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Abstract

Over the last decades reasoning about uncertain knowledge has gained an
important role in computer science and artificial intelligence. This resulted
in the development of different probabilistic models of uncertainty. Since A-
calculus and combinatory logic are models of computation that are suitable
for expressing the concepts of programming languages, different approaches of
introducing probabilistic reasoning in A-calculus and combinatory logic have
been studied.

This thesis investigates two different approaches for probabilistic reason-
ing in these calculi. The most usual approach is to extend the language of
untyped A-calculus with probabilistic choice operator which results in proba-
bilistic computation. This approach has shown to be very useful and applicable
in various fields, e.g. robotics, natural language processing, and machine learn-
ing. Another approach is to extend the language of a typed A-calculus with
probability operators and to obtain a framework for probabilistic reasoning
about the typed calculus in the style of probability logic.

The thesis is organized into six chapters. The first chapter describes his-
torical development of the logics that will be studied in the thesis, and the
last chapter concludes the thesis. The remaining chapters present the results
of the research.

The second chapter studies the lazy call-by-name probabilistic A-calculus
extended with let-in operator Ag i, and program equivalence in the calcu-
lus. Since the proof of context equivalence is quite challenging, we investigate
some effective methods for proving the program equivalence. Probabilistic ap-
plicative bisimilarity has proved to be a suitable tool for proving the context
equivalence in probabilistic setting. We prove that probabilistic applicative
bisimilarity is fully abstract with respect to the context equivalence in Ag jet-
First, we use Howe’s method to prove that probabilistic applicative bisimilarity
is a congruence, thus included in the context equivalence. Next, we introduce
the testing equivalence, which coincides with bisimilarity, and prove that the
context equivalence is included in the testing equivalence, meaning that it is



ii

included in the probabilistic applicative bisimilarity as well.

The third chapter introduces Kripke-style semantics for the full simply
typed combinatory logic CL™ T, that is, the simply typed combinatory
logic extended with product types, sum types, empty type and unit type. We
present C L™ %" through its syntax, operational semantics and type assign-
ment system. The Kripke-style semantics is defined as a Kripke applicative
structure, which is extensional and has special elements corresponding to ba-
sic combinators, provided with the valuation of term variables. We prove that
CL7>%% is sound and complete with respect to the proposed semantics.

The fourth chapter introduces the logic of combinatory logic LCL, that is,
a propositional extension of the simply typed combinatory logic. We present
the syntax, axiomatization and semantics of LC'L. The main contributions of
this chapter are the soundness and strong completeness of the logic LC L with
respect to the proposed semantics. First, we prove that the equational theory
of the simply typed combinatory logic is sound and complete with respect
to the presented semantics. Then, we prove that the axiomatization of LCL
is sound and strongly complete with respect to the proposed semantics. In
addition, we prove that the proposed semantics is the new semantics for the
simply typed combinatory logic containing the typing rule that ensures that
equal terms inhabit the same type.

The fifth chapter introduces the probabilistic extension of the logic of com-
binatory logic PC'L. We extend the logic LCL with probability operators of
the form P>, with the intended meaning “probability is at least s”, and ob-
tain a framework for probabilistic reasoning about typed combinatory terms.
The semantics of PCL is based on the possible world approach, where the
set, of possible worlds is equipped with a finitely additive probability measure.
Due to the non-compactness of the logic, we give an infinitary axiomatization.
We prove that the given axiomatization is sound and strongly complete with
respect to the proposed semantics.

The results of the thesis have been published in:

e S. Kasterovi¢ and M. Pagani. The discriminating power of the let-in op-
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Rezime

Uvod

David Hilbert je na medunarodnom kongresu matematic¢ara odrzanom u Parizu
1900. godine odrzao izlaganje koje se smatra jednim od najuticajnijih izlaganja
u oblasti matematike. U tom izlaganju je predstavio program, koji je kasnije
nazvan Hilbertov program, u kome je predstavio 23 matematicka problema
za koje je smatrao da treba da budu izucavani u narednom veku. Jedan od
problema koji je privukao veliku paznju bio je Problem odlucivosti. Hilbert
je verovao da se cela matematika moze aksiomatizovati. U slucaju da je to
moguce, postavio je slede¢i problem:

»,Da li postoji procedura, tj. algoritam, koji ¢e za proizvoljan
matematicki iskaz odluciti u kona¢no mnogo koraka da li je taj
iskaz tacan ili netacan?”

Hilbertova pretpostavka je bila da takav algoritam postoji. Medutim, ka-
snije je dokazano da takav algoritam ne postoji. Neki od najznacajnijih nega-
tivnih odgovora na Problem odludivosti su:

e teoreme nepotpunosti (Kurt Godel),
e A-racun (Alonzo Church),
e Tjuringove magine (Alan Turing).

Kurt Godel je 1931. godine objavio dve teoreme nepotpunosti ([68]), ko-
jima je postavio granicu dokazivosti u formalnim aksiomatskim sistemima.
Alonzo Church je Zeleo da postavi osnove matematike koristeéi pojam funkcije,
umesto skupa. On je uveo A-rac¢un, formalni sistem zasnovan na funkcijama
(|27]) i pokazao je da problem jednakosti A-terma nije odlu¢iv. Njegovi uenici
Kleene i Rosser su pokazali da je taj sistem nekonzistentan ([103]). Ipak, deo si-
stema je bio konzistentan, te je Church izdvojio taj deo i uveo Al-rac¢un ([31]).
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Nezavisno od Churcha, Alan Turing je uveo novi formalizam, sada poznate
Tjuringove masine ([165]), i pokazao je da problem zaustavljanja Tjuringove
magine (Halting problem) nije odlu¢iv. U isto vreme se pojavio jo§ jedan
formalni sistem, kombinatorna logika. Osnovne ideje kombinatorne logike je
predstavio jo§ Moses Schonfinkel u [155], koje je dalje razvio Haskell Curry
([37]). Ono sto povezuje sva tri navedena formalna sistema jeste to da su oni
iste izrazajne modi.

e A-ratun i rekurzivne funkcije su ekvivalentni. (Kleene)
e A-racun i Tjuringove masgine su ekvivalentni. (Turing)
e J-racun i kombinatorna logika su ekvivalentni. (Curry)

Razvoj ovih formalnih sistema je nastavljen uvodenjem tipova. Tipove je
u kombinatornu logiku uveo Curry ([38]) da bi kontrolisao primenu funkcija.
Prvi koji su uveli tipove u logiku bili su Russell i Whitehead ([I68]). U-
proScavanjem njihovog tipskog sistema nastali su funkcionalni tipovi ([144]),
koji su bili osnova za razvoj mnogih tipskih sistema za A-rac¢un ([30]). Pre-
gled razvoja tipova od njihovog uvodenja u Principia Mathematica ([168]) do
razvoja funkcionalnih tipova u A-rac¢unu ([30]) je predstavljen u [90]. Nakon pr-
vog tipskog sistema za A-rac¢un i kombinatornu logiku, razvijeni su razni tipski
sistemi kao $to su tipovi sa presekom, polimorfni tipovi, zavisni tipovi i drugi.
Svi ovi tipski sistemi su pronasli primenu u raznim oblastima kao §to su au-
tomatsko dokazivanje teorema, interaktivno dokazivanje teorema, programski
jezici.

U ovoj tezi predstavljena su i istrazivana Cetiri razli¢ita formalna sistema:
netipizirani verovatnosni A-ra¢un Ag jet, cela kombinatorna logika CL7>*+,
logika kombinatorne logike LC'L i verovatnosno prosirenje logike kombinatorne
logike PCL.

Teza je organizovana u Sest poglavlja.

U poglavlju [1] dat je pregled istorijskog razvoja formalnih sistema koji su
izuCavani u tezi. Ovo poglavlje je podeljeno u tri celine. Najpre je dat kratak
uvod u razvoj i znacaj verovatnosnih programa. Zatim je opisan jedan od
osnovnih problema u ovoj programskoj paradigmi, a to je ekvivalentnost pro-
grama. Dalje, detaljno je opisan istorijski razvoj semantika mogué¢ih svetova
pri ¢emu su istaknute osnovne karakteristike ovih semantika. Navedeni su
neki od najznacajnijih dokaza potpunosti raznih logika u odnosu na semantike
mogucéih svetova. NaglaSen je znacaj Kripkeovih semantika, koje su nastale
kao semantike za modalne logike, ali su kasnije prilagodene za intuicionisticku
logiku, druge neklasi¢ne logike, kao i za tipizirani lambda ra¢un. Na kraju
ovog poglavlja, opisan je razvoj verovatnosnih logika od anti¢kog vremena do
danas.
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Verovatnosno izrac¢unavanje

Poglavlje [2| izu¢ava verovatnosni A-racun. Tokom poslednjih decenija zakljudi-
vanje u prisustvu neizvesnosti je dobilo vaznu ulogu u rac¢unarstvu i vestackoj
inteligenciji. To je rezultiralo razvojem razlic¢itih alata koji se bave neizve-
snos¢u i jedan primer takvih alata su verovatnosni modeli. Verovatnosni mo-
deli su veoma korisni i primenjivi u razli¢itim oblastima, kao §to su robotika
(J[163]), masinsko ucenje ([I33]) i obrada prirodnog jezika ([I17]). Da bi se
opisali verovatnosni modeli, razvijeni su verovatnosni programski jezici, koji
su inspirisani razli¢itim programskim paradigmama (funkcionalna, impera-
tivna, objektno-orijentisana i druge). Dodavanjem verovatnosnog operatora
deterministickom jeziku dobijamo novu programsku paradigmu verovatnosno
izracunavanje. Vrsta deterministickih jezika pogodnih za verovatnosna izracu-
navanja jesu funkcionalni programski jezici. Kako su funkcionalni programski
jezici bazirani na A-ra¢unu, verovatnosni A\-rac¢un je postao vazna tema istrazi-
vanja.

Jedan od glavnih problema u verovatnosnom programiranju jeste dokazi-
vanje ekvivalentnosti dva programa. Dokaz ekvivalentnosti programa u jezici-
ma viSeg reda nije jednostavan zadatak, jer treba pokazati da se programi
ponagaju isto u svim kontekstima, a njih ima beskona¢no mnogo. Stoga je
cilj pronaci efikasniju metodu za utvrdivanje ekvivalentnosti programa. Alat
koji se pokazao kao pogodan za ispitivanje ekvivalentnosti programa jeste bisi-
mulacija. Bisimulacija je prvu put uvedena u konkurentnom rac¢unarstvu kao
relacija koja karakteriSe ponaSanje procesa ([122], [133]). Kasnije je relacija
bisimulacije izu¢avana i u A-ra¢unu. Abramsky je uveo pojam aplikativne
bisimulacije u jezike viseg reda ([I]), a Larsen i Skou su uveli pojam verova-
tnosne bisimulacije za oznaene lance Markova ([III]). Iz ove dve relacije
je proizasla nova relacija bisimulacije poznata kao wverovatnosna aplikativna
bisimulacija, koja je pogodna za ispitivanje ekvivalentnosti verovatnosnih pro-
grama (|35, [36l [47]). Ono &to €ini bisimulaciju moénom metodom je ¢injenica
da je dovoljno naéi jednu relaciju bisimulacije koja sadrzi dva terma da bismo
pokazali da su ta dva terma bisimilarna. Odnosno, bisimilarnost dva terma
je definisana pomocu egzistencijalnog kvantifikatora za razliku od kontekstne
ekvivalencije koja je definisana preko univerzalnog kvantifikatora.

Bisimulacija je korisna samo ukoliko je saglasna u odnosu na kontekstnu
ekvivalenciju. Saglasnost bisimulacije se najcesée pokazuje primenom Howe-
ovog metoda ([84]). Primena bisimulacije u dokazivanju verovatnosnih pro-
grama je izufavana u raznim okruZzenjima ([35], 36] [43], 44, 47, 48]). U izracu-
navanju postoje razliCite strategije za evaluaciju programa kao Sto su poziv-
po-imenu (call-by-name), poziv-po-vrednosti (call-by-value), poziv-po-potrebi
(call-by-need) i druge. U tezi su posmatrane dve strategije: poziv-po-imenu i
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poziv-po-vrednosti. U okruzenju gde je primenjena strategija poziv-po-imenu,
term (Ax.M)N se redukuje na term M{N/z} za bilo koji term N,

pri ¢emu M{N/z} predstavlja term koji se dobija zamenom slobodnih pojavlji-
vanja promenljive x u termu M termom N. Sa druge strane, ako je primenjena
poziv-po-vrednosti strategija,

term (Az.M)V se redukuje na term M{V/x} samo ako je V izratunata
vrednost.

Drugim recima, u poziv-po-imenu strategiji neophodno je najpre izvrsiti re-
dukciju argumenta i tek onda se dobijena vrednosti prosleduje funkciji.

Rad predstavljen u drugom poglavlju teze je motivisan rezultatima pre-
dstavljenim u [35] i [47], gde su autori izucavali verovatnosni A-racun, to jest
A-raun progiren verovatnosnim operatorom izbora. U radu [35], Crubillé i Dal
Lago posmatrali su ra¢un u kome je primenjena poziv-po-vrednosti strategija
i pokazano je da se verovatnosna aplikativna bisimulacija i kontekstna ekviva-
lencija poklapaju. Sa druge strane, u radu [47] Dal Lagi, Sangiorgi i Alberti
posmatrali su ra¢un u kome je primenjena poziv-po-imenu strategija i pokazano
je da je verovatnosna aplikativna bisimulacija sadrzana u kontekstnoj ekviva-
lenciji, ali da se one ne poklapaju. Termi koji ¢ine razliku izmedu ove dve
relacije su termi

M=Xx A y.(z@y)i N = Az \y.z) ® (Az.\y.y),

koji su u datom ra¢unu kontekstno ekvivalentni i nisu bisimilarni. Pored toga,
autori su pretpostavili da bi se dodavanjem operatora sekvenciranja dobio
racun u kome se verovatnosna aplikativna bisimulacija poklapa sa kontekstnom
ekvivalencijom. Ova pretpostavka je potvrdena u publikovanom radu

[99] S. Kasterovi¢ and M. Pagani. The discriminating power of the let-in op-
erator in the lazy call-by-name probabilistic lambda-calculus. In H. Geu-
vers, editor, 4th International Conference on Formal Structures for Com-
putation and Deduction, FSCD 2019, June 24-30, 2019, Dortmund, Ger-
many, volume 131 of LIPIcs, pages 26:1-26:20. Schloss Dagstuhl-Leibniz-
Zentrum fiir Informatik, 2019. doi: 10.4230/LIPIcs.FSCD.2019.26.
URL: https://doi.org/10.4230/LIPIcs.FSCD.2019.26.

na koji se i oslanja drugo poglavlje teze.

U ovom poglavlju predstavljen je verovatnosni A-racun Ag e, odnosno
netipizirani A-rac¢un proSiren sa dva operatora: verovatnosnim operatorom
izbora @ i let-in operatorom. U rac¢unu je implementirana lenja poziv-po-imenu
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strategija evaluacije. Verovatnosni operator & predstavlja izbor, u smislu da
se term M @ N redukuje na terme M i N sa istom verovatno¢om. Opera-
tor let-in oponaga poziv-po-vrednosti strategiju evaluacije u datom okruZzenju.
Izucavali smo problem ekvivalencije programa u Ag ei-rac¢unu. Pored konte-
kstne ekvivalencije posmatrali smo jo§ dve relacije ekvivalencije: bisimulaciju
i ekvivalenciju testiranjem.

Najpre smo operacionu semantiku Ag ei-racuna predstavili kao oznacen
lanac Markova, a onda smo uveli pojam verovatnosne aplikativne bisimulacije
za Ag et-racun. Prvirezultat ovog poglavlja je dokaz da je verovatnosna aplika-
tivna bisimulacija kongruencija, §to smo pokazali pomoé¢u Hoveovog metoda
([84]). Kao posledicu ovog rezultata dobili smo da je verovatnosna aplika-
tivna bisimulacija sadrzana u kontekstnoj ekvivalenciji. Da bismo pokazali
suprotan smer, odnosno da je kontekstna ekvivalencija sadrzana u verovatno-
snoj aplikativnoj bisimulaciji, uveli smo pojam testa u Ag t-racun po ugledu
na [35]. Pomocu testova smo definisali novu relaciju ekvivalencije na skupu
termova, koju smo nazvali ekvivalencija testiranjem. Dva terma su u relaciji
ekvivalencije testiranjem ako je svaki test uspe$no izvrSen sa istom verova-
tnoc¢om na oba terma. Ekvivalencija testiranjem se poklapa sa verovatnosnom
aplikativnom bisimulacijom ([47]). Drugi znacajan doprinos ovog poglavlja
jeste dokaz da za svaki test postoji kontekst takav da je verovatnoca uspesnosti
testa primenjenog na neki term jednaka verovatnodi konvergencije terma koji
se dobija primenom konteksta na dati term. Zatim, koristeéi ovaj rezultat
pokazali smo da je kontekstna ekvivalencija sadrzana u ekvivalenciji testiranja.
Stoga, sve tri relacije ekvivalencije se poklapaju.

Kripkeove semantike za ceo racun sa funkciona-
Inim tipovima

Poglavlje [3| prou¢ava C' L=>**-ra¢un, odnosno kombinatornu logiku sa funkci-
onalnim tipovima, koja je proSirena tipovima proizvoda, tipovima sume, pra-
znim tipom i jedini¢nim tipom. Uveli smo Kripkeovu semantiku za CL ™ -
racun.

Kripkeova semantika je jedna od najpopularnijih semantika moguéih sve-
tova. Moderno doba razvoja semantika mogucih svetova zapoceo je Pierce ([75}
76]). On je smatrao da kondicionale treba analizirati pomocu kvantifikacije nad
moguéim svetovima:

Kvantifikovani subjekt hipotetickog iskaza je moguénost ili moguéi
sluéaj ili moguce stanje stvari.

Tokom razvoja semantika moguéih svetova, istrazivaci su se vodili slede¢im
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idejama:
¢ analiza modaliteta pomocu kvantifikacije nad moguc¢im slucajevima,
e potreba binarne relacije kao relacije dostiznosti izmedu svetova,
e traganje za dokazom kompletnosti.

Na razvoj semantika moguéih svetova je znacajan uticaj imao i Wittgen-
stein ([169]), koji uveo ideju logic¢kog prostora i koji je smatrao da su tvrdnje
smeStene u prostoru. Ove ideje su dovele do razvoja formalne semantike za
modalnu logiku S5, koju je uveo Carnap ([26] 149]). Semantika koju je uveo
Carnap nije imala relaciju dostiZznosti svetova.

Binarnu relaciju izmedu svetova su prvi put uveli Prior i Meredith ([121]).
Prior je razvio temporalnu logiku zamenjuju¢i modalne operatore nuZnosti
i moguénosti operatorima vremena ([I40HI43]), eksplicitno je uveo binarnu
relaciju 1 interpretirao je kao relaciju dostiznosti.

Prve dokaze potpunosti predstavili su Bayart, Hintikka i Kripke. Bayart
([14]) i Kripke (JI08]) su dokazali potpunost prosirenja logike S5 kvantifika-
torima. Kasnije je Kripke koristeéi ovaj metod pokazao potpunosti iskaznih
modalnih sistema ([109]). Hintikka je u svojim neformalnim izlaganjima, koja
je drzao u Bostonu, predstavio dokaze potpunosti za sisteme M, S4 i S5 sa
kvantifikatorima. Znacajan doprinos razvoju semantika moguéih svetova dali
su i Feys ([68]), McKinsey ([120]), Becker ([15]) i Montague ([125]). Detaljan
pregled razvoja semantika moguéih svetova je dat u [32].

Kripke je jedini u svojim semantikama koristio univerzalni pojam valja-
nosti, posmatrao svetove kao tacke u evaluaciji i formalizovao relaciju dostizno-
sti medu svetovima. Karakterizacija svetova kao pojedinac¢nih tacaka u evalu-
aciji mu je omoguéila da sistemati¢no izvede dokaze potpunosti za razne moda-
Ine logike. Iako je Kripkeova semantika prvobitno uvedena kao semantika za
modalnu logiku, ona je kasnije prilagodena intuicionistickoj logici (J[110]), ali i
drugim neklasi¢nim logikama ([91]).

Zahvaljuju¢i Curry-Howard korespondenciji ([83]) izmedu intuicionisticke
logike i tipiziranog A-rac¢una, Kripkeove semantike su nasle svoju primenu i u
A-ratunu. Mitchell i Moggi su u radu ([124]) uveli Kripkeove modele za A-ra¢un
sa funkcionalnim tipovima. Semantika za C'L™ > "-ratun koja je uvedena u
treéem poglavlju ove teze je upravo inspirisana Kripkeovim modelima iz [124].

CL=**_ra¢un smo uveli predstavljajuéi njegov jezik, operacionu sema-
ntiku, odnosno jednakosnu teoriju koja je proizasla iz relacije redukcije, i tipski
sistem. Relacija redukcije je definisana tako da zavisi od relacije tipiziranja.
Sa druge strane, da bismo osigurali da jednaki termi imaju isti tip, tipski
sistemm smo definisali tako da relacija tipiziranja zavisi od relacije redukcije.
Stoga, jednakosna teorija, koja je proizagla iz relacije redukcije, i tipski sistem
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su definisani istovremeno. Kripkeova semantika za CL™* 7, koja je predsta-
vljena u ovom poglavlju, je uvedena u radu

[94] S. Kasterovi¢ and S. Ghilezan. Kripke-style semantics and completeness
for full simply typed lambda calculus. Journal of Logic and Computa-
tion, 30(8):1567-1608, 2020. doi: 10.1093/logcom /exaa055.

URL: https://doi.org/10.1093/logcom /exaa055.

Najpre smo definisali Kripkeovu aplikativnu strukturu, a zatim smo uveli
pojmove ekstenzionalne Kripkeove aplikativne strukture i Kripkeove aplika-
tivne strukture sa kombinatorima. Kripkeova semantika je definisana kao
ekstenzionalna Kripkeova aplikativna struktura sa kombinatorima, kojoj je
pridruzena valuacija promenljivih.

Glavni rezultati ovog poglavlja jesu dokazi saglasnosti i potpunosti
CL™>*_racuna u odnosu na predloZenu semantiku. Prvo smo pokazali da su
jednakosna teorija i tipski sistem saglasni. U ovom dokazu smo koristili metod
matematicke indukcije. Zatim, uveli smo pojam kanonickog modela i pokazali
da su jednakosna teorija i tipski sistem potpuni u odnosu na predlozenu se-
mantiku. Za konzistentnu bazu smo definisali kanonicki model tako da je
interpretacija terma klasa ekvivalencije datog terma u odnosu na jednakosnu
teoriju. Koriste¢i ovu osobinu kanonickog modela dokazali smo potpunost je-
dnakosne teorije i tipskog sistema.

Logika kombinatorne logike

U poglavlju [ smo predstavili logiku kombinatorne logike LC'L. Logika LC'L
je iskazno progirenje kombinatorne logike sa funkcionalnim tipovima, tj. do-
bijena je definisanjem klasi¢ne iskazne logike nad kombinatornom logikom sa
funkcionalnim tipovima.

Ova logika predstavlja formalni sistem za zakljucivanje o tipiziranim izra-
zima, §to nam omogucava primenu metoda kao §to su DPLL procedura, metod
rezolucije, SAT resavaci, SMT reSavaci i drugi, na kombinatornu logiku sa
funkcionalnim tipovima. Na osnovu Curry-Howard korespondencije, logiku
LCL mozemo posmatrati kao prvi korak ka razvoju automatskog alata za
zakljuivanje o tipiziranim termima i programima.

