosni λ-ra£un je postao vaºna tema istraºi-
vanja.

Jedan od glavnih problema u verovatnosnom programiranju jeste dokazi-
vanje ekvivalentnosti dva programa. Dokaz ekvivalentnosti programa u jezici-
ma vi²eg reda nije jednostavan zadatak, jer treba pokazati da se programi
pona²aju isto u svim kontekstima, a njih ima beskona£no mnogo. Stoga je
cilj prona¢i e�kasniju metodu za utvr�ivanje ekvivalentnosti programa. Alat
koji se pokazao kao pogodan za ispitivanje ekvivalentnosti programa jeste bisi-
mulacija. Bisimulacija je prvu put uvedena u konkurentnom ra£unarstvu kao
relacija koja karakteri²e pona²anje procesa ([122, 133]). Kasnije je relacija
bisimulacije izu£avana i u λ-ra£unu. Abramsky je uveo pojam aplikativne
bisimulacije u jezike vi²eg reda ([1]), a Larsen i Skou su uveli pojam verova-
tnosne bisimulacije za ozna£ene lance Markova ([111]). Iz ove dve relacije
je proiza²la nova relacija bisimulacije poznata kao verovatnosna aplikativna
bisimulacija, koja je pogodna za ispitivanje ekvivalentnosti verovatnosnih pro-
grama ([35, 36, 47]). Ono ²to £ini bisimulaciju mo¢nom metodom je £injenica
da je dovoljno na¢i jednu relaciju bisimulacije koja sadrºi dva terma da bismo
pokazali da su ta dva terma bisimilarna. Odnosno, bisimilarnost dva terma
je de�nisana pomo¢u egzistencijalnog kvanti�katora za razliku od kontekstne
ekvivalencije koja je de�nisana preko univerzalnog kvanti�katora.

Bisimulacija je korisna samo ukoliko je saglasna u odnosu na kontekstnu
ekvivalenciju. Saglasnost bisimulacije se naj£e²¢e pokazuje primenom Howe-
ovog metoda ([84]). Primena bisimulacije u dokazivanju verovatnosnih pro-
grama je izu£avana u raznim okruºenjima ([35, 36, 43, 44, 47, 48]). U izra£u-
navanju postoje razli£ite strategije za evaluaciju programa kao ²to su poziv-
po-imenu (call-by-name), poziv-po-vrednosti (call-by-value), poziv-po-potrebi
(call-by-need) i druge. U tezi su posmatrane dve strategije: poziv-po-imenu i

x

poziv-po-vrednosti. U okruºenju gde je primenjena strategija poziv-po-imenu,

term (λx.M)N se redukuje na term M{N/x} za bilo koji term N ,

pri £emuM{N/x} predstavlja term koji se dobija zamenom slobodnih pojavlji-
vanja promenljive x u termuM termom N . Sa druge strane, ako je primenjena
poziv-po-vrednosti strategija,

term (λx.M)V se redukuje na term M{V/x} samo ako je V izra£unata
vrednost.

Drugim re£ima, u poziv-po-imenu strategiji neophodno je najpre izvr²iti re-
dukciju argumenta i tek onda se dobijena vrednosti prosle�uje funkciji.

Rad predstavljen u drugom poglavlju teze je motivisan rezultatima pre-
dstavljenim u [35] i [47], gde su autori izu£avali verovatnosni λ-ra£un, to jest
λ-ra£un pro²iren verovatnosnim operatorom izbora. U radu [35], Crubillé i Dal
Lago posmatrali su ra£un u kome je primenjena poziv-po-vrednosti strategija
i pokazano je da se verovatnosna aplikativna bisimulacija i kontekstna ekviva-
lencija poklapaju. Sa druge strane, u radu [47] Dal Lagi, Sangiorgi i Alberti
posmatrali su ra£un u kome je primenjena poziv-po-imenu strategija i pokazano
je da je verovatnosna aplikativna bisimulacija sadrºana u kontekstnoj ekviva-
lenciji, ali da se one ne poklapaju. Termi koji £ine razliku izme�u ove dve
relacije su termi

M = λx.λy.(x⊕ y) i N = (λx.λy.x)⊕ (λx.λy.y),

koji su u datom ra£unu kontekstno ekvivalentni i nisu bisimilarni. Pored toga,
autori su pretpostavili da bi se dodavanjem operatora sekvenciranja dobio
ra£un u kome se verovatnosna aplikativna bisimulacija poklapa sa kontekstnom
ekvivalencijom. Ova pretpostavka je potvr�ena u publikovanom radu

[99] S. Ka²terovi¢ and M. Pagani. The discriminating power of the let-in op-
erator in the lazy call-by-name probabilistic lambda-calculus. In H. Geu-
vers, editor, 4th International Conference on Formal Structures for Com-
putation and Deduction, FSCD 2019, June 24-30, 2019, Dortmund, Ger-
many, volume 131 of LIPIcs, pages 26:1�26:20. Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, 2019. doi: 10.4230/LIPIcs.FSCD.2019.26.
URL: https://doi.org/10.4230/LIPIcs.FSCD.2019.26.

na koji se i oslanja drugo poglavlje teze.
U ovom poglavlju predstavljen je verovatnosni λ-ra£un Λ⊕,let, odnosno

netipizirani λ-ra£un pro²iren sa dva operatora: verovatnosnim operatorom
izbora ⊕ i let-in operatorom. U ra£unu je implementirana lenja poziv-po-imenu

xi

strategija evaluacije. Verovatnosni operator ⊕ predstavlja izbor, u smislu da
se term M ⊕ N redukuje na terme M i N sa istom verovatno¢om. Opera-
tor let-in opona²a poziv-po-vrednosti strategiju evaluacije u datom okruºenju.
Izu£avali smo problem ekvivalencije programa u Λ⊕,let-ra£unu. Pored konte-
kstne ekvivalencije posmatrali smo jo² dve relacije ekvivalencije: bisimulaciju
i ekvivalenciju testiranjem.

Najpre smo operacionu semantiku Λ⊕,let-ra£una predstavili kao ozna£en
lanac Markova, a onda smo uveli pojam verovatnosne aplikativne bisimulacije
za Λ⊕,let-ra£un. Prvi rezultat ovog poglavlja je dokaz da je verovatnosna aplika-
tivna bisimulacija kongruencija, ²to smo pokazali pomo¢u Hoveovog metoda
([84]). Kao posledicu ovog rezultata dobili smo da je verovatnosna aplika-
tivna bisimulacija sadrºana u kontekstnoj ekvivalenciji. Da bismo pokazali
suprotan smer, odnosno da je kontekstna ekvivalencija sadrºana u verovatno-
snoj aplikativnoj bisimulaciji, uveli smo pojam testa u Λ⊕,let-ra£un po ugledu
na [35]. Pomo¢u testova smo de�nisali novu relaciju ekvivalencije na skupu
termova, koju smo nazvali ekvivalencija testiranjem. Dva terma su u relaciji
ekvivalencije testiranjem ako je svaki test uspe²no izvr²en sa istom verova-
tno¢om na oba terma. Ekvivalencija testiranjem se poklapa sa verovatnosnom
aplikativnom bisimulacijom ([47]). Drugi zna£ajan doprinos ovog poglavlja
jeste dokaz da za svaki test postoji kontekst takav da je verovatno¢a uspe²nosti
testa primenjenog na neki term jednaka verovatno¢i konvergencije terma koji
se dobija primenom konteksta na dati term. Zatim, koriste¢i ovaj rezultat
pokazali smo da je kontekstna ekvivalencija sadrºana u ekvivalenciji testiranja.
Stoga, sve tri relacije ekvivalencije se poklapaju.

Kripkeove semantike za ceo ra£un sa funkciona-

lnim tipovima

Poglavlje 3 prou£ava CL→,×,+-ra£un, odnosno kombinatornu logiku sa funkci-
onalnim tipovima, koja je pro²irena tipovima proizvoda, tipovima sume, pra-
znim tipom i jedini£nim tipom. Uveli smo Kripkeovu semantiku za CL→,×,+-
ra£un.

Kripkeova semantika je jedna od najpopularnijih semantika mogu¢ih sve-
tova. Moderno doba razvoja semantika mogu¢ih svetova zapo£eo je Pierce ([75,
76]). On je smatrao da kondicionale treba analizirati pomo¢u kvanti�kacije nad
mogu¢im svetovima:

Kvanti�kovani subjekt hipoteti£kog iskaza je mogu¢nost ili mogu¢i
slu£aj ili mogu¢e stanje stvari.

Tokom razvoja semantika mogu¢ih svetova, istraºiva£i su se vodili slede¢im

xii

idejama:

� analiza modaliteta pomo¢u kvanti�kacije nad mogu¢im slu£ajevima,

� potreba binarne relacije kao relacije dostiºnosti izme�u svetova,

� traganje za dokazom kompletnosti.

Na razvoj semantika mogu¢ih svetova je zna£ajan uticaj imao i Wittgen-
stein ([169]), koji uveo ideju logi£kog prostora i koji je smatrao da su tvrdnje
sme²tene u prostoru. Ove ideje su dovele do razvoja formalne semantike za
modalnu logiku S5, koju je uveo Carnap ([26, 149]). Semantika koju je uveo
Carnap nije imala relaciju dostiºnosti svetova.

Binarnu relaciju izme�u svetova su prvi put uveli Prior i Meredith ([121]).
Prior je razvio temporalnu logiku zamenjuju¢i modalne operatore nuºnosti
i mogu¢nosti operatorima vremena ([140�143]), eksplicitno je uveo binarnu
relaciju i interpretirao je kao relaciju dostiºnosti.

Prve dokaze potpunosti predstavili su Bayart, Hintikka i Kripke. Bayart
([14]) i Kripke ([108]) su dokazali potpunost pro²irenja logike S5 kvanti�ka-
torima. Kasnije je Kripke koriste¢i ovaj metod pokazao potpunosti iskaznih
modalnih sistema ([109]). Hintikka je u svojim neformalnim izlaganjima, koja
je drºao u Bostonu, predstavio dokaze potpunosti za sisteme M , S4 i S5 sa
kvanti�katorima. Zna£ajan doprinos razvoju semantika mogu¢ih svetova dali
su i Feys ([58]), McKinsey ([120]), Becker ([15]) i Montague ([125]). Detaljan
pregled razvoja semantika mogu¢ih svetova je dat u [32].

Kripke je jedini u svojim semantikama koristio univerzalni pojam valja-
nosti, posmatrao svetove kao ta£ke u evaluaciji i formalizovao relaciju dostiºno-
sti me�u svetovima. Karakterizacija svetova kao pojedina£nih ta£aka u evalu-
aciji mu je omogu¢ila da sistemati£no izvede dokaze potpunosti za razne moda-
lne logike. Iako je Kripkeova semantika prvobitno uvedena kao semantika za
modalnu logiku, ona je kasnije prilago�ena intuicionisti£koj logici ([110]), ali i
drugim neklasi£nim logikama ([91]).

Zahvaljuju¢i Curry-Howard korespondenciji ([83]) izme�u intuicionisti£ke
logike i tipiziranog λ-ra£una, Kripkeove semantike su na²le svoju primenu i u
λ-ra£unu. Mitchell i Moggi su u radu ([124]) uveli Kripkeove modele za λ-ra£un
sa funkcionalnim tipovima. Semantika za CL→,×,+-ra£un koja je uvedena u
tre¢em poglavlju ove teze je upravo inspirisana Kripkeovim modelima iz [124].

CL→,×,+-ra£un smo uveli predstavljaju¢i njegov jezik, operacionu sema-
ntiku, odnosno jednakosnu teoriju koja je proiza²la iz relacije redukcije, i tipski
sistem. Relacija redukcije je de�nisana tako da zavisi od relacije tipiziranja.
Sa druge strane, da bismo osigurali da jednaki termi imaju isti tip, tipski
sistem smo de�nisali tako da relacija tipiziranja zavisi od relacije redukcije.
Stoga, jednakosna teorija, koja je proiza²la iz relacije redukcije, i tipski sistem

xiii

su de�nisani istovremeno. Kripkeova semantika za CL→,×,+, koja je predsta-
vljena u ovom poglavlju, je uvedena u radu

[94] S. Ka²terovi¢ and S. Ghilezan. Kripke-style semantics and completeness
for full simply typed lambda calculus. Journal of Logic and Computa-
tion, 30(8):1567�1608, 2020. doi: 10.1093/logcom/exaa055.
URL: https://doi.org/10.1093/logcom/exaa055.

Najpre smo de�nisali Kripkeovu aplikativnu strukturu, a zatim smo uveli
pojmove ekstenzionalne Kripkeove aplikativne strukture i Kripkeove aplika-
tivne strukture sa kombinatorima. Kripkeova semantika je de�nisana kao
ekstenzionalna Kripkeova aplikativna struktura sa kombinatorima, kojoj je
pridruºena valuacija promenljivih.

Glavni rezultati ovog poglavlja jesu dokazi saglasnosti i potpunosti
CL→,×,+-ra£una u odnosu na predloºenu semantiku. Prvo smo pokazali da su
jednakosna teorija i tipski sistem saglasni. U ovom dokazu smo koristili metod
matemati£ke indukcije. Zatim, uveli smo pojam kanoni£kog modela i pokazali
da su jednakosna teorija i tipski sistem potpuni u odnosu na predloºenu se-
mantiku. Za konzistentnu bazu smo de�nisali kanoni£ki model tako da je
interpretacija terma klasa ekvivalencije datog terma u odnosu na jednakosnu
teoriju. Koriste¢i ovu osobinu kanoni£kog modela dokazali smo potpunost je-
dnakosne teorije i tipskog sistema.

Logika kombinatorne logike

U poglavlju 4 smo predstavili logiku kombinatorne logike LCL. Logika LCL
je iskazno pro²irenje kombinatorne logike sa funkcionalnim tipovima, tj. do-
bijena je de�nisanjem klasi£ne iskazne logike nad kombinatornom logikom sa
funkcionalnim tipovima.

Ova logika predstavlja formalni sistem za zaklju£ivanje o tipiziranim izra-
zima, ²to nam omogu¢ava primenu metoda kao ²to su DPLL procedura, metod
rezolucije, SAT re²ava£i, SMT re²ava£i i drugi, na kombinatornu logiku sa
funkcionalnim tipovima. Na osnovu Curry-Howard korespondencije, logiku
LCL moºemo posmatrati kao prvi korak ka razvoju automatskog alata za
zaklju£ivanje o tipiziranim termima i programima.

Razna pro²irenja kombinatorne logike su izu£avana sa ciljem da se razvije
formalni sistem £ija ¢e izraºajna mo¢ omogu¢iti uvo�enje novih paradigmi.
Jedan na£in pro²irenja kombinatorne logike je ve¢ predstavljen u tre¢em pogla-
vlju ove teze, gde smo kombinatornoj logici sa funkcionalnim tipovima dodali
nove operatore i tipove. Drugi na£in da se pro²iri kombinatorna logika jeste
da se kombinuje sa nekim logi£kim sistemom. Ideju kombinovanja razli£itih

xiv

logi£kih sistema sa ciljem da se opi²e zaklju£ivanje o odre�enim logi£kim stru-
kturama predstavio je Scott u [158], gde je tipizirani sistem kombinatora, koji
uklju£uje i kombinator �ksne ta£ke, pro²iren logi£kim konstantama i veznicima,
£ime je dobijen deduktivni sistem za izra£unljive funkcije. Sli£an pristup ko-
ristio je Beeson za de�nisanje lambda logike ([16]), koja predstavlja alat za
reprezentaciju funkcija, a dobijena je kao unija logike prvog reda i λ-ra£una.
U radu [6] Axelsen, Glück i Kaarsgaard nisu predstavili pro²irenje kombi-
natorne logike, ali je ideja veoma sli£na na²oj. Autori su de�nisali klasi£nu
iskaznu logiku nad reverzibilnim logi£kim kolima i razvili formalni sistem za
zaklju£ivanje o reverzibilnim logi£kim kolima. Iako su sli£ne ideje ve¢ ranije
primenjivane, logika LCL je prvi put uvedena u ovoj tezi.

Predstavili smo jezik, aksiomatizaciju i semantiku LCL logike. Atomi£ke
formule u logici LCL su tipizirani izrazi iz kombinatorne logike sa funkciona-
lnim tipovima CL→. Skup svih tipiziranih izraza je skup svih izraza oblika
M : σ, gdje je M term i σ tip takav da postoji baza u kojoj ¢e term M dobiti
tip σ.

Skup formula logike LCL je de�nisan slede¢om gramatikom:

α :=M : σ | α⇒ α | ¬α

Aksiomatizacija logike LCL je dobijena iz tipskog sistema kombinatorne
logike sa funkcionalnim tipovima i aksiomatskog sistema za klasi£nu iskaznu
logiku. Semantika je de�nisana kao ekstenzionalna aplikativna struktura pro²i-
rena specijalnim elementima, koji odgovaraju osnovnim kombinatorima, i kojoj
je pridruºena valuacija promenljvih. Sli£an pristup smo koristili za de�nisanje
semantike kombinatorne logike sa tipovima sa presekom u radu

[62] S. Ghilezan, S. Ka²terovi¢. Semantics for Combinatory Logic With In-
tersection Types, Frontiers in Computer Science, volume 4, 2022. doi:
10.3389/fcomp.2022.792570.
URL: https://www.frontiersin.org/articles/10.3389/fcomp.2022.792570

Glavni rezultati ovog poglavlja su dokazi saglasnosti i jake potpunosti logike
LCL u odnosu na uvedenu semantiku. Najpre smo dokazali da je jednakosna
teorija kombinatorne logike sa funkcionalnim tipovima saglasna i potpuna u
odnosu na de�nisanu semantiku. Zatim smo dokazali da je aksiomatizacija
logike LCL saglasna. Kao i u prethodnom poglavlju, u dokazu saglasnosti
koristili smo matemati£ku indukciju. U dokazu potpunosti jednakosne teorije
de�nisali smo LCL-model takav da je interpretacija terma u datom modelu
jednaka klasi ekvivalencije u odnosu na jednakosnu teoriju kombinatorne logike
sa funkcionalnim tipovima. Na osnovu navedene osobine modela pokazali smo
da vaºi potpunost jednakosne teorije. Dokaz jake potpunosti aksiomatizacije
logike LCL je ne²to sloºeniji i sastoji se iz slede¢ih koraka:

xv

1. Najpre smo dokazali teoremu dedukcije, koja je neophodna za dokaz jake
potpunosti.

2. Zatim, pokazali smo da svaki konzistentan skup T moºe biti pro²iren do
maksimalno konzistentnog skupa T ⋆.

3. Koriste¢i maksimalno konzistentan skup T ⋆, de�nisali smo kanoni£ki
model.

4. Pokazali smo da kanoni£ki model jeste LCL-model i da zadovoljava samo
formule iz skupa T ⋆.

5. Koriste¢i kanoni£ki model dokazali smo da je svaki konzistentan skup
zadovoljiv.

6. Kona£no, izveli smo dokaz jake potpunosti za logiku LCL.

Dalje, pokazali smo da je uvedena semantika za logiku LCL tako�e i nova
semantika za kombinatornu logiku sa funkcionalnim tipovima. Posmatrali smo
kombinatnornu logiku sa funkcionalnim tipovima pro²irenu sa pravilom za tipi-
ziranje koje osigurava da jednaki termi imaju isti tip i pokazali smo da je
ona saglasna i potpuna u odnosu na semantiku za LCL. Time je dokazano
da je logika LCL zapravo konzervativno pro²irenje kombinatorne logike sa
funkcionalnim tipovima.

Verovatnosno zaklju£ivanje u teoriji funkcional-

nih tipova

Poglavlje 5 uvodi logiku PCL, koja je verovatnosno pro²irenje logike kombina-
torne logike. Prate¢i pristup koji je kori²¢en u razvoju verovatnosnih pro²irenja
razli£itih logika, kao ²to su klasi£na iskazna logika, intuicionisti£ka iskazna
logika, logika opravdanja ([132]), pro²irili smo jezik logike LCL verovatnosnim
operatorima oblika P≥s, koji imaju zna£enje: �verovatno¢a je bar s�.

Pri£a o verovatnosnoj logici poti£e jo² iz anti£kog vremena. So�sti Corax
i Tisias koristili su pojam neizveznosti u svojim argumentima o zakonskim,
medicinskim i politi£kim pitanjima ([107]). Cardano, Tartaglia, de Fermat,
Pascal, Huygens i brojni matemati£ari izu£avali su igre na sre¢u i uveli su
nove ideje u vezi zaklju£ivanja u slu£aju neizvesnosti. Ideju da se verova-
tno¢a moºe numeri£ki kvanti�kovati i da se metode kori²¢ene u igrama na
sre¢u mogu primeniti na izra£unavanje verovatno¢e prvi put su predstavili
Arnauld i Pierre u [3]. Re£ �verovatno¢a� u sada²njem zna£enju prvi je uveo
Leibniz kada je de�nisao verovatno¢u kao odnos broja poºeljnih slu£ajeva i

xvi

broja ukupnih slu£ajeva ([113]). Pascal, Huygens i Leibniz su imali veliki uticaj
na rad Jacoba Bernoullija ([18]), koji se smatra osniva£em teorije verovatno¢e.
Zna£ajan doprinos razvoju teorije verovatno¢e dali su i De Morgan, Bayes i
Boole. Boole je me�u prvima izu£avao vezu izme�u logike i verovatno¢e ([23]).

Nakon rada Leibniza i Boola najve¢i napredak u razvoju verovatnosne
logike napravili su Keisler, Hoover, Hamblin i Hailperin. Keisler ([100, 101])
je prou£avao raspodelu verovatno¢e na domenima struktura prvog reda i uveo
verovatnosne kvanti�katore oblika Px > r gde formula (Px > r)φ(x) ima
zna£enje:

�verovatno¢a skupa {x | φ(x)} je ve¢a od r�.

Hoover ([82]) je dao potpunu aksiomatizaciju za Keislerove logike i zajedno
za Keislerom je dokazao teoreme potpunosti za razli£ite modele kao ²to su
verovatnosni, analiti£ki, i drugi. Vezu izme�u verovatno¢e i modalne logike
uo£io je Hamblin ([74]) i on je uveo verovatnosni, modalni operator. Hailperin
([72]) je iskoristio metode linearnog programiranja da izvede proceduru za
dobijanje najboljih mogu¢ih granica za verovatno¢u iskaznih formula u slu£aju
da su verovatno¢e potformula poznate. Moderni razvoj verovatnosne logike je
zapo£eo Nilsson ([127]) kada je uveo prvi sistem za formalno verovatnosno
zaklju£ivanje.

Nilssonov rad je imao veliki uticaj na mnoge istraºiva£e koji su razvijali
formalne sisteme za verovatnosno zaklju£ivanje ([56, 57, 73, 167]). Na² rad se
najvi²e oslanja na beskona£ne verovatnosne logike uvedene u [104, 119, 129�
131, 147], gde su predstavljena verovatnosna pro²irenja raznih logika kao ²to
su klasi£na iskazna logika, intuicionisti£ka iskazna logika, temporalna logika,
logika opravdanja i druge.

Ideju o verovatnosnom pro²irenju λ-ra£una i kombinatorne logike smo prvi
put predstavili u publikovanim radovima

[64] S. Ghilezan, J. Iveti¢, S. Ka²terovi¢, Z. Ognjanovi¢, and N. Savi¢. Prob-
abilistic reasoning about simply typed lambda terms. In S. N. Artemov
and A. Nerode, editors, Logical Foundations of Computer Science - In-
ternational Symposium, LFCS 2018, Deer�eld Beach, FL, USA, January
8-11, 2018, Proceedings, volume 10703 of Lecture Notes in Computer
Science, pages 170�189. Springer, 2018. doi: 10.1007/978-3-319-72056-2
_11. URL https://doi.org/10.1007/978-3-319-72056-2_11.

[66] S. Ghilezan, J. Iveti¢, S. Ka²terovi¢, Z. Ognjanovi¢, and N. Savi¢. To-
wards probabilistic reasoning in type theory - the intersection type case.
In A. Herzig and J. Kontinen, editors, Foundations of Information and
Knowledge Systems-11th International Symposium, FoIKS 2020, Dort-
mund, Germany, February 17-21, 2020, Proceedings, volume 12012 of

xvii

Lecture Notes in Computer Science, pages 122�139. Springer, 2020. doi:
10.1007/978-3-030-39951-1_8. URL https://doi.org/10.1007/978-3-030-
39951-1_8.

Modeli uvedeni u ovim radovima su bazirani na dobro poznatim modelima
λ-ra£una: term modelima i �lter modelima. Jezik ovih sistema je de�nisan tako
²to smo najpre de�nisali iskazno pro²irenje tipiziranog λ-ra£una i dobili skup
formula, koje smo nazvali osnovne formule. Zatim smo primenili verovatnosne
operatore na osnovne formule i posmatrali bulovske kombinacije tako dobijenih
verovatnosnih formula. Problem kod ovih sistema je taj ²to poznati modeli
λ-ra£una nisu pogodni da opi²u iskazno zaklju£ivanje o tipiziranim termima.
Drugim re£ima, baza ove logike, a to su bulovske kombinacije tipiziranih izraza,
nije potpun sistem u odnosu na navedene modele λ-ra£una. Ovaj problem je
motivisao razvoj logike LCL i modela za ovu logiku, koji su predstavljeni u
£etvrtom poglavlju. U petom poglavlju smo primenili dobro poznat metod za
razvoj logike PCL, koja predstavlja verovatnosno pro²irenje logike LCL.

Predstavili smo jezik, semantiku i aksiomatizaciju logike PCL. Jezik logike
PCL je pro²irenje logike LCL sa verovatnosnim operatorima, a skup formula
je de�nisan kao unija dva skupa: skupa osnovnih formula i skupa verova-
tnosnih formula. Osnovne formule su zapravo formule logike LCL, dok su
verovatnosne formule dobijene primenom verovatnosnih operatora na osnovne
formule. Najpre de�ni²emo atomi£ke verovatnosne formule.

Za s ∈ [0, 1]∩Q i formulu α logike LCL, P≥sα je atomi£ka verovat-
nosna formula.

Skup svih verovatnosih formula je skup svih bulovskih kombinacija atomi-
£kih verovatnosnih formula, odnosno generisan je sintaksom

φ ::= P≥sα | φ ∧ φ | ¬φ

Semantika verovatnosnih logika je zasnovana na strukturama de�nisanim
nad mogu¢im svetovima, gde u svakom svetu postoji kona£no aditivna mera.
Semantika logike PCL je de�nisana tako da svaki mogu¢i svet odre�uje jedan
LCL-model. Aksiomatizacija logike PCL je dobijena iz aksiomatizacije logike
LCL i aksiomatizacije verovatnosne logike. Logika PCL ima beskona£nu aksi-
omatizaciju u smislu da sadrºi jedno beskona£no pravilo, to jest pravilo sa
prebrojivim skupom premisa. Beskona£na aksiomatizacija je posledica nekom-
paktnosti logike PCL. Logika PCL ne zadovoljava teoremu kompaktnosti jer
je skup

X = {¬P=0(x : σ)} ∪ {P< 1
n
(x : σ) | n ∈ N}

xviii

takav da je svaki njegov kona£an podskup zadovoljiv, dok sam skup X nije
zadovoljiv. Dakle, nijedna kona£na aksiomatizacija ne¢e biti saglasna i jako
potpuna.

Najvaºniji rezultati ovog poglavlja su dokazi saglasnosti i jake potpunosti
date aksiomatizacije logike PCL u odnosu na uvedenu semantiku. Sli£no kao u
prethodnim poglavljima, dokaz saglasnosti je dobijen primenom matemati£ke
indukcije. Dokaz jake potpunosti je ne²to sloºeniji. Primenili smo metod kao i
za logiku LCL, te smo najpre dokazali teoremu dedukcije. Zatim smo dokazali
da svaki konzistentan skup moºe biti pro²iren do maksimalno konzistentnog
skupa. Konstruisali smo PCL-model u kome su ta£ne samo one formule koje
pripadaju datom maksimalno konzistentnom skupu. Koriste¢i ovaj model,
pokazali smo da je svaki konzistentan skup zadovoljiv, odakle sledi jaka po-
tpunost logike PCL.

Rezultati

Poglavlje 6 sadrºi saºetak postignutih rezultata, pregled literature i razmatra
pravce daljih istraºivanja.

Disertacija daje zna£ajan doprinos razvoju formalnih modela za verova-
tnosno zaklju£ivanje u izra£unavanju i teoriji tipova i razvoju Kripkeovih se-
mantika za modele izra£unavanja.

� Prou£avan je verovatnosni λ-ra£un sa let-in operatorom gde je primenjena
lenja poziv-po-imenu strategija evaluacije i izu£avan je problem ekviva-
lencije verovatnosnih programa u ovom okruºenju. Cilj je bio prona¢i
e�kasan metod za dokazivanje kontekstne ekvivalencije. Dati su dokazi
da se u posmatranom ra£unu relacija verovatnosne aplikativne bisimu-
lacije i relacija kontekstne ekvivalencije poklapaju, ²to £ini verovatnosnu
aplikativnu bisimulaciju pogodnim metodom za dokazivanje kontekstne
ekvivalencije. Ovi rezultati su predstavljeni u poglavlju 2.

� Uvedena je nova Kripkeova semantika za kombinatornu logiku sa funkcio-
nalnim tipovima koja je pro²irena sa tipovima proizvoda, tipovima sume,
praznim tipom i jedini£nim tipom. Dati su detaljni dokazi da je tipski
sistem posmatranog ra£una saglasan i potpun u odnosu na uvedenu se-
mantiku. Ovi rezultati su predstavljeni u poglavlju 3.

� Razvijen je potpuno nov koncept verovatnosnog zaklju£ivanja u teoriji
tipova i ra£unima sa tipovima koji je zasnovan na novom modelu za
verovatnosno zaklju£ivanje o tipiziranim programima. Najpre je uvedena
nova logika, pod nazivom Logika kombinatorne logike, koja predstavlja

xix

iskazno pro²irenje kombinatorne logike sa funkcionalnim tipovima. Poka-
zano je da je uvedena logika saglasna i potpuna u odnosu na predloºenu
semantiku. Zatim je logika kombinatorne logike pro²irena verovatnos-
nim operatorima, £ime je dobijena logika koja omogu¢ava verovatnosno
zaklju£ivanje o tipiziranim programima. Tako�e, dati su dokazi sagla-
snosti i potpunosti dobijene logike u odnosu na predloºenu semantiku.
Ovi rezultati su predstavljeni u poglavljima 4 i 5.

xx

Chapter 1

Introduction

In 1900, David Hilbert gave a talk at the International Congress of Mathe-
maticians held in Paris, France. In this talk, which is considered as the most
in�uential talk ever given by a mathematician, he presented Hilbert's Program.
Hilbert's Program addressed 23 major mathematical problems that should be
studied in the coming century. Many researchers were in�uenced by Hilbert's
Program and worked on solutions of the presented problems. One of the chal-
lenges presented in Paris was the Entscheidungsproblem, or Decision Problem.
Hilbert believed that all of mathematics could be axiomatized. In the case
this axiomatization is done, he addressed the following question:

�Is there an �e�ective procedure�, i.e. an algorithm that takes as
input any precise mathematical statement and after a �nite number
of steps decides whether the statement is true or false?�

Hilbert assumed that such an algorithm exists and just has to be found.
However, it turned out that this is not true. The most popular results which
refuted Hilbert's conjecture are:

� Incompleteness Theorems by Kurt Gödel,

� λ-calculus by Alonzo Church,

� Turing Machines by Alan Turing.

In 1931, Kurt Gödel ([68]) published two incompleteness theorems that
give the limit of provability in formal axiomatic theories. The incompleteness
theorems stand as two of the most important results in the history of the
mathematical logic.

1

2

The �rst incompleteness theorem: Any consistent formal sys-
tem F within which a certain amount of elementary arithmetic
can be carried out is incomplete; i.e. there are statements of the
language of F which can neither be proved nor disproved in F .

The second incompleteness theorem: For any consistent sys-
tem F within which a certain amount of elementary arithmetic can
be carried out, the consistency of F cannot be proved in F itself.

Alonzo Church was also interested in the Entscheidungsproblem. He wa-
nted to rede�ne the very foundations of mathematics using functions instead
of sets. In [27], Church has introduced λ-calculus, a formal system based on
functions, which included primitively a notion of abstraction and application,
and many other notions: a two-place predicate for extensional equality, an exis-
tential quanti�er, negation, conjunction and the unique solution of a function.
He has proved that the problem of equality of terms is undecidable. However,
Church's students Kleene and Rosser have discovered Kleene-Rosser paradox
([103]) and proved the inconsistency of Church's original system. The com-
putational part of the system was proved to be consistent, so Church isolated
this part and introduced λI-calculus in [31] as a formalism for de�ning the
notion of computability. He has de�ned an algorithm in terms of λ-calculus
and proved that the Entscheidungsproblem is unsolvable in [28, 29]. Kleene
([102]) proved that the set of λ-de�nable functions coincides with the set of
recursive functions, i.e. computable functions in the sense of Herbrand and
Gödel.

Independently, Alan Turing also gave a negative answer to the Entschei-
dungsproblem. In order to formally introduce the notion of an algorithm he
invented a new formalism, called Turing machines ([165]), and de�ned an al-
gorithm as anything that can be computed by a Turing Machine. Turing has
proved that Halting problem is undecidable. Then he proved that there exist
undecidable problems that cannot be solved by any Turing Machine such as
Halting Problem. Later, Turing became Church's graduate student at Prince-
ton and proved that the λ-calculus and Turing Machines are computationally
equivalent: they de�ne the same class of computable functions.

Another formalism that was independently invented is Combinatory logic.
The basic idea of combinatory logic was presented by Moses Schön�nkel in
1920s ([155]), but the foundations of combinatory logic have been established
by Haskell Curry in 1930s ([37]). Combinatory logic does not use bound vari-
ables, which results in a simpler syntax and avoids the obstacles that emerge
from bound variables in λ-calculus. Curry has proved that λ-calculus and
combinatory logic are computationally equivalent. So, all three formalisms,
λ-calculus, Turing machines and combinatory logic, have the same expressive

Chapter 1. Introduction 3

power:

Kleene: Equivalence of λ-calculus and recursive functions.

Turing: Equivalence of λ-calculus and Turing machines.

Curry: Equivalence of λ-calculus and Combinatory logic.

In order to control the application of functions, types in combinatory logic
were introduced in [38]. Russell and Whitehead were �rst to introduce types
in logic ([168]) and by simplifying their type theory the simple theory of types
was introduced in [144]. Many modern type systems such as the simply typed
λ-calculus ([30]) are based on the theory introduced in [144]. The development
of types from the �rst types introduced in Principia Mathematica ([168]) until
the simple types for λ-calculus ([30]) has been described in [90]. The simple
types for λ-calculus is the �rst type system introduced. It is followed by
various type systems such as intersection types, polymorphic types, dependent
types, and others. These type systems found applications in various �elds, e.g.
automated theorem provers, proof assistants, programming languages.

1.1 Probabilistic programming

Over the last decades reasoning about uncertain knowledge has played an im-
portant role in computer science and arti�cial intelligence. Sometimes, dealing
with uncertainty and incomplete information is not an alternative but rather
a necessity. For example, in computational cryptography secure public key
encryption schemes have to be probabilistic ([69]). Therefore, it was essential
to develop tools that will deal with uncertainty such as probabilistic models.
The probabilistic models have proved to be extremely applicable and useful
in various areas, such as robotics ([163]), machine learning ([135]) and natural
language processing ([117]).

In order to describe probabilistic models, the mechanics to perform infer-
ence in those models in various probabilistic programming languages have been
introduced ([70, 89, 134, 136, 145]). These languages have been inspired by
di�erent programming paradigms such as functional, imperative, object ori-
ented. One approach used to obtain probabilistic models is to add primitives
for probabilistic choice to the deterministic language. In this way, we shift from
the usual, deterministic computation to a new paradigm, called probabilistic
computation. Deterministic languages that get well with probabilistic com-
putation are functional languages. Functional programming languages such
as Lisp, Scheme, Miranda, ML and others are based on λ-calculus and many
existing probabilistic programming languages ([70, 136]) are designed around

4

λ-calculus or one of its incarnations, like Scheme. All this has in�uenced the
foundational research about probabilistic λ-calculi.

One of the most challenging problems in probabilistic programming is prov-
ing equivalence of programs. Two programs are considered equivalent if they
behave �in the same manner� in any possible context ([126]). Proving that two
terms are equivalent is rather di�cult because of the universal quanti�er in the
de�nition of equivalence, since one should consider behaviour of the program
in any context and there are in�nitely many contexts. On account of this, the
goal is to �nd e�ective methods for context equivalence proofs in higher-order
languages.

A technique which has proved to be suitable for characterizing program
equivalence is bisimilarity. Bisimilarity has emerged in Concurrency Theory
as the notion that characterizes the behavioural equality for processes. It was
�rst introduced by Milner and Park ([122, 133]) and since then it has become
a fundamental concept in the theory of concurrency. Bisimilarity is de�ned
as the union of all bisimulations, where a bisimulation is a relation on the set
of terms of a language. So, in order to prove that two terms are bisimilar, it
is enough to �nd a bisimulation which contains a pair of the terms. The use
of the existential quanti�er instead of the universal one makes this a powerful
proof method.

Over the years, the bisimilarity has been extensively studied in λ-calculi
as well. Today it is employed in a number of areas of computer science such
as object-oriented languages, functional languages, types, data types, pro-
gram analysis, veri�cation tools, etc. Abramsky ([1]) introduced the notion
of bisiumulation, called applicative bisimulation, into higher-order languages.
This notion of bisimulation has been studied by a number of researchers
([71, 112, 114, 139, 150]). Applicative bisimilarity is useful only if it is sound
with respect to the context equivalence. For this to hold, it is necessary that
bisimilarity is a congruence. The proof that bisimilarity is a congruence is not
trivial and in the case of applicative bisimilarity, a common scheme consists
in following Howe's approach [84]. Trying to simplify the proof of congruence
and accommodate language extensions, di�erent forms of bisimulation have
been proposed ([106, 151, 152]).

Another form of bisimulation, called probabilistic bisimulation has been in-
troduced for labelled Markov chains by Larsen and Skou ([111]). From applica-
tive bisimulation and probabilistic bisimulation, probabilistic applicative bisim-
ulation has emerged. Probabilistic applicative bisimilarity has shown to be an
e�ective method for equivalence proof of probabilistic programs ([35, 36, 47]).

Chapter 1. Introduction 5

1.2 Possible world semantics

The modern era of possible world semantics started with the work of Peirce
([75, 76]), who argued that the conditional should be analysed in terms of
quanti�cation over possible worlds:

The quanti�ed subject of a hypothetical proposition is a possibility,
or possible case, or possible state of things.

In the history of possible world semantics, there are three trains of thoughts
that were followed:

1. the analysis of modalities in terms of quanti�cations over possibilia;

2. the use of a binary relation as an accessibility relation between worlds;

3. the quest for completeness proofs.

The development of the possible world semantics was greatly in�uenced by
the work of Wittgenstein ([169]), who introduced the idea of logical space and
thought of claims as being �located� in a kind of space. These ideas evolved
into formal semantics for modal logic S5 introduced by Carnap ([26, 149]). The
�rst technical work in possible worlds semantics is presented in [26]. However,
Carnap did not have a binary relation between worlds.

The �rst to use a binary relation were Prior and Meredith ([121]). Prior
invented the modern temporal logic by replacing the possibility and necessity
operators of the standard modal logic with tense operators ([140�143]). He
introduced a binary relation in an explicitly modal context and employed an
accessibility-like interpretation of the relation.

The �rst completeness proofs were obtained by Bayart, Hintikka and Kripke.
Smiley has announced the completeness proofs for propositional M , S4 and
S5 with respect to possible world semantics in [159, 160]. Bayart and Kripke
proved the completeness of an extension of S5 with quanti�ers in [14] and [108],
respectively. Later, Kripke adapted his method to prove the completeness of
propositional modal systems T , S4, S5 and B ([109]). Hintikka presented com-
pleteness proof for versions of M , S4 and S5 with quanti�ers at seminars in
Boston area, where he gave a series of informal talks. His modal completeness
proofs were variants of the completeness proof for the �rst-order predicated
calculus published in [79, 80]. A signi�cant contribution to the development of
the possible world semantics is given by Feys ([58]), McKinsey ([120]), Becker
([15]) and Montague ([125]). A historical survey of possible world semantics
is given in [32].

The crucial ingredients in the possible world semantics are: the universal
notion of validity, considering possible worlds as indices or points of evaluation

6

and accessibility relation between worlds. Kripke was the only one who in-
cluded all these ingredients in the semantics, since he characterized the worlds
as simple points of evaluation ([109]). This characterization enabled him to
observe the link between the algebra of modal logic and the model theoretic se-
mantics, and to obtain model theoretic completeness results for various modal
systems in a systematic way. Kripke semantics was �rst introduced for modal
logics, but later it was adapted to the intuitionistic logic ([110]) and other
non-classical logics ([91]).

Due to the correspondence between the intuiotionistic logic and typed λ-
calculus known as Curry-Howard correspondence ([83]), Mitchell and Moggi
suggested to employ the semantics of the intuiotinistic logic as a semantics for
typed λ-calculus and presented Kripke-style semantics for the simply typed
λ-calculus in [124]. In [59], Gallier generalised the results from [124] to the
second-order λ-calculus. Kripke semantics for various typed calculi were in-
troduced in [5, 33, 85, 88, 116].

1.3 Probability logics

The story about probability logic, as many others mathematical stories, begins
in ancient times. The plausible reasoning was invented by sophists Corax and
Tisias in Plato's Phaedrus and Aristotle's Rhetoric ([107]), who used the notion
of uncertainty in their argument about legal, medical or political questions.
A number of mathematicians such as Cardano, Tartaglia, de Fermat, Pascal
and Huygens were dealing with games of chance and introduced new ideas
about uncertainty. The idea that probability can be numerically quanti�ed
and that the methods designed for games of chance can be used to calculate
probability was suggested in [3], where the probability is consider as something
epistemic and related to arguments and opinion. The word probability in the
contemporary sense was �rst used by Leibnitz, who de�ned a probability as
the ratio of favorable cases to the total number of cases ([113]). The work
of Pascal, Huygens and Leibnitz had a great in�uence on the work of Jacob
Bernoulli ([18]), who is considered the founder of the probability theory ([154]).
De Morgan, Bayes and Boole also contributed signi�cantly to the development
of the probability theory. Boole has studied the relationship between logic and
probability ([23]).

After the work of Leibnitz and Boole, the greatest progress in the prob-
ability logic was made by Keisler, Hoover, Hamblin and Hailperin. Keisler
([100, 101]) studied the probability distributions on domains of �rst-order
structures and introduced probability quanti�ers of the form Px > r, where
the formula (Px > r)φ(x) has the following meaning:

Chapter 1. Introduction 7

�the probability of the set {x | φ(x)} is greater than r.�

Hoover ([82]) gave a complete axiomatization of Keisler-like logics and to-
gether with Keisler proved completeness theorems for various kinds of models
such as probability, graded, analytic, hyper�nite, etc. The connection between
probability and modal logic was observed by Hamblin, who introduced proba-
bility, modal operator ([74]). Hailperin ([72]) has used the methods for linear
programming to derive an e�ective procedure for obtaining the best possible
boundaries for probabilities of propositional formulas, when the probabilities
of subformulas are known. Reasoning with uncertainty found its applications
in many �elds such as arti�cial intelligence, computer science, economics and
philosophy. The development in these �elds triggered o� the development of
probability logic. The modern development of probability logic started with
Nilsson ([127]), who has introduced a �rst framework for formalizing proba-
bilistic reasoning.

The logic introduced in [127] has in�uenced the work of many researchers,
who have developed frameworks for probabilistic reasoning ([56, 57, 73, 167]).
This work is followed by a number of in�nitary probability logics introduced
in [104, 119, 129�131, 147]. The term in�nitary concerns the meta language
only, more precisely the language of the logic is countable and formulas are
�nite, but the proofs are allowed to be in�nite. It turns out that this approach
can be used for combining probability with di�erent logics, e.g. classical logic,
intuitionistic logic, temporal logic, justi�cation logic and others. Systematic
overview of some of these in�nitary logics is given in [132].

1.4 Main contributions and the structure of the

thesis

Probabilistic λ-calculus endowed with let-in operator is studied in Chapter 2.
It is proved that, in the case that let-in operator is present in the language,
probabilistic applicative bisimilarity is an e�ective method for proving the
equivalence of probabilistic programs. More precisely, we prove that in the
probabilistic λ-calculus with let-in operator, bisimilarity and context equiva-
lence coincide. Chapter 2 is based on the paper:

[99] S. Ka²terovi¢ and M. Pagani. The discriminating power of the let-in op-
erator in the lazy call-by-name probabilistic lambda-calculus. In H. Geu-
vers, editor, 4th International Conference on Formal Structures for Com-
putation and Deduction, FSCD 2019, June 24-30, 2019, Dortmund, Ger-
many, volume 131 of LIPIcs, pages 26:1�26:20. Schloss Dagstuhl-Leibniz-

8

Zentrum für Informatik, 2019. doi: 10.4230/LIPIcs.FSCD.2019.26.
URL: https://doi.org/10.4230/LIPIcs.FSCD.2019.26.

In Chapter 3, the full simply typed combinatory logic, which is simply
typed combinatory logic extended with product types, sum types, the empty
type and the unit type, is studied. We introduce Kripke-style semantics for the
full simply typed combinatory logic and prove that the full simply typed com-
binatory logic is sound and complete with respect to the proposed semantics.
Chapter 3 is based on the paper:

[94] S. Ka²terovi¢ and S. Ghilezan. Kripke-style semantics and completeness
for full simply typed lambda calculus. J. Log. Comput., 30(8):1567�
1608, 2020. doi: 10.1093/logcom/exaa055.
URL: https://doi.org/10.1093/logcom/exaa055.

The semantics presented here are introduced in the mentioned paper, how-
ever the calculus in the paper di�ers from the one presented here. The paper
studies full simply typed λ-calculus and combinatory logic that do not include
typing rule for equal terms, i.e. the rule that guarantees that equal term in-
habit the same type. In the calculus studied in the thesis, this rule is included.
The motivation for adding this rule is explained in Section 3.2.

Chapter 4, introduces the logic of combinatory logic (LCL), which is a
propositional extension of the simply typed combinatory logic. We present the
language of LCL, its semantics and axiomatization, and prove that the given
axiomatization is sound and complete with respect to the proposed semantics.
The results of Chapter 4 are in the preparation for the publication and have
been presented in

[97] S. Ka²terovi¢ and S. Ghilezan. Logic of combinatory logic. CoRR,
abs/2212.06675, 2022. doi: 10.48550/arXiv.2212.06675.
URL: https://doi.org/10.48550/arXiv.2212.06675.

The semantics of LCL is based on applicative structures extended with
special elements corresponding to primitive combinators. Similar approach
was used for the semantics of the combinatory logic with intersection types
introduced in the paper:

[62] S. Ghilezan, S. Ka²terovi¢. Semantics for Combinatory Logic With In-
tersection Types, Frontiers in Computer Science, volume 4, 2022. doi:
10.3389/fcomp.2022.792570.
URL: https://www.frontiersin.org/articles/10.3389/fcomp.2022.792570

Chapter 5 introduces the probabilistic extension (PCL) of the logic of
combinatory logic. Following approach used by Ognjanovi¢, Ra²kovi¢ and

Chapter 1. Introduction 9

Markovi¢ in [132], we extend the logic of combinatory logic with probability
operators and obtain a formal model for reasoning about simply typed combi-
natory terms. The idea of developing a framework for probabilistic reasoning
about typed terms has been introduced in the papers:

[64] S. Ghilezan, J. Iveti¢, S. Ka²terovi¢, Z. Ognjanovi¢, and N. Savi¢. Prob-
abilistic reasoning about simply typed lambda terms. In S. N. Artemov
and A. Nerode, editors, Logical Foundations of Computer Science - In-
ternational Symposium, LFCS 2018, Deer�eld Beach, FL, USA, January
8-11, 2018, Proceedings, volume 10703 of Lecture Notes in Computer
Science, pages 170�189. Springer, 2018. doi: 10.1007/978-3-319-72056-2
_11. URL https://doi.org/10.1007/978-3-319-72056-2_11.

[66] S. Ghilezan, J. Iveti¢, S. Ka²terovi¢, Z. Ognjanovi¢ and N. Savi¢. To-
wards probabilistic reasoning in type theory - the intersection type case.
In A. Herzig and J. Kontinen, editors, Foundations of Information and
Knowledge Systems-11th International Symposium, FoIKS 2020, Dort-
mund, Germany, February 17-21, 2020, Proceedings, volume 12012 of
Lecture Notes in Computer Science, pages 122�139. Springer, 2020. doi:
10.1007/978-3-030-39951-1_8. URL https://doi.org/10.1007/978-3-030-
39951-1_8.

The semantics for these systems were based on the well-known models for
λ-calculus such as term models and �lter models. The languages of the systems
are de�ned as the union of two sets of formulas: basic formulas and probabilis-
tic formulas. Basic formulas are formulas from the propositional extensions of
the typed calculi and probabilistic formulas are obtained by applying proba-
bility operator to basic formulas. However, term models and �lter models did
not prove to be suitable for the propositional reasoning about typed terms.
Thus, we develop the propositional extension of the simply typed combinatory
logic in Chapter 4 and introduce its semantics. So, the semantics for PCL
are based on the semantics for LCL. We present the logic PCL by intro-
ducing its syntax, semantics and axiomatization, and we prove that the given
axiomatization is sound and complete with respect to the proposed semantics.

10

Chapter 2

Probabilistic computation

In this chapter, we study a probabilistic λ-calculus Λ⊕,let de�ned by endow-
ing the pure, untyped λ-calculus with two operators: a probabilistic choice
operator ⊕ and a let-in operator. The chapter presents the results of [98, 99].

There are di�erent evaluation strategies that can be adopted to evaluate
programs, such as call-by-name, call-by-value, call-by-need and others. In
Λ⊕,let, both call-by-name and call-by-value strategy are implemented. In call-
by-name setting,

a term (λx.M)N evaluates to a term M{N/x} for any term N ,

where M{N/x} denotes the capture-avoiding substitution of N for the free
occurrences of x in M . On the other hand, in call-by-value setting,

a term (λx.M)V can be evaluated to a term M{V/x} only if V is a value,

that is, we need to �rst evaluate the term V before we pass it to the calling
parameter x. In many functional programming languages, let-in operator is
used to allow the local de�nition of an expression, which is used in another
expression. We de�ne the let-in operator to represent the substitution of a
variable for a value. Although Λ⊕,let is a call-by-name probabilistic λ-calculus,
the presence of the let-in operator gives us a possibility of evaluating terms in
a call-by-value way, thus both strategies, call-by-name and call-by-value, are
combined in Λ⊕,let.

One of the most challenging problems in the probabilistic programming
is to check if two programs enjoy the same behavioural properties. If two
programs behave in the same manner in any possible context, we say that
they are context equivalent. Proving that two programs are context equivalent
in higher-order languages is not always easy. Hence, the aim is to �nd an

11

12

e�ective method for checking the context equivalence, that is, to �nd the
characterization of context equivalence which enables to check the equality
of programs more easily. The work presented in this chapter is inspired by
results in [35] and [47], where the authors study the probabilistic λ-calculus,
that is the pure, deterministic λ-calculus extended with a probabilistic choice
operator. In [47], Dal Lago, Sangiorgi and Alberti considered call-by-name
evaluation and it is shown that the probabilistic applicative bisimilarity is
included in context equivalence and that they do not coincide. Terms which
distinguish these two relations are

M = λx.λy.(x⊕ y) and N = (λx.λy.x)⊕ (λx.λy.y),

which are context equivalent in call-by-name probabilistic λ-calculus, but are
not bisimilar. On the other hand, in [35] Crubillé and Dal Lago proved that the
probabilistic applicative bisimulation coincide with the context equivalence if
call-by-value evaluation is considered. The question that we address here is if
the mismatch between call-by-name and call-by-value calculus is the presence
of let-in operator.

In this chapter, three di�erent notions of equivalence are de�ned and com-
pared. The �rst notion of equivalence we consider is a context equivalence, also
called observable (behavioural) equivalence. Two terms M and N are context
equivalent if we can replace all occurrences of M with N in any program,
without changing the observable behaviour of a program. A notion of proba-
bilistic applicative bisimulation (bisimilarity) is introduced using the fact that
a labelled Markov chain can model the evaluation of programs in Λ⊕,let. The
third equivalence relation, called testing equivalence, is induced by a testing
language de�ned on Λ⊕,let.

Contributions of the chapter

� Using Howe's technique ([84]), we show that a probabilistic applicative
bisimilarity is a congruence. The structure of the proof is similar to the
ones in [35], [36] and [47], where Howe's technique is also used.

� The proof that the probabilistic applicative bisimilarity is included in
the context equivalence follows from the previous result (probabilistic
applicative bisimilarity being a congruence).

� We introduce the testing equivalence and prove that, for every test, there
is a context such that the success probability of the test applied to a term
and the convergence probability of the context applied to the same term
are equal.

Chapter 2. Probabilistic computation 13

� As a consequence, the context equivalence is included in the testing
equivalence.

� Furthermore, we prove that the context equivalence is also included in the
probabilistic applicative bisimilarity, hence those two relations coincide.

Overview of the chapter We start with introducing Λ⊕,let-calculus in Sec-
tion 2.1. We de�ne the syntax of Λ⊕,let-calculus in Section 2.1.1, give its opera-
tional semantics in Section 2.1.2 and introduce a notion of context equivalence
in Section 2.1.3. The probabilistic applicative simulation and bisimulation are
introduced in Section 2.2, followed by the proof that bisimilarity is a con-
gruence and that it is included in the context equivalence, which is given in
Section 2.2.1. Section 2.3 introduces the testing equivalence and presents the
proof of full abstraction. In Section 2.4, concluding remarks and future work
are presented.

2.1 Probabilistic λ-calculus

In this section, we introduce formally the lazy call-by-name probabilistic λ-
calculus Λ⊕,let. We introduce its syntax, operational semantics and de�ne the
context equivalence.

2.1.1 Syntax

Probabilistic λ-calculus Λ⊕,let is a pure, untyped λ-calculus extended with two
new operators: a probabilistic binary operator ⊕ and let-in operator. Terms
and values are expressions generated by the following grammar:

(values) V ::= x | λx.M
(terms) M ::= V |MM |M ⊕M | let x =M in M

(2.1)

where x belongs to a countable set of term variables, X = {x, y, z, . . . , x1, . . .}.
Λ⊕,let denotes the set of all terms and V⊕,let denotes the set of all values.
We let M,N, . . . range over Λ⊕,let and V,W, . . . range over V⊕,let . We use
λx1x2 . . . xn.M to abbreviate λx1.λx2. . . . λxn.M .

The lambda abstraction λx.M binds the free variable x in term M and the
let-in operator let x =M in N binds the free variable x in term N . Following
Barendregt's Variable Convention ([10]), we assume that the bound variables
that occur in a certain expression are di�erent from the free ones. For a term
M , the set of its free variables FV (M) is de�ned as follows:

14

� FV (x)
def

= {x},

� FV (λx.M)
def

= FV (M) \ {x},

� FV (MN)
def

= FV (M) ∪ FV (N),

� FV (M ⊕N)
def

= FV (M) ∪ FV (N),

� FV (let x =M in N)
def

= (FV (N) \ {x}) ∪ FV (M).

A term M without free variables, FV (M) = ∅, is called closed term (pro-
gram). We write ΛΦ

⊕,let (resp. VΦ
⊕,let) to denote the set of terms (resp. values)

whose free variables are within Φ = {x1, x2, . . . , xn}. The capture-avoiding
substitution of N for the free occurrences of x in M , denoted by M{N/x}, is
de�ned inductively as follows:

� x{N/x} def

= N ,

� y{N/x} def

= y, ifx ̸≡ y,

� (λy.M) {N/x} def

= λy. (M{N/x}),

� (M1M2) {N/x}
def

= (M1{N/x}) (M2{N/x}),

� (M1 ⊕M2) {N/x}
def

= (M1{N/x})⊕ (M2{N/x}),

� (let y =M1 in M2) {N/x}
def

= let y = (M1{N/x}) in (M2{N/x}).