Razna prosirenja kombinatorne logike su izucavana sa ciljem da se razvije
formalni sistem ¢ija ¢e izrazajna moé¢ omoguéiti uvodenje novih paradigmi.
Jedan naéin proSirenja kombinatorne logike je veé predstavljen u treéem pogla-
vlju ove teze, gde smo kombinatornoj logici sa funkcionalnim tipovima dodali
nove operatore i tipove. Drugi nacin da se proSiri kombinatorna logika jeste
da se kombinuje sa nekim logickim sistemom. Ideju kombinovanja razli¢itih
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logickih sistema sa ciljem da se opiSe zaklju¢ivanje o odredenim logickim stru-
kturama predstavio je Scott u [I58], gde je tipizirani sistem kombinatora, koji
ukljucuje i kombinator fiksne tacke, progiren logi¢kim konstantama i veznicima,
¢ime je dobijen deduktivni sistem za izra¢unljive funkcije. Sli¢an pristup ko-
ristio je Beeson za definisanje lambda logike ([I6]), koja predstavlja alat za
reprezentaciju funkcija, a dobijena je kao unija logike prvog reda i A-rac¢una.
U radu [6] Axelsen, Gliick i Kaarsgaard nisu predstavili prosirenje kombi-
natorne logike, ali je ideja veoma sli¢na naSoj. Autori su definisali klasi¢nu
iskaznu logiku nad reverzibilnim logic¢kim kolima i razvili formalni sistem za
zakljucivanje o reverzibilnim logickim kolima. Iako su sli¢ne ideje veé¢ ranije
primenjivane, logika LCL je prvi put uvedena u ovoj tezi.

Predstavili smo jezik, aksiomatizaciju i semantiku LCL logike. Atomicke
formule u logici LCL su tipizirani izrazi iz kombinatorne logike sa funkciona-
Inim tipovima CL_,. Skup svih tipiziranih izraza je skup svih izraza oblika
M : o, gdje je M term i o tip takav da postoji baza u kojoj ¢e term M dobiti
tip o.

Skup formula logike LC'L je definisan sledecom gramatikom:

a::M:U|a:>a|ﬁa‘

Aksiomatizacija logike LC'L je dobijena iz tipskog sistema kombinatorne
logike sa funkcionalnim tipovima i aksiomatskog sistema za klasi¢nu iskaznu
logiku. Semantika je definisana kao ekstenzionalna aplikativna struktura prosi-
rena specijalnim elementima, koji odgovaraju osnovnim kombinatorima, i kojoj
je pridruZena valuacija promenljvih. Sli¢an pristup smo koristili za definisanje
semantike kombinatorne logike sa tipovima sa presekom u radu

[62] S. Ghilezan, S. Kasterovi¢. Semantics for Combinatory Logic With In-
tersection Types, Frontiers in Computer Science, volume 4, 2022. doi:
10.3389/fcomp.2022.792570.

URL: https://www.frontiersin.org/articles/10.3389/fcomp.2022.792570

Glavni rezultati ovog poglavlja su dokazi saglasnosti i jake potpunosti logike
LCL u odnosu na uvedenu semantiku. Najpre smo dokazali da je jednakosna
teorija kombinatorne logike sa funkcionalnim tipovima saglasna i potpuna u
odnosu na definisanu semantiku. Zatim smo dokazali da je aksiomatizacija
logike LC'L saglasna. Kao i u prethodnom poglavlju, u dokazu saglasnosti
koristili smo matematic¢ku indukciju. U dokazu potpunosti jednakosne teorije
definisali smo LC L-model takav da je interpretacija terma u datom modelu
jednaka klasi ekvivalencije u odnosu na jednakosnu teoriju kombinatorne logike
sa funkcionalnim tipovima. Na osnovu navedene osobine modela pokazali smo
da vaZi potpunost jednakosne teorije. Dokaz jake potpunosti aksiomatizacije
logike LC'L je nesto slozeniji i sastoji se iz slede¢ih koraka:
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1. Najpre smo dokazali teoremu dedukcije, koja je neophodna za dokaz jake
potpunosti.

2. Zatim, pokazali smo da svaki konzistentan skup 7" moze biti pro§iren do
maksimalno konzistentnog skupa 7.

3. Koriste¢i maksimalno konzistentan skup 7™, definisali smo kanonicki
model.

4. Pokazali smo da kanonicki model jeste LC' L-model i da zadovoljava samo
formule iz skupa T™.

5. Koriste¢i kanonic¢ki model dokazali smo da je svaki konzistentan skup
zadovoljiv.

6. Konaéno, izveli smo dokaz jake potpunosti za logiku LC'L.

Dalje, pokazali smo da je uvedena semantika za logiku LCL takode i nova
semantika za kombinatornu logiku sa funkcionalnim tipovima. Posmatrali smo
kombinatnornu logiku sa funkcionalnim tipovima prosirenu sa pravilom za tipi-
ziranje koje osigurava da jednaki termi imaju isti tip i pokazali smo da je
ona saglasna i potpuna u odnosu na semantiku za LC'L. Time je dokazano
da je logika LCL zapravo konzervativno profirenje kombinatorne logike sa
funkcionalnim tipovima.

Verovatnosno zakljucivanje u teoriji funkcional-
nih tipova

Poglavlje 5l uvodi logiku PCL, koja je verovatnosno progirenje logike kombina-
torne logike. Pratedi pristup koji je koriSéen u razvoju verovatnosnih prosirenja
razli¢itih logika, kao Sto su klasi¢na iskazna logika, intuicionisticka iskazna
logika, logika opravdanja ([132]), progirili smo jezik logike LC L verovatnosnim
operatorima oblika P, koji imaju znacenje: ,verovatnoca je bar s”.

Pric¢a o verovatnosnoj logici potice jo§ iz antickog vremena. Sofisti Corax
i Tisias koristili su pojam neizveznosti u svojim argumentima o zakonskim,
medicinskim i politickim pitanjima ([107]). Cardano, Tartaglia, de Fermat,
Pascal, Huygens i brojni matematicari izucavali su igre na sreé¢u i uveli su
nove ideje u vezi zaklju¢ivanja u slucaju neizvesnosti. Ideju da se verova-
tno¢a moze numericki kvantifikovati i da se metode koriSéene u igrama na
sre¢u mogu primeniti na izracunavanje verovatnoce prvi put su predstavili
Arnauld i Pierre u [3]. Re¢ ,yerovatnoc¢a” u sadasnjem znacenju prvi je uveo
Leibniz kada je definisao verovatnoé¢u kao odnos broja pozeljnih slucajeva i



xvi

broja ukupnih slu¢ajeva ([I13]). Pascal, Huygens i Leibniz su imali veliki uticaj
na rad Jacoba Bernoullija ([18]), koji se smatra osnivacem teorije verovatnoce.
Znacajan doprinos razvoju teorije verovatnocée dali su i De Morgan, Bayes i
Boole. Boole je medu prvima izu¢avao vezu izmedu logike i verovatnoce ([23]).

Nakon rada Leibniza i Boola najve¢i napredak u razvoju verovatnosne
logike napravili su Keisler, Hoover, Hamblin i Hailperin. Keisler ([I00} [10T])
je proucavao raspodelu verovatnoée na domenima struktura prvog reda i uveo
verovatnosne kvantifikatore oblika Pz > r gde formula (Pz > r)p(x) ima
znacenje:

,verovatnoca skupa {z | ¢(z)} je veca od 1.

Hoover ([82]) je dao potpunu aksiomatizaciju za Keislerove logike i zajedno
za Keislerom je dokazao teoreme potpunosti za razli¢ite modele kao §to su
verovatnosni, analiticki, i drugi. Vezu izmedu verovatnoce i modalne logike
uocio je Hamblin ([74]) i on je uveo verovatnosni, modalni operator. Hailperin
([72]) je iskoristio metode linearnog programiranja da izvede proceduru za
dobijanje najboljih moguéih granica za verovatnocu iskaznih formula u slucaju
da su verovatnoce potformula poznate. Moderni razvoj verovatnosne logike je
zapoCeo Nilsson ([127]) kada je uveo prvi sistem za formalno verovatnosno
zakljucivanje.

Nilssonov rad je imao veliki uticaj na mnoge istrazivace koji su razvijali
formalne sisteme za verovatnosno zaklju¢ivanje ([56], 57, [73, 167]). Nas rad se
najvise oslanja na beskonac¢ne verovatnosne logike uvedene u [104], 119, 129}
13T], [147], gde su predstavljena verovatnosna prosirenja raznih logika kao §to
su klasi¢na iskazna logika, intuicionisticka iskazna logika, temporalna logika,
logika opravdanja i druge.

Ideju o verovatnosnom progirenju A-racuna i kombinatorne logike smo prvi
put predstavili u publikovanim radovima

[64] S. Ghilezan, J. Iveti¢, S. Kasterovi¢, Z. Ognjanovi¢, and N. Savi¢. Prob-
abilistic reasoning about simply typed lambda terms. In S. N. Artemov
and A. Nerode, editors, Logical Foundations of Computer Science - In-
ternational Symposium, LFCS 2018, Deerfield Beach, FL, USA, January
8-11, 2018, Proceedings, volume 10703 of Lecture Notes in Computer
Science, pages 170-189. Springer, 2018. doi: 10.1007,/978-3-319-72056-2
_11. URL https://doi.org/10.1007/978-3-319-72056-2 11.

[66] S. Ghilezan, J. Iveti¢, S. Kasterovi¢, Z. Ognjanovié, and N. Savi¢. To-
wards probabilistic reasoning in type theory - the intersection type case.
In A. Herzig and J. Kontinen, editors, Foundations of Information and
Knowledge Systems-11th International Symposium, FolKS 2020, Dort-
mund, Germany, February 17-21, 2020, Proceedings, volume 12012 of
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Lecture Notes in Computer Science, pages 122-139. Springer, 2020. doi:
10.1007/978-3-030-39951-1 8. URL https://doi.org/10.1007/978-3-030-
39951-1_8.

Modeli uvedeni u ovim radovima su bazirani na dobro poznatim modelima
A-racuna: term modelima i filter modelima. Jezik ovih sistema, je definisan tako
§to smo najpre definisali iskazno proSirenje tipiziranog A-racuna i dobili skup
formula, koje smo nazvali osnovne formule. Zatim smo primenili verovatnosne
operatore na osnovne formule i posmatrali bulovske kombinacije tako dobijenih
verovatnosnih formula. Problem kod ovih sistema je taj $to poznati modeli
A-ra¢una nisu pogodni da opisu iskazno zaklju¢ivanje o tipiziranim termima.
Drugim rec¢ima, baza ove logike, a to su bulovske kombinacije tipiziranih izraza,
nije potpun sistem u odnosu na navedene modele A\-rac¢una. Ovaj problem je
motivisao razvoj logike LC'L i modela za ovu logiku, koji su predstavljeni u
cetvrtom poglavlju. U petom poglavlju smo primenili dobro poznat metod za
razvoj logike PC'L, koja predstavlja verovatnosno progirenje logike LC'L.

Predstavili smo jezik, semantiku i aksiomatizaciju logike PC'L. Jezik logike
PCL je progirenje logike LC'L sa verovatnosnim operatorima, a skup formula
je definisan kao unija dva skupa: skupa osnovnih formula i skupa verova-
tnosnih formula. Osnovne formule su zapravo formule logike LCL, dok su
verovatnosne formule dobijene primenom verovatnosnih operatora na osnovne
formule. Najpre definisemo atomicke verovatnosne formule.

Za s € [0,1]NQ1i formulu « logike LCL, P>z« je atomicka verovat-
nosna formula.

Skup svih verovatnosih formula je skup svih bulovskih kombinacija atomi-
¢kih verovatnosnih formula, odnosno generisan je sintaksom

pii=Pooa | o Ap | 9]

Semantika verovatnosnih logika je zasnovana na strukturama definisanim
nad moguéim svetovima, gde u svakom svetu postoji kona¢no aditivna mera.
Semantika logike PCL je definisana tako da svaki moguéi svet odreduje jedan
LCL-model. Aksiomatizacija logike PCL je dobijena iz aksiomatizacije logike
LCL i aksiomatizacije verovatnosne logike. Logika PCL ima beskona¢nu aksi-
omatizaciju u smislu da sadrzi jedno beskona¢no pravilo, to jest pravilo sa
prebrojivim skupom premisa. Beskonac¢na aksiomatizacija je posledica nekom-
paktnosti logike PCL. Logika PCL ne zadovoljava teoremu kompaktnosti jer
je skup

X ={-Pp(z:0)}U{P.1(x:0)|neN}

n
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takav da je svaki njegov konacan podskup zadovoljiv, dok sam skup X nije
zadovoljiv. Dakle, nijedna kona¢na aksiomatizacija nece biti saglasna i jako
potpuna.

Najvazniji rezultati ovog poglavlja su dokazi saglasnosti i jake potpunosti
date aksiomatizacije logike PC'L u odnosu na uvedenu semantiku. Sli¢no kao u
prethodnim poglavljima, dokaz saglasnosti je dobijen primenom matematicke
indukcije. Dokaz jake potpunosti je nesto slozeniji. Primenili smo metod kao i
za logiku LCL, te smo najpre dokazali teoremu dedukcije. Zatim smo dokazali
da svaki konzistentan skup moze biti proSiren do maksimalno konzistentnog
skupa. Konstruisali smo PCL-model u kome su ta¢ne samo one formule koje
pripadaju datom maksimalno konzistentnom skupu. Koristeé¢i ovaj model,
pokazali smo da je svaki konzistentan skup zadovoljiv, odakle sledi jaka po-
tpunost logike PCL.

Rezultati

Poglavlje [6] sadrzi sazetak postignutih rezultata, pregled literature i razmatra
pravece daljih istrazivanja.

Disertacija daje znacajan doprinos razvoju formalnih modela za verova-
tnosno zakljuéivanje u izra¢unavanju i teoriji tipova i razvoju Kripkeovih se-
mantika za modele izrac¢unavanja.

e Proucavan je verovatnosni A-ra¢un sa let-in operatorom gde je primenjena
lenja poziv-po-imenu strategija evaluacije i izucavan je problem ekviva-
lencije verovatnosnih programa u ovom okruzenju. Cilj je bio pronaci
efikasan metod za dokazivanje kontekstne ekvivalencije. Dati su dokazi
da se u posmatranom ra¢unu relacija verovatnosne aplikativne bisimu-
lacije i relacija kontekstne ekvivalencije poklapaju, §to ¢ini verovatnosnu
aplikativnu bisimulaciju pogodnim metodom za dokazivanje kontekstne
ekvivalencije. Ovi rezultati su predstavljeni u poglavlju

e Uvedena je nova Kripkeova semantika za kombinatornu logiku sa funkcio-
nalnim tipovima koja je prosirena sa tipovima proizvoda, tipovima sume,
praznim tipom i jedini¢nim tipom. Dati su detaljni dokazi da je tipski
sistem posmatranog rac¢una saglasan i potpun u odnosu na uvedenu se-
mantiku. Ovi rezultati su predstavljeni u poglavlju

¢ Razvijen je potpuno nov koncept verovatnosnog zakljuéivanja u teoriji
tipova i racunima sa tipovima koji je zasnovan na novom modelu za
verovatnosno zakljucivanje o tipiziranim programima. Najpre je uvedena
nova logika, pod nazivom Logika kombinatorne logike, koja predstavlja
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iskazno progirenje kombinatorne logike sa funkcionalnim tipovima. Poka-
zano je da je uvedena logika saglasna i potpuna u odnosu na predlozenu
semantiku. Zatim je logika kombinatorne logike prosirena verovatnos-
nim operatorima, ¢ime je dobijena logika koja omogucava verovatnosno
zaklju€ivanje o tipiziranim programima. Takode, dati su dokazi sagla-
snosti i potpunosti dobijene logike u odnosu na predlozenu semantiku.
Ovi rezultati su predstavljeni u poglavljima [4]i 5}
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Chapter 1

Introduction

In 1900, David Hilbert gave a talk at the International Congress of Mathe-
maticians held in Paris, France. In this talk, which is considered as the most
influential talk ever given by a mathematician, he presented Hilbert’s Program.
Hilbert’s Program addressed 23 major mathematical problems that should be
studied in the coming century. Many researchers were influenced by Hilbert’s
Program and worked on solutions of the presented problems. One of the chal-
lenges presented in Paris was the Entscheidungsproblem, or Decision Problem.
Hilbert believed that all of mathematics could be axiomatized. In the case
this axiomatization is done, he addressed the following question:

“Is there an “effective procedure”, i.e. an algorithm that takes as
input any precise mathematical statement and after a finite number
of steps decides whether the statement is true or false?”

Hilbert assumed that such an algorithm exists and just has to be found.
However, it turned out that this is not true. The most popular results which
refuted Hilbert’s conjecture are:

e Incompleteness Theorems by Kurt Gddel,
e )-calculus by Alonzo Church,
e Turing Machines by Alan Turing.

In 1931, Kurt Godel ([68]) published two incompleteness theorems that
give the limit of provability in formal axiomatic theories. The incompleteness
theorems stand as two of the most important results in the history of the
mathematical logic.



The first incompleteness theorem: Any consistent formal sys-
tem F' within which a certain amount of elementary arithmetic
can be carried out is incomplete; i.e. there are statements of the
language of F' which can neither be proved nor disproved in F.

The second incompleteness theorem: For any consistent sys-
tem F within which a certain amount of elementary arithmetic can
be carried out, the consistency of F' cannot be proved in F itself.

Alonzo Church was also interested in the Entscheidungsproblem. He wa-
nted to redefine the very foundations of mathematics using functions instead
of sets. In [27], Church has introduced A-calculus, a formal system based on
functions, which included primitively a notion of abstraction and application,
and many other notions: a two-place predicate for extensional equality, an exis-
tential quantifier, negation, conjunction and the unique solution of a function.
He has proved that the problem of equality of terms is undecidable. However,
Church’s students Kleene and Rosser have discovered Kleene-Rosser paradox
([103]) and proved the inconsistency of Church’s original system. The com-
putational part of the system was proved to be consistent, so Church isolated
this part and introduced AI-calculus in [3I] as a formalism for defining the
notion of computability. He has defined an algorithm in terms of A-calculus
and proved that the Entscheidungsproblem is unsolvable in [28] 29]. Kleene
([102]) proved that the set of A-definable functions coincides with the set of
recursive functions, i.e. computable functions in the sense of Herbrand and
Godel.

Independently, Alan Turing also gave a negative answer to the Entschei-
dungsproblem. In order to formally introduce the notion of an algorithm he
invented a new formalism, called Turing machines ([165]), and defined an al-
gorithm as anything that can be computed by a Turing Machine. Turing has
proved that Halting problem is undecidable. Then he proved that there exist
undecidable problems that cannot be solved by any Turing Machine such as
Halting Problem. Later, Turing became Church’s graduate student at Prince-
ton and proved that the A-calculus and Turing Machines are computationally
equivalent: they define the same class of computable functions.

Another formalism that was independently invented is Combinatory logic.
The basic idea of combinatory logic was presented by Moses Schonfinkel in
1920s ([153]), but the foundations of combinatory logic have been established
by Haskell Curry in 1930s ([37]). Combinatory logic does not use bound vari-
ables, which results in a simpler syntax and avoids the obstacles that emerge
from bound variables in A-calculus. Curry has proved that A-calculus and
combinatory logic are computationally equivalent. So, all three formalisms,
A-calculus, Turing machines and combinatory logic, have the same expressive
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power:

Kleene: Equivalence of A-calculus and recursive functions.
Turing: Equivalence of A-calculus and Turing machines.

Curry: Equivalence of A-calculus and Combinatory logic.

In order to control the application of functions, types in combinatory logic
were introduced in [38]. Russell and Whitehead were first to introduce types
in logic ([168]) and by simplifying their type theory the simple theory of types
was introduced in [144]. Many modern type systems such as the simply typed
A-calculus ([30]) are based on the theory introduced in [I44]. The development
of types from the first types introduced in Principia Mathematica ([168]) until
the simple types for A-calculus (J30]) has been described in [90]. The simple
types for A-calculus is the first type system introduced. It is followed by
various type systems such as intersection types, polymorphic types, dependent
types, and others. These type systems found applications in various fields, e.g.
automated theorem provers, proof assistants, programming languages.

1.1 Probabilistic programming

Over the last decades reasoning about uncertain knowledge has played an im-
portant role in computer science and artificial intelligence. Sometimes, dealing
with uncertainty and incomplete information is not an alternative but rather
a necessity. For example, in computational cryptography secure public key
encryption schemes have to be probabilistic ([69]). Therefore, it was essential
to develop tools that will deal with uncertainty such as probabilistic models.
The probabilistic models have proved to be extremely applicable and useful
in various areas, such as robotics (J163]), machine learning ([135]) and natural
language processing ([117]).

In order to describe probabilistic models, the mechanics to perform infer-
ence in those models in various probabilistic programming languages have been
introduced ([70] 89, 134, 136, [145]). These languages have been inspired by
different programming paradigms such as functional, imperative, object ori-
ented. One approach used to obtain probabilistic models is to add primitives
for probabilistic choice to the deterministic language. In this way, we shift from
the usual, deterministic computation to a new paradigm, called probabilistic
computation. Deterministic languages that get well with probabilistic com-
putation are functional languages. Functional programming languages such
as Lisp, Scheme, Miranda, ML and others are based on A-calculus and many
existing probabilistic programming languages ([70, [I36]) are designed around
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A-calculus or one of its incarnations, like Scheme. All this has influenced the
foundational research about probabilistic A-calculi.

One of the most challenging problems in probabilistic programming is prov-
ing equivalence of programs. Two programs are considered equivalent if they
behave “in the same manner” in any possible context ([126]). Proving that two
terms are equivalent is rather difficult because of the universal quantifier in the
definition of equivalence, since one should consider behaviour of the program
in any context and there are infinitely many contexts. On account of this, the
goal is to find effective methods for context equivalence proofs in higher-order
languages.

A technique which has proved to be suitable for characterizing program
equivalence is bisimilarity. Bisimilarity has emerged in Concurrency Theory
as the notion that characterizes the behavioural equality for processes. It was
first introduced by Milner and Park ([122], 133]) and since then it has become
a fundamental concept in the theory of concurrency. Bisimilarity is defined
as the union of all bisimulations, where a bisimulation is a relation on the set
of terms of a language. So, in order to prove that two terms are bisimilar, it
is enough to find a bisimulation which contains a pair of the terms. The use
of the existential quantifier instead of the universal one makes this a powerful
proof method.

Over the years, the bisimilarity has been extensively studied in A-calculi
as well. Today it is employed in a number of areas of computer science such
as object-oriented languages, functional languages, types, data types, pro-
gram analysis, verification tools, etc. Abramsky ([I]) introduced the notion
of bisiumulation, called applicative bisimulation, into higher-order languages.
This notion of bisimulation has been studied by a number of researchers
([71, 112, 114} 139, 150]). Applicative bisimilarity is useful only if it is sound
with respect to the context equivalence. For this to hold, it is necessary that
bisimilarity is a congruence. The proof that bisimilarity is a congruence is not
trivial and in the case of applicative bisimilarity, a common scheme consists
in following Howe’s approach [84]. Trying to simplify the proof of congruence
and accommodate language extensions, different forms of bisimulation have
been proposed (106, 1511, 152]).

Another form of bisimulation, called probabilistic bisimulation has been in-
troduced for labelled Markov chains by Larsen and Skou ([IT1]). From applica-
tive bisimulation and probabilistic bisimulation, probabilistic applicative bisim-
ulation has emerged. Probabilistic applicative bisimilarity has shown to be an
effective method for equivalence proof of probabilistic programs ([35, [36, 47]).
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1.2 Possible world semantics

The modern era of possible world semantics started with the work of Peirce
(75 [76]), who argued that the conditional should be analysed in terms of
quantification over possible worlds:

The quantified subject of a hypothetical proposition is a possibility,
or possible case, or possible state of things.

In the history of possible world semantics, there are three trains of thoughts
that were followed:

1. the analysis of modalities in terms of quantifications over possibilia;
2. the use of a binary relation as an accessibility relation between worlds;
3. the quest for completeness proofs.

The development, of the possible world semantics was greatly influenced by
the work of Wittgenstein ([I69]), who introduced the idea of logical space and
thought of claims as being “located” in a kind of space. These ideas evolved
into formal semantics for modal logic S5 introduced by Carnap ([26],[149]). The
first technical work in possible worlds semantics is presented in [26]. However,
Carnap did not have a binary relation between worlds.

The first to use a binary relation were Prior and Meredith ([I21I]). Prior
invented the modern temporal logic by replacing the possibility and necessity
operators of the standard modal logic with tense operators ([140HI43]). He
introduced a binary relation in an explicitly modal context and employed an
accessibility-like interpretation of the relation.

The first completeness proofs were obtained by Bayart, Hintikka and Kripke.
Smiley has announced the completeness proofs for propositional M, S4 and
S5 with respect to possible world semantics in [I59] [160]. Bayart and Kripke
proved the completeness of an extension of S5 with quantifiers in [14] and [108],
respectively. Later, Kripke adapted his method to prove the completeness of
propositional modal systems 7', S4, S5 and B ([109]). Hintikka presented com-
pleteness proof for versions of M, S4 and S5 with quantifiers at seminars in
Boston area, where he gave a series of informal talks. His modal completeness
proofs were variants of the completeness proof for the first-order predicated
calculus published in [79,80]. A significant contribution to the development of
the possible world semantics is given by Feys (J58]), McKinsey ([120]), Becker
(J15]) and Montague ([125]). A historical survey of possible world semantics
is given in [32].

The crucial ingredients in the possible world semantics are: the universal
notion of validity, considering possible worlds as indices or points of evaluation



and accessibility relation between worlds. Kripke was the only one who in-
cluded all these ingredients in the semantics, since he characterized the worlds
as simple points of evaluation ([I09]). This characterization enabled him to
observe the link between the algebra of modal logic and the model theoretic se-
mantics, and to obtain model theoretic completeness results for various modal
systems in a systematic way. Kripke semantics was first introduced for modal
logics, but later it was adapted to the intuitionistic logic ([I10]) and other
non-classical logics ([91]).

Due to the correspondence between the intuiotionistic logic and typed A-
calculus known as Curry-Howard correspondence ([83]), Mitchell and Moggi
suggested to employ the semantics of the intuiotinistic logic as a semantics for
typed A-calculus and presented Kripke-style semantics for the simply typed
A-calculus in [124]. In [59], Gallier generalised the results from [124] to the
second-order A-calculus. Kripke semantics for various typed calculi were in-
troduced in [5] [33] [85] 88|, [116].

1.3 Probability logics

The story about probability logic, as many others mathematical stories, begins
in ancient times. The plausible reasoning was invented by sophists Corax and
Tisias in Plato’s Phaedrus and Aristotle’s Rhetoric ([I07]), who used the notion
of uncertainty in their argument about legal, medical or political questions.
A number of mathematicians such as Cardano, Tartaglia, de Fermat, Pascal
and Huygens were dealing with games of chance and introduced new ideas
about uncertainty. The idea that probability can be numerically quantified
and that the methods designed for games of chance can be used to calculate
probability was suggested in [3], where the probability is consider as something
epistemic and related to arguments and opinion. The word probability in the
contemporary sense was first used by Leibnitz, who defined a probability as
the ratio of favorable cases to the total number of cases ([I13]). The work
of Pascal, Huygens and Leibnitz had a great influence on the work of Jacob
Bernoulli ([I8]), who is considered the founder of the probability theory ([I54]).
De Morgan, Bayes and Boole also contributed significantly to the development
of the probability theory. Boole has studied the relationship between logic and
probability ([23]).

After the work of Leibnitz and Boole, the greatest progress in the prob-
ability logic was made by Keisler, Hoover, Hamblin and Hailperin. Keisler
([100} [101]) studied the probability distributions on domains of first-order
structures and introduced probability quantifiers of the form Px > r, where
the formula (Pz > r)p(z) has the following meaning:
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“the probability of the set {z | ¢(x)} is greater than r.”

Hoover ([82]) gave a complete axiomatization of Keisler-like logics and to-
gether with Keisler proved completeness theorems for various kinds of models
such as probability, graded, analytic, hyperfinite, etc. The connection between
probability and modal logic was observed by Hamblin, who introduced proba-
bility, modal operator ([74]). Hailperin ([72]) has used the methods for linear
programming to derive an effective procedure for obtaining the best possible
boundaries for probabilities of propositional formulas, when the probabilities
of subformulas are known. Reasoning with uncertainty found its applications
in many fields such as artificial intelligence, computer science, economics and
philosophy. The development in these fields triggered off the development of
probability logic. The modern development of probability logic started with
Nilsson ([127]), who has introduced a first framework for formalizing proba-
bilistic reasoning.

The logic introduced in [127] has influenced the work of many researchers,
who have developed frameworks for probabilistic reasoning (|56, 57, [73], [167]).
This work is followed by a number of infinitary probability logics introduced
in [104, 119, @129-131] [147]. The term infinitary concerns the meta language
only, more precisely the language of the logic is countable and formulas are
finite, but the proofs are allowed to be infinite. It turns out that this approach
can be used for combining probability with different logics, e.g. classical logic,
intuitionistic logic, temporal logic, justification logic and others. Systematic
overview of some of these infinitary logics is given in [132].

1.4 Main contributions and the structure of the
thesis

Probabilistic A-calculus endowed with let-in operator is studied in Chapter
It is proved that, in the case that let-in operator is present in the language,
probabilistic applicative bisimilarity is an effective method for proving the
equivalence of probabilistic programs. More precisely, we prove that in the
probabilistic A-calculus with let-in operator, bisimilarity and context equiva-
lence coincide. Chapter [2]is based on the paper:

[99] S. Kasterovi¢é and M. Pagani. The discriminating power of the let-in op-
erator in the lazy call-by-name probabilistic lambda-calculus. In H. Geu-
vers, editor, 4th International Conference on Formal Structures for Com-
putation and Deduction, FSCD 2019, June 24-30, 2019, Dortmund, Ger-
many, volume 131 of LIPIcs, pages 26:1-26:20. Schloss Dagstuhl-Leibniz-



Zentrum fiir Informatik, 2019. doi: 10.4230/LIPIcs.FSCD.2019.26.
URL: https://doi.org/10.4230/LIPIcs.FSCD.2019.26.

In Chapter [3] the full simply typed combinatory logic, which is simply
typed combinatory logic extended with product types, sum types, the empty
type and the unit type, is studied. We introduce Kripke-style semantics for the
full simply typed combinatory logic and prove that the full simply typed com-
binatory logic is sound and complete with respect to the proposed semantics.
Chapter [3]is based on the paper:

[94] S. Kasterovi¢ and S. Ghilezan. Kripke-style semantics and completeness
for full simply typed lambda calculus. J. Log. Comput., 30(8):1567—
1608, 2020. doi: 10.1093/logcom /exaa055.

URL: https://doi.org/10.1093 /logcom /exaa055.

The semantics presented here are introduced in the mentioned paper, how-
ever the calculus in the paper differs from the one presented here. The paper
studies full simply typed A-calculus and combinatory logic that do not include
typing rule for equal terms, i.e. the rule that guarantees that equal term in-
habit the same type. In the calculus studied in the thesis, this rule is included.
The motivation for adding this rule is explained in Section

Chapter [4] introduces the logic of combinatory logic (LCL), which is a
propositional extension of the simply typed combinatory logic. We present the
language of LCL, its semantics and axiomatization, and prove that the given
axiomatization is sound and complete with respect to the proposed semantics.
The results of Chapter [f] are in the preparation for the publication and have
been presented in

[97] S. Kasterovi¢ and S. Ghilezan. Logic of combinatory logic. CoRR,
abs/2212.06675, 2022. doi: 10.48550/arXiv.2212.06675.
URL: https://doi.org/10.48550/arXiv.2212.06675.

The semantics of LCL is based on applicative structures extended with
special elements corresponding to primitive combinators. Similar approach
was used for the semantics of the combinatory logic with intersection types
introduced in the paper:

[62] S. Ghilezan, S. Kasterovi¢. Semantics for Combinatory Logic With In-
tersection Types, Frontiers in Computer Science, volume 4, 2022. doi:
10.3389 /fcomp.2022.792570.

URL: https://www.frontiersin.org/articles/10.3389/fcomp.2022.792570

Chapter [5| introduces the probabilistic extension (PCL) of the logic of
combinatory logic. Following approach used by Ognjanovi¢, Raskovi¢ and
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Markovi¢ in [I32], we extend the logic of combinatory logic with probability
operators and obtain a formal model for reasoning about simply typed combi-
natory terms. The idea of developing a framework for probabilistic reasoning
about typed terms has been introduced in the papers:

[64] S. Ghilezan, J. Iveti¢, S. Kasterovi¢, Z. Ognjanovi¢, and N. Savié. Prob-
abilistic reasoning about simply typed lambda terms. In S. N. Artemov
and A. Nerode, editors, Logical Foundations of Computer Science - In-
ternational Symposium, LFCS 2018, Deerfield Beach, FL, USA, January
8-11, 2018, Proceedings, volume 10703 of Lecture Notes in Computer
Science, pages 170-189. Springer, 2018. doi: 10.1007,/978-3-319-72056-2
_11. URL https://doi.org/10.1007/978-3-319-72056-2 11.

[66] S. Ghilezan, J. Iveti¢, S. Kasterovi¢, Z. Ognjanovi¢ and N. Savi¢. To-
wards probabilistic reasoning in type theory - the intersection type case.
In A. Herzig and J. Kontinen, editors, Foundations of Information and
Knowledge Systems-11th International Symposium, FoIKS 2020, Dort-
mund, Germany, February 17-21, 2020, Proceedings, volume 12012 of
Lecture Notes in Computer Science, pages 122—-139. Springer, 2020. doi:
10.1007/978-3-030-39951-1 8. URL https://doi.org/10.1007/978-3-030-
39951-1 8.

The semantics for these systems were based on the well-known models for
A-calculus such as term models and filter models. The languages of the systems
are defined as the union of two sets of formulas: basic formulas and probabilis-
tic formulas. Basic formulas are formulas from the propositional extensions of
the typed calculi and probabilistic formulas are obtained by applying proba-
bility operator to basic formulas. However, term models and filter models did
not prove to be suitable for the propositional reasoning about typed terms.
Thus, we develop the propositional extension of the simply typed combinatory
logic in Chapter [d] and introduce its semantics. So, the semantics for PCL
are based on the semantics for LCL. We present the logic PCL by intro-
ducing its syntax, semantics and axiomatization, and we prove that the given
axiomatization is sound and complete with respect to the proposed semantics.
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Chapter 2

Probabilistic computation

In this chapter, we study a probabilistic A-calculus Ag |t defined by endow-
ing the pure, untyped A-calculus with two operators: a probabilistic choice
operator @ and a let-in operator. The chapter presents the results of [98] [99].

There are different evaluation strategies that can be adopted to evaluate
programs, such as call-by-name, call-by-value, call-by-need and others. In
Ag jet, both call-by-name and call-by-value strategy are implemented. In call-
by-name setting,

a term (Az.M)N evaluates to a term M{N/z} for any term N,

where M{N/z} denotes the capture-avoiding substitution of N for the free
occurrences of x in M. On the other hand, in call-by-value setting,

a term (Az.M)V can be evaluated to a term M{V/xz} only if V is a value,

that is, we need to first evaluate the term V before we pass it to the calling
parameter . In many functional programming languages, let-in operator is
used to allow the local definition of an expression, which is used in another
expression. We define the let-in operator to represent the substitution of a
variable for a value. Although Ag i is a call-by-name probabilistic A-calculus,
the presence of the let-in operator gives us a possibility of evaluating terms in
a call-by-value way, thus both strategies, call-by-name and call-by-value, are
combined in Ag et

One of the most challenging problems in the probabilistic programming
is to check if two programs enjoy the same behavioural properties. If two
programs behave in the same manner in any possible context, we say that
they are context equivalent. Proving that two programs are context equivalent
in higher-order languages is not always easy. Hence, the aim is to find an

11
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effective method for checking the context equivalence, that is, to find the
characterization of context equivalence which enables to check the equality
of programs more easily. The work presented in this chapter is inspired by
results in [35] and [47], where the authors study the probabilistic A-calculus,
that is the pure, deterministic A-calculus extended with a probabilistic choice
operator. In [47], Dal Lago, Sangiorgi and Alberti considered call-by-name
evaluation and it is shown that the probabilistic applicative bisimilarity is
included in context equivalence and that they do not coincide. Terms which
distinguish these two relations are

M =Xz y.(x ®y) and N = Az \y.x) ® (Az. \y.y),

which are context equivalent in call-by-name probabilistic A-calculus, but are
not bisimilar. On the other hand, in [35] Crubillé and Dal Lago proved that the
probabilistic applicative bisimulation coincide with the context equivalence if
call-by-value evaluation is considered. The question that we address here is if
the mismatch between call-by-name and call-by-value calculus is the presence
of let-in operator.

In this chapter, three different notions of equivalence are defined and com-
pared. The first notion of equivalence we consider is a context equivalence, also
called observable (behavioural) equivalence. Two terms M and N are context
equivalent if we can replace all occurrences of M with N in any program,
without changing the observable behaviour of a program. A notion of proba-
bilistic applicative bisimulation (bisimilarity) is introduced using the fact that
a labelled Markov chain can model the evaluation of programs in Ag et The
third equivalence relation, called testing equivalence, is induced by a testing
language defined on Ag jet.

Contributions of the chapter

e Using Howe’s technique ([84]), we show that a probabilistic applicative
bisimilarity is a congruence. The structure of the proof is similar to the
ones in [35], [36] and [47], where Howe’s technique is also used.

e The proof that the probabilistic applicative bisimilarity is included in
the context equivalence follows from the previous result (probabilistic
applicative bisimilarity being a congruence).

e We introduce the testing equivalence and prove that, for every test, there
is a context such that the success probability of the test applied to a term
and the convergence probability of the context applied to the same term
are equal.
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e As a consequence, the context equivalence is included in the testing
equivalence.

e Furthermore, we prove that the context equivalence is also included in the
probabilistic applicative bisimilarity, hence those two relations coincide.

Overview of the chapter We start with introducing Ag jet-calculus in Sec-
tion[2.1] We define the syntax of Ag je-calculus in Section [2.1.1} give its opera-
tional semantics in Section and introduce a notion of context equivalence
in Section [2.1.3] The probabilistic applicative simulation and bisimulation are
introduced in Section 2.2} followed by the proof that bisimilarity is a con-
gruence and that it is included in the context equivalence, which is given in
Section Section introduces the testing equivalence and presents the
proof of full abstraction. In Section [2.4] concluding remarks and future work
are presented.

2.1 Probabilistic \-calculus

In this section, we introduce formally the lazy call-by-name probabilistic A-
calculus Ag jet. We introduce its syntax, operational semantics and define the
context equivalence.

2.1.1 Syntax

Probabilistic A-calculus Ag it is a pure, untyped A-calculus extended with two
new operators: a probabilistic binary operator @ and let-in operator. Terms
and values are expressions generated by the following grammar:

(values) V u=z|lz.M (2.1)
(terms) M :=V|MM|Mo®&M|letz=Min M '
where z belongs to a countable set of term variables, X = {z,y,z,...,21,...}.

Ag et denotes the set of all terms and Vg ¢ denotes the set of all values.
We let M, N,... range over Ag e and V,W,... range over Vg e . We use
AX1Z2 ... x,. M to abbreviate Axy.Axa. ... Az, .M.

The lambda abstraction Az.M binds the free variable x in term M and the
let-in operator let x = M in N binds the free variable x in term N. Following
Barendregt’s Variable Convention ([I0]), we assume that the bound variables
that occur in a certain expression are different from the free ones. For a term
M, the set of its free variables F'V(M) is defined as follows:
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FV(z) = {x},

o FV(\&.M)= FV(M)\ {z},

e FV(MN)= FV(M)UFV(N),

e FV(M @ N)= FV(M)UFV(N),

e FV(letz =M in N)= (FV(N)\ {z}) U FV(M).

A term M without free variables, FV (M) = {, is called closed term (pro-
gram). We write A |, (resp. Vg ., ) to denote the set of terms (resp. values)
whose free variables are within ® = {x1,23,...,2,}. The capture-avoiding

substitution of IV for the free occurrences of x in M, denoted by M{N/z}, is
defined inductively as follows:

o 2{N/z} =N,
y{N/z} Z vy ife#y,

(A\y-M) {N/a} = hy. (M{N/z}),

(M Ms) {N/z} = (Mi{N/x}) (Ma{N/z}),

(My @ My) {N/z} = (M1{N/x}) & (M2{N/x}),

o (let y =My in M) {N/z} =lety = (M1{N/z}) in (Mx{N/x}).

By Barendregt’s Variable Convention, we have that the variables x and y
in the third and fifth clause are not the same.

Example 2.1. We define some terms that will be used in the sequel.

o Term L= \a.x is called the identity.
o Terms T = \ay.x and F < A\zy.y represent boolean projections.
e The duplicator is the term defined as A = \z.zx and it enables defining
the ever looping term Q= AA.
def

o The term A'= \z.let y = x in yy is the call-by-value duplicator defined
using let-in operator.
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2.1.2 Operational semantics

In this subsection, we introduce the operational semantics of Ag et. The op-
erational semantics of probabilistic A-calculus, both call-by-name and call-by-
value have been introduced in [45].

We first introduce the one-step reduction relation with the following reduc-
tion rules:

(M. M)N — M{N/z},
M®&N — M,
M&N — N,

let x =V in M — M{V/z}.

We denote by —* the reflexive and transitive closure of the relation —. For
terms M and N, if M —* N, then we say that the term M reduces (evaluates)
to the term N.

Due to the presence of the probabilistic operator @ in the language, a
closed term in Ag et does not evaluate to a single value. For example, the

1
term M & N reduces to the term M with probability 5 and to the term N

1
with probability —. Thus, a closed term evaluates to a function which assigns

a probability to values, that is, to a discrete probability distribution of the
outcomes.

Definition 2.2 (Distribution). A (value) distribution is a map
9D : Vg’let — Ryo,17, such that ZVEV&’;,‘EI 2(V) <1.

We denote with Pp the set of all value distributions 2. The support of
2, denoted by S(2), is the subset of V@ it Whose elements are values to
which & assigns a positive probability. In the sequel, we use > Z to abbre-

viate ZVGV%, 2(V). If a distribution 2 has a finite support {V1,...,V,}
and for every i € {1,...,n}, 2(V;) = p;, we denote the distribution 2 with

p1Vi+...+p,V,. In this case, we have Y 2 = Z pi. The empty distribution

is denoted by 0, and V' denotes both the value V and the distribution which
assigns probablhty 1 to the value V.

Definition 2.3. The order over distributions is defined pointwise: 9 < & if
and only if 2(V) < E(V) for every value V € V@ let -

The structure (Pp, <) is a partially ordered set, that is < is reflexive and
transitive relation defined on the set Pp. Moreover, it is an w-complete partial
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order: every w-chain (countable chain) in Pp has a supremum. Following [453],
we give the operational semantics of Ag et in two steps. First, we define a
big-step approximation relation and then we define the semantics.

Definition 2.4. A big-step approximation relation M | 2 is a relation be-
tween closed terms and finite value distributions and it is inductively defined
by the derivation rules in Figure[2.1]

M2 N|&
MeN|iz+1ie

(be) (bv) (bs)

MU0 ViV

My 2 {P{N/z}{ Ep N}y, pesa)

N9 {M{V/z} | %ﬂv}vgs@)
let = Nin M | Yy 9(V) - Ay

(ba)

(bD)

Ficure 2.1: Rules for the approximation relation M | 2,
with M € Ag;’let and & being a value distribution.

The rule (be) in Figure 2.1 ensures that every term evaluates to the empty
distribution and the rule (bv) guarantees that every value V evaluates to the
distribution which assigns probability 1 to the value V. Further, the rule (bs)
gives semantics to a binary choice. Let us consider terms €2 and I. Although
Q2 only evaluates to the empty distribution € |} 0, the sum Q & I evaluates
to a non-empty distribution. From I | Ax.z, we derive Q & I |} %/\x.x. The
rule (ba) gives semantics to an application M N. This rule reflects the call-by-
name evaluation, since it is enough to evaluate the term M to distribution 2
and for every Az.P € S(2) obtain distribution &p y by evaluating P{N/z}.
On the other hand, in the call-by-value setting, it is not enough to evaluate
the term M to distribution &, the term N also has to be evaluated to some
distribution &, and for every Ax.P € S(2) and V € S(&), the distribution
&p,v is obtained by evaluating P{V/xz}. The call-by-value passing policy is
implemented by the rule (bl). In order to evaluate the term let z = N in M,
we need to evaluate the term N before passing it to the term M. In addition,
the rule (ba) implements lazy call-by-name evaluation, where lazy means that
term does not reduce within the body of an abstraction

Proposition 2.5. Let N be a term. If N || & and N || .%, then there exists
a distribution 2 such that N | 92, & < 2 and F < 9.
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Proof. The proof is by induction on the derivation of N || &. O

Proposition proves that the set {2 | M || 2} is a directed set in the
sense of Definition [2.6] below.

Definition 2.6 ([148]). A nonempty subset X of a partially ordered set P is
directed if every pair {a,b} of elements of X has an upper bound in X, that is,
if for every a,b € X, there exists c € D with the property that a < ¢ and b < c.

Since the set {2 | M || 2} is a countable, directed set (Proposition
and (Pp, <) is an w-complete partial order, the least upper bound of the set
{2 | M| 2} is well-defined.

Definition 2.7. The semantics of M, denoted by [M], is the least upper
bound of all distributions which are related to M via the big-step approzimation
relation, that is

[M] =sup{2 | M | Z}. (2.2)

If >°[M] = p, then we say that M converges with probability p.

As we have already discussed, we consider the lazy call-by-name A-calculus.
The lazy call-by-name strategy is implemented by the rules in Figure In
the rule (ba) of Figure an argument is passed to a function without eval-
uating it. However, the call-by-value strategy is also present in the calculus.
If we want to evaluate term let z = @ in P, we first need to evaluate the term
Q to a value V' and then we can evaluate the given term to P{V/x}. Thus,
the let-in operator implements the call-by-value strategy.

The following examples illustrate the operational semantics.