By Barendregt's Variable Convention, we have that the variables x and y
in the third and �fth clause are not the same.

Example 2.1. We de�ne some terms that will be used in the sequel.

� Term I
def

= λx.x is called the identity.

� Terms T
def

= λxy.x and F
def

= λxy.y represent boolean projections.

� The duplicator is the term de�ned as ∆ def

= λx.xx and it enables de�ning
the ever looping term Ω

def

= ∆∆.

� The term ∆ℓ def

= λx.let y = x in yy is the call-by-value duplicator de�ned
using let-in operator.

Chapter 2. Probabilistic computation 15

2.1.2 Operational semantics

In this subsection, we introduce the operational semantics of Λ⊕,let. The op-
erational semantics of probabilistic λ-calculus, both call-by-name and call-by-
value have been introduced in [45].

We �rst introduce the one-step reduction relation with the following reduc-
tion rules:

(λx.M)N →M{N/x},
M ⊕N →M,

M ⊕N → N,

let x = V in M →M{V/x}.

We denote by →⋆ the re�exive and transitive closure of the relation →. For
termsM and N , ifM →⋆ N , then we say that the termM reduces (evaluates)
to the term N .

Due to the presence of the probabilistic operator ⊕ in the language, a
closed term in Λ⊕,let does not evaluate to a single value. For example, the

term M ⊕ N reduces to the term M with probability
1

2
and to the term N

with probability
1

2
. Thus, a closed term evaluates to a function which assigns

a probability to values, that is, to a discrete probability distribution of the
outcomes.

De�nition 2.2 (Distribution). A (value) distribution is a map
D : V∅

⊕,let → R[0,1], such that
∑

V ∈V∅
⊕,let

D(V) ≤ 1.

We denote with PD the set of all value distributions D . The support of
D , denoted by S(D), is the subset of V∅

⊕,let whose elements are values to
which D assigns a positive probability. In the sequel, we use

∑
D to abbre-

viate
∑

V ∈V∅
⊕,let

D(V). If a distribution D has a �nite support {V1, . . . , Vn}
and for every i ∈ {1, . . . , n}, D(Vi) = pi, we denote the distribution D with

p1V1+ . . .+pnVn. In this case, we have
∑

D =
n∑

k=1

pk. The empty distribution

is denoted by 0, and V denotes both the value V and the distribution which
assigns probability 1 to the value V .

De�nition 2.3. The order over distributions is de�ned pointwise: D ≤ E if
and only if D(V) ≤ E (V) for every value V ∈ V∅

⊕,let .

The structure (PD,≤) is a partially ordered set, that is ≤ is re�exive and
transitive relation de�ned on the set PD. Moreover, it is an ω-complete partial

16

order: every ω-chain (countable chain) in PD has a supremum. Following [45],
we give the operational semantics of Λ⊕,let in two steps. First, we de�ne a
big-step approximation relation and then we de�ne the semantics.

De�nition 2.4. A big-step approximation relation M ⇓ D is a relation be-
tween closed terms and �nite value distributions and it is inductively de�ned
by the derivation rules in Figure 2.1.

(be)
M ⇓ 0

(bv)
V ⇓ V

M ⇓ D N ⇓ E
(bs)

M ⊕N ⇓ 1
2D + 1

2E

M ⇓ D {P{N/x} ⇓ EP,N}λx.P∈S(D)
(ba)

MN ⇓
∑

λx.P∈S(D) D(λx.P) · EP,N

N ⇓ G {M{V/x} ⇓ HV }V ∈S(G)
(bl)

let x = N in M ⇓
∑

V ∈S(G) G (V) · HV

Figure 2.1: Rules for the approximation relation M ⇓ D ,

with M ∈ Λ∅
⊕,let and D being a value distribution.

The rule (be) in Figure 2.1 ensures that every term evaluates to the empty
distribution and the rule (bv) guarantees that every value V evaluates to the
distribution which assigns probability 1 to the value V . Further, the rule (bs)
gives semantics to a binary choice. Let us consider terms Ω and I. Although
Ω only evaluates to the empty distribution Ω ⇓ 0, the sum Ω ⊕ I evaluates
to a non-empty distribution. From I ⇓ λx.x, we derive Ω ⊕ I ⇓ 1

2λx.x. The
rule (ba) gives semantics to an application MN . This rule re�ects the call-by-
name evaluation, since it is enough to evaluate the term M to distribution D
and for every λx.P ∈ S(D) obtain distribution EP,N by evaluating P{N/x}.
On the other hand, in the call-by-value setting, it is not enough to evaluate
the term M to distribution D , the term N also has to be evaluated to some
distribution E , and for every λx.P ∈ S(D) and V ∈ S(E), the distribution
EP,V is obtained by evaluating P{V/x}. The call-by-value passing policy is
implemented by the rule (bl). In order to evaluate the term let x = N in M ,
we need to evaluate the term N before passing it to the term M . In addition,
the rule (ba) implements lazy call-by-name evaluation, where lazy means that
term does not reduce within the body of an abstraction

Proposition 2.5. Let N be a term. If N ⇓ E and N ⇓ F , then there exists
a distribution D such that N ⇓ D , E ≤ D and F ≤ D .

Chapter 2. Probabilistic computation 17

Proof. The proof is by induction on the derivation of N ⇓ E .

Proposition 2.5 proves that the set {D | M ⇓ D} is a directed set in the
sense of De�nition 2.6 below.

De�nition 2.6 ([148]). A nonempty subset X of a partially ordered set P is
directed if every pair {a, b} of elements of X has an upper bound in X, that is,
if for every a, b ∈ X, there exists c ∈ D with the property that a ≤ c and b ≤ c.

Since the set {D | M ⇓ D} is a countable, directed set (Proposition 2.5)
and (PD,≤) is an ω-complete partial order, the least upper bound of the set
{D |M ⇓ D} is well-de�ned.

De�nition 2.7. The semantics of M , denoted by [[M]], is the least upper
bound of all distributions which are related toM via the big-step approximation
relation, that is

[[M]] = sup{D |M ⇓ D}. (2.2)

If
∑

[[M]] = p, then we say that M converges with probability p.
As we have already discussed, we consider the lazy call-by-name λ-calculus.

The lazy call-by-name strategy is implemented by the rules in Figure 2.1. In
the rule (ba) of Figure 2.1, an argument is passed to a function without eval-
uating it. However, the call-by-value strategy is also present in the calculus.
If we want to evaluate term let x = Q in P , we �rst need to evaluate the term
Q to a value V and then we can evaluate the given term to P{V/x}. Thus,
the let-in operator implements the call-by-value strategy.

The following examples illustrate the operational semantics.

Example 2.8. For term ∆(F⊕T), we can derive ∆(F⊕T) ⇓ D for any

D ∈ P1 = {0, 1
2
I,

1

2
λy.(F⊕T),

1

2
λy.(F⊕T) +

1

2
I},

by the rules of Figure 2.1. The derivation of

∆(F⊕T) ⇓ 1

2
I+

1

2
λy.(F⊕T)

is given in Figure 2.2. The least upper bound of the set P1 is the distribution
1
2I+

1
2λy.(F⊕T), thus this distribution is the semantics of ∆(F⊕T),

[[∆(F⊕T)]] =
1

2
I+

1

2
λy.(F⊕T).

18

∆ ⇓ ∆

F ⇓ F T ⇓ T
(bs)

F⊕T ⇓ 1
2F+ 1

2T {I ⇓ I, λy.(F⊕T) ⇓ λy.(F⊕T)}
(ba)

(F⊕T)(F⊕T) ⇓ 1
2I+

1
2λy.(F⊕T)

(ba)
∆(F⊕T) ⇓ 1

2I+
1
2λy.(F⊕T)

Figure 2.2: A derivation of the big-step approximation

∆(F⊕T) ⇓ 1
2
I+ 1

2
λy.(F⊕T)

Example 2.9. If, in the Example 2.8, the operator ∆ is replaced with the
operator ∆ℓ introduced in Example 2.1, we obtain the term ∆ℓ(F ⊕ T). For
any

D ∈ P2 = {0, 1
2
I,

1

2
λy.T,

1

2
I+

1

2
λy.T},

we can derive ∆ℓ(F ⊕ T) ⇓ D by the rules given in Figure 2.1. Again, we
give the derivation for just one distribution (Figure 2.3). The distribution
1
2I+

1
2λy.T is the least upper bound of the set P2, hence

[[∆ℓ(F⊕T)]] =
1

2
I+

1

2
λy.T.

∆ℓ ⇓ ∆ℓ

F ⇓ F T ⇓ T
(bs)

F⊕T ⇓ 1
2F+ 1

2T {FF ⇓ I, TT ⇓ λy.T}
(bl)

let y = F⊕T in yy ⇓ 1
2I+

1
2λy.T (ba)

∆ℓ(F⊕T) ⇓ 1
2I+

1
2λy.T

Figure 2.3: A derivation of the big-step approximation

∆ℓ(F⊕T) ⇓ 1
2
I+ 1

2
λy.T

Example 2.10. In the probabilistic λ-calculus, normalizing terms are terms
M such that their semantics are of total mass

∑
[[M]] = 1 and that there ex-

ists a unique �nite derivation giving M ⇓ [[M]]. The probabilistic λ-calculus is
a framework which also allows for almost sure terminating terms, i.e. termsM
with

∑
[[M]] = 1, but such that there is no �nite derivation giving

M ⇓ [[M]]. An example of almost sure terminating term is the term M
def

= V V ,
with V def

= λx.(I ⊕ xx). As Figure 2.4 shows, any �nite approximation of M
gives a distribution bounded by

∑n
i=1

1
2i I for some n ≥ 0. However, only the

limit sum supn
∑n

i=1
1
2i I is equal to [[M]] = I.

Chapter 2. Probabilistic computation 19

V ⇓ V
I ⇓ I

V ⇓ V

I ⇓ I V V ⇓ 0
(bs)

I⊕ V V ⇓ 1
2I...

(ba)
V V ⇓

∑n−1
i=1

1
2i I (bs)

I⊕ V V ⇓
∑n

i=1
1
2i I (ba)

V V ⇓
∑n

i=1
1
2i I

Figure 2.4: A derivation of the big-step approximation

V V ⇓
∑n

i=1
1
2i
I for V = λx.(I⊕ xx).

Some fundamental properties of the semantics are stated in the following
proposition, for which the respective proofs can be found in [45].

Proposition 2.11 ([45]). For any terms M and N ,

1. [[(λx.M)N]] = [[M{N/x}]].

2. [[M ⊕N]] =
1

2
[[M]] +

1

2
[[N]].

2.1.3 Context equivalence

One of the most challenging problems in probabilistic programming is checking
whether two programs M and N behave the same, in the sense that we can
replace any occurrence ofM within some program L with N without changing
the behaviour of program L. In order to formalize this idea, a notion of context
is introduced.

De�nition 2.12. A Λ⊕,let-term context is a term with a unique hole [·] gen-
erated by the following grammar:

C ::= [·] | λx.C | CM |MC | C ⊕M |M ⊕ C | let x = C in M

| let x =M in C (2.3)

A Λ⊕,let-term obtained from a context by replacing a hole in C with a
Λ⊕,let-term N , denoted by C[N], is de�ned inductively as follows.

� [·][N]
def
= N ,

� (λx.C)[N]
def
= λx.C[N],

� (C ⊕M)[N]
def
= C[N]⊕M ,

20

� (M ⊕ C)[N]
def
= M ⊕ C[N],

� (CM)[N]
def
= C[N]M ,

� (MC)[N]
def
= MC[N],

� (let x =M in C)[N]
def
= (let x =M in C[N]),

� (let x = C in M)[N]
def
= (let x = C[N] in M).

Substituting a hole in the context C with a term N allows capturing free
variables of N ; still, some free variables of N can remain free in C[N]. In
the sequel, we will work with contexts C which bound all free variables of the
term N , resulting in closed terms C[N], called closing contexts. Therefore, the
important features of a context are the set of variables it bounds and the set
of variables it keeps free.

In order to keep the track of free variables, we introduce the set of contexts
CΛ⊕,let

(Φ;Ψ) inductively de�ned by the following rules.

(Ctx1)
[·] ∈ CΛ⊕,let

(Φ;Φ)

C ∈ CΛ⊕,let
(Φ;Ψ∪{x}) x ̸∈ Ψ

(Ctx2)
λx.C ∈ CΛ⊕,let

(Φ;Ψ)

C ∈ CΛ⊕,let
(Φ;Ψ) M ∈ ΛΨ

⊕,let
(Ctx3)

CM ∈ CΛ⊕,let
(Φ;Ψ)

M ∈ ΛΨ
⊕,let C ∈ CΛ⊕,let

(Φ;Ψ)

(Ctx4)
MC ∈ CΛ⊕,let

(Φ;Ψ)

C ∈ CΛ⊕,let
(Φ;Ψ) M ∈ ΛΨ

⊕,let
(Ctx5)

C ⊕M ∈ CΛ⊕,let
(Φ;Ψ)

M ∈ ΛΨ
⊕,let C ∈ CΛ⊕,let

(Φ;Ψ)

(Ctx6)
M ⊕ C ∈ CΛ⊕,let

(Φ;Ψ)

C ∈ CΛ⊕,let
(Φ;Ψ) M ∈ Λ

Ψ∪{x}
⊕,let

(Ctx7)
(let x = C in M) ∈ CΛ⊕,let

(Φ;Ψ)

Chapter 2. Probabilistic computation 21

M ∈ ΛΨ
⊕,let C ∈ CΛ⊕,let

(Φ;Ψ∪{x})

(Ctx8)
(let x =M in C) ∈ CΛ⊕,let

(Φ;Ψ)

We use the sets Φ and Ψ of variables to indicate the sets of free variables
before and after the �lling of the hole by a term. The idea is explained by the
following two lemmas.

Lemma 2.13. If M ∈ ΛΦ
⊕,let and C ∈ CΛ⊕,let

(Φ;Ψ), then C[M] ∈ ΛΨ
⊕,let.

Lemma 2.14. If C ∈ CΛ⊕,let
(Φ;Ψ) and D ∈ CΛ⊕,let

(Ψ;Θ), then
D[C] ∈ CΛ⊕,let

(Φ;Θ).

Lemma 2.13 and Lemma 2.14 are direct consequences of the de�nition of
CΛ⊕,let

(Φ;Ψ), the proofs follow by induction on the derivation of context and
are omitted.

In the probabilistic language, we check the program equivalence by ob-
serving the probability of program convergence to a value. We say that two
programs are context equivalent if they converge to a value with the same
probability in all contexts. A context preorder, denoted by ≤, and a context
equivalence, denoted by ≃, are de�ned as follows.

De�nition 2.15. For all M,N ∈ ΛΦ
⊕,let, we de�ne:

M ≤ N i�
(
∀C ∈ CΛ⊕,let

(Φ;∅)
)∑

[[C[M]]] ≤
∑

[[C[N]]], (2.4)

M ≃ N i�
(
∀C ∈ CΛ⊕,let

(Φ;∅)
)∑

[[C[M]]] =
∑

[[C[N]]]. (2.5)

We may observe that M ≃ N is equivalent to M ≤ N and N ≤ M . The
context equivalence is illustrated by the following examples.

Example 2.16. Two terms that show the di�erence between the call-by-name
probabilistic λ-calculus without the let-in operator and the call-by-name prob-
abilistic λ-calculus with the let-in operator are terms M def

= λxy.(x ⊕ y) and
N

def

= (λxy.x)⊕(λxy.y). In the call-by-name probabilistic λ-calculus without the
let-in operator ([47]) these terms are context equivalent; however in the call-by-
name probabilistic λ-calculus with the let-in operator they can be discriminated
by the context C def

= (let y = [·] in (let z1 = yIΩ in (let z2 = yIΩ in I))). Fol-
lowing the rules of Figure 2.1, we obtain

∑
[[C[M]]] = 1

4 and
∑

[[C[N]]] = 1
2 .

Since M and N have di�erent probability of convergence in the same context
they are not context equivalent.

Example 2.17. The two duplicators ∆ and ∆ℓ introduced in (Example 2.1)
are not context equivalent. For example, for the context C def

= [·](I⊕Ω) we get∑
[[C[∆]]] = 1

4 and
∑

[[C[∆ℓ]]] = 1
2 . Thus, the context C discriminates the two

duplicators.

22

Proposition 2.18. For M,N ∈ Λ∅
⊕,let, we have that, if [[M]] ≤ [[N]] then

M ≤ N . Therefore, [[M]] = [[N]] implies M ≃ N .

Proof. Following the de�nition of the context preorder, we can see that
[[M]] ≤ [[N]] is equivalent to: for all D such that M ⇓ D , there exists E ≥ D
such that N ⇓ E . The proof that [[M]] ≤ [[N]] implies [[C(M)]] ≤ [[C(N)]]
follows by induction on the structure of the context C.

Example 2.19. Proposition 2.18 allows us to prove that two terms, which
seem to be quite di�erent, are actually context equivalent. For example, let
us consider the term V V introduced in Example 2.10 and the term I. They
have the same semantics and as a consequence we can conclude that they are
context equivalent. The opposite direction does not hold. There are context
equivalent terms that do not have the same semantics, as for example terms
λx.(x⊕ x) and I.

2.2 Probabilistic applicative bisimulation

The notion of the applicative bisimulation for the lazy call-by-name λ-calculus
was introduced by Abramsky in [1]. Later, Larsen and Scou ([111]) have
introduced a notion of probabilistic bisimulation for labelled Markov chains.
Mixing these two notions resulted in emerging a new notion of bisimulation,
called probabilistic applicative bisimulation ([47]), which is a relation between
terms of probabilistic λ-calculus. In order to de�ne probabilistic applicative
bisimulation, we �rst notice that the operational semantics of probabilistic λ-
calculus can be seen as a probabilistic transition system, or more precisely as
a labelled Markov chain. The states in this system will be closed terms and
the set of transitions will comprise two kinds of transitions:

� evaluating a term to a value, and

� applying a value to a term.

Looking at the probabilistic λ-calculus as labelled Markov chain allows us to
de�ne the notion of bisimilarity over it. As one of the main results, we will
show that probabilistic applicative bisimilarity implies context equivalence,
meaning that in order to prove that two program are context equivalent, it is
enough to prove that they are bisimilar.

First, we introduce the notions of labelled Markov chain, probabilistic sim-
ulation and bisimulation (as in [111]).

De�nition 2.20. A labelled Markov chain is a triple M = (S,L, P) where

� S is a countable set of states,

Chapter 2. Probabilistic computation 23

� L is a set of labels (actions), and

� P is a transition probability matrix, i.e. a function P : S×L×S → R[0,1]

satisfying the following condition: (∀s ∈ S) (∀l ∈ L)
∑

t∈S P (s, l, t) ≤ 1.

Throughout the following subsections, we use the following notational con-
ventions. We denote

∑
t∈X P (s, l, t) by P (s, l,X). For a relation R, the im-

age of the set X under R is denoted by R(X), i.e. R(X) = {y | ∃x ∈
X such that xRy}. If R is a binary relation, then Rop denotes the relation
{(b, a) | (a, b) ∈ R}. For an equivalence relation R, the set of all equivalence
classes of S modulo R will be denoted by S/R.

De�nition 2.21. Let (S,L, P) be a labelled Markov chain and R be a relation
over S:

� R is a probabilistic simulation if it is a preorder and

(∀(s, t) ∈ R) (∀X ⊆ S) (∀l ∈ L)P (s, l,X) ≤ P (t, l,R(X))

� R is a probabilistic bisimulation if it is an equivalence and

(∀(s, t) ∈ R) (∀E ∈ S/R) (∀l ∈ L)P (s, l, E) = P (t, l, E)

It has been proved in [47] that the union of all probabilistic simulations
(resp. bisimulations) is still a simulation (resp. a bisimulation).

De�nition 2.22. The union of all probabilistic simulations is the largest prob-
abilistic simulation, called probabilistic similarity and denoted by ≲. Similarly,
the union of all probabilistic bisimulations is the largest probabilistic bisimula-
tion, called probabilistic bisimilarity and denoted by ∼.

M ≲ N i� there exists a probabilistic simulation R such that M R N (2.6)

M ∼ N i� there exists a probabilistic bisimulation R such that M R N
(2.7)

It is straightforward to prove that ∼=≲ ∩ ≲op, i.e. M ≲ N and N ≲ M
is equivalent to M ∼ N (Proposition 2.13, [47]).

We present the operational semantics of Λ⊕,let as a labelled Markov chain.
For this purpose we de�ne a set of distinguished values, denoted by VΛ∅

⊕,let

such that for every closed value V = λx.P ∈ V∅
⊕,let there is a distinguished

value Ṽ = νx.P that belongs to VΛ∅
⊕,let. For example, value λyz.z belongs to

the set V∅
⊕,let , whereas the distinguished value νyz.z belongs to the set VΛ

∅
⊕,let.

24

De�nition 2.23 ([47, 99]). The Λ⊕,let-Markov chain is de�ned as the triple
(Λ∅

⊕,let ⊎ VΛ∅
⊕,let,Λ

∅
⊕,let ∪ {τ},P) such that

� the set of states Λ∅
⊕,let ⊎ VΛ∅

⊕,let is the disjoint union of the set of closed
terms and the set of closed distinguished values,

� labels (actions), Λ∅
⊕,let∪{τ}, are either closed terms, which model param-

eter passing, or the action τ , which is a distinguished action that models
evaluation,

� the transition probability matrix P is de�ned as follows:

� for every closed term M and a distinguished value νx.N ,

P (M, τ, νx.N) = [[M]](λx.N) ,

� for every closed term M and a distinguished value νx.N ,

P (νx.N,M,N{M/x}) = 1 ,

� in all other cases, P returns 0.

A probabilistic applicative simulation (resp. bisimulation) is a probabilistic
simulation (resp. bisimulation) on Λ⊕,let-Markov chain. Further, by applying
De�nition 2.22, we de�ne the probabilistic applicative similarity ≲ and the
probabilistic applicative bisimilarity ∼, respectively.

We extend the notions of probabilistic applicative similarity and bisim-
ilarity to open terms by considering all closing substitutions. Let M and
N be terms whose free variables belong to the set Φ = {y1, . . . , ym}, i.e.
M,N ∈ ΛΦ

⊕,let. If, for all terms P1, . . . , Pn ∈ Λ∅
⊕,let,

M{P1/y1, . . . , Pn/yn} ≲ N{P1/y1, . . . , Pn/yn},

we say that the terms M and N are similar, i.e. M ≲ N . The notion of
bisimilarity is analogously extended to open terms.

Example 2.24. In Example 2.19, we have observed that there are terms that
are context equivalent and that do not have the same semantics, as for exam-
ple the terms λx.(x ⊕ x) and λx.x. Proving that these two terms are context
equivalent is not an easy task, since we should check that the terms will con-
verge to a value with the same probability in every context. In general, proofs
of statements that use universal quanti�cation in its de�nition can be hard to
deal with, which is why the characterizations that use existential quanti�cation
are preferable. In this example, we will prove that the terms λx.(x ⊕ x) and

Chapter 2. Probabilistic computation 25

λx.x are bisimilar. We need to �nd a bisimulation that contains the pair of
terms (λx.(x⊕ x), λx.x). Let us consider the relation

R ={(λx.(x⊕ x), λx.x)} ∪ {(λx.x, λx.(x⊕ x))} ∪ {(νx.(x⊕ x), νx.x)}
∪ {(νx.x, νx.(x⊕ x))} ∪ {(M ⊕M,M) |M ∈ Λ∅

⊕,let}

∪ {(M,M ⊕M) |M ∈ Λ∅
⊕,let} ∪ {(M,M) |M ∈ Λ∅

⊕,let}

∪ {(W̃ , W̃) | W̃ ∈ VΛ∅
⊕,let}.

The pair of terms (λx.(x ⊕ x), λx.x) belongs to the relation R, so we need
to prove that R is a bisimulation. By its de�nition, R is an equivalence re-
lation, thus it remains to prove that is satis�es the condition (∀(M,N) ∈ R)(
∀E ∈ (Λ∅

⊕,let ⊎ VΛ∅
⊕,let)/R

)(
∀ℓ ∈ Λ∅

⊕,let ∪ {τ}
)
, P (M, ℓ,E) = P (N, ℓ,E)

(De�nition 2.21). We illustrate just some cases of the proof, since other cases
are analogous.

� First, let us consider the pair (λx.(x ⊕ x), λx.x) ∈ R. From De�ni-
tion 2.21, it follows that P (λx.(x ⊕ x), L,E) = 0 = P (λx.x, L,E) holds
for all L ∈ Λ∅

⊕,let and E ∈ (Λ∅
⊕,let ⊎ VΛ∅

⊕,let)/R. Furthermore, we have
that (νx.(x ⊕ x), νx.x) ∈ R, thus νx.(x ⊕ x) and νx.x belong to the
same equivalence class E. In the case that νx.(x ⊕ x), νx.x ∈ E, it
holds that P (λx.(x ⊕ x), τ, E) = 1 = P (λx.x, τ, E), and if νx.(x ⊕
x), νx.x ̸∈ E, then P (λx.(x ⊕ x), τ, E) = 0 = P (λx.x, τ, E). Conse-
quently P (λx.(x ⊕ x), ℓ, E) = P (λx.x, ℓ, E) for all ℓ ∈ Λ∅

⊕,let ∪ {τ} and

all E ∈ (Λ∅
⊕,let ⊎ VΛ∅

⊕,let)/R.

� Next, by De�nition 2.23 the equality P (νx.(x ⊕ x), τ, E) = 0 =
P (νx.x, τ, E) holds for any equivalence class E. For L ∈ Λ∅

⊕,let, we have
that L⊕L and L belong to the same equivalence class, since (L⊕L,L) ∈
R. Thus, P (νx.(x ⊕ x), L,E) = 1 = P (νx.x, L,E) if L ∈ E, and
P (νx.(x ⊕ x), L,E) = 0 = P (νx.x, L,E), otherwise. Again, we con-
clude that P (νx.(x⊕x), ℓ, E) = P (νx.x, ℓ, E) for all ℓ ∈ Λ∅

⊕,let ∪{τ} and

all E ∈ (Λ∅
⊕,let ⊎ VΛ∅

⊕,let)/R.

� Finally, let us consider the pair (M ⊕M,M) ∈ R, where M ∈ Λ∅
⊕,let.

By De�nition 2.23, it follows that P (M ⊕M,L,E) = 0 = P (M,L,E)
for any closed term L ∈ Λ∅

⊕,let and equivalence class E ∈ (Λ∅
⊕,let ⊎

VΛ∅
⊕,let)/R. By Proposition 2.11 and De�nition 2.23, for an equivalence

class E ∈ (Λ∅
⊕,let ⊎ VΛ∅

⊕,let)/R the following holds:

26

P (M ⊕M, τ,E) =
∑

νx.N∈E

P (M ⊕M, τ, νx.N)

=
∑

{λx.N |νx.N∈E}

[[M ⊕M]](λx.N)

=
∑

{λx.N |νx.N∈E}

(
1

2
[[M]] +

1

2
[[M]])(λx.N)

=
∑

{λx.N |νx.N∈E}

[[M]](λx.N)

=
∑

νx.N∈E

P (M, τ, νx.N)

= P (M, τ,E).

This concludes the proof that the relation R is a probabilistic bisimulation,
thus terms λx.x ⊕ x and λx.x are bisimilar. As we will see, if we want to
show that two terms are context equivalent, it is enough to show that they are
bisimilar.

Example 2.25. Let us consider the terms given in Example 2.16, λxy.(x⊕y)
and (λxy.x) ⊕ (λxy.y). We discussed in Example 2.16 that these terms are
context equivalent in the call-by-name probabilistic λ-calculus without the let-
in operator and can be discriminated by a context in Λ⊕,let. Now, we will show
that these terms are not bisimilar, i.e. that there is no bisimulation which
contains both terms. Suppose the opposite, that there is a bisimulation R such
that (λxy.(x⊕ y), (λxy.x)⊕ (λxy.y)) ∈ R. Then

1 = P (λxy.(x⊕ y), τ, E) = P ((λxy.x)⊕ (λxy.y), τ, E)

holds for an equivalence class E of Λ∅
⊕,let ⊎VΛ∅

⊕,let with respect to R such that
νx.λy.(x ⊕ y) belongs to E. Since P ((λxy.x) ⊕ (λxy.y), τ, νx.λy.x) = 1

2 and
P ((λxy.x) ⊕ (λxy.y), τ, νx.λy.y) = 1

2 , both νx.λy.x and νx.λy.y belong to E.
From νx.λy.x ∈ E, it follows that (νx.λy.(x ⊕ y), νx.λy.x) ∈ R. Let F be an
equivalence class such that λy.(Ω⊕ y) ∈ F . Then

1 = P (νx.λy.(x⊕ y),Ω, F) = P (νx.λy.x,Ω, F)

From P (νx.λy.x,Ω, λy.Ω) = 1, it follows that λy.Ω belongs to F . Therefore,
λy.(Ω⊕ y), λy.Ω ∈ F and consequently (λy.(Ω⊕ y), λy.Ω) ∈ R. Let G be an
equivalence class which contains νy.(Ω⊕ y). Then

1 = P (λy.(Ω⊕ y), τ, G) = P (λy.Ω, τ, G)

Chapter 2. Probabilistic computation 27

holds. It follows that both νy.(Ω⊕ y) and νy.Ω belong to the same equivalence
class G, thus (νy.(Ω ⊕ y), νy.Ω) ∈ R. If H is an equivalence class such that
Ω⊕ I ∈ H, then by observing that

1 = P (νy.(Ω⊕ y), I, H) = P (νy.Ω, I, H),

we conclude Ω ∈ H and as a consequence (Ω ⊕ I,Ω) ∈ R. Let J be an
equivalence class which contains νx.x. Then

1

2
= P (Ω⊕ I, τ, J) = P (Ω, τ, J).

However, this contradicts P (Ω, τ, J) = 0, which follows from the de�nition of
a transition probability matrix (De�nition 2.23). Finally, we can conclude that
a bisimulation which contains the terms λxy.(x⊕y) and (λxy.x)⊕(λxy.y) does
not exist, hence these terms are not bisimilar.

In Proposition 2.18, we have proved that the context preorder and the
context equivalence are sound with respect to the operational semantics. Sim-
ilarly, the probabilistic applicative similarity and bisimilarity are sound with
respect to the operational semantics.

Proposition 2.26. Let M,N ∈ Λ∅
⊕,let. If [[M]] ≤ [[N]] then M ≲ N . So,

[[M]] = [[N]] implies M ∼ N .

Proof. The relation

R = {(M,N) ∈ Λ∅
⊕,let × Λ∅

⊕,let | [[M]] ≤ [[N]]} ∪ {(Ṽ , Ṽ) ∈ VΛ∅
⊕,let × VΛ∅

⊕,let}

is a probabilistic applicative simulation (Lemma 3.4, [47]), thus included in
the largest probabilistic applicative simulation ≲. Soundness of bisimilarity
follows from ∼=≲ ∩ ≲op.

The �rst step towards the proof that the similarity (resp. bisimilarity)
implies the context preorder (resp. context equivalence) is proving that the
similarity is a precongruence relation. We introduce a new notion of re-
lation called Λ⊕,let-relation, which is a set of triplets (Φ,M,N) such that
M,N ∈ ΛΦ

⊕,let. For any relation R′ on the set of Λ⊕,let-terms, we can de-
�ne a Λ⊕,let-relation R such that if (M,N) ∈ R′ and M,N ∈ ΛΦ

⊕,let, then
(Φ,M,N) ∈ R. If (Φ,M,N) ∈ R, we will write Φ ⊢ M R N . We denote the
set of all �nite subsets of X by PFIN(X).

De�nition 2.27. A Λ⊕,let-relation R is a precongruence (resp. a congruence)
if it is a preorder (resp. an equivalence) and for every Φ ⊢M R N and every
context C ∈ CΛ⊕,let

(Φ;∅), it holds that ∅ ⊢ C[M] R C[N].

28

A precongruence relation can be de�ned by using a notion of compatibility
and this de�nition is equivalent to De�nition 2.27.

De�nition 2.28. A Λ⊕,let-relation R is compatible if and only if the following
�ve conditions hold:

(Com1) (∀Φ ∈ PFIN(X)) (∀x ∈ Φ) : Φ ⊢ x R x

(Com2) (∀Φ ∈ PFIN(X)) (∀x ∈ X \ Φ)
(
∀M,N ∈ Λ

Φ∪{x}
⊕,let

)
Φ ∪ {x} ⊢M R N ⇒ Φ ⊢ (λx.M) R (λx.N)

(Com3) (∀Φ ∈ PFIN(X))
(
∀M,N,L, P ∈ ΛΦ

⊕,let

)
Φ ⊢M R N ∧ Φ ⊢ L R P ⇒ Φ ⊢ (ML) R (NP)

(Com4) (∀Φ ∈ PFIN(X))
(
∀M,N,L, P ∈ ΛΦ

⊕,let

)
Φ ⊢M R N ∧ Φ ⊢ L R P ⇒ Φ ⊢ (M ⊕ L) R (N ⊕ P)

(Com5) (∀Φ ∈ PFIN(X)) (∀x ∈ X \ Φ)
(
∀M,N ∈ ΛΦ

⊕,let

)(
∀L,P ∈ Λ

Φ∪{x}
⊕,let

)
Φ ⊢M R N ∧ Φ ∪ {x} ⊢ L R P ⇒
Φ ⊢ (let x =M in L) R (let x = N in P)

The following auxiliary results will be useful in the sequel.

Lemma 2.29. Let us consider the properties

(Com3L) (∀Φ ∈ PFIN(X))
(
∀M,N,L ∈ ΛΦ

⊕,let

)
Φ ⊢M R N ⇒ Φ ⊢ (ML) R (NL)

(Com3R) (∀Φ ∈ PFIN(X))
(
∀M,N,L ∈ ΛΦ

⊕,let

)
Φ ⊢M R N ⇒ Φ ⊢ (LM) R (LN)

If R is transitive, then (Com3L) and (Com3R) together imply (Com3).

Proof. Let R be a transitive relation that satis�es (Com3L) and (Com3R).
We prove that R also satis�es (Com3). Let Φ ∈ PFIN(X) and M,N,L, P ∈
ΛΦ
⊕,let such that Φ ⊢ M R N and Φ ⊢ L R P . By applying (Com3L) to

Φ ⊢M R N and term L, we obtain Φ ⊢ (ML) R (NL). Further, by applying
(Com3R) to Φ ⊢ L R P and term N , we obtain Φ ⊢ (NL) R (NP). Therefore,
Φ ⊢ (ML) R (NP) by the transitivity of the relation R.

Chapter 2. Probabilistic computation 29

Lemma 2.30. Let us consider the properties

(Com4L) (∀Φ ∈ PFIN(X))
(
∀M,N,L ∈ ΛΦ

⊕,let

)
Φ ⊢M R N ⇒ Φ ⊢ (M ⊕ L) R (N ⊕ L)

(Com4R) (∀Φ ∈ PFIN(X))
(
∀M,N,L ∈ ΛΦ

⊕,let

)
Φ ⊢M R N ⇒ Φ ⊢ (L⊕M) R (L⊕N)

If R is transitive, then (Com4L) and (Com4R) together imply (Com4).

Proof. Let R be a transitive relation, which satis�es (Com4L) and (Com4R).
We prove that R also satis�es (Com4). We assume Φ ∈ PFIN(X),
M,N,L, P ∈ ΛΦ

⊕,let, Φ ⊢ M R N and Φ ⊢ L R P . By applying (Com4L)
to Φ ⊢M R N and term L, we derive Φ ⊢ (M ⊕ L) R (N ⊕ L). Similarly, by
applying (Com4R) to Φ ⊢ L R P and term N we get Φ ⊢ (N ⊕L) R (N ⊕P).
Consequently, Φ ⊢ (M ⊕ L) R (N ⊕ P) by the transitivity of the relation R.

Lemma 2.31. Let us consider the properties

(Com5L) (∀Φ ∈ PFIN(X)) (∀x ∈ X \ Φ)
(
∀M,N ∈ ΛΦ

⊕,let

) (
∀L ∈ Λ

Φ∪{x}
⊕,let

)
Φ ⊢M R N ⇒ Φ ⊢ (let x =M in L) R (let x = N in L)

(Com5R) (∀Φ ∈ PFIN(X)) (∀x ∈ X \ Φ)
(
∀L ∈ ΛΦ

⊕,let

) (
∀M,N ∈ Λ

Φ∪{x}
⊕,let

)
Φ ∪ {x} ⊢M R N ⇒ Φ ⊢ (let x = L in M) R (let x = L in N)

If R is transitive, then (Com5L) and (Com5R) together imply (Com5).

Proof. To prove (Com5) we have to show that the hypotheses Φ ⊢ M R N
and Φ ∪ {x} ⊢ L R P imply Φ ⊢ (let x = M in L) R (let x = N in P). If
we apply (Com5L) to the �rst hypothesis, with respect to L ∈ Λ

Φ∪{x}
⊕,let , we get

Φ ⊢ (let x =M in L) R (let x = N in L). Similarly, applying (Com5R) to the
second hypothesis, with respect to N ∈ ΛΦ

⊕,let, we obtain
Φ ⊢ (let x = N in L) R (let x = N in P). Then by the transitivity prop-
erty of R we conclude the claim.

De�nition 2.32. A Λ⊕,let-relation is a precongruence (resp. congruence) if it
is a preorder relation (resp. equivalence) and compatible.

The context preorder is a precongruence relation, whereas the context
equivalence is a congruence relation.

Proposition 2.33. The context preorder ≤ is a precongruence relation.

30

Proof. In order to prove that ≤ is a precongruence, we need to show that ≤ is a
preorder (re�exive and transitive) relation, which is compatible. The relation
≤ is re�exive by its de�nition and we prove it is transitive, i.e.

(∀Φ ∈ PFIN(X))
(
∀M,N,L ∈ ΛΦ

⊕,let

)
Φ ⊢M≤N ∧ Φ ⊢ N≤L⇒ Φ ⊢M≤L.

Let us assume that Φ ⊢M≤N and Φ ⊢ N≤L, then

(1)
(
∀C ∈ CΛ⊕,let

(Φ;∅)
)∑

[[C[M]]] ≤
∑

[[C[N]]],

(2)
(
∀C ∈ CΛ⊕,let

(Φ;∅)
)∑

[[C[N]]] ≤
∑

[[C[L]]].

To prove Φ ⊢ M≤L we need to show that for every D ∈ CΛ⊕,let
(Φ;∅),∑

[[D[M]]] ≤
∑

[[D[L]]]. For any such context D, from the hypothesis (1)
and (2) we have

∑
[[D[M]]] ≤

∑
[[D[N]]] ≤

∑
[[D[L]]]. Thus, ≤ is transitive. In

order to prove that ≤ is compatible, we show that it satis�es the conditions
(Com1), (Com2), (Com3), (Com4) and (Com5). The proof of (Com1) follows
from the re�exivity of ≤.

(Com2) To prove that (Com2) holds, we show (∀Φ ∈ PFIN(X)) (∀x ∈ X \ Φ)(
∀M,N ∈ Λ

Φ∪{x}
⊕,let

)
Φ ∪ {x} ⊢M≤N ⇒ Φ ⊢ λx.M≤λx.N.

From the assumption Φ ∪ {x} ⊢ M≤N , we have
(
∀C ∈ CΛ⊕,let

(Φ∪{x};∅)
)∑

[[C[M]]] ≤
∑

[[C[N]]] as the hypothesis. Let us consider a context D ∈
CΛ⊕,let

(Φ,∅). Since the context λx.[·] belongs to the set CΛ⊕,let
(Φ∪{x};Φ), then

E = D[λx.[·]] ∈ CΛ⊕,let
(Φ∪{x};∅) by Lemma 2.14. We can apply the hypothesis

to the context E and obtain
∑

[[E[M]]] ≤
∑

[[E[N]]], that is∑
[[D[λx.M]]] ≤

∑
[[D[λx.N]]]. Thus, Φ ⊢ λx.M≤λx.N .

(Com3) As already proved, ≤ is a transitive relation, thus by Lemma 2.29
it is enough to prove two characterizations (Com3L) and (Com3R). We prove

(Com3L): (∀Φ ∈ PFIN(X))
(
∀M,N,L ∈ ΛΦ

⊕,let

)
Φ ⊢M≤N ⇒ Φ ⊢ML≤NL.

Let us assume Φ ⊢M≤N , then(
∀C ∈ CΛ⊕,let

(Φ;∅)
)∑

[[C[M]]] ≤
∑

[[C[N]]]

Chapter 2. Probabilistic computation 31

holds as the hypothesis. We want to show that for any contextD ∈ CΛ⊕,let
(Φ;∅),∑

[[D[ML]]] ≤
∑

[[D[NL]]] holds. For an arbitrary context D ∈ CΛ⊕,let
(Φ;∅)

and [·]L ∈ CΛ⊕,let
(Φ;Φ), we get E = D[[·]L] ∈ CΛ⊕,let

(Φ;∅) by Lemma 2.14.
From the hypothesis, we conclude that

∑
[[E[M]]] ≤

∑
[[E[N]]] holds, i.e.∑

[[D[ML]]] ≤
∑

[[D[NL]]]. Thus, Φ ⊢ ML≤NL. We omit the proof of
(Com3R), since it is analogous to the proof of (Com3L).

(Com4) As in the previous case, the fact that ≤ is transitive and Lemma 2.30
ensure that (Com4L) and (Com4R) imply (Com4), so it is enough to prove these
two characterizations. We omit the proof of (Com4L) and (Com4R), since we
prove it by a similar reasoning as in the proof of (Com3L).

(Com5) By Lemma 2.31 it is enough to prove two characterizations (Com5L)
and (Com5R). We prove (Com5L): (∀Φ ∈ PFIN(X)) (∀x ∈ X \ Φ)(
∀M,N ∈ ΛΦ

⊕,let

) (
∀L ∈ Λ

Φ∪{x}
⊕,let

)
Φ ⊢M≤N ⇒ Φ ⊢ (let x =M in L)≤(let x = N in L).

If we assume Φ ⊢ M≤N , then we have
(
∀C ∈ CΛ⊕,let

(Φ;∅)
) ∑

[[C[M]]] ≤∑
[[C[N]]]. We want to show that for any context D ∈ CΛ⊕,let

(Φ;∅),∑
[[D[let x = M in L]]] ≤

∑
[[D[let x = N in L]]] holds. For an arbitrary con-

text D ∈ CΛ⊕,let
(Φ;∅) and the context let x = [·] in L ∈ CΛ⊕,let

(Φ;Φ), we get
E = D[let x = [·] in L] ∈ CΛ⊕,let

(Φ;∅) by Lemma 2.14. From the hypothesis, we
can conclude that

∑
[[E[M]]] ≤

∑
[[E[N]]] holds, i.e.

∑
[[D[let x = M in L]]] ≤∑

[[D[let x = N in L]]]. Thus, Φ ⊢ (let x = M in L)≤(let x = N in L). The
characterization (Com5R) can be proved in a similar way.

Corollary 2.34. The context equivalence ≃ is a congruence relation.

Proof. This statement is a consequence of Proposition 2.33 and the fact that
≃=≤ ∩ ≤op.

In the following two de�nitions we introduce the notions of substitutive
relation and relation closed under term-substitution, which will be used in the
sequel.

De�nition 2.35. A Λ⊕,let-relation R is (term) substitutive if for all

Φ ∈ PFIN(X), x ∈ X \ Φ,M,N ∈ Λ
Φ∪{x}
⊕,let , L, P ∈ ΛΦ

⊕,let, we have

Φ ∪ {x} ⊢M R N ∧ Φ ⊢ L R P ⇒ Φ ⊢M{L/x} R N{P/x}.

De�nition 2.36. A Λ⊕,let-relation R is closed under term-substitution if for

all Φ ∈ PFIN(X), x ∈ X \ Φ,M,N ∈ Λ
Φ∪{x}
⊕,let , L ∈ ΛΦ

⊕,let, we have

Φ ∪ {x} ⊢M R N ∧ L ∈ ΛΦ
⊕,let ⇒ Φ ⊢M{L/x} R N{L/x}.

32

Notice that the similarity and bisimilarity are closed under term-substitu-
tion by their de�nition. Compared to the proof of Proposition 2.33, proving
that similarity is a precongruence is more involved. The proof is very technical
and we have followed the technique used in [35, 36, 47]. Given that similarity
is a preorder relation, by De�nition 2.32, it remains to be proven that it is a
compatible relation. We do this in the next subsection using Howe's technique
([84]), which is a commonly used technique for proving that similarity (resp.
bisimilarity) is a precongruence (resp. congruence).

2.2.1 Similarity is a precoungruence

First, we introduce Howe's lifting RH of an arbitrary Λ⊕,let-relation R, which
is de�ned by the rules in Figure 2.5. Next, we present some auxiliary results.

Φ ⊢ x R M (How1)
Φ ⊢ x RH M

Φ ∪ {x} ⊢M RH L Φ ⊢ (λx.L) R N x ̸∈ Φ
(How2)

Φ ⊢ (λx.M) RH N

Φ ⊢M RH P Φ ⊢ N RH Q Φ ⊢ (PQ) R L
(How3)

Φ ⊢ (MN) RH L

Φ ⊢M RH P Φ ⊢ N RH Q Φ ⊢ (P ⊕Q) R L
(How4)

Φ ⊢ (M ⊕N) RH L

Φ ⊢M RH P Φ ∪ {x} ⊢ N RH Q Φ ⊢ (let x = P in Q) R L
(How5)

Φ ⊢ (let x =M in N) RH L

Figure 2.5: Howe's lifting for Λ⊕,let

Lemma 2.37. If R is re�exive, then RH is compatible.

Proof. The proof proceeds similarly to the proof of Lemma 3.10 in [46].

Lemma 2.38. If R is transitive, then Φ ⊢ M RH N and Φ ⊢ N R L imply
Φ ⊢M RH L.

Proof. The proof proceeds by induction on the derivation of Φ ⊢M RH N .

Lemma 2.39. If R is re�exive, then Φ ⊢M R N implies Φ ⊢M RH N .

Chapter 2. Probabilistic computation 33

Proof. The proof proceeds by induction on the structure of M .

Lemma 2.40. If R is re�exive, transitive and closed under term-substitution,
then RH is (term) substitutive and hence also closed under term-substitution.

Proof. We need to show that: (∀Φ ∈ PFIN(X)) (∀x ∈ X \ Φ)
(
∀M,N ∈ Λ

Φ∪{x}
⊕,let

)
(
∀L,P ∈ ΛΦ

⊕,let

)
Φ ∪ {x} ⊢M RH N ∧ Φ ⊢ L RH P ⇒ Φ ⊢M{L/x} RH N{P/x}.

The proof proceeds by induction on the derivation of Φ∪{x} ⊢M RH N .

De�nition 2.41. For a relation R, its transitive closure, denoted by R+, is
de�ned by the rules in Figure 2.6.

Φ ⊢M R N (TC1)
Φ ⊢M R+ N

Φ ⊢M R+ N Φ ⊢ N R+ L (TC2)
Φ ⊢M R+ L

Figure 2.6: Transitive closure for Λ⊕,let

In the following lemmas we identify some properties of a transitive closure
of a relation.

Lemma 2.42. For the transitive closure R+ of a relation R the following
holds:

1. If R is compatible, then so is R+.

2. If R is closed under term-substitution, then so is R+.

Proof. The proofs of the two claims follow the same reasoning as the proofs of
Lemma 3.14 and Lemma 3.15, respectively, in [46].

Lemma 2.43. If a Λ⊕,let-relation R is a preorder, then so is (RH)+.

Proof. Let R be preorder. Since R is re�exive, we get that RH is compatible
by Lemma 2.37 and then, by Lemma 2.42 it follows that (RH)+ is also com-
patible. Therefore, (RH)+ is re�exive. Relation (RH)+ is a transitive closure
of the relation RH , so the transitivity of the relation (RH)+ follows from its
de�nition.

34

A key step in proving that similarity is a precongruence is Key Lemma
(Lemma 2.48 below). In the proof of Key Lemma we will use auxiliary lemmas
about probability assignment (Lemma 2.45) and similarity (Proposition 2.46
and Proposition 2.47).

De�nition 2.44. An ordered pair P = ({pi}1≤i≤n, {rI}I⊆{1,...,n}), where
p1, . . . , pn ∈ [0, 1] and for each I ⊆ {1, . . . , n}, rI ∈ [0, 1], is a probability
assignment if for each I ⊆ {1, . . . , n} it holds that

∑
i∈I pi ≤

∑
J∩I ̸=∅ rJ .

Lemma 2.45. Let P = ({pi}1≤i≤n, {rI}I⊆{1,...,n}) be a probability assignment.
Then for every nonempty set I ⊆ {1, . . . , n} and for every k ∈ I there exists
sk,I ∈ [0, 1] which satis�es the following properties:

1. for every I, it holds that
∑

k∈I sk,I ≤ 1;

2. for every k ∈ {1, . . . , n}, it holds that pk ≤
∑

k∈I sk,I · rI .

Lemma 2.45 is proved in [46]. In the proof of Key Lemma, we will also use
the following auxiliary results.

Proposition 2.46. For every X ⊆ Λ
{x}
⊕,let, it holds that ≲ (νx.X) = νx.(≲

(X)), where νx.(≲ (X)) stands for the set {νx.M | ∃N ∈ X,N ≲M}.

Proof. The proof follows from the de�nition of similarity.

The following proposition is a direct consequence of Proposition 2.46.

Proposition 2.47. If M ≲ N , then for every X ⊆ Λ
{x}
⊕,let, [[M]](λx.X) ≤

[[N]](λx. ≲ (X)).

Lemma 2.48. (Key Lemma) Let M,N ∈ Λ∅
⊕,let. If M ≲H N , then it holds

that [[M]](λx.X) ≤ [[N]](λx.(≲H (X))), for every X ⊆ Λ
{x}
⊕,let.

Proof. From the de�nition of semantics, we know that

[[M]] = sup{D |M ⇓ D}.

Thus, it is su�cient to prove that whenever M ≲H N and M ⇓ D , we have
D(λx.X) ≤ [[N]](λx.(≲H (X)) for every X ⊆ Λ

{x}
⊕,let. The proof proceeds by

induction on the derivation ofM ⇓ D , performing the case analysis on the last
rule applied.

• If M ⇓ ∅, then we have D(λx.X) = 0 ≤ [[N]](λx.(≲H (X))) for every
X ⊆ Λ

{x}
⊕,let.

Chapter 2. Probabilistic computation 35

• Next, we consider the case whereM is a value λx.Q and the distribution
D has all of its mass on λx.Q, that is D(λx.Q) = 1. Since M is a value,
the last rule used in the derivation of M ≲H N has to be (How2). Thus,
for some P ∈ Λ

{x}
⊕,let, it holds that x ⊢ Q ≲H P and ∅ ⊢ λx.P ≲ N . For

X ⊆ Λ
{x}
⊕,let we consider two cases:

· If Q ̸∈ X, then D(λx.X) = 0 and the statement holds.

· If Q ∈ X, then D(λx.X) = 1 and P ∈≲H (X). For every L ∈≲ (P),
we have that x ⊢ Q ≲H P and x ⊢ P ≲ L. By Lemma 2.38 we
conclude that x ⊢ Q ≲H L holds. Thus, L ∈≲H (X) and it holds
that ≲ (P) ⊆≲H (X). By Proposition 2.47 we obtain the following

D(λx.X) = 1

= [[λx.P]](λx.P)

≤ [[N]](λx. ≲ (P))

≤ [[N]](λx. ≲H (X)).

• Let M be an application LP . Then we have D =
∑

λx.Q F(λx.Q) ·HQ,P

where L ⇓ F and for any λx.Q ∈ S(F), {Q{P/x} ⇓ HQ,P }. The last
rule used in the derivation of M ≲H N has to be (How3), thus we
get ∅ ⊢ L ≲H R, ∅ ⊢ P ≲H S and ∅ ⊢ RS ≲ N . If we apply the
induction hypothesis to L ⇓ F and ∅ ⊢ L ≲H R, we obtain that, for any
Y ⊆ Λ⊕,let(x), it holds that

F(λx.Y) ≤ [[R]](λx. ≲H (Y)). (2.8)

Since F is a �nite distribution, the distribution D =
∑

λx.Q F(λx.Q) ·
HQ,P is a sum of �nitely many summands. Let us assume that
S(F) = {λx.Q1, . . . , λx.Qn}. From equation (2.8) we conclude

F(
⋃
i∈I

λx.Qi) ≤ [[R]](
⋃
i∈I

λx. ≲H (Qi)),

for every I ⊆ {1, . . . , n} which allows us to apply Lemma 2.45. Hence,
for every U ∈

⋃n
i=1 ≲H (Qi) there exist real numbers r

U,R
1 , . . . , rU,R

n such
that:

[[R]](λx.U) ≥
n∑

i=1

rU,R
i , ∀U ∈

n⋃
i=1

≲H (Qi);

F(λx.Qi) ≤
∑

U∈≲H(Qi)

rU,R
i , ∀i ∈ {1, . . . , n}.

36

From these equations we can conclude the following

D ≤
n∑

i=1

 ∑
U∈≲H(Qi)

rU,R
i

 · HQi,P =

n∑
i=1

∑
U∈≲H(Qi)

rU,R
i · HQi,P .

Since Qi ≲H U and P ≲H S holds, by Lemma 2.40 we have
Qi{P/x} ≲H U{S/x}. Now, by applying the induction hypothesis to
the derivations Qi{P/x} ⇓ HQi,P , i ∈ {1, . . . , n}, for every X ⊆ Λ

{x}
⊕,let

we obtain

D(λx.X) ≤
n∑

i=1

∑
U∈≲H(Qi)

rU,R
i [[U{S/x}]](λx. ≲H (X))

≤
n∑

i=1

∑
U∈

⋃n
i=1≲

H(Qi)

rU,R
i [[U{S/x}]](λx. ≲H (X))

=
∑

U∈
⋃n

i=1≲
H(Qi)

n∑
i=1

rU,R
i [[U{S/x}]](λx. ≲H (X))

=
∑

U∈
⋃n

i=1≲
H(Qi)

(
n∑

i=1

rU,R
i

)
[[U{S/x}]](λx. ≲H (X))

≤
∑

U∈
⋃n

i=1≲
H(Qi)

[[R]](λx.U)[[U{S/x}]](λx. ≲H (X))

≤
∑

U∈Λ
{x}
⊕,let

[[R]](λx.U)[[U{S/x}]](λx. ≲H (X))

= [[RS]](λx. ≲H (X))

≤ [[N]](λx. ≲ (≲H (X)))

≤ [[N]](λx. ≲H (X)).

• If M is a probabilistic sum L⊕ P , then D = 1
2F + 1

2E where L ⇓ F and
P ⇓ E . The last used rule in the derivation ofM ≲H N has to be (How4),
hence for some R,S ∈ Λ∅

⊕,let, we have that ∅ ⊢ L ≲H R, ∅ ⊢ P ≲H S and
∅ ⊢ R⊕S ≲ N hold. If we apply the induction hypothesis to L ⇓ F and
∅ ⊢ L ≲H R, for anyX ⊆ Λ

{x}
⊕,let we obtain F(λx.X) ≤ [[R]](λx. ≲H (X)).