Example 2.8. For term A(F @ T), we can derive A(F®T) || 2 for any
1_1 1 1
2 € P = {0, 5I, 5Ay.(F &T), 5Ay.(F ®T)+ 5I},
by the rules of Figure[2.1. The derivation of
1 1
AF®T) |51+ M. (FoOT)

is given in Figure[2.2, The least upper bound of the set Py is the distribution
11+ I\y.(F@T), thus this distribution is the semantics of A(F & T),

[AF & T)] = %I + %)\y.(F ©T).
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FIF T|T

(bs)
FOT| 3F+4T {TJL W.(FOT) | \w.(FOT)}

Al A FaoT)(FaT) lil+ix(FaT)
AFaT)| I+ (FaT)

(ba)

(ba)

FiGURE 2.2: A derivation of the big-step approximation
AFoT) I 31+ My (FaT)

Example 2.9. If, in the Example [2.8, the operator A is replaced with the
operator A’ introduced in Ezample (2.1, we obtain the term A*(F @ T). For
any
1.1 1 1
={0,=I, - \y. T, =1+ - \y.T
2 € Py {72723/ D) +2y }’

we can derive AY(F @ T) | 2 by the rules given in Figure . Again, we
give the derivation for just one distribution (Figure . The distribution
%I + %)\y.T is the least upper bound of the set Pa, hence

1.1
[AYFaT)] = o1+ 32T

F|F T|T (bs)
FoT|iF+1iT {FF | I, TT | \y.T}

Al Af lety=F&Tinyy| i1+ I\y.T
AYFaT) LI+ iaT

(bD)

(ba)

FicUureE 2.3: A derivation of the big-step approximation
AFaT) | i1+ S0y T

Example 2.10. In the probabilistic A-calculus, normalizing terms are terms
M such that their semantics are of total mass > [M] = 1 and that there ex-
ists a unique finite derivation giving M | [M]. The probabilistic A-calculus is
a framework which also allows for almost sure terminating terms, i.e. terms M
with Y [M] = 1, but such that there is no finite derivation giving

def

M | [M]. An example of almost sure terminating term is the term M =VV,

def

with V = Az.(I1 ® xzx). As Figure shows, any finite approximation of M
gives a distribution bounded by Y., %I for some n > 0. However, only the
limit sum sup,, > ;| 51 is equal to [M] =1.
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ILI VV o

T (bs)
IoVV i1
ViV _ : (ba)
IJ1 VV Y 5l (bs)
ViV ToVV Iy, A1 i
(ba)

VV ST AT

FIiGURE 2.4: A derivation of the big-step approximation
VV ST Elfor V= Az.(I1®zx).

=1 21
Some fundamental properties of the semantics are stated in the following
proposition, for which the respective proofs can be found in [45].
Proposition 2.11 ([43]). For any terms M and N,
1. [(Ax.M)N] = [M{N/z}].

2. [MaN] = %[[M]] + %[[N]].

2.1.3 Context equivalence

One of the most challenging problems in probabilistic programming is checking
whether two programs M and N behave the same, in the sense that we can
replace any occurrence of M within some program L with N without changing
the behaviour of program L. In order to formalize this idea, a notion of context
is introduced.

Definition 2.12. A Ag c-term context is a term with a unique hole [-] gen-
erated by the following grammar:

Co=[]|C|CM|MC|CoM|MaC|letz=CinM
|let x =M in C (2.3)

A Ag jet-term obtained from a context by replacing a hole in C' with a
Ag er-term N, denoted by C[N], is defined inductively as follows.

o [N W,

o (\2.0)[N] Y ra.C[N],

o (CoM)NY N e M,
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(M @ C)[N]

(CM)[N]

(MC)[N]

def

def

Y Mo cCN,

C[N]M,

MCIN],

(let = = M in C)[N] Y (let z = M in C[N)),

e (let z =Cin M)[N] = (let x = C[N]in M).

Substituting a hole in the context C' with a term N allows capturing free
variables of N; still, some free variables of N can remain free in C[N]. In
the sequel, we will work with contexts C' which bound all free variables of the
term N, resulting in closed terms C[N], called closing contexts. Therefore, the
important features of a context are the set of variables it bounds and the set

of variables it keeps free.

In order to keep the track of free variables, we introduce the set of contexts

CA@Jet(q);‘I') inductively defined by the following rules.

H € CA@,Iet@;@) (CtXI)
C € Chg e ®PED g w

. (Ctx2)
Az.C € CAg o' W)

C € Chgie'™”  MeAY,, (Cbx3)
X
CM € CAg 1™

MeAY,, CeChge'™?

- (Ctx4)
MC € CAg e ")

C € Cheee'™  Me Ay,

. (Ctx5)
C@®M e Chg ™Y

MeAY . C€Chg™"

. (Ctx6)
M & C € Chg e ™Y

CeChgie™”  MeA?i
o DIt (Ctx7)

(let 2 = C in M) € CAg et Y
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M €AY, C€Chg "t

(letx=Min C) € CA@Jet(@;‘I’)
We use the sets ® and ¥ of variables to indicate the sets of free variables
before and after the filling of the hole by a term. The idea is explained by the
following two lemmas.

Lemma 2.13. If M € Ag;

(Ctx8)

ler and C' € CA@,Iet(@;lP)y then C[M] € Ag,let'

Lemma 2.14. If C € CA@Jet(@;‘I’) and D € CA@Jet(\P;G), then
D[C] € CAg et 9.

Lemma [2.13] and Lemma are direct consequences of the definition of
CA@Jet((I);\P), the proofs follow by induction on the derivation of context and
are omitted.

In the probabilistic language, we check the program equivalence by ob-
serving the probability of program convergence to a value. We say that two
programs are context equivalent if they converge to a value with the same
probability in all contexts. A context preorder, denoted by <, and a context
equivalence, denoted by ~, are defined as follows.

Definition 2.15. For all M, N € A%,et, we define:
M <N iff (VO € Chose ™) S[CIM] < STICINL, - (24)

M~ N iff (vc € CA@Jet(@?V’)) Yo =Y IOV (25)

We may observe that M ~ N is equivalent to M < N and N < M. The
context, equivalence is illustrated by the following examples.

Example 2.16. Two terms that show the difference between the call-by-name
probabilistic \-calculus without the let-in operator and the call-by-name prob-

abilistic \-calculus with the let-in operator are terms M = \zy.(x & y) and

NE (Azy.x)®(Azy.y). In the call-by-name probabilistic A-calculus without the
let-in operator ([{7]) these terms are context equivalent; however in the call-by-
name probabilistic A\-calculus with the let-in operator they can be discriminated
by the context C = (let y = [-] in (let 2; = yI in (let zp = yIQ in 1))). Fol-
lowing the rules of Figure we obtain Y [C[M]] = ; and Y [C[N]] = 3.
Since M and N have different probability of convergence in the same context
they are not context equivalent.

Example 2.17. The two duplicators A and A introduced in (E:cample

are not context equivalent. For example, for the context C = [|X& Q) we get

YIC[A]] = 1 and Y [C[AY]] = . Thus, the context C discriminates the two
duplicators.
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Proposition 2.18. For M,N ¢ Ag;,m, we have that, if [M] < [N] then
M < N. Therefore, [M] = [N] implies M ~ N.

Proof. Following the definition of the context preorder, we can see that
[M] < [N] is equivalent to: for all 2 such that M | 2, there exists & > 9
such that N | &. The proof that [M] < [N] implies [C(M)] < [C(N)]
follows by induction on the structure of the context C. O

Example 2.19. Proposition allows us to prove that two terms, which
seem to be quite different, are actually context equivalent. For example, let
us consider the term V'V introduced in Example and the term I. They
have the same semantics and as a consequence we can conclude that they are
context equivalent. The opposite direction does mot hold. There are context
equivalent terms that do not have the same semantics, as for example terms
Ax.(x @ z) and 1.

2.2 Probabilistic applicative bisimulation

The notion of the applicative bisimulation for the lazy call-by-name A-calculus
was introduced by Abramsky in [I]. Later, Larsen and Scou ([III]) have
introduced a notion of probabilistic bisimulation for labelled Markov chains.
Mixing these two notions resulted in emerging a new notion of bisimulation,
called probabilistic applicative bisimulation ([47]), which is a relation between
terms of probabilistic A-calculus. In order to define probabilistic applicative
bisimulation, we first notice that the operational semantics of probabilistic \-
calculus can be seen as a probabilistic transition system, or more precisely as
a labelled Markov chain. The states in this system will be closed terms and
the set of transitions will comprise two kinds of transitions:

e evaluating a term to a value, and
e applying a value to a term.

Looking at the probabilistic A-calculus as labelled Markov chain allows us to
define the notion of bisimilarity over it. As one of the main results, we will
show that probabilistic applicative bisimilarity implies context equivalence,
meaning that in order to prove that two program are context equivalent, it is
enough to prove that they are bisimilar.

First, we introduce the notions of labelled Markov chain, probabilistic sim-
ulation and bisimulation (as in [ITT]).

Definition 2.20. A labelled Markov chain is a triple M = (S, L, P) where

e S is a countable set of states,
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e L is a set of labels (actions), and

o P s a transition probability matriz, i.e. a function P : SXLxS — Rjg 1
satisfying the following condition: (Vs € S) (VI € L)Y .5 P(s,1,t) < 1.

Throughout the following subsections, we use the following notational con-
ventions. We denote ),y P(s,l,t) by P(s,l,X). For a relation R, the im-
age of the set X under R is denoted by R(X), ie. R(X) = {y | Iz €
X such that zRy}. If R is a binary relation, then R°? denotes the relation
{(b,a) | (a,b) € R}. For an equivalence relation R, the set of all equivalence
classes of S modulo R will be denoted by S/R.

Definition 2.21. Let (S, L, P) be a labelled Markov chain and R be a relation
over S:

e R is a probabilistic simulation if it is a preorder and

(V(s,t) € R) (VX C S) (Wl € L) P(s,1,X) < P(t,1, R(X))

e R is a probabilistic bisimulation if it is an equivalence and

(V(s,t) € R) (VE € S/R) (VI € L) P(s,1, E) = P(t,1, E)

It has been proved in [47] that the union of all probabilistic simulations
(resp. bisimulations) is still a simulation (resp. a bisimulation).

Definition 2.22. The union of all probabilistic simulations is the largest prob-
abilistic simulation, called probabilistic similarity and denoted by <. Similarly,
the union of all probabilistic bisimulations is the largest probabilistic bisimula-
tion, called probabilistic bisimilarity and denoted by ~.

M < N iff there exists a probabilistic simulation R such that M R N (2.6)

M ~ N iff there exists a probabilistic bisimulation R such that M R N
(2.7)

It is straightforward to prove that ~=<N <P ie. M S Nand N S M
is equivalent to M ~ N (Proposition 2.13, [47]).

We present the operational semantics of Ag et as a labelled Markov chain.
For this purpose we define a set of distinguished values, denoted by VAg9

such that for every closed value V = Az.P € V%let

value V = vz.P that belongs to VA For example, value Ayz.z belongs to

®P,let"
the set V%let , whereas the distinguished value vyz.z belongs to the set VA?&'H.

Jlet
there is a distinguished
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Definition 2.23 ([47, 99]). The Ag ee-Markov chain is defined as the triple
(AgIet O] VA%,Iet’ Ag,et U {7}, P) such that
o the set of states A%’let W VA%’Iet is the disjoint union of the set of closed
terms and the set of closed distinguished values,

o labels (actions), Ag9 it U7}, are either closed terms, which model param-
eter passing, or the action T, which is a distinguished action that models
evaluation,

e the transition probability matriz P is defined as follows:

— for every closed term M and a distinguished value vz.N,
P(M,r,vx.N) = [M](M\x.N),
— for every closed term M and a distinguished value vz.N,
Pva.N,M,N{M/z})=1,

— in all other cases, P returns 0.

A probabilistic applicative simulation (resp. bisimulation) is a probabilistic
simulation (resp. bisimulation) on Ag jet-Markov chain. Further, by applying
Definition [2.22] we define the probabilistic applicative similarity < and the
probabilistic applicative bisimilarity ~, respectively.

We extend the notions of probabilistic applicative similarity and bisim-
ilarity to open terms by considering all closing substitutions. Let M and
N be terms whose free variables belong to the set ® = {y1,...,ym}, i.€.
M,N € Ag‘; If, for all terms Py,..., P, € Ag%,et,
M{Pl/ylvan/yn} gN{Pl/ylaa-Pn/yn}a

we say that the terms M and N are similar, i.e. M < N. The notion of
bisimilarity is analogously extended to open terms.

Jet®

Example 2.24. In Example we have observed that there are terms that
are context equivalent and that do not have the same semantics, as for exam-
ple the terms Ax.(x ® x) and Mxz.x. Proving that these two terms are context
equivalent is not an easy task, since we should check that the terms will con-
verge to a value with the same probability in every context. In general, proofs
of statements that use universal quantification in its definition can be hard to
deal with, which is why the characterizations that use existential quantification
are preferable. In this example, we will prove that the terms Ax.(x ® z) and
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Ax.x are bisimilar. We need to find a bisimulation that contains the pair of
terms (Ax.(z @ x), A\x.x). Let us consider the relation

R ={(Az.(x @ x), \z.x)} U{(Az.z,  \z.(x D 2)) } U{(va.(r ® x),ve.2)}
U{(vz.z,ve(zdz) U{(MOM,M)| M € A%Jet}
U{(M. M @ M) | M € Ag 1o} U{(M, M) | M € A .}
U{(W,W) | W e VAL .}

The pair of terms (A\x.(z @ x), Axz.x) belongs to the relation R, so we need
to prove that R is a bisimulation. By its definition, R is an equivalence re-
lation, thus it remains to prove that is satisfies the condition (V(M,N) € R)

(VE (2%, |etUVA‘§e|t)/R) (vee AL U{r}), P(M.LE) = P(N,(E)
(Definition . We illustrate just some cases of the proof, since other cases

are analogous.

o First, let us consider the pair (Az.(x @ z),\x.xz) € R. From Defini-

tion [2.21), it follows that P(Az.(x @ x),L,E) = 0 = P(Az.z, L, E) holds
for all L € A@I . and B € (Ag9 et Y VA69 et)/ R Furthermore, we have
that (va.(z ® x),va.az) € R, thus va.(x & ) and ve.x belong to the
same equivalence class E. In the case that ve.(zx @ z),vx.x € E, it
holds that P(Ax.(x @ a:),T,E) =1 = Pzxua,1,FE), and if ve.(z ®
x),vr.x ¢ E, then PAz.(x @ z),7,E) = 0 = P(A\z.x,7, E). Conse-

quently P(A\z.(x ® x),(, E) = P(A\x.z,(, E) for all { € AeB et U{T} and
al E € (A} VAL /R,

o Neat, by Definition [2.25 the equality P(vz.(x & x),T, E) =0 =
P(vz.xz, 7, E) holds for any equivalence class E. For L € AY @ let» We have
that L& L and L belong to the same equivalence class, since (LEBL,L) €
R. Thus, Plvz.(x ® z),L,E) = 1 = Plvz.x,L,E) if L € E, and
Plvx.(z ® x),L,E) = 0 = P(vz.x,L, E), otherwise. Agam we con-
clude that P(vz.(x ®x),(, E) = P(va.x,(, E) for all £ € AL U{r} and

al E € (AY  wVAL /R,

@D, let

e Finally, let us consider the pair (M @ M,M) € R, where M € Ag9 let -

By Deﬁmtzon it follows that P(IM & M,L,E) = 0= P(M, L E)
for any closed term L € A@ e ond equivalence class E € (A@ et @

VA? . )/R. By Proposztwn and Deﬁnition for an equivalence

@, let
class E € (A% W V/\g9 let)/ R the following holds:

B, let
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P(M&M,7,E)= Y  P(M&M,7,ve.N)
ve.NeEE
= > [MeM](\x.N)

{\z.N|jvz. NEE}

= Y GIMI+ MO

{\z.N|vz.NEE}

= > [M](\x.N)

{X\z.N|vz.NeE}

Z P(M,1,vx.N)
ve.NeE

= P(M,7,E).

This concludes the proof that the relation R is a probabilistic bisimulation,
thus terms Ax.x ® © and Ax.x are bisimilar. As we will see, if we want to
show that two terms are context equivalent, it is enough to show that they are
bisimilar.

Example 2.25. Let us consider the terms given in E:mmple Azy.(zDy)
and (Axy.x) ® (A\zy.y). We discussed in Example that these terms are
context equivalent in the call-by-name probabilistic A-calculus without the let-
in operator and can be discriminated by a context in Ag jee. Now, we will show
that these terms are not bisimilar, i.e. that there is no bisimulation which
contains both terms. Suppose the opposite, that there is a bisimulation R such
that (A\zy.(x ®y), Azy.z) ® (A\xy.y)) € R. Then

1=PAay.(zdy), 7, F) = P((A\zy.x) ® (A\xy.y), 7, E)

holds for an equivalence class E of A%Jet LJ_rJVA/\(gNet with respect to R such that
vey.(x @ y) belongs to E. Since P((Azy.x) ® (Azy.y), 7,ve.\y.z) = 5 and
P((Azy.x) & (Azy.y),7,va.\y.y) = &, both ve.Ay.x and va.\y.y belong to E.
From v \y.x € E, it follows that (ve.\y.(x ®y),ve. y.x) € R. Let F be an

equivalence class such that \y.(Q @ y) € F. Then
1=PzNy.(x Dy),Q, F) = Plvr y.z,Q, F)

From P(vx.Ay.x,Q,\y.Q2) = 1, it follows that \y.Q¥ belongs to F. Therefore,
My (Q DY), \y.Q € F and consequently (My.(Q D y), \y.Q) € R. Let G be an
equivalence class which contains vy.(Q dy). Then

1= POw.(R@y),7,G) = POy, 7,G)
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holds. It follows that both vy.(Q®y) and vy.Q belong to the same equivalence
class G, thus (vy.(Q D y),vy.Q) € R. If H is an equivalence class such that
QoIe H, then by observing that

1=Py.(Qaoy),,H)=Pry.Q,I, H),

we conclude Q € H and as a consequence (2 ® L, Q) € R. Let J be an
equivalence class which contains vx.x. Then

1

3= PQalr,J)=P,1,J).
However, this contradicts P(Q,7,J) = 0, which follows from the definition of
a transition probability matriz (Definition . Finally, we can conclude that
a bisimulation which contains the terms Axy.(x®y) and (Azy.x)® (Azy.y) does
not exist, hence these terms are not bisimilar.

In Proposition we have proved that the context preorder and the
context equivalence are sound with respect to the operational semantics. Sim-
ilarly, the probabilistic applicative similarity and bisimilarity are sound with
respect to the operational semantics.

Proposition 2.26. Let M, N € A%
[M] = [N] implies M ~ N.

If [M] < [N] then M < N. So,

et

Proof. The relation
R = {(M,N) € AL jop x Al oo | [M] < [N]}U{(V,V) € VAL oo x VAL 0}

is a probabilistic applicative simulation (Lemma 3.4, [47]), thus included in
the largest probabilistic applicative simulation <. Soundness of bisimilarity
follows from ~=< N <°P.

O

The first step towards the proof that the similarity (resp. bisimilarity)
implies the context preorder (resp. context equivalence) is proving that the
similarity is a precongruence relation. We introduce a new notion of re-
lation called Ag jet-relation, which is a set of triplets (®,M,N) such that
M,N € Ag‘;Jet. For any relation R’ on the set of Ag j-terms, we can de-
fine a Ag jer-relation R such that if (M, N) € R’ and M, N € Ag ., then
(P, M,N) e R. If (P, M,N) € R, we will write ® - M R N. We denote the
set of all finite subsets of X by Prn(X).

Definition 2.27. A Ag jt-relation R is a precongruence (resp. a congruence)
if it is a preorder (resp. an equivalence) and for every ® = M R N and every
context C € CAg 1™, it holds that O - C[M] R C[N].
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A precongruence relation can be defined by using a notion of compatibility
and this definition is equivalent to Definition [2.27]

Definition 2.28. A Ag ic-relation R is compatible if and only if the following
five conditions hold:

(Coml) (V& € PEn(X)) (Ve €®): Pz R =z

@D, let
dU{z}FM RN =&+ (\z.M) R (Az.N)

(Com2) (V& € Pen(X)) (Vo € X \ @) (VM,N € A‘iU{x})

(Com3) (V& € Prn(X)) (VM, N,L,P €A%,
®FMRN A ®FLRP=®F (ML) R (NP)

(Comd) (¥® € Prn(X)) (VM, N,L,P €A%,
S-FMRNABFLRP=®+(MaL) R (NaP)

(Com5) (V@ € Prn(X)) (Vz € X \ @) (VM,N e Ag;’,et) (VL,P € Aggg})
OFMRN A QU{E)FLRP=
O+ (letx=Min L) R (letz =N in P)

The following auxiliary results will be useful in the sequel.

Lemma 2.29. Let us consider the properties

(Com3L) (V@ € Pran(X)) (VM,N,L € A%,Iet)
O-MRN=®F (ML) R (NL)

(Com3R) (V® € Pan(X)) (VM,N,L € A2 )
MR N=®F (LM) R (LN)

If R is transitive, then (Com3L) and (Com3R) together imply (Com3).

Proof. Let R be a transitive relation that satisfies (Com3L) and (Com3R).
We prove that R also satisfies (Com3). Let ® € Prn(X) and M,N,L,P €
Ag;,let such that ® - M R N and ® v L R P. By applying (Com3L) to
&+ M R N and term L, we obtain ® - (ML) R (NL). Further, by applying
(Com3R) to @ - L R P and term N, we obtain ® F (NL) R (NP). Therefore,
O+ (ML) R (NP) by the transitivity of the relation R. O
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Lemma 2.30. Let us consider the properties

(Com4L) (V& € Prn(X)) (VM, N, L € A ;)
PFMRN=®+(M@®L) R (N®L)

(Com4R) (V® € Pan(X)) (VM, N, L € A ;)
PFMRN=®-(L&M)R (L& N)

If R is transitive, then (Com4l) and (Com4R) together imply (Com4).

Proof. Let R be a transitive relation, which satisfies (Com4L) and (Com4R).
We prove that R also satisfies (Com4). We assume ® € Pgn(X),
M,N,L,P € Ag;Jet, ®+F MR N and ® - L R P. By applying (Com4l)
to®+ M R N and term L, we derive ® - (M & L) R (N @ L). Similarly, by
applying (Com4R) to @+ L R P and term N we get D+ (NG L) R (N & P).
Consequently, ® - (M @ L) R (N @ P) by the transitivity of the relation R.

O

Lemma 2.31. Let us consider the properties

(Com5L) (VP € Pan(X)) (Vo € X \ @) (VM, N € A2 .,) (VL € A&g})

®FMRN=®F(letz=MinL) R (let =N in L)

(ComBR) (V@ € Prn(X)) (Vo € X\ @) (VL € A2 .. (VM, N e Agie{f})

SU{z})F M RN=®F (leta=Lin M) R (letz=Lin N)
If R is transitive, then (Com5L) and (Com5R) together imply (Comb).

Proof. To prove (Com5) we have to show that the hypotheses ® - M R N
and U {z} - L R Pimply ®F (letx = MinL) R (letxz = Nin P). If
we apply (Comb5L) to the first hypothesis, with respect to L € Agﬁf}, we get
O+ (letx=Min L) R (let x =N in L). Similarly, applying (Com5R) to the
second hypothesis, ~with respect to N € A2, we obtain
®F (letx = NinL) R (letz = N in P). Then by the transitivity prop-

erty of R we conclude the claim. O

Definition 2.32. A Ag et-relation is a precongruence (resp. congruence) if it
is a preorder relation (resp. equivalence) and compatible.

The context preorder is a precongruence relation, whereas the context
equivalence is a congruence relation.

Proposition 2.33. The context preorder < is a precongruence relation.
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Proof. In order to prove that < is a precongruence, we need to show that <isa
preorder (reflexive and transitive) relation, which is compatible. The relation
< is reflexive by its definition and we prove it is transitive, i.e.

(V@ € Pan(X)) (VM N, L € A 1)
S+ M<NADFN<L=®+ M<L.

Let us assume that ® - M <N and & - N<L, then
(1) (¥C € Chosa™™) TICIM]] < LICIN]],
2) (VC € Chaa™™) SICIN] < SICIL]]

To prove ® + M<L we need to show that for every D € CA@Jet(‘I’;Q),
SIDM]] < S [DI[L]]. For any such context D, from the hypothesis (1)
and (2) we have Y [D[M]] < > [D[N]] < Y [D|[L]]. Thus, < is transitive. In
order to prove that < is compatible, we show that it satisfies the conditions
(Com1), (Com2), (Com3), (Com4) and (Comb). The proof of (Com1) follows
from the reflexivity of <.

(Com2) To prove that (Com2) holds, we show (V® € Prn(X)) (Vo € X \ @)

(var, v e AZ5E7)

dU{x}F M<N = o+ . M<Az.N.

From the assumption ® U {z} = M<N, we have (VC € CA@Jet(q)u{“"};@))
S ICIM]] < SIIC[N]] as the hypothesis. Let us consider a context D €
CA@Jet(@’@). Since the context Az.[-] belongs to the set CA@Jet(@U{I}@), then
E=D[\x.[]] € CA@Jet(@U{w};m by Lemma We can apply the hypothesis
to the context FE and obtain > [E[M]] < > [E[N]], that is
S IDAx.M]] <> [D[Az.N]]. Thus, ® - Az.M<Az.N.

(Com3) As already proved, < is a transitive relation, thus by Lemma [2.29]
it is enough to prove two characterizations (Com3L) and (Com3R). We prove

(Com3L): (V® € Prn(X)) (VM: N,L € Ag o
P+ MIN=dP+F MLINL.

Let us assume ® - M <N, then

(VC € Chaa ™) S-[eM]] < Y [CINT]
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holds as the hypothesis. We want to show that for any context D € CA@Jet(q’;m,
S [DIML]] < Y [DINL]] holds. For an arbitrary context D € CAg e ®?
and [|L € CAge'®®), we get E = D[[]L] € CAg1e'®? by Lemma
From the hypothesis, we conclude that > [E[M]] < > [E[N]] holds, i.e.
S [DIML)] < SJ[DINL]]. Thus, ® - ML<NL. We omit the proof of
(Com3R), since it is analogous to the proof of (Com3L).

(Com4) As in the previous case, the fact that < is transitive and Lemma [2.30]
ensure that (Com4L) and (Com4R) imply (Com4), so it is enough to prove these
two characterizations. We omit the proof of (Com4L) and (Com4R), since we
prove it by a similar reasoning as in the proof of (Com3L).

(Com5) By Lemma it is enough to prove two characterizations (Com5L)
and (Com5R). We prove (Com5L): (V@ € Pen(X)) (Ve X\ D)

(var, v e AZ,) (VL e Ag)

O+ M<SN = (letx =M in L)<(let x = N in L).

If we assume ® - M<N, then we have (VC € CA@Jet(@;@)) YIcmM] <
@.

SIC[N]]. We want to show that for any context D € CAget'®?,

> [Dllet x = M in L]] < > [D[let z = N in L]] holds. For an arbitrary con-

text D € CA@Jet(q);w) and the context let x = []in L € CA@Jet(q’@), we get
E=Dllet z =[] in L] € CAg et ®? by Lemmal2.14] From the hypothesis, we

can conclude that Y [E[M]] < > [E[N]] holds, i.e. > [D[let z = M in L]] <
> [Dllet « = N in L]]. Thus, ® - (let x = M in L)<(let z = N in L). The
characterization (Com5R) can be proved in a similar way. O

Corollary 2.34. The contest equivalence >~ is a congruence relation.

Proof. This statement is a consequence of Proposition [2.33] and the fact that
~=< N <P, O]

In the following two definitions we introduce the notions of substitutive
relation and relation closed under term-substitution, which will be used in the
sequel.

Definition 2.35. A Aget-relation R is (term) substitutive if for all

b e Pan(X),z € X\ @M, N e AST L, Peal

dU{z}F M RNADFLRP= &+ M{L/x} R N{P/x}.

lets We have

Definition 2.36. A Ag |-relation R is closed under term-substitution if for

all® € Pen(X),z € X\ ®, M, N € A;ﬁe{f},L € A2 \t» we have

dU{a}F M RNALEAS, = ®+ M{L/x} R N{L/x}.



32

Notice that the similarity and bisimilarity are closed under term-substitu-
tion by their definition. Compared to the proof of Proposition 2.33] proving
that similarity is a precongruence is more involved. The proof is very technical
and we have followed the technique used in [35] 36, [47]. Given that similarity
is a preorder relation, by Definition [2.32] it remains to be proven that it is a
compatible relation. We do this in the next subsection using Howe’s technique
([84]), which is a commonly used technique for proving that similarity (resp.
bisimilarity) is a precongruence (resp. congruence).

2.2.1 Similarity is a precoungruence

First, we introduce Howe’s lifting R¥ of an arbitrary Ag jet-relation R, which
is defined by the rules in Figure Next, we present some auxiliary results.

xR M

Howl
Oz REM (Howl)

dU{a}FMRHL ®+(OeL)RN z¢®
dF (\o.M) R N

(How2)

SFMRYP ®FNRHQ &+ (PQ)RL
dF (MN)RH L

(How3)

PFMREP dFNRHEQ ®FH(P®Q)RL
PH(M@eN)RL

(How4)

SFMREP ®U{z})FNREQ ®F(etz=PinQ)RL
®F (let =M in N) R L

(Howb)

Fi1GURE 2.5: Howe’s lifting for Ag et

Lemma 2.37. If R is reflexive, then R is compatible.
Proof. The proof proceeds similarly to the proof of Lemma 3.10 in [46]. O

Lemma 2.38. If R is transitive, then ® - M R” N and ® - N R L imply
o+ M RH L.

Proof. The proof proceeds by induction on the derivation of ® - M R” N. O

Lemma 2.39. If R is reflexive, then ® - M R N implies ® - M R N.
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Proof. The proof proceeds by induction on the structure of M. O

Lemma 2.40. If R is reflexive, transitive and closed under term-substitution,
then R™ is (term) substitutive and hence also closed under term-substitution.

Proof. We need to show that: (V® € Prn(X)) (Vz € X \ @) (VM, N € A;ﬁe{:})
(VL. P e AZ,)

PU{e}FMRIN A SFLRY P = oF M{L/z} RY N{P/z}.
The proof proceeds by induction on the derivation of ®U{z} - M R¥ N. O

Definition 2.41. For a relation R, its transitive closure, denoted by R, is
defined by the rules in Figure[2.6

dP-M RN (TC1)
d+-MRT N

+ +
OP-FMRT™ N PEFNTR L(TC2)
O-MRTL

F1aure 2.6: Transitive closure for Ag et

In the following lemmas we identify some properties of a transitive closure
of a relation.

Lemma 2.42. For the transitive closure Rt of a relation R the following
holds:

1. If R is compatible, then so is R*.
2. If R is closed under term-substitution, then so is R™.

Proof. The proofs of the two claims follow the same reasoning as the proofs of
Lemma 3.14 and Lemma 3.15, respectively, in [46]. O

Lemma 2.43. If a Ag jet-relation R is a preorder, then so is (RH)™T.

Proof. Let R be preorder. Since R is reflexive, we get that R¥ is compatible
by Lemma and then, by Lemma it follows that (R¥)* is also com-
patible. Therefore, (R¥)* is reflexive. Relation (R¥)* is a transitive closure
of the relation R, so the transitivity of the relation (R¥)* follows from its
definition.

O
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A key step in proving that similarity is a precongruence is Key Lemma
(Lemmabelow). In the proof of Key Lemma we will use auxiliary lemmas
about probability assignment (Lemma and similarity (Proposition [2.46]
and Proposition .

Definition 2.44. An ordered pair P = ({pi}1<i<n, {r1}1cq1,....n}), where
Pis---,pn € [0,1] and for each I C {1,...,n}, r1 € [0,1], is a probability
assignment if for each I C {1,...,n} it holds that 3>, pi <3 51497

Lemma 2.45. Let P = ({pi}1<i<n, {r1}1cq1,....n}) be a probability assignment.
Then for every nonempty set I C {1,...,n} and for every k € I there exists
sk,1 € [0,1] which satisfies the following properties:

1. for every I, it holds that ), ; sk,1 < 1;
2. for every k € {1,...,n}, it holds that pr, <>, sk 71

Lemma is proved in [46]. In the proof of Key Lemma, we will also use
the following auxiliary results.

Proposition 2.46. For every X C Ag} it holds that < (vz.X) = va.(S

let”

(X)), where ve.(< (X)) stands for the set {va.M |IN € X,N < M}.
Proof. The proof follows from the definition of similarity. [
The following proposition is a direct consequence of Proposition [2.46

Proposition 2.47. If M < N, then for every X C Agl}et, [M](Az.X) <
[NI(Az. < (X))

Lemma 2.48. (Key Lemma) Let M, N € Aglet. If M <H N, then it holds

that [M](Az.X) < [N](M\z.(SH (X)), for every X C Aéﬁet.

Proof. From the definition of semantics, we know that
[M] = sup{2 | M § 2}.

Thus, it is sufficient to prove that whenever M <H N and M |} 2, we have
P(Nz.X) < [N]J(Az.($H (X)) for every X C Ag,}et. The proof proceeds by
induction on the derivation of M |} &, performing the case analysis on the last

rule applied.

e If M |l (), then we have D(Az.X) = 0 < [N](Az.(SH (X)) for every

X C Agf,};t.
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e Next, we consider the case where M is a value Az.Q) and the distribution
D has all of its mass on Az.Q, that is Z(Az.Q)) = 1. Since M is a value,
the last rule used in the derivation of M < N has to be (How2). Thus,

for some P € ALL,, it holds that « - Q <# P and 0 - Az.P < N. For

X C Aéa |}t we consider two cases:

- If Q ¢ X, then D(Az.X) = 0 and the statement holds.
- IfQ € X, then D(Az.X) = 1 and P €< (X). For every L €5 (P),
we have that = - Q <F P and 2 + P < L. By Lemma we

conclude that z - @ < L holds. Thus, L €<H (X) and it holds
that < (P) C<H (X). By Proposition we obtain the following

D(A\x.X) =

e Let M be an application LP. Then we have D =}, o F(Az.Q) - Hq,p
where L || F and for any A\z.QQ € S(F), {Q{P/z} | Ho,r}- The last
rule used in the derivation of M <# N has to be (How3), thus we
get 0 - L <H R OF P <H Sand ) - RS < N. If we apply the
induction hypothesis to L || F and 0 - L < R, we obtain that, for any
Y C Ag jet(z), it holds that

FAzY) < [R)(z. <P (V). (2.8)

Since F is a finite distribution, the distribution D = 7, o F(Az.Q) -
Ho,p is a sum of finitely many summands. Let us assume that
S(F) ={Az.Q1,...,\x.Q,}. From equation (2.8) we conclude

F(JA2.Qi) < [RI(|J Az S (Q0))

icl el

for every I C {1,. n} which allows us to apply Lemma u Hence,
R FUR

for every U € Ul . SH(Q;) there exist real numbers B rUR such
that: . .
(AU Z vU e [ £ (Qi);
i=1 i=1

F(z.Q;) < roH Vie{l,....n}.
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From these equations we can conclude the following

D < i Z T?’R “Hg, . p= Z Z TU’R “Hg,.p-

i=1 \Ue<H(Q;) =1 Ue<H(Q;)

Since @; < U and P <f S holds, by Lemma we have
Qi{P/z} <H U{S/x}. Now, by applying the induction hypothesis to
the derivations Q;{P/z} || Hq,.p, ¢ € {1,...,n}, for every X C A{gcl}et
we obtain

DOwX) < Y Y RS/ 0w 7 (X))

=1 UeSH(Q:)

Yoo > RIU{s/a e 51 (X))

=l UV, $7(Q)

— Y st 7 (X))

UelUiL, SH(Qi) =1

= 3 (Z Uﬂ) [U{S/z}](Az. <7 (X))
UelUiL, SH(Qq)
Z [RI(A\2.0)[U{S/z}](Az. SH (X))
UelUr ,<H(Qq)
> R0 [U{S/z}|(Mz. S7 (X))

veall,

= [RS](\. £7 (X))
[NI(Az. < (7 (X))
[NI(Az. 7 (X)),

IN

IN

IN

IAIA

e If M is a probabilistic sum L & P, then D = 3 F + 3€ where L |} F and

P || £. The last used rule in the derivation of M < N has to be (How4),
hence for some R, S € A? & et» We have that 0 - L <HR,OFP<HSand
0FRo®S < N hold. If We apply the induction hypothe51s to L | F and

P+ L <H R, forany X C Aéa |}et we obtain F(Az.X) < [R](M\z. <H (X)).

Similarly, if we apply the induction hypothesis to P |} £and ) - P <H S,

for any X C Aéa ! we obtain EAz.X) < [S[(\z. <H (X)). Since

0 R®S <N, we have [R® S](\. <F (X)) < [N](Az. <F (X)). By
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Proposition [2.1T] and the previously concluded statements the following
holds

D(Az.X) = %f(/\x.X)Jr%E()\x.X)

IN

STRIOw. S (X)) + 2 [S10 57 (X))

— [R& S| 7 (X))
— [N €7 ().

e If M = (letx = LinP), then 2 = 37, o F(A\z.Q) - H#g,p where
L |} F and for any Az.Q € S(F), {P{\z.Q/z} || 5 p} holds. In the
derivation of ) - M <H N the last rule used has to be (How5), meaning
that for some terms R and S, we have ) - L <H R, 2 - P <H S and
0 F (letx = RinS) < N. From L || # and 0 - L < R, by the
induction hypothesis we get

F(\.Y) < [R](Az. <H (Y)), (2.9)

for any ¥ C Al"},. The distribution % is a finite distribution and as
a consequence the sum 2 = 3, o7 (A2.Q) - g, p has finitely many
summands. Let S(#) = {A\z.Q1, ..., z.Q,} be the the support of the

distribution .#. From Equation (2.9)), it follows that

F(JA.@i) < [RI(J Ae. 7 (Q0)

iel il
holds for every I C {1,...,n}. By Lemma [2.45] we get that for every
UelUr, < (Q;), there exist real numbers r{ DR such that:

BOw0)> S0 wwel ) < @

i=1 i=1

FAe.Q) < Y ), Vie{l,...,n}.
UesH(Qq)
We derive
755 31 D S L) PR SR Sl e
=1 \UeSH(Q:) =1 Ue<SH(Q:)

By Lemma [2.37] the relation <# is compatible. From Q; < U, we get

Me.Q; <P Xx.U. From the latter and P <7 S we obtain
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P{\2.Q;/x} <H S{\z.U/x} by Lemma [2.40} Finally, from the deriva-
tions P{\z.Q;/x} | S0, p, i € {1,...,n}, by the induction hypothesis
and by similar reasoning as in the case of application, we get

7(x.X) < [N](a. $7 (X)),

for every X C Aé;}

Jlet”

This concludes the proof. O

Using Key Lemma and other presented auxiliary results, we derive the
most important result of this section.

Proposition 2.49. The similarity < (resp. bisimilarity ~) is a precongruence
(resp. congruence) relation for Ag jet-terms.

Proof. The idea of the proof is the following: we first prove that the relation
(<H)* is a precongruence and then we prove that relations (<H)* and <
coincide. The relation < is a preorder, so it follows that the relation (<H)*
is also a preorder by Lemma [2.43] From the reflexivity of relation < and
Lemma we conclude that the relation < is compatible and it follows
that (<H)* is also compatible by Lemma We have proved that (<H)*+
is a precongruence. As a direct consequence of the definition of Howe’s lifting
and transitive closure we have <C (<H)*. It remains to prove (<) C<.
Since < is the largest probabilistic simulation, it is sufficient to prove that
(<H)* is included in some probabilistic simulation. We consider the rela-
tion R = {(M,N): M ()" N}U{(va.M,va.N): M (S")™ N}. From
the definition of R, we see that (<)* C R. We prove that R is a prob-
abilistic simulation. By Lemma and Lemma we have that (SH)*
is closed under term-substitution, thus it is sufficient to consider only closed
terms and distinguished values. The relation (<)% is a preorder relation, so
it follows that R is also a preorder relation. It remains to prove the following:

1. If M (<H)* N, then for every X C Ag’l};t it holds that
P(M,7,vz.X) < P(N,7,R(vz.X)).

2. If M (SH)T N, then for every L € Aga,let and for every X C Agl};t,

Pvx.M,L,X) < P(vz.N,L,R(X)).

We prove the first point by induction on the length of the derivation
M (<H)* N, performing the case analysis on the last rule applied. The
base case is when the rule (TC1) is the last rule used, that is M (<H)* N is
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obtained from M <¥ N. From the latter and Key Lemma, we have
P(M,r,ve.X) = [M](A\x.X)
< [N](z. 7 (X))
< [N] (. ($7)* (X))
< [NI(R(Az.X))
= P(N,7,R(vz.X)).

If the last rule used was (TC2), then M (<H)* P and P (<H)* N hold
for some P € A% By the induction hypothesis, we have

P(M,7,X) < P(P,7,R(X)),
P(P,7,R(X)) < P(N, 7, R(R(X)))-

From these inequalities and the fact that R(R(X)) € R(X) holds for any
transitive relation R and set X, we obtain

Jet”

P(M,7,X) < P(N,7,R(X)).

This concludes the proof of the first point.
Next, we prove the second point, that is whenever M (SH)* N, L € A%’let

and X C AL} | then P(va.M, L, X) < P(va.N,L,R(X)). Let M (<H)* N
@D, let ~

and L € Ag&let. Since the relation (<)% is closed under term-substitution,
we have M{L/x} (<H)* N{L/x}. Tt follows that if M{L/x} € X, then

N{L/z} € ($¥)*(X) and we obtain
PlvaM,L,X)=1
= P(va.N, L, (S")*(X))
= P(vz.N,L,R(X)).

If M{L/z} ¢ X, then we have P(va.M,L,X) =0 < P(va.N, L, R(X)).

This proves the second point and concludes the proof that similarity is a
precongruence.

Finally, we prove that bisimilarity is a congruence. The relation ~ is an
equivalence relation by its definition, hence the compatibility of the relation ~
follows from the compatibility of relation < and definition ~=< N <°. Thus,
bisimilarity is a congruence.

O

As a direct consequence of the previous lemma we have that similarity
(resp. bisimilarity) is sound with respect to the context preorder (resp. context
equivalence).
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Theorem 2.50 (Soundness). For every M,N € AJ
&+ M < N. Therefore, M ~ N implies & - M~N.

O+ M < N implies

Jet?

Proof. Let ® = M < N. Then for every context C' € CA®,|et(¢;@), we have
0 = C[M] < C[N] by Proposition meaning that there exists a simulation
relation which contains the pair (C[M], C[N]). By Definition it follows
that > [C[M]] < Y [CIN]]. Thus, ® - M < N. The proof that the bisimilar-
ity is included in context equivalence follows from the definitions ~=< N <°P
and ~=< N <°P, O

2.3 Full abstraction

In this section we present the proof of full abstraction. We prove that whenever
two terms are context equivalent, they are also bisimilar, which is the converse
of Theorem [2.50} In the proof we will use a new notion of equivalence, called
testing equivalence.

In [II1], Larsen and Skou have introduced a notion of testing language
for a discrete probabilistic transition system and proved that two processes
are bisimilar if and only if the success probability of any test is the same for
both processes. In [166], Van Breugel, Mislove, Ouaknine and Worrell have
extended the results of [IT1] to labelled Markov processes. We consider the
discrete-time version of Markov processes, namely Markov chains, so we adapt
the result of [I66] to the labelled Markov chains (as in [35, 47]). First we give
the general definitions of a testing language and the success probability of a
test for a labelled Markov chain.

Definition 2.51 (|35]). Let (S, L, P) be a labelled Markov chain. The testing
language T(s cpy for (S,L,P) is given by the grammar

[ti=wlat] (t1)] (2.10)

where w is a symbol for termination and a € L is an action (label).

A test is an algorithm that consists of finite sequence of actions. The
symbol w represents a test which always succeeds, meaning that none of the
action is performed. The test a.t consists in performing an action a and in
the case of success performing the test ¢. Performing the test (¢, s) consists in
making two copies of the current state and performing independently tests ¢
and s on the same state. Performing the test on a state can result in either
a success or a failure with a given probability. In the following definition we
introduce the notion of a success probability of a test.
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Definition 2.52 ([35]). Let (S,L,P) be a labelled Markov chain. We define
the family {P; : S — Rjo 11 }teTis .y DY induction on the structure of t:

e P,(s)=1,
° Pa.t<s) = ZS’GS 7)(5704, 5l>Pt<s/)7
o Py i0)(8) = Piy(8) - Py (5).

Fort € Tis.cpy and s € S, we refer to Py(s) as the success probability of
t applied to s.

In Section @ we have shown that probabilistic A-calculus Ag jer can be
seen as a labelled Markov chain, so we can define the testing language for
Ag jet- We illustrate how to perform the test and how to compute the success
probability in the following example.

Example 2.53. We consider the terms \xy.(x @ y) and (A\zy.x) & (Azy.y).
In Ezample |2.16] we have proved that these terms are not context equivalent.
These terms can be discriminated by the test t = 7.(L7.Q.7.w, L.7.Q.7.w). The
success probability of the test t for the term Axy.(x ® y) is i, whereas the
success probability of the test t for the term (\zxy.x) ® (A\zy.y) is We have
sketched the computation of success probability in Figure[2.7

1
5-

Azy.(x B y) Azy.x D Azy.y
T T T
1 /TN
v \y.(z @ y) 2N TR vE.AY.Y
1JI 11 11
My.Iay) Ay.I DYTRY
1 lT 117 1 T
vy.Iey) vy.I vy.y
JQ 1,9 1%
IeQ I Q
T *\ T :
%/ 0, 1 0,"
vr.x vr.x

FI1GURE 2.7: The test t = 7.(I.7.Q2.7.w, L.7.Q.7.w) over the
terms of Example m
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We see that terms, as states of a labelled Markov chain, can be discrimi-
nated by tests. Thus, a testing language induces a new relation on the set of
terms such that two terms are related if the success probability of every test
is the same for both terms. We formally define this relation as follows.

Definition 2.54 (Testing equivalence). Let (S,L,P) be a labelled Markov
chain. Two states s,s’ € S are testing equivalent if and only if for every test
t € Tis,c,p), we have that Py(s) = Py(s').

The testing equivalence and bisimilarity over some labelled Markov chain
coincide. The same result has been proved for labelled Markov processes in
[166]. In [47] these results have been adapted to labelled Markov chains.

Theorem 2.55 ([47]). Let (S, L, P) be a labelled Markov chain. Then s, s’ € S
are bisimilar if and only if P;(s) = Py(s") for every test t € T(s c p)-

In the case of inequalities the previous theorem does not hold. In [166],
the authors gave examples of states s and s’ in labelled Markov process such
that P;(s) < P;(s’) and the states s and s’ are not similar.