Similarly, if we apply the induction hypothesis to P ⇓ E and ∅ ⊢ P ≲H S,
for any X ⊆ Λ

{x}
⊕,let we obtain E(λx.X) ≤ [[S]](λx. ≲H (X)). Since

∅ ⊢ R⊕ S ≲ N , we have [[R⊕ S]](λx. ≲H (X)) ≤ [[N]](λx. ≲H (X)). By

Chapter 2. Probabilistic computation 37

Proposition 2.11 and the previously concluded statements the following
holds

D(λx.X) =
1

2
F(λx.X) +

1

2
E(λx.X)

≤ 1

2
[[R]](λx. ≲H (X)) +

1

2
[[S]](λx. ≲H (X))

= [[R⊕ S]](λx. ≲H (X))

= [[N]](λx. ≲H (X)).

• If M = (let x = L in P), then D =
∑

λx.Q F (λx.Q) · HQ,P where
L ⇓ F and for any λx.Q ∈ S(F), {P{λx.Q/x} ⇓ HQ,P } holds. In the
derivation of ∅ ⊢M ≲H N , the last rule used has to be (How5), meaning
that for some terms R and S, we have ∅ ⊢ L ≲H R, x ⊢ P ≲H S and
∅ ⊢ (let x = R in S) ≲ N . From L ⇓ F and ∅ ⊢ L ≲H R, by the
induction hypothesis we get

F (λx.Y) ≤ [[R]](λx. ≲H (Y)), (2.9)

for any Y ⊆ Λ
{x}
⊕,let. The distribution F is a �nite distribution and as

a consequence the sum D =
∑

λx.Q F (λx.Q) · HQ,P has �nitely many
summands. Let S(F) = {λx.Q1, . . . , λx.Qn} be the the support of the
distribution F . From Equation (2.9), it follows that

F (
⋃
i∈I

λx.Qi) ≤ [[R]](
⋃
i∈I

λx. ≲H (Qi))

holds for every I ⊆ {1, . . . , n}. By Lemma 2.45, we get that for every
U ∈

⋃n
i=1 ≲H (Qi), there exist real numbers r

U,R
1 , . . . , rU,R

n such that:

[[R]](λx.U) ≥
n∑

i=1

rU,R
i , ∀U ∈

n⋃
i=1

≲H (Qi);

F (λx.Qi) ≤
∑

U∈≲H(Qi)

rU,R
i , ∀i ∈ {1, . . . , n}.

We derive

D ≤
n∑

i=1

 ∑
U∈≲H(Qi)

rU,R
i

 · HQi,P =

n∑
i=1

∑
U∈≲H(Qi)

rU,R
i · HQi,P .

By Lemma 2.37, the relation ≲H is compatible. From Qi ≲H U , we get
λx.Qi ≲H λx.U . From the latter and P ≲H S, we obtain

38

P{λx.Qi/x} ≲H S{λx.U/x} by Lemma 2.40. Finally, from the deriva-
tions P{λx.Qi/x} ⇓ HQi,P , i ∈ {1, . . . , n}, by the induction hypothesis
and by similar reasoning as in the case of application, we get

D(λx.X) ≤ [[N]](λx. ≲H (X)),

for every X ⊆ Λ
{x}
⊕,let.

This concludes the proof.

Using Key Lemma and other presented auxiliary results, we derive the
most important result of this section.

Proposition 2.49. The similarity ≲ (resp. bisimilarity ∼) is a precongruence
(resp. congruence) relation for Λ⊕,let-terms.

Proof. The idea of the proof is the following: we �rst prove that the relation
(≲H)+ is a precongruence and then we prove that relations (≲H)+ and ≲
coincide. The relation ≲ is a preorder, so it follows that the relation (≲H)+

is also a preorder by Lemma 2.43. From the re�exivity of relation ≲ and
Lemma 2.37, we conclude that the relation ≲H is compatible and it follows
that (≲H)+ is also compatible by Lemma 2.42. We have proved that (≲H)+

is a precongruence. As a direct consequence of the de�nition of Howe's lifting
and transitive closure we have ≲⊆ (≲H)+. It remains to prove (≲H)+ ⊆≲.
Since ≲ is the largest probabilistic simulation, it is su�cient to prove that
(≲H)+ is included in some probabilistic simulation. We consider the rela-
tion R =

{
(M,N) :M (≲H)+ N} ∪ {(νx.M, νx.N) :M (≲H)+ N

}
. From

the de�nition of R, we see that (≲H)+ ⊆ R. We prove that R is a prob-
abilistic simulation. By Lemma 2.40 and Lemma 2.42, we have that (≲H)+

is closed under term-substitution, thus it is su�cient to consider only closed
terms and distinguished values. The relation (≲H)+ is a preorder relation, so
it follows that R is also a preorder relation. It remains to prove the following:

1. If M (≲H)+ N , then for every X ⊆ Λ
{x}
⊕,let it holds that

P (M, τ, νx.X) ≤ P (N, τ,R(νx.X)).

2. If M (≲H)+ N , then for every L ∈ Λ∅
⊕,let and for every X ⊆ Λ

{x}
⊕,let,

P (νx.M,L,X) ≤ P (νx.N,L,R(X)).

We prove the �rst point by induction on the length of the derivation
M (≲H)+ N , performing the case analysis on the last rule applied. The
base case is when the rule (TC1) is the last rule used, that is M (≲H)+ N is

Chapter 2. Probabilistic computation 39

obtained from M ≲H N . From the latter and Key Lemma, we have

P (M, τ, νx.X) = [[M]](λx.X)

≤ [[N]](λx. ≲H (X))

≤ [[N]](λx.(≲H)+(X))

≤ [[N]](R(λx.X))

= P (N, τ,R(νx.X)).

If the last rule used was (TC2), then M (≲H)+ P and P (≲H)+ N hold
for some P ∈ Λ∅

⊕,let. By the induction hypothesis, we have

P (M, τ,X) ≤ P (P, τ,R(X)),

P (P, τ,R(X)) ≤ P (N, τ,R(R(X))).

From these inequalities and the fact that R(R(X)) ⊆ R(X) holds for any
transitive relation R and set X, we obtain

P (M, τ,X) ≤ P (N, τ,R(X)).

This concludes the proof of the �rst point.
Next, we prove the second point, that is whenever M (≲H)+ N , L ∈ Λ∅

⊕,let

and X ⊆ Λ
{x}
⊕,let, then P (νx.M,L,X) ≤ P (νx.N,L,R(X)). Let M (≲H)+ N

and L ∈ Λ∅
⊕,let. Since the relation (≲H)+ is closed under term-substitution,

we have M{L/x} (≲H)+ N{L/x}. It follows that if M{L/x} ∈ X, then
N{L/x} ∈ (≲H)+(X) and we obtain

P (νx.M,L,X) = 1

= P (νx.N,L, (≲H)+(X))

= P (νx.N,L,R(X)).

If M{L/x} ̸∈ X, then we have P (νx.M,L,X) = 0 ≤ P (νx.N,L,R(X)).
This proves the second point and concludes the proof that similarity is a

precongruence.
Finally, we prove that bisimilarity is a congruence. The relation ∼ is an

equivalence relation by its de�nition, hence the compatibility of the relation ∼
follows from the compatibility of relation ≲ and de�nition ∼=≲ ∩ ≲op. Thus,
bisimilarity is a congruence.

As a direct consequence of the previous lemma we have that similarity
(resp. bisimilarity) is sound with respect to the context preorder (resp. context
equivalence).

40

Theorem 2.50 (Soundness). For every M,N ∈ ΛΦ
⊕,let, Φ ⊢ M ≲ N implies

Φ ⊢M ≤ N . Therefore, M ∼ N implies Φ ⊢M≃N .

Proof. Let Φ ⊢ M ≲ N . Then for every context C ∈ CΛ⊕,let
(Φ;∅), we have

∅ ⊢ C[M] ≲ C[N] by Proposition 2.49, meaning that there exists a simulation
relation which contains the pair (C[M], C[N]). By De�nition 2.21, it follows
that

∑
[[C[M]]] ≤

∑
[[C[N]]]. Thus, Φ ⊢M ≤ N . The proof that the bisimilar-

ity is included in context equivalence follows from the de�nitions ∼=≲ ∩ ≲op

and ≃=≤ ∩ ≤op.

2.3 Full abstraction

In this section we present the proof of full abstraction. We prove that whenever
two terms are context equivalent, they are also bisimilar, which is the converse
of Theorem 2.50. In the proof we will use a new notion of equivalence, called
testing equivalence.

In [111], Larsen and Skou have introduced a notion of testing language
for a discrete probabilistic transition system and proved that two processes
are bisimilar if and only if the success probability of any test is the same for
both processes. In [166], Van Breugel, Mislove, Ouaknine and Worrell have
extended the results of [111] to labelled Markov processes. We consider the
discrete-time version of Markov processes, namely Markov chains, so we adapt
the result of [166] to the labelled Markov chains (as in [35, 47]). First we give
the general de�nitions of a testing language and the success probability of a
test for a labelled Markov chain.

De�nition 2.51 ([35]). Let (S,L,P) be a labelled Markov chain. The testing
language T(S,L,P) for (S,L,P) is given by the grammar

t ::= ω | a.t | (t, t) (2.10)

where ω is a symbol for termination and a ∈ L is an action (label).

A test is an algorithm that consists of �nite sequence of actions. The
symbol ω represents a test which always succeeds, meaning that none of the
action is performed. The test a.t consists in performing an action a and in
the case of success performing the test t. Performing the test (t, s) consists in
making two copies of the current state and performing independently tests t
and s on the same state. Performing the test on a state can result in either
a success or a failure with a given probability. In the following de�nition we
introduce the notion of a success probability of a test.

Chapter 2. Probabilistic computation 41

De�nition 2.52 ([35]). Let (S,L,P) be a labelled Markov chain. We de�ne
the family {Pt : S → R[0,1]}t∈T(S,L,P)

by induction on the structure of t:

� Pω(s) = 1,

� Pa.t(s) =
∑

s′∈S P(s, a, s′)Pt(s
′),

� P(t1,t2)(s) = Pt1(s) · Pt2(s).

For t ∈ T(S,L,P) and s ∈ S, we refer to Pt(s) as the success probability of
t applied to s.

In Section 2.2 we have shown that probabilistic λ-calculus Λ⊕,let can be
seen as a labelled Markov chain, so we can de�ne the testing language for
Λ⊕,let. We illustrate how to perform the test and how to compute the success
probability in the following example.

Example 2.53. We consider the terms λxy.(x ⊕ y) and (λxy.x) ⊕ (λxy.y).
In Example 2.16 we have proved that these terms are not context equivalent.
These terms can be discriminated by the test t = τ.(I.τ.Ω.τ.ω, I.τ.Ω.τ.ω). The
success probability of the test t for the term λxy.(x ⊕ y) is 1

4 , whereas the
success probability of the test t for the term (λxy.x)⊕ (λxy.y) is 1

2 . We have
sketched the computation of success probability in Figure 2.7.

λxy.(x⊕ y)

νx.λy.(x⊕ y)

λy.(I⊕ y)

νy.(I⊕ y)

I⊕Ω

νx.x

τ1
2 0

Ω1

τ
1

I1

τ
1

λxy.x⊕ λxy.y

νx.λy.x

λy.I

νy.I

I

νx.x

τ
1

Ω
1

τ
1

I1

τ1
2

νx.λy.y

λy.y

νy.y

Ω

τ
0

Ω
1

τ
1

I1

τ1
2

Figure 2.7: The test t = τ.(I.τ.Ω.τ.ω, I.τ.Ω.τ.ω) over the
terms of Example 2.53.

42

We see that terms, as states of a labelled Markov chain, can be discrimi-
nated by tests. Thus, a testing language induces a new relation on the set of
terms such that two terms are related if the success probability of every test
is the same for both terms. We formally de�ne this relation as follows.

De�nition 2.54 (Testing equivalence). Let (S,L,P) be a labelled Markov
chain. Two states s, s′ ∈ S are testing equivalent if and only if for every test
t ∈ T(S,L,P), we have that Pt(s) = Pt(s

′).

The testing equivalence and bisimilarity over some labelled Markov chain
coincide. The same result has been proved for labelled Markov processes in
[166]. In [47] these results have been adapted to labelled Markov chains.

Theorem 2.55 ([47]). Let (S,L,P) be a labelled Markov chain. Then s, s′ ∈ S
are bisimilar if and only if Pt(s) = Pt(s

′) for every test t ∈ T(S,L,P).

In the case of inequalities the previous theorem does not hold. In [166],
the authors gave examples of states s and s′ in labelled Markov process such
that Pt(s) ≤ Pt(s

′) and the states s and s′ are not similar.
In order to prove that context equivalence implies bisimilarity, it is enough

to prove that context equivalence implies testing equivalence, since bisimilarity
and testing equivalence coincide by Theorem 2.55. We prove the implication
between context equivalence and testing equivalence by proving that for ev-
ery test t related to the Λ⊕,let-Markov chain, there is a context Ct in Λ⊕,let

such that for every closed term M the success probability of the test t on
the term M is equal to the convergence probability of the term Ct[M], i.e.
Pt(M) =

∑
[[Ct[M]]].

Lemma 2.56. For every test t ∈ TΛ⊕,let
, there are contexts Ct, Dt ∈ CΛ⊕,let

(∅;∅)

such that for every term M ∈ Λ∅
⊕,let and value V = λx.M ∈ V∅

⊕,let it holds
that:

Pt(M) =
∑

[[Ct[M]]] and Pt(Ṽ) =
∑

[[Dt[V]]],

where Ṽ denotes the distinguished value νx.M ∈ VΛ∅
⊕,let.

Proof. The proof proceeds by induction on the structure of test t.

� Let t = ω. By De�nition 2.52, we have Pω(M) = 1 for every M ∈ Λ∅
⊕,let

and Pω(Ṽ) = 1 for every V ∈ V∅
⊕,let . We take both context Cω[·] and

Dω[·] to be the context (λxy.x)[·]. For every closed term M ∈ Λ∅
⊕,let, we

have ∑
[[Cω[M]]] =

∑
[[(λxy.x)M]] =

∑
[[λy.M]] = 1 = Pω(M).

Chapter 2. Probabilistic computation 43

Further, for every value V ∈ V∅
⊕,let we have∑

[[Dω[V]]] =
∑

[[(λxy.x)V]] =
∑

[[λy.V]] = 1 = Pω(Ṽ).

� Let the test t be of the form a.t′ for some action a and test t′. By the
induction hypothesis we have that there exist contexts Ct′ ∈ CΛ⊕,let

(∅;∅)

and Dt′ ∈ CΛ⊕,let
(∅;∅) such that Pt′(M) =

∑
[[Ct′ [M]]] for every

M ∈ Λ∅
⊕,let and Pt′(Ṽ) =

∑
[[Dt′ [V]]] for every V ∈ V∅

⊕,let . In Λ⊕,let-
Markov chain an action is either a closed term or τ action, so we distin-
guish two cases depending on the action a.

� If a = τ , we have Pτ.t′(Ṽ) = 0 for any value V ∈ V∅
⊕,let by Def-

inition 2.23 and De�nition 2.52. For the context Dτ.t′ = Ω[·], we
have Pτ.t′(Ṽ) = 0 =

∑
[[Dτ.t′ [V]]], for every V ∈ V∅

⊕,let . By Def-
inition 2.23 and the induction hypothesis we have that for every
M ∈ Λ∅

⊕,let the following holds:

Pτ.t′(M) =
∑

Ṽ ∈VΛ∅
⊕,let

P (M, τ, Ṽ)Pt′(Ṽ)

=
∑

V ∈V∅
⊕,let

[[M]](V) ·
∑

[[Dt′ [V]]].

We de�ne the context Cτ.t′ as Cτ.t′ = (let y = [·] in Dt′ [y]). From
the de�nition of semantics it follows that for any closed term
M ∈ Λ∅

⊕,let we have

∑
[[Cτ.t′ [M]]] =

∑
[[let y =M in Dt′ [y]]]

=
∑

V ∈V∅
⊕,let

[[M]](V) ·
∑

[[Dt′ [V]]].

We conclude Pτ.t′(M) =
∑

[[Cτ.t′ [M]]].

� If a = L for some L ∈ Λ∅
⊕,let, then PL.t′(M) = 0 for any term

M ∈ Λ∅
⊕,let, by De�nition 2.23 and De�nition 2.52. For the context

CL.t′ = Ω[·], we have PL.t′(M) = 0 =
∑

[[CL.t′ [M]]]. For a value
V = λx.N (Ṽ = νx.N) and every M ∈ Λ∅

⊕,let, by De�nition 2.23,

44

De�nition 2.52 and the induction hypothesis we have

PL.t′(Ṽ) =
∑

N ′∈Λ∅
⊕,let

P (Ṽ , L,N ′)Pt′(N
′)

= P (νx.N,L,N{L/x}) · Pt′(N{L/x})

= 1 · Pt′(N{L/x}) =
∑

[[Ct′ [N{L/x}]]]

By Proposition 2.11 we know that the term N{L/x} has the same
semantics as the term (λx.N)L. Then terms N{L/x} and (λx.N)L
are bisimilar by Proposition 2.26 and as a consequence they are
also context equivalent (Theorem 2.50). Thus,

∑
[[C[N{L/x}]]] =∑

[[C[(λx.N)L]]] holds for every context C. We conclude

PL.t′(Ṽ) =
∑

[[Ct′ [N{L/x}]]] =
∑

[[Ct′ [(λx.N)L]]] =
∑

[[Ct′ [V L]]].

For the context DL.t′ = Ct′ [[·]L], we have that
∑

[[DL.t′ [V]]] =∑
[[Ct′ [V L]]] holds for any value V ∈ V∅

⊕,let . Thus, we conclude

PL.t′(Ṽ) =
∑

[[DL.t′ [V]]].

� If the test t is of the form (t′, t′′), then there exist contexts Ct′ ,Dt′ , Ct′′ ,
Dt′′ from CΛ⊕,let

(∅;∅) such that for every M ∈ Λ∅
⊕,let and V ∈ V∅

⊕,let the
following holds:

Pt′(M) =
∑

[[Ct′ [M]]], Pt′(Ṽ) =
∑

[[Dt′ [V]]],

Pt′′(M) =
∑

[[Ct′′ [M]]] and Pt′′(Ṽ) =
∑

[[Dt′′ [V]]].

For every M ∈ Λ∅
⊕,let we have

P(t′,t′′)(M) = Pt′(M) · Pt′′(M) =
∑

[[Ct′ [M]]] ·
∑

[[Ct′′ [M]]],

by De�nition 2.52. We de�ne the context C(t′,t′′) as follows

C(t′,t′′) = (λy.(let z1 = Ct′ [y] in (let z2 = Ct′′ [y] in I)))[·] (2.11)

From the de�nition of semantics we have
∑

[[C(t′,t′′)[M]]] =
∑

[[Ct′ [M]]] ·∑
[[Ct′′ [M]]]. Thus, P(t′,t′′)(M) =

∑
[[C(t′,t′′)[M]]].

Similarly, for every value V ∈ V∅
⊕,let we have

P(t′,t′′)(Ṽ) = Pt′(Ṽ) · Pt′′(Ṽ) =
∑

[[Dt′ [V]]] ·
∑

[[Dt′′ [V]]],

Chapter 2. Probabilistic computation 45

so we de�ne D(t′,t′) = (λy.(let z1 = Dt′ [y] in (let z2 = Dt′′ [y] in I)))[·]
and obtain P(t′,t′′)(Ṽ) =

∑
[[D(t′,t′′)[V]]].

This concludes the proof.

Proposition 2.57. Let M,N ∈ Λ∅
⊕,let. If M ≤ N , then Pt(M) ≤ Pt(N), for

every test t.

Proof. Let M and N be closed terms such that ∅ ⊢ M ≤ N . By the de�ni-
tion of the context preorder, we have

∑
[[C[M]]] ≤

∑
[[C[N]]], for every context

C ∈ CΛ⊕,let
(∅;∅). Next, let t be a test. Lemma 2.56 ensures that for the

test t, there is a context Ct, so that Pt(L) =
∑

[[Ct[L]]] holds for every
L ∈ Λ∅

⊕,let. From the latter and the assumption that terms M and N are
in context preorder, we obtain that for each test t, Pt(M) =

∑
[[Ct[M]]] ≤∑

[[Ct[N]]] = Pt(N).

As a direct consequence of Proposition 2.57 we obtain that context equiv-
alence implies testing equivalence.

Theorem 2.58. Let M,N ∈ Λ∅
⊕,let. Then M≃N implies Pt(M) = Pt(N), for

every test t.

Proof. The proof follows directly from Proposition 2.57 and the de�nition
of context equivalence. Recall that M≃N is equivalent to M ≤ N and
N ≤M .

Examples 2.16 and 2.53 gave terms that are distinguished by a test and
cannot be distinguished by contexts in call-by-name probabilistic λ-calculus
without let-in operator, but can be distinguished by a context in call-by-name
probabilistic λ-calculus with let-in operator, so they illustrate that the let-in
operator is necessary for achieving full abstraction. In the call-by-name setting
the tests where we have to copy a term after an evaluation cannot be charac-
terized by a context and as a consequence the context equivalence and testing
equivalence do not coincide. On the other hand, in the call-by-value setting we
do not have this problem, since arguments are �rst evaluated and then passed
to a function. We overcome this issue in call-by-name probabilistic λ-calculus
by adding the let-in operator. The equivalent terms of the Λ⊕-calculus, call-
by-name calculus without the let-in operator, which are discriminated in the
calculus we propose, are terms where a body of a lambda abstraction contains
a probabilistic choice, e.g. a term of the form λx.M ⊕ N and a probabilistic
choice of lambda abstractions, e.g. a term of the form (λx.M)⊕ (λx.N). Also,
the terms which represent passing a probabilistic choice to a function (call-
by-name application) and the terms which represent evaluating a probabilistic
choice before it is passed to a function (let-in operator) are discriminated.

46

Finally, we conclude that the three equivalence relations, namely context
equivalence, bisimilarity and testing equivalence, coincide. These results are
stated in the following theorem and sketched in Figure 2.8.

Theorem 2.59 (Full Abstraction). For any M,N ∈ Λ∅
⊕,let, the following

notions are equivalent:

(context equivalence) M≃N ,

(bisimilarity) M ∼ N ,

(testing equivalence) Pt(M) = Pt(N) for all tests t.

Testing Equivalence
∀t test, Pt(M) = Pt(N)

Bisimilarity ∼
∃R bisimulation, M RN

Context Equivalence ≃
∀C context,∑

[[C[M]]] =
∑

[[C[N]]]

Theorem 2.55

Theorem 2.58

Theorem 2.50

Figure 2.8: Sketch of the main results in Chapter 2, which

lead to Theorem 2.59.

2.4 Concluding remarks

In this chapter, the Λ⊕,let-calculus, a pure untyped λ-calculus extended with
two operators: a probabilistic choice operator ⊕ and a let-in operator has been
studied. In Λ⊕,let both call-by-name and call-by-value strategy are imple-
mented. The main evaluation strategy in the calculus is call-by-name strategy
and the let-in operator allows for a call-by-value passing policy. The main

Chapter 2. Probabilistic computation 47

result of the chapter is the proof of full abstraction, that is the proof that
context equivalence and probabilistic applicative bisimilarity coincide. This
chapter is based on [99].

Three equivalence relations on the set of Λ⊕,let-terms are considered: the
context equivalence, the probabilistic applicative bisimilarity and the testing
equivalence. First, it is proved that probabilistic applicative bisimilarity is
a congruence. Consequently, the probabilistic applicative bisimilarity implies
context equivalence. Next, the testing language is introduced, which induces a
new equivalence relation, the testing equivalence. An important known result
is that the testing equivalence and the probabilistic applicative bisimilarity
coincide. Finally, proving that for every test there is an equivalent context
ensured that the context equivalence implies the testing equivalence. All these
results are sketched in Figure 2.8 and they imply that the three equivalence
relations coincide.

The presented results con�rm a conjecture stated in [35]. In [35], the au-
thors studied the call-by-value probabilistic λ-calculus and proved that the
probabilistic applicative bisimilarity coincide with the context equivalence.
However, in the call-by-name probabilistic λ-calculus ([47]) the probabilistic
applicative bisimilarity is included in the context equivalence, but these two
relations do not coincide. So, the authors conjectured that adding a let-in
operator to the call-by-name setting will recover full abstraction.

In [99], we have conjectured that the need for the let-in operator was not
due to the call-by-name evaluation strategy, but due to the lazyness of the
calculus. This conjecture has been proved in [40].

Concerning the inequalities associated with these equivalences: the full
abstraction of similarity with respect to the context preorder remains an open
question. As it has been discussed, the similarity and testing preorder do not
coincide, that is Theorem 2.55 does not hold in the case of inequalities. Thus,
we cannot use the same method as in the case of bisimilarity and context
equivalence.

There are few directions for the future work.

� Since the method used for proving the full abstraction of the probabilistic
applicative bisimilarity with respect to the context equivalence can not
be used if we consider the inequalities associated with these equivalences,
it is necessary to explore other options for dealing with inequalities.

� Another interesting research path is studying the let-in operator in call-
by-name languages with e�ects other than the probabilistic one such as
the non-determinism.

� In this chapter, a non-typed calculus is considered. Similar questions
should be addressed in typed languages, as well.

48

Chapter 3

Kripke-style semantics for

full simply typed calculus

In this chapter, we study the simply typed combinatory logic extended with
product types and sum types, called the full simply typed combinatory logic
CL→,×,+ ([67, 83, 123, 138]), and present its Kripke-style semantics, which
has been introduced in [61, 93, 94]. We prove that the logic CL→,×,+ is sound
and complete with respect with the proposed semantics.

Combinatory logic, untyped and typed, has a wide range of applications
in developing �elds, e.g. program synthesis ([53]), machine learning ([115]),
arti�cial intelligence ([60]), cognitive representation ([52]), natural language
processing ([162]), physics ([164]). Consequently, it has been the object of
many studies, e.g. [17, 19, 20, 25, 53, 54, 161].

Typed calculi have proved to be related to di�erent logics via the Curry-
Howard correspondence ([83]), also known as formulae-as-types, proofs-as-
terms, proofs-as-programs correspondence. The Curry-Howard correspondence
is a correspondence between type systems for models of computation (λ-
calculus and combinatory logic) and formal proof calculi. It gives a relationship
between types in models of computation and formulas in logics, in the follow-
ing way: the set of formulas provable in logic coincides with the set of types
inhabited by terms of the corresponding calculus. Another relationship given
by the Curry-Howard correspondence is the one between terms and proofs, a
term which inhabits a type σ in the calculus is actually a proof of formula σ
in the logic. The analogy between types and formulas of logic was �rst dis-
covered by Curry in 1934 ([38]) when he noted that types of the combinators
correspond to the axioms of intuitionistic implicational logic. More precisely,
Curry observed that the fragment of Hilbert-style deduction system coincides

49

50

with the type system of combinatory logic ([39]). He noted that there is the
correspondence between the natural deduction system for intuitionistic im-
plicational logic and simply typed λ-calculus, which was later formulated by
Howard in [83].

The full simply typed combinatory logic presented in this chapter is related
to the intuitionistic propositional logic with all connectives via the Curry-
Howard correspondence. The analogy of the full intuitionistic propositional
logic (with all connectives) and the simply typed λ-calculus extended with
product types and sum types has been established in [83].

Di�erent extensions of the simply typed calculus have been studied ([34,
50, 153]). In [34], Cosmo and Kesner study the typed λ-calculus with func-
tional types, product types, terminal object, sum types and recursion and they
provide a rewriting system which has proved to be con�uent. In [50], de Vrijer
shows that with surjective pairing axioms the extension of the extensional λ-
calculus is conservative. In [153], Scherer studies the βη-equivalence of terms
in the full simply typed λ-calculus with atoms, functions, pairs, the unit type,
sums and the empty type and shows that this equivalence is decidable, it co-
incides with the context equivalence and the �nite model property holds. We
may notice that all these studies have considered the computational part of
the calculus, namely its reduction relation and the induced equational theory.
To the best of our knowledge, this chapter provides the �rst result on the
completeness of the type assignment system.

The semantics we propose in this chapter is a Kripke-style semantics.
Kripke semantics has been introduced by Kripke in 1950s as a semantics of
modal logic ([108]). Later, it was adapted to the intuitionistic logic ([110]) and
other non-classical logics. Kripke-style semantics has also been employed as a
semantics of models of computation ([5, 33, 59, 124]). Inspired by the work
of Mitchell and Moggi in [124] we have introduced a Kripke-style semantics of
the full simply typed λ-calculus and combinatory logic in [94].

Contributions of the chapter

� We present a novel Kripke-style semantics of the full simply typed com-
binatory logic.

� The Kripke-style semantics that we present have been introduced in [94],
however the calculus considered in [94] is not the same as the one we
study in this chapter. The similarities and di�erences of the results
presented in [94] and the result of this chapter are discussed in 3.2.

� The main results of the chapter are the soundness and completeness of
the full simply typed combinatory logic with respect to the proposed
semantics.

Chapter 3. Kripke-style semantics for full simply typed calculus 51

Overview of the chapter We start by introducing the full simply typed
combinatory logic, CL→,×,+, in 3.1. A Kripke-style semantics of CL→,×,+ is
introduced in 3.2. Section 3.3 presents the main results of the chapter, the
proof of soundness and completeness of CL→,×,+ with respect to the proposed
Kripke-style semantics. Section 3.4 concludes the chapter.

3.1 Full simply typed combinatory logic

In this section, we formally introduce the full simply typed combinatory logic
CL→,×,+, which is the simply typed combinatory logic extended with product
types, sum types, the unit type and the empty type. We start by de�n-
ing the language of CL→,×,+. The set of all terms is built up from the
set of term variables X = {x, y, z, . . . , x1, . . .} and the set of term constants
{K,S,P1,P2,P, I1, I2,C,Z,U}. Terms are expressions generated by the follow-
ing grammar:

M ::=x | K | S | P1 | P2 | P | I1 | I2 | C | Z | U |MM

|π1(M) | π2(M) | in1(M) | in2(M) | ⟨⟩ (3.1)

The set of all terms is denoted by CL→,×,+ and we let M,N, . . . ,M1, . . .
range over CL→,×,+. By FV (M) we denote the set of variables that occur in
the termM . The substitution of N for the occurrences of x inM is denoted by
M{N/x}. We write M ≡ N for syntactic identity. We are interested in typed
terms, so we introduce the set of types, which is built up from a countable
set of type variables VType = {a, b, c, ..., a1, . . .} and the set of type constants
{0, 1} using three type constructors: → (functional type), × (product type)
and + (sum type). The set of all types, denoted by Types, is generated by the
following grammar:

σ ::= a | σ → σ | σ × σ | σ + σ | 0 | 1 (3.2)

We let σ, τ, . . . , σ1, . . . range over Types.
Following [123], we formalize the typing system. First, some auxiliary

notions such as statements, declarations and bases are introduced.

De�nition 3.1.

(i) A (typed) statement is an expression of the form M : σ, where
M ∈ CL→,×,+ and σ ∈ Types. The term M is the subject and the
type σ is the predicate of the statement.

(ii) A declaration is a statement of the form x : σ, i.e. a statement with a
term variable as subject.

52

(iii) A set of declarations with distinct variables as subjects is called a basis
(context).

(iv) For a basis Γ = {x1 : σ1, . . . , xn : σn}, the domain of Γ is the set
dom(Γ) = {x1, . . . , xn}.

(v) For a basis Γ = {x1 : σ1, . . . , xn : σn} the codomain of Γ is the set
|Γ| = {σ1, . . . , σn}.

One of the properties that we want the typing system to satisfy is to type
equal terms with the same type. More precisely, whenever a type σ is assigned
to a termM and termsM and N are equal, the type σ should also be assigned
to the term N . For this reason, we �rst de�ne the equality of terms.

Combinatory logic is a model of computation and the computational as-
pect is modeled by the operational semantics which is given by the reduction
relation. The one-step reduction is de�ned with the following contraction rules

(KM)N → M

((SM)N)L → (ML)(NL)

P1M → π1(M)

P2M → π2(M)

P1((PM)N) → M

P2((PM)N) → N

(P(P1M))(P2M) → M

I1M → in1(M)

I2M → in2(M)

((CF)G)(I1M) → FM

((CF)G)(I2M) → GM

((C(S(KF)I1))(S(KF)I2))M → FM

M → ⟨⟩, if Γ ⊢M : 1

M{N/x} → ZN, if Γ ⊢ N : 0,

and Γ, x : 0 ⊢M : σ.

Notice that the reduction relation depends on the type assignment system.
In the last two contraction rules, the reduction depends on a type assigned to
a term. A precise formulation of the rule M → ⟨⟩ is:

If Γ ⊢M : 1 for some basis Γ, then M →Γ ⟨⟩.

Chapter 3. Kripke-style semantics for full simply typed calculus 53

The reduction →Γ will be called reduction with respect to the basis Γ. The
�rst twelve contraction rules hold for every Γ. The subscript Γ can be omitted
if there is no ambiguity from the context. Re�exive, symmetric, transitive and
contextual closure of the reduction relation →Γ is denoted by =Γ.

We have discussed that the equality will be used in the de�nition of the type
assignment system and the typing derivations will be used in the de�nition of
the equality, thus these two relations have to be de�ned simultaneously.

De�nition 3.2. The equivalence relation =Γ and the type assignment system
for CL→,×,+ are de�ned by the axioms and rules in Figure 3.1 and Figure 3.2,
respectively.

We brie�y discuss the axioms and rules in Figure 3.1, which de�ne the
equational theory EQFCL.

� The axioms (1)−(12) and rules (13)−(14) correspond to the contraction
rules that de�ne the one-step reduction.

� The re�exivity, transitivity and symmetry of the relation =Γ is ensured
by the axiom (15), and rules (16) and (17), respectively.

� The rules (18)−(23) guarantee that the relation is closed under contexts.

� The extensionality of the equational theory is established by the rule
(24).

In Figure 3.2, the typing axioms and rules are given. Notice that the type
assignment system for CL→,×,+ consists of:

� axioms: (Axiom ∈), (Axiom K), (Axiom S), (Axiom P1), (Axiom P2),
(Axiom P), (Axiom I1), (Axiom I2), (Axiom C), (Axiom Z), (Axiom
U) and (Axiom 1-intro),

� rules with one premise: (× elim1), (× elim2), (+ intro1), (+ intro2), and

� rules with two premises: (→ elim), (Eq).

54

KMN =Γ M (1) SMNL =Γ (ML)(NL) (2)

P1M =Γ π1(M) (3) P2M =Γ π2(M) (4)

P1(PMN) =Γ M (5) P2(PMN) =Γ N (6)

P(P1M)(P2M) =Γ M (7) I1M =Γ in1(M) (8)

I2M =Γ in2(M) (9) ((CF)G)(I1M) =Γ FM (10)

((CF)G)(I2M) =Γ GM (11) ((C(S(KF)I1))(S(KF)I2))M =Γ FM (12)

Γ ⊢ M : 1 (13)
M =Γ ⟨⟩

Γ ⊢ N : 0 Γ, x : 0 ⊢ M : σ
(14)

M{N/x} =Γ ZN

M =Γ M (15)
M =Γ N N =Γ L

(16)
M =Γ L

M =Γ M ′
(17)

M ′ =Γ M

M =Γ M ′
(18)

MN =Γ M ′N

M =Γ M ′
(19)

NM =Γ NM ′
M =Γ M ′

(20)
π1(M) =Γ π1(M

′)

M =Γ M ′
(21)

π2(M) =Γ π2(M
′)

M =Γ M ′
(22)

in1(M) =Γ in1(M
′)

M =Γ M ′
(23)

in2(M) =Γ in2(M
′)

Mx =Γ Nx x ̸∈ FV (M) ∪ FV (N)
(24)

M =Γ N

Figure 3.1: Re�exive, symmetric, transitive and contex-

tual closure of reduction relation →Γ

We brie�y discuss the axioms and rules in Figure 3.2.

� (Axiom ∈) ensured that every variable that belong to the domain of the
basis is typed which the corresponding type in the basis.

� (Axiom K), (Axiom S), (Axiom P1), (Axiom P2), (Axiom P), (Axiom
I1), (Axiom I2), (Axiom C), (Axiom Z) and (Axiom U) assign types to
the term constants.

� (→ elim) is the rule for typing an application.

Chapter 3. Kripke-style semantics for full simply typed calculus 55

� In the rules (× elim1) and (× elim 2) the type is assigned to the �rst
and second projection, respectively.

� The rules (+ intro1) and (+ intro2) give the typing derivation for the
left and right injection, respectively.

� The empty pair is typed by the axiom (Axiom 1-intro).

� The rule (Eq) ensures that equal terms inhabit the same type.

Γ, x : σ ⊢ x : σ (Axiom ∈) Γ ⊢ K : σ → (τ → σ) (Axiom K)

Γ ⊢ S : (σ → (τ → ρ)) → ((σ → τ) → (σ → ρ)) (Axiom S)

Γ ⊢ P1 : (σ × τ) → σ (Axiom P1) Γ ⊢ P2 : (σ × τ) → τ (Axiom P2)

Γ ⊢ P : σ → (τ → (σ × τ)) (Axiom P)

Γ ⊢ I1 : σ → (σ + τ) (Axiom I1) Γ ⊢ I2 : τ → (σ + τ) (Axiom I2)

Γ ⊢ C : (σ → ρ) → ((τ → ρ) → ((σ + τ) → ρ)) (Axiom C)

Γ ⊢ Z : 0 → σ (Axiom Z) Γ ⊢ U : 1 (Axiom U)

Γ ⊢M : σ → τ Γ ⊢ N : σ (→ elim)
Γ ⊢MN : τ

Γ ⊢M : σ × τ (× elim1)
Γ ⊢ π1(M) : σ

Γ ⊢M : σ × τ (× elim2)
Γ ⊢ π2(M) : τ

Γ ⊢M : σ (+ intro1)
Γ ⊢ in1(M) : σ + τ

Γ ⊢M : τ (+ intro2)
Γ ⊢ in2(M) : σ + τ

Γ ⊢ ⟨⟩ : 1 (Axiom 1-intro)
Γ ⊢M : σ M =Γ N (Eq)

Γ ⊢ N : σ

Figure 3.2: Type assignment system for CL→,×,+

Remark 3.3. Let us consider the terms Kxy and x. They are equal with
respect to any basis Γ by the axiom (1) in Figure 3.1. We take the basis Γ
to be Γ = {x : σ}. In the basis Γ, the variable x inhabits the type σ. From
x =Γ Kxy we obtain Γ ⊢ Kxy : σ by the rule (Eq), although the the variable y
is not typable in the basis Γ.

56

Terms M and N are equal with respect to the basis Γ, M =Γ N , if we
can derive M =Γ N by the rules in Figure 3.1. We say that a term M can be
typed with a type σ in a basis Γ, or that the type σ is inhabited by the term
M in the basis Γ, denoted by Γ ⊢ M : σ, if Γ ⊢ M : σ can be derived by the
rules in Figure 3.2.

The following example illustrates some typing derivations.

Example 3.4. Let us consider the terms P1((PK)K) and K. These terms
are equal with respect to any basis by the axiom (5) in Figure 3.1. Fur-
ther, we have Γ ⊢ K : σ → (τ → σ) by the rule (Axiom K) and we obtain
Γ ⊢ P1((PK)K) : σ → (τ → σ) by the rule (Eq). However, it can be proved
that the term P1((PK)K) inhabits the type σ → (τ → σ) without using the
rule (Eq). Let τ1 = ((σ → (τ → σ)) × (σ → (τ → σ))) → (σ → (τ → σ)),
τ2 = (σ → (τ → σ)) → ((σ → (τ → σ)) → ((σ → (τ → σ)) × (σ → (τ →
σ)))), τ3 = (σ → (τ → σ)) → ((σ → (τ → σ)) × (σ → (τ → σ))) and
τ4 = (σ → (τ → σ))× (σ → (τ → σ)). Then we have the following derivation:

Γ ⊢ P1 : τ1

Γ ⊢ P : τ2 Γ ⊢ K : σ → (τ → σ)

Γ ⊢ PK : τ3 Γ ⊢ K : σ → (τ → σ)

Γ ⊢ PKK : τ4
Γ ⊢ P1(PKK) : σ → (τ → σ)

Thus, the rule (Eq) is not necessary for proving that terms P1(PKK) and
K inhabit the same type in every Γ. Nevertheless, this is not true for all terms
that are equal and all bases as we have discussed it in Remark 3.3.

De�nition 3.5. A basis Γ is consistent if and only if there does not exist a
term M such that Γ ⊢M : 0, otherwise Γ is inconsistent.

From De�nition 3.5 it follows that if a basis Γ is consistent, then there
exists a type σ that cannot be inhabited in the basis Γ.

As we have already discussed, the full simply typed combinatory logic is
related to the full intuitionistic propositional logic with all the connectives via
the Curry-Howard correspondence ([83]).

Theorem 3.6 (Curry-Howard correspondence)([83]). For a basis Γ and a type
σ, there exists a term M such that Γ ⊢ M : σ if and only if |Γ| ⊢ σ, that is
σ is derivable from the set |Γ| in natural deduction system for intuitionistic
propositional logic.

Now, we compare a notion of a consistent set in the intuitionistic propo-
sitional logic with all the connectives and the full simply typed combinatory
logic. In the intuitionistic propositional logic a set of formulas is consistent if

Chapter 3. Kripke-style semantics for full simply typed calculus 57

there is a formula which cannot be derived from the set, whereas it is incon-
sistent if and only if every formula can be derived from it.

Let Γ be an inconsistent basis. Then, Γ ⊢ M : 0, for some M ∈ CL, by
De�nition 3.5. Further, by (Axiom Z) and (→ elim) we have that Γ ⊢ ZM : σ,
for any type σ. We conclude that |Γ| ⊢ σ by Theorem 3.6. Therefore, the set
|Γ| is also inconsistent.

The derivation length of M =Γ N and Γ ⊢M : σ is the number of applied
axioms and rules from Figure 3.1 and 3.2.

A standard property of the typing system is that whenever a type σ is
assigned to a term M in some basis Γ, it can also be assigned in a basis
which is a superset of Γ. Similarly, we will show that equality of terms is also
monotone with respect to the preorder, that is whenever two terms are equal
with respect to some basis Γ, they will be equal with respect to a superset of
Γ. The equality and the type assignment system are de�ned simultaneously,
thus we need to consider both properties within one statement.

Proposition 3.7. If M =Γ1 N , Γ2 ⊢ P : σ, Γ1 ⊆ Γ′
1 and Γ2 ⊆ Γ′

2, then
M =Γ′

1
N and Γ′

2 ⊢ P : σ.

Proof. The proof is by induction on the sum k = n+m of the length n of the
derivation M =Γ1

N and the length m of the derivation of Γ2 ⊢ P : σ.
The base case is when k = 2, i.e. when both derivations are obtained from

axioms (n = 1 and m = 1). If n = 1, then M =Γ1
N is obtained by one of the

axioms (1) − (12) and (15) from Figure 3.1. As all equalities in these axioms
hold for every basis Γ, they will also hold for the basis Γ′

1, i.e. M =Γ′
1
N . If

m = 1, then Γ2 ⊢ P : σ is obtained by applying an axiom of Figure 3.2. Again,
typing statements in all axioms hold for every basis Γ, so they will also hold
for the basis Γ′

2, i.e. Γ
′
2 ⊢ P : σ.

Let us assume that the statement holds for every i < k, k ≥ 3:

if M =Γ1
N,Γ2 ⊢ P : σ,Γ1 ⊆ Γ′

1,Γ2 ⊆ Γ′
2,

the length of M =Γ1
N is n′ the length of Γ2 ⊢ P : σ is m′

and n′ +m′ = i < k, then M =Γ′
1
N and Γ′

2 ⊢ P : σ.

(IH)

We prove that the statement holds when the sum of the lengths of deriva-
tions is equal to k. Let us assume that M =Γ1 N can be derived with the
derivation length n and Γ2 ⊢ P : σ with the derivation lengthm, n+m = k ≥ 3,
Γ1 ⊆ Γ′

1 and Γ2 ⊆ Γ′
2. We perform the case analysis on the last rule applied

in the derivation of M =Γ1
N and Γ2 ⊢ P : σ.

1. First, we consider the last applied rule in the derivation M =Γ1
N .

58

Let (13) be the last applied rule. Then the term N is ⟨⟩, and M =Γ1
⟨⟩

is obtained from Γ1 ⊢ M : 1, i.e.
Γ1 ⊢M : 1

M =Γ1 ⟨⟩
is the last applied rule. The

length of the derivation Γ1 ⊢M : 1 is n−1. Directly from the rules of Figure 3.1
it follows that KMN =Γ2

M and the length of this derivations is 1. Since
n − 1 + 1 = n < n +m = k, we can apply the induction hypothesis (IH) to
KMN =Γ2 M and Γ1 ⊢ M : 1 and we obtain KMN =Γ′

2
M and Γ′

1 ⊢ M : 1.
From Γ′

1 ⊢M : 1, it follows that M =Γ′ ⟨⟩. We also need to prove Γ′
2 ⊢ P : σ.

We will distinguish three cases performing an analysis on the last applied rule
in the derivation of Γ2 ⊢ P : σ.

� If Γ2 ⊢ P : σ is obtained by an axiom, then we have the base case and
for any Γ′

2 it holds that Γ′
2 ⊢ P : σ.

� If the last applied rule is the rule with only one premise, then the deriva-

tion is of the form
Γ2 ⊢ Q : τ

(r)
Γ2 ⊢ P : σ

for some term Q, type τ and the rule

(r) which has only one premise. The length of the derivation Γ2 ⊢ Q : τ
is m − 1. The length of the derivation of KMN =Γ1

M is 1. Since
m − 1 + 1 = m < n + m = k, we can apply the induction hypothesis
(IH) to KMN =Γ1

M and Γ2 ⊢ Q : τ and we obtain KMN =Γ′
1
M and

Γ′
2 ⊢ Q : τ . From the latter, we get Γ′

2 ⊢ P : σ by the rule (r).

� If Γ2 ⊢ P : σ is obtained by one of the rules with two premises, then we
have two possibilities. If the last rule is (→ elim), then we have

Γ2 ⊢ Q : τ → σ Γ2 ⊢ R : τ

Γ2 ⊢ QR : σ

for some terms Q and R (P ≡ QR) and type τ . The lengths of
Γ2 ⊢ Q : τ → σ and Γ2 ⊢ R : τ are less than m − 1. We can apply
the induction hypothesis to KMN =Γ1

M and Γ2 ⊢ Q : τ → σ and we
obtain KMN =Γ′

1
M and Γ′

2 ⊢ Q : τ → σ. By applying the induction
hypothesis to KMN =Γ1 M and Γ2 ⊢ R : τ , we obtain KMN =Γ′

1
M

and Γ′
2 ⊢ R : τ . Since we have Γ′

2 ⊢ Q : τ → σ and Γ′
2 ⊢ R : τ , we

conclude Γ′
2 ⊢ QR : σ by the rule (→ intro). The last case is when

Γ2 ⊢ P : σ is obtained by the rule (Eq) and we have

Γ2 ⊢ Q : σ Q =Γ2
P

Γ2 ⊢ P : σ

where the lengths of Γ2 ⊢ Q : σ and Q =Γ2
P are less than m − 1. By

applying IH to KMN =Γ1 M and Γ2 ⊢ Q : σ, we obtain KMN =Γ′
1
M

Chapter 3. Kripke-style semantics for full simply typed calculus 59

and Γ′
2 ⊢ Q : σ. If we apply IH to Q =Γ2

P and Γ1 ⊢ K : σ → τ → σ,
we get Q =Γ′

2
P and Γ′

1 ⊢ K : σ → τ → σ. Finally, from Γ′
2 ⊢ Q : σ and

Q =Γ′
2
P we obtain Γ′

2 ⊢ P : σ.

Let (14) be the last applied rule. Then we have that termM is of the form
R{L/x}, term N is of the form ZL for some terms R and L and the last step
in the derivation is

Γ1 ⊢ L : 0 Γ1, x : 0 ⊢ R : σ

R{L/x} =Γ1 ZL

The derivation lengths of Γ1 ⊢ L : 0 and Γ1, x : 0 ⊢ R : σ are less than
n − 1. By applying the induction hypothesis to KII =Γ2 I and Γ1 ⊢ L : 0,
we obtain KII =Γ′

2
I and Γ′

1 ⊢ L : 0. If x ̸∈ dom(Γ′
1) and Γ1 ⊆ Γ′

1, then
Γ1, x : 0 ⊆ Γ′

1, x : 0. We can apply IH to KII =Γ2
I and Γ1, x : 0 ⊢ R : σ

and we derive KII =Γ′
2
I and Γ′

1, x : 0 ⊢ R : σ. The result R{L/x} =Γ′
1
ZL

follows from Γ′
1 ⊢ L : 0 and Γ′

1, x : 0 ⊢ R : σ by the rule (14). In the case
x ∈ dom(Γ′

1), we can choose a fresh variable y that occurs in neither terms
L and R nor in dom(Γ1) ∪ dom(Γ′

1). It is straightforward to show that if
Γ1, x : 0 ⊢ R : σ, then Γ1, y : 0 ⊢ R{y/x} : σ with the equal derivation length.
Since y : 0 ̸∈ Γ′

1, we derive Γ′
1, y : 0 ⊢ R{y/x} : σ by the same reasoning as

in the case x : 0 ̸∈ Γ′
1. Now, Γ′

1 ⊢ L : 0 and Γ′
1, y : 0 ⊢ R{y/x} : σ implies

R{y/x}{L/y} =Γ′
1
ZL. By induction on the structure of term R it can be

proved that R{y/x}{L/y} ≡ R{L/x}, so R{L/x} =Γ′
1
ZL. Again, we have to

prove Γ2 ⊢ P : σ and the proof follows similar reasoning as in the previous
case.

Let (16) be the last applied rule. Then we have
M =Γ1 L L =Γ1 N

M =Γ1 N
where the derivation lengths of M =Γ1

L and L =Γ1
N are less than n − 1.

By applying the induction hypothesis to M =Γ1
L and Γ2 ⊢ P : σ, we get

M =Γ′
1
L and Γ′

2 ⊢ P : σ. Similarly, we can apply the induction hypothesis
to L =Γ1 N and Γ2 ⊢ P : σ, which results in L =Γ′

1
N and Γ′

2 ⊢ P : σ. From
M =Γ′

1
L and L =Γ′

1
N , we conclude M =Γ′

1
N by the rule (16).

Let (17) be the last applied rule. Then. the last step in the derivation is
N =Γ1 M

M =Γ1 N
and the length of the derivation of N =Γ1

M is n − 1. By the

induction hypothesis we get N =Γ′
1
M and Γ′

2 ⊢ P : σ and by rule (17) we
derive M =Γ′

1
N .

Let (18) be the last applied rule. Then the term M is of the form LR, the
term N is of the form L′R and the last step in the derivation is

L =Γ1
L′

LR =Γ1
L′R

60

The length of the derivation L =Γ1
L′ is n−1, so we can apply IH to L =Γ1

L′

and Γ2 ⊢ P : σ and we get L =Γ′
1
L′ and Γ′

2 ⊢ P : σ. By the rule (18) we
obtain LR =Γ′

1
L′R.

Let (19) be the last applied rule. Then the term M is of the form RL, the
term N is of the form RL′ and the last step in the derivation is

L =Γ1
L′

RL =Γ1
RL′

The length of the derivation L =Γ1 L
′ is n − 1. By the induction hypothesis

we get L =Γ′
1
L′ and Γ′

2 ⊢ P : σ and by the rule (19) we derive RL =Γ′
1
RL′.

Let (20) be the last applied rule. Then we have

L =Γ1
L′

π1(L) =Γ1
π1(L

′)

The length of the derivation L =Γ1
L′ is n − 1. By applying the induction

hypothesis to L =Γ1
L′ and Γ2 ⊢ P : σ, we obtain L =Γ′

1
L′ and Γ′

2 ⊢ P : σ.
From L =Γ′

1
L′ we derive π1(L) =Γ′

1
π1(L

′) by rule (20).
Let (21) be the last applied rule. Then we have

L =Γ1
L′

π2(L) =Γ1
π2(L

′)

The length of the derivation L =Γ1
L′ is n − 1. By applying the induction

hypothesis to L =Γ1
L′ and Γ2 ⊢ P : σ, we obtain L =Γ′

1
L′ and Γ′

2 ⊢ P : σ.
From L =Γ′

1
L′ we derive π2(L) =Γ′

1
π2(L

′) by rule (21).
Let (22) be the last applied rule. Then the last step in the derivation is

L =Γ1
L′

in1(L) =Γ1
in1(L′)

The length of the derivation L =Γ1
L′ is n − 1. By applying the induction

hypothesis to L =Γ1
L′ and Γ2 ⊢ P : σ, we obtain L =Γ′

1
L′ and Γ′

2 ⊢ P : σ.
From L =Γ′

1
L′ we derive in1(L) =Γ′

1
in1(L′) by rule (22).

Let (23) be the last applied rule. Then the last step in the derivation is

L =Γ1
L′

in2(L) =Γ1
in2(L′)

The length of the derivation L =Γ1
L′ is n − 1. By applying the induction

hypothesis to L =Γ1
L′ and Γ2 ⊢ P : σ, we obtain L =Γ′

1
L′ and Γ′

2 ⊢ P : σ.
From L =Γ′

1
L′ we derive in2(L) =Γ′

1
in2(L′) by rule (23).

2. Next, we consider the last applied rule in the derivation Γ ⊢ P : σ.

If the last applied rule is (→ elim), then we have

Chapter 3. Kripke-style semantics for full simply typed calculus 61

Γ2 ⊢ Q : τ → σ Γ2 ⊢ R : τ

Γ2 ⊢ QR : σ

and the derivation lengths of Γ2 ⊢ Q : τ → σ and Γ2 ⊢ R : τ are less than
m−1. By applying the induction hypothesis toM =Γ1

N and Γ2 ⊢ Q : τ → σ,
we derive M =Γ′

1
N and Γ′

2 ⊢ Q : τ → σ. Further, by applying the induction
hypothesis to M =Γ1

N and Γ2 ⊢ R : τ , we derive M =Γ′
1
N and Γ′

2 ⊢ R : τ .
From Γ′

2 ⊢ Q : τ → σ and Γ′
2 ⊢ R : τ , it follows that Γ′

2 ⊢ QR : σ.
If the last applied rule is (× elim1), then the last step in the derivation is

Γ2 ⊢ Q : σ × τ

Γ2 ⊢ π1(Q) : σ

The derivation Γ2 ⊢ Q : σ× τ is of length m− 1. By the induction hypothesis
applied to M =Γ1 N and Γ2 ⊢ Q : σ× τ , we get M =Γ′

1
N and Γ′

2 ⊢ Q : σ× τ .
From Γ′

2 ⊢ Q : σ × τ , we derive Γ′
2 ⊢ π1(Q) : σ by the rule (× elim1).

If the last applied rule is (× elim2), then the last step in the derivation is

Γ2 ⊢ Q : σ × τ

Γ2 ⊢ π2(Q) : τ

The derivation Γ2 ⊢ Q : σ × τ is of length m − 1. By the induction hypoth-
esis applied to M =Γ1

N and Γ2 ⊢ Q : σ × τ , we obtain M =Γ′
1
N and

Γ′
2 ⊢ Q : σ × τ . From Γ′

2 ⊢ Q : σ × τ , we derive Γ′
2 ⊢ π2(Q) : τ by the rule

(× elim2).
If the last applied rule is (+ intro1), then the last step in the derivation is

Γ2 ⊢ Q : σ

Γ2 ⊢ in1(Q) : σ + τ

The derivation Γ2 ⊢ Q : σ is of length m − 1. By the induction hypothesis
applied to M =Γ1

N and Γ2 ⊢ Q : σ, we obtain M =Γ′
1
N and Γ′

2 ⊢ Q : σ.
From Γ′

2 ⊢ Q : σ, we derive Γ′
2 ⊢ in1(Q) : σ + τ by the rule (+ intro1).

If the last applied rule is (+ intro2), then the last step in the derivation is

Γ2 ⊢ Q : τ

Γ2 ⊢ in2(Q) : σ + τ

The derivation Γ2 ⊢ Q : τ is of length m − 1. By the induction hypothesis
applied to M =Γ1 N and Γ2 ⊢ Q : τ , we get M =Γ′

1
N and Γ′

2 ⊢ Q : τ . From
Γ′
2 ⊢ Q : τ , we derive Γ′

2 ⊢ in2(Q) : σ + τ by the rule (+ intro2).
Finally, we consider the case when the last applied rule is (Eq). Then the

last step in the derivation is

Γ2 ⊢ Q : σ Q =Γ2
P

Γ2 ⊢ P : σ

62

The derivation lengths of Γ2 ⊢ Q : σ and Q =Γ2
P are less than m − 1.

By applying the induction hypothesis to M =Γ1 N and Γ2 ⊢ Q : σ, we get
M =Γ′

1
N and Γ′

2 ⊢ Q : σ. Further, typing Γ1 ⊢ K : σ → τ → σ has the
derivation length 1. If we denote the derivation length of Q =Γ2

P by j, we
have j − 1 + 1 = j < m − 1 < n +m = k. So, we can apply the induction
hypothesis to Q =Γ2

P and Γ1 ⊢ K : σ → τ → σ and we get Q =Γ′
2
P and

Γ′
1 ⊢ K : σ → τ → σ. Finally, from Γ′

2 ⊢ Q : σ and Q =Γ′
2
P , we conclude

Γ′
2 ⊢ P : σ by the rule (Eq).

3.2 Kripke-style semantics of CL→,×,+

In this section, we propose a Kripke-style semantics of CL→,×,+, which has
been introduced in [94]. The motivation for the proposed Kripke-style se-
mantics comes from the work of Mitchell and Moggi [124], where they have
introduced the Kripke-style semantics of the simply typed λ-calculus. The
similarities and di�erences of the semantics introduced in [124] and the one we
present in this chapter will be pointed out throughout the section.

A disjoint union of sets X and Y will be denoted by X ⊎ Y , i.e.

X ⊎ Y = {⟨0, x⟩ | x ∈ X} ∪ {⟨1, y⟩ | y ∈ Y }.

First, a notion of a Kripke applicative structure is introduced.

De�nition 3.8. A Kripke applicative structure K for CL→,×,+ is a tuple

⟨W,⪯, {Dw}, {Aσ
w}, {Appw}, {Proj1,w}, {Proj2,w}, {Inlw}, {Inrw}, {iw,w′}⟩

that consists of:

(i) a set W of possible worlds partially ordered by ⪯,

(ii) a family {Dw} = {Dw}w∈W of sets indexed by worlds w, where the set
Dw is referred to as the domain of the world w,

(iii) a family {Aσ
w} = {Aσ

w}w∈W,σ∈Types of sets indexed by types σ and worlds
w that satis�es the following:

� for all w ∈ W , for all σ ∈ Types, Aσ
w ⊆ Dw, A0

w is empty, i.e.
A0

w = ∅, and A1
w has one element, i.e. A1

w = {1w}, 1w ∈ Dw,

� there exists an injective function H : Dw ⊎Dw → Dw such that for
all σ, τ ∈ Types, the codomain of the restriction of the function H
to the set Aσ

w ⊎Aτ
w is Aσ+τ

w ,

Chapter 3. Kripke-style semantics for full simply typed calculus 63

� there exists an injective function G : Dw → Dw ×Dw such that for
all σ, τ ∈ Types, the codomain of the restriction of the function G
to the set Aσ×τ

w is Aσ
w ×Aτ

w,

(iv) a family {Appw} = {Appw}w∈W of application functions
Appw : Dw × Dw → Dw indexed by worlds w such that for all
σ, τ ∈ Types, the codomain of the restriction of the function Appw to
the set Aσ→τ

w ×Aσ
w is Aτ

w,

(v) a family {Proj1,w} = {Proj1,w}w∈W of �rst projection functions
Proj1,w : Dw → Dw indexed by worlds w such that for all σ, τ ∈ Types,
the codomain of the restriction of the function Proj1,w to the set Aσ×τ

w

is Aσ
w,

(vi) a family {Proj2,w} = {Proj2,w}w∈W of second projection functions
Proj2,w : Dw → Dw indexed by worlds w such that for all σ, τ ∈ Types,
the codomain of the restriction of the function Proj2,w to the set Aσ×τ

w

is Aτ
w,

(vii) a family {Inlw} = {Inlw}w∈W of left injection functions
Inlw : Dw → Dw indexed by worlds w such that for all σ, τ ∈ Types,
the codomain of the restriction of the function Inlw to the set Aσ

w is
Aσ+τ

w ,

(viii) a family {Inrw} = {Inrw}w∈W of right injection functions
Inrw : Dw → Dw indexed by worlds w such that for all σ, τ ∈ Types, the
codomain of the restriction of the function Inrw to the set Aτ

w is Aσ+τ
w ,

(ix) a family {iw,w′} = {iw,w′}w,w′∈W,w⪯w′ of transition functions
iw,w′ : Dw → Dw′ indexed by pairs of worlds w ⪯ w′ such that iw,w′ is
a surjective function, for all σ ∈ Types, the codomain of the restriction
of the function iw,w′ to the set Aσ

w is Aσ
w′ , and all transition functions

satisfy the following conditions:

iw,w : Dw → Dw is the identity (id)

iw′,w′′ ◦ iw,w′ = iw,w′′ for all w ⪯ w′ ⪯ w′′ (comp)

We also require that the application functions, the projection functions and the
injection functions commute with the transition functions in a natural way:

64

(∀w ∈W)(∀f ∈ Dw) (∀a ∈ Dw) (∀w′ ∈W,w ⪯ w′)

iw,w′(Appw(f, a)) = Appw′(iw,w′(f), iw,w′(a)) (comm1)

iw,w′(Proj1,w(a)) = Proj1,w′(iw,w′(a)) (comm2)

iw,w′(Proj2,w(a)) = Proj2,w′(iw,w′(a)) (comm3)

iw,w′(Inlw(a)) = Inlw′(iw,w′(a)) (comm4)

iw,w′(Inrw(a)) = Inrw′(iw,w′(a)) (comm5)

We will sometimes omit writing App for the application function and write
fa instead of Appw(f, a), as in De�nition 3.10 below.

Our goal is to de�ne a model such that every term has a unique meaning
in the model. For that reason, we consider only Kripke applicative struc-
tures which are extensional and have special elements in the domain, called
combinators, as speci�ed in De�nition 3.9 and De�nition 3.10 below.

De�nition 3.9. A Kripke applicative structure K as in De�nition 3.8 is ex-
tensional if for all w ∈W and f, g, p, q ∈ Dw the following holds

� if Proj1,w(p) = Proj1,w(q) and Proj2,w(p) = Proj2,w(q), then p = q

� if (∀w′ ⪰ w)(∀x, y ∈ Dw′)

Appw′(iw,w′(f), Inlw′(x)) = Appw′(iw,w′(g), Inlw′(x))

and

Appw′(iw,w′(f), Inrw′(y)) = Appw′(iw,w′(g), Inrw′(y)),

then f = g.

The second condition of extensionality implies that if a Kripke applicative
structure is extensional, then for elements f, g ∈ Dw holds the following:

if (∀w′ ≥ w)(∀a ∈ Dw′)(Appw′(iw,w′(f), a) = Appw′(iw,w′(g), a)), then f = g.

This condition was the de�nition of an extensional applicative structure in
[124], where Mitchell and Moggi have considered simply typed λ-calculus. We
may notice that the condition ensures the extensionality of application func-
tions Appw in a Kripke applicative structure. In the Kripke-style semantics of
simply typed λ-calculus, presented in [124], there are only application functions
App, that is there is neither projection functions nor injection functions in an
applicative structure, so this condition was su�cient to ensure extensionality.

Chapter 3. Kripke-style semantics for full simply typed calculus 65

De�nition 3.10. A Kripke applicative structure K as in De�nition 3.8 has
combinators if there exist elements:

� kw ∈ A
σ→(τ→σ)
w , for every σ, τ ∈ Types,

� sw ∈ A
(σ→(ρ→τ))→((σ→ρ)→(σ→τ))
w , for every σ, ρ, τ ∈ Types,

� p1,w ∈ Aσ×τ→σ
w , for every σ, τ ∈ Types,

� p2,w ∈ Aσ×τ→τ
w , for every σ, τ ∈ Types,

� pw ∈ A
σ→(τ→(σ×τ))
w , for every σ, τ ∈ Types,

� i1,w ∈ A
σ→(σ+τ)
w , for every σ, τ ∈ Types,

� i2,w ∈ A
τ→(σ+τ)
w , for every σ, τ ∈ Types,

� cw ∈ A
(σ→ρ)→((τ→ρ)→((σ+τ)→ρ))
w , for every σ, τ, ρ ∈ Types,

� zw ∈ A0→σ
w , for every σ ∈ Types,

� uw ∈ A1
w,

such that for every combinator

Aw ∈ {kw, sw,p1,w,p2,w,pw, i1,w, i2,w, cw, zw,uw}

whenever w ⪯ w′, we have that Aw′ = iw,w′(Aw). The combinators have to
satisfy the following equations:

(kwx)y = x (3.3)

((swx)y)z = (xz)(yz) (3.4)

p1,wx = Proj1,w(x) (3.5)

p2,wx = Proj2,w(x) (3.6)

p1,w((pwx)y) = x (3.7)

p2,w((pwx)y) = y (3.8)

i1,wx = Inlw(x) (3.9)

i2,wx = Inrw(x) (3.10)

((cwf)g)(i1,wx) = fx (3.11)

((cwf)g)(i2,wx) = gx (3.12)

((cw((sw(kwf))i1,w))((sw(kwf))i2,w))z = fz (3.13)

66

When an applicative structure has combinators, we also say that it satis�es
the combinatory model condition. The combinatory model condition guaran-
tees that there are su�ciently many elements in a model so that each program
(term without variables) has the meaning in the model, i.e. each program can
be interpreted in the model. The same approach has been used in [124] and
[123]. We may notice that there is a correspondence between combinators and
axioms of Hilbert-style system for full intuitionistic propositional logic (with
all the connectives). For each combinator there are two conditions: it has
to belong to a certain set Aσ

w and it has to satisfy a certain equation. The
superscripts of the sets Aσ

w, which have to contain combinators, correspond to
the axioms of Hilbert-style system for the full intuitionistic propositional logic
and to the types of term constants in Figure 3.2.

The monotonicity in Kripke semantics models the growth of knowledge
in time: whatever is true at this moment (possible world w), it will remain
true in the future (possible world w′, w ⪯ w′) ([110]). We de�ne Kripke CL
model to be monotone in that sense. More precisely, a model should satisfy
the following: if a term M has type σ in a world w ∈W , then it will have the
type σ in every possible world w′ accessible from w (w ⪯ w′). We ensure this
by requiring the monotonicity of valuations of term variables with respect to
the accessibility relation.

De�nition 3.11. An environment ρ for a Kripke applicative structure K is
a mapping from the set of term variables and the set of possible worlds to
domains ρ : X ×W →

⋃
Dw such that for x ∈ X and w ∈ W , ρ(x,w) ∈ Dw

holds, and the mapping ρ satis�es the following condition:

if ρ(x,w) ∈ Dw and w ⪯ w′, then ρ(x,w′) = iw,w′(ρ(x,w)). (3.14)

The important di�erence between De�nition 3.11 and the de�nition of an
environment in [124] is the fact that the environment in [124] was a partial
mapping, whereas herein it is a total mapping. The motivation for de�ning
environments as a total mappings will be given in Remark 3.20.

If ρ is an environment for a Kripke applicative structure K and a ∈ Dw,
then ρ(x := a) is an environment such that,

ρ(x := a)(y, w′) =


iw,w′(a), y = x and w ⪯ w′

i−1
w′,w(a), y = x and w′ ⪯ w

ρ(y, w′), y ̸= x or neither w ⪯ w′ nor w′ ⪯ w holds

where i−1
w′,w(a) denotes the element b ∈ Dw′ such that iw′,w(b) = a. The

existence of this element for every w,w′ ∈ W , w′ ⪯ w and a ∈ Dw is a

Chapter 3. Kripke-style semantics for full simply typed calculus 67

consequence of the requirement that for every two worlds w and w′ such that
w′ ⪯ w the transition function iw′,w is surjective.

Remark 3.12. The valuation ρ(x := a) given above di�ers from the valuation
ρ(x := a) introduced in [124] and this di�erence is caused by the di�erences in
the de�nitions of environments. In [124], an environment is a partial mapping,
so it was enough to de�ne the value of ρ(x := a)(y, w′) for w ⪯ w′, where
a ∈ Dw, and leave it unde�ned in other cases. Since we have de�ned an
environment as a total mapping, the value ρ(x := a)(y, w′) has to be de�ned
for every world w′ and its de�nition has to ensure that the condition (3.14)
is satis�ed. For this reason, we had to add a requirement for the transition
functions to be surjective, in contrast to [124], where this condition was not
necessary.

Finally, we de�ne a Kripke CL model by providing a Kripke applicative
structure with an environment.

De�nition 3.13 (Kripke CL model). A Kripke CL model is Kρ is a Kripke
applicative structure which is extensional and has combinators and ρ is an
environment for K.

We give some remarks about the valuation of term variables. As we have
already explained, an environment is hereditary and this is ensured by the
condition 3.14. Further, it is possible that

⋃
σ∈Types

Aσ
w ⊂ Dw and that there is

no σ ∈ Types such that ρ(x,w) belongs to Aσ
w.

In order to de�ne the interpretation of terms, we extend the valuation of
term variables to the interpretation map [[]]wρ . The interpretation map [[]]wρ is
a mapping from the set of all terms to the domain of world w, namely Dw.
By [[M]]wρ we denote the meaning of a term M in the environment ρ at world
w and we de�ne it inductively as follows.

De�nition 3.14. Let Kρ be a Kripke CL model and w ∈W one possible world
of the model Kρ. We de�ne the interpretation map [[]]wρ : CL→,×,+ → Dw as
follows:

1. [[x]]wρ = ρ(x,w),

2. [[K]]wρ = kw,

3. [[S]]wρ = sw,

4. [[P1]]
w
ρ = p1,w,

5. [[P2]]
w
ρ = p2,w,

68

6. [[P]]wρ = pw,

7. [[I1]]
w
ρ = i1,w,

8. [[I2]]
w
ρ = i2,w,

9. [[C]]wρ = cw,

10. [[Z]]wρ = zw,

11. [[U]]wρ = uw,

12. [[MN]]wρ = Appw([[M]]wρ , [[N]]wρ),

13. [[π1(M)]]wρ = Proj1,w([[M]]wρ),

14. [[π2(M)]]wρ = Proj2,w([[M]]wρ),

15. [[in1(M)]]wρ = Inlw([[M]]wρ),

16. [[in2(M)]]wρ = Inrw([[M]]wρ),

17. [[⟨ ⟩]]wρ = 1w, the unique element of A1
w.

For every term M , the interpretation of the term M in the environment
ρ at world w, [[M]]wρ , is de�ned and it belongs to the domain of the world
w, [[M]]wρ ∈ Dw. The interpretation of a term M does not depend on the
variables that do not appear in the term, it depends only on the interpretation
of subterms of the term M . As a consequence, if two environments assign the
same value to each variable that appears in a termM , then the interpretations
of the term M in those environments are equal.

Lemma 3.15. Let K be an extensional Kripke applicative structure with com-
binators, ρ1 and ρ2 environments for K and M a term. If ρ1(x,w) = ρ2(x,w)
for all x ∈ FV (M), then [[M]]wρ1

= [[M]]wρ2
.

Proof. The proof is by induction on the structure of the term M .

� If M is a variable x, then FV (x) = {x}. Hence, [[x]]wρ1
= ρ1(x,w) =

ρ2(x,w) = [[x]]wρ2
.

� If M is a term constant, then the interpretation of M does not depend
on the environment and it is determined by the Kripke applicative struc-
ture. Since both ρ1 and ρ2 are the environments for the same Kripke
applicative structure, a term constant has the same interpretation in
both environments.

Chapter 3. Kripke-style semantics for full simply typed calculus 69

� If M is the application NL, then by the induction hypothesis on N and
L, we get [[N]]wρ1

= [[N]]wρ2
and [[L]]wρ1

= [[L]]wρ2
. From De�nition 3.14 it

follows that

[[NL]]wρ1
= Appw([[N]]wρ1

, [[L]]wρ1
) = Appw([[N]]wρ2

, [[L]]wρ2
) = [[NL]]wρ2

.

� Let M be the �rst projection π1(N). We can apply the induction hy-
pothesis to N and obtain [[N]]wρ1

= [[N]]wρ2
. By De�nition 3.14 we get:

[[π1(N)]]wρ1
= Proj1,w([[N]]wρ1

) = Proj1,w([[N]]wρ2
) = [[π1(N)]]wρ2

.

� Let M be the second projection π2(N). We can apply the induction
hypothesis to N and obtain [[N]]wρ1

= [[N]]wρ2
. By De�nition 3.14 we get:

[[π2(N)]]wρ1
= Proj2,w([[N]]wρ1

) = Proj2,w([[N]]wρ2
) = [[π2(N)]]wρ2

.

� If M is the left injection in1(N), then we apply the induction hypothesis
to N and derive [[N]]wρ1

= [[N]]wρ2
. Following De�nition 3.14 we conclude:

[[in1(N)]]wρ1
= Inlw([[N]]wρ1

) = Inlw([[N]]wρ2
) = [[in1(N)]]wρ2

.

� If M is the right injection in2(N), then we can apply the induction
hypothesis to N and obtain [[N]]wρ1

= [[N]]wρ2
. Following De�nition 3.14

we have:

[[in2(N)]]wρ1
= Inrw([[N]]wρ1

) = Inrw([[N]]wρ2
) = [[in2(N)]]wρ2

.

� Let M be the empty pair ⟨⟩. Then we have

[[⟨⟩]]wρ1
= 1w = [[⟨⟩]]wρ2

.

De�nition 3.16. We de�ne the satis�ability of a statement M : σ in a model
and semantical consequence in the following way:

1. A world w satis�es the statement M : σ, denoted by w |= M : σ, if and
only if [[M]]wρ ∈ Aσ

w. If the statement M : σ is not satis�ed in a world w,
we write w ̸|=M : σ.

2. A Kripke CL model Kρ satis�es the statement M : σ if and only if every
world w of the model Kρ satis�es the statement M : σ, i.e.

Kρ |=M : σ if and only if w |=M : σ, for all w ∈W.

If a Kripke CL model Kρ does not satisfy the statement M : σ, we write
Kρ ̸|=M : σ.

70

3. A possible world w satis�es the basis Γ = {x1 : σ1, . . . , xn : σn}, de-
noted by w |= Γ, if and only if it satis�es every declaration from Γ, i.e.
w |= xi : σi, for all i ∈ {1, . . . , n}. A Kripke CL model Kρ satis�es the
basis Γ, denoted by Kρ |= Γ, if and only if the basis Γ is satis�ed in every
world w of the model Kρ, i.e. w |= Γ for all w ∈W .

4. A statement M : σ is a semantical consequence of a basis Γ, denoted
by Γ |= M : σ, if whenever a Kripke CL model satis�es the basis Γ
(Kρ |= Γ) it also satis�es the statement M : σ (Kρ |=M : σ).

A valuation of terms is hereditary by its de�nition, in the sense that if a
type σ is assigned to the variable x in a world w, then the same type will be
assigned to a variable x in every world accessible form w. The same property
holds for all terms, as we will show. We prove that the interpretation of a term
M at a world w uniquely determines the interpretation of the term M at any
world w′ accessible from w, using transition function iw,w′ .

Lemma 3.17. Let Kρ be a Kripke CL model. If [[M]]wρ is de�ned and w ⪯ w′,
then [[M]]w

′

ρ = iw,w′([[M]]wρ).

Proof. The proof is by induction on the structure of the term M .

� Let M be a variable x. Then [[x]]w
′

ρ = ρ(x,w′) = iw,w′(ρ(x,w)) =
iw,w′([[x]]wρ) by De�nition 3.11 and 3.14.

� If M is a constant K, then [[K]]w
′

ρ = kw′ = iw,w′(kw) = iw,w′([[k]]wρ) by
De�nition 3.10 and 3.14. The cases for all other term constants proceed
similarly.

� Assume M is the application NL. Then by De�nition 3.8, 3.14 and the
induction hypothesis we get

[[NL]]w
′

ρ = Appw′([[N]]w
′

ρ , [[L]]w
′

ρ) = Appw′(iw,w′([[N]]wρ), iw,w′([[L]]wρ))

= iw,w′(Appw([[N]]wρ , [[L]]
w
ρ)) = iw,w′([[NL]]wρ).

� If M is the �rst projection π1(N), then by De�nition 3.8, 3.14 and the
induction hypothesis we get

[[π1(N)]]w
′

ρ = Proj1,w′([[N]]w
′

ρ) = Proj1,w′(iw,w′([[N]]wρ))

= iw,w′(Proj1,w([[N]]wρ)) = iw,w′([[π1(N)]]wρ).

� The case when M is the second projection π2(N) proceeds similarly.

[[π2(N)]]w
′

ρ = Proj2,w′([[N]]w
′

ρ) = Proj2,w′(iw,w′([[N]]wρ))

= iw,w′(Proj2,w([[N]]wρ)) = iw,w′([[π2(N)]]wρ).

Chapter 3. Kripke-style semantics for full simply typed calculus 71

� Let M be the left injection in1(N). Then by De�nition 3.8, 3.14 and the
induction hypothesis we derive

[[in1(N)]]w
′

ρ = Inlw′([[N]]w
′

ρ) = Inlw′(iw,w′([[N]]wρ))

= iw,w′(Inlw([[N]]wρ)) = iw,w′([[in1(N)]]wρ).

� Similarly, if M is the right injection in2(N), then we have

[[in2(N)]]w
′

ρ = Inrw′([[N]]w
′

ρ) = Inrw′(iw,w′([[N]]wρ))

= iw,w′(Inrw([[N]]wρ)) = iw,w′([[in2(N)]]wρ).

� Assume M is the empty pair ⟨⟩. Then

[[⟨⟩]]w
′

ρ = 1w′ = iw,w′(1w) = iw,w′([[⟨⟩]]wρ).

This concludes the proof.

Lemma 3.18 (Substitution Lemma). Let Kρ be a Kripke CL model. For
terms M,N , a variable x that appears in the term M and a world w ∈ W , it
holds that [[M{N/x}]]wρ = [[M]]wρ(x:=[[N]]wρ).

Proof. The proof proceeds by induction on the structure of the term M .

� If the term M is a variable, then we distinguish two cases.

� The case when the term M is a variable x:

[[x{N/x}]]wρ = [[N]]wρ = [[x]]wρ(x:=[[N]]wρ).

� The case when the term M is a variable y such that y ̸≡ x: by
Lemma 3.15 we have

[[y{N/x}]]wρ = [[y]]wρ = [[y]]wρ(x:=[[N]]wρ).

� If the term M is the application PQ, then by induction hypothesis we
have

[[(PQ){N/x}]]wρ = [[(P{N/x})(Q{N/x})]]wρ
= Appw([[P{N/x}]]wρ , [[Q{N/x}]]wρ)
= Appw([[P]]

w
ρ(x:=[[N]]wρ), [[Q]]wρ(x:=[[N]]wρ))

= [[PQ]]wρ(x:=[[N]]wρ).

72

� Next, we assume the term M is the �rst projection π1(L). We apply the
induction hypothesis to L and obtain

[[π1(L){N/x}]]wρ = [[π1(L{N/x})]]wρ = Proj1,w([[L{N/x}]]wρ)
= Proj1,w([[L]]

w
ρ(x:=[[N]]wρ)) = [[π1(L)]]

w
ρ(x:=[[N]]wρ).

� If M is the second projection π2(L), then again we can apply the induc-
tion hypothesis to L and we have

[[π2(L){N/x}]]wρ = [[π2(L{N/x})]]wρ = Proj2,w([[L{N/x}]]wρ)
= Proj2,w([[L]]

w
ρ(x:=[[N]]wρ)) = [[π2(L)]]

w
ρ(x:=[[N]]wρ).

� Assume M is the left injection in1(L). Then by applying the induction
hypothesis to L we derive

[[in1(L){N/x}]]wρ = [[in1(L{N/x})]]wρ = Inlw([[L{N/x}]]wρ)
= Inlw([[L]]

w
ρ(x:=[[N]]wρ)) = [[in1(L)]]wρ(x:=[[N]]wρ).

� If M is the right injection in2(L), then similarly to the previous case we
have

[[in2(L){N/x}]]wρ = [[in2(L{N/x})]]wρ = Inrw([[L{N/x}]]wρ)
= Inrw([[L]]

w
ρ(x:=[[N]]wρ)) = [[in2(L)]]wρ(x:=[[N]]wρ).

� The case when M is the empty pair ⟨⟩ follows from Lemma 3.15.

[[⟨⟩{N/x}]]wρ = [[⟨⟩]]wρ = [[⟨⟩]]wρ(x:=[[N]]wρ).

The Kripke-style semantics we have presented has been introduced in [94]
and is inspired by the Kripke-style semantics of the simply typed λ-calculus
introduced in [124]. In [94], we have introduced the proposed semantics, but
the calculus was not exactly the same as the one we study in this chapter.
The idea was to introduce a Kripke-style semantics of the full simply typed
λ-calculus. Inspired by the work of [124], we have introduced the Kripke-style
semantics of the full simply typed λ-calculus and the full simply typed combi-
natory logic with the goal to prove the completeness of the full simply typed
λ-calculus using the translation of λ-calculus into combinatory logic. However,
we did not include the typing rule that ensures that equal terms inhabit the

Chapter 3. Kripke-style semantics for full simply typed calculus 73

same type and the proof failed. For this reason, we had to add the typing rule
(Eq) in Figure 3.2. The proof that the full simply typed combinatory logic is
sound and complete with respect to the proposed semantics is given in the fol-
lowing section. The proof of the soundness and completeness of the full simply
typed λ-calculus is left for future work, since the translation of λ-calculus with
the typing rule for equal terms into the combinatory logic with the same rule
is more involved.

Although the semantics introduced in [124] and [94] are de�ned as an ap-
plicative structure which is extensional and has combinators, provided with
a valuation of term variable, there are some signi�cant di�erences. As the
main di�erence, we would single out that we have de�ned the interpretation
of a term [[M]]wρ independently of its type, whereas in [124] the authors de�ne
an interpretation of a well-typed terms only, more precisely they de�ne an
interpretation of a typing statement [[Γ ⊢ M : σ]]wρ considering the term and
its type at the same time. We have presented a denotational semantics which
can be used for the analysis of computations that involve untypable terms. If
we compare Kripke-style semantics we presented and Kripke semantics of the
intuitionistic propositional logic, we may notice that our semantics concerns
statement M : σ, which by the Curry-Howard correspondence means it inter-
prets both a provable formula and its proof, whereas Kripke semantics of the
intuitionistic propositional logic takes into account only a provable formula.

3.3 Soundness and completeness of CL→,×,+

In this section, we present the main results of the chapter: the soundness
and the completeness of the full simply typed combinatory logic. We give
two soundness and completeness results. First, we prove that the equational
theory EQFCL, de�ned by the rules in Figure 3.1, is sound and complete with
respect to the proposed Kripke-style semantics. Second, we prove soundness
and completeness of the full simply typed combinatory logic, more precisely
we prove that the type assignment system CL→,×,+, introduced in Figure 3.2,
is sound and complete with respect to the proposed Kripke-style semantics.

We start with soundness results. Proving soundness of the equational the-
ory means proving that every two terms that are equal, in the sense that
M =Γ N for some Γ, have the same interpretation in every Kripke CL model
which satis�es Γ. We prove soundness of the type assignment system by prov-
ing that for every Kripke CLmodel Kρ and world w in that model, if Γ ⊢M : σ
and w |= Γ, then w |= M : σ. Similarly as in Proposition 3.7, we consider
these properties together, since the equality of terms (Figure 3.1) and the type
assignment system (Figure 3.2) are de�ned simultaneously.

74

Theorem 3.19. For every Kripke CL model Kρ and a possible world w of the
model, if M =Γ1 N , Γ2 ⊢ L : σ, w |= Γ1 and w |= Γ2, then [[M]]wρ = [[N]]wρ and
w |= L : σ.

Proof. The proof proceeds by induction on the sum k = n+m of the derivation
length n of M =Γ1

N and the derivation length m of Γ2 ⊢ L : σ.
Step 1: The base case is when both derivations are obtained by applying

just an axiom from Figure 3.1 and Figure 3.2, i.e. n = 1, m = 1 and k = 2.
Since n = 1, M =Γ1

N has to be obtained by some axioms in Figure 3.1
(axioms (1) − (12) and (15)). The proof follows from De�nition 3.14 and
De�nition 3.10. Assume that M =Γ1 N is obtained by the axiom (1). Then
M ≡ KQR and N ≡ Q for some terms Q and R and we have

[[KQR]]wρ = Appw(Appw([[K]]
w
ρ , [[Q]]wρ), [[R]]

w
ρ)

= Appw(Appw(kw, [[Q]]wρ), [[R]]
w
ρ)

= [[Q]]wρ .

All other cases for the axioms in Figure 3.1 proceed similarly.
If m = 1, then Γ2 ⊢ L : σ is obtained from an axiom in Figure 3.2. Let

it be (Axiom ∈). Then L : σ is a declaration which belongs to Γ and if
world w satis�es Γ, it satis�es every declaration in Γ, thus w |= P : σ. If the
derivation is obtained by (Axiom K), then the term L is the term constant K.
By De�nition 3.14 and De�nition 3.10, we obtain

[[K]]wρ = kw ∈ Aσ→τ→σ
w .

Thus, w |= K : σ → τ → σ for every model Kρ and world w. The proof
proceeds similarly for all other axioms in Figure 3.2.

Step 2: Let us assume that the statement holds for every i < k, k ≥ 3.

For every Kripke CL model Kρ and a possible world w

if M =Γ1
N,Γ2 ⊢ L : σ, the length of derivation M =Γ1

N is n,

the length of derivation Γ2 ⊢ L : σ is m,n+m = i < k,

w |= Γ1 and w |= Γ2, then [[M]]wρ = [[N]]wρ and w |= L : σ.

(IH⋆)

Step 3: We prove that the statement holds when the sum of derivation
lengths is equal to k. We assume that the length of derivation M =Γ1

N is n,
the length of derivation Γ2 ⊢ L : σ is m and w |= Γ1 and w |= Γ2. We perform
case analysis on the last rule applied in the derivations.

a) First, we consider the last applied rule in the derivation of M =Γ1
N .

Chapter 3. Kripke-style semantics for full simply typed calculus 75

1. The rule (13) is the last rule applied. In this case we have N ≡ ⟨⟩
and the last step in the derivation is

Γ1 ⊢M : 1

M =Γ1
⟨⟩

The length of derivation Γ1 ⊢ M : 1 is n − 1. The length of the
derivation KMN =Γ2

M is 1. Since n− 1+ 1 = n < n+m = k, we
can apply the induction hypothesis to Γ1 ⊢M : 1 and KMN =Γ2

M
and obtain [[KMN]]wρ = [[M]]wρ and w |= M : 1. The latter implies
[[M]]wρ ∈ A1

w. From the fact that A1
w is a singleton {1w} we get

[[M]]wρ = 1w = [[⟨⟩]]wρ . Still, it remains to prove w |= L : σ, under the
assumptions Γ2 ⊢ L : σ and w |= Γ2. We distinguish three cases.

� If Γ2 ⊢ L : σ is obtained by an axiom, then we have a base case
(m = 1), which has been already proved.

� If Γ2 ⊢ L : σ is obtained from a rule with one premise, then the
result follows directly from the induction hypothesis applied to
its premise and some equality, whose derivation length is 1. For
example, let us assume that Γ2 ⊢ L : σ is obtained by the rule
(× elim1), then the last step in the derivation is

Γ2 ⊢ Q : σ × τ

Γ2 ⊢ π1(Q) : σ

The length of the derivation Γ2 ⊢ Q : σ × τ is m − 1. Since
the derivation length of KMN =Γ1 M is 1 and m − 1 + 1 =
m < n + m = k, we can apply the induction hypothesis to
KMN =Γ1

M and Γ2 ⊢ Q : σ × τ and we derive [[KMN]]wρ =
[[M]]wρ and w |= Q : σ× τ . The latter implies [[Q]]wρ ∈ Aσ×τ

w and
by De�nition 3.14 we have

[[π1(Q)]]wρ = Proj1,2([[Q]]wρ) ∈ Aσ
w.

Thus, w |= π1(Q) : σ. The rest of the cases with just one
premise are analogous.

� If the last applied rule has two premises, then we have two
possibilities. If the last applied rule is (→ elim), then the last
step in the derivation is

Γ2 ⊢ Q : τ → σ Γ2 ⊢ R : τ

Γ2 ⊢ QR : σ
The derivation lengths of both Γ2 ⊢ Q : τ → σ and Γ2 ⊢ R : τ
are less than m − 1. By the induction hypothesis applied to
KMN =Γ1

M and Γ2 ⊢ Q : τ → σ we derive [[KMN]]wρ = [[M]]wρ
and w |= Q : τ → σ. Similarly, we obtain w |= R : τ . Now,

76

w |= Q : τ → σ and w |= R : τ imply w |= QR : σ by
De�nition 3.8 and 3.14. If the last applied rule is (Eq), then
we have

Γ2 ⊢ Q : σ Q =Γ2
L

Γ2 ⊢ L : σ
The derivation lengths of Γ2 ⊢ Q : σ and Q =Γ2

L are less than
m− 1. By applying the induction hypothesis to KMN =Γ1

M
and Γ2 ⊢ Q : σ, we derive [[KMN]]wρ = [[M]]wρ and w |= Q : σ.
Similarly, we can apply the induction hypothesis to Q =Γ2

L
and Γ1 ⊢ K : σ → τ → σ and we obtain [[Q]]wρ = [[L]]wρ and
w |= K : σ → τ → σ. From w |= Q : σ and [[Q]]wρ = [[L]]wρ , we
derive [[L]]wρ = [[Q]]wρ ∈ Aσ

w, i.e, w |= L : σ.

2. The rule (14) is the last applied rule. Then M ≡ R{L/x} and
N ≡ ZL, for some terms R and L. The last step in the derivation
is

Γ1 ⊢ L : 0 Γ1, x : 0 ⊢ R : σ

R{L/x} =Γ1 ZL

The length of the derivation KII =Γ2
I is 1, whereas the derivation

length of Γ1 ⊢ L : 0 is less than n−1, so we can apply the induction
hypothesis to the latter two and obtain [[KII]]wρ = [[I]]wρ and w |= L : 0.
However, w |= N : 0 contradicts the condition that A0

w is the empty
set (De�nition 3.8). Thus, it is not possible that (14) is the last rule
applied.

3. The rule (16) is the last rule applied. Then we have

M =Γ1 Q Q =Γ1 N

M =Γ1 N

By the induction hypothesis applied to M =Γ1
Q and Γ2 ⊢ L : σ,

we obtain [[M]]wρ = [[Q]]wρ and w |= L : σ. Similarly, by the induction
hypothesis applied to Q =Γ1

N and Γ2 ⊢ L : σ, we get [[Q]]wρ = [[N]]wρ
and w |= L : σ. From [[M]]wρ = [[Q]]wρ and [[Q]]wρ = [[N]]wρ , we conclude
[[M]]wρ = [[N]]wρ .

4. The rule (17) is the last rule applied. Then the last step in the
derivation is

N =Γ1 M

M =Γ1 N

and the derivation length of N =Γ1
M is n− 1. We can apply the

induction hypothesis to N =Γ1
M and Γ2 ⊢ L : σ and we obtain

[[N]]wρ = [[M]]wρ and w |= L : σ.

Chapter 3. Kripke-style semantics for full simply typed calculus 77

5. The rule (18) is the last rule applied. ThenM ≡ QR and N ≡ Q′R
for some terms Q,Q′, R such that Q =Γ1 Q

′ and the last step in the
derivation is

Q =Γ1 Q
′

QR =Γ1
Q′R

By the induction hypothesis we derive [[Q]]wρ = [[Q′]]wρ and w |= L : σ.
From De�nition 3.14 it follows that

[[QR]]wρ = Appw([[Q]]wρ , [[R]]
w
ρ) = Appw([[Q

′]]wρ , [[R]]
w
ρ) = [[Q′R]]wρ .

6. The rule (19) is the last rule applied. ThenM ≡ RQ and N ≡ RQ′

for some terms Q,Q′, R such that Q =Γ1
Q′ and the last step in the

derivation is
Q =Γ1

Q′

RQ =Γ1 RQ
′

By the induction hypothesis we derive [[Q]]wρ = [[Q′]]wρ and w |= L : σ.
Again, from De�nition 3.14 it follows that

[[RQ]]wρ = Appw([[R]]
w
ρ , [[Q]]wρ) = Appw([[R]]

w
ρ , [[Q

′]]wρ) = [[RQ′]]wρ .

7. The rule (20) is the last rule applied. Then the last step in the
derivation is

Q =Γ1 Q
′

π1(Q) =Γ1 π1(Q
′)

so M ≡ π1(Q) and N ≡ π1(Q
′) for some terms Q and Q′. By the

induction hypothesis, we get [[Q]]wρ = [[Q′]]wρ and w |= L : σ. Using
the de�nition of the interpretation of a term we derive

[[π1(Q)]]wρ = Proj1,w([[Q]]wρ) = Proj1,w([[Q
′]]wρ = [[π1(Q

′)]]wρ .

8. The rule (21) is the last rule applied. Then M ≡ π2(Q) and
N ≡ π2(Q

′) for some terms Q and Q′ and the last step in the
derivation is

Q =Γ1
Q′

π2(Q) =Γ1
π2(Q

′)

By the induction hypothesis, we obtain [[Q]]wρ = [[Q′]]wρ and
w |= L : σ. Similarly to the previous case, by De�nition 3.14
we derive

[[π2(Q)]]wρ = Proj2,w([[Q]]wρ) = Proj2,w([[Q
′]]wρ = [[π2(Q

′)]]wρ .

78

9. The rule (22) is the last rule applied. In this case, the last step in
the derivation is

Q =Γ1
Q′

in1(Q) =Γ1
in1(Q′)

By the induction hypothesis, we have [[Q]]wρ = [[Q′]]wρ and w |= L : σ
and by De�nition 3.14 we derive

[[in1(Q)]]wρ = Inlw([[Q]]wρ) = Inlw([[Q
′]]wρ) = [[in1(Q′)]]wρ .

10. The rule (23) is the last rule applied. The last step in the derivation
is

Q =Γ1
Q′

in2(Q) =Γ1
in2(Q′)

Now, we have [[Q]]wρ = [[Q′]]wρ and w |= L : σ by the induction
hypothesis. From De�nition 3.14 it follows that

[[in2(Q)]]wρ = Inrw([[Q]]wρ) = Inrw([[Q
′]]wρ) = [[in2(Q′)]]wρ .

11. The rule (24) is the last rule applied. Then M =Γ1
N is obtained

from Mx =Γ1 Nx for some variable x which appears neither in M
nor in N , that is the last step in the derivation is

Mx =Γ1
Nx x ̸∈ FV (M) ∪ FV (N)

M =Γ1
N

By the induction hypothesis, we have [[Mx]]wρ = [[Nx]]wρ and
w |= L : σ for every model Kρ and world w which satis�es Γ1.
Let Kρ be a Kripke CL model and w a world of that model such
that w |= Γ1. Further, let w ⪯ w′ and d be an element of the
domain Dw′ in the model Kρ. Terms Mx and Nx have the same
interpretation in every model, so they also have the same interpre-
tation in model Kρ(x:=d). So, by Lemma 3.15 and Lemma 3.17 we
have for every w′ ⪰ w

Appw′(iw,w′([[M]]wρ), d) = Appw′([[M]]w
′

ρ , [[x]]w
′

ρ(x:=d))

= Appw′([[M]]w
′

ρ(x:=d), [[x]]
w′

ρ(x:=d))

= [[Mx]]w
′

ρ(x:=d)

= [[Nx]]w
′

ρ(x:=d)

= Appw′([[N]]w
′

ρ(x:=d), [[x]]
w′

ρ(x:=d))

= Appw′(iw,w′([[N]]wρ), d).

Chapter 3. Kripke-style semantics for full simply typed calculus 79

Since Kρ is a model, Kripke applicative structure K is extensional.
We proved that for every w′ ⪰ w and d ∈ Dw′ ,

Appw′(iw,w′([[M]]wρ), d) = Appw′(iw,w′([[N]]wρ), d).

By the extensionality of the Kripke applicative structure, we con-
clude [[M]]wρ = [[N]]wρ .

b) Next, we consider the last rule in the derivation of Γ2 ⊢ L : σ.

1. If Γ2 ⊢ L : σ is obtained by the rule (→ elim), then L ≡ QR for
some terms Q and R and the last step on the derivation is

Γ2 ⊢ Q : τ → σ Γ2 ⊢ R : τ

Γ2 ⊢ QR : σ

By the induction hypothesis applied to M =Γ1
N and

Γ2 ⊢ Q : τ → σ we obtain [[M]]wρ = [[N]]wρ and w |= Q : τ → σ.
Similarly, by the induction hypothesis applied to M =Γ1

N and
Γ2 ⊢ R : τ , we have [[M]]wρ = [[N]]wρ and w |= R : σ. By De�ni-
tion 3.8 and 3.14 we conclude that w |= Q : τ → σ and w |= R : τ
imply w |= QR : σ.

2. If the last applied rule is (× elim1), then L ≡ π1(Q) for some term
Q and the last step in the derivation is

Γ2 ⊢ Q : σ × τ

Γ2 ⊢ π1(Q) : σ

By the induction hypothesis applied toM =Γ1 N and Γ2 ⊢ Q : σ×τ ,
we derive [[M]]wρ = [[N]]wρ and w |= Q : σ × τ . The latter implies
[[Q]]wρ ∈ Aσ×τ

w and by De�nition 3.8 and De�nition 3.14 we get

[[π1(Q)]]wρ = Proj1,w([[Q]]wρ) ∈ Aσ
w.

Thus, w |= π1(Q) : σ.

3. Similarly, if the last applied rule is (× elim2), then L ≡ π2(Q) for
some term Q and the last step in the derivation is

Γ2 ⊢ Q : τ × σ

Γ2 ⊢ π2(Q) : σ

By the induction hypothesis, we obtain [[M]]wρ = [[N]]wρ and
w |= Q : τ × σ. The latter implies [[Q]]wρ ∈ Aτ×σ

w and by De�-
nition 3.8 and 3.14, we have

[[π2(Q)]]wρ = Proj2,w([[Q]]wρ) ∈ Aσ
w.

Hence, w |= π2(Q) : σ.

80

4. Let the last applied rule in the derivation Γ2 ⊢ L : σ be the rule
(+ intro1). We have L ≡ in1(Q) for some term Q, σ ≡ τ1 + τ1 for
some types τ1 and τ2 and the last step in the derivation is

Γ2 ⊢ Q : τ1
Γ2 ⊢ in1(Q) : τ1 + τ2

By the induction hypothesis applied to M =Γ1
N and Γ2 ⊢ Q : τ1

we get [[M]]wρ = [[N]]wρ and w |= Q : τ1. From the latter it follows
that [[Q]]wρ ∈ Aτ1

w . Further, by De�nition 3.8 and 3.14 we derive

[[in1(Q)]]wρ = Inlw([[Q]]wρ) ∈ Aτ1+τ2
w .

5. If the last applied rule in the derivation Γ2 ⊢ L : σ is the rule
(+ intro2), then L ≡ in2(Q) for some term Q, σ ≡ τ1 + τ2 for some
types τ1 and τ2 and the last step in the derivation is

Γ2 ⊢ Q : τ2
Γ2 ⊢ in2(Q) : τ1 + τ2

By the induction hypothesis, we have [[M]]wρ = [[N]]wρ and
w |= Q : τ2. From the latter, it follows that [[Q]]wρ ∈ Aτ2

w and
by De�nition 3.8 and 3.14 we get

[[in2(Q)]]wρ = Inrw([[Q]]wρ) ∈ Aτ1+τ2
w .

6. Finally, we consider the case when the last applied rule is (Eq).
Then we have that the last step in the derivation is

Γ2 ⊢ Q : σ Q =Γ2
L

Γ2 ⊢ L : σ

By the induction hypothesis applied to M =Γ1
N and

Γ2 ⊢ Q : σ we get [[M]]wρ = [[N]]wρ and w |= Q : σ. Since the
derivation Γ1 ⊢ K : σ → τ → σ has the length 1 and the length
of the derivation Q =Γ2

L is less than m − 1, we can apply the
induction hypothesis to Q =Γ2 L and Γ1 ⊢ K : σ → τ → σ and
we obtain [[Q]]wρ = [[L]]wρ and w |= K : σ → τ → σ. We conclude
[[L]]wρ = [[Q]]wρ ∈ Aσ

w, thus w |= L : σ.

This concludes the proof of Theorem 3.19.

Remark 3.20. We now give the motivation for de�ning an environment as a
total mapping. In order to prove that equal terms have the same interpretation
in every model, an environment has to be a total mapping. Otherwise, if ρ is a
partial mapping and ρ(x,w) is de�ned, whereas ρ(y, w) is not, then [[Kxy]]wρ is
not de�ned. As a consequence, we would have that the interpretation of Kxy
is not the same as the interpretation of x, although they are equal terms.

Chapter 3. Kripke-style semantics for full simply typed calculus 81

A direct consequence of the previous theorem is the soundness of the type
assignment system.

Corollary 3.21 (Soundness of CL→,×,+). If Γ ⊢M : σ, then Γ |=M : σ.

The equivalence class of a term M with respect to the equivalence relation
generated by the rules in Figure 3.1 is denoted by [M]Γ, i.e.

[M]Γ = {N | N ∈ CL→,×,+ and M =Γ N}.

We prove the completeness of the equational theory and the type assignment
system separately. First, a notion of a canonical model is introduced.

De�nition 3.22 (Canonical model). Let Γ0 be a consistent basis. A canonical
model KΓ0

ρ⋆ is a pair ⟨KΓ0 , ρ⋆⟩ such that the tuple

KΓ0 = ⟨WΓ0 ,⪯, {DwΓ}, {Aσ
wΓ

}, {AppwΓ
}, {Proj1,wΓ

}, {Proj2,wΓ
}, {InlwΓ

},
{InrwΓ

}, {iwΓ,wΓ′}⟩

consists of:

(i) the set WΓ0 of possible worlds, one for each consistent superset of the
basis Γ0, i.e. WΓ0 = {wΓ | Γ0 ⊆ Γ and Γ is a consistent basis},

(ii) the relation ⪯ on WΓ0 de�ned as follows:

wΓ ⪯ wΓ′ if and only if Γ ⊆ Γ′, (3.15)

(iii) the family {DwΓ
} = {DwΓ

}wΓ∈WΓ0
where

DwΓ = {[M]Γ |M ∈ CL→,×,+},

(iv) the family {Aσ
wΓ

} = {Aσ
wΓ

}wΓ∈WΓ0
,σ∈Types where

Aσ
wΓ

= {[N]Γ | N ∈ CL→,×,+ and Γ ⊢ N : σ},

(v) the family {AppwΓ} = {AppwΓ}wΓ∈WΓ0
where

AppwΓ
([M]Γ, [N]Γ) = [MN]Γ,

(vi) the family {Proj1,wΓ
} = {Proj1,wΓ

}wΓ∈WΓ0
where

Proj1,wΓ
([M]Γ) = [π1(M)]Γ,

82

(vii) the family {Proj2,wΓ
} = {Proj2,wΓ

}wΓ∈WΓ0
where

Proj2,wΓ([M]Γ) = [π2(M)]Γ,

(viii) the family {InlwΓ} = {InlwΓ}wΓ∈WΓ0
where

InlwΓ
([M]Γ) = [in1(M)]Γ,

(ix) the family {InrwΓ} = {InrwΓ}wΓ∈WΓ0
where

InrwΓ
([M]Γ) = [in2(M)]Γ,

(x) the family {iwΓ,wΓ′} = {iwΓ,wΓ′}wΓ,wΓ′∈WΓ0
,wΓ⪯wΓ′ where

iwΓ,wΓ′ ([M]Γ) = [M]Γ′ .

The valuation ρ⋆ is de�ned by ρ⋆(x,wΓ) = [x]Γ.

We prove that a canonical model introduced in De�nition 3.22 is a Kripke
CL model.

Lemma 3.23. The canonical model KΓ0
ρ⋆ is a Kripke CL model.

Proof. We prove that the tuple KΓ0
ρ⋆ satis�es the conditions of De�nition 3.13.

We show that KΓ0 is a Kripke applicative structure (De�nition 3.8), which is
extensional (De�nition 3.9) and has combinators (De�nition 3.10).

By the de�nition of a canonical model (De�nition 3.22) we have that
the set of possible worlds is partially ordered by relation ⪯, since the set
{Γ | Γ0 ⊆ Γ and Γ is a consistent basis} is partially ordered by inclusion.

Let σ ∈ Types. By De�nition 3.22 we have

Aσ
wΓ

= {[N]Γ | N ∈ CL→,×,+ and Γ ⊢ N : σ}
⊆ {[M]Γ |M ∈ CL→,×,+} = DwΓ

Further, as a direct consequence of the condition that every Γ is a consistent
basis (De�nition 3.5), we have that A0

wΓ
= {[N]Γ | Γ ⊢ N : 0} = ∅ for every

wΓ ∈WΓ0
. Now, we look at the set A1

wΓ
= {[N]Γ | N ∈ CL→,×,+ and Γ ⊢ N :

1}. If [M]Γ ∈ A1
wΓ

, then by the de�nition of the set A1
wΓ

, we have Γ ⊢ M : 1.
By the rule (13) in Figure 3.1 we conclude M =Γ ⟨⟩, i.e. [M]Γ = [⟨⟩]Γ. Thus,
the only element of A1

wΓ
is [⟨⟩]Γ.

We de�ne the injective function H : DwΓ ⊎DwΓ → DwΓ as follows:

Chapter 3. Kripke-style semantics for full simply typed calculus 83

H(⟨0, [M]Γ⟩) = [in1(M)]Γ

H(⟨1, [M]Γ⟩) = [in2(M)]Γ

It is an easy task to prove that the codomain of the restriction of the function
H to the set Aσ

wΓ
⊎Aτ

wΓ
is Aσ+τ

wΓ
.

We de�ne the injective function G : DwΓ → DwΓ × DwΓ as
G([M]Γ) = ⟨[π1(M)]Γ, [π2(M)]Γ⟩. Again, we have that the codomain of the
restriction of the function G to the set Aσ×τ

wΓ
is Aσ

wΓ
×Aτ

wΓ
.

Next, the family of application functions AppwΓ
has to satisfy the con-

dition (vi) in De�nition 3.8. For [M]Γ ∈ DwΓ and [N]Γ ∈ DwΓ we have
AppwΓ([M]Γ, [N]Γ) = [MN]Γ ∈ DwΓ by De�nition 3.22. If [M]Γ ∈ Aσ→τ

wΓ
and

[N]Γ ∈ Aσ
wΓ

for some types σ, τ ∈ Types, then Γ ⊢ M : σ → τ and Γ ⊢ N : σ
by De�nition 3.22. By the rule (→ elim) in Figure 3.2 we derive Γ ⊢MN : σ,
i.e. [MN]Γ ∈ Aτ

wΓ
. Thus, if we restrict the function AppwΓ

to Aσ→τ
wΓ

× Aσ
wΓ

,
the codomain is Aτ

wΓ
.

Let [M]Γ ∈ DwΓ . By De�nition 3.22 we have Proj1,wΓ([M]Γ) = [π1(M)]Γ ∈
DwΓ

and Proj2,wΓ
([M]Γ) = [π2(M)]Γ ∈ DwΓ

. If [M]Γ ∈ Aσ×τ
wΓ

, then
Γ ⊢ M : σ × τ and Γ ⊢ π1(M) : σ follows by the rule (× elim1) in Fig-
ure 3.2. Thus, the codomain of the restriction of the function Proj1,wΓ

to the
set Aσ×τ

wΓ
is Aσ

wΓ
. Similarly, if [M]Γ ∈ Aσ×τ

wΓ
, then Γ ⊢ M : σ × τ and by rule

(× elim2) in Figure 4.2 we obtain Γ ⊢ π2(M) : τ . Hence, we conclude that the
codomain of the restriction of the function Proj2,wΓ to the set Aσ×τ

wΓ
is Aτ

wΓ
.

For [M]Γ ∈ DwΓ
, we have

InlwΓ
([M]Γ) = [in1(M)]Γ ∈ DwΓ

InrwΓ
([M]Γ) = [in2(M)]Γ ∈ DwΓ

Let [M]Γ ∈ Aσ
wΓ

. Then Γ ⊢M : σ and we conclude Γ ⊢ in1(M) : σ+ τ by rule
(+ intro1), i.e. the codomain of the restriction of the function InlwΓ

to the set
Aσ

wΓ
is Aσ+τ

wΓ
. Similarly, if [M]Γ ∈ Aσ

wΓ
, then Γ ⊢M : σ and Γ ⊢ in2(M) : τ+σ

follows by rule (+ intro2) in Figure 4.2. Thus, if we restrict InrwΓ to Aσ
wΓ

the
codomain is Aτ+σ

wΓ
.

Let us consider the family of transition functions iwΓ,wΓ′ . By De�ni-
tion 3.22, we have iwΓ,wΓ′ : DwΓ

→ DwΓ′ . In Proposition 3.7 we have proved
that if M =Γ N and Γ ⊆ Γ′, then M =Γ′ N . This property ensures that
he function iwΓ,wΓ′ is well de�ned. More precisely, it cannot happen that
[M]Γ = [N]Γ and iwΓ,wΓ′ ([M]Γ) ̸= iwΓ,wΓ′ ([N]Γ). Let [M]Γ ∈ Aσ

wΓ
and Γ ⊆ Γ′

(wΓ ⪯ wΓ′). By De�nition 3.22, [M]Γ ∈ Aσ
wΓ

implies Γ ⊢M : σ and by Propo-
sition 3.7 we obtain Γ′ ⊢ M : σ, i.e. [M]Γ′ ∈ Aσ

wΓ′ . Hence, the codomain of
the restriction of the function iw,w′ to the set Aσ

wΓ
is Aσ

wΓ′ .

84

It remains to prove that transition functions satisfy conditions id and comp
and that they commute with functions AppwΓ , P roj1,wΓ , P roj2,wΓ , InlwΓ and
InrwΓ . The transition function iwΓ,wΓ′ is a surjective function from DwΓ to
DwΓ′ . By the de�nition of a canonical model, the function iwΓ,wΓ

is the iden-
tity, since Γ ⊆ Γ and iwΓ,wΓ

([M]Γ) = [M]Γ. Let wΓ, wΓ′ and wΓ′′ be pos-
sible worlds of WΓ0

such that wΓ ⪯ wΓ′ ⪯ wΓ′′ . The latter is equivalent to
Γ ⊆ Γ′ ⊆ Γ′′ by De�nition 3.22. By the de�nition of the transition function in
De�nition 3.22 we derive

iwΓ′ ,wΓ′′ ◦ iwΓ,wΓ′ ([M]Γ) = iwΓ′ ,wΓ′′ (iwΓ,wΓ′ ([M]Γ)) = iwΓ′ ,wΓ′′ ([M]Γ′)

= [M]Γ′′ = iwΓ,wΓ′′ ([M]Γ).