In order to prove that context equivalence implies bisimilarity, it is enough
to prove that context equivalence implies testing equivalence, since bisimilarity
and testing equivalence coincide by Theorem We prove the implication
between context equivalence and testing equivalence by proving that for ev-
ery test ¢ related to the Ag i-Markov chain, there is a context C} in Ag et
such that for every closed term M the success probability of the test ¢ on
the term M is equal to the convergence probability of the term C;[M], i.e.

Bi(M) =3 [C[M]].

Lemma 2.56. For every testt € Ty, ., there are contexts Cy, Dy € CA@Jet(@;@)

such that for every term M € A(g9 and value V- = \z.M € V! it holds

Jet P, let
that:

P(M)=>[Ci[M]] and P(V)=> [DJV]],

where V denotes the distinguished value ve.M € VA% let

Proof. The proof proceeds by induction on the structure of test ¢.

e Let t = w. By Definition we have P, (M) =1 for every M € Ag,et
and P, (V) = 1 for every V € Vema,let . We take both context C,,[-] and

D,,[] to be the context (Azy.z)[-]. For every closed term M € Aga,let, we
have

SUIC M) = S [(wya)M] = S [Ay.M] = 1 = P, (M),
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Further, for every value V € V% e We have

DDV =D [Qaya)V]=> Dy.V]=1=P,(V).

e Let the test ¢ be of the form a.t’ for some action a and test t. By the
induction hypothesis we have that there exist contexts Cy € CA@Jet(@;@)
and Dy € CAg, |et( 9 such that Pu(M) = Y [Cy[M]] for every
M € AEB ot and Py (V) = S [Dy[V]] for every V e V%,et . In Ag et
Markov chain an action is either a closed term or 7 action, so we distin-
guish two cases depending on the action a.

— If a = 7, we have Pm/(f/) = 0 for any value V € V%Jet by Def-
inition [2.23] and Definition 2.52] For the context D, = Q[], we
have P, y(V) = 0 = Y [D.[V]], for every V € V2 . . By Def-

inition and the induction hypothesis we have that for every

M e A7Iet the following holds:

Pry(M) = Z P(M,7,V)Py (V)

VEVAGB et

= > [M)(V) > [De[V]]

VGVGB et

We define the context C, 4 as Cryp = (let y = [-] in Dy[y]). From
the definition of semantics it follows that for any closed term

M e A?B «t We have

S ICrw[M]] = [let y =M in Dy[y]]
= Y MI(V)- > De VI

Vev@ let

We conclude P, (M) =Y [Crv[M

— If a = L for some L € A‘g9 let> then Pry (M) = 0 for any term
M e Aga’,et, by Definition and Definition |§§ For the context
Crv = Q[], we have Ppp(M) =0 = Z[[CLAt/ \[]]. For a value
V =Xx.N (V =vz.N) and every M € A@ ler» Dy Definition
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Definition [2.52] and the induction hypothesis we have

PLy(V)= Y P(V,L,N')Ps(N')
N/eAéBlet

= P(va.N,L,N{L/z}) - P»(N{L/z})
=1-Po(N{L/x}) =) [Cv[N{L/x}]

By Proposition we know that the term N{L/x} has the same
semantics as the term (Az.N)L. Then terms N{L/z} and (Az.N)L
are bisimilar by Proposition [2.26| and as a consequence they are
also context equivalent (Theorem [2.50). Thus, Y [C[N{L/z}]] =
S IC[(Az.N)L]] holds for every context C. We conclude

Pro(V) = Y ICoIN{L/e})] = S [Ck [(Ae.N)L)] = 3 [Cu [V L.

For the context Dpp = Cy[[|L], we have that Y [Dpv[V]] =
S [Cy[VL]] holds for any value V € VY Thus, we conclude

' @D,let -
Ppu(V) = [Drv[V]].

o If the test ¢ is of the form (¢',¢"), then there exist contexts Cy,Dy, Cyr,

Dy from CAg, |et( ?) such that for every M € A@ e and V' € V% et the
following holds:
Py(M) = [Cu[M]]), Pu(V)=> [Du[V]],
Py (M) =Y [Cer[M]] and P (V)= [Dw[V]].
For every M € A@ let We have
P(t’,t”)(M) - Pt' (M) . Ptll (M) Z Ctl Z[[Ctu

by Definition We define the context C(y 4y as follows

Curpmy = (My.(let z; = Cyly] in (let 20 = Cyr[y] in 1)))[] (2.11)

From the definition of semantics we have » [C(y 1) [M]] = > [Cy [M]] -
Z[[Ct// [MH] Thus, P(t’7t")(M) = Z[[C(t',t”)[M]]]'

Similarly, for every value V' € V% we have

Jlet

Py (V) = Pu(V) - Por(V) = [Du[V]]- Y [De[V]]
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so we define Dy = (Ay.(let 21 = Dy[y] in (let 2o = Dy [y] in I)))[]

and obtain P(t’,t”)(v) = Z[[D(t’,t”)[v]]]'
This concludes the proof. O

Proposition 2.57. Let M, N € Ag9
every test t.

If M < N, then P.(M) < P,(N), for

et

Proof. Let M and N be closed terms such that § - M < N. By the defini-
tion of the context preorder, we have ) [C[M]] < > [C[N]], for every context
C e CA@JSt(@;@). Next, let ¢ be a test. Lemma [2.56| ensures that for the
test ¢, there is a context Cj, so that P,(L) = Y.[C[L]] holds for every
L € A%y,et. From the latter and the assumption that terms M and N are
in context preorder, we obtain that for each test ¢, P,(M) = > [C:{M]] <

O

Y [CNI] = Fi(N).

As a direct consequence of Proposition [2.57] we obtain that context equiv-
alence implies testing equivalence.

Theorem 2.58. Let M, N € Ag,et. Then M~N implies P;,(M) = P,(N), for
every test t.

Proof. The proof follows directly from Proposition and the definition
of context equivalence. Recall that M~N is equivalent to M < N and
N < M. O

Examples and gave terms that are distinguished by a test and
cannot be distinguished by contexts in call-by-name probabilistic A-calculus
without let-in operator, but can be distinguished by a context in call-by-name
probabilistic A-calculus with let-in operator, so they illustrate that the let-in
operator is necessary for achieving full abstraction. In the call-by-name setting
the tests where we have to copy a term after an evaluation cannot be charac-
terized by a context and as a consequence the context equivalence and testing
equivalence do not coincide. On the other hand, in the call-by-value setting we
do not have this problem, since arguments are first evaluated and then passed
to a function. We overcome this issue in call-by-name probabilistic A-calculus
by adding the let-in operator. The equivalent terms of the Ag-calculus, call-
by-name calculus without the let-in operator, which are discriminated in the
calculus we propose, are terms where a body of a lambda abstraction contains
a probabilistic choice, e.g. a term of the form Az.M @& N and a probabilistic
choice of lambda abstractions, e.g. a term of the form (Az.M) @ (Az.N). Also,
the terms which represent passing a probabilistic choice to a function (call-
by-name application) and the terms which represent evaluating a probabilistic
choice before it is passed to a function (let-in operator) are discriminated.
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Finally, we conclude that the three equivalence relations, namely context
equivalence, bisimilarity and testing equivalence, coincide. These results are
stated in the following theorem and sketched in Figure

Theorem 2.59 (Full Abstraction). For any M,N € A%y,et, the following
notions are equivalent:

(context equivalence) M~N,
(bisimilarity) M ~ N,

(testing equivalence) P(M) = P,(N) for all tests t.

Context Equivalence ~

Theorem VYC' context,
2[CIM]] = YICIN]]
N

Testing Equivalence ]
Vit test, P,(M) = Py(N) Theorem [2.50)

Bisimilarity ~
> 4R bisimulation, M R N

Theorem [2.55

Ficure 2.8: Sketch of the main results in Chapter which
lead to Theorem m

2.4 Concluding remarks

In this chapter, the Ag j-calculus, a pure untyped A-calculus extended with
two operators: a probabilistic choice operator & and a let-in operator has been
studied. In Ag e both call-by-name and call-by-value strategy are imple-
mented. The main evaluation strategy in the calculus is call-by-name strategy
and the let-in operator allows for a call-by-value passing policy. The main
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result of the chapter is the proof of full abstraction, that is the proof that
context equivalence and probabilistic applicative bisimilarity coincide. This
chapter is based on [99].

Three equivalence relations on the set of Ag i-terms are considered: the
context equivalence, the probabilistic applicative bisimilarity and the testing
equivalence. First, it is proved that probabilistic applicative bisimilarity is
a congruence. Consequently, the probabilistic applicative bisimilarity implies
context equivalence. Next, the testing language is introduced, which induces a
new equivalence relation, the testing equivalence. An important known result
is that the testing equivalence and the probabilistic applicative bisimilarity
coincide. Finally, proving that for every test there is an equivalent context
ensured that the context equivalence implies the testing equivalence. All these
results are sketched in Figure and they imply that the three equivalence
relations coincide.

The presented results confirm a conjecture stated in [35]. In [35], the au-
thors studied the call-by-value probabilistic A-calculus and proved that the
probabilistic applicative bisimilarity coincide with the context equivalence.
However, in the call-by-name probabilistic A-calculus ([47]) the probabilistic
applicative bisimilarity is included in the context equivalence, but these two
relations do not coincide. So, the authors conjectured that adding a let-in
operator to the call-by-name setting will recover full abstraction.

In [99], we have conjectured that the need for the let-in operator was not
due to the call-by-name evaluation strategy, but due to the lazyness of the
calculus. This conjecture has been proved in [40].

Concerning the inequalities associated with these equivalences: the full
abstraction of similarity with respect to the context preorder remains an open
question. As it has been discussed, the similarity and testing preorder do not
coincide, that is Theorem [2.55] does not hold in the case of inequalities. Thus,
we cannot use the same method as in the case of bisimilarity and context
equivalence.

There are few directions for the future work.

e Since the method used for proving the full abstraction of the probabilistic
applicative bisimilarity with respect to the context equivalence can not
be used if we consider the inequalities associated with these equivalences,
it is necessary to explore other options for dealing with inequalities.

e Another interesting research path is studying the let-in operator in call-
by-name languages with effects other than the probabilistic one such as
the non-determinism.

e In this chapter, a non-typed calculus is considered. Similar questions
should be addressed in typed languages, as well.
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Chapter 3

Kripke-style semantics for
full simply typed calculus

In this chapter, we study the simply typed combinatory logic extended with
product types and sum types, called the full simply typed combinatory logic
CL™>%F (|67, 83| 123], [138]), and present its Kripke-style semantics, which
has been introduced in [61], (93, [94]. We prove that the logic CL™>*" is sound
and complete with respect with the proposed semantics.

Combinatory logic, untyped and typed, has a wide range of applications
in developing fields, e.g. program synthesis ([53]), machine learning ([115]),
artificial intelligence ([60]), cognitive representation ([52]), natural language
processing ([162]), physics ([I64]). Consequently, it has been the object of
many studies, e.g. [17, 19} 20, 25|, 53], 54, [161].

Typed calculi have proved to be related to different logics via the Curry-
Howard correspondence ([83]), also known as formulae-as-types, proofs-as-
terms, proofs-as-programs correspondence. The Curry-Howard correspondence
is a correspondence between type systems for models of computation (A-
calculus and combinatory logic) and formal proof calculi. It gives a relationship
between types in models of computation and formulas in logics, in the follow-
ing way: the set of formulas provable in logic coincides with the set of types
inhabited by terms of the corresponding calculus. Another relationship given
by the Curry-Howard correspondence is the one between terms and proofs, a
term which inhabits a type ¢ in the calculus is actually a proof of formula o
in the logic. The analogy between types and formulas of logic was first dis-
covered by Curry in 1934 (|38]) when he noted that types of the combinators
correspond to the axioms of intuitionistic implicational logic. More precisely,
Curry observed that the fragment of Hilbert-style deduction system coincides

49



50

with the type system of combinatory logic ([39]). He noted that there is the
correspondence between the natural deduction system for intuitionistic im-
plicational logic and simply typed A-calculus, which was later formulated by
Howard in [83)].

The full simply typed combinatory logic presented in this chapter is related
to the intuitionistic propositional logic with all connectives via the Curry-
Howard correspondence. The analogy of the full intuitionistic propositional
logic (with all connectives) and the simply typed A-calculus extended with
product types and sum types has been established in [83].

Different extensions of the simply typed calculus have been studied (|34}
50, 153]). In [34], Cosmo and Kesner study the typed A-calculus with func-
tional types, product types, terminal object, sum types and recursion and they
provide a rewriting system which has proved to be confluent. In [50], de Vrijer
shows that with surjective pairing axioms the extension of the extensional A-
calculus is conservative. In [I53], Scherer studies the Sn-equivalence of terms
in the full simply typed A-calculus with atoms, functions, pairs, the unit type,
sums and the empty type and shows that this equivalence is decidable, it co-
incides with the context equivalence and the finite model property holds. We
may notice that all these studies have considered the computational part of
the calculus, namely its reduction relation and the induced equational theory.
To the best of our knowledge, this chapter provides the first result on the
completeness of the type assignment system.

The semantics we propose in this chapter is a Kripke-style semantics.
Kripke semantics has been introduced by Kripke in 1950s as a semantics of
modal logic ([108]). Later, it was adapted to the intuitionistic logic ([I10]) and
other non-classical logics. Kripke-style semantics has also been employed as a
semantics of models of computation ([5, B3, 59, 124]). Inspired by the work
of Mitchell and Moggi in [124] we have introduced a Kripke-style semantics of
the full simply typed A-calculus and combinatory logic in [94].

Contributions of the chapter

e We present a novel Kripke-style semantics of the full simply typed com-
binatory logic.

e The Kripke-style semantics that we present have been introduced in [94],
however the calculus considered in [94] is not the same as the one we
study in this chapter. The similarities and differences of the results
presented in [94] and the result of this chapter are discussed in

e The main results of the chapter are the soundness and completeness of
the full simply typed combinatory logic with respect to the proposed
semantics.
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Overview of the chapter We start by introducing the full simply typed
combinatory logic, CL™*% in A Kripke-style semantics of CL™*7T is
introduced in Section presents the main results of the chapter, the
proof of soundness and completeness of C L=t with respect to the proposed
Kripke-style semantics. Section concludes the chapter.

3.1 Full simply typed combinatory logic

In this section, we formally introduce the full simply typed combinatory logic
CL7*% which is the simply typed combinatory logic extended with product
types, sum types, the unit type and the empty type. We start by defin-
ing the language of CL™>T. The set of all terms is built up from the
set of term variables X = {z,y,z2,...,21,...} and the set of term constants
{K,S,P1,Pa,P,l1,15,C,Z,U}. Terms are expressions generated by the follow-
ing grammar:

M=z |K|S|Py|Ps|P|li|l:]|C|Z|U|MM
w1 (M) | mo(M) | iny (M) | ing(M) | {) (3.1)

The set of all terms is denoted by CL™ %" and we let M, N,...,My,...
range over CL™F. By FV (M) we denote the set of variables that occur in
the term M. The substitution of NV for the occurrences of = in M is denoted by
M{N/z}. We write M = N for syntactic identity. We are interested in typed
terms, so we introduce the set of types, which is built up from a countable
set of type variables Vyype = {a,b,¢, ..., a1,...} and the set of type constants
{0,1} using three type constructors: — (functional type), x (product type)
and + (sum type). The set of all types, denoted by Types, is generated by the
following grammar:

‘U:::a|a—>a|axa|a+a|0|1‘ (3.2)

We let o, 7,...,01,... range over Types.
Following [123], we formalize the typing system. First, some auxiliary
notions such as statements, declarations and bases are introduced.

Definition 3.1.

(i) A (typed) statement is an expression of the form M : o, where
M € CL7>% and o € Types. The term M is the subject and the
type o is the predicate of the statement.

(ii) A declaration is a statement of the form x : o, i.e. a statement with a
term variable as subject.
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(iii) A set of declarations with distinct variables as subjects is called a basis
(context ).

(iv) For a basis T' = {x1 : 01,...,2y : 0n}, the domain of T is the set
dom(T) = {x1,...,Zn}.

(v) For a basis I' = {z1 : 01,...,2, : 0n} the codomain of T' is the set
IT| ={o1,...,0n}

One of the properties that we want the typing system to satisfy is to type
equal terms with the same type. More precisely, whenever a type o is assigned
to a term M and terms M and NN are equal, the type o should also be assigned
to the term N. For this reason, we first define the equality of terms.

Combinatory logic is a model of computation and the computational as-
pect is modeled by the operational semantics which is given by the reduction
relation. The one-step reduction is defined with the following contraction rules

(KM)N — M

((SM)N)L — (ML)(NL)

P, M - m(M)

Py M = m(M)
P1((PM)N) - M
Po((PM)N) — N
(P(P1M))(P2M) - M

Iy M —  iny (M)

lo M —  ing(M)
(CF)G) (1, M) ~ FM
(CF)G)(1,M) ~ GM
(C(S(KF)I))(S(KF)l2)) M - FM

M = (), fTFM:1
M{N/z} — ZIN, ifTHN:0,

and 'z : 0F M : o.

Notice that the reduction relation depends on the type assignment system.
In the last two contraction rules, the reduction depends on a type assigned to
a term. A precise formulation of the rule M — () is:

IfT'F M : 1 for some basis I', then M —r ().
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The reduction —r will be called reduction with respect to the basis I". The
first twelve contraction rules hold for every I'. The subscript I' can be omitted
if there is no ambiguity from the context. Reflexive, symmetric, transitive and
contextual closure of the reduction relation — is denoted by =r.

We have discussed that the equality will be used in the definition of the type
assignment system and the typing derivations will be used in the definition of
the equality, thus these two relations have to be defined simultaneously.

Definition 3.2. The equivalence relation =1 and the type assignment system
for CL=%% are defined by the azioms and rules in Figure and Figure
respectively.

We briefly discuss the axioms and rules in Figure [3.1] which define the
equational theory £EQprcry.-

e The axioms (1) —(12) and rules (13) — (14) correspond to the contraction
rules that define the one-step reduction.

e The reflexivity, transitivity and symmetry of the relation = is ensured
by the axiom (15), and rules (16) and (17), respectively.

e The rules (18) —(23) guarantee that the relation is closed under contexts.

e The extensionality of the equational theory is established by the rule
(24).

In Figure [3:2] the typing axioms and rules are given. Notice that the type
assignment system for CL™ " consists of:

e axioms: (Axiom €), (Axiom K), (Axiom S), (Axiom P;), (Axiom Ps),
(Axiom P), (Axiom Iy), (Axiom I3), (Axiom C), (Axiom Z), (Axiom
U) and (Axiom l-intro),

e rules with one premise: (x elim1), (x elim2), (+ introl), (4 intro2), and

e rules with two premises: (— elim), (Eq).
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KMN =r M (1)
P.M =r m (M) (3)
P.(PMN)=r M (5)
P(PiM)(PoM)=r M (7)
l2M =r inog(M)  (9)
((CF)G)(12M) =r GM  (11)

I'-EM:1
7M:r() (13)

M=rM (15)
M = M’

17
=t 7

M=r M’

NM =r NM' (19)

M =r M’
T2 (M) =r m2(M')

(21)

M =r M’
ing(M) =r ing(M/)

(23)

SMNL =p (ML)(NL) (2)
PQM =r TI'Q(M) (4)
P2(PMN)=r N (6)

|1M =r 1n1(M) (8)

(CPG)(LM)=r FM (10)
((CS(KEYI)(S(KE)I2))M =r FM  (12)
I'EN:O Ix:0FM:o
M{N/z} =r ZN (14)
s
M= Mgy
MN =r M'N
M =r M’ — (20)
w1 (M) =r m(M")
M =r M’ (22)

in1(M) =r iIl1(M/)

Mz =r Nz x g FV(M)UFV(N)

(24)

M =r N

FiGure 3.1: Reflexive, symmetric, transitive and contex-
tual closure of reduction relation —r

We briefly discuss the axioms and rules in Figure (3.2

e (Axiom €) ensured that every variable that belong to the domain of the
basis is typed which the corresponding type in the basis.

e (Axiom K), (Axiom S), (Axiom P;), (Axiom P), (Axiom P), (Axiom
1), (Axiom I5), (Axiom C), (Axiom Z) and (Axiom U) assign types to

the term constants.

e (— elim) is the rule for typing an application.
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e In the rules (x eliml) and (x elim 2) the type is assigned to the first
and second projection, respectively.

e The rules (4 introl) and (+ intro2) give the typing derivation for the
left and right injection, respectively.

e The empty pair is typed by the axiom (Axiom 1-intro).

e The rule (Eq) ensures that equal terms inhabit the same type.

Nz:okaxz:0 (Axiom €) 'FK:o— (r—0) (Axiom K
'ES:(c—=(r—=p)—((c 57)—=(c = p) (Axiom 5)
TFPy:(ox7) =0 (Axiom P) TFPy:(ox7)—7 (Axiom Py)
'FP:o—=(t—=(0x71)) (Axiom P)
'tlh:o—=(c+7) (Axiom I;) 'Fl:m—=(0+7) (Axiom Ip)

'FC:(c—=p) = ((r—=p) = (c+7)—p) (Axiom C)

'FZ:0—0 (Axiom Z2) '-U:1 (Axiom U)
'EFM:0—=>1 I'EN:o :
TFMN:r (= elim)
'FM:oxT . I'FM:oxT .
o2 lim1 _ lim2
Ft-mM):o (< eliml) PEmy(M): T (¢ elim2)
LEM:o (4 introl) LEM:7 (+ intro2)

PHi;y(M):o+7 FFing(M):0+7

I'EM:o M= N
I'EN:o (Eq)

'k{():1 (Axiom Il-intro)

Ficure 3.2: Type assignment system for CL %+

Remark 3.3. Let us consider the terms Kry and x. They are equal with
respect to any basis T by the axiom (1) in Figure . We take the basis T’
to be I' = {x : o}. In the basis T, the variable x inhabits the type o. From
x =r Kzy we obtain T+ Kay : o by the rule (Eq), although the the variable y
is mot typable in the basis T.
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Terms M and N are equal with respect to the basis I', M =p N, if we
can derive M =p N by the rules in Figure [3.1] We say that a term M can be
typed with a type o in a basis I', or that the type o is inhabited by the term
M in the basis I', denoted by ' - M : ¢, if ' H M : ¢ can be derived by the
rules in Figure [3.2

The following example illustrates some typing derivations.

Example 3.4. Let us consider the terms P1((PK)K) and K. These terms
are equal with respect to any basis by the aziom (5) in Figure . Fur-
ther, we have T' - K : ¢ — (7 — o) by the rule (Aziom K) and we obtain
't Pi((PK)K) : 0 = (7 — o) by the rule (Eq). However, it can be proved
that the term P1((PK)K) inhabits the type o — (7 — o) without using the
rule (Eq). Let 71 = ((0 = (1 = 0)) x (0 = (1 = 0))) = (60 = (1 — 0)),
== T=20)—>(c=(T—=0)—=>(c=(—=0)x(c—=(r—=
o)), 3 =(c = (1 = 0)) = (06 = (1 = 0) x(c = (r = o)) and
4= (0= (= 0))x (0 = (r = 0)). Then we have the following derivation:

THFP:m 'K:o0—= (1 —=o0)
I'FPK: T3 'K:o—=(r—o0)
TFPi:7 T FPKK: 7
'k Pi(PKK):0 = (1 — 0)

Thus, the rule (Eq) is not necessary for proving that terms P1(PKK) and
K inhabit the same type in every I'. Nevertheless, this is not true for all terms
that are equal and all bases as we have discussed it in Remark[3.3

Definition 3.5. A basis I' is consistent if and only if there does not exist a
term M such that T' = M : 0, otherwise I' is inconsistent.