This proves that a transition function satis�es the condition (comp). Let
[M]Γ, [N]Γ ∈ DwΓ and wΓ ⪯ wΓ′ . We then have the following sequences of
equalities

iwΓ,wΓ′ (AppwΓ
([M]Γ, [N]Γ)) = iwΓ,wΓ′ ([MN]Γ)

= [MN]Γ′

= AppwΓ′ ([M]Γ′ , [N]Γ′)

= AppwΓ′ (iwΓ,wΓ′ ([M]Γ), iwΓ,wΓ′ ([N]Γ)),

iwΓ,wΓ′ (Proj1,wΓ
([M]Γ)) = iwΓ,wΓ′ ([π1(M)]Γ)

= [π1(M)]Γ′

= Proj1,wΓ′ ([M]Γ′)

= Proj1,wΓ′ (iwΓ,wΓ′ ([M]Γ)),

iwΓ,wΓ′ (Proj2,wΓ
([M]Γ)) = iwΓ,wΓ′ ([π2(M)]Γ)

= [π2(M)]Γ′

= Proj2,wΓ′ ([M]Γ′)

= Proj2,wΓ′ (iwΓ,wΓ′ ([M]Γ)),

iwΓ,wΓ′ (InlwΓ([M]Γ)) = iwΓ,wΓ′ ([in1(M)]Γ)

= [in1(M)]Γ′

= InlwΓ′ ([M]Γ′)

= InlwΓ′ (iwΓ,wΓ′ ([M]Γ)),

Chapter 3. Kripke-style semantics for full simply typed calculus 85

iwΓ,wΓ′ (InrwΓ
([M]Γ)) = iwΓ,wΓ′ ([in2(M)]Γ)

= [in2(M)]Γ′

= InrwΓ′ ([M]Γ′)

= InrwΓ′ (iwΓ,wΓ′ ([M]Γ)),

which prove that KΓ0 is a Kripke applicative structure. In order to prove
that KΓ0 has combinators we de�ne the following elements:

� kwΓ = [K]Γ

� swΓ = [S]Γ

� pwΓ
= [P]Γ

� p1,wΓ
= [P1]Γ

� p2,wΓ
= [P2]Γ

� i1,wΓ
= [I1]Γ

� i2,wΓ
= [I2]Γ

� cwΓ
= [C]Γ

� zwΓ
= [Z]Γ

� uwΓ
= [U]Γ

The elements de�ned above represent combinators of the applicative struc-
ture KΓ0 . The proof that these elements satisfy the conditions from De�ni-
tion 3.10 follows straightforwardly from the rules in Figure 3.1 and Figure 3.2.

The extensionality of the applicative structure KΓ0 is a direct conse-
quence of the extensionality of combinatory logic, i.e. of the extensionality of
the equational theory given in Figure 3.1. We prove that the two conditions
from De�nition 3.9 are satis�ed. First, we show that for all [M]Γ, [N]Γ ∈ DwΓ

,
if Proj1,wΓ

([M]Γ) = Proj1,wΓ
([N]Γ) and Proj2,wΓ

([M]Γ) = Proj2,wΓ
([N]Γ),

then [M]Γ = [N]Γ. By De�nition 3.22 we have Proj1,wΓ
([M]Γ) = [π1(M)]Γ

and Proj2,wΓ
([M]Γ) = [π2(M)]Γ. So, from the assumption we conclude

[π1(M)]Γ = [π1(N)]Γ and [π2(M)]Γ = [π2(N)]Γ, i.e. π1(M) =Γ π1(N) and
π2(M) =Γ π2(N). Now, by the rules in Figure 3.1 we derive

M =Γ P(P1M)(P2M) =Γ P(π1(M))(π2(M))

=Γ P(π1(N))(π2(N)) =Γ P(P1N)(P2N)

=Γ N.

86

Next we prove that the second condition of extensionality (De�nition 3.9)
is satis�ed. Let [M]Γ and [N]Γ be the elements of DwΓ such that for all Γ ⊆ Γ′

and [P]Γ′ , [Q]Γ′ ∈ DwΓ′ , the equalities

AppwΓ′ (iwΓ,wΓ′ ([M]Γ), InlwΓ′ ([P]Γ′)) = AppwΓ′ (iwΓ,wΓ′ ([N]Γ), InlwΓ′ ([P]Γ′))
(3.16)

and

AppwΓ′ (iwΓ,wΓ′ ([M]Γ), InrwΓ′ ([Q]Γ′)) = AppwΓ′ (iwΓ,wΓ′ ([N]Γ), InrwΓ′ ([Q]Γ′))
(3.17)

hold.
Since Γ ⊆ Γ, we take Γ′ ≡ Γ. By De�nition 3.22 we have the following

equations:

AppwΓ
(iwΓ,wΓ

([M]Γ), InlwΓ
([P]Γ)) = [M(in1(P))]Γ (3.18)

AppwΓ
(iwΓ,wΓ

([M]Γ), InrwΓ
([Q]Γ)) = [M(in2(Q))]Γ (3.19)

AppwΓ
(iwΓ,wΓ

([N]Γ), InlwΓ
([P]Γ)) = [N(in1(P))]Γ (3.20)

AppwΓ
(iwΓ,wΓ

([N]Γ), InrwΓ
([Q]Γ)) = [N(in2(Q))]Γ (3.21)

The assumptions 3.16 and 3.17 are equivalent to the equations

[M(in1(P))]Γ = [N(in1(P))]Γ and [M(in2(Q))]Γ = [N(in2(Q))]Γ

i.e. M(in1(P)) =Γ N(in1(P)) and M(in2(Q)) =Γ N(in2(Q)) for any terms P
and Q. We take P and Q to be variables x and y which do not appear in
terms M and N and we obtain M(in1(x)) =Γ N(in1(x)) and M(in2(y)) =Γ

N(in2(y)). By the rules of Figure 3.1 we have

S(KM)I1x =Γ (KMx)(I1x) =Γ M(I1x)

=Γ M(in1(x)) =Γ N(in1(x))

=Γ (KNx)(I1x) =Γ S(KN)I1x.

Since x is not a variable of M and N , it appears neither in S(KM)I1 nor
in S(KN)I1, therefore by the rule (24) in Figure 3.1 we conclude S(KM)I1 =Γ

S(KN)I1. Similarly,

S(KM)I2y =Γ (KMy)(I2y) =Γ M(I2y)

=Γ M(in2(y)) =Γ N(in2(y))

=Γ (KNy)(I2y) =Γ S(KN)I2y.

Chapter 3. Kripke-style semantics for full simply typed calculus 87

As a consequence, we have S(KM)I2 =Γ S(KN)I2. The relation =Γ is closed
under contexts, so for a variable z that does not appear in terms M and N we
have

Mz =Γ ((C(S(KM)I1))(S(KM)I2))z =Γ ((C(S(KN)I1))(S(KN)I2))z =Γ Nz.

Again, by the rule (24) in Figure 3.1 we conclude M =Γ N , i.e.
[M]Γ = [N]Γ. This concludes the proof of the extensionality.

It remains to prove that KΓ0
ρ⋆ is a Kripke CL model, i.e. that the mapping

ρ⋆ satis�es the conditions of De�nition 3.11. The environment ρ⋆ is a map-
ping from a set of variables and worlds to the set of domains by its de�nition,
ρ⋆(x,wΓ) = [x]Γ ∈ DwΓ , where wΓ is an arbitrary world of KΓ0

ρ⋆ . The environ-
ment ρ⋆ satis�es the condition 3.14. Let wΓ and wΓ′ be worlds in KΓ0

ρ⋆ such
that ρ⋆(x,wΓ) ∈ DwΓ

and wΓ ⪯ wΓ′ . By De�nition 3.22 we have

ρ(x,wΓ′) = [x]Γ′ = iwΓ,wΓ′ ([x]Γ) = iwΓ,wΓ′ (ρ(x,wΓ)).

This concludes the proof that KΓ0
ρ⋆ is a Kripke CL model.

The notion of an environment of a canonical model (De�nition 3.22) is
de�ned as the map which assigns to a variable its equivalence class. We prove
that the interpretation of any term in a canonical model is its equivalence
class.

Lemma 3.24. Let Γ0 be a consistent basis and KΓ0
ρ⋆ a canonical model. For

every term M and a possible world wΓ in KΓ0
ρ⋆ , the equality [[M]]wΓ

ρ⋆ = [M]Γ
holds.

Proof. The proof is by induction on the structure of the term M .
If M is a variable x, then we have [[x]]wΓ

ρ⋆ = ρ⋆(x,wΓ) = [x]Γ by De�ni-
tion 3.22.

Let the term M be a constant K. Then by De�nition 3.14 and De�ni-
tion 3.22 we have [[K]]wΓ

ρ⋆ = kwΓ
= [K]Γ. The remaining cases when M is a

term constant are analogous.
If term M is an application NL, then by the induction hypothesis and

De�nition 3.14 we have

[[NL]]wΓ
ρ⋆ = AppwΓ

([[N]]wΓ
ρ⋆ , [[L]]wΓ

ρ⋆) = AppwΓ
([N]Γ, [L]Γ) = [NL]Γ.

Assume that the term M is the �rst projection π1(N). By De�nition 3.14,
De�nition 3.22 and the induction hypothesis we derive

[[π1(N)]]wΓ
ρ⋆ = Proj1,wΓ([[N]]wΓ

ρ⋆) = Proj1,wΓ([N]Γ) = [π1(N)]Γ.

88

The case when the term M is the second projection π2(N) proceeds anal-
ogously.

If the term M is the left injection in1(N), then by De�nition 3.14, De�ni-
tion 3.22 and the induction hypothesis we have

[[in1(N)]]wΓ
ρ⋆ = InlwΓ([[N]]wΓ

ρ⋆) = InlwΓ([N]Γ) = [in1(N)]Γ.

The case when the term M is the right injection in2(N) proceeds analo-
gously.

Finally, if M is the empty pair ⟨⟩, then

[[⟨⟩]]wΓ
ρ⋆ = 1wΓ = [⟨⟩]Γ,

since we have showed in the proof of Lemma 3.23 that [⟨⟩]Γ is the unique
element of A1

wΓ
.

We may now show the other direction of Theorem 3.19. First, we prove
that the equational theory given in Figure 3.1 is complete with respect to the
proposed semantics.

Theorem 3.25. Let M and N be terms and Γ a consistent basis. If for every
Kripke CL model Kρ, such that Kρ |= Γ, and a world w of the model we have
[[M]]wρ = [[N]]wρ , then M =Γ N .

Proof. Let us assume that for every Kripke CL model Kρ such that Kρ |= Γ
and world w of the model, [[M]]wρ = [[N]]wρ holds. We consider a canonical model
KΓ

ρ⋆ . As a direct consequence of De�nition 3.22 we have KΓ
ρ⋆ |= Γ. From the

assumption we conclude that for a world wΓ of model KΓ
ρ⋆ , [[M]]wΓ

ρ⋆ = [[N]]wΓ
ρ⋆

and by Lemma 3.24 we obtain [M]Γ = [N]Γ, i.e. M =Γ N .

We now state the main result of this chapter, the completeness of full
simply typed combinatory logic with respect to the proposed semantics.

Theorem 3.26. Let Γ be a consistent basis. If Γ |=M : σ, then Γ ⊢M : σ.

Proof. Suppose that, for a consistent basis Γ, we have Γ |= M : σ. For a
canonical model KΓ

ρ , it holds that KΓ
ρ⋆ |= Γ, as stated in the proof of Theorem

3.25. Thus, in the world wΓ of the model KΓ
ρ⋆ we have [[M]]wΓ

ρ⋆ ∈ Aσ
wΓ

. By
De�nition 3.22 and Lemma 3.24 we derive

[M]Γ = [[M]]wΓ
ρ⋆ ∈ Aσ

wΓ
= {[N]Γ | N ∈ CL→,×,+ and Γ ⊢ N : σ}.

So, we conclude Γ ⊢M : σ.

Chapter 3. Kripke-style semantics for full simply typed calculus 89

3.4 Concluding remarks

In this chapter, the full simply typed combinatory logic is studied and the
Kripke-style semantics of the full simply typed combinatory logic is presented.

The full simply typed combinatory logic is the simply typed combinatory
logic extended with product types, sum types, the empty type and the unit
type. Via the Curry-Howard correspondence, the full simply typed combina-
tory logic is related to the full intuitionistic logic (with all the connectives).
Since the intuitionistic logic is sound and complete with respect to the Kripke
semantics, the question of the soundness and completeness of the full simply
typed combinatory logic naturally arises. This is not the �rst time that Kripke-
style semantics is employed as a semantics for the model of computation. In
[124], the authors introduced the Kripke-style semantics of the simply typed
λ-calculus and proved the soundness and completeness of the simply typed
λ-calculus with respect to the proposed semantics. Motivated by their work
we have introduced the Kripke-style semantics of the full simply typed calculi
(λ-calculus and combinatory logic) in [94].

This chapter presents the Kripke-style semantics introduced in [94], but
for a di�erent calculus. The full simply typed λ-calculus and combinatory
logic studied in [94] did not include a typing rule which ensures that the equal
terms inhabit the same type. The calculus without this typing rule cannot be
complete with respect to the proposed semantics. In order to obtain a sound
and complete calculus, we added the typing rule for equal terms. The main
results of the chapter are soundness and completeness of the full simply typed
combinatory logic with respect to the proposed Kripke-style semantics.

At the end, we give some open questions and the ideas for the future work.

� The next step is to employ the presented Kripke-style semantics as a
semantics of the full simply typed λ-calculus. As it has been discussed,
the translation of the full simply typed λ-calculus with the typing rule
for equal terms into the combinatory logic with the same rule is more
involved than in the case without the typing rule for equal terms. Thus,
we leave this for the future work.

� Another possibility to further develop this approach to di�erent frame-
works in logic and computation, e.g. polymorphic types.

� Kripke-style semantics has found its application in various �elds. One
of the recent applications of Kripke-style semantics is in the blockchain
technology. In [118], Marinkovi¢ et al. introduce a temporal epistemic
logic with probabilities as an extension of temporal epistemic logic and
use this framework to model and reason about probabilistic properties
of the blockchain protocol. The semantics of the logic is de�ned as a

90

Kripke-style semantics. Further, in [24] Brünnler et al. introduce BCL,
a dynamic logic to reason about blockchain updates and the semantics of
the logic is again Kripke-style semantics. Kripke models for modal logic
have been used by Hirai in [81] for analysing the protocol of blockchain.
We see that Kripke-style semantics is a structure suitable for describing
and analysing properties of blockchain, so it is a promising research topic.

Chapter 4

Logic of combinatory logic

In this chapter, we present the logic of combinatory logic, a propositional
extension of the simply typed combinatory logic, which has been introduced in
[95, 97]. We give its syntax, axiomatization and semantics, and prove that the
axiomatization is sound and complete with respect to the proposed semantics.

The importance of the logic of combinatory logic can be seen from di�er-
ent perspectives. From the perspective of reasoning, by de�ning the classical
propositional logic over the simply typed combinatory logic we obtain a formal
system for reasoning about type assignment statements. As a consequence, we
can employ the well-established methods such as DPLL, resolution method,
SAT solvers and SMT solvers to reason about the simply typed combinatory
logic. Due to the Curry-Howard correspondence this is a �rst step towards the
development of a tool for automated reasoning about combinatory terms and
programs. From the perspective of programming language theory, we can see
the logic of combinatory logic as a convenient framework for abstract syntax:
the structure of programming languages, disregarding the super�cial details of
concrete syntax. From the proof-theoretic perspective, we have a precise cor-
respondence between syntactic and semantic structure: an internal language
for reasoning about the simply typed combinatory logic is given by the rules
of classical propositional logic.

Contribution of the chapter

� We develop a framework for reasoning about simply typed terms.

� The introduced logic LCL is an extension of the simply typed combina-
tory logic.

91

92

� We prove that the equational theory of the simply typed combinatory
logic is sound and complete with respect to the semantics of LCL.

� The axiomatization of the logic LCL is proved to be sound and complete
with respect to the proposed semantics.

� The proposed semantics is a new semantics of the simply typed combina-
tory logic. We give the proof of soundness and completeness of the simply
typed combinatory logic extended with the typing rule that ensures that
equal terms inhabit the same type.

Overview of the chapter We start this chapter with preliminaries for the
simply typed combinatory logic in Section 4.1. In Section 4.2 we present the
logic of combinatory logic by giving its syntax in Section 4.2.1, axiomatization
in Section 4.2.2 and semantics in Section 4.2.3. Section 4.3 presents the proofs
of soundness and completeness of the equational theory with respect to the
proposed semantics. The main results, namely the soundness and strong com-
pleteness of the given axiomatization with respect to the proposed semantics,
are given in Section 4.4.

4.1 Simply typed combinatory logic

In this section, we present the simply typed combinatory logic CL→ ([11, 21,
78]), through its syntax, equational theory and type assignment system.

We start with the syntax of untyped combinatory logic CL. The set of
terms of CL is built up from a countable set of term variables
V = {x, y, z, . . . , x1, . . .} and a set of term constants {S,K, I}, and it is gener-
ated by the following grammar

M ::= x | S | K | I |MM (4.1)

where x is a term variable. Term constants S,K, and I are called primi-
tive combinators. Other well-known combinators such as B,W,C, . . . are de-
scribed in [21]. The set of all untyped terms is denoted by CL and we let
M,N, . . . ,M1, . . . range over CL. As in the previous chapters, the set of vari-
ables that occur in a term M is denoted by FV (M), and the substitution of a
term N for the occurrences of variable x in a term M is denoted by M{N/x}.
A subterm of a term M is any term that is a part of M . For example, the
term Kx(IS) is a subterm of the term (S(Kx(IS)))(II).

Primitive combinators represent functions, so they are characterized by the
following rewriting rules:

Chapter 4. Logic of combinatory logic 93

SMNL→ (ML)(NL)

KMN →M

IM →M

Terms of the form SMNL,KMN, IM are called redexes. The rewriting
rules presented above induce relations between CL terms, which are an im-
portant aspect of the combinatory logic. We mainly focus on the equational
theory that arises from these rules and in order to formally introduce this
theory, we de�ne one-step reduction.

De�nition 4.1. If N is a redex such that N → N ′ and N is a subterm of a
term M , then M▷1M

′, where M ′ is obtained from M by replacing the subterm
N with N ′. The relation ▷1 is called the one-step reduction.

The weak reduction, denoted by ▷w, is the re�exive and transitive closure of
the one-step reduction ▷1. The one-step reduction also induces an equivalence
relation, called the weak equality.

De�nition 4.2. The weak equality, denoted by =w, is the re�exive, transitive
and symmetric closure of the reduction ▷1. It can be characterized inductively
as follows:

1. If M ▷1 N , then M =w N .

2. If M is a CL-term, then M =w M .

3. If M =w N , then N =w M .

4. If M =w N and N =w L, then M =w L.

Another equivalence relation obtained from the weak reduction is the ex-
tensional weak equality, denoted by =w,η, and introduced in De�nition 4.3
below.

De�nition 4.3 ([21]). CL-terms Q and Q{M1/N1, . . . ,Mm/Nm} are exten-
sionally weakly equal, denoted by Q =w,η Q{M1/N1, . . . ,Mm/Nm} if and only
if for every i ∈ {1, . . . ,m}, there exists ni such that for a series of distinct
variables xi,1, xi,2, . . . , xi,ni , that occur neither in Mi nor in Ni, there exists a
CL-term Pi with Mixi,1, xi,2, . . . xi,ni

▷w Pi and Nixi,1xi,2 . . . xi,ni
▷w Pi.

An alternative way to formally introduce weak equality and extensional
weak equality is axiomatically.

94

M =M (id) SMNL = (ML)(NL) (S)

KMN =M (K) IM =M (I)

M = N (sym)
N =M

M = N N = L (trans)
M = L

M = N (app-l)
MP = NP

M = N (app-r)
PM = PN

Figure 4.1: Equational theory EQ

De�nition 4.4. The equational theory EQ is given by the axioms and rules
in Figure 4.1.

If M = N can be derived from the set of axioms and rules in Figure 4.1,
then we say that CL-terms M and N are equal. The equational theory EQ
introduces a new equivalence relation on the set of CL-terms, which coincides
with the weak equality. This is stated in the following proposition, for which
the respective proof can be found in [21].

Proposition 4.5 ([21]). An equation M = N is provable in EQ if and only if
M =w N .

The theory obtained by extending the equational theory EQ with the rule

Mx = Nx x ̸∈ FV (M) ∪ FV (N)
(ext)

M = N

is called the extensional equational theory and it is denoted by EQη. We
write M = N , when M = N can be derived in the equational theory EQη.
The equivalence class of a term M with respect to the equivalence relation
generated by EQη is denoted by [M], i.e.

[M] = {N |M = N is provable in EQη}

The equivalence relation generated by the extensional equational theory EQη

coincides with the extensional weak equality.

Proposition 4.6 ([21]). An equation M = N is provable in EQη if and only
if M =w,η N .

In this chapter, we focus on the equational theory EQη. In [21], the inequa-
tional theory, which is related to the weak reduction, has also been studied.

Chapter 4. Logic of combinatory logic 95

This chapter focuses on the simply typed terms. Simple types are built
up from a countable set of type variables VType = {a, b, c, ..., a1, . . .} using only
one type operator →, called the functional type. The set of all simple types is
denoted by Types→ and is generated by the following grammar

σ ::= a | σ → σ (4.2)

We let σ, τ, . . . , σ1, . . . range over Types→. The notions of type statement,
declaration, basis and the domain of the basis are de�ned as in De�nition 3.1
(Chapter 3).

The type assignment system for the simply typed combinatory logic, denoted
by CL→, is given in Figure 4.2. We say that a term M can be typed with
a type σ in a basis Γ, or that M : σ is derivable from Γ, if we can derive
the typing judgment Γ ⊢CL M : σ by the rules of Figure 4.2. The set of all
statements M : σ that are typable from some basis Γ is also denoted by CL→,
i.e.

CL→ = {M : σ | ∃Γ such that Γ ⊢CL M : σ}.

Γ, x : σ ⊢CL x : σ (axiom ∈)

Γ ⊢CL S : (σ → (ρ→ τ)) → (σ → ρ) → (σ → τ) (axiom S)

Γ ⊢CL K : σ → (τ → σ) (axiom K) Γ ⊢CL I : σ → σ (axiom I)

Γ ⊢CL M : σ → τ Γ ⊢CL N : σ
(→ elim)

Γ ⊢CL MN : τ

Figure 4.2: Type assignment system CL→

At the end of this section, we give some auxiliary properties of the typing
system. The proofs follow by the induction on the length of derivations and
are omitted.

Proposition 4.7. If Γ ⊢CL M : σ and Γ ⊆ Γ′ then Γ′ ⊢CL M : σ.

For a set X of term variables, we write Γ ↾ X = {x : σ ∈ Γ | x ∈ X}.

Proposition 4.8. 1. If Γ ⊢CL M : σ, then FV (M) ⊆ dom(Γ).

2. If Γ ⊢CL M : σ, then Γ ↾ FV (M) ⊢CL M : σ.

96

4.2 Logic of combinatory logic

In this section, we formally introduce the propositional extension of the simply
typed combinatory logic, called the logic of combinatory logic and denoted by
LCL. The logic of combinatory logic is obtained by extending the simply
typed combinatory logic with classical propositional connectives of negation
and implication. We introduce LCL through its syntax, axiomatization and
semantics.

4.2.1 Syntax LCL

The language of LCL obtained from the language of the simply typed com-
binatory logic and the language of the classical propositional logic. The set
of LCL-formulas is the set of all type statements that are typable from some
basis Γ closed under the propositional connectives (negation and implication)
and it is given by the following grammar:

α :=M : σ | ¬α | α⇒ α (4.3)

where M : σ ∈ CL→. We let α, β, . . . range over the set of LCL-formulas.
Other classical propositional connectives ∧,∨,⇔ are de�ned in the standard
way.

α ∨ β stands for ¬α⇒ β,

α ∧ β stands for ¬(¬α ∨ ¬β),
α⇔ β stands for (α⇒ β) ∧ (β ⇒ α).

A formula α ∧ ¬α is denoted by ⊥.
The logic of combinatory logic is a step towards formalization of meta-

language of the simply typed combinatory logic. In the simply typed combi-
natory logic, if a term M has type σ → τ and a term N has type σ in some
basis Γ, then MN is typable in Γ with the type τ . We can formally express
this in LCL with formula

(M : σ → τ ∧N : σ) ⇒MN : τ.

4.2.2 Axiomatization of LCL

This subsection presents the axiomatic system of the logic of combinatory logic
LCL, which is obtained from the type assignment system for simply typed
combinatory logic and the axiomatic system of classical propositional logic.
The axiomatic system of LCL is given by the axiom schemes and inference
rule in Figure 4.3.

Chapter 4. Logic of combinatory logic 97

Axiom schemes:

(1) S : (σ → (τ → ρ)) → ((σ → τ) → (σ → ρ))
(2) K : σ → (τ → σ)
(3) I : σ → σ
(4) (M : σ → τ) ⇒ ((N : σ) ⇒ (MN : τ)),

M : σ → τ,N : σ,MN : τ ∈ CL→
(5) M : σ ⇒ N : σ, if M = N , M : σ,N : σ ∈ CL→
(6) α⇒ (β ⇒ α)
(7) (α⇒ (β ⇒ γ)) ⇒ ((α⇒ β) ⇒ (α⇒ γ))
(8) (¬α⇒ ¬β) ⇒ ((¬α⇒ β) ⇒ α)

Inference rule:

α⇒ β α
(MP)

β

Figure 4.3: Axiom schemes and inference rules for LCL

The axiomatic system of LCL comprises eight axiom schemes, which can
be classi�ed as follows.

� The �rst three axiom schemes, (1), (2) and (3), are non-logical and
correspond to the axioms for typing primitive combinators.

� The axiom schemes (4) and (5) correspond to the typing rules of the
simply typed combinatory logic. The axiom scheme (4) corresponds
to the rule (→ elim) for typing an application and the axiom scheme
(5) corresponds to the rule that guarantees that equal terms have the
same type. The condition M = N in the axiom scheme (5) requires
that M = N is provable in the equational theory EQη. This rule is
not included in the typing system in Figure 4.2. In order to obtain the
completeness of the type assignment system, it is necessary to add this
rule to the original system as it will be discussed in Section 4.5.

� The last three axiom schemes, (6), (7) and (8), are logical axioms from
the axiomatic system of the classical propositional logic.

The axiomatic system of LCL also includes one inference rule , the classical
Modus Ponens (MP). The notion of a proof in LCL is formally introduced in
the next de�nition, followed by an example, which illustrates a proof in LCL.

98

De�nition 4.9. Let T be a set of LCL-formulas and α an LCL-formula.
A formula α can be derived from T , denoted by T ⊢ α, if there exists a se-
quence of formulas α0, α1, . . . , αn such that αn is the formula α and for every
i ∈ {0, 1, . . . , n}, αi is either an axiom instance, or αi ∈ T , or αi is a for-
mula which can be derived by the inference rule (MP) applied to some previous
members of the sequence.

A formula α is a theorem, denoted by ⊢ α, if it is deducible from the empty
set, i.e. ∅ ⊢ α.

If an LCL-formula α can be derived from a set T using only axiom schemes
6 − 8 and inference rule (MP), then we say that T ⊢ α is obtained by propo-
sitional reasoning.

Example 4.10. We prove that if M : σ → τ , N : σ and MN : τ are LCL-
formulas, thenM : σ → τ,N : σ ⊢MN : τ . We write the proof as the sequence
of formulas, starting with the formulas M : σ → τ and N : σ as hypotheses.

1. M : σ → τ , hypothesis

2. N : σ, hypothesis

3. (M : σ → τ) ⇒ ((N : σ) ⇒ (MN : τ)) an instance of (4)

4. (N : σ) ⇒ (MN : τ), from (1) and (3) by rule (MP)

5. MN : τ, from (2) and (4) by rule (MP)

We may notice that for almost every axiom scheme and typing rule in Fig-
ure 4.2, except (axiom ∈), there is an axiom scheme in Figure 4.3. Although in
the axiomatic system of LCL there is no corresponding axiom scheme for (ax-
iom ∈), by De�nition 4.9 we can derive Γ, x : σ ⊢CL x : σ. As we have already
discussed, the logic LCL is an extension of the simply typed combinatory logic
and this is stated in the following proposition.

Proposition 4.11. If Γ ⊢CL M : σ, then Γ ⊢M : σ.

Proof. The proof is by induction on the derivation of Γ ⊢CL M : σ in CL→.

The notion of a consistent set is introduced in the previous chapter, when a
consistent basis is de�ned and compared with a consistent set in the intuition-
istic propositional logic. In the logic LCL, the de�nition of a consistent set
is equivalent to the de�nition of a consistent set in the classical propositional
logic.

De�nition 4.12. A set of LCL-formulas T is consistent if there exists at least
one formula which is not derivable from T . Otherwise, T is inconsistent.

Chapter 4. Logic of combinatory logic 99

Alternatively, we say that T is inconsistent if and only if T ⊢ ⊥. We will
write T, α ⊢ β for T ∪ {α} ⊢ β.

A key step in proving the strong completeness of the axiomatic system of
LCL is the proof of Deduction theorem.

Theorem 4.13 (Deduction theorem). Let T be a set of formulas and α, β
formulas of LCL. If T, α ⊢ β, then T ⊢ α⇒ β.

Proof. The proof is by induction on the length n of the proof of T, α ⊢ β. For
the base case suppose that n = 1. Then β is either an axiom or β ∈ T ∪ {α}.

Let β be an axiom. The proof proceeds as follows:

1. T ⊢ β, since β is an axiom

2. T ⊢ β ⇒ (α⇒ β), since β ⇒ (α⇒ β) is an instance of (6)

3. T ⊢ α⇒ β, from (1) and (2) by rule (MP)

Next, let β ∈ T . Then

1. T ⊢ β, since β ∈ T

2. T ⊢ β ⇒ (α⇒ β), since β ⇒ (α⇒ β) is an instance of (6)

3. T ⊢ α⇒ β, from (1) and (2) by rule (MP)

If β = α, then T ⊢ α⇒ α, since α⇒ α is a theorem in LCL.
Let us assume that the statement holds if the proof length is less than k

and consider the case when the proof length is k > 1. In the case that β is an
axiom or belongs to the set T ∪ {α} the proof proceeds as above. Assume the
formula β is derived from T ∪ {α} by an application of inference rule (MP). If
β is obtained by an application of rule (MP) on formulas α1 and α1 ⇒ β such
that T, α ⊢ α1 and T, α ⊢ α1 ⇒ β, then the derivation lengths of T, α ⊢ α1

and T, α ⊢ α1 ⇒ β are less than k. By the induction hypothesis we have
T ⊢ α⇒ α1 and T ⊢ α⇒ (α1 ⇒ β). The proof proceeds as follows:

1. T ⊢ α⇒ α1, by the induction hypothesis

2. T ⊢ α⇒ (α1 ⇒ β), by the induction hypothesis

3. T ⊢ (α⇒ (α1 ⇒ β)) ⇒ ((α⇒ α1) ⇒ (α⇒ β)), by (7)

4. T ⊢ (α⇒ α1) ⇒ (α⇒ β), from (2) and (3) by rule (MP)

5. T ⊢ α⇒ β, from (1) and (4) by rule (MP)

This concludes the proof.

100

4.2.3 Semantics of LCL

In this section, we introduce a semantics of the logic of combinatory logic.
Dana Scott introduced the �rst models for the untyped combinatory logic

in [156, 157]. Since then di�erent models for both the untyped and typed com-
binatory logic have been proposed, starting with a term model introduced by
Barendregt ([9, 12]) , which is constructed from the language of the combina-
tory logic. The algebraic and set theoretical semantics of dual and symmetric
combinatory calculi have been introduced by Bimbó in [20]. Additionally, in
[21] Bimbó has presented several models for the combinatory logic such as the
operational models for the untyped combinatory logic and two models for the
typed combinatory logic: combinatory algebras and relational models. More
models can be found in [2, 11, 13].

Building models for the typed combinatory logic from the models of the
untyped combinatory logic is a standard approach, and in that case types are
interpreted as subsets of the untyped model. Over the past decades, di�erent
approaches have been proposed such as the ones introduced in [124] and [94].
The semantics introduced in [124] is a Kripke-style semantics, which interprets
a typing judgment Γ ⊢M : σ, considering term M and its type σ at the same
type. Although the main result of [124] is Kripke-style semantics for the simply
typed λ-calculus, they can also be employed as semantics of the simply typed
combinatory logic. In fact, some features of the semantics are proved using a
translation of the λ-calculus into the combinatory logic. This approach and
the general concept of a model of untyped calculus were combined in [94] with
the goal to de�ne Kripke-style semantics of the full simply typed λ-calculus
and combinatory logic. The Kripke-style semantics of the full simply typed
combinatory logic is presented in Chapter 3. As it has been discussed in the
previous chapter, the interpretation of a term is de�ned without considering
its type, which is the main di�erence with respect to the semantics introduced
in [124]. The semantics of the logic of combinatory logic is not a Kripke-style
semantics, but it has been inspired by the semantics introduced in [124] and
[94]. Furthermore, we have used the similar approach to de�ne the semantics
of the combinatory logic with intersection types in [62].

In order to de�ne semantics of LCL, the notion of an applicative structure
for LCL is introduced.

De�nition 4.14. An applicative structure for LCL is a tuple

M = ⟨D, {Aσ}σ, ·, s,k, i⟩

where

� D is a nonempty set, called domain.

Chapter 4. Logic of combinatory logic 101

� {Aσ}σ = {Aσ}σ∈Types→ is a family of sets indexed by σ such that Aσ ⊆ D
for all σ,

� · is a binary operation on D, i.e. · : D ×D → D, which is extensional:
for d1, d2 ∈ D, d1 = d2 whenever (∀e ∈ D)(d1 · e = d2 · e), and it holds
that the codomain of the restriction of function · to the set Aσ→τ × Aσ

is Aτ for every σ, τ ∈ Types→.

� s ∈ D such that for every σ, τ, ρ ∈ Types→

s ∈ A(σ→(τ→ρ))→((σ→τ)→(σ→ρ)) (4.4)

and for every d, e, f ∈ D,

((s · d) · e) · f = (d · f) · (e · f) (4.5)

� k ∈ D such that for every σ, τ ∈ Types→

k ∈ Aσ→(τ→σ) (4.6)

and for every d, e ∈ D,
(k · d) · e = d (4.7)

� i ∈ D such that for every σ ∈ Types→

i ∈ Aσ→σ (4.8)

and for every d ∈ D,
i · d = d (4.9)

The uniqueness of the elements s,k, i is a consequence of the extensionality
of the operation ·. We provide an applicative structure with a valuation of term
variables, called an environment.

De�nition 4.15. Let M be an applicative structure. An environment ρ for
M is a map from the set of term variables to the domain of the applicative
structure M, ρ : V → D.

Let M be an applicative structure, ρ an environment for M and d an
element from the domain of M. We write ρ(x := d) to denote an environment
for M that is identical to ρ on all variables except x, i.e.

ρ(x := d)(y) =

{
d, y = x

ρ(y), y ̸= x
.

102

De�nition 4.16. An LCL-model is a tuple Mρ = ⟨M, ρ⟩, where M is an
applicative structure and ρ is an environment for M.

An environment interprets term variables. The interpretation of terms is
de�ned by extending the environment ρ to the interpretation map [[·]]ρ.

De�nition 4.17. Let M be an applicative structure and ρ an environment for
M. The interpretation (meaning) of a term M in the environment ρ, denoted
by [[M]]ρ, is de�ned inductively as follows:

� [[x]]ρ = ρ(x),

� [[S]]ρ = s,

� [[K]]ρ = k,

� [[I]]ρ = i,

� [[MN]]ρ = [[M]]ρ · [[N]]ρ.

The interpretation map [[·]]ρ is a total mapping from the set of all CL-terms
to the domain of an applicative structure. The existence of elements s,k, i in
an applicative structure guarantees that the interpretation map is well de�ned,
i.e. that the interpretation of every CL-term in an environment ρ is de�ned.

The following lemmas present some auxiliary results. The proofs proceed
by induction on the structure of term and are omitted. The �rst result shows
that the interpretation of a term depends only on variables that occur in the
term.

Lemma 4.18. Let M be an applicative structure, ρ1 and ρ2 two environments
for M and M a CL-term. If ρ1(x) = ρ2(x) for every x that occurs in M , then
[[M]]ρ1

= [[M]]ρ2
.

The second result gives the interpretation of a term obtained by a substi-
tution.

Lemma 4.19 (Substitution lemma). Let M,N be CL-terms and ρ an envi-
ronment. Then

[[M{N/x}]]ρ = [[M]]ρ(x:=[[N]]ρ).

Next, we introduce the notion of satis�ability of a formula in a model.

De�nition 4.20. The satis�ability of an LCL-formula in a model Mρ is
de�ned as follows:

� Mρ |=M : σ if and only if [[M]]ρ ∈ Aσ.

Chapter 4. Logic of combinatory logic 103

� Mρ |= α ∧ β if and only if Mρ |= α and Mρ |= β.

� Mρ |= ¬α if and only if it is not true that Mρ |= α.

The satis�ability of a set of formulas and the notion of semantical conse-
quence are de�ned as in Chapter 3. To make this chapter self-contained we
revisit the de�nition.

De�nition 4.21. 1. A model Mρ satis�es a set T of LCL-formulas, de-
noted by Mρ |= T , if and only if Mρ |= α for every α ∈ T .

2. An LCL-formula α is a semantical consequence of a set T , denoted by
T |= α, if and only if Mρ |= T implies Mρ |= α.

4.3 Soundness and completeness of the equa-

tional theory

In this section, we prove that the equational theory EQη, given in Section 4.1,
is sound and complete with respect to the semantics of LCL introduced in
Section 4.2.3.

In every LCL-model, the interpretation of every CL-term is de�ned. Nat-
urally, we expect that equal terms have equal interpretations in every model
and this is the �rst result we present in this section (Theorem 4.22). Another
question that arises is whether two terms that have equal interpretations in
every model are equal. The positive answer to this question is proved in The-
orem 4.23.

Theorem 4.22 (Soundness of EQη). If M = N in provable in EQη, then
[[M]]ρ = [[N]]ρ for any LCL-model Mρ = ⟨M, ρ⟩.

Proof. The proof is by induction on the length of the proof of M = N .
In the case M = N is obtained from axiom (id), terms M and N are

identical and we have [[M]]ρ = [[N]]ρ, for every LCL-model Mρ = ⟨M, ρ⟩.
IfM = N falls under axiom (S), then the termM is of the form ((SP)Q)R

and the term N is the term (PR)(QR) for some terms P,Q,R. By De�ni-
tion 4.14 and De�nition 4.17 we derive

[[((SP)Q)R]]ρ = (([[S]]ρ · [[P]]ρ) · [[Q]]ρ) · [[R]]ρ
= ((s · [[P]]ρ) · [[Q]]ρ) · [[R]]ρ
= ([[P]]ρ · [[R]]ρ) · ([[Q]]ρ · [[R]]ρ)
= [[(PR) (QR)]]ρ.

104

Similarly, in the case that M = N falls under axiom (K), term M is
an application KPQ and N is the term P , for some terms P,Q. Again, by
De�nition 4.14 and De�nition 4.17 we obtain

[[KPQ]]ρ = ([[K]]ρ · [[P]]ρ) · [[Q]]ρ = (k · [[P]]ρ) · [[Q]]ρ = [[P]]ρ.

Similarly, if M = N is obtained by axiom (I), then M is of the form IP ,
N is a term P , for some term P , and we derive

[[IP]]ρ = [[I]]ρ · [[P]]ρ = i · [[P]]ρ = [[P]]ρ.

Let M = N be obtained from N = M by rule (sym). We obtain
[[N]]ρ = [[M]]ρ for every LCL-modelMρ = ⟨M, ρ⟩ by the induction hypothesis.
Consequently, it holds that [[M]]ρ = [[N]]ρ.

If M = N is obtained from M = P and P = N by the rule (trans), then
by the induction hypothesis we have [[M]]ρ = [[P]]ρ and [[P]]ρ = [[N]]ρ, for every
LCL-model Mρ = ⟨M, ρ⟩. We conclude that [[M]]ρ = [[N]]ρ.

If M = N is obtained from L = Q by rule (app-l) , then the term M is
of the form LP and the term N is of the form QP , for some term P . For
every LCL-model Mρ = ⟨M, ρ⟩, it holds that [[L]]ρ = [[Q]]ρ by the induction
hypothesis. Now, by De�nition 4.17, we obtain

[[LP]]ρ = [[L]]ρ · [[P]]ρ = [[Q]]ρ · [[P]]ρ = [[QP]]ρ.

In the case whenM = N is obtained from L = Q by rule (app-r), the terms
M and N are of the form PL and PQ, respectively, for some term P . For
every LCL-model Mρ = ⟨M, ρ⟩, we have that [[L]]ρ = [[Q]]ρ by the induction
hypothesis. Further, by De�nition 4.17, we derive

[[PL]]ρ = [[P]]ρ · [[L]]ρ = [[P]]ρ · [[Q]]ρ = [[PQ]]ρ.

Finally, assume that M = N is obtained by rule (ext) from Mx = Nx
where the variable x appears neither in M nor in N . We show that
[[M]]ρ = [[N]]ρ for every LCL-model Mρ = ⟨M, ρ⟩. Let d be an element
from the domain of the model Mρ. Since [[Mx]]ρ = [[Nx]]ρ holds for any
model Mρ = ⟨M, ρ⟩ by the induction hypothesis, it also holds for the model
⟨M, ρ(x := d)⟩. The variable x does not appear in the term M , thus by
Lemma 4.18 we have [[M]]ρ = [[M]]ρ(x:=d) and the same holds for the term N .

Chapter 4. Logic of combinatory logic 105

We derive

[[M]]ρ · d = [[M]]ρ(x:=d) · d
= [[M]]ρ(x:=d) · [[x]]ρ(x:=d)

= [[Mx]]ρ(x:=d)

= [[Nx]]ρ(x:=d)

= [[N]]ρ(x:=d) · [[x]]ρ(x:=d)

= [[N]]ρ(x:=d) · d
= [[N]]ρ · d.

We have proved that [[M]]ρ ·d = [[N]]ρ ·d holds for every element d from the
domain. We conclude that [[M]]ρ = [[N]]ρ by the extensionality of the operation
·.

This concludes the proof.

Next, we prove the completeness of the equational theory EQη, which is
the converse of Theorem 4.22.

Let us recall that [M] denotes the equivalence class of a term M with
respect to the equivalence relation generated by the equational theory EQη,
[M] = {N |M = N is provable in EQη}.

Theorem 4.23 (Completeness of EQη). If [[M]]ρ = [[N]]ρ in every LCL-model,
then M = N is provable in EQη.

Proof. We de�ne the LCL-model Mρ⋆ = ⟨M0, ρ
⋆⟩ as follows. The applicative

structure M0 is a tuple ⟨D, {Aσ}σ, ·, s,k, i⟩ where:

� D = {[M] |M ∈ CL},

� {Aσ}σ = {Aσ}σ∈Types→ is a family of sets indexed by σ such that

Aσ = {[M] | M ∈ CL and ⊢M : σ}

� [M] · [N] = [MN],

� s = [S],

� k = [K],

� i = [I].

106

The environment ρ⋆ is de�ned by

ρ⋆(x) = [x].

Notice that a set Aσ is de�ned as the set of all equivalence classes of typable
terms. The judgment ⊢ M : σ indicates that we can derive ⊢ M : σ by the
axioms and rules given in Figure 4.3, that is M : σ is a theorem in LCL.

We have to prove that Mρ⋆ is an LCL-model. Fist, we prove that the
tuple M0 = ⟨D, {Aσ}σ, ·, s,k, i⟩ is an applicative structure, i.e. that it sat-
is�es the conditions of De�nition 4.14. The domain D is a nonempty set
{[M] |M ∈ CL}. For every type σ, we have

Aσ = {[M] | M ∈ CL and ⊢M : σ} ⊆ {[M] |M ∈ CL} = D.

The operation · given by [M] · [N] = [MN] is a binary operation on the
domain D. Its extensionality follows from the extensionality of the equational
theory EQη. Assume that [M] and [N] are the elements of the domain D such
that [M] · [L] = [N] · [L], for every [L] ∈ D. Let x be a variable that does
not appear in M or N . If we take L to be x, then [M] · [x] = [N] · [x], i.e.
[Mx] = [Nx]. So, we have that Mx = Nx is provable in EQη and by rule
(ext) we conclude that M = N is provable in EQη, i.e. [M] = [N]. Thus, · is
extensional.

Further, assume that [M] ∈ Aσ→τ and [N] ∈ Aσ for some σ, τ ∈ Types→.
Then ⊢ M : σ → τ and ⊢ N : σ directly follow from the de�nition of sets
Aσ→τ and Aσ, respectively. As an instance of axiom scheme (4) we have
(M : σ → τ) ⇒ ((N : σ) ⇒ (MN : τ)). By the rule Modus Ponens we derive
⊢MN : τ . Thus, we conclude that [MN] ∈ Aτ and that the codomain of the
restriction of function · to the set Aσ→τ ×Aσ is Aτ .

We prove that elements s,k, i belong to the respective subsets of the do-
main and satisfy equations given in De�nition 4.14. Since
⊢ S : (σ → (τ → ρ)) → ((σ → τ) → (σ → ρ)) is an axiom, for every
σ, ρ, τ ∈ Types→, we have [S] ∈ A(σ→(τ→ρ))→((σ→τ)→(σ→ρ)) by the de�nition
of the structure M0. So, the element [S] satis�es the equation (4.4). For any
[M], [N], [L] ∈ D, we have

(([S] · [M]) · [N]) · [L] = [((SM)N)L] = [(ML)(NL)]

= [ML] · [NL]
= ([M] · [L]) · ([N] · [L]).

Hence, the element [S] also satis�es the equation (4.5).
By similar reasoning, we prove that the element [K] ∈ D satis�es equa-

tions (4.6) and (4.7). We have that K : σ → (τ → σ) is an axiom for every

Chapter 4. Logic of combinatory logic 107

σ, τ ∈ Types→, hence [K] ∈ Aσ→(τ→σ). Next, for every [M], [N] ∈ D we derive

([K] · [M]) · [N] = [(KM)N] = [M].

Similarly, the element [I] satis�es equations (4.8) and (4.9). For every
σ ∈ Types→, I : σ → σ is an axiom and as a consequence we have [I] ∈ Aσ→σ

for every σ ∈ Types→. Further, for every [M] ∈ D, we have

[I] · [M] = [IM] = [M].

We conclude that the tuple M0 is an applicative structure for LCL. Since ρ⋆

is a total function from the set of term variables to the domain D, we have
that Mρ⋆ is an LCL-model.

By similar reasoning as in the proof of Lemma 3.24 (Chapter 3), we can
prove that [[M]]ρ⋆ = [M], for every term M .

If we assume that [[M]]ρ = [[N]]ρ holds in every LCL-model, then we have
that it also holds in Mρ⋆ , i.e. [[M]]ρ⋆ = [[N]]ρ⋆ . Since the interpretation of a
term in Mρ⋆ is its equivalence class with respect to the equivalence relation
generated by the equational theory EQη, we obtain that [M] = [[M]]ρ⋆ =
[[N]]ρ⋆ = [N], i.e. that M = N is provable in EQη.

We may notice that we deal only with the interpretation of a term and we
do not consider its type here, so the sets Aσ were not of utmost importance in
the proof of completeness of the equational theory EQη. Any family {Aσ}σ of
subsets of the domain D that satis�es the conditions of De�nition 4.14 could
be used in the proof.

The soundness of the equational theory is crucial for the proof of the sound-
ness and strong completeness of the axiomatization LCL, which is proved in
the following section. In particular, this result was necessary in order to prove
that every instance of axiom scheme (5) is satis�ed in every LCL-model. An
instance of (5) is of the form M : σ ⇒ N : σ, for some terms M,N such that
M = N is provable in the equational theory EQη. Then [[M]]ρ = [[N]]ρ in every
LCL-model and as a consequence we have that the formula M : σ ⇒ N : σ is
satis�ed in every LCL-model.

We have proved that [[M]]ρ = [[N]]ρ holds in every LCL-model if and only
if M = N is provable in EQη. Additionally, if we want to prove M = N in
EQη it is enough to prove [[M]]ρ⋆ = [[N]]ρ⋆ in the model Mρ⋆ , given in the
proof of Theorem 4.23. Nevertheless, this does not make it easier to determine
if two terms are equal, since both problems are undecidable. Proving M = N
in EQη is undecidable and as a consequence proving N ∈ [M] is undecidable.
Thus, the problem of determining if [[M]]ρ⋆ = [[N]]ρ⋆ is undecidable.

108

4.4 Soundness and strong completeness of the

axiomatization of LCL

In this section, we give the proof of the soundness and strong completeness of
the logic of combinatory logic, i.e. of its axiomatization given in Section 4.2.2,
with respect to the semantics proposed in Section 4.2.3. In addition, we also
prove that the simply typed combinatory logic with equality is sound and
complete with respect to the proposed semantics.

4.4.1 Soundness of LCL

This subsection presents the �rst result, soundness of the axiomatization of
LCL. We prove that if a formula is a deductive consequence of a set of
formulas, then it is also a semantical consequence of that set.

Theorem 4.24 (Soundness of LCL). If T ⊢ α, then T |= α.

Proof. We show that each instance of an axiom scheme is satis�ed by any
model and that the inference rule Modus Ponens preserves satis�ability.

By De�nition 4.14 we have that s ∈ A(σ→(τ→ρ))→((σ→τ)→(σ→ρ)) for every
σ, τ, ρ ∈ Types→ and every model Mρ, and by De�nition 4.17 we have that
[[S]]ρ = s. Hence, it follows that [[S]]ρ ∈ A(σ→(τ→ρ))→((σ→τ)→(σ→ρ)) and that
every instance of axiom scheme (1) is satis�ed in every LCL-model Mρ.

Similarly, since k ∈ Aσ→(τ→σ) for every σ, τ ∈ Types→ by De�nition 4.14
and [[K]]ρ = k by De�nition 4.17, we conclude that [[K]]ρ ∈ Aσ→(τ→σ) for every
σ, τ ∈ Types→. This implies that every instance of axiom scheme (2) is satis�ed
in every model.

By similar reasoning, we obtain that every instance of axiom scheme (3)
is satis�ed in every model. From i ∈ Aσ→σ (De�nition 4.14) and [[I]]ρ = i
(De�nition 4.17), it follows that [[I]]ρ ∈ Aσ→σ.

The satis�ability of propositional connectives is de�ned as usual, that is
an implication α ⇒ β is not satis�ed by a model if and only if α is satis�ed
and β is not satis�ed by the model. If we suppose that there exists a model
Mρ such that an instance of (4), (M : σ → τ) ⇒ ((N : σ) ⇒ (MN : τ)), is
not satis�ed by a model Mρ. Then Mρ |= M : σ → τ , Mρ |= N : σ and
Mρ ̸|= MN : τ . We have that Mρ |= M : σ → τ implies [[M]]ρ ∈ Aσ→τ , and
Mρ |= N : σ implies [[N]]ρ ∈ Aσ. Further, we obtain [[MN]]ρ = [[M]]ρ · [[N]]ρ ∈
Aτ by De�nition 4.14 and De�nition 4.17. This contradicts the assumption
Mρ ̸|= MN : τ , so we conclude that every instance of (4) is satis�ed by any
LCL-model.

Next, we consider an instance of axiom scheme (5), M : σ ⇒ N : σ, where
M = N is provable in EQη. If a model Mρ satis�es M : σ, i.e. Mρ |=M : σ,

Chapter 4. Logic of combinatory logic 109

then we have [[M]]ρ ∈ Aσ by De�nition 4.20. Since M = N is provable in
EQη, we know that [[M]]ρ = [[N]]ρ by Theorem 4.22. It directly follows that
[[N]]ρ ∈ Aσ. Hence, an instance of axiom scheme (5) is satis�ed by any LCL-
model.

Every instance of axiom scheme (6), α ⇒ (β ⇒ α), is satis�ed by any
LCL-model, otherwise we would have that α and β are satis�ed by the model
and α is not satis�ed, which leads to a contradiction.

The satis�ability of an instance of axiom scheme (7) follows by the propo-
sitional reasoning. Let Mρ be a model such that

(1) Mρ |= α⇒ (β ⇒ γ),

(2) Mρ |= α⇒ β,

(3) Mρ |= α.

Then (2) and (3) imply Mρ |= β. Further, (1), (3) and Mρ |= β imply
Mρ |= γ. Hence, every instance of axiom scheme (7) is satis�ed by any LCL-
model.

Now, we prove that every instance of axiom scheme (8) is satis�ed by any
model. If we assume that there exists a model Mρ such that an instance of
(8), (¬α⇒ ¬β) ⇒ ((¬α⇒ β) ⇒ α), is not satis�ed by Mρ, then we have

(1) Mρ |= ¬α⇒ ¬β,

(2) Mρ |= ¬α⇒ β,

(3) Mρ ̸|= α.

From (3), it follows that Mρ |= ¬α. Further, (1) and Mρ |= ¬α imply
Mρ |= ¬β. Similarly, (2) and Mρ |= ¬α imply Mρ |= β. However, the latter
contradicts Mρ |= ¬β. We conclude that the assumption is not true, so every
instance of axiom scheme (8) is satis�ed by any LCL-model.

Finally, we prove that the inference rule Modus Ponens preserves satis�a-
bility. By De�nition 4.20 we have that Mρ |= β, whenever Mρ |= α⇒ β and
Mρ |= α. This concludes the proof.

4.4.2 Strong completeness of LCL

In this subsection, we prove the strong completeness of the logic of combinatory
logic, which is the converse of Theorem 4.36.

When logical system is given with two di�erent presentations, e.g. se-
mantics (model theory) and axiomatization (proof theory), we can study two

110

kinds of completeness results: (weak) completeness and strong completeness.
The logical system is complete, i.e. weakly complete, if the following holds:

If |= φ then ⊢ φ. (4.10)

In other words, completeness means that if a formula is true in every model
of the logic, then it is provable in the logic. On the other hand, the logic is
strongly complete if the following holds:

If T |= φ then T ⊢ φ. (4.11)

where T is a set of formulas. Therefore, the strong completeness means that
if a formula is a semantical consequence of a set of formulas, then it is also
a deductive consequence of that set. The completeness only addresses the
special case of strong completeness when the set of premises is empty. Thus,
strong completeness implies completeness.

We adapt the Henkin-style completeness method, developed for the proof
of completeness of modal logic. The proof of strong completeness comprises
the following steps:

� the proof of Deduction theorem given in Section 4.2.2,

� the proof that every consistent set of LCL-formulas can be extended to
a maximal consistent set,

� the construction of a canonical model using the maximal consistent set,

� the proof that the canonical model is LCL-model,

� the proof that every consistent set is satis�able,

� the proof of strong completeness of LCL.

First, an auxiliary result, which describes the property of a consistent set,
is given and a notion of a maximal consistent set is introduced.

Lemma 4.25. Let T be a consistent set of formulas. For any formula α,
either T ∪ {α} is consistent, or T ∪ {¬α} is consistent.

Proof. Assume the opposite, i.e. that there exists a consistent set T and a
formula α such that both T ∪ {α} and T ∪ {¬α} are inconsistent. It follows
that T, α ⊢ ⊥ and T,¬α ⊢ ⊥. By Theorem 4.13 we get T ⊢ α ⇒ ⊥ and
T ⊢ ¬α ⇒ ⊥. Now, T ⊢ α ⇒ ⊥ is equivalent to T ⊢ ¬α, and T ⊢ ¬α ⇒ ⊥ is
equivalent to T ⊢ α. However, T ⊢ ¬α and T ⊢ α contradict the assumption
that T is a consistent set, so T ∪{α} and T ∪{¬α} cannot be both inconsistent.

Chapter 4. Logic of combinatory logic 111

De�nition 4.26. Let T be a set of formulas. T is a maximal consistent set
if it is consistent and for any formula α, either α ∈ T or ¬α ∈ T .

A key point in proving the strong completeness of the logic of combinatory
logic is the proof that every consistent set can be extended to a maximal
consistent set.

Theorem 4.27 (Lindenbaum's theorem). Every consistent set of
LCL-formulas can be extended to a maximal consistent set.

Proof. Let T be a consistent set. We construct a set T ⋆, which is a maximal
consistent set and includes the set T , i.e. T ⊆ T ⋆. We let α0, α1, . . . be an
enumeration of all LCL-formulas. The sequence of sets Ti, i = 0, 1, . . . and
the set T ⋆ are de�ned as follows:

(1) T0 = T ,

(2) for every i ≥ 0

(a) if Ti ∪ {αi} is consistent, then Ti+1 = Ti ∪ {αi}, otherwise

(b) Ti+1 = Ti ∪ {¬αi},

(3) T ⋆ =

∞⋃
i=0

Ti.

We may notice from the de�nition of set T ⋆ that T ⊆ T ⋆. We show that T ⋆

is a maximal consistent set. From the de�nition of the set T ⋆, it follows that it
is maximal, so it remains to prove it is consistent. In order to do so, we prove
that it is deductively closed set, which does not contain all formulas. From
the de�nition of the set T ⋆ it follows that it does not contains all formulas.
Further, every set Ti, i ∈ {0, 1, 2, . . .}, is consistent by its de�nition.

We prove that the set T ⋆ is deductively closed, i.e. that for every formula
α such that T ⋆ ⊢ α, it holds that α ∈ T ⋆. For α = αj and the set Ti such
that Ti ⊢ α we have α ∈ T ⋆, due to the consistency of the set Tmax{i,j}+1. If
T ⋆ ⊢ α, then there is a sequence of formulas α0, α1, . . . , αn that is a proof of
α from T ⋆. The sequence α0, α1, . . . , αn is �nite, so there is a set Ti such that
Ti ⊢ α. It follows that α ∈ T ⋆, thus T ⋆ is deductively closed.

Remark 4.28. We may notice that if T ⋆ is a maximal consistent set which
contains the set T , de�ned as in the proof of Theorem 4.27, and T ⊢ α, then
α ∈ T ⋆. This is the consequence of the fact that T ⋆ is deductively closed.

112

Using the maximal consistent set T ⋆, we construct a canonical applicative
structure. Providing a canonical applicative structure with an environment
results in a canonical model. The canonical model is de�ned in the way that
it satis�es exactly the formulas from the maximal consistent set.

De�nition 4.29. Let T ⋆ be a maximal consistent set. A canonical applicative
structure is a tuple MT⋆ = ⟨D, {Aσ}σ, ·, s,k, i⟩ where

� D = {[M] |M ∈ CL},

� {Aσ}σ = {Aσ}σ∈Types→ is a family of sets indexed by σ such that

Aσ = {[M] |M ∈ CL and M : σ ∈ T ⋆},

� [M] · [N] = [MN],

� s = [S],

� k = [K],

� i = [I].

Lemma 4.30. A canonical applicative structure MT⋆ is an applicative struc-
ture for LCL.

Proof. We show that the tuple MT⋆ given in De�nition 4.29 satis�es the con-
ditions of De�nition 4.14.

The set D = {[M] | M ∈ CL} is a nonempty set. For every type σ, we
have

Aσ = {[M] |M ∈ CL and M : σ ∈ T ⋆} ⊆ {[M] |M ∈ CL} = D.

We may notice that the set Aσ is well-de�ned. If M = N is provable in
EQη, thenM : σ ⇒ N : σ is an instance of axiom scheme and as a consequence
M : σ ⇒ N : σ ∈ T ⋆. Since T ⋆ is deductively closed, we have that for terms
M,N such that M = N is provable in EQη, M : σ ∈ T ⋆ if and only if
N : σ ∈ T ⋆. This implies that if [M] ∈ Aσ and N ∈ [M], then [N] ∈ Aσ, that
is Aσ is well-de�ned.

The operation · given by [M] · [N] = [MN] is a binary operation on D. Its
extensionality follows from the extensionality of the equational theory EQη by
the same reasoning as in the proof of Theorem 4.23, where the domain and
the operation are de�ned the same as here.

Let [M] ∈ Aσ→τ and [N] ∈ Aσ for some σ, τ ∈ Types→. By De�nition 4.29
we have that [M] ∈ Aσ→τ is equivalent to M : σ → τ ∈ T ⋆ and [N] ∈ Aσ

Chapter 4. Logic of combinatory logic 113

is equivalent to N : σ ∈ T ⋆. The set T ⋆ is deductively closed, so we get
MN : τ ∈ T ⋆, which implies [MN] ∈ Aτ . We have shown that the codomain
of the restriction of function · to the set Aσ→τ ×Aσ is Aτ .

Next, we prove that elements s,k, i belong to the respective subsets of the
domain and satisfy equations given in De�nition 4.14. We have already proved
that the elements s = [S], k = [K] and i = [I] satisfy equations 4.5, 4.7 and 4.9,
respectively, in the proof of Theorem 4.23. Since
S : (σ → (τ → ρ)) → ((σ → τ) → (σ → ρ)) is an instance of axiom scheme
(1), we have S : (σ → (τ → ρ)) → ((σ → τ) → (σ → ρ)) ∈ T ⋆. Thus,
s = [S] ∈ A(σ→(τ→ρ))→((σ→τ)→(σ→ρ)).

Similarly, we have that K : σ → (τ → σ) is an instance of axiom scheme
(2) for every σ, τ ∈ Types→, hence K : σ → (τ → σ) ∈ T ⋆. We conclude that
k = [K] ∈ Aσ→(τ→σ), for every σ, τ ∈ Types→.

For every σ ∈ Types→, I : σ → σ is an instance of axiom scheme (3), so it
belongs to the set T ⋆ and we have that i = [I] ∈ Aσ→σ for every σ ∈ Types→,

This concludes the proof that MT⋆ is an applicative structure for LCL.

De�nition 4.31. A canonical model is a tuple MT⋆,ρ⋆ = ⟨MT⋆ , ρ⋆⟩, where
MT⋆ is a canonical applicative structure and ρ⋆ is the environment de�ned by
ρ⋆(x) = [x].

As we have already discussed in the proof of Theorem 4.23, if an environ-
ment ρ⋆ is de�ned by ρ⋆(x) = [x] on the domain D = {[M] | M ∈ CL}, then
the interpretation of every term M is given by [[M]]ρ⋆ = [M].

The main property of a canonical model MT⋆,ρ⋆ is that it satis�es exactly
the formulas from T ⋆.

Lemma 4.32. Let MT⋆,ρ⋆ be a canonical model and α a formula. Then

MT⋆,ρ⋆ |= α if and only if α ∈ T ⋆.

Proof. The proof is by induction on the structure of the formula α.
In the case when α is a statement M : σ, we have

MT⋆,ρ⋆ |=M : σ if and only if [[M]]ρ⋆ ∈ Aσ

if and only if [M] ∈ Aσ

if and only if M : σ ∈ T ⋆.

If formula α is a conjunction β ∧ γ, then
MT⋆,ρ⋆ |= β ∧ γ if and only if MT⋆,ρ⋆ |= β and MT⋆,ρ⋆ |= γ

if and only if β ∈ T ⋆ and γ ∈ T ⋆

if and only if β ∧ γ ∈ T ⋆.

114

Finally, assume α is a negation ¬β. Then

MT⋆,ρ⋆ |= ¬β if and only if MT⋆,ρ⋆ ̸|= β

if and only if β ̸∈ T ⋆

if and only if ¬β ∈ T ⋆.

Now, we are ready to prove that every consistent set is satis�able.

Theorem 4.33. Every consistent set is satis�able.

Proof. Assume that T is a consistent set. The set T can be extended to a
maximal consistent set T ⋆ by Theorem 4.27. We consider the canonical model
MT⋆,ρ⋆ . By Lemma 4.32 we have that MT⋆,ρ⋆ satis�es all formulas from set
T ⋆. Consequently, MT⋆,ρ⋆ |= T , since T ⊆ T ⋆. Thus, MT⋆,ρ⋆ is a model of
the set T .

Theorem 4.34 (Strong completeness of LCL). If T |= α, then T ⊢ α.

Proof. Assume that T |= α. Then the set T ∪ {¬α} is not satis�able and
as a consequence it is not consistent, by Theorem 4.33. The latter implies
T ∪{¬α} ⊢ ⊥, and by Theorem 4.13 and the propositional reasoning it follows
that T ⊢ α.

Corollary 4.35. T ⊢ α if and only if T |= α .

4.5 Soundness and completeness of the simply

typed combinatory logic

As a consequence of the soundness and strong completeness of the logic of com-
binatory logic, we have that the simply typed combinatory logic is sound and
complete with respect to the proposed semantics. The soundness of the simply
typed combinatory logic, presented in Section 4.1, is a direct consequence of
Proposition 4.11 and Theorem 4.24.

Theorem 4.36 (Soundness of CL→). If Γ ⊢CL M : σ, then Γ |=M : σ .

Proof. Let Γ ⊢CL M : σ. By Proposition 4.11, there exists a proof for M : σ
from Γ in LCL, i.e. Γ ⊢M : σ. Then we obtain Γ |=M : σ by Theorem 4.24.

Chapter 4. Logic of combinatory logic 115

If we consider the type assignment system given in Figure 4.2, then the
converse of Theorem 4.36 does not hold. As a counterexample, we take state-
ments x : σ and Kxy : σ. In the equational theory EQη we can prove the
equation Kxy = x. Thus, by Theorem 4.22 we have that the terms Kxy and
x have equal interpretations in every LCL-model, i.e. [[Kxy]]ρ = [[x]]ρ. In
other words, whenever a model satis�es x : σ, then it also satis�es Kxy : σ,
i.e. x : σ |= Kxy : σ. If the simple type assignment system, given in Fig-
ure 4.2, was complete, then we would conclude x : σ ⊢CL Kxy : σ. However,
x : σ ⊢CL Kxy : σ can not be derived in CL→.

In order to obtain a type assignment system that is sound and complete,
we have to extend the system given in Figure 4.2 by the following rule

Γ ⊢CL= M : σ M = N is provable in EQη

(eq)
Γ ⊢CL= N : σ

The rule (eq) guarantees that equal terms inhabit the same types. The type
assignment system obtained by adding the rule (eq) to the type assignment
system in Figure 4.2 is denoted by CL=

→. The derivability in CL=
→ is denoted

by ⊢CL= . The typing rule (eq) corresponds to the axiom scheme (5) in the
axiomatization of LCL. We may notice that Proposition 4.11 holds also for
the system CL=

→, that is if Γ ⊢CL= M : σ, then Γ ⊢M : σ (in LCL). The type
assignment system CL=

→ is sound and complete with respect to the semantics
proposed in Section 4.2.3.

Theorem 4.37 (Soundness of CL=
→). If Γ ⊢CL= M : σ, then Γ |=M : σ.

Proof. The proof is a direct consequence of Theorem 4.24 and Proposition 4.11
and proceeds by similar reasoning as the proof of Theorem 4.36.

The converse of Theorem 4.37 also holds. We follow the approach used in
Chapter 3 and for a basis Γ we de�ne a model MΓ such that MΓ |=M : σ if
and only if Γ ⊢CL= M : σ.

De�nition 4.38. Let Γ be a basis. We de�ne a tuple MΓ as follows.

MΓ = ⟨D, {Aσ}σ, ·, s,k, i⟩

where

� D = {[M] |M ∈ CL},

� {Aσ}σ = {Aσ}σ∈Types→ is a family of sets indexed by σ such that

Aσ = {[M] |M ∈ CL and Γ ⊢CL= M : σ},

116

� [M] · [N] = [MN],

� s = [S],

� k = [K],

� i = [I].

Lemma 4.39. Let Γ be a basis. The tuple MΓ introduced in De�nition 4.38
is an applicative structure for LCL.

Proof. Similarly as in the proof of Theorem 4.23 we prove that the tuple
MΓ = ⟨D, {Aσ}σ, ·, s,k, i⟩ satis�es the conditions of De�nition 4.14. By Def-
inition 4.38, we have that the set D is nonempty and for every σ ∈ Types→,

Aσ = {[M] |M ∈ CL and Γ ⊢CL= M : σ} ⊆ {[M] |M ∈ CL} = D.

The operation · is a binary, extensional operation on the set D. The exten-
sionality of · follows from the extensionality of the equational theory EQη and
it has been shown in the proof of Theorem 4.23. By the similar reasoning as
in the proof of Theorem 4.23, we obtain that the codomain of the restriction
of function · to the set Aσ→τ × Aσ is Aτ . Let [M] ∈ Aσ→τ and [N] ∈ Aσ. It
follows that Γ ⊢CL= M : σ → τ and Γ ⊢CL= N : σ by De�nition 4.38. So, we
derive Γ ⊢CL= MN : τ by the rule (→ elim). The latter implies [MN] ∈ Aτ .

It remains to show that elements s,k, i belong to the respective subsets
of the set D, i.e. that they satisfy the conditions 4.4, 4.6 and 4.8, and the
equations 4.5, 4.7 and 4.9, respectively. By the rules in Figure 4.2 we have
Γ ⊢CL= S : (σ → (ρ → τ)) → ((σ → ρ) → (σ → τ)), for all σ, ρ, τ ∈
Types→. So, we can conclude s = [S] ∈ A(σ→(ρ→τ))→((σ→ρ)→(σ→τ)) for every
σ, ρ, τ ∈ Types→, i.e. element s satis�es the condition 4.4. The proof that
elements k and i satisfy conditions 4.6 and 4.8, respectively, follows by similar
reasoning.

We use the applicative structure MΓ to de�ne a model MΓ
ρ⋆ that satis�es

only typing statements derivable from Γ in the system CL=
→.

Lemma 4.40. Let MΓ = ⟨D, {Aσ}σ, ·, s,k, i⟩ be an applicative structure
given in De�nition 4.38 and ρ⋆ an environment de�ned by ρ⋆(x) = [x]. Then
MΓ

ρ⋆ |=M : σ if and only if Γ ⊢CL= M : σ.

Proof. As it was discussed in the proof of Theorem 4.23, if the domain is
D = {[M] | M ∈ CL} and an environment is de�ned by ρ⋆(x) = [x], then
[[M]]ρ⋆ = [M] for every term M . It follows that

Chapter 4. Logic of combinatory logic 117

MΓ
ρ⋆ |=M : σ if and only if [[M]]ρ⋆ ∈ Aσ

if and only if [M] ∈ {[N] | N ∈ CL and Γ ⊢CL= N : σ}
if and only if Γ ⊢CL= M : σ.

Finally, we are ready to prove that the type assignment system CL=
→ is

complete with respect to the semantics introduced in Section 4.2.3.

Theorem 4.41 (Completeness of CL=
→). Let Γ be a basis. If Γ |=M : σ, then

Γ ⊢CL= M : σ.

Proof. Let Γ be a basis such that Γ |= M : σ. We consider the model MΓ
ρ⋆

given in De�nition 4.38, which is a model of Γ by Lemma 4.40, i.e. MΓ
ρ⋆ |= Γ.

From MΓ
ρ⋆ |= Γ and Γ |= M : σ, we obtain MΓ

ρ⋆ |= M : σ. Then we get
Γ ⊢CL= M : σ by Lemma 4.40 .

We end this section with the proof that the logic of combinatory logic is a
conservative extension of the simply typed combinatory logic. Proposition 4.11
has shown that the logic of combinatory logic is an extension of the simply
typed combinatory logic, and we prove that this extension is conservative if
we consider the simply typed combinatory logic with equality .

Theorem 4.42. Let Γ be a basis. If Γ ⊢M : σ, then Γ ⊢CL= M : σ.

Proof. Assume Γ is a basis such that Γ ⊢ M : σ. By Theorem 4.34 we have
that Γ |=M : σ. Then by Theorem 4.41, we obtain Γ ⊢CL= M : σ.

4.6 Concluding remarks

In this chapter, the classical propositional extension of the simply typed com-
binatory logic, called the logic of combinatory logic LCL, is presented. The
logic LCL is introduced in [95, 97].

The logic of combinatory logic is presented through its syntax, axiomati-
zation and semantics. The language of the logic LCL is de�ned as the set of
all typed terms closed under the classical propositional connectives. The logic
LCL can be explained in two ways:

� LCL is the simply typed combinatory logic extended with the classical
propositional connectives, and corresponding axioms and rules.

118

� LCL is obtained from classical the propositional logic by replacing propo-
sitional primitives with typed statements M : σ, where M is a CL-term
and σ is a simple type.

The axiomatization of the logic LCL is obtained from the axiomatization of
the classical propositional logic and the type assignment system for the simply
typed combinatory logic. The semantics of LCL is an applicative structure
provided with a valuation of term variables.

First, the soundness and completeness of the equational theory of untyped
combinatory logic is proved. The soundness of the equational theory ensures
that equal terms have the same interpretation in every model, whereas the
completeness guarantees that if two terms have the same interpretation in
every model, then they are equal. As the main results, we have proved the
soundness and strong completeness of the axiomatization of LCL with respect
to the proposed semantics. In the proof of strong completeness, we have
adapted the Henkin-style completeness method, which is developed for the
completeness proof of modal logic and became the standard way to prove
completeness.

In addition, the proposed semantics of LCL has proven to be a semantics
of the simply typed combinatory logic with equality. More precisely, if we
consider the simply typed combinatory logic that includes the typing rule
which ensures that equal terms inhabit the same type, then it is sound and
complete with respect to the proposed semantics.

We end the chapter with several topics for further work.

� The motivation for the study of the propositional extension of the simply
typed combinatory logic is the development of a framework for proba-
bilistic reasoning about typed terms. So, the next step is the development
of the probabilistic extension of LCL and this is the topic of the next
chapter.

� The combinatory logic and λ-calculus are equivalent theories, so a nat-
ural question arises: Can the same approach be used to develop the
propositional extension of the simply typed λ-calculus?

� Herein, we considered the propositional extension of typed calculus. It
would be interesting to enrich the language and to study �rst-order ex-
tensions of simply typed calculi. This would be a step forward towards
the formalization of the metalogic for simply typed theories.

� We have studied simple types, but various type systems have been devel-
oped for both the combinatory logic and λ-calculus such as intersection
types, polymorphic types, higher-order types, etc. So, the extensions of

Chapter 4. Logic of combinatory logic 119

di�erent type systems with appropriate logics in order to enable formal
reasoning about these type systems is another interesting topic for the
future work.

120

Chapter 5

Probabilistic reasoning in

type theory

In this chapter, we introduce the logic PCL, which is a probabilistic extension
of the logic of combinatory logic introduced in Chapter 4.

The motivation for developing a new formal model for reasoning about
typed terms is the fact that reasoning with uncertainty has gained an im-
portant role in various �elds of computer science, arti�cial intelligence and
cognitive science, while it is underdeveloped in typed calculi.

Di�erent approaches that deal with introducing non-determinism and prob-
abilities into the typed calculi have been investigated, e.g. [4, 22, 35, 36, 45,
47, 55, 99]. However, the goal of these papers was to formalize computation
in the presence of uncertainty and not to provide a framework that enables
probabilistic reasoning about typed terms. Our goal is to introduce the logic
in which we can express the following sentence:

The probability that a term M inhabits a type σ is at least s.

We develop our formal model along the lines of the method used for the
logic LPP2 ([128, 132]), a probabilistic extension of the classical propositional
logic. The logic LPP2 enriches the classical propositional logic with probability
operators of the form P≥s with the intended meaning �the probability is at
least s�. The iterations of the probability operators, e.g. P≥rP≥s, are not
allowed in the logic LPP2, therefore the logic LPP2 cannot express higher-
order probabilities, i.e. it cannot express the following: �the probability that
the event has the probability s is r.�

The idea of formalization of probabilistic reasoning about typed terms has
been presented in [63�66, 92, 96]. In [64], we have introduced a formal model

121

122

for reasoning about probabilities of simply typed lambda terms, whereas in [66]
a probabilistic extension of the λ-calculus with intersection types has been
introduced. These models are based on well-known models for λ-calculus:
term models for the simply typed λ-calculus ([77]) and �lter models for λ-
calculus with intersection types ([7]). However, these models are not suitable
for propositional reasoning about typed terms. In order to achieve the strong
completeness of the probabilistic extension of typed calculus, we �rst need to
obtain the strong completeness of the propositional extension of the calculus.
We could not achieve these results with respect to the existing models for λ-
calculus and combinatory logic. For this reason, we have developed the logic
of combinatory logic (LCL), which has been proven to be sound and complete
with respect to the proposed semantics in Chapter 4.

In thus chapter, we propose a probabilistic extension of LCL as a logical
framework for reasoning about typed terms.

Contribution of the chapter

� We introduce the logic PCL, which is a probabilistic extension of the
logic of combinatory logic introduced in Chapter 4.

� We propose a semantics of the logic PCL based on the possible world
approach.

� We prove that the logic PCL is not compact and an in�nitary axioma-
tization is given.

� We prove that the given axiomatization of PCL is sound and complete
with respect to the proposed semantics.

Overview of the chapter Section 5.1 recalls the logic LPP2. In Section 5.2,
the syntax of the logic PCL is introduced. The semantics and axiomatization
of the logic PCL are given in Sections 5.3 and 5.4, respectively. Section 5.5
presents the main results about the logic PCL: soundness and strong com-
pleteness. Finally, some concluding remarks and future work are given in
Section 5.6.

5.1 The logic LPP2

In this section, we present the probability logic LPP2 introduced in [128] by
Ognjanovi¢. The syntax, semantics and axiomatization of LPP2 are given,
followed by the main results about LPP2, namely the soundness and strong
completeness of the given axiomatization with respect to the given semantics.

Chapter 5. Probabilistic reasoning in type theory 123

5.1.1 Syntax LPP2

The logic LPP2 is a logic for formal reasoning about probabilities of formulas.
It is a probabilistic extension of the classical propositional logic and the lan-
guage of the LPP2 logic is obtained by extending the language of the classical
propositional logic with probability operators.

Let S be the set of rational numbers from the real unit interval [0, 1], i.e.
S = Q ∩ [0, 1]. The alphabet of the LPP2 consists of:

� the countable set of propositional letters (primitive propositions)
P = {p, q, . . . , p1, . . .},

� classical propositional connectives ¬ and ∧,

� the list of probability operators P≥s, where s ∈ S.

In the logic LPP2, a probability operator can only be applied to a classical
propositional formula, thus the language of LPP2 is de�ned as the union of
two sets of formulas: classical propositional formulas and probabilistic formu-
las. The set of the classical propositional formulas is de�ned by the following
grammar:

α ::= p | α ∧ α | ¬α (5.1)

The set ForC denotes the set of all classical propositional formulas and is
ranged over by α, β, . . . , α1,

De�nition 5.1. Let s ∈ S and α ∈ ForC . The formula

P≥sα

is called a basic probabilistic formula.

The set of all probabilistic formulas, denoted by ForP , is the smallest set
that contains all basic probabilistic formulas and is closed under the classical
propositional connectives ¬ and ∧.

The probabilistic formulas are generated by the grammar:

φ := P≥sα | φ ∧ φ | ¬φ (5.2)

Let φ,ψ, . . . , φ1, . . . range over ForP . The intended meaning of the formula
P≥s is �the probability of α is at least s�.

The set of all LPP2 formulas is

ForLPP2 = ForC ∪ ForP .

124

Let A,B, . . . range over ForLPP2
. Other classical propositional connectives

∨,⇒ and ⇔, both for classical propositional formulas and probabilistic for-
mulas, are de�ned as usual:

A ∨B stands for ¬(¬A ∧ ¬B)

A⇒ B stands for ¬A ∨B
A⇔ B stands for (A⇒ B) ∧ (B ⇒ A)

The following abbreviations are used to introduce other probability opera-
tors:

P<sα stands for ¬P≥sα

P≤sα stands for P≥1−s¬α
P>sα stands for ¬P≤sα

P=sα stands for P≥sα ∧ ¬P>sα

The logic LPP2 allows neither mixing of the classical propositional formulas
and the probabilistic formulas nor nested probability operators. For example,
the following formulas are not well-de�ned formulas in LPP2:

� (p ∧ ¬q) ∧ P≥ 1
2
(¬r),

� P≥ 1
3
P≥ 1

5
(p ∧ ¬q).

Thus, in the logic LPP2 it is not possible to express higher order probabil-
ities.

5.1.2 Semantics of LPP2

The semantics of LPP2 is based on the possible world approach, where a set
of possible worlds is equipped with a �nitely additive probability measure.

De�nition 5.2 ([105]). A collection X of subsets of a non-empty set Ω is
called an algebra of subsets of Ω if it has the following three properties.

1. Ω ∈ X.

2. For ∆ ⊆ Ω, if ∆ ∈ X, then Ω \∆ ∈ X.

3. For ∆1,∆2, . . . ,∆n ⊆ Ω, if ∆1,∆2, . . . ,∆n ∈ X, then
n⋃

i=1

∆i ∈ X.

De�nition 5.3 ([105]). Let X be an algebra of subsets of Ω. A function
µ : X → [0, 1] is called a �nitely additive probability measure if

Chapter 5. Probabilistic reasoning in type theory 125

� µ(Ω) = 1,

� for any Y1, Y2 ∈ X, if Y1 ∩ Y2 = ∅, then

µ(Y1 ∪ Y2) = µ(Y1) + µ(Y2).

De�nition 5.4 ([128]). An LPP2-model is a structure M = (W,H, µ, v)
where:

� W is a nonempty set of objects called worlds,

� H is an algebra of subsets of W ,

� µ is a �nitely additive probability measure, µ : H → [0, 1], and

� v : W × P → {true, false} provides a two-valued valuation of primitive
propositions, for each world w ∈W .

The valuation of primitive propositions interprets each primitive proposi-
tion as true or false in every possible world. In order to provide interpretation
for all classical propositional formulas in world w, the valuation v(w, ·) is ex-
tended to all classical propositional formulas as usual.

De�nition 5.5. Let M = (W,H, µ, v) be an LPP2-model and w ∈ W a
possible world in M.

1. The interpretation of a classical propositional formula α in world w,
denoted by Iv(w,α), is de�ned as follows:

� Iv(w, p) = v(w, p),

� Iv(w,α ∧ β) = true if and only if Iv(w,α) = Iv(w, β) = true,
otherwise Iv(w,α ∧ β) = false,

� Iv(w,¬α) = true if and only if Iv(w,α) = false, otherwise
Iv(w,¬α) = false.

2. [α]M is the set of all worlds of model M in which α is true, i.e.

[α]M = {w | w ∈W and Iv(w,α) = true}.

For a formula α and a world w, if Iv(w,α) = true, then we write w |= α,
otherwise we write w ̸|= α. If M is clear from the context, then the subscript
M from [α]M can be omitted.

In contrast to the classical propositional formulas, which are interpreted as
true or false in a possible world, probabilistic formulas are interpreted as true
or false in a model by introducing the satis�ability relation. The satis�ability
relation is de�ned for the measurable LPP2-models.

126

De�nition 5.6 ([128]). An LPP2-model M = (W,H, µ, v) is measurable if
[α]M ∈ H for every formula α ∈ ForC . The class of all measurable LPP2-
models is denoted by LPP2,Meas.

The following example illustrates the notion of a measurable LPP2-model.

Example 5.7. Let us consider the primitive propositions p, q, r and the struc-
ture M = (W,H, µ, v) such that

� W = {w1, w2, w3},

� H = P(W), where P(W) is the power set of W ,

� µ(∅) = 0, µ(w1) =
3

7
, µ(w2) =

2

7
, µ(w3) =

2

7
, µ({w1, w2}) =

5

7
,

µ({w1, w3}) =
5

7
, µ({w2, w3}) =

4

7
, µ(W) = 1,

� v(w1, p) = v(w1, q) = v(w1, r) = true, v(w2, q) = v(w2, r) = true,
v(w2, p) = false, v(w3, p) = v(w3, q) = false and v(w3, r) = true.

The structure M is an LPP2-model. Indeed, W is a non-empty set and
H is an algebra of subsets of W . The function µ : P(W) → [0, 1] is a �nitely
additive probability measure since it assigns 0 to the empty set, 1 to the entire
space W and it is �nitely additive, i.e. for every E1, E2, . . . En ⊆W such that
if i ̸= j, then Ei ∩ Ej = ∅, it holds that µ(E1 ∪ E2 ∪ . . . ∪ En) = µ(E1) +
µ(E2) + . . .+ µ(En). Moreover, since the function µ is de�ned for all subsets
of W , for every α ∈ ForC the set [α]M is measurable, i.e. [α]M ∈ H. Thus,
the model M is an LPP2,Meas-model.

De�nition 5.8 ([128]). The satis�ability relation |=⊆ LPP2,Meas×ForLPP2
is

de�ned in the following way:

� M |= α if and only if for every w ∈W , v(w,α) = true.

� M |= P≥sα if and only if µ([α]) ≥ s.

� M |= ¬φ if and only if it is not the case that M |= φ.

� M |= φ ∧ ψ if and only if M |= φ and M |= ψ.

If M |= A, then we say M is a model of formula A. Directly from De�-
nition 5.5 and De�nition 5.8 it follows that every valid classical propositional
formula is true in every LPP2-model.

The notions of satis�able and valid formulas, satis�able set of formulas and
semantical consequence are given in the following de�nition.

Chapter 5. Probabilistic reasoning in type theory 127

De�nition 5.9. Let A ∈ ForLPP2
be a formula and let T ⊆ ForLPP2

.

� A is satis�able if there is a LPP2,Meas-model M such that M |= A.

� A set of formulas T is satis�able if there is a LPP2,Meas-model M such
that M |= A for every A ∈ T .

� A is valid if for every LPP2,Meas-model M, M |= A holds.

� A is a semantical consequence of the set T , denoted by T |= A, if it holds
that A is satis�ed in a model M (denoted by M |= A) whenever T is
satis�ed in that model (denoted by M |= T).

The satis�ability of a formula in a model is illustrated in the following
example.

Example 5.10. Let us consider the model M given in 5.7. From the de�nition
of the valuation v in M and De�nition 5.5 it follows that

� w1 |= p ∨ r, w2 |= p ∨ r, w3 |= p ∨ r,

� w1 |= q ⇒ p, w2 ̸|= q ⇒ p and w3 |= q ⇒ p.

So, we conclude M |= p ∨ r. Thus, M |= P≥1(p ∨ r). On the other
hand, the formula q ⇒ p is not true in the world w2, hence it holds that
M ̸|= q ⇒ p. Since [q ⇒ p]M = {w1, w3} and µ({w1, w3}) = 5

7 , we have that
M |= P= 5

7
(q ⇒ p). From [¬p]M = {w2, w3} and µ({w2, w3}) = 4

7 , we derive
M |= P< 5

7
(¬p).

Classical propositional formulas in the logic LPP2 do not behave in the
usual way. In the classical propositional logic, if α ∨ β is true in some model,
then either α or β is true in the model. However, this is not the case in the logic
LPP2. Also, in the logic LPP2, it is possible to have M ̸|= α and M ̸|= ¬α.
We illustrate this in the following example.

Example 5.11. Let us consider the model M = (W,H, µ, v) where:

� W = {w1, w2, w3},

� H = P(W),

� µ(∅) = 0, µ(w1) = µ(w2) = µ(w3) = 1
3 , µ({w1, w2}) = µ({w1, w3}) =

µ({w2, w3}) = 2
3 , µ(W) = 1,

� v(w1, p) = v(w2, p) = true and v(w3, p) = false.

Since w1 ̸|= ¬p, we have that M ̸|= ¬p. Similarly, from w3 ̸|= p, it follows
that M ̸|= p. However, p ∨ ¬p is true in every world wi, i ∈ {1, 2, 3},
thus M |= p ∨ ¬p.

128

The logic LPP2 is not compact. We do not discuss non-compactness of the
logic LPP2, since we prove non-compactness of the logic PCL in Section 5.3.
It follows by the similar reasoning as the non-compactness of the logic LPP2.

5.1.3 Axiomatization of LPP2

The axiomatic system of LPP2 consists of six axiom schemes and three infer-
ence rules given in Figure 5.1.

(1) all instances of the classical propositional tautologies (atoms are any

LPP2-formulas)

(2) P≥0α

(3) P≤rα⇒ P<sα, s > r

(4) P<sα⇒ P≤sα

(5) (P≥rα ∧ P≥sβ ∧ P≥1(¬α ∨ ¬β)) ⇒ P≥min{1,r+s}(α ∨ β)
(6) (P≤rα ∧ P<sβ) ⇒ P<r+s(α ∨ β), r + s ≤ 1

A A⇒ B(R1)
B

α(R2)
P≥1α

{ψ ⇒ P≥s− 1
k
α | k ≥ 1

s}
(R3)

ψ ⇒ P≥sα

Figure 5.1: The axiomatic system of LPP2

Axiom scheme (1) and inference rule (R1) ensure that the classical propo-
sitional logic is a sublogic of LPP2. Axiom schemes (2)− (6) deal with prob-
abilistic part of LPP2. The measure of a set of worlds that satisfy a classical
propositional formula is at least 0 by the axiom scheme (2). The monotonicity
of measures is ensured by the axiom schemes (3) and (4). Axiom schemes (5)
and (6) correspond to the additivity of measures.

Inference rule (R1) is Modus Ponens. The rule (R2) can be considered
as the rule of necessitation in modal logics. The iterations of probability
operators are not allowed in LPP2, so the rule (R2) can be applied only to
classical propositional formulas. The third rule is an in�nitary rule with the
countable set of assumptions and one conclusion. Intuitively, the rule (R3)
guarantees that if the probability is arbitrary close to s, then it is at least s.

The presented axiomatization of LPP2 is not minimal, in the sense that the
set of axioms can be reduced. The �rst axiom scheme comprises all tautologies
of classical propositional logic, however instead of including all tautologies

Chapter 5. Probabilistic reasoning in type theory 129

we could include just three axiom schemes from the axiomatic system of the
classical propositional logic, as it was done in Chapter 4. Then all tautologies
of the classical propositional logic are derivable from the axiom schemes using
the �rst inference rule.

The proof is de�ned similarly as in Chapter 4. The only di�erence is that
it can be a countable sequence of formulas, whereas in Chapter 4 it is a �nite
sequence. This is due to the in�nitary rule in the axiomatization of LPP2.

De�nition 5.12. A formula φ is deducible from a set T of formulas (denoted
by T ⊢LPP2

φ) if there is a sequence φ0, . . . , φn (n is a �nite or countable
ordinal) of ForLPP 2

-formulas, such that

� φn = φ, and

� every φi , i ≤ n, is an axiom-instance, or φi ∈ T , or φi is derived by an
inference rule applied to some previous members of the sequence.

A proof for φ from T is the corresponding sequence of formulas.

The de�nition of a consistent set of LPP2-formulas is again similar to the
de�nition of a consistent set of LCL-formulas in Chapter 4.

De�nition 5.13. A set T of formulas is consistent if there is at least a formula
from ForC and at least a formula from ForP that are not deducible from T ,
otherwise T is inconsistent.

Recall that in the de�nition of a consistent set of LCL-formulas, it is
required that there is at least one LCL-formula not derivable from the set.
However, in the case of a consistent set of LPP2-formulas it is not enough to
have at least one LPP2-formula not derivable from the set. There have to be
at least one formula from the set ForC and at least one formula from the set
ForP that are not derivable from the set, because ForC and ForP are disjoint.

5.1.4 Soundness and strong completeness of LPP2

The main results about the logic LPP2 presented in [128] are soundness and
strong completeness of the given axiomatization with respect to the proposed
semantics. We state these theorems without their proof, which can be found
in [128, 132].

Theorem 5.14 (Soundness of LPP2). The axiomatic system of LPP2 is sound
with respect to the class of LPP2,Meas-models.

Theorem 5.15 (Strong completeness of LPP2). Every consistent set of LPP2-
formulas T is LPP2,Meas-satis�able.

130

The proof of the strong completeness of LPP2 is obtained by adapting the
Henkin-style completeness method, as in the proof of the strong completeness
of LCL in Chapter 4. The main steps in the proof are as follows:

� the proof of Deduction theorem,

� the proof that a consistent set of formulas can be extended to a maximal
consistent set,

� the construction of a canonical model,

� the proof that a canonical model is an LPP2-model,

� the proof that every consistent set is satis�able,

� the proof of strong completeness.

5.2 Syntax PCL

In this section, the language of PCL is introduced. As it is discussed, PCL
is a probabilistic extension of the logic of combinatory logic LCL introduced
in Chapter 4. The alphabet of PCL comprises the alphabet of LCL and the
alphabet of probability logic. So, it consists of:

� the alphabet of the simply typed combinatory logic, that is all symbols
needed to de�ne simply typed CL-terms, given in Section 4.1,

� the classical propositional connectives ¬, ∧ and ⇒,

� the list of probability operators P≥s, for every s ∈ S = [0, 1] ∩Q.

Similarly to the language of LPP2, the language of PCL is layered into
two sets of formulas: basic formulas and probabilistic formulas.

Basic formulas are LCL formulas introduced in Section 4.2.1. Let us recall,
the LCL-formulas are generated by the following grammar

α :=M : σ | ¬α | α⇒ α (5.3)

where M : σ ∈ CL→. Herein, the set of LCL-formulas (i.e. basic formulas) is
denoted by ForB.

Probabilistic formulas are obtained by applying the probability operator
to LCL-formulas. For s ∈ S and an LCL-formula α, the formula P≥sα is
called a basic probabilistic formula. The set of all probabilistic formulas is
the set of basic probabilistic formulas closed under the classical propositional
connectives ¬ and ∧, i.e

Chapter 5. Probabilistic reasoning in type theory 131

φ ::= P≥sα | φ ∧ φ | ¬φ (5.4)

ForP denotes the set of all probabilistic formulas and φ,ψ, . . . , φ1, . . . range
over ForP.

The language of PCL is the union of basic and probabilistic formulas.

ForPCL = ForB ∪ ForP

The set of all PCL-formulas is denoted by ForPCL and is ranged over by
A,B,C,

The same abbreviations as in Section 5.1 are used to introduce other prob-
ability operators (e.g. P<s, P>s, P≤s and P=s).

In the de�nition of LCL-formulas only two classical propositional connec-
tives are used, namely negation and implication, whereas in the de�nition
of probabilistic formulas only negation and conjunction are used. Neverthe-
less, other classical propositional connectives are de�ned as usual (see Section
5.1.1). Both α ∧ ¬α and φ ∧ ¬φ are denoted by ⊥. The logic PCL is based
on the probability logic LPP2, so mixing of basic formulas and probabilistic
formulas, and nested probability operators are not allowed. For example, the
following formulas are not well-de�ned formulas in PCL:

� (x : σ) ∧ P≥ 1
3
(x : σ → τ),

� P≥ 1
2
P≥ 1

3
(x : σ → τ).

5.3 Semantics of PCL

In this section, the semantics of PCL is introduced. Following the approach
used for the logic LPP2, the semantics of the logic PCL is based on the possible
world approach, where the set of possible worlds is equipped with a �nitely
additive probability measure.

De�nition 5.16. A PCL-model is a structure

M = (W, {Dw}, {Aσ
w}, {·w}, {sw}, {kw}, {iw}, H, µ, ρ)

where:

� W is a non-empty set of objects, called possible worlds,

� {Dw} = {Dw}w∈W is a family of sets indexed by worlds, where the set
Dw is referred to as the domain of the world w,

132

� {Aσ
w} = {Aσ

w}w∈W,σ∈Types→ is a family of sets indexed by types σ and
worlds w such that Aσ

w ⊆ Dw for all w ∈W and σ ∈ Types→.

� {·w} = {·w}w∈W is a family of binary operations indexed by worlds such
that the following hold:

� ·w is a binary operation on Dw, i.e. ·w : Dw ×Dw → Dw,

� ·w is extensional, that is for every w ∈ W and every d1, d2 ∈ Dw,
if (∀e ∈ Dw)(d1 ·w e = d2 ·w e), then d1 = d2,

� for every σ, τ ∈ Types→, it holds that the codomain of the restriction
of function ·w to the set Aσ→τ

w ×Aσ
w is Aτ

w,

� {sw} = {sw}w∈W is a family of elements indexed by worlds such that
for every w ∈W the following hold:

� sw ∈ Dw,

� for every σ, τ, ρ ∈ Types→,

sw ∈ A(σ→(τ→ρ))→((σ→τ)→(σ→ρ))
w (5.5)

� and for every d, e, f ∈ Dw,

((sw ·w d) ·w e) ·w f = (d ·w f) · (e ·w f) (5.6)

� {kw} = {kw}w∈W is a family of elements indexed by worlds such that
for every w ∈W the following hold:

� kw ∈ Dw,

� for every σ, τ ∈ Types→,

kw ∈ Aσ→(τ→σ)
w (5.7)

� and for every d, e ∈ Dw,

(kw ·w d) ·w e = d (5.8)

� {iw} = {iw}w∈W is a family of elements indexed by worlds such that for
every w ∈W the following hold:

� iw ∈ Dw,

� for every σ ∈ Types→,
iw ∈ Aσ→σ

w (5.9)

Chapter 5. Probabilistic reasoning in type theory 133

� and for every d ∈ Dw,
iw ·w d = d (5.10)

� H is an algebra of subsets of W .

� µ is a �nitely additive probability measure, µ : H → [0, 1].

� ρ :W × V →
⋃

w∈W

Dw provides for each world a two-valued valuation of

term variables such that for every w ∈ W , ρ(w, ·) is a map from the set
of term variables to the domain Dw, i.e. ρ(w, ·) : V → Dw.

The following proposition gives the connection between LCL-models and
PCL-models and it is a direct consequence of De�nition 5.16.

Proposition 5.17. Let

M = (W, {Dw}, {Aσ
w}, {·w}, {sw}, {kw}, {iw}, H, µ, ρ)

be a PCL-model. For each w ∈W , the structure

Mw = ⟨Dw, {Aσ
w}σ, ·w, sw,kw, iw⟩

is an applicative structure for LCLand Mρw
= ⟨Mw, ρ(w, ·)⟩ is an LCL-

model.

Note that the similar proposition holds for an LPP2-model. For every
world w in an LPP2-model, the function v(w, ·) is a valuation of primitive
propositions, that is each world generates one model of classical propositional
logic. Similarly, in a PCL-model each world generates one LCL-model.

In order to de�ne satis�ability of a formula in a model, we �rst introduce
the notion of satis�ability of a basic formula α in a possible world w of a model
M.

De�nition 5.18. Let M = (W, {Dw}, {Aσ
w}, {·w}, {sw}, {kw}, {iw}, H, µ, ρ)

be a PCL-moodel, w′ a possible world in M and α a basic formula. The for-
mula α is satis�ed in a world w′, denoted by w′ |= α if and only if α is satis�ed
by the LCL-model Mρw′ = ⟨Mw′ , ρw′⟩ where
Mw′ = ⟨Dw′ , {Aσ

w′}σ, ·w′ , sw′ ,kw′ , iw′⟩ and ρw′(x) = ρ(w′, x).

We de�ne the class of measurable PCL-models, as in the logic LPP2. The
set [α]M is de�ned as in the logic LPP2 (De�nition 5.5).

De�nition 5.19. A PCL-model

M = (W, {Dw}, {Aσ
w}, {·w}, {sw}, {kw}, {iw}, H, µ, ρ)

is measurable if [α]M ∈ H for every formula α ∈ ForB. The class of all
measurable PCL-models is denoted by PCLMeas.

134

Similarly as in the logic LPP2, the satis�ability relation is de�ned for the
measurable PCL-models.

De�nition 5.20. The satis�ability relation |=⊆ PCLMeas×ForPCL is de�ned
in the following way:

� M |= α if and only if for every w ∈W , w |= α.

� M |= P≥sα if and only if µ([α]) ≥ s.

� M |= ¬φ if and only if it is not the case that M |= φ.

� M |= φ ∧ ψ if and only if M |= φ and M |= ψ.

The notions of satis�able formulas, valid formulas and semantical conse-
quences are de�ned the same as in the logic LPP2 (see De�nition 5.9).

Compactness We say that the compactness theorem holds for some logic L
if the following holds:

The set X of formulas of the logic L is satis�able if and only if
every �nite subset of X is satis�able.

The compactness theorem does not hold for the logic PCL. In the following
example, we present a set X of PCL-formulas such that each �nite subset of
X is satis�able, but the set X is not satis�able.

Example 5.21. Let us consider the set

X = {¬P=0(x : σ)} ∪ {P< 1
n
(x : σ) | n ∈ N}.

For every �nite subset X ′ of X, there exists the largest k ∈ N such that
P< 1

k
(x : σ) ∈ X ′. We show that X ′ is satis�able. Since {x : σ} is a consistent

set of LCL-formulas, there is an LCL-model M1
ρ1

such that M1
ρ1

|= x : σ by
Theorem 4.33. Let M1

ρ1
= ⟨M1, ρ1⟩ and M1 = ⟨D1, {Aσ

1}, ·1, s1,k1, i1⟩. On
the other hand, x : σ is not a theorem of the logic LCL, so it is not true in every
LCL-model by Theorem 4.24. Hence, there exists an LCL-model M2

ρ2
such

that M2
ρ2

̸|= x : σ. Let M2
ρ2

= ⟨M2, ρ2⟩ and M2 = ⟨D2, {Aσ
2}, ·2, s2,k2, i2⟩.

Now, we construct a PCL-model M′ such that M′ |= X ′. Let M′ be the
following structure

M′ = (W, {Dw}, {Aσ
w}, {·w}, {sw}, {kw}, {iw}, H, µ, ρ),

where:

Chapter 5. Probabilistic reasoning in type theory 135

� W = {w1, w2},

� Dwi
= Di, i ∈ {1, 2},

� Aσ
wi

= Aσ
i for every σ and i ∈ {1, 2},

� ·wi
= ·i, i ∈ {1, 2},

� swi
= si, i ∈ {1, 2},

� kwi
= ki, i ∈ {1, 2},

� iwi
= ii, i ∈ {1, 2},

� H = P(W),

� µ(w1) =
1

k+1 and µ(w2) =
k

k+1 ,

� ρ(wi, x) = ρi(x).

From the construction of the model M′, we have that w1 |= x : σ and
w2 ̸|= x : σ. Thus, µ([x : σ]) = 1

k+1 and M′ |= X ′. However, the set X is not
satis�able. Let M′ be a PCL-model. For every m > 0, if µ([x : σ]) = m, then
there exists n0 ∈ N such that 1

n0
< m and M′ ̸|= P< 1

n0

x : σ. If m = 0, then

M′ ̸|= ¬P=0(x : σ).

A consequence of the non-compactness is that any �nite axiomatization
of the logic PCL which is sound cannot be strongly complete (meaning that
if a formula semantically follows from a set T , then this formula is derivable
from T). Let us suppose the opposite, i.e. that there is a �nite axiomatization
of PCL that is sound and strongly complete. Let X be an in�nite set of
formulas such that every subset of X is satis�able and X itself is not. From
the strong completeness of the axiomatization, it follows that the set X is
inconsistent, since it is unsatis�able. So, it holds that X ⊢⊥. Since the
axiomatization is �nite, the proof of X ⊢⊥ has to be a �nite sequence of
formulas. Thus, there exists a �nite subset X ′ ⊆ X such that X ′ ⊢⊥. Then
X ′ is also inconsistent. Furthermore, we conclude X ′ is unsatis�able by the
soundness of the axiomatization. This contradicts the assumption that every
�nite subset of X is satis�able.

Since the goal is to give the axiomatization which is sound and strongly
complete with respect to the proposed semantics, in the following section we
give an in�nitary axiomatization of the logic PCL.

136

5.4 Axiomatization of PCL

In this section, the axiomatic system of PCL, denoted by AxPCL, is intro-
duced. The axiomatic system is obtained from the axiomatic system of the
logic LCL and the axiomatic system of the logic LPP2, in the way we ex-
plain below. It consists of 14 axiom schemes and three inference rules given in
Figure 5.2.

We brie�y discuss the axiomatic system of PCL.

� Axiom schemes (1) − (5) are axiom schemes for the logic LCL given in
Figure 4.3.

� Axiom schemes (6)− (10) are axiom schemes from the axiomatic system
of the logic LPP2 and they are concerned with the probabilistic aspect
of the logic PCL.

� Axiom scheme (11) ensures that equivalent formulas have equal mea-
sures.

� The last three axiom schemes are axiom schemes for the classical proposi-
tional logic. Atoms in the axiom schemes (12)−(14) are any probabilistic
formulas.

� The inference rules are the same as in the axiomatization of LPP2.

Note that we did not follow the approach used for LPP2 and listed all
classical tautologies as axioms. We left out the �rst axiom scheme of LPP2

and added three axioms schemes for the classical propositional logic, where
atoms can be any probabilistic formulas of PCL. From the axiom schemes
(12) − (14) and the inference rule (R1) all classical propositional tautologies,
where atoms are any PCL-formulas, can be derived.

Proposition 5.22. Axiom schemes (7) and (8) are equivalent to the following
formulas:

(7′) P≥tα⇒ P>sα, t > s,

(8′) P>sα⇒ P≥sα,

respectively.

Proof. The proof follows directly from the de�nition of probability operators.

The notions of proof and consistent set in the logic PCL are de�ned as in
the logic LPP2 in De�nition 5.12 and De�nition 5.13, respectively. If there

Chapter 5. Probabilistic reasoning in type theory 137

Axiom schemes:

(1) S : (σ → (τ → ρ)) → ((σ → τ) → (σ → ρ))

(2) K : σ → (τ → σ)

(3) I : σ → σ

(4) (M : σ → τ) ⇒ ((N : σ) ⇒ (MN : τ)),

M : σ → τ,N : σ,MN : τ ∈ CL→

(5) M : σ ⇒ N : σ, if M = N,M : σ,N : σ ∈ CL→

(6) P≥0α

(7) P≤rα⇒ P<sα, s > r

(8) P<sα⇒ P≤sα

(9) (P≥rα ∧ P≥sβ ∧ P≥1(¬α ∨ ¬β)) ⇒ P≥min{1,r+s}(α ∨ β)
(10) (P≤rα ∧ P<sβ) ⇒ P<r+s(α ∨ β), r + s ≤ 1

(11) P≥1(α⇒ β) ⇒ (P≥sα⇒ P≥sβ)

(12) A⇒ (B ⇒ A)

(13) (A⇒ (B ⇒ C)) ⇒ ((A⇒ B) ⇒ (A⇒ C))

(14) (¬A⇒ ¬B) ⇒ ((¬A⇒ B) ⇒ A)

Inference rules:

A A⇒ B(R1)
B

α(R2)
P≥1α

{φ⇒ P≥s− 1
k
α | k ≥ 1

s}
(R3)

φ⇒ P≥sα

Figure 5.2: The axiomatic system of PCL

138

is a proof for formula A from a set T of formulas in the logic PCL, we write
T ⊢PCL A. We will omit the subscript PCL when there is no ambiguity in
the context. For a formula A, we will write T,A ⊢ B to denote T ∪ {A} ⊢ B.

If the proof of formula A ∈ ForPCL from the set T is obtained using only
axiom schemes (12)− (14) and the inference rule (R1), then we say that T ⊢ A
is obtained by propositional reasoning.

In the following de�nitions the notions of a maximal consistent set and a
deductively closed set are introduced.

De�nition 5.23. A set T is maximally consistent if it is consistent and:

1. for every α ∈ ForB, if T ⊢ α, then α ∈ T and P≥1α ∈ T ,

2. for every φ ∈ ForP, either φ ∈ T or ¬φ ∈ T .

De�nition 5.24. A set T is deductively closed if T ⊢ A implies A ∈ T , for
every A ∈ ForPCL.

A crucial step in the completeness proof is the Deduction theorem.

Theorem 5.25 (Deduction theorem). Let T be a set of PCL-formulas and
φ,ψ ∈ ForP. If T, φ ⊢ ψ, then T ⊢ φ⇒ ψ.

Proof. The proof proceeds by the induction on the length of the proof of
T, φ ⊢ ψ.

If the length of the proof is 1, then ψ is either an instance of an axiom
scheme or it belongs to the set T ∪ {φ}.

� In the case that ψ is an axiom, we have

1. T ⊢ ψ, by De�nition 5.12,

2. T ⊢ ψ ⇒ (φ⇒ ψ), by axiom scheme (12),

3. T ⊢ φ⇒ ψ, from (1) and (2) by (R1).

� If ψ ∈ T , then we have

1. T ⊢ ψ, by De�nition 5.12,

2. T ⊢ ψ ⇒ (φ⇒ ψ), by axiom scheme (12),

3. T ⊢ φ⇒ ψ, from (1) and (2) by (R1).

� If ψ ∈ {φ}, i.e. φ = ψ then

T ⊢ φ⇒ φ,

since φ⇒ φ is a tautology in the classical propositional logic.

Chapter 5. Probabilistic reasoning in type theory 139

Let us assume that the statement holds when the length of the proof i is
1 < i < k and prove that it holds when the length of the proof is k.

If the length of the proof is k > 1, then ψ is either an axiom or belongs to
the set T ∪{φ} or is obtained by an application of some inference rule. If it is
an axiom or belongs to the set T ∪ {φ}, the proof proceeds the same as in the
base case.

Let ψ be obtained by applying the rule (R1) to some formulas ψ1 and
ψ1 ⇒ ψ such that T, φ ⊢ ψ1 and T, φ ⊢ ψ1 ⇒ ψ. Then

1. T, φ ⊢ ψ1, the assumption,

2. T, φ ⊢ ψ1 ⇒ ψ, the assumption,

3. T ⊢ φ⇒ ψ1, by the induction hypothesis,

4. T ⊢ φ⇒ (ψ1 ⇒ ψ), by the induction hypothesis,

5. T ⊢ (φ⇒ (ψ1 ⇒ ψ)) ⇒ ((φ⇒ ψ1) ⇒ (φ⇒ ψ)), by axiom scheme(13),

6. T ⊢ (φ⇒ ψ1) ⇒ (φ⇒ ψ), from (2) and (3) by (R1),

7. T ⊢ φ⇒ ψ, from (1) and (4) by (R1).

If ψ is of the form P≥1α and it is obtained by applying the rule (R2) to
T, φ ⊢ α, then we have T ⊢ α. This is due to the fact that α ∈ ForB and
φ ∈ ForP, so φ cannot a�ect the proof of α from T ∪ {φ}. Furthermore, we
obtain

1. T ⊢ α, by the assumption,

2. T ⊢ P≥1α, by the rule (R2) applied to (1),

3. T ⊢ P≥1α⇒ (φ⇒ P≥1α), by axiom scheme (12),

4. T ⊢ φ⇒ P≥1α, from (2) and (3) by (R1).

Finally, we consider the case when ψ is of the form ψ1 ⇒ P≥sα and is
obtained by applying the rule (R3) to the set of formulas {ψ1 ⇒ P≥s− 1

k
α |

k ≥ 1

s
} such that T, φ ⊢ ψ1 ⇒ P≥s− 1

k
α, for all k ≥ 1

s
. Then we derive

1. T, φ ⊢ ψ1 ⇒ P≥s− 1
k
α, the assumption,

2. T ⊢ φ⇒ (ψ1 ⇒ P≥s− 1
k
α), by the induction hypothesis,

3. T ⊢ (φ ∧ ψ1) ⇒ P≥s− 1
k
α, by propositional reasoning,

4. T ⊢ (φ ∧ ψ1) ⇒ P≥sα, by the rule (R3),

5. T ⊢ φ⇒ (ψ1 ⇒ P≥sα), by propositional reasoning.

140

5.5 Soundness and strong completeness of PCL

This section presents the main results about the logic PCL: its soundness and
strong completeness with respect to the proposed semantics.

Theorem 5.26 (Soundness of PCL). The axiomatic system AxPCL is sound
with respect to the class of PCLMeas-models.

Proof. We prove that every instance of an axiom scheme is true in every PCL-
model and that the inference rules preserve validity.

Axioms schemes (1) − (5) belong to the axiomatic system of LCL. Since
each world w of a PCL-model M generates an LCL-model Mw by Proposi-
tion 5.17 and each instance α of the axiom schemes (1) − (5) is true in every
LCL-model by Theorem 4.24, we conclude Mw |= α. Similarly, every instance
of axiom schemes (12) − (14) where atoms are LCL-formulas, i.e. basic for-
mulas, is an instance of an axiom in the logic LCL. Thus, each instance of
axiom schemes (12) − (14) is satis�ed in model Mw. Now, for every possible
world w from the model M, w |= α by De�nition 5.18. By De�nition 5.20, we
obtain M |= α, for every PCLMeas-model M.