From Definition [3.5] it follows that if a basis I' is consistent, then there
exists a type o that cannot be inhabited in the basis I'.

As we have already discussed, the full simply typed combinatory logic is
related to the full intuitionistic propositional logic with all the connectives via
the Curry-Howard correspondence ([83]).

Theorem 3.6 (Curry-Howard correspondence)([83]). For a basis I' and a type
o, there exists a term M such that T+ M : o if and only if || o, that is
o is derivable from the set |T| in natural deduction system for intuitionistic
propositional logic.

Now, we compare a notion of a consistent set in the intuitionistic propo-
sitional logic with all the connectives and the full simply typed combinatory
logic. In the intuitionistic propositional logic a set of formulas is consistent if
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there is a formula which cannot be derived from the set, whereas it is incon-
sistent if and only if every formula can be derived from it.

Let I be an inconsistent basis. Then, I' - M : 0, for some M € CL, by
Definition [3.5] Further, by (Axiom Z) and (— elim) we have that I' - ZM : o,
for any type 0. We conclude that |T'| - o by Theorem Therefore, the set
IT'| is also inconsistent.

The derivation length of M =r N and I' - M : ¢ is the number of applied
axioms and rules from Figure [3:1] and

A standard property of the typing system is that whenever a type o is
assigned to a term M in some basis I', it can also be assigned in a basis
which is a superset of I". Similarly, we will show that equality of terms is also
monotone with respect to the preorder, that is whenever two terms are equal
with respect to some basis I', they will be equal with respect to a superset of
I'. The equality and the type assignment system are defined simultaneously,
thus we need to consider both properties within one statement.

Proposition 3.7. If M =p, N, To - P : 0, Ty C T} and T'y C T}, then
M =p; N and 5+ P:o.

Proof. The proof is by induction on the sum k = n + m of the length n of the
derivation M =p, N and the length m of the derivation of I's - P : 0.

The base case is when k = 2, i.e. when both derivations are obtained from
axioms (n =1 and m =1). If n =1, then M =, N is obtained by one of the
axioms (1) — (12) and (15) from Figure As all equalities in these axioms
hold for every basis T', they will also hold for the basis I}, i.e. M =r; N. If
m =1, then I'y - P : ¢ is obtained by applying an axiom of Figure Again,
typing statements in all axioms hold for every basis I';, so they will also hold
for the basis '}, i.e. L+ P: o.

Let us assume that the statement holds for every ¢ < k, k > 3:

iszrl N,FQ FP: O,Fl g Fll,FQ g FIQ,
the length of M =p, N is n’ the length of 'y - P : o is m/ (IH)
and n’' +m' =i <k, then M = N and Ty F P : 0.

We prove that the statement holds when the sum of the lengths of deriva-
tions is equal to k. Let us assume that M =r, N can be derived with the
derivation length n and I'y = P : o with the derivation length m, n+m =k > 3,
Iy €T and T'y C TY,. We perform the case analysis on the last rule applied
in the derivation of M =p, N and I's - P : 0.

1. First, we consider the last applied rule in the derivation M =pr, N.
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Let (13) be the last applied rule. Then the term N is (), and M =p, ()

is obtained from I'y - M : 1, i.e. % is the last applied rule. The
=r

length of the derivation I'y F M : 1isn—1. Il)irectly from the rules of Figure
it follows that KM N =r, M and the length of this derivations is 1. Since
n—1+1=n<n+m =k, wecan apply the induction hypothesis (IH]) to
KMN =r, M and 'y = M : 1 and we obtain KM N =p, M and I'} = M : 1.
From I'} + M : 1, it follows that M =p/ (). We also need to prove I', - P : 0.
We will distinguish three cases performing an analysis on the last applied rule
in the derivation of I's - P : 0.

o If I'y - P : o is obtained by an axiom, then we have the base case and
for any I, it holds that T, F P : 0.

e If the last applied rule is the rule with only one premise, then the deriva-
I'oFQ:71
FQ FP:o

(r) which has only one premise. The length of the derivation 'y - Q : 7

is m — 1. The length of the derivation of KM N =p, M is 1. Since

m—1+1=m <n+m =k, we can apply the induction hypothesis

(TH) to KMN =, M and I's - Q : 7 and we obtain KMN =p, M and

I, F @Q : 7. From the latter, we get T'y = P : o by the rule (r).

tion is of the form (r) for some term @, type 7 and the rule

e If I's - P : o is obtained by one of the rules with two premises, then we
have two possibilities. If the last rule is (— elim), then we have

IbFQ:7—0 I FR:T
loFQR:o

for some terms @Q and R (P = QR) and type 7. The lengths of
I'oFQ:7— oand 'y - R : 7 are less than m — 1. We can apply
the induction hypothesis to KMN =p, M and I's - Q : 7 — ¢ and we
obtain KMN =p; M and I, B Q: 17— o. By applying the induction
hypothesis to KMN =p, M and I's = R : 7, we obtain KMN =p, M
and I, H R: 7. Since we have TY - Q : 7 > ocand T, F R: 7, we
conclude T, = QR : o by the rule (— intro). The last case is when
T's - P : o is obtained by the rule (Eq) and we have

FQFQ:U Q:F2P
I'syFP:o

where the lengths of I's - @ : ¢ and @ =p, P are less than m — 1. By
applyinglIElto KMN =p, M and T's - Q : 0, we obtain KMN =, M
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and T, F Q : 0. IfweapplytoQ:FQPandIHFK:JHTHJ,
we get Q =p, P and I'} - K: 0 — 7 — 0. Finally, from I'y - Q : o and
Q =r, P we obtain T'y - P : 0.

Let (14) be the last applied rule. Then we have that term M is of the form
R{L/z}, term N is of the form ZL for some terms R and L and the last step
in the derivation is

I'+HL:0 l',x:0FR:0o
R{L/x} =r, ZL

The derivation lengths of I'y = L : 0 and I';,xz : 0 - R : o are less than
n — 1. By applying the induction hypothesis to KIl =p, | and I'y = L : 0,
we obtain KIl =p; | and Iy = L : 0. If # ¢ dom(I'}) and Ty C T, then
I,z : 0 C I,z :0. We can apply [[H to KIl =p, l and T'1,2 : 0 F R : o
and we derive KIl =p, | and T,z : 0 = R : 0. The result R{L/z} =r; ZL
follows from I'y = L : 0 and I'j,z : O + R : o by the rule (14). In the case
x € dom(I'}), we can choose a fresh variable y that occurs in neither terms
L and R nor in dom(T'1) U dom(T}). Tt is straightforward to show that if
I',z:0F R:o,then I'y,y: 0F R{y/x} : o with the equal derivation length.
Since y : 0 € T}, we derive I'},y : 0 = R{y/x} : o by the same reasoning as
in the case z : 0 € T}. Now, I} + L : 0 and I'},y : 0 - R{y/z} : o implies
R{y/x}{L/y} =r, ZL. By induction on the structure of term R it can be
proved that R{y/z}{L/y} = R{L/z}, so R{L/x} =r; ZL. Again, we have to
prove I's = P : o and the proof follows similar reasoning as in the previous
case.

Let (16) be the last applied rule. Then we have M=r, L L=r, N

M =p, N

where the derivation lengths of M =r, L and L =r, N are less than n — 1.
By applying the induction hypothesis to M =p, L and I'y; - P : o, we get
M =r; L and I, - P : 0. Similarly, we can apply the induction hypothesis
to L =p, N and I's = P : o, which results in L =p; N and I'y = P : 0. From
M =p, L and L =p; N, we conclude M =p; N by the rule (16).

Let (17) be the last applied rule. Then. the last step in the derivation is
ﬁ and the length of the derivation of N =p, M is n — 1. By the
=r
inducti;)n hypothesis we get N =p. M and I'y = P : 0 and by rule (17) we

derive M =, N.
Let (18) be the last applied rule. Then the term M is of the form LR, the
term N is of the form L’'R and the last step in the derivation is

L=p, L
LR=r, 'R
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The length of the derivation L =p, L' is n— 1, so we can applyto L=p, L
and T'y = P : o0 and we get L =p, L' and Ty = P : 0. By the rule (18) we
obtain LR =p; L'R.

Let (19) be the last applied rule. Then the term M is of the form RL, the
term N is of the form RL’ and the last step in the derivation is

L=r L
RL =r, RL’
The length of the derivation L =p, L’ is n — 1. By the induction hypothesis
we get L =p; L' and I'y = P : ¢ and by the rule (19) we derive RL =p, RL'.
Let (20) be the last applied rule. Then we have
L=r, L
m1(L) =r, m1(L")
The length of the derivation L =r, L' is n — 1. By applying the induction
hypothesis to L =p, L’ and I'; - P : o, we obtain L =p, L' and I'y - P : 0.
From L =p, L’ we derive m (L) =p; m1(L') by rule (20).
Let (21) be the last applied rule. Then we have
L=r L
TQ(L) =T, 7(-2(‘[/)
The length of the derivation L =p, L' is n — 1. By applying the induction
hypothesis to L =p, L' and I'y - P : 0, we obtain L =p; L' and I'y - P : 0.
From L =p; L’ we derive my(L) =p; ma(L') by rule (21).
Let (22) be the last applied rule. Then the last step in the derivation is
L=r, L
in1 (L) =1, inl(L’)
The length of the derivation L =p, L’ is n — 1. By applying the induction
hypothesis to L =p, L’ and I'; - P : o, we obtain L =p, L' and I'5 - P : 0.
From L =p; L’ we derive in; (L) = iny(L’) by rule (22).
Let (23) be the last applied rule. Then the last step in the derivation is
L=p, L
iHQ(L) =1, ng(L/)
The length of the derivation L =r, L' is n — 1. By applying the induction
hypothesis to L =p, L' and I'; = P : o, we obtain L =p; L' and I'y - P : 0.
From L =p; L’ we derive iny(L) =r; ina(L’) by rule (23).

2. Next, we consider the last applied rule in the derivation I' - P : o.

If the last applied rule is (— elim), then we have
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IbFQ:7—0 IcHFR:7T
IcHFQR: o

and the derivation lengths of I's - Q : 7 — ¢ and 'y = R : 7 are less than
m—1. By applying the induction hypothesis to M =p, NandI's - Q : 7 = o,
we derive M =p; N and T'y = Q : 7 — o. Further, by applying the induction
hypothesis to M =p, N and I'y = R : 7, we derive M =p, N and 'y - R : 7.
From )+ Q:7 — o and T, F R : 7, it follows that ', F QR : 0.

If the last applied rule is (x elim1), then the last step in the derivation is

IoFQ:0ox7
FQ + 1 (Q) .o
The derivation I's - @ : o x 7 is of length m — 1. By the induction hypothesis
applied to M =p, N and's - Q : o0 x 7, weget M =py Nand Ty - Q:0x 7.
From T, F Q : 0 x 7, we derive T, F 71(Q) : o by the rule (x eliml).
If the last applied rule is (x elim2), then the last step in the derivation is

IoFQ:0oxT1
o bFma(Q): 7
The derivation I's - @ : o x 7 is of length m — 1. By the induction hypoth-
esis applied to M =p, N and I's - @ : o X 7, we obtain M =p, N and
IVEQ:ox7. FromThH F Q : o x 7, we derive T F 72(Q) : 7 by the rule
(x elim2).
If the last applied rule is (+ introl), then the last step in the derivation is
I'okFQ:o
obing(Q):o+ 7
The derivation 'y F @ : o is of length m — 1. By the induction hypothesis
applied to M =p, N and I'; - @ : 0, we obtain M =, N and IEQ:o.
From T, + Q : o, we derive T') - iny (Q) : o 4+ 7 by the rule (+ introl).
If the last applied rule is (+ intro2), then the last step in the derivation is

FQ [ Q T
Pobing(Q):o+7
The derivation I'y F @ : 7 is of length m — 1. By the induction hypothesis
applied to M =p, N and 'y - Q : 7, we get M =p; N and I', - Q : 7. From
I EQ: 7, we derive Ty F ina(Q) : 0 + 7 by the rule (+ intro2).
Finally, we consider the case when the last applied rule is (Eq). Then the
last step in the derivation is

LoFQ:o Q=r, P
I'saFP:o
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The derivation lengths of I's F @ : 0 and @ =r, P are less than m — 1.
By applying the induction hypothesis to M =pr, N and I's - Q : o, we get
M =p; N and I'y = Q : 0. Further, typing I'y F K : 0 — 7 — o has the
derivation length 1. If we denote the derivation length of () =p, P by j, we
have j —14+1=j5<m—1<n+m = k. So, we can apply the induction
hypothesis to @ =r, P and I'' - K: 0 — 7 — o and we get Q =p, P and
IMFK:o = 71— o Finally, from T - @ : 0 and @ =p, P, we conclude
I, - P : o by the rule (Eq).

O

3.2 Kripke-style semantics of C L7

In this section, we propose a Kripke-style semantics of CL7-*% which has
been introduced in [04]. The motivation for the proposed Kripke-style se-
mantics comes from the work of Mitchell and Moggi [124], where they have
introduced the Kripke-style semantics of the simply typed A-calculus. The
similarities and differences of the semantics introduced in [124] and the one we
present in this chapter will be pointed out throughout the section.

A disjoint union of sets X and Y will be denoted by X WY, i.e.

XY ={(0,z) [z € X}U{(Ly) |y Y}
First, a notion of a Kripke applicative structure is introduced.

Definition 3.8. A Kripke applicative structure K for CL™>*% is a tuple

<VV7 =, {Dw}v {AZ}, {Appw}v {PTOjLw}, {PTOjlw}v {Inlw}> {IHTW}> {iw;w/}>

that consists of:
(i) a set W of possible worlds partially ordered by <,

(i) a family {Dy} = {Dy twew of sets indexed by worlds w, where the set
D,, is referred to as the domain of the world w,

(111) o family {AJ} = {A% }wew,ocTypes Of sets indexed by types o and worlds
w that satisfies the following:

o for all w € W, for all o € Types, A C D,,, AY is empty, i.e.
AY =0, and AL has one element, i.e. AL = {1,}, 1, € D,
e there exists an injective function H : D, W D,, — D,, such that for

all o, € Types, the codomain of the restriction of the function H
to the set A9 W AT is A9TT,
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e there exists an injective function G : D,, — D,, X D,, such that for
all o, 7 € Types, the codomain of the restriction of the function G
to the set A9XT is A% x Al

(iv) a family {App,} = {Appw}wew of application functions
Appy : Dy X Dy — Dy, indexed by worlds w such that for all
o,7 € Types, the codomain of the restriction of the function App, to
the set A577 x AS is A7,

(v) a family {Proj1w} = {Projiw}lwew of first projection functions
Projiw : Dy — Dy, indezed by worlds w such that for all o, € Types,
the codomain of the restriction of the function Projy ., to the set AJ*T
is AZ}J

(vi) a family {Projz.,} = {Projow}twew of second projection functions
Projsw : Dy — Dy, indezed by worlds w such that for all o, € Types,
the codomain of the restriction of the function Proja,, to the set AJ*™
is A7,

(vii) a family {Inl,} = {Inly}wew of left injection functions
Inly, : Dy — Dy, indezed by worlds w such that for all o,7 € Types,

the codomain of the restriction of the function Inl,, to the set AJ is
ATHT,

(viii) a family {Inr,} = {Inry}wew of right injection functions
Inry : Dy — Dy, indezed by worlds w such that for all o, € Types, the
codomain of the restriction of the function Inr,, to the set AT, is AT,

(iz) a family {iww} = {fww fwweww=w Of transition functions
twaw : Dy — Dy indezed by pairs of worlds w =< w' such that iy . is
a surjective function, for all o € Types, the codomain of the restriction
of the function iy, . to the set AY is A%, and all transition functions
satisfy the following conditions:

twaw : Dw — Dy is the identity (id)
iw’,w” o Z-w,w’ = iw,w" fOT' all w = w/ = w// (COmp)

We also require that the application functions, the projection functions and the
injection functions commute with the transition functions in a natural way:
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(Vw € W)(Vf € Dy) (Va € Dy,) (V' € W,w < w')
T (Appw (f,a)) = Appu (iw w (f), Z-w,w’(a)) ( )
iw’w’(Projl,w a Proji w (wa ( )) ( )

P7"0]2 w' (tw,w (@) (comm3)

) ( )
( )

(

tw ' (Projaw(a

T, (Inly (@
(

G (I (@

w’(lw w (@)

wa( ))

We will sometimes omit writing App for the application function and write
fa instead of App,,(f,a), as in Definition below.

Our goal is to define a model such that every term has a unique meaning
in the model. For that reason, we consider only Kripke applicative struc-
tures which are extenstonal and have special elements in the domain, called
combinators, as specified in Definition [3.9 and Definition [3.10] below.

a)
) =
)
)
)

Definition 3.9. A Kripke applicative structure IC as in Definition 1S ex-
tensional if for all w € W and f,g,p,q € D,, the following holds

o if Projiw(p) = Projiw(q) and Projs.(p) = Projs..,(q), then p=q
o if (Vw' = w)(Va,y € Dy)

Appw/ (iw,w’ (f)a Inl,, (x)) = Appw’ (iw,w’ (g)v Inly (x))
and

Appw’ (iw,w/(f)v Inry (y)) = Appw’ (iw,w’ (g)v InTw/(y))v
then f =g.

The second condition of extensionality implies that if a Kripke applicative
structure is extensional, then for elements f,g € D,, holds the following:

if (Vw/ > w)(Va € Dw/)(Appw’(iw,w’ (f),a) = Appy (iw,w’(g)a a)), then f = g.

This condition was the definition of an extensional applicative structure in
[124], where Mitchell and Moggi have considered simply typed A-calculus. We
may notice that the condition ensures the extensionality of application func-
tions App,, in a Kripke applicative structure. In the Kripke-style semantics of
simply typed A-calculus, presented in [124], there are only application functions
App, that is there is neither projection functions nor injection functions in an
applicative structure, so this condition was sufficient to ensure extensionality.
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Definition 3.10. A Kripke applicative structure K as in Definition [3.8 has
combinators if there exist elements:

o k, € AZH(THU), for every o, € Types,

® s, € Agf%(pﬁf))_)((g_’p)_}(gﬁﬂ), for every o, p, T € Types,

® py,, €A77, for every o, € Types,
® p,,, €ATTT, for every o, 7 € Types,

(r—=(oxT1))

e p, € AL , for every o, 7 € Types,

o—(o+T1)
w

i, €A , for every o, T € Types,

T—(o+T)
w

® i ,€A , for every o, 7 € Types,

e C, € A&?ﬁp)”(“”)”(("““”)), for every o, 7, p € Types,

o z, € A’ for every o € Types,
o u, €A,

such that for every combinator

Aw S {kwa Swapl,w>p2,w7pw»il,wai2,wycw7 2w, uw}

whenever w < w', we have that Ay = iy (Aw). The combinators have to
satisfy the following equations:

(kwz)y =2 (
((swz)y)z = (22)(y2) (
Pyt = Proji.(z) (

P2 T = Proja () (
P1w((Py)y) = (
P2.w((Pu®)y) =y (
41w = Inly,(x) (

12w = Inry () 3
((cwf)9)(t1,wr) = fa 3
((cwf)g)(t2,wz) = g 3
((cw((Sw(kwf))i1w))((Sw(kw f))izw))z = f2 3
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When an applicative structure has combinators, we also say that it satisfies
the combinatory model condition. The combinatory model condition guaran-
tees that there are sufficiently many elements in a model so that each program
(term without variables) has the meaning in the model, i.e. each program can
be interpreted in the model. The same approach has been used in [124] and
[123]. We may notice that there is a correspondence between combinators and
axioms of Hilbert-style system for full intuitionistic propositional logic (with
all the connectives). For each combinator there are two conditions: it has
to belong to a certain set AJ and it has to satisfy a certain equation. The
superscripts of the sets AZ, which have to contain combinators, correspond to
the axioms of Hilbert-style system for the full intuitionistic propositional logic
and to the types of term constants in Figure [3.2]

The monotonicity in Kripke semantics models the growth of knowledge
in time: whatever is true at this moment (possible world w), it will remain
true in the future (possible world w’, w < w’) ([I10]). We define Kripke C'L
model to be monotone in that sense. More precisely, a model should satisfy
the following: if a term M has type o in a world w € W, then it will have the
type o in every possible world w’ accessible from w (w < w’). We ensure this
by requiring the monotonicity of valuations of term variables with respect to
the accessibility relation.

Definition 3.11. An environment p for a Kripke applicative structure KC is
a mapping from the set of term variables and the set of possible worlds to
domains p : X x W — |JD,, such that for x € X and w € W, p(z,w) € D,,
holds, and the mapping p satisfies the following condition:

if p(z,w) € Dy, and w < w', then p(x,w') = iy (p(z,w)). (3.14)

The important difference between Definition [3.11] and the definition of an
environment in [124] is the fact that the environment in [124] was a partial
mapping, whereas herein it is a total mapping. The motivation for defining
environments as a total mappings will be given in Remark

If p is an environment for a Kripke applicative structure X and a € D,,,
then p(z := a) is an environment such that,

iww(a), y=zand w =< w'

p(z :=a)(y,w') = z;,l’w(a), y=zand w <X w

p(y,w'), y#x or neither w < w’ nor w’ =< w holds

where i;,l’w(a) denotes the element b € D, such that i, ,(b) = a. The
existence of this element for every w,w’ € W, v’ < w and a € D, is a
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consequence of the requirement that for every two worlds w and w’ such that
w’ < w the transition function Ty’ w 18 SUrjective.

Remark 3.12. The valuation p(x := a) given above differs from the valuation
p(x := a) introduced in [IZ{] and this difference is caused by the differences in
the definitions of environments. In [I2])], an environment is a partial mapping,
so it was enough to define the value of p(x := a)(y,w’) for w < w’, where
a € D, and leave it undefined in other cases. Since we have defined an
environment as a total mapping, the value p(x := a)(y,w’) has to be defined
for every world w' and its definition has to ensure that the condition
is satisfied. For this reason, we had to add a requirement for the transition
functions to be surjective, in contrast to [12])], where this condition was not
necessary.

Finally, we define a Kripke C'L model by providing a Kripke applicative
structure with an environment.

Definition 3.13 (Kripke C'L model). A Kripke C'L model is K, is a Kripke
applicative structure which is extensional and has combinators and p is an
environment for KC.

We give some remarks about the valuation of term variables. As we have
already explained, an environment is hereditary and this is ensured by the
condition |3.141 Further, it is possible that |J A9 C D, and that there is
o€Types
no o € Types such that p(z,w) belongs to AZ,.

In order to define the interpretation of terms, we extend the valuation of
term variables to the interpretation map [ [}’. The interpretation map [ ]}, is
a mapping from the set of all terms to the domain of world w, namely D,,.
By [M]}) we denote the meaning of a term M in the environment p at world
w and we define it inductively as follows.