Let us consider the axiom scheme (6); let P≥0α be one of its instances and
M a PCLMeas-model. We have that the range of µ is [0, 1] by the de�nition
of probability measure µ, so µ(X) ≥ 0, for every X ∈ H. Thus, µ([α]M) ≥ 0
for every α ∈ ForB. We conclude that M |= P≥oα.

An instance of the axiom scheme (7) is of the form P≤rα⇒ P<sα, for some
formula α ∈ ForB and numbers r, s ∈ S such that s > r. We prove that if P≤rα
holds in a PCL-model M, then P<sα also holds in M. From M |= P≤rα, we
obtain µ([α]M) ≤ r by De�nition 5.20. Since r < s, we have that µ([α]M) < s.
Thus, M |= P<sα and each instance of axiom scheme (7) is satis�ed by any
PCLMeas-model.

Similarly, in order to prove that each instance of the axiom scheme (8) is
satis�ed by any PCLMeas-model M, we have to prove that if M |= P<sα, then
M |= P≤sα. From M |= P<sα, it follows that µ([α]M) < s, and since s ≥ s
we conclude µ([α]M) ≤ s. Hence, M |= P≤sα.

Next, let us consider an instance of the axiom scheme (9). We prove
that if P≥rα, P≥sβ and P≥1(¬α ∨ ¬β) hold in a PCLMeas-model M, then
P≥min{1,r+s}(α ∨ β) also holds in M. Let us assume that M |= P≥rα,
M |= P≥sβ and M |= P≥1(¬α ∨ ¬β), which is equivalent to µ([α]M) ≥ r,
µ([β]M) ≥ s and µ([¬α ∨ ¬β]M) ≥ 1, respectively. From µ([¬α ∨ ¬β]M) ≥ 1,
we obtain µ([α ∧ β]M) ≤ 0, which implies µ([α ∧ β]M) = 0. Thus, the sets

Chapter 5. Probabilistic reasoning in type theory 141

[α]M and [β]M are disjoint. By the de�nition of �nitely additive probability
measure, we have

µ([α ∨ β]M) = µ([α]M ∪ [β]M) = µ([α]M) + µ([β]M) = r + s.

Hence, M |= P≥min{1,r+s}(α ∨ β).
In order to prove that an instance of the axiom scheme (10) is satis�ed

by any PCLMeas-model M, we prove that if M |= P≤rα and M |= P<sβ,
where r + s ≤ 1, then M |= P<r+s(α ∨ β). From M |= P≤rα it follows
that µ([α]M) ≤ r. Similarly, from P<sβ, we obtain µ([β]M) < s. For the
probability measure µ it holds that µ(Y1 ∪ Y2) = µ(Y1) ∪ µ(Y2) − µ(Y1 ∩ Y2),
for any sets Y1, Y2 ∈ H. Thus, µ([α]M ∪ [β]M) = µ([α]M) + µ([β]M) −
µ([α]M∩ [β]M). Since µ([α]M∪ [β]M) ≥ 0 by the de�nition of �nitely additive
probability measure, we conclude µ([α]M∪[β]M) ≤ µ([α]M)+µ([β]M) < r+s.
Hence, M |= P<r+s(α ∨ β).

Let us consider an instance of the axiom scheme (11). We prove that
if P≥1(α ⇒ β) and P≥sα hold in some PCLMeas-model M, then P≥sβ also
hold in the model. From M |= P≥1(α ⇒ β), we get µ([α ⇒ β]M) = 1, i.e.
[α⇒ β]M =W . It follows that if a world w ∈W satis�es the formula α, then
it also satis�es the formula β. Thus, [α]M ⊆ [β]M. Now, by the de�nition
of �nitely additive probability measure, we have µ([β]M) ≥ µ([α]M). So, if
M |= P≥sα, then we have µ([α]M) ≥ s. Consequently, µ([β]M) ≥ s, i.e.
M |= P≥sβ.

The satis�ability of the axiom schemes (12)− (14) where atoms are proba-
bilistic formulas follows directly from the de�nition of satis�ability of classical
connectives.

Next, we consider the inference rules and prove that they preserve validity.
The inference rule (R1) is Modus Ponens. The satis�ability of logical connec-
tives is de�ned as in the classical propositional logic and an implication A⇒ B
does not hold only if A holds and B does not. So, if A and A⇒ B hold, then
B has to hold as well.

Let us consider the inference rule (R2). If M |= α, then w |= α for each
possible world w in M and [α]M =W . Thus, M |= P≥1α.

Finally, we consider the in�nitary rule (R3). Let us assume that M is a

PCLMeas-model such that M |= φ ⇒ P≥s− 1
k
α for all k ≥ 1

s
. We prove that

M |= φ implies M |= P≥sα. If M |= φ, then M |= P≥s− 1
k
α for all k ≥ 1

s
, i.e.

µ([α]M) ≥ s − 1

k
. We prove that it is not possible that µ([α]M) < s. From

µ([α]M) < s, it follows that s−µ([α]M) > 0. Due to the Archimedean property

of real numbers, we have that there exists n ∈ N such that
1

n
< s− µ([α]M).

142

Then µ([α]M) < s − 1

n
. In addition, from µ([α]M) ≥ 0, we get n ≥ 1

s
.

This contradicts the assumption that µ([α]M) ≥ s − 1

k
for all k ≥ 1

s
. Hence,

µ([α]M) ≥ s holds, i.e. M |= P≥sα.

The strong completeness proof for the logic PCL is more involved. Fol-
lowing the approach used for the logic LPP2, we adapt the Henkin-style com-
pleteness method. The proof of strong completeness comprises the following
steps:

� the proof of Deduction theorem,

� the proof that every consistent set of PCL-formulas can be extended to
a maximal consistent set,

� the construction of a canonical model using maximal consistent set,

� the proof that a canonical model is a PCL-model,

� the proof that every consistent set is satis�able,

� the proof of strong completeness.

The proof of Deduction theorem is given in Section 5.4. We present some
auxiliary results about properties of consistent sets.

Lemma 5.27. Let α be a basic formula and let s, r ∈ S be such that s ≥ r.
Then the formulas

P≥sα⇒ P≥rα and P≤rα⇒ P≤sα

are theorems in the logic PCL.

Proof. We �rst prove that the formula P≥sα ⇒ P≥rα can be derived using
axiom schemes and inference rules of Figure 5.2. We distinguish two cases.

� If s = r, then P≥sα⇒ P≥sα is an instance of classical tautology φ⇒ φ,
which is derivable using axiom schemes (12) and (13) and the inference
rule (R1) of Figure 5.2.

� Let us assume that s > r. Then instances of axiom schemes (7) and (8)
are formulas P≤rα ⇒ P<sα and P<rα ⇒ P≤rα, respectively. Using the
de�nition of probability operators and logical connectives introduced in
Section 5.1.1 we obtain that

P≤rα⇒ P<sα is equivalent to P≥sα⇒ P>rα, and

P<rα⇒ P≤rα is equivalent to P>rα⇒ P≥rα.

Chapter 5. Probabilistic reasoning in type theory 143

From P≥sα⇒ P>rα, P>rα⇒ P≥rα and the transitivity of the implication
in the classical propositional logic, we obtain P≥sα⇒ P≥rα.

The proof that P≤rα⇒ P≤sα is a theorem proceeds similarly.

Lemma 5.28. Let T be a consistent set of PCL-formulas.

(1) For any formula φ ∈ ForP, either T ∪ {φ} is consistent or T ∪ {¬φ} is
consistent.

(2) If ¬(φ⇒ P≥sα) ∈ T , then there is some n >
1

s
such that

T ∪ {φ⇒ ¬P≥s− 1
n
α} is consistent.

Proof. (1) Let T be a consistent set of PCL-formulas and φ ∈ ForP. If
both T ∪ {φ} and T ∪ {¬φ} are inconsistent, then we have T ∪ {φ} ⊢⊥ and
T ∪ {¬φ} ⊢⊥. By Deduction theorem, we obtain T ⊢ φ⇒⊥ and T ⊢ ¬φ⇒⊥,
that is T ⊢ ¬φ and T ⊢ φ. We further derive T ⊢ ¬φ ∧ φ, that is T ⊢⊥.
However, this contradicts the assumption that T is consistent.

(2) Let T be a consistent set and ¬(φ⇒ P≥sα) ∈ T . Suppose that for every

n >
1

s
, T ∪ {φ⇒ ¬P≥s− 1

n
α} is inconsistent. Then T ∪ {φ⇒ ¬P≥s− 1

n
α} ⊢⊥.

We obtain the following

1. T ⊢ (φ⇒ ¬P≥s− 1
n
α) ⇒⊥, by Deduction theorem,

2. T ⊢ ¬(¬φ ∨ ¬P≥s− 1
n
α)∨ ⊥, by propositional reasoning,

3. T ⊢ (φ ∧ P≥s− 1
n
α) ∨ (φ ∧ ¬φ), by propositional reasoning,

4. T ⊢ ((φ ∧ P≥s− 1
n
α) ∨ (φ ∧ ¬φ)) ⇒ (φ ∧ (P≥s− 1

n
α ∨ ¬φ)),

the distributive law,

5. T ⊢ φ ∧ (P≥s− 1
n
α ∨ ¬φ), from (3) and (4) by (R1),

6. T ⊢ ¬φ ∨ P≥s− 1
n
α, by propositional reasoning,

7. T ⊢ φ⇒ P≥s− 1
n
α, by propositional reasoning.

We have used the distributive law and the property of the classical propo-
sitional logic: if T ⊢ φ ∧ ψ, then T ⊢ φ.

We have derived T ⊢ φ ⇒ P≥s− 1
n
α for every n >

1

s
. If n =

1

s
, then it

also holds that T ⊢ φ ⇒ P≥s− 1
n
α for every n >

1

s
. By the inference rule

(R3) in Figure 5.2 we obtain T ⊢ φ ⇒ P≥sα. However, this contradicts the
assumption that T is consistent set and that ¬(φ⇒ P≥sα) ∈ T .

144

Lemma 5.29. Let T be a maximal consistent set of formulas.

(1) For ψ ∈ ForP, if T ⊢ ψ, then ψ ∈ T .

(2) For any formula α ∈ ForB, if t = sup{s | P≥sα ∈ T} and t ∈ S, then
P≥tα ∈ T .

(3) For all formulas φ,ψ ∈ ForP,

φ ∨ ψ ∈ T if and only if φ ∈ T or ψ ∈ T .

(4) For all formulas A,B ∈ ForPCL such that either A,B ∈ ForB or
A,B ∈ ForP,

A ∧B ∈ T if and only if A ∈ T and B ∈ T .

(5) For all formulas A,B ∈ ForPCL such that either A,B ∈ ForB or
A,B ∈ ForP,

if A ∈ T and A⇒ B ∈ T , then B ∈ T .

Proof. (1) Let T be a maximal consistent set and ψ a PCL-formula such
that T ⊢ ψ. By De�nition 5.23 we have that either ψ ∈ T or ¬ψ ∈ T . If
¬ψ ∈ T , then T ⊢ ¬ψ. Nevertheless, this contradicts the assumption that T is
consistent and T ⊢ ψ. Thus, ψ ∈ T . This proves that T is deductively closed
set.

(2) Let us assume that T is a maximal consistent set, α ∈ ForB,
t = sup{s | P≥sα ∈ T} and t ∈ S. By the monotonicity of the measure
proved in Lemma 5.27, we have that for every s ∈ S such that s < t it holds
that T ⊢ P≥sα. Then we obtain T ⊢ P≥tα by the inference rule (R3) in Fig-
ure 5.2 . Since T is a maximal consistent set, P≥tα ∈ T follows from the �rst
statement of this lemma.

Proofs (3)− (5) follow from the deductive closeness of the maximal consis-
tent set T .

We prove Lindenbaum's theorem, which states that every consistent set
can be extended to a maximal consistent set.

Theorem 5.30 (Lindenbaum's theorem). Every consistent set of
PCL-formulas can be extended to a maximal consistent set.

Proof. Let T be a consistent set. Let us denote by CnB(T) the consistent set
of formulas that contains all basic formulas derivable from T , i.e.

CnB(T) = {α | α ∈ ForB and T ⊢ α}.

Chapter 5. Probabilistic reasoning in type theory 145

We take φ0, φ1, . . . to be an enumeration of all probabilistic formulas, that
is formulas from ForP, and de�ne a sequence of sets Ti, i = 0, 1, 2, . . . as follows:

(1) T0 = T ∪ CnB(T) ∪ {P≥1α | α ∈ CnB(T)},

(2) for every i ≥ 0,

(a) if Ti ∪ {φi} is consistent, then Ti+1 = Ti ∪ {φi}, otherwise
(b) if φi is of the form ψ ⇒ P≥sβ, then

Ti+1 = Ti ∪ {¬φi, ψ ⇒ ¬P≥s− 1
n
β}, for some positive integer n, so

that Ti+1 is consistent, otherwise,
(c) Ti+1 = Ti ∪ {¬φi}.

We de�ne the set T ⋆ =
⋃∞

i=0 Ti.
We prove that the set T ⋆ is a maximal consistent set that includes T . By

the de�nition of the sequence of sets, we have that each set Ti, i = 0, 1, 2, . . .
is consistent. The existence of the natural number n from the step 2(b) is
ensured by Lemma 5.28.

The set T ⋆ is maximal by the steps (1) and (2) in its de�nition. In order
to prove that T ⋆ is consistent, it is enough to prove that it is a deductively
closed set which does not contain all formulas.

From the de�nition of the set T ⋆, it follows that it does not contain all
formulas. For a formula α ∈ ForB, the formulas α and ¬α cannot both belong
to T0. For a probabilistic formula φ ∈ ForP, let φ = φi and ¬φ = φj . Since
the set Tmax{i,j}+1 is consistent, the set T ⋆ does not contain both φ and ¬φ.

It remains to prove that T ⋆ is deductively closed. For a basic formula
α ∈ ForB, if T ⊢ α, then by the construction of T0, α ∈ T ⋆ and P≥1α ∈ T ⋆.

From the de�nition of a proof and the set T ⋆, it follows that if φ = φj and
Ti ⊢ φ, then φ ∈ T ⋆ due to the consistency of Tmax{i,j}+1. Using the induction
on the length of a proof, we prove that for a probabilistic formula φ ∈ ForP,

if T ⋆ ⊢ φ, then φ ∈ T ⋆.

Let the sequence φ1, φ2, . . . , φ be the proof of φ from T ⋆. The sequence
can be countably in�nite. We prove that for each i, if the formula φi is
obtained by applying an inference rule to premises that belong to the set T ⋆,
then the formula φ also belongs to T ⋆. In the case that a �nitary rule is
applied, there exists a set Tj such that all the premises belong to Tj and
Tj ⊢ φi. Thus, φi ∈ T ⋆. If the in�nitary rule is applied, then the formula
φi is of the form ψ ⇒ P≥sα and it is obtained from the set of premises
{φk

i = ψ ⇒ P≥skα | sk ∈ S} such that T ⋆ ⊢ φk
i . By the induction hypothesis,

we get ψ ⇒ P≥skα ∈ T ⋆, for every k. If we assume that φi = ψ ⇒ P≥sα /∈ T ⋆,
then there exist l and j such that ¬(ψ ⇒ P≥sα), ψ ⇒ ¬P≥s− 1

l
α ∈ Tj by the

step (2)(b) in the de�nition of T ⋆. Now, for some j′ ≥ j, we have the following:

146

� ψ ∧ ¬P≥sα ∈ Tj′ , using the de�nition of the propositional connectives,

� ψ ∈ Tj′ , from ψ ∧ ¬P≥sα ∈ Tj′ by the propositional reasoning,

� ¬P≥s− 1
l
α ∈ Tj′ , follows from ψ ⇒ ¬P≥s− 1

l
α ∈ Tj and ψ ∈ Tj′

� P≥s− 1
l
α ∈ Tj′ , follows from ψ ⇒ P≥s− 1

l
α ∈ T ⋆ and ψ ∈ Tj′ .

The last two conclusions contradict each other, so it is not possible that
φi = ψ ⇒ P≥sα /∈ T ⋆. Thus, φi = ψ ⇒ P≥sα ∈ T ⋆.

Since T ⋆ is a deductively closed set that does not contain all formulas, we
conclude it is consistent.

De�nition 5.31. Let T be a consistent set, T ⋆ a maximal consistent set in-
troduced in the proof of Theorem 5.30 and ModelsLCL(T) the set of all LCL-
models Mρi

= ⟨Mi, ρi⟩ that satisfy the set CnB(T), where
Mi = ⟨Di, {Aσ

i }σ, ·i, si,ki, ii⟩. A canonical model MT⋆ is a tuple

MT⋆ = (W, {Di}, {Aσ
i }, {·i}, {si}, {ki}, {ii}, H, µ, ρ)

such that

� W is a set of possible worlds, one for each LCL-model that satis�es
CnB(T); W = {wi | i ∈ I} where I is the cardinality of the set
ModelsLCL(T).

� {Di} = {Di}i∈I is a family of sets, where Di is the domain of LCL-
model Mi,

� {Aσ
i } = {Aσ

i }i∈I,σ∈Types→ is a family of sets, where {Aσ
i }σ is a family

given in the LCL-model Mi,

� {·i} = {·i}i∈I is a family of binary operations given in the LCL-model
Mi,

� {si} = {si}i∈I , {ki} = {ki}i∈I , {ii} = {ii}i∈I are families of elements
of the domains such that si,ki and ii are the elements given in the LCL-
model Mi,

� [α] = {wi | Mi |= α} and H = {[α] | α ∈ ForB},

� µ([α]) = sup{s | P≥sα ∈ T ⋆},

� ρ is a two-valued valuation de�ned by ρ(wi, x) = ρi(x), where ρi is a
valuation of the LCL-model Mρi .

Chapter 5. Probabilistic reasoning in type theory 147

Lemma 5.32. Let MT⋆ be a canonical model and α, β ∈ ForB. Then the
following claims hold

(1) H is an algebra of subsets of W ,

(2) if [α] = [β], then µ([α]) = µ([β]),

(3) µ([α]) ≥ 0,

(4) µ(W) = 1 and µ(∅) = 0,

(5) µ([α]) = 1− µ([¬α]),

(6) µ([α] ∪ [β]) = µ([α]) + µ([β]), for all disjoint [α] and [β].

Proof. (1) For basic formulas α, α1, α2, . . . , αn it holds that

� W = [α ∨ ¬α] ∈ H,
� if [α] ∈ H, then its complement [¬α] ∈ H,
� if [α1], [α2], . . . , [αn] ∈ H, then

[α1] ∪ [α2] ∪ . . . ∪ [αn] = [α1 ∨ α2 ∨ . . . ∨ αn] ∈ H

So, we conclude that H is an algebra of subsets of W .

(2) We prove that [α] ⊆ [β] implies µ([α]) ≤ µ([β]). From [α] ⊆ [β], we
conclude that every LCL-model of α is also a model of β, thus the
formula α ⇒ β is true in every LCL-model. From the strong com-
pleteness of the logic LCL, proved in Theorem 4.34, it follows that
α ⇒ β is a theorem and α ⇒ β ∈ CnB(T). Then we obtain that
P≥1(α ⇒ β) ∈ T ⋆ by the de�nition of the set T ⋆. The latter and
the fact that P≥1(α ⇒ β) ⇒ (P≥sα ⇒ P≥sβ) is an instance of axiom
scheme (11) imply that P≥sα ⇒ P≥sβ ∈ T ⋆ for every s ∈ S. Conse-
quently, µ([α]) ≤ µ([β]).

(3) µ([α]) = 0 follows from the fact that P≥0α is an axiom and it belongs to
T ⋆.

(4) For any α ∈ ForB, the formula α ∨ ¬α is a theorem, thus it belongs to
CnB(T) and P≥1(α ∨ ¬α) ∈ T ⋆. Therefore, we have W = [α ∨ ¬α] and
µ(W) = 1. Using the de�nition of probability operators, we get

P≥1(α ∨ ¬α) = P≥1−0(α ∨ ¬α) = P≤0¬(α ∨ ¬α) = ¬P>0(α ∧ ¬α).

From the latter and Theorem 5.22, we conclude that

sup{t | P≥t(α ∧ ¬α)} = 0

and µ(∅) = 0.

148

(5) Let µ([α]) = sup{s | P≥sα ∈ T ⋆} = r. If r = 1, then we obtain
P≥1α ∈ T ⋆ by Lemma 5.29(2). Since P≥1α = ¬P>0¬α, it follows that
¬P>0¬α ∈ T ⋆. As it was discussed earlier, the formula P≥tα ⇒ P>sα
for t > s is a theorem. So, we conclude µ([¬α]) = 0 and µ([α]) =
1− µ([¬α]). On the other hand, if r < 1, then for each rational number
r′ ∈ (r, 1], ¬P≥r′α = P<r′α ∈ T ⋆. The axiom scheme (8) ensures that
P≤r′α, P≥1−r′¬α ∈ T ⋆.

So, it has to hold that r1 = sup{s | P≥s¬α ∈ T ⋆} ≥ 1−r. Otherwise, for
r2 ∈ (r1, 1−r) it holds that P≥r2¬α ̸∈ T ⋆. From r2 < 1−r it follows that
1− r2 > r, so we have P≥r2¬α ∈ T ⋆. This contradicts P≥r2¬α ̸∈ T ⋆.

If we assume that sup{s | P≥s¬α ∈ T ⋆} > 1 − r, then there exists a
rational number r′′ ∈ [0, r) such that P≥1−r′′¬α ∈ T ⋆ and ¬P>r′′α ∈ T ⋆.
Since r > r′′, we have that P≥rα ⇒ P>r′′ ∈ T ⋆ by Proposition 5.22.
Hence, P>r′′α ∈ T ⋆. This contradicts ¬P>r′′α ∈ T ⋆.

Thus,
sup{s | P≥s¬α ∈ T ⋆} = 1− sup{s | P≥sα ∈ T ⋆},

i.e., µ([α]) = 1− µ([¬α]).

(6) Let us assume that [α] ∩ [β] = ∅, µ([α]) = r and µ([β]) = s. Since
[β] ⊂ [¬α], we obtain r + s ≤ r + (1 − r) = 1 using the previously
proved properties in the lemma. If r > 0 and s > 0, then for every
rational number r′ ∈ [0, r) and for every rational number s′ ∈ [0, s), we
have that P≥r′α, P≥s′β ∈ T ⋆ due to the properties of the supremum.
Then, using the axiom scheme (9), we derive P≥r′+s′(α ∨ β) ∈ T ⋆. The
latter implies r + s ≤ t0 = sup{t | P≥t(α ∨ β) ∈ T ⋆)}. In the case that
r+ s = 1, the statement holds. Let us consider the case when r+ s < 1.
If r + s < t0, then for every rational number t′ ∈ (r + s, t0) it holds
that P≥t′(α∨β) ∈ T ⋆. Further, there exist rational numbers r′′ > r and
s′′ > s such that:

¬P≥r′′α ∈ T ⋆, i.e. P<r′′α ∈ T ⋆,

¬P≥s′′α ∈ T ⋆, i.e. P<s′′α ∈ T ⋆,

and r′′ + s′′ = t′ ≤ 1.

The axiom scheme (8) ensures that P≤r′′α ∈ T ⋆. Using the axiom scheme
(10), we derive

P<r′′+s′′(α ∨ β) ∈ T ⋆, i.e. ¬P≥r′′+s′′(α ∨ β) ∈ T ⋆,

and
¬P≥t′(α ∨ β) ∈ T ⋆.

Chapter 5. Probabilistic reasoning in type theory 149

This contradicts P≥t′(α ∨ β) ∈ T ⋆. Hence, r + s = t0 and we conclude
that µ([α] ∪ [β]) = µ([α]) + µ([β]). Finally, in the case that r = 0 or
s = 0, we can reason as above, where r′ = 0 or s′ = 0.

Lemma 5.33. A canonical model MT⋆ is a PCL-model.

Proof. We prove that the tuple MT⋆ given in De�nition 5.31 satis�es the
conditions of De�nition 5.16.

Since CnB(T) is a consistent set of LCL-formulas, there is an LCL-model
that satis�es the set CnB(T), so the set ModelsLCL(T) is not empty. Conse-
quently, the set W is not empty. For Mρi

= ⟨Mi, ρi⟩ ∈ ModelsLCL(T), we
have that Di, {Aσ

i }σ, ·i, si, ki, ii satisfy the conditions of De�nition 5.16,
since they form an LCL-model Mi. In Lemma 5.32(1) we have proved that
H is an algebra of subsets of W . By Lemma 5.32, we conclude that the
function µ is a �nitely additive probability measure. Finally, the function ρ
de�ned by ρ(wi, x) = ρi(x) is a two-valued valuation ρ : W × V →

⋃
wi∈W

Dwi

such that ρ(wi, ·) = ρi : V → Dwi
. This concludes the proof that MT⋆ is a

PCL-model.

Proposition 5.34. Let MT⋆ be a canonical model. For every A ∈ ForPCL,
MT⋆ |= A if and only if A ∈ T ⋆.

Proof. The proof proceeds by induction on the structure of formula A.
Let A be a basic formula α. If α ∈ T ⋆, then by the de�nition of T ⋆ we

have that α ∈ CnB(T). Thus, for every Mi ∈ ModelsLCL(T), it holds that
Mi |= α. Each world wi of MT⋆ corresponds to one LCL-model Mi and it
holds that wi |= α if and only if Mi |= α. Hence, we conclude wi |= α, for
each i ∈ I and it follows that MT⋆ |= α. If MT⋆ |= α, then wi |= α, for each
i ∈ I, that is each model Mi ∈ ModelsLCL(T) of the set CnB(T) is also the
model of α. Hence, CnB(T) |= α in the logic LCL. By the strong completeness
of the logic LCL proved in Theorem 4.34 (Chapter 4), we obtain CnB(T) ⊢ α.
Consequently, α ∈ T ⋆ due to the de�nition of CnB(T) and T ⋆.

Next, let us assume that A is a basic probabilistic formula P≥sα. If
P≥sα ∈ T ⋆, then µ([α]) = sup{t | P≥tα ∈ T ⋆} ≥ s. So, we conclude
MT⋆ |= P≥sα by De�nition 5.20. On the other hand, suppose that
MT⋆ |= P≥sα, i.e. µ([α]) = sup{t | P≥t ∈ T ⋆} ≥ s. If µ([α]) > s, then
P≥sα ∈ T ⋆ by the de�nition of supremum and Lemma 5.27. If µ([α]) = s,
then P≥sα ∈ T ⋆ by Lemma 5.29(2).

In the case when A is a negation ¬φ, by De�nition 5.20 and the induction

150

hypothesis we obtain

MT⋆ |= ¬φ if and only if MT⋆ ̸|= φ

if and only if φ ̸∈ T ⋆

if and only if φ ∈ T ⋆.

Similarly, if A is a conjunction φ ∧ ψ, then by De�nition 5.20 and the
induction hypothesis we conclude

MT⋆ |= φ ∧ ψ if and only if MT⋆ |= φ and MT⋆ |= ψ

if and only if φ ∈ T ⋆ and ψ ∈ T ⋆

if and only if φ ∧ ψ ∈ T ⋆.

Theorem 5.35. Every consistent set T of PCL-formulas is satis�able.

Proof. Let T be a consistent set. By Theorem 5.30, it can be extended to a
maximal consistent T ⋆. Let MT⋆ be a canonical model introduced in De�ni-
tion 5.31. Since T ⊆ T ⋆ by the de�nition of T ⋆ and the model MT⋆ satis�es
all formulas from the set T ⋆ by Proposition 5.34, we obtain that the model
MT⋆ satis�es all formulas from the set T as well, i.e. MT⋆ |= T . Thus, T is
satis�able.

Theorem 5.36 (Strong completeness). If T |= A, then T ⊢ A.

Proof. Let T be a set of formulas and A a formula such that T |= A. From
T |= A it follows that the set T ∪ {¬A} is not satis�able. Then we conclude
that T ∪ {¬A} is inconsistent by Theorem 5.35 , that is T ∪ {¬A} ⊢⊥. By
Deduction theorem, we derive T ⊢ ¬A⇒⊥, which is equivalent to T ⊢ A.

5.6 Concluding remarks

In this chapter, we have introduced the logic PCL, which is a probabilistic
extension of the logic of combinatory logic.

Following the approach used for the logic LPP2 and some other probabil-
ity logics, e.g. �rst-order probability logic and intuitionistic probability logic
([132]), the language of the logic PCL is layered into two sets: basic formulas,
which are actually LCL-formulas, and probabilistic formulas. The probabilis-
tic formulas are obtained by applying probability operators of the form P≥s

to the basic formulas. The proposed semantics of the logic PCL is based on

Chapter 5. Probabilistic reasoning in type theory 151

the possible world approach. We have proved that the compactness theorem
does not hold for the logic PCL, i.e. there is an in�nite set X that is not
satisa�able, although each �nite subset of X is satis�able. For this reason,
a �nite axiomatization of the logic PCL cannot be sound and complete with
respect to the proposed semantics. Thus, we give an in�nitary axiomatization
of the logic PCL. The main results of the chapter are the soundness and
strong completeness of the given axiomatization with respect to the proposed
semantics.

First, we have proved the soundness of the axiomatization of PCL, that is
we proved that every instance of an axiom scheme holds in every PCL-model
and that inference rules preserve validity. The proof of strong completeness
is more involved. Herein, we adapted the Henkin-style completeness method,
which was also used for the logic LPP2 ([128]). We proved that every consistent
set can be extended to a maximal consistent set. The maximal consistent set is
used for the de�nition of a canonical model that is a PCLmodel which satis�es
exactly formulas from the maximal consistent set. Consequently, we obtained
that every consistent set is satis�able, which implies the strong completeness
of the logic PCL.

At the end, we list some ideas for the future work.

� The presented logic is a formal model for reasoning about probabilities
of simply typed combinatory terms. The next step is to adapt the ap-
proach for probabilistic reasoning about simply typed λ-calculus. The
adaptation is not straightforward since it relies on the translations from
combinatory logic to λ-calculus which are rather involved.

� Simplifying the semantics by using �nite sets of probability values yields
a compact logic. One line of research is to provide �nite axiomatizations
of those logics.

� The basic formulas in the logic PCL are obtained as the set of typed
statements closed under classical propositional connectives. Another
possibility is to have intuitionistic reasoning at the basic level.

� Also, intuitionistic reasoning about probabilities has been studied by
Markovi¢, Ognjanovi¢ and Ra²kovi¢ in [119]. Instead of considering clas-
sical propositional connectives in the de�nition of probabilistic formulas,
one can consider the intuitionistic ones.

� The development of the �rst order extension of the logic PCL is a topic
for the future work.

� Various type disciplines have been introduced for λ-calculus and com-
binatory logic such as polymorphic, intersection and higher-order types.

152

In the future, we plan to consider probabilistic extensions of di�erent
typed calculi.

Chapter 6

Conclusion

In this chapter, we summarise the contributions, present the related work and
give some initial ideas for future work.

6.1 Summary of contributions

In this thesis, we have studied four di�erent formal systems:

� the probabilistic λ-calculus with let-in operator,

� the full simply typed combinatory logic,

� the logic of combinatory logic and

� the probabilistic extension of the logic of combinatory logic.

We considered two approaches used to introduce probability into calculus:

1. to add a probabilistic choice to the language of untyped calculus as prim-
itive in order to obtain probabilistic computation;

2. to extend the language of a typed calculus with probability operators in
order to obtain a framework for probabilistic reasoning about the typed
calculus in the style of probability logic.

In Chapter 2, we have studied the probabilistic λ-calculus Λ⊕,let, that is
the pure, untyped λ-calculus extended with two operators: the probabilistic
choice operator ⊕ and let-in operator. The implemented evaluation strategy is
a lazy call-by-name evaluation. The probabilistic choice operator ⊕ represents
a fair choice, in the sense that the term M ⊕N evaluates to M or N with the

153

154

equal probability. The let-in operator simulates the call-by-value evaluation in
the call-by-name setting. A problem addressed in Chapter 2 is the program
equivalence in Λ⊕,let. The proof of context equivalence of two programs in
higher-order languages is challenging, since it has to be shown that programs
behave the same in any context and there are in�nitely many contexts. For
this reason, we aimed to �nd an e�ective method for checking program equiv-
alence. Besides context equivalence, we have considered two other equivalence
relations: bisimilarity and testing equivalence. First, we have presented the
operational semantics of Λ⊕,let as a labelled Markov chain, then we have in-
troduced the notion of probabilistic applicative bisimilarity for Λ⊕,let. The
�rst contribution of Chapter 2 is the proof that the probabilistic applicative
bisimilarity is a congruence. We have proved this using Howe's technique
([84]). As a consequence, the probabilistic applicative bisimilarity is included
in the context equivalence. In order to prove that the context equivalence is
included in the probabilistic applicative bisimilarity, we have presented the
testing language ([35]). The induced testing equivalence is proved to coincide
with probabilistic applicative bisimilarity ([47]). The second main contribution
of the chapter is the proof of the property that for every test there is a context
such that the success probability of the test applied to a term is equal to the
convergence probability of the context applied to the term. Consequently, the
context equivalence is included in the testing equivalence. We have proved
that all three equivalence relations coincide.

Chapter 3 has studied the full simply typed combinatory logic CL→,×,+,
that is, the simply typed combinatory logic extended with product types, sum
types, empty type and unit type. We have presented the language of the full
simply typed combinatory logic, its operational semantics, that is the equa-
tional theory induced by reduction relation and the type assignment system.
The reduction relation in CL→,×,+ depends on the typing relation. In order
to ensure that equal terms inhabit the same type, the type assignment system
is de�ned so that the typing relation depends on the reduction relation. Thus,
the equational theory induced by reduction relation and the type assignment
system are de�ned simultaneously. We have presented a Kripke-style semantics
of CL→,×,+ introduced in [94], which is inspired by the Kripke-style semantics
of the simply typed λ-calculus introduced in [124]. The semantics is de�ned
as an extensional Kripke applicative structure, which has special elements
corresponding to combinators and is provided with a valuation of variables.
The main contributions of the chapter are the soundness and completeness
of CL→,×,+ with respect to the presented semantics. First, the soundness of
the equational theory and the type assignment system are proved. The proof
method used for the soundness proof is mathematical induction. Second, the
completeness of the equational theory and the type assignment system are

Chapter 6. Conclusion 155

proved using the notion of a canonical model. The canonical model is based
on a consistent basis and it is de�ned so that the interpretation of a term is
the set of equivalence classes of terms typable in the basis. The completeness
proofs follow directly from this property of the canonical model.

In Chapter 4, we have introduced the logic of combinatory logic LCL. The
logic LCL is the propositional extension of the simply typed combinatory logic.
It is a formal system for reasoning about typed statements. We have intro-
duced the syntax, axiomatization and semantics of LCL. The language of LCL
is obtained by closing the set of typed statements under classical propositional
connectives. The axiomatization of LCL has arisen from the type assignment
system of the simply typed combinatory logic and the axiomatic system of
classical propositional logic. The semantics of LCL is based on the exten-
sional applicative structures extended with special elements corresponding to
primitive combinators. The main contributions of the chapter are the sound-
ness and strong completeness of LCL with respect to the proposed semantics.
First, we have proved that the equational theory of the simply typed combi-
natory logic is sound and complete with respect to the proposed semantics.
Then the proof of soundness and strong completeness of the axiomatization of
LCL with respect to the proposed semantics is given. Similarly to Chapter 3,
the proof method used for proving soundness is the mathematical induction.
In the proof of completeness of the equational theory we have constructed the
model such that the interpretation of a term in the model is the equivalence
class of the term with respect to the equational theory of the simply typed
combinatory logic. As a consequence, we have obtained the completeness of
the equational theory. The proof that the axiomatization of LCL is strongly
complete is more involved. First, we prove that every consistent set can be
extended to a maximal consistent set. Then we have de�ned an LCL-model
such that it satis�es only formulas from the maximal consistent set. Using this
model, we have proved that every consistent set is satis�able. The strong com-
pleteness of the axiomatization follows directly from this result. Additionally,
we have shown that the proposed semantics are novel semantics of the simply
typed combinatory logic. More precisely, we proved that the simply typed
combinatory logic containing the typing rule that ensures that equal terms
inhabit the same type is sound and complete with respect to the proposed
semantics. Thus, the logic of combinatory logic is a conservative extension of
the simply typed combinatory logic.

Chapter 5 has introduced the logic PCL, the probabilistic extension of
the logic of combinatory logic. Following the approach used for probabilistic
extensions of di�erent logics such as classical propositional logic, intuitionistic
propositional logic, justi�cation logic ([132]), we extend the logic LCL with
probability operators of the form P≥s with the intended meaning �probability

156

is at least s�. We have introduced the syntax, semantics and axiomatization
of PCL. The set of formulas is layered into two sets: basic formulas, i.e.
LCL-formulas, and probabilistic formulas obtained by applying probability
operators to basic formulas. The semantics of PCL is based on the possible
world approach, where the set of possible worlds is equipped with a �nitely ad-
ditive probability measure. The axiomatization of PCL comprises the axioms
and rules from the axiomatization of LCL and the axioms and rules from the
axiomatization of probability logic. The axiomatization of PCL is in�nitary,
since it has one in�nitary rule, i.e. a rule with a countable set of premises.
This is due to the non-compactness of the logic PCL which we have proved.
The main contributions of the chapter are the soundness and strong com-
pleteness of the given axiomatization with respect to the proposed semantics.
The proof of soundness is straightforward. Similarly to the previous chapters,
we have used mathematical induction. The proof of strong completeness is
more involved. Following the approach used in Chapter 4, we �rst proved
that every consistent set can be extended to a maximal consistent set. Then
we constructed a PCL-model that satis�es only formulas from the maximal
consistent set. We have used this model to prove that every consistent set is
satis�able and as a consequence we obtained strong completeness.

6.2 Related work

Probabilistic programming is a new programming paradigm which has proven
to be extremely applicable and useful in various areas, such as robotics [163],
machine learning [135] and natural language processing [117]. For this rea-
son, questions about probabilistic program equivalence have been addressed
in di�erent settings ([35, 36, 43, 44, 47, 48]). The probabilistic λ-calculi with
call-by-value and call-by-name passing policies have been investigated in [35]
and [47], respectively. In [35], Crubillé and Dal Lago have proved the full
abstraction, that is, they have proved that the bisimilarity and the context
equivalence coincide in the call-by-value setting. In turn, in [47] Dal Lago,
Sangiorgi and Alberti have proved that in the call-by-name setting bisimi-
larity implies context equivalence, but they do not coincide. Also, they have
conjectured that adding a sequencing operator can recover the full abstraction.
This conjecture is proved in Chapter 2. Both papers use the same approach
as we have used in the thesis. They prove that the bisimilarity is a congruence
using Howe's technique. Further, in [35] the authors introduced the testing lan-
guage and they proved that the context equivalence implies bisimilarity using
the testing equivalence, which coincides with bisimilarity. On the other hand,
in [47] the authors gave examples of terms that are context equivalent in the
call-by-name setting but not bisimilar, meaning that the context equivalence

Chapter 6. Conclusion 157

does not imply the bisimilarity in this setting. A similar approach was used
in [36], where Crubillé, Dal Lago, Sangiorgi and Vignudelli proved that simi-
larity (resp. bisimilarity) is fully abstract with respect to the context preorder
(resp. context equivalence) in call-by-value probabilistic λ-calculus endowed
with Plotkin's parallel disjunction operator. The soundness of the applicative
bisimilarity with respect to the context equivalence in linear λ-calculus ex-
tended with probabilistic binary choice and quantum data has been proved in
[44] by Dal Lago and Rioli. In [48], Dal Lago, Gavazzo and Levy have studied
Abramsky's applicative bisimilarity in call-by-value λ-calculi with algebraic
e�ects. The authors have generalised Howe's technique in order to show that
the applicative similarity is a precongruence. As a consequence, the applica-
tive similarity is a sound proof technique for the contextual preorder. In [43],
Dal Lago and Gavazzo have proved that the applicative bisimiliarity behaves
well in a λ-calculus endowed with an operator performing sampling from con-
tinuous distributions. In [99], we have conjectured that the need for the let-in
operator in lazy call-by-name λ-calculus was not due to the call-by-name eval-
uation strategy, but due to the lazyness of the calculus. This conjecture has
been proved by Curzi and Pagani in [40].

Kripke-style semantics presented in Chapter 3 has been inspired by the
Kripke-style semantics of the simply typed λ-calculus introduced in [124]. The
semantics is de�ned as an extensional Kripke applicative structure with special
elements that correspond to primitive combinators endowed with valuation of
variables. In [124], the authors have considered the equations between terms
of the same type that are described by an axiomatic system and they proved
that the axiomatic system is sound and complete with respect to the pro-
posed Kripke-style semantics. The semantics for the simply typed λ-calculus
and semantics of the full simply typed λ-calculus introduced in [123] are not
Kripke-style semantics, still they have certain similarities with the Kripke-
style semantics presented in the thesis. They are similar in the sense that the
applicative structure, the extensionality of applicative structure and the exis-
tence of elements called combinators are de�ned in a similar way. However,
the soundness and completeness results are not presented in [123]. The results
from [124] have been generalised to the second-order λ-calculus in [59], where
the author considered not only equalities but also inequalities and obtained
the soundness and completeness results for both inequalities and equalities.
Another extension of the work introduced in [124] is the development of mod-
i�ed Kripke models for syntactic realizability and dependent type theory. The
generalization of the interpretation of intuitionistic �rst-order logic in Kripke
models to a dependent type theory is given in [5] with the aim to establish the
coherence of interpretations of dependent type theory.

Chapter 4 has introduced the propositional extension of the simply typed

158

combinatory logic. Various extensions of combinatory logic have already been
investigated with the goal of obtaining formalisms capable to express new
features and paradigms. For example, in the calculus extended with new con-
structors such as pairs, records and variants ([137]), compound data structures
can be built. Moreover, it is possible to organise data in a better way and
to deal with heterogeneous collections of values. We have already discussed
adding probabilistic choice operator and shifting to the probabilistic computa-
tion. However, in this approach the calculus is extended with new operators,
whereas the logic introduced in Chapter 4 is obtained as the combination of
di�erent logical systems. This idea of combining di�erent logical systems in
order to capture reasoning about certain logical structures has been introduced
by Scott in [158], where the typed system of combinators, including �xed-point
combinator is extended with logical constants and connectives, and a deduc-
tive system for computable functions is developed. A similar approach was
used by Beeson in [16] to de�ne the λ-logic as the union of �rst-order logic
and λ-calculus, and to develop a powerful tool for representing functions. The
extensions of the theory of combinators with additional constants and corre-
sponding axioms and rules with aim to capture inference are called systems of
illative combinatory logic, and they have been investigated in [8, 41, 42, 51].
Another approach related to ours is introduced in [6], where Axelsen, Glück
and Kaarsgaard used a classical propositional logic to reason about reversible
logic circuits. The authors extended the system of reversible logic circuits with
classical propositional logic extended with ordered multiplicative conjunction,
so that reversible logic circuits play the role of propositions. This work and the
work presented in Chapter 4 share the same philosophy of extending a basic
logical system with classical propositional logic to capture reasoning about the
basic logical system.

The work presented in Chapter 5 follows the approach used for probabilis-
tic extensions of di�erent logics. The probabilistic extension of the classical
propositional logic LPP has been introduced by Ra²kovi¢ in [146], where the
classical propositional logic is extended with probability operators of the form
Ps with the intended meaning �the probability is at least s�. In [128], Ogn-
janovi¢ extended the classical propositional logic with probability operators of
the form P≥s and obtained the logic LPP2. The probability operator P≥s has
the same meaning as in [146], but s takes the value from an in�nite set, whereas
in [146] the set of values is �nite. This was followed by the work presented in
[129] where Ognjanovi¢ and Ra²kovi¢ extended the classical propositional logic
with two kinds of probability operators P≥s and QF such that the meaning
of QF is �the probability is in F �. The probabilistic extensions of the intu-
itionistic propositional logic and justi�cation logic are introduced by Markovi¢,
Ognjanovi¢ and Ra²kovi¢ in [119] and by Kokkinis, Ognjanovi¢ and Studer in

Chapter 6. Conclusion 159

[104], respectively. The probabilistic extension of the �rst-order logic is intro-
duced by Ognjanovi¢ and Ra²kovi¢ in [130]. All these systems are obtained in
the way that the language of a basic system, e.g. classical propositional logic,
intuitionistic propositional logic, justi�cation logic, is extended with probabil-
ity operators applied to the formulas of the logic. In this way, a framework
for probabilistic reasoning about di�erent systems is obtained. The questions
addressed in the mentioned papers are soundness, completeness and decidabil-
ity of the obtained probability logics. The proof method that we have used
in Chapter 5 follows the proof methods used in these papers. Recently, new
probability logics have been developed ([49, 86, 87]). In [49], Dautovi¢, Doder
and Ognjanovi¢ have formalised the quantitative concept of con�rmation, �rst
within a propositional logical framework and then using its �rst-order exten-
sion. A new probabilistic extension of the intuitionistic propositional logic
has been introduced by Ili¢-Stepi¢, Kneºevi¢ and Ognjanovi¢ in [86], where
contrary to other works on this topic (e.g. [119]) reasoning with probabil-
ity operators is also intuitionistic. The most recent work has introduced a
framework for reasoning about quantum observations ([87]).

6.3 Future work

Every investigated topic leaves open questions and ideas for future work.
In Chapter 2, we have addressed the question of program equivalence in

the probabilistic setting. However, another question is what happens if the
inequalities associated with these equivalences are considered. It is known that
similarity and testing preorder do not coincide, so in the case of inequalities
we cannot use the same method as in Chapter 2. Thus, other options have to
be explored. In this work, we added the let-in operator to the calculus with
probabilistic operator, however we can also add the operator to a calculus
with di�erent e�ects, e.g. non-determinism. All these questions can also be
addressed in the typed language.

Although the �rst idea was to develop the Kripke-style semantics of the full
simply typed λ-calculus ([94]), in Chapter 3 the semantics are introduced for
the full simply typed combinatory logic. If we add the typing rule that ensures
that equal terms inhabit the same type to the calculi, then the translation from
combinatory logic to λ-calculus is much more involved. For this reason, we
have considered only combinatory logic in Chapter 3 and left the semantics
of λ-calculus for future work. Besides the considered typing system, many
di�erent type systems have been introduced for λ-calculus and combinatory
logic, so naturally it would be interesting to investigate if the same approach
can be adapted to other type disciplines.

The work presented in Chapter 4 can be continued in several directions. We

160

have considered the propositional extension of the simply typed combinatory
logic. The combinatory logic and λ-calculus are computationally equivalent
theories, so it would be interesting to see if the same approach can be used to
develop the propositional extension of the simply typed λ-calculus. Also, we
could consider di�erent type disciplines. As we have already discussed, many
type systems have been developed for λ-calculus and combinatory logic. So, we
could develop frameworks for reasoning about di�erent typed calculi. In order
to obtain a more expressive system, we can enrich the language and extend
calculus with �rst-order logic. The propositional logic considered in Chapter 4
is classical and it would be interesting to investigate extending calculus with
some non-classical logic such as intuitionistic logic.

Regarding the framework for probabilistic reasoning introduced in Chap-
ter 5, there are also several directions to which the work can be extended. The
basis of the presented system is the logic LCL, that is propositional extension
of the simply typed combinatory logic. In the case of adapting the approach
used in Chapter 4 to the simply typed λ-calculus, the next step would be devel-
oping the framework for reasoning about simply typed λ-terms. Also, changing
the calculus at the basis level would result in the framework for probabilistic
reasoning about di�erent typed calculi. The introduced logic is not compact.
However, if we simplify the semantics so that the set of probability values is
�nite, we will obtain compact logic and we can provide a �nite axiomatization
of it. The propositional connectives both in basic formulas and probabilistic
formulas are classical connectives. Nevertheless, we can change the reasoning
at the basic level to intuitionistic reasoning as in [119]. The reasoning about
probabilities can also be shifted to intuitionistic, as in [86]. As for the logic
PCL, the next step is the development of �rst-order extension of PCL.

Bibliography

[1] S. Abramsky. Research Topics in Functional Programming, chapter The
Lazy Lambda Calculus, pages 65�116. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 1990. ISBN 0-201-17236-4. URL
http://dl.acm.org/citation.cfm?id=119830.119834.

[2] N. Arkor and M. Fiore. Algebraic models of simple type theories: A
polynomial approach. In H. Hermanns, L. Zhang, N. Kobayashi, and
D. Miller, editors, LICS '20: 35th Annual ACM/IEEE Symposium on
Logic in Computer Science, Saarbrücken, Germany, July 8-11, 2020,
pages 88�101. ACM, 2020. doi: 10.1145/3373718.3394771. URL https:

//doi.org/10.1145/3373718.3394771.

[3] A. Arnauld and N. Pierre. La logique, ou l'art de penser (Port-Royal
Logic, Logique de Port-Royal, Ars cogitandi). C. Savreux (Paris), 1662.

[4] P. Audebaud and C. Paulin-Mohring. Proofs of randomized algorithms in
coq. Sci. Comput. Program., 74(8):568�589, 2009. doi: 10.1016/j.scico.
2007.09.002. URL https://doi.org/10.1016/j.scico.2007.09.002.

[5] S. Awodey and F. Rabe. Kripke semantics for Martin-Löf's exten-
sional type theory. Log. Methods Comput. Sci., 7(3), 2011. doi: 10.
2168/LMCS-7(3:18)2011. URL https://doi.org/10.2168/LMCS-7(3:

18)2011.

[6] H. B. Axelsen, R. Glück, and R. Kaarsgaard. A classical propositional
logic for reasoning about reversible logic circuits. In J. A. Väänänen,
Å. Hirvonen, and R. J. G. B. de Queiroz, editors, Logic, Language,
Information, and Computation - 23rd International Workshop, WoL-
LIC 2016, Puebla, Mexico, August 16-19th, 2016. Proceedings, volume
9803 of Lecture Notes in Computer Science, pages 52�67. Springer, 2016.
doi: 10.1007/978-3-662-52921-8_4. URL https://doi.org/10.1007/

978-3-662-52921-8_4.

161

http://dl.acm.org/citation.cfm?id=119830.119834
https://doi.org/10.1145/3373718.3394771
https://doi.org/10.1145/3373718.3394771
https://doi.org/10.1016/j.scico.2007.09.002
https://doi.org/10.2168/LMCS-7(3:18)2011
https://doi.org/10.2168/LMCS-7(3:18)2011
https://doi.org/10.1007/978-3-662-52921-8_4
https://doi.org/10.1007/978-3-662-52921-8_4

162

[7] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A �lter lambda
model and the completeness of type assignment. The Journal of Symbolic
Logic, 48(4):931�940, 1983. doi: 10.2307/2273659.

[8] H. Barendregt, M. W. Bunder, and W. Dekkers. Systems of illative
combinatory logic complete for �rst-order propositional and predicate
calculus. J. Symb. Log., 58(3):769�788, 1993. doi: 10.2307/2275096.
URL https://doi.org/10.2307/2275096.

[9] H. P. Barendregt. Some extensional term models for combinatory logics
and l - calculi. PhD thesis, Univ. Utrecht, 1971.

[10] H. P. Barendregt. The lambda calculus: its syntax and semantics.
Studies in logic and the foundations of mathematics. North-Holland,
1984. ISBN 9780444867483. URL https://books.google.rs/books?

id=eMtTAAAAYAAJ.

[11] H. P. Barendregt. The lambda calculus - its syntax and semantics, vol-
ume 103 of Studies in logic and the foundations of mathematics. North-
Holland, 1985. ISBN 978-0-444-86748-3.

[12] H. P. Barendregt. Some extensional term models for combinatory logics
and lambda-calculi: motivation, the making of, 2020 hindsight. Kindle
Direct Publishing, 2020.

[13] H. P. Barendregt, W. Dekkers, and R. Statman. Lambda
Calculus with Types. Perspectives in logic. Cambridge Uni-
versity Press, 2013. ISBN 978-0-521-76614-2. URL http:

//www.cambridge.org/de/academic/subjects/mathematics/

logic-categories-and-sets/lambda-calculus-types.

[14] A. Bayart. Quasi-adéquation de la logique modale du second ordre s5 et
adéquation de la logique modale du premier ordre s5 [quasi-completeness
of second-order s5 modal logic and completeness of �rst-order s5 modal
logic]. Logique Et Analyse, 2(6):99�121, 1959.

[15] O. Becker. Untersuchungen Über den Modalkalkül [Investigations into
Modal Calculus]. A. Hain, 1952.

[16] M. Beeson. Lambda logic. In D. A. Basin and M. Rusinowitch,
editors, Automated Reasoning - Second International Joint Confer-
ence, IJCAR 2004, Cork, Ireland, July 4-8, 2004, Proceedings, volume
3097 of Lecture Notes in Computer Science, pages 460�474. Springer,
2004. doi: 10.1007/978-3-540-25984-8_34. URL https://doi.org/

10.1007/978-3-540-25984-8_34.

https://doi.org/10.2307/2275096
https://books.google.rs/books?id=eMtTAAAAYAAJ
https://books.google.rs/books?id=eMtTAAAAYAAJ
http://www.cambridge.org/de/academic/subjects/mathematics/logic-categories-and-sets/lambda-calculus-types
http://www.cambridge.org/de/academic/subjects/mathematics/logic-categories-and-sets/lambda-calculus-types
http://www.cambridge.org/de/academic/subjects/mathematics/logic-categories-and-sets/lambda-calculus-types
https://doi.org/10.1007/978-3-540-25984-8_34
https://doi.org/10.1007/978-3-540-25984-8_34

Bibliography 163

[17] M. Bendkowski, K. Grygiel, and M. Zaionc. Asymptotic properties of
combinatory logic. In R. Jain, S. Jain, and F. Stephan, editors, Theory
and Applications of Models of Computation, pages 62�72, Cham, 2015.
Springer International Publishing. ISBN 978-3-319-17142-5.

[18] J. Bernoulli. Ars coniectandi. Impensis Thurnisiorum, Fratrum, 1713.

[19] J. Bessai, A. Dudenhefner, B. Düdder, M. Martens, and J. Rehof.
Combinatory logic synthesizer. In T. Margaria and B. Ste�en, edi-
tors, Leveraging Applications of Formal Methods, Veri�cation and Val-
idation. Technologies for Mastering Change - 6th International Sympo-
sium, ISoLA 2014, Imperial, Corfu, Greece, October 8-11, 2014, Pro-
ceedings, Part I, volume 8802 of Lecture Notes in Computer Science,
pages 26�40. Springer, 2014. doi: 10.1007/978-3-662-45234-9_3. URL
https://doi.org/10.1007/978-3-662-45234-9_3.

[20] K. Bimbó. Semantics for dual and symmetric combinatory calculi. J. Phi-
los. Log., 33(2):125�153, 2004. doi: 10.1023/B:LOGI.0000021709.73522.
34. URL https://doi.org/10.1023/B:LOGI.0000021709.73522.34.

[21] K. Bimbó. Combinatory Logic: Pure, Applied, and Typed. CRC Press,
Taylor & Francis Group, Boca Raton, Florida, 2012.

[22] A. Bizjak and L. Birkedal. Step-indexed logical relations for proba-
bility. In A. M. Pitts, editor, Foundations of Software Science and
Computation Structures - 18th International Conference, FoSSaCS 2015,
Held as Part of the European Joint Conferences on Theory and Prac-
tice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Pro-
ceedings, volume 9034 of Lecture Notes in Computer Science, pages
279�294. Springer, 2015. doi: 10.1007/978-3-662-46678-0_18. URL
https://doi.org/10.1007/978-3-662-46678-0_18.

[23] G. Boole. An Investigation of the Laws of Thought: On which are
Founded the Mathematical Theories of Logic and Probabilities. Walton
and Maberly, 1854.

[24] K. Brünnler, D. Flumini, and T. Studer. A logic of blockchain updates.
J. Log. Comput., 30(8):1469�1485, 2020. doi: 10.1093/logcom/exaa045.
URL https://doi.org/10.1093/logcom/exaa045.

[25] M. W. Bunder. Intersection types for lambda-terms and combinators and
their logics. Log. J. IGPL, 10(4):357�378, 2002. doi: 10.1093/jigpal/10.
4.357. URL https://doi.org/10.1093/jigpal/10.4.357.

https://doi.org/10.1007/978-3-662-45234-9_3
https://doi.org/10.1023/B:LOGI.0000021709.73522.34
https://doi.org/10.1007/978-3-662-46678-0_18
https://doi.org/10.1093/logcom/exaa045
https://doi.org/10.1093/jigpal/10.4.357

164

[26] R. Carnap. Modalities and quanti�cation. The Journal of Symbolic
Logic, 11(2):33�64, 1946. ISSN 00224812. URL http://www.jstor.

org/stable/2268610.

[27] A. Church. A set of postulates for the foundation of logic. Annals of
Mathematics, 33(2):346�366, 1932. ISSN 0003486X. URL http://www.

jstor.org/stable/1968337.

[28] A. Church. A note on the entscheidungsproblem. Journal of Symbolic
Logic, 1(1):40�41, 1936. doi: 10.2307/2269326.

[29] A. Church. An unsolvable problem of elementary number theory. Amer-
ican Journal of Mathematics, 58:345, 1936.

[30] A. Church. A formulation of the simple theory of types. Journal of
Symbolic Logic, 5(2):56�68, 1940. doi: 10.2307/2266170. URL https:

//doi.org/10.2307/2266170.

[31] A. Church. The Calculi of Lambda Conversion. (AM-6). Princeton
University Press, 1941. ISBN 9780691083940. URL http://www.jstor.

org/stable/j.ctt1b9x12d.

[32] B. J. Copeland. The genesis of possible worlds semantics. J. Philos.
Log., 31(2):99�137, 2002. doi: 10.1023/A:1015273407895. URL https:

//doi.org/10.1023/A:1015273407895.

[33] C. Coquand. A formalised proof of the soundness and completeness of
a simply typed lambda-calculus with explicit substitutions. High. Order
Symb. Comput., 15(1):57�90, 2002. doi: 10.1023/A:1019964114625. URL
https://doi.org/10.1023/A:1019964114625.

[34] R. D. Cosmo and D. Kesner. A con�uent reduction for the exten-
sional typed lambda-calculus with pairs, sums, recursion and termi-
nal object. In Automata, Languages and Programming, 20nd Interna-
tional Colloquium, ICALP93, Lund, Sweden, July 5-9, 1993, Proceed-
ings, pages 645�656, 1993. doi: 10.1007/3-540-56939-1_109. URL
https://doi.org/10.1007/3-540-56939-1_109.

[35] R. Crubillé and U. Dal Lago. On probabilistic applicative bisimulation
and call-by-value λ-calculi. In ESOP, volume 8410 of Lecture Notes in
Computer Science, pages 209�228. Springer, 2014.

[36] R. Crubillé, U. Dal Lago, D. Sangiorgi, and V. Vignudelli. On applica-
tive similarity, sequentiality, and full abstraction. In Correct System
Design, volume 9360 of Lecture Notes in Computer Science, pages 65�
82. Springer, 2015.

http://www.jstor.org/stable/2268610
http://www.jstor.org/stable/2268610
http://www.jstor.org/stable/1968337
http://www.jstor.org/stable/1968337
https://doi.org/10.2307/2266170
https://doi.org/10.2307/2266170
http://www.jstor.org/stable/j.ctt1b9x12d
http://www.jstor.org/stable/j.ctt1b9x12d
https://doi.org/10.1023/A:1015273407895
https://doi.org/10.1023/A:1015273407895
https://doi.org/10.1023/A:1019964114625
https://doi.org/10.1007/3-540-56939-1_109

Bibliography 165

[37] H. B. Curry. Grundlagen der kombinatorischen logik. American Journal
of Mathematics, 52(3):509�536, 1930. ISSN 00029327, 10806377. URL
http://www.jstor.org/stable/2370619.

[38] H. B. Curry. Functionality in combinatory logic. Proceedings of the
National Academy of Sciences of the United States of America, 20(11):
584�590, 1934. ISSN 00278424. URL http://www.jstor.org/stable/

86796.

[39] H. B. Curry and R. Feys. Combinatory Logic. Number v. 1 in
Combinatory Logic. North-Holland Publishing Company, 1958. URL
https://books.google.ba/books?id=fEnuAAAAMAAJ.

[40] G. Curzi and M. Pagani. The bene�t of being non-lazy in probabilis-
tic λ-calculus: Applicative bisimulation is fully abstract for non-lazy
probabilistic call-by-name. In H. Hermanns, L. Zhang, N. Kobayashi,
and D. Miller, editors, LICS '20: 35th Annual ACM/IEEE Sympo-
sium on Logic in Computer Science, Saarbrücken, Germany, July 8-11,
2020, pages 327�340. ACM, 2020. doi: 10.1145/3373718.3394806. URL
https://doi.org/10.1145/3373718.3394806.

[41] L. Czajka. A semantic approach to illative combinatory logic. In
M. Bezem, editor, Computer Science Logic, 25th International Work-
shop / 20th Annual Conference of the EACSL, CSL 2011, Septem-
ber 12-15, 2011, Bergen, Norway, Proceedings, volume 12 of LIPIcs,
pages 174�188. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2011.
doi: 10.4230/LIPIcs.CSL.2011.174. URL https://doi.org/10.4230/

LIPIcs.CSL.2011.174.

[42] L. Czajka. Higher-order illative combinatory logic. J. Symb. Log., 78(3):
837�872, 2013. doi: 10.2178/jsl.7803080. URL https://doi.org/10.

2178/jsl.7803080.

[43] U. Dal Lago and F. Gavazzo. On bisimilarity in lambda calculi with
continuous probabilistic choice. In B. König, editor, Proceedings of the
Thirty-Fifth Conference on the Mathematical Foundations of Program-
ming Semantics, MFPS 2019, London, UK, June 4-7, 2019, volume
347 of Electronic Notes in Theoretical Computer Science, pages 121�
141. Elsevier, 2019. doi: 10.1016/j.entcs.2019.09.007. URL https:

//doi.org/10.1016/j.entcs.2019.09.007.

[44] U. Dal Lago and A. Rioli. Applicative bisimulation and quantum
λ-calculi. In M. Dastani and M. Sirjani, editors, Fundamentals
of Software Engineering - 6th International Conference, FSEN 2015

http://www.jstor.org/stable/2370619
http://www.jstor.org/stable/86796
http://www.jstor.org/stable/86796
https://books.google.ba/books?id=fEnuAAAAMAAJ
https://doi.org/10.1145/3373718.3394806
https://doi.org/10.4230/LIPIcs.CSL.2011.174
https://doi.org/10.4230/LIPIcs.CSL.2011.174
https://doi.org/10.2178/jsl.7803080
https://doi.org/10.2178/jsl.7803080
https://doi.org/10.1016/j.entcs.2019.09.007
https://doi.org/10.1016/j.entcs.2019.09.007

166

Tehran, Iran, April 22-24, 2015, Revised Selected Papers, volume 9392
of Lecture Notes in Computer Science, pages 54�68. Springer, 2015.
doi: 10.1007/978-3-319-24644-4_4. URL https://doi.org/10.1007/

978-3-319-24644-4_4.

[45] U. Dal Lago and M. Zorzi. Probabilistic operational semantics for the
lambda calculus. RAIRO - Theoretical Informatics and Applications
- Informatique Théorique et Applications, 46(3):413�450, 2012. doi:
10.1051/ita/2012012. URL http://www.numdam.org/item/ITA_2012_

_46_3_413_0.

[46] U. Dal Lago, D. Sangiorgi, and M. Alberti. On coinductive equivalences
for higher-order probabilistic functional programs (long version). CoRR,
abs/1311.1722, 2013.

[47] U. Dal Lago, D. Sangiorgi, and M. Alberti. On coinductive equivalences
for higher-order probabilistic functional programs. In POPL, pages 297�
308. ACM, 2014.

[48] U. Dal Lago, F. Gavazzo, and P. B. Levy. E�ectful applicative bisimilar-
ity: Monads, relators, and howe's method. In 32nd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Ice-
land, June 20-23, 2017, pages 1�12. IEEE Computer Society, 2017. doi:
10.1109/LICS.2017.8005117. URL https://doi.org/10.1109/LICS.

2017.8005117.

[49] S. Dautovi¢, D. Doder, and Z. Ognjanovi¢. Logics for reasoning about
degrees of con�rmation. J. Log. Comput., 31(8):2189�2217, 2021. doi:
10.1093/logcom/exab033. URL https://doi.org/10.1093/logcom/

exab033.

[50] R. C. de Vrijer. Extending the lambda calculus with surjective pairing is
conservative. In Proceedings of the Fourth Annual Symposium on Logic
in Computer Science (LICS '89), Paci�c Grove, California, USA, June
5-8, 1989, pages 204�215, 1989. doi: 10.1109/LICS.1989.39175. URL
https://doi.org/10.1109/LICS.1989.39175.

[51] W. Dekkers, M. W. Bunder, and H. Barendregt. Completeness
of two systems of illative combinatory logic for �rst-order proposi-
tional and predicate calculus. Arch. Math. Log., 37(5-6):327�341,
1998. doi: 10.1007/s001530050102. URL https://doi.org/10.1007/

s001530050102.

https://doi.org/10.1007/978-3-319-24644-4_4
https://doi.org/10.1007/978-3-319-24644-4_4
http://www.numdam.org/item/ITA_2012__46_3_413_0
http://www.numdam.org/item/ITA_2012__46_3_413_0
https://doi.org/10.1109/LICS.2017.8005117
https://doi.org/10.1109/LICS.2017.8005117
https://doi.org/10.1093/logcom/exab033
https://doi.org/10.1093/logcom/exab033
https://doi.org/10.1109/LICS.1989.39175
https://doi.org/10.1007/s001530050102
https://doi.org/10.1007/s001530050102

Bibliography 167

[52] J. Desclés. Combinatory logic, language, and cognitive representations.
In P. Weingartner, editor, Alternative Logics. Do Sciences Need Them?,
pages 115�148. Springer Verlag, 2004.

[53] B. Düdder, M. Martens, J. Rehof, and P. Urzyczyn. Bounded combi-
natory logic. In P. Cégielski and A. Durand, editors, Computer Sci-
ence Logic (CSL'12) - 26th International Workshop/21st Annual Con-
ference of the EACSL, CSL 2012, September 3-6, 2012, Fontainebleau,
France, volume 16 of LIPIcs, pages 243�258. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2012. doi: 10.4230/LIPIcs.CSL.2012.243. URL
https://doi.org/10.4230/LIPIcs.CSL.2012.243.

[54] J. M. Dunn and R. K. Meyer. Combinators and structurally free logic.
Log. J. IGPL, 5(4):505�537, 1997. doi: 10.1093/jigpal/5.4.505. URL
https://doi.org/10.1093/jigpal/5.4.505.

[55] T. Ehrhard, M. Pagani, and C. Tasson. The computational meaning
of probabilistic coherence spaces. In Proceedings of the 26th Annual
IEEE Symposium on Logic in Computer Science, LICS 2011, June 21-
24, 2011, Toronto, Ontario, Canada, pages 87�96. IEEE Computer So-
ciety, 2011. doi: 10.1109/LICS.2011.29. URL https://doi.org/10.

1109/LICS.2011.29.

[56] R. Fagin, J. Y. Halpern, and N. Megiddo. A logic for reasoning about
probabilities. Information and Computation, 87(1/2):78�128, 1990.
doi: 10.1016/0890-5401(90)90060-U. URL https://doi.org/10.1016/

0890-5401(90)90060-U.

[57] M. Fattorosi-Barnaba and G. Amati. Modal operators with probabilistic
interpretations, I. Studia Logica, 46(4):383�393, 1987. doi: 10.1007/
BF00370648. URL https://doi.org/10.1007/BF00370648.

[58] R. Feys. La transcription logistique du raisonnement: son intérét et ses
limites [the logistic transcription of reasoning: Its importance and its
limits]. Revue néoscolastique de philosophie, 26:299�324, 1924. ISSN
0776555X, 22959122. URL http://www.jstor.org/stable/26343715.

[59] J. H. Gallier. Kripke models and the (in)equational logic of the
second-order lambda-calculus. Ann. Pure Appl. Log., 84(3):257�316,
1997. doi: 10.1016/S0168-0072(96)00039-5. URL https://doi.org/

10.1016/S0168-0072(96)00039-5.

[60] D. Garrette, C. Dyer, J. Baldridge, and N. A. Smith. Weakly-supervised
grammar-informed bayesian CCG parser learning. In B. Bonet and

https://doi.org/10.4230/LIPIcs.CSL.2012.243
https://doi.org/10.1093/jigpal/5.4.505
https://doi.org/10.1109/LICS.2011.29
https://doi.org/10.1109/LICS.2011.29
https://doi.org/10.1016/0890-5401(90)90060-U
https://doi.org/10.1016/0890-5401(90)90060-U
https://doi.org/10.1007/BF00370648
http://www.jstor.org/stable/26343715
https://doi.org/10.1016/S0168-0072(96)00039-5
https://doi.org/10.1016/S0168-0072(96)00039-5

168

S. Koenig, editors, Proceedings of the Twenty-Ninth AAAI Conference
on Arti�cial Intelligence, January 25-30, 2015, Austin, Texas, USA,
pages 2246�2252. AAAI Press, 2015. URL http://www.aaai.org/ocs/

index.php/AAAI/AAAI15/paper/view/9835.

[61] S. Ghilezan and S. Ka²terovi¢. Towards completeness of full simply typed
lambda calculus. In 26th International Conference on Types for Proofs
and Programs - TYPES 2020, pages 164�166, March 2-5, 2020.

[62] S. Ghilezan and S. Ka²terovi¢. Semantics for combinatory logic with in-
tersection types. Frontiers Comput. Sci., 4, 2022. doi: 10.3389/FCOMP.
2022.792570. URL https://doi.org/10.3389/fcomp.2022.792570.

[63] S. Ghilezan, J. Iveti¢, S. Ka²terovi¢, Z. Ognjanovi¢, and N. Savi¢. To-
wards probabilistic reasoning about simply typed lambda terms. In 7th
Conference on Probability Logics and Applications - VLP 2017, Belgrade,
Serbia, November 8, 2017.

[64] S. Ghilezan, J. Iveti¢, S. Ka²terovi¢, Z. Ognjanovi¢, and N. Savi¢. Prob-
abilistic reasoning about simply typed lambda terms. In S. N. Artëmov
and A. Nerode, editors, Logical Foundations of Computer Science - In-
ternational Symposium, LFCS 2018, Deer�eld Beach, FL, USA, January
8-11, 2018, Proceedings, volume 10703 of Lecture Notes in Computer Sci-
ence, pages 170�189. Springer, 2018. doi: 10.1007/978-3-319-72056-2\
_11. URL https://doi.org/10.1007/978-3-319-72056-2_11.

[65] S. Ghilezan, J. Iveti¢, S. Ka²terovi¢, Z. Ognjanovi¢, and N. Savi¢. To-
wards probabilistic reasoning about typed lambda terms. In 24th Inter-
national Conference on Types for Proofs and Programs - TYPES 2018,
pages 41�42, Braga, Portugal, June 18 - 21, 2018.

[66] S. Ghilezan, J. Iveti¢, S. Ka²terovi¢, Z. Ognjanovi¢, and N. Savi¢.
Towards probabilistic reasoning in type theory - the intersection type
case. In A. Herzig and J. Kontinen, editors, Foundations of Information
and Knowledge Systems - 11th International Symposium, FoIKS 2020,
Dortmund, Germany, February 17-21, 2020, Proceedings, volume 12012
of Lecture Notes in Computer Science, pages 122�139. Springer, 2020.
doi: 10.1007/978-3-030-39951-1_8. URL https://doi.org/10.1007/

978-3-030-39951-1_8.

[67] J.-Y. Girard, P. Taylor, and Y. Lafont. Proofs and Types. Cambridge
University Press, New York, NY, USA, 1989. ISBN 0-521-37181-3.

http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9835
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9835
https://doi.org/10.3389/fcomp.2022.792570
https://doi.org/10.1007/978-3-319-72056-2_11
https://doi.org/10.1007/978-3-030-39951-1_8
https://doi.org/10.1007/978-3-030-39951-1_8

Bibliography 169

[68] K. Gödel. Über formal unentscheidbare sätze der principia mathematica
und verwandter systeme i. Monatshefte für Mathematik und Physik, 38:
173�198, 1931.

[69] S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput. Syst.
Sci., 28(2):270�299, 1984. doi: 10.1016/0022-0000(84)90070-9. URL
https://doi.org/10.1016/0022-0000(84)90070-9.

[70] N. D. Goodman. The principles and practice of probabilistic pro-
gramming. In R. Giacobazzi and R. Cousot, editors, The 40th An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL '13, Rome, Italy - January 23 - 25, 2013,
pages 399�402. ACM, 2013. doi: 10.1145/2429069.2429117. URL
https://doi.org/10.1145/2429069.2429117.

[71] A. D. Gordon. Bisimilarity as a theory of functional programming.
Theor. Comput. Sci., 228(1-2):5�47, 1999. doi: 10.1016/S0304-3975(98)
00353-3. URL https://doi.org/10.1016/S0304-3975(98)00353-3.

[72] T. Hailperin. Best possible inequalities for the probability of a logical
function of events. The American Mathematical Monthly, 72(4):343�359,
1965. ISSN 00029890, 19300972. URL http://www.jstor.org/stable/

2313491.

[73] J. Y. Halpern and R. Pucella. A logic for reasoning about evidence. J.
Artif. Int. Res., 26(1):1�34, may 2006. ISSN 1076-9757.

[74] C. L. Hamblin. The modal "probably". Mind, 68(270):234�240, 1959.
doi: 10.1093/mind/lxviii.270.234.

[75] C. Hartshorne and P. Weiss, editors. Collected Papers of Charles Sanders
Peirce, Vol. II: Elements of Logic. Harvard University Press, Cambridge,
Mass, 1932.

[76] C. Hartshorne and P. Weiss, editors. Collected Papers of Charles Sanders
Peirce, Vol. III: Exact Logic. Harvard University Press, Cambridge,
Mass, 1933.

[77] J. R. Hindley. The completeness theorem for typing lambda-terms.
Theor. Comput. Sci., 22:1�17, 1983. doi: 10.1016/0304-3975(83)90136-6.
URL https://doi.org/10.1016/0304-3975(83)90136-6.

[78] J. R. Hindley and J. P. Seldin. Lambda-Calculus and Combinators: An
Introduction. Cambridge University Press, 2 edition, 2008. doi: 10.1017/
CBO9780511809835.

https://doi.org/10.1016/0022-0000(84)90070-9
https://doi.org/10.1145/2429069.2429117
https://doi.org/10.1016/S0304-3975(98)00353-3
http://www.jstor.org/stable/2313491
http://www.jstor.org/stable/2313491
https://doi.org/10.1016/0304-3975(83)90136-6

170

[79] J. Hintikka. Form and content in quanti�cation theory. Acta Philosophica
Fennica, 8:7�55, 1955.

[80] J. Hintikka. Notes on quanti�cation theory. Societas Scientiarum Fen-
nica, Commentationes Physico-Mathematicae, 17(12), 1955.

[81] Y. Hirai. Blockchains as kripke models: An analysis of atomic
cross-chain swap. In T. Margaria and B. Ste�en, editors, Lever-
aging Applications of Formal Methods, Veri�cation and Validation.
Industrial Practice - 8th International Symposium, ISoLA 2018, Li-
massol, Cyprus, November 5-9, 2018, Proceedings, Part IV, volume
11247 of Lecture Notes in Computer Science, pages 389�404. Springer,
2018. doi: 10.1007/978-3-030-03427-6_29. URL https://doi.org/

10.1007/978-3-030-03427-6_29.

[82] D. N. Hoover. Probability logic. Annals of Mathematical Logic, 14(3):
287, 1978. doi: 10.1016/0003-4843(78)90022-0.

[83] W. A. Howard. The formulae-as-types notion of construction. In To H.B.
Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism,
pages 479�490. London : Academic Press, 1980 (originally circulated
1969). ISBN 978-0-12-349050-6.

[84] D. J. Howe. Proving congruence of bisimulation in functional program-
ming languages. Inf. Comput., 124(2):103�112, 1996. doi: 10.1006/inco.
1996.0008. URL https://doi.org/10.1006/inco.1996.0008.

[85] J. Z. S. Hu and B. Pientka. A categorical normalization proof
for the modal lambda-calculus. CoRR, abs/2211.12318, 2022. doi:
10.48550/arXiv.2211.12318. URL https://doi.org/10.48550/arXiv.

2211.12318.

[86] A. Ili¢-Stepi¢, M. Kneºevi¢, and Z. Ognjanovi¢. Intuitionistic propo-
sitional probability logic. Math. Log. Q., 68(4):479�495, 2022.
doi: 10.1002/malq.202100052. URL https://doi.org/10.1002/malq.

202100052.

[87] A. Ili¢-Stepi¢, Z. Ognjanovi¢, and A. Perovi¢. Probability logics for
reasoning about quantum observations. Logica Universalis, 17(2):175�
219, 2023. doi: 10.1007/s11787-023-00326-y. URL https://doi.org/

10.1007/s11787-023-00326-y.

[88] S. S. Ishtiaq and D. J. Pym. Kripke resource models of a dependently-
typed, bunched lambda-calculus. In J. Flum and M. Rodríguez-Artalejo,
editors, Computer Science Logic, 13th International Workshop, CSL '99,

https://doi.org/10.1007/978-3-030-03427-6_29
https://doi.org/10.1007/978-3-030-03427-6_29
https://doi.org/10.1006/inco.1996.0008
https://doi.org/10.48550/arXiv.2211.12318
https://doi.org/10.48550/arXiv.2211.12318
https://doi.org/10.1002/malq.202100052
https://doi.org/10.1002/malq.202100052
https://doi.org/10.1007/s11787-023-00326-y
https://doi.org/10.1007/s11787-023-00326-y

Bibliography 171

8th Annual Conference of the EACSL, Madrid, Spain, September 20-25,
1999, Proceedings, volume 1683 of Lecture Notes in Computer Science,
pages 235�249. Springer, 1999. doi: 10.1007/3-540-48168-0_17. URL
https://doi.org/10.1007/3-540-48168-0_17.

[89] C. Jones and G. D. Plotkin. A probabilistic powerdomain of evaluations.
In Proceedings of the Fourth Annual Symposium on Logic in Computer
Science (LICS '89), Paci�c Grove, California, USA, June 5-8, 1989,
pages 186�195. IEEE Computer Society, 1989. doi: 10.1109/LICS.1989.
39173. URL https://doi.org/10.1109/LICS.1989.39173.

[90] F. Kamareddine, T. Laan, and R. Nederpelt. Types in logic and mathe-
matics before 1940. Bull. Symb. Log., 8(2):185�245, 2002. doi: 10.2178/
bsl/1182353871. URL https://doi.org/10.2178/bsl/1182353871.

[91] N. Kamide, Y. Shramko, and H. Wansing. Kripke completeness of bi-
intuitionistic multilattice logic and its connexive variant. Studia Logica,
105(6):1193�1219, 2017. doi: 10.1007/s11225-017-9752-x.

[92] S. Ka²terov¢ and S. Ghilezan. Towards probabilistic reasoning about
typed combinatory terms. In 28th International Conference on Types
for Proofs and Programs - TYPES 2022, Nantes, France, June 20-23,
2022.

[93] S. Ka²terovi¢ and S. Ghilezan. Kripke-style semantics for full simply
typed lambda calculus. In 9th International Conference on Logic and
Applications - LAP 2020, pages 12�14, September 21 - 25, 2020.

[94] S. Ka²terovi¢ and S. Ghilezan. Kripke-style semantics and completeness
for full simply typed lambda calculus. J. Log. Comput., 30(8):1567�1608,
2020. doi: 10.1093/logcom/exaa055. URL https://doi.org/10.1093/

logcom/exaa055.

[95] S. Ka²terovi¢ and S. Ghilezan. Towards logic of combinatory logic. In
10th International Conference on Logic and Applications - LAP 2021,
pages 34�36, Dubrovnik, Croatia, September 20 - 24, 2021.

[96] S. Ka²terovi¢ and S. Ghilezan. Probabilistic reasoning about typed com-
binatory logic. In 11th International Conference on Logic and Applica-
tions - LAP 2022, pages 29�31, Dubrovnik, Croatia, September 26-29,
2022.

[97] S. Ka²terovi¢ and S. Ghilezan. Logic of combinatory logic. CoRR,
abs/2212.06675, 2022. doi: 10.48550/arXiv.2212.06675. URL https:

//doi.org/10.48550/arXiv.2212.06675.

https://doi.org/10.1007/3-540-48168-0_17
https://doi.org/10.1109/LICS.1989.39173
https://doi.org/10.2178/bsl/1182353871
https://doi.org/10.1093/logcom/exaa055
https://doi.org/10.1093/logcom/exaa055
https://doi.org/10.48550/arXiv.2212.06675
https://doi.org/10.48550/arXiv.2212.06675

172

[98] S. Ka²terovi¢ and M. Pagani. Towards probabilistic testing of lambda
terms. In 7th International Conference on Logic and Applications - LAP
2018, pages 21�23, Dubrovnik, Croatia, September 24-28, 2018.

[99] S. Ka²terovi¢ and M. Pagani. The discriminating power of the let-in op-
erator in the lazy call-by-name probabilistic lambda-calculus. In H. Geu-
vers, editor, 4th International Conference on Formal Structures for Com-
putation and Deduction, FSCD 2019, June 24-30, 2019, Dortmund,
Germany, volume 131 of LIPIcs, pages 26:1�26:20. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019. doi: 10.4230/LIPIcs.FSCD.2019.
26. URL https://doi.org/10.4230/LIPIcs.FSCD.2019.26.

[100] H. J. Keisler. Hyper�nite model theory. In R. Gandy and J. Hyland,
editors, Logic Colloquim, volume 76, pages 5�110. North-Holland, 1977.

[101] H. J. Keisler. Probability quanti�ers. In J. Barwise and S. Feferman,
editors, Model-Theoretic Logics, Perspectives in Logic, page 509�556.
Springer, Berlin, 1985. doi: 10.1017/9781316717158.021.

[102] S. C. Kleene. λ-de�nability and recursiveness. Duke Mathematical Jour-
nal, 2:340�353, 1936.

[103] S. C. Kleene and J. B. Rosser. The inconsistency of certain formal
logics. Annals of Mathematics, 36(3):630�636, 1935. ISSN 0003486X.
URL http://www.jstor.org/stable/1968646.

[104] I. Kokkinis, Z. Ognjanovi¢, and T. Studer. Probabilistic justi�ca-
tion logic. In S. N. Artëmov and A. Nerode, editors, Logical Foun-
dations of Computer Science - International Symposium, LFCS 2016,
Deer�eld Beach, FL, USA, January 4-7, 2016. Proceedings, volume
9537 of Lecture Notes in Computer Science, pages 174�186. Springer,
2016. doi: 10.1007/978-3-319-27683-0_13. URL https://doi.org/

10.1007/978-3-319-27683-0_13.

[105] L. Koralov and Y. G. Sinai. Theory of Probability and Random Processes.
Universitext (Berlin. Print). Springer, 2007. ISBN 9783540254843. URL
https://books.google.rs/books?id=QILj7e_iPZEC.

[106] V. Koutavas, P. B. Levy, and E. Sumii. From applicative to envi-
ronmental bisimulation. In M. W. Mislove and J. Ouaknine, editors,
Twenty-seventh Conference on the Mathematical Foundations of Pro-
gramming Semantics, MFPS 2011, Pittsburgh, PA, USA, May 25-28,
2011, volume 276 of Electronic Notes in Theoretical Computer Science,
pages 215�235. Elsevier, 2011. doi: 10.1016/j.entcs.2011.09.023. URL
https://doi.org/10.1016/j.entcs.2011.09.023.

https://doi.org/10.4230/LIPIcs.FSCD.2019.26
http://www.jstor.org/stable/1968646
https://doi.org/10.1007/978-3-319-27683-0_13
https://doi.org/10.1007/978-3-319-27683-0_13
https://books.google.rs/books?id=QILj7e_iPZEC
https://doi.org/10.1016/j.entcs.2011.09.023

Bibliography 173

[107] M. Kraus. Early greek probability arguments and common ground in
dissensus. In Ontario Society for the Study of Argumentation (OSSA)
Proceedings, pages 1�11. OSSA Conference Archive, 2007.

[108] S. A. Kripke. A completeness theorem in modal logic. Journal of Sym-
bolic Logic, 24(1):1�14, 1959. doi: 10.2307/2964568.

[109] S. A. Kripke. Semantical analysis of modal logic i. normal propositional
calculi. Zeitschrift fur mathematische Logik und Grundlagen der Math-
ematik, 9(5-6):67�96, 1963. doi: 10.1002/malq.19630090502.

[110] S. A. Kripke. Semantical analysis of intuitionistic logic i. In For-
mal Systems and Recursive Functions, volume 40 of Studies in Logic
and the Foundations of Mathematics, pages 92 � 130. Elsevier, 1965.
doi: https://doi.org/10.1016/S0049-237X(08)71685-9. URL http://

www.sciencedirect.com/science/article/pii/S0049237X08716859.

[111] K. G. Larsen and A. Skou. Bisimulation through probabilistic testing.
Inf. Comput., 94(1):1�28, 1991.

[112] S. B. Lassen. Relational Reasoning about Functions and Nondetermin-
ism. PhD thesis, University of Aarhus, 1998.

[113] G. W. Leibniz. De incerti aestimatione. PhD thesis, 1678.

[114] S. Lenglet, A. Schmitt, and J. Stefani. Howe's method for calculi
with passivation. In M. Bravetti and G. Zavattaro, editors, CON-
CUR 2009 - Concurrency Theory, 20th International Conference, CON-
CUR 2009, Bologna, Italy, September 1-4, 2009. Proceedings, volume
5710 of Lecture Notes in Computer Science, pages 448�462. Springer,
2009. doi: 10.1007/978-3-642-04081-8_30. URL https://doi.org/

10.1007/978-3-642-04081-8_30.

[115] P. Liang, M. I. Jordan, and D. Klein. Learning programs: A hierar-
chical bayesian approach. In J. Fürnkranz and T. Joachims, editors,
Proceedings of the 27th International Conference on Machine Learning
(ICML-10), June 21-24, 2010, Haifa, Israel, pages 639�646. Omnipress,
2010. URL https://icml.cc/Conferences/2010/papers/568.pdf.

[116] J. Lipton. Kripke semantics for dependent type theory and realizability
interpretations. In J. P. M. Jr. and M. J. O'Donnell, editors, Construc-
tivity in Computer Science, Summer Symposium, San Antonio, Texas,
USA, June 19-22, Proceedings, volume 613 of Lecture Notes in Computer
Science, pages 22�32. Springer, 1991. doi: 10.1007/BFb0021080. URL
https://doi.org/10.1007/BFb0021080.

http://www.sciencedirect.com/science/article/pii/S0049237X08716859
http://www.sciencedirect.com/science/article/pii/S0049237X08716859
https://doi.org/10.1007/978-3-642-04081-8_30
https://doi.org/10.1007/978-3-642-04081-8_30
https://icml.cc/Conferences/2010/papers/568.pdf
https://doi.org/10.1007/BFb0021080

174

[117] C. D. Manning and H. Schütze. Foundations of Statistical Natural Lan-
guage Processing. MIT Press, Cambridge, MA, USA, 1999. ISBN 0-262-
13360-1.

[118] B. Marinkovi¢, P. Glavan, Z. Ognjanovi¢, D. Doder, and T. Studer.
Probabilistic consensus of the blockchain protocol. In G. Kern-Isberner
and Z. Ognjanovi¢, editors, Symbolic and Quantitative Approaches to
Reasoning with Uncertainty, 15th European Conference, ECSQARU
2019, Belgrade, Serbia, September 18-20, 2019, Proceedings, volume
11726 of Lecture Notes in Computer Science, pages 469�480. Springer,
2019. doi: 10.1007/978-3-030-29765-7_39. URL https://doi.org/

10.1007/978-3-030-29765-7_39.

[119] Z. Markovi¢, Z. Ognjanovi¢, and M. Ra²kovi¢. A probabilistic extension
of intuitionistic logic. Math. Log. Q., 49(4):415�424, 2003. doi: 10.1002/
malq.200310044. URL https://doi.org/10.1002/malq.200310044.

[120] J. C. C. Mckinsey. On the syntactical construction of systems of modal
logic. The Journal of Symbolic Logic, 10(3):83�94, 1945. doi: 10.2307/
2267027.

[121] C. A. Meredith and A. N. Prior. Interpretations of di�erent modal log-
ics in the `property calculus'. Mimeograph, University of Canterbury,
Philosophy Department, 1956.

[122] R. Milner. A Calculus of Communicating Systems, volume 92 of Lec-
ture Notes in Computer Science. Springer, 1980. ISBN 3-540-10235-
3. doi: 10.1007/3-540-10235-3. URL https://doi.org/10.1007/

3-540-10235-3.

[123] J. C. Mitchell. Foundations for programming languages. Foundation of
computing series. MIT Press, 1996. ISBN 978-0-262-13321-0.

[124] J. C. Mitchell and E. Moggi. Kripke-style models for typed lambda
calculus. Annals of Pure and Applied Logic, 51(1-2):99�124, 1991.
doi: 10.1016/0168-0072(91)90067-V. URL https://doi.org/10.1016/

0168-0072(91)90067-V.

[125] R. Montague. Logical necessity, physical necessity, ethics, and quanti-
�ers. Inquiry: An Interdisciplinary Journal of Philosophy, 3(1-4):259�
269, 1960. doi: 10.1080/00201746008601312.

[126] J. H. Morris. Lambda-calculus models of programming languages. PhD
thesis, Massachusetts Institute of Technology, 1969.

https://doi.org/10.1007/978-3-030-29765-7_39
https://doi.org/10.1007/978-3-030-29765-7_39
https://doi.org/10.1002/malq.200310044
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1016/0168-0072(91)90067-V
https://doi.org/10.1016/0168-0072(91)90067-V

Bibliography 175

[127] N. J. Nilsson. Probabilistic logic. Arti�cial Intelligence, 28(1):71�87,
1986. doi: 10.1016/0004-3702(86)90031-7. URL https://doi.org/10.

1016/0004-3702(86)90031-7.

[128] Z. Ognjanovi¢. Some probability logics and their applications in computer
sciences. PhD Thesis (in Serbian), University of Kragujevac, 1999.

[129] Z. Ognjanovi¢ and M. Ra²kovi¢. Some probability logics with new types
of probability operators. J. Log. Comput., 9(2):181�195, 1999. doi:
10.1093/logcom/9.2.181. URL https://doi.org/10.1093/logcom/9.

2.181.

[130] Z. Ognjanovi¢ and M. Ra²kovi¢. Some �rst-order probabil-
ity logics. Theor. Comput. Sci., 247(1-2):191�212, 2000. doi:
10.1016/S0304-3975(98)00341-7. URL https://doi.org/10.1016/

S0304-3975(98)00341-7.

[131] Z. Ognjanovi¢, A. Perovi¢, and M. Ra²kovi¢. Logics with the qualitative
probability operator. Log. J. IGPL, 16(2):105�120, 2008. doi: 10.1093/
jigpal/jzm031. URL https://doi.org/10.1093/jigpal/jzm031.

[132] Z. Ognjanovi¢, M. Ra²kovi¢, and Z. Markovi¢. Probability Logics:
Probability-Based Formalization of Uncertain Reasoning. Springer Pub-
lishing Company, Incorporated, 1st edition, 2016. ISBN 3319470116.

[133] D. Park. A new equivalence notion for communicating systems. In
G. Maurer, editor, Bulletin EATCS, volume 14, pages 78�80, 1981. Ab-
stract of the talk presented at the Second Workshop on the Semantics
of Programming Languages, Bad Honnef, March 16�20 1981. Abstracts
collected in the Bulletin by B. Mayoh.

[134] S. Park, F. Pfenning, and S. Thrun. A probabilistic language based on
sampling functions. ACM Trans. Program. Lang. Syst., 31(1):4:1�4:46,
2008. doi: 10.1145/1452044.1452048. URL https://doi.org/10.1145/

1452044.1452048.

[135] J. Pearl. Probabilistic reasoning in intelligent systems - networks of plau-
sible inference. Morgan Kaufmann series in representation and reasoning.
Morgan Kaufmann, 1989.

[136] A. Pfe�er. IBAL: A probabilistic rational programming language. In
B. Nebel, editor, Proceedings of the Seventeenth International Joint
Conference on Arti�cial Intelligence, IJCAI 2001, Seattle, Washington,
USA, August 4-10, 2001, pages 733�740. Morgan Kaufmann, 2001.

https://doi.org/10.1016/0004-3702(86)90031-7
https://doi.org/10.1016/0004-3702(86)90031-7
https://doi.org/10.1093/logcom/9.2.181
https://doi.org/10.1093/logcom/9.2.181
https://doi.org/10.1016/S0304-3975(98)00341-7
https://doi.org/10.1016/S0304-3975(98)00341-7
https://doi.org/10.1093/jigpal/jzm031
https://doi.org/10.1145/1452044.1452048
https://doi.org/10.1145/1452044.1452048

176

[137] B. C. Pierce. Types and programming languages. MIT Press, 2002. ISBN
978-0-262-16209-8.

[138] B. C. Pierce, A. A. de Amorim, C. Casinghino, M. Gaboardi, M. Green-
berg, C. Hriµcu, V. Sjöberg, A. Tolmach, and B. Yorgey. Program-
ming Language Foundations. Software Foundations series, volume 2.
Electronic textbook, May 2018. URL http://www.cis.upenn.edu/

~bcpierce/sf. Version 5.5.

[139] A. M. Pitts. Howe's method for higher-order languages. In D. San-
giorgi and J. J. M. M. Rutten, editors, Advanced Topics in Bisimulation
and Coinduction, volume 52 of Cambridge tracts in theoretical computer
science, pages 197�232. Cambridge University Press, 2012.

[140] A. Prior. Past, Present and Future. Oxford, England: Clarendon Press,
1967.

[141] A. N. Prior. Time and Modality. Oxford University Press, Greenwood
Press, 1957.

[142] A. N. Prior. The syntax of time-distinctions. Franciscan Studies, 18(2):
105�120, 1958. doi: 10.1353/frc.1958.0008.

[143] A. N. Prior. Tense-logic and the continuity of time. Studia Logica, 13
(1):133�151, 1962. doi: 10.1007/bf02317267.

[144] F. P. Ramsey. The foundations of mathematics. Proceedings of the
London Mathematical Society, s2-25(1):338�384, 1926. doi: https:
//doi.org/10.1112/plms/s2-25.1.338. URL https://londmathsoc.

onlinelibrary.wiley.com/doi/abs/10.1112/plms/s2-25.1.338.

[145] N. Ramsey and A. Pfe�er. Stochastic lambda calculus and monads of
probability distributions. In J. Launchbury and J. C. Mitchell, editors,
Conference Record of POPL 2002: The 29th SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, Portland, OR, USA,
January 16-18, 2002, pages 154�165. ACM, 2002. doi: 10.1145/503272.
503288. URL https://doi.org/10.1145/503272.503288.

[146] M. Ra²kovi¢. Classical logic with some probability operators. Publica-
tions de l'Institut Mathématique, 53(67), 1993.

[147] M. Ra²kovi¢, Z. Ognjanovi¢, and Z. Markovi¢. A logic with condi-
tional probabilities. In J. J. Alferes and J. A. Leite, editors, Logics
in Arti�cial Intelligence, 9th European Conference, JELIA 2004, Lis-
bon, Portugal, September 27-30, 2004, Proceedings, volume 3229 of

http://www.cis.upenn.edu/~bcpierce/sf
http://www.cis.upenn.edu/~bcpierce/sf
https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/plms/s2-25.1.338
https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/plms/s2-25.1.338
https://doi.org/10.1145/503272.503288

Bibliography 177

Lecture Notes in Computer Science, pages 226�238. Springer, 2004.
doi: 10.1007/978-3-540-30227-8_21. URL https://doi.org/10.

1007/978-3-540-30227-8_21.

[148] S. Roman. Lattices and ordered sets. Springer New York, NY, 2008.

[149] G. Ryle. Meaning and necessity. Philosophy, 24(88):69�76, 1949. ISSN
00318191, 1469817X. URL http://www.jstor.org/stable/3747236.

[150] D. Sands. From SOS rules to proof principles: An operational metathe-
ory for functional languages. In P. Lee, F. Henglein, and N. D. Jones,
editors, Conference Record of POPL'97: The 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, Pa-
pers Presented at the Symposium, Paris, France, 15-17 January 1997,
pages 428�441. ACM Press, 1997. doi: 10.1145/263699.263760. URL
https://doi.org/10.1145/263699.263760.

[151] D. Sangiorgi, N. Kobayashi, and E. Sumii. Logical bisimulations and
functional languages. In F. Arbab and M. Sirjani, editors, Interna-
tional Symposium on Fundamentals of Software Engineering, Interna-
tional Symposium, FSEN 2007, Tehran, Iran, April 17-19, 2007, Pro-
ceedings, volume 4767 of Lecture Notes in Computer Science, pages
364�379. Springer, 2007. doi: 10.1007/978-3-540-75698-9_24. URL
https://doi.org/10.1007/978-3-540-75698-9_24.

[152] D. Sangiorgi, N. Kobayashi, and E. Sumii. Environmental bisimulations
for higher-order languages. ACM Trans. Program. Lang. Syst., 33(1):
5:1�5:69, 2011. doi: 10.1145/1889997.1890002. URL https://doi.org/

10.1145/1889997.1890002.

[153] G. Scherer. Deciding equivalence with sums and the empty type.
In G. Castagna and A. D. Gordon, editors, Proceedings of the 44th
ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, Paris, France, January 18-20, 2017, pages 374�386. ACM,
2017. doi: 10.1145/3009837.3009901. URL https://doi.org/10.1145/

3009837.3009901.

[154] I. A. Schneider. The role of Leibnitz and Jacob Bernoulli for the de-
velopment of probability theory. In Boletin de la Sociedad Espanola de
Historia de las Ciencias, volume 7, pages 68�89, 1984.

[155] M. Schön�nkel. Über die bausteine der mathematischen logik. Mathe-
matische Annalen, 1924.

https://doi.org/10.1007/978-3-540-30227-8_21
https://doi.org/10.1007/978-3-540-30227-8_21
http://www.jstor.org/stable/3747236
https://doi.org/10.1145/263699.263760
https://doi.org/10.1007/978-3-540-75698-9_24
https://doi.org/10.1145/1889997.1890002
https://doi.org/10.1145/1889997.1890002
https://doi.org/10.1145/3009837.3009901
https://doi.org/10.1145/3009837.3009901

178

[156] D. S. Scott. A construction of a model for the λ-calculus. Informally dis-
tributed, Notes for a November 1969 seminar, Oxford University, 1969.

[157] D. S. Scott. Lattice-theoretic models for the λ-calculus. Incomplete
typescript, 50 pp., Merton College, Oxford University, 1969.

[158] D. S. Scott. A type-theoretical alternative to ISWIM, CUCH,
OWHY. Theor. Comput. Sci., 121(1&2):411�440, 1993. doi:
10.1016/0304-3975(93)90095-B. URL https://doi.org/10.1016/

0304-3975(93)90095-B.

[159] T. Smiley. Modal logic. lecture handout, Department of Philosophy,
University of Cambridge, 1957.

[160] T. Smiley. Natural Systems of Logic. PhD thesis, University of Cam-
bridge, 1955.

[161] R. Smullyan. To Mock a Mockingbird: And Other Logic Puzzles. Oxford
University Press, 1985.

[162] M. Steedman and J. Baldridge. Combinatory categorial grammar. In
R. Borsley and K. Börjars, editors, Non-Transformational Syntax: For-
mal and Explicit Models of Grammar, pages 181�224. Wiley-Blackwell,
2011.

[163] S. Thurn. Exploring Arti�cial Intelligence in the New Millennium, chap-
ter Robotic Mapping: A Survey, pages 1�35. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 2003. ISBN 1-55860-811-7. URL
http://dl.acm.org/citation.cfm?id=779343.779345.

[164] Z. To�ano and F. Dubois. Adapting logic to physics: The quantum-like
eigenlogic program. Entropy, 22(2):139, 2020. doi: 10.3390/e22020139.
URL https://doi.org/10.3390/e22020139.

[165] A. M. Turing. On computable numbers, with an application to the
entscheidungsproblem. Proceedings of the London Mathematical Society,
s2-42(1):230�265, 1936. doi: https://doi.org/10.1112/plms/s2-42.1.230.
URL https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.

1112/plms/s2-42.1.230.

[166] F. Van Breugel, M. W. Mislove, J. Ouaknine, and J. Worrell. Domain
theory, testing and simulation for labelled markov processes. Theor.
Comput. Sci., 333(1-2):171�197, 2005.

[167] W. van der Hoek. Some considerations on the logic PFD. J. Appl. Non
Class. Logics, 7(3), 1997.

https://doi.org/10.1016/0304-3975(93)90095-B
https://doi.org/10.1016/0304-3975(93)90095-B
http://dl.acm.org/citation.cfm?id=779343.779345
https://doi.org/10.3390/e22020139
https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/plms/s2-42.1.230
https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/plms/s2-42.1.230

Bibliography 179

[168] A. N. Whitehead and B. Russell. Principia Mathematica. Cambridge
University Press, 1925�1927.

[169] L. Wittgenstein. Tractatus Logico-Philosophicus. Routledge and Kegan
Paul, London, 1922.

Simona Proki¢ (née Ka²terovi¢) is born on
March 12, 1992 in Br£ko, Bosnia and Herzegov-
ina. She completed her undergraduate academic
studies at the program of studies Bachelor with
Honours in Mathematics Teaching at the Depart-
ment of Mathematics and Informatics, Faculty
of Sciences, University of Novi Sad in June 2015
with GPA 9.42 (on a scale from 6.00 to 10.00). In
2015, she started the master academic studies in
Applied Mathematics Program at the Faculty of
Technical Sciences, University of Novi Sad. By
June 2016 she �nished all her exams, with GPA
9.78 (on a scale from 6.00 to 10.00) and defended
her Masters thesis �Kripke models for intuition-

istic logic and lambda calculus� in July 2017, under the supervision of Prof.
Silvia Ghilezan. In October 2017, she enrolled in the doctoral program Ap-
plied Mathematics at the Faculty of Technical Sciences, University of Novi
Sad. Since 2016, she works as a teaching assistant at the Faculty of Technical
Sciences, University of Novi Sad.

As a recipient of Erasmus+ scholarship for PhD students, she spent three
months on a research visit at University Paris Diderot (Paris 7) in Paris,
France. She has participated as a speaker in several national and international
conferences and attended four summer schools and one winter school. She is a
co-author of four papers in international conference proceedings and one paper
in a refereed international journal. She has been a participant in the project
�ON 174026: Representations of logical structures and formal languages and
their application in computing� �nanced by the Ministry of Education, Science
and Technological Development and in the project �AI4TrustBC: Advanced
arti�cial intelligence techniques for analysis and design of system components
based on trustworthy BlockChain technology� (2020-2023) �nanced by Science
Fund of the Republic of Serbia. At the moment, she participates in the project
�TaRDIS: Trustworthy and Resilient Decentralised Intelligence for Edge Sys-
tems� funded by the European Union. She has been a participant in COST
action CA15123: �EUTYPES: The European research network on types for
programming and veri�cation� (2015-2020). Currently, she is a grant award-
ing coordinator in COST action CA20111 �EuroProofNet: European Research
Network on Formal Proofs�.

1

План третмана података

Назив пројекта/истраживања

Вероватносно закључивање у израчунавању и теорији функционалних типова

Probabilistic reasoning in computation and simple type theory

Назив институције/институција у оквиру којих се спроводи истраживање

a) Факултет техничких наука, Универзитет у Новом Саду

Назив програма у оквиру ког се реализује истраживање

Истраживање се врши у оквиру израде докторске дисертације на студијском програму
Математика у техници.

1. Опис података

1.1 Врста студије

Укратко описати тип студије у оквиру које се подаци прикупљају

У овој студији нису прикупљани подаци.

1.2 Врсте података

а) квантитативни

б) квалитативни

1.3. Начин прикупљања података

а) анкете, упитници, тестови

б) клиничке процене, медицински записи, електронски здравствени записи

в) генотипови: навести врсту ________________________________

г) административни подаци: навести врсту _______________________

д) узорци ткива: навести врсту_________________________________

ђ) снимци, фотографије: навести врсту_____________________________

е) текст, навести врсту _______________________________________

ж) мапа, навести врсту ______________________________________

з) остало: описати ___

1.3 Формат података, употребљене скале, количина података

Национални портал отворене науке – open.ac.rs

2

1.3.1 Употребљени софтвер и формат датотеке:

a) Excel фајл, датотека __________________

b) SPSS фајл, датотека __________________

c) PDF фајл, датотека ___________________

d) Текст фајл, датотека __________________

e) JPG фајл, датотека ___________________

f) Остало, датотека ____________________

1.3.2. Број записа (код квантитативних података)

а) број варијабли ___

б) број мерења (испитаника, процена, снимака и сл.) ______________________

1.3.3. Поновљена мерења

а) да

б) не

Уколико је одговор да, одговорити на следећа питања:

а) временски размак измедју поновљених мера је ______________________________

б) варијабле које се више пута мере односе се на ________________________________

в) нове верзије фајлова који садрже поновљена мерења су именоване као ____________

Напомене: __

Да ли формати и софтвер омогућавају дељење и дугорочну валидност података?

а) Да

б) Не

Ако је одговор не, образложити __

2. Прикупљање података

Национални портал отворене науке – open.ac.rs

3

2.1 Методологија за прикупљање/генерисање података

2.1.1. У оквиру ког истраживачког нацрта су подаци прикупљени?

а) експеримент, навести тип ___

б) корелационо истраживање, навести тип __

ц) анализа текста, навести тип __

д) остало, навести шта __

2.1.2 Навести врсте мерних инструмената или стандарде података специфичних за одређену
научну дисциплину (ако постоје).

__

__

2.2 Квалитет података и стандарди

2.2.1. Третман недостајућих података

а) Да ли матрица садржи недостајуће податке? Да Не

Ако је одговор да, одговорити на следећа питања:

а) Колики је број недостајућих података? __________________________

б) Да ли се кориснику матрице препоручује замена недостајућих података? Да Не

в) Ако је одговор да, навести сугестије за третман замене недостајућих података

__

2.2.2. На који начин је контролисан квалитет података? Описати

__

__

2.2.3. На који начин је извршена контрола уноса података у матрицу?

__

Национални портал отворене науке – open.ac.rs

4

__

3. Третман података и пратећа документација

3.1. Третман и чување података

3.1.1. Подаци ће бити депоновани у ___________________________________ репозиторијум.

3.1.2. URL адреса ___

3.1.3. DOI __

3.1.4. Да ли ће подаци бити у отвореном приступу?

а) Да

б) Да, али после ембарга који ће трајати до ___________________________________

в) Не

Ако је одговор не, навести разлог __

3.1.5. Подаци неће бити депоновани у репозиторијум, али ће бити чувани.

Образложење

__

__

3.2 Метаподаци и документација података

3.2.1. Који стандард за метаподатке ће бити примењен? _________________________________

3.2.1. Навести метаподатке на основу којих су подаци депоновани у репозиторијум.

__

__

Ако је потребно, навести методе које се користе за преузимање података, аналитичке и
процедуралне информације, њихово кодирање, детаљне описе варијабли, записа итд.

Национални портал отворене науке – open.ac.rs

5

__

__

__

__

3.3 Стратегија и стандарди за чување података

3.3.1. До ког периода ће подаци бити чувани у репозиторијуму? _______________________

3.3.2. Да ли ће подаци бити депоновани под шифром? Да Не

3.3.3. Да ли ће шифра бити доступна одређеном кругу истраживача? Да Не

3.3.4. Да ли се подаци морају уклонити из отвореног приступа после извесног времена?

Да Не

Образложити

__

__

4. Безбедност података и заштита поверљивих информација

Овај одељак МОРА бити попуњен ако ваши подаци укључују личне податке који се односе на
учеснике у истраживању. За друга истраживања треба такође размотрити заштиту и сигурност
података.

4.1 Формални стандарди за сигурност информација/података

Истраживачи који спроводе испитивања с људима морају да се придржавају Закона о заштити
података о личности (https://www.paragraf.rs/propisi/zakon_o_zastiti_podataka_o_licnosti.html) и
одговарајућег институционалног кодекса о академском интегритету.

4.1.2. Да ли је истраживање одобрено од стране етичке комисије? Да Не

Ако је одговор Да, навести датум и назив етичке комисије која је одобрила истраживање

__

4.1.2. Да ли подаци укључују личне податке учесника у истраживању? Да Не

Национални портал отворене науке – open.ac.rs

6

Ако је одговор да, наведите на који начин сте осигурали поверљивост и сигурност информација
везаних за испитанике:

а) Подаци нису у отвореном приступу

б) Подаци су анонимизирани

ц) Остало, навести шта

__

__

5. Доступност података

5.1. Подаци ће бити

а) јавно доступни

б) доступни само уском кругу истраживача у одређеној научној области

ц) затворени

Ако су подаци доступни само уском кругу истраживача, навести под којим условима могу да их
користе:

__

__

Ако су подаци доступни само уском кругу истраживача, навести на који начин могу
приступити подацима:
__

__

5.4. Навести лиценцу под којом ће прикупљени подаци бити архивирани.

__

6. Улоге и одговорност

6.1. Навести име и презиме и мејл адресу власника (аутора) података

__

Национални портал отворене науке – open.ac.rs

7

6.2. Навести име и презиме и мејл адресу особе која одржава матрицу с подацимa

__

6.3. Навести име и презиме и мејл адресу особе која омогућује приступ подацима другим
истраживачима

__

Национални портал отворене науке – open.ac.rs

	Abstract
	Rezime
	Uvod
	Verovatnosno izračunavanje
	Kripkeove semantike za ceo račun sa funkcionalnim tipovima
	Logika kombinatorne logike
	Verovatnosno zaključivanje u teoriji funkcionalnih tipova
	Rezultati

	Introduction
	Probabilistic programming
	Possible world semantics
	Probability logics
	Main contributions and the structure of the thesis

	Probabilistic computation
	Probabilistic -calculus
	Syntax
	Operational semantics
	Context equivalence

	Probabilistic applicative bisimulation
	Similarity is a precoungruence

	Full abstraction
	Concluding remarks

	Kripke-style semantics for full simply typed calculus
	Full simply typed combinatory logic
	Kripke-style semantics of CL, , +
	Soundness and completeness of CL, , +
	Concluding remarks

	Logic of combinatory logic
	Simply typed combinatory logic
	Logic of combinatory logic
	Syntax LCL
	Axiomatization of LCL
	Semantics of LCL

	Soundness and completeness of the equational theory
	Soundness and strong completeness of the axiomatization of LCL
	Soundness of LCL
	Strong completeness of LCL

	Soundness and completeness of the simply typed combinatory logic
	Concluding remarks

	Probabilistic reasoning in type theory
	The logic LPP2
	Syntax LPP2
	Semantics of LPP2
	Axiomatization of LPP2
	Soundness and strong completeness of LPP2

	Syntax PCL
	Semantics of PCL
	Axiomatization of PCL
	Soundness and strong completeness of PCL
	Concluding remarks

	Conclusion
	Summary of contributions
	Related work
	Future work

	Bibliography