Definition 3.14. Let K, be a Kripke CL model and w € W one possible world
of the model K,. We define the interpretation map | ]];f :CL7>%*T = D, as
follows:

~

2]y = p(z,w),
. [[K]];U =ky,
. [[S]]’;U = Sw;

. [[Pl]]’,g} = pl,w’

v N W o

. [[P2]]1;JU = pQ,w;
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6. [P1Y = p,,

7. L]} = i1,

8. [l = i2.uw,

9. [[C]];“ Cuy,
10. [Z]} = 2w,
11. [U]) = uy,
12. [MN]¥ = App.,([M]¥, [N]¥),
13 [m (DI = Projiw([M]7),
14. [mo(M)]Y = Projs.([M]Y),
15. [in (M)]; = Inlw([M]7),
16. [ing(M)]}) = Inry([M]7),
17. [()]¥ = 1., the unique element of A, .

For every term M, the interpretation of the term M in the environment
p at world w, [M]}, is defined and it belongs to the domain of the world
w, [M];) € Dy. The interpretation of a term M does not depend on the
variables that do not appear in the term, it depends only on the interpretation
of subterms of the term M. As a consequence, if two environments assign the
same value to each variable that appears in a term M, then the interpretations

of the term M in those environments are equal.

Lemma 3.15. Let K be an extensional Kripke applicative structure with com-
binators, p1 and ps environments for K and M a term. If p1(z,w) = pa(z,w)
for all x € FV (M), then [M]y = [M]Y),.

Proof. The proof is by induction on the structure of the term M.

e If M is a variable z, then FV(z) = {z}. Hence, [z]¥ = pi(z,w) =

P1
w

pa(x, w) = 2],

e If M is a term constant, then the interpretation of M does not depend
on the environment and it is determined by the Kripke applicative struc-
ture. Since both p; and po are the environments for the same Kripke
applicative structure, a term constant has the same interpretation in
both environments.
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e If M is the application N L, then by the induction hypothesis on N and
L, we get [N]} = [N]}, and [L]%, = [L]},,. From Definition it
follows that

[[NL]];UI = Appw([[ ]]plv [[L]]pl) Appw([[N]];j;, [[L]]pg) [[NL]]I;;

e Let M be the first projection m1(N). We can apply the induction hy-
pothesis to N and obtain [N] = [N]},. By Definition we get:

N)Ig, = Projiw(IN]5,) = Projiw(IN]p,) = [m1(N)]g,.

e Let M be the second projection mo(N). We can apply the induction
hypothesis to N and obtain [N]}’ = [N]7,. By Definition we get:

[r2(N)15, = Proja.w(INT;,) = Proje.w(INT;,) = [r2(N)I,-

e If M is the left injection iny (), then we apply the induction hypothesis
to N and derive [N]} = [N]7 . Following Definition we conclude:

P1

[iny (MG, = Inlw(INT;,) = Inlw([N]5,) = [ (V)]

p2°

e If M is the right injection ing(N), then we can apply the induction
hypothesis to N and obtain [N] = [N]},. Following Definition

we have:

[ina(N)] 5, = Inrw (INT5,) = Inrw ([NT5,) = [ina (V)]

p2°
e Let M be the empty pair (). Then we have
[015 = Lw = [015,-
O

Definition 3.16. We define the satisfiability of a statement M : o in a model
and semantical consequence in the following way:

1. A world w satisfies the statement M : o, denoted by w = M : o, if and
only if [M]} € A,. If the statement M : o is not satisfied in a world w,
we write w £ M : 0.

2. A Kripke CL model KC,, satisfies the statement M : o if and only if every
world w of the model KC,, satisfies the statement M : o, i.e.

K,lE=M:oifand only if wl= M : o, for allw e W.

If a Kripke CL model K, does not satisfy the statement M : o, we write
KoM :o.
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3.

A possible world w satisfies the basis ' = {z1 : 01,...,2n : On}, de-
noted by w = T, if and only if it satisfies every declaration from T, i.e.
w = 0y, foralli € {1,...,n}. A Kripke CL model K, satisfies the
basis T', denoted by K, =T, if and only if the basis I is satisfied in every
world w of the model K, i.e. w =T for allw e W.

. A statement M : o is a semantical consequence of a basis T, denoted

by ' E M : o, if whenever a Kripke CL model satisfies the basis T
(K, =T) it also satisfies the statement M : o (K, =M : o).

A valuation of terms is hereditary by its definition, in the sense that if a
type o is assigned to the variable z in a world w, then the same type will be
assigned to a variable z in every world accessible form w. The same property
holds for all terms, as we will show. We prove that the interpretation of a term
M at a world w uniquely determines the interpretation of the term M at any
world w’ accessible from w, using transition function iy, ..

Lemma 3.17. Let K, be a Kripke CL model. If [M]} is defined and w < w’,
then ﬂM]]ﬁ = iw,w/([[M]]g’).

Proof. The proof is by induction on the structure of the term M.

Let M be a variable z. Then [2]¥" = p(z,w') = iw.w(p(z, w)) =

iw,w ([z],) by Definition and

If M is a constant K, then [[K]]g/ = kuw = tww (kw) = iww ([K]}) by
Definition and The cases for all other term constants proceed
similarly.

Assume M is the application NL. Then by Definition and the
induction hypothesis we get
[INL = Appor (INT', [L15) = Appur (i (INT3), o, (IL13)
= lw,uw’ (Appw(ﬂNﬂj:a [[L]];U)) = iw,w’([[NLﬂf:)'
If M is the first projection (), then by Definition and the
induction hypothesis we get
[m1 (M) = Projuu (INT') = Projuw (iwuw (IN]}))
= lw,uw’ (Projl,w([[N]]z})) = iw,w’([[wl(N)]];f)-

The case when M is the second projection 7o (V) proceeds similarly.

[r2 (V)] = Proja,u (INTY) = Proja,uw (iwu (IN]3))
= tw,u (Projaw([N15) = dww ([r2(N)]5)-
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e Let M be the left injection in; (N). Then by Definition and the
induction hypothesis we derive

[iny (V)] = Inlu (INT') = Induy (i, (INTY))
= lwuw (Inlw([[N]]:,U)) = iw,w’([[inl(N)]]}:)'

e Similarly, if M is the right injection iny(V), then we have

[[in2(N)Hz/ = Inrw/(ﬂNM/) = Inry (iw,w’([[N]]z}))

= iw,w’(lnrw([[N]]:)v)) = iw,w’([[mZ(N)]];f)-
e Assume M is the empty pair (). Then
[[<>]]Z/ =1y = Z'w,w/(lw) = iw,w’([[o]]g))-

This concludes the proof. O

Lemma 3.18 (Substitution Lemma). Let KC, be a Kripke C'L model. For
terms M, N, a variable x that appears in the term M and a world w € W, it
holds that [M{N/x}]} = [[M]]g(r:[[l\/ﬂﬁ)'

Proof. The proof proceeds by induction on the structure of the term M.

o If the term M is a variable, then we distinguish two cases.

— The case when the term M is a variable z:
[2{N/x}]p = [NT5 = [=]pa:= vy

— The case when the term M is a variable y such that y # x: by
Lemma [3.15] we have

AN/} = Tl = Wl =gy

e If the term M is the application P, then by induction hypothesis we
have

[(PR{N/z}], = [(P{N/z})(Q{N/z})],
= Appu ([P{N/z}];, [Q{N/z}]})
= Appw ([P0 =) [Ql =3y
= [PQRI(e=ny)-



72

Next, we assume the term M is the first projection 71 (L). We apply the
induction hypothesis to L and obtain

[ri (LUN/2 3y = [m (L{N/2})]g = Projiw([L{N/x}]})
= Projiuw([L] pa:=nye)) = (M (D)5 =gnye)-

If M is the second projection mo(L), then again we can apply the induc-
tion hypothesis to L and we have

[ro(LU{N/2}]; = [m2(L{N/2})]; = Projzw([L{N/x}]})
= Projo,w([L] pa:=nye)) = [m2 (D)5 =gnye)-

Assume M is the left injection inj(L). Then by applying the induction
hypothesis to L we derive

[in1 (L){N/2}]y = [ina (L{AN/2})] = Inlw ([L{N/z}]})
= Inly ([L] = vye)) = lina (D)= ne)-

If M is the right injection iny(L), then similarly to the previous case we
have

[in2(L{N/2}]y = [ina(L{N/2})][y = Inrw ([LAN/=}]7)
= Inry ([L]pa:=vye)) = [2(D)]e=nge)-

The case when M is the empty pair () follows from Lemma
[O{N/2}5 = [015 = [0 p(a=nye)-

O

The Kripke-style semantics we have presented has been introduced in [94]

and is inspired by the Kripke-style semantics of the simply typed A-calculus
introduced in [124]. In [94], we have introduced the proposed semantics, but
the calculus was not exactly the same as the one we study in this chapter.
The idea was to introduce a Kripke-style semantics of the full simply typed
A-calculus. Inspired by the work of [124], we have introduced the Kripke-style
semantics of the full simply typed A-calculus and the full simply typed combi-
natory logic with the goal to prove the completeness of the full simply typed
A-calculus using the translation of A-calculus into combinatory logic. However,
we did not include the typing rule that ensures that equal terms inhabit the
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same type and the proof failed. For this reason, we had to add the typing rule
(Eq) in Figure The proof that the full simply typed combinatory logic is
sound and complete with respect to the proposed semantics is given in the fol-
lowing section. The proof of the soundness and completeness of the full simply
typed A-calculus is left for future work, since the translation of A-calculus with
the typing rule for equal terms into the combinatory logic with the same rule
is more involved.

Although the semantics introduced in [124] and [94] are defined as an ap-
plicative structure which is extensional and has combinators, provided with
a valuation of term variable, there are some significant differences. As the
main difference, we would single out that we have defined the interpretation
of a term [M ]];f’ independently of its type, whereas in [124] the authors define
an interpretation of a well-typed terms only, more precisely they define an
interpretation of a typing statement [I' = M : o[} considering the term and
its type at the same time. We have presented a denotational semantics which
can be used for the analysis of computations that involve untypable terms. If
we compare Kripke-style semantics we presented and Kripke semantics of the
intuitionistic propositional logic, we may notice that our semantics concerns
statement M : o, which by the Curry-Howard correspondence means it inter-
prets both a provable formula and its proof, whereas Kripke semantics of the
intuitionistic propositional logic takes into account only a provable formula.

3.3 Soundness and completeness of CL 7"

In this section, we present the main results of the chapter: the soundness
and the completeness of the full simply typed combinatory logic. We give
two soundness and completeness results. First, we prove that the equational
theory £Qrcr, defined by the rules in Figure|3.1] is sound and complete with
respect to the proposed Kripke-style semantics. Second, we prove soundness
and completeness of the full simply typed combinatory logic, more precisely
we prove that the type assignment system C L™ 7, introduced in Figure
is sound and complete with respect to the proposed Kripke-style semantics.

We start with soundness results. Proving soundness of the equational the-
ory means proving that every two terms that are equal, in the sense that
M =r N for some I', have the same interpretation in every Kripke C'L model
which satisfies I'. We prove soundness of the type assignment system by prov-
ing that for every Kripke C'L model K, and world w in that model, if I' - M : o
and w = T, then w = M : o. Similarly as in Proposition we consider
these properties together, since the equality of terms (Figure and the type
assignment system (Figure are defined simultaneously.
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Theorem 3.19. For every Kripke CL model K, and a possible world w of the
model, if M =p, N, TaoF L:o, w Ty and w |= Ty, then [M]} = [N]}) and
wgkL:o.

Proof. The proof proceeds by induction on the sum k = n+m of the derivation
length n of M =p, N and the derivation length m of I's - L : 0.

Step 1: The base case is when both derivations are obtained by applying
just an axiom from Figure [3.1] and Figure iee n=1m=1and k = 2.
Since n = 1, M =p, N has to be obtained by some axioms in Figure @
(axioms (1) — (12) and (15)). The proof follows from Definition and
Definition Assume that M =p, N is obtained by the axiom (1). Then
M = KQR and N = @ for some terms Q and R and we have

HKQRHT: = Appw(Appw([[K]]:)u, [[Q]]g)v [[R]]:)U)
= Appu (Appw (kw, [Ql}), [R]})
= [Q]7 -

All other cases for the axioms in Figure [3.1] proceed similarly.

If m = 1, then T'y - L : o is obtained from an axiom in Figure [3.2] Let
it be (Axiom €). Then L : o is a declaration which belongs to I' and if
world w satisfies T', it satisfies every declaration in T', thus w = P : o. If the
derivation is obtained by (Axiom K), then the term L is the term constant K.
By Definition and Definition [3.10} we obtain

[K]Y =k, € A5

Thus, w = K: 0 = 7 — o for every model K, and world w. The proof
proceeds similarly for all other axioms in Figure |3.2
Step 2: Let us assume that the statement holds for every i < k, k > 3.

For every Kripke C'L model K, and a possible world w
if M =p, N,I'sF L : o, the length of derivation M =r, N is n,
the length of derivation I'oy F L:ocism,n+m =1 <k,
w =Ty and w =Ty, then [M]) = [N]) and w = L : 0.

(IH)

Step 3: We prove that the statement holds when the sum of derivation
lengths is equal to k. We assume that the length of derivation M =p, N is n,
the length of derivation I's F L : 0 is m and w = T'; and w |= I's. We perform
case analysis on the last rule applied in the derivations.

a) First, we consider the last applied rule in the derivation of M =, N.
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1. The rule (13) is the last rule applied. In this case we have N = ()
and the last step in the derivation is

EM:1
M:F1<>

The length of derivation I'y = M : 1 is n — 1. The length of the
derivation KMN =p, M is 1. Sincen—1+1=n<n+m =k, we
can apply the induction hypothesistoI'y F M : 1 and KM N =p, M
and obtain [KMN]Y = [M]}) and w = M : 1. The latter implies
[M]¥ e Al,. From the fact that A}, is a singleton {1,} we get
[M]}) = 1, = [()]}- Still, it remains to prove w |= L : o, under the
assumptions I's F L : 0 and w = T's. We distinguish three cases.

— IfT's F L : o is obtained by an axiom, then we have a base case
(m = 1), which has been already proved.

— IfT'; - L : 0 is obtained from a rule with one premise, then the
result follows directly from the induction hypothesis applied to
its premise and some equality, whose derivation length is 1. For
example, let us assume that I's - L : ¢ is obtained by the rule
(x elim1), then the last step in the derivation is

IoFQ:0oxT

Mok m(Q):o
The length of the derivation I's F @ : 0 x 7 is m — 1. Since
the derivation length of KMN =p, Misland m—-1+1 =
m < n+m = k, we can apply the induction hypothesis to
KMN =r, M and Ty - Q : 0 x 7 and we derive [KMN]Yy =
[M]}) and w = Q : 0 x 7. The latter implies [Q]}) € A" and
by Definition [3.14] we have

[T (Q)], = Proji2([Q];) € A%,

Thus, w E 71(Q) : 0. The rest of the cases with just one
premise are analogous.

— If the last applied rule has two premises, then we have two
possibilities. If the last applied rule is (— elim), then the last
step in the derivation is

IoFQ:71—>0 I'sFR:7T
I'oFQR: 0o
The derivation lengths of both o F Q : 7 > ocand I's - R: 7
are less than m — 1. By the induction hypothesis applied to
KMN =p, M and 'y - Q : 7 — o we derive [RMN]Y = [M]}
and w = @ : 7 — o. Similarly, we obtain w = R : 7. Now,
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wEQ:7—>cand wpE R: 7 imply w E QR : o by
Definition and If the last applied rule is (Eq), then

we have
Fg H Q e Q =T, L
F2 FL:o

The derivation lengths of I's - @ : 0 and @ =r, L are less than
m — 1. By applying the induction hypothesis to KM N =p, M
and I'y = @ : o, we derive [KMN] = [M]} and w |= Q : 0.
Similarly, we can apply the induction hypothesis to @ =r, L
and I'y = K: 0 — 7 — o and we obtain [Q]} = [L]; and
wEK:0—=7—=0 FromwEQ:oand [Q[) = [L]}, we
derive [L]} = [Q]}) € A7, ie,w = L:o.

2. The rule (14) is the last applied rule. Then M = R{L/z} and

N = ZL, for some terms R and L. The last step in the derivation
is
I'hFL:0 I',z:0FR:0o
R{L/x} =r, ZL

The length of the derivation KIl =r, | is 1, whereas the derivation
length of 'y - L : 0 is less than n— 1, so we can apply the induction
hypothesis to the latter two and obtain [KI]’ = [I]}) and w = L : 0.
However, w = N : 0 contradicts the condition that A? is the empty
set (Definition|3.8). Thus, it is not possible that (14) is the last rule
applied.

. The rule (16) is the last rule applied. Then we have

M:F1Q Q:FlN
M=r, N

By the induction hypothesis applied to M =pr, @ and I's - L : o,
we obtain [M]} = [Q]}) and w = L : ¢. Similarly, by the induction
hypothesis applied to Q@ =p, N and 'y - L : o, we get [Q]}) = [N]})
and w |= L : 0. From [M]} = [Q]}) and [Q]} = [N]}, we conclude

[M]¥ = [N]2. ’

. The rule (17) is the last rule applied. Then the last step in the

derivation is
N=pr, M
M =p, N
and the derivation length of N =p, M is n — 1. We can apply the

induction hypothesis to N =p, M and I's - L : ¢ and we obtain
[[N]];” = [[M]]Z’ and w = L:o.
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5. The rule (18) is the last rule applied. Then M = QR and N = Q'R
for some terms @, @', R such that @ =r, @’ and the last step in the
derivation is

Q=r, @
QR =TI QIR
By the induction hypothesis we derive [Q]} = [Q']} and w = L : o.
From Definition B4l it follows that

[QRI} = Appu([Q17 [EI}) = App. ([Q']5, [RI}) = [Q'RI} -

6. The rule (19) is the last rule applied. Then M = RQ and N = RQ’
for some terms @, @', R such that @ =p, @’ and the last step in the
derivation is

Q=r, @
RQ =r, RQ'
By the induction hypothesis we derive [Q]} = [Q']} andw |= L : 0.
Again, from Definition [3.14] it follows that

[RQ], = Appo([R]}, [Ql})) = Appw([R]}, [Q']}) = [RQ'T} .

7. The rule (20) is the last rule applied. Then the last step in the
derivation is

Q=r, ¢
m(Q) =r, m(Q’)
so M =m(Q) and N = m1(Q') for some terms @ and Q. By the
induction hypothesis, we get [Q]) = [Q']}) and w = L : 0. Using
the definition of the interpretation of a term we derive

[r(Q1; = Projiw([QLF) = Projiu([QT5 = [m (Q)] -

8. The rule (21) is the last rule applied. Then M = m(Q) and
N = m3(Q") for some terms @) and @' and the last step in the
derivation is

Q=r, Q
m2(Q) =r, m(Q")
By the induction hypothesis, we obtain [Q[) = [Q']) and
w = L : o. Similarly to the previous case, by Definition [3.14

we derive

[r2(Q)]F = Proj2.w(IQl}) = Projz.([QT; = [m2(Q0]} -



78

9.

10.

11.

The rule (22) is the last rule applied. In this case, the last step in
the derivation is

Q=r, @
iny (Q) =r, in1(Q")
By the induction hypothesis, we have [Q[} = [Q']; and w = L : o
and by Definition we derive

[iny (@)1 = Inlw([Q]}) = Inlu([QT7) = [im (@]

The rule (23) is the last rule applied. The last step in the derivation
is

Q=r, Q
iny(Q) =r, inz(Q")
Now, we have [Q) = [Q'];) and w = L : o by the induction
hypothesis. From Definition it follows that

lin (@)1 = Inrw([Q1) = Inrw(1Q]}) = [in2(Q)]7-

The rule (24) is the last rule applied. Then M =p, N is obtained
from Mx =p, Nz for some variable x which appears neither in M
nor in N, that is the last step in the derivation is
Mz =p, Nx x & FV(M)UFV(N)
M=pr, N

By the induction hypothesis, we have [Mz]; = [Nz]; and
w = L : o for every model K, and world w which satisfies I';.
Let K, be a Kripke C'L model and w a world of that model such
that w | T'y. Further, let w < w’ and d be an element of the
domain D, in the model K,. Terms Mz and Nz have the same
interpretation in every model, so they also have the same interpre-
tation in model KC)(;.—q). So, by Lemma @ and Lemma @ we
have for every w’ = w

’

Appu (i (IM]2), d) = Appuy (MY, [2] %))
= Appw’([[M]]:f(,m;:d)v [['r]]q;f(/a:::d))
=[M xﬂzj(/x::d)
= [Na]sa)
= Appur (INT% 0z [0 —a)
= Appu (iw,w (IN]}), d).
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Since KC,, is a model, Kripke applicative structure K is extensional.
We proved that for every w’ = w and d € D,

Appu (G, w (HM]]Z)), d) = Appuw (G wr (HN]];)U)v d).

By the extensionality of the Kripke applicative structure, we con-
clude [M];) = [NT}.

b) Next, we consider the last rule in the derivation of T's - L : o.

1. If 'y F L : 0 is obtained by the rule (— elim), then L = QR for
some terms () and R and the last step on the derivation is
INoFQ:7—0 I'oFR:T
IbhFQR: o
By the induction hypothesis applied to M =r, N and

Iy - Q: 7 — o we obtain [M]y = [N]}) and w = Q : 7 — 0.

Similarly, by the induction hypothesis applied to M =p, N and
Ly = R : 7, we have [M]) = [N]} and w = R : 0. By Defini-
tion [3.§ and [3.14] we conclude that w = Q : 7 o and w E R : 7
imply w E QR : 0.
2. If the last applied rule is (x eliml), then L = m1(Q) for some term

(@ and the last step in the derivation is

IoFQ:0xT

FQ l_ 1 (Q) Mol
By the induction hypothesis applied to M =p, NandI's - Q : oxT,
we derive [M]} = [N]} and w = Q : o x 7. The latter implies

[Q] € A7 and by Definition |3.8/ and Definition we get
[ (Q)]7 = Projiw(IQ];) € A7,

Thus, w E m1(Q) : 0.

3. Similarly, if the last applied rule is (x elim2), then L = m2(Q) for
some term (Q and the last step in the derivation is

IoFQ:7x0
FQ l_ T2 (Q) Mol
By the induction hypothesis, we obtain [M]); = [N] and

w = Q : 7 x 0. The latter implies [Q]; € A7* and by Defi-
nition [3.§ and we have

[m2(Q)]7 = Proj2w(IQ]) € A7

Hence, w = m(Q) : 0.
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4. Let the last applied rule in the derivation I's - L : o be the rule
(4 introl). We have L = in;(Q) for some term Q, 0 = 71 + 7 for
some types 71 and 75 and the last step in the derivation is

FQ - Q cT1
Iy king(Q) : 11 + 7
By the induction hypothesis applied to M =p, N and I's - Q : 7y
we get [M]} = [N]} and w = Q : 71. From the latter it follows

o
that [Q[} € A7}. Further, by Definition 3.8 and we derive

[in1 (Q)]Y = Inl, ([Q]Y) € AT ™.

5. If the last applied rule in the derivation I's = L : o is the rule
(4 intro2), then L = iny(Q) for some term @), 0 = 7 + 7 for some
types 71 and 75 and the last step in the derivation is

FoFQ:m
FQ F IHQ(Q) . T1 +T2
By the induction hypothesis, we have [M]} = [N]} and
w = @ : 7. From the latter, it follows that [Q]% € A7? and
by Definition and we get

[in2(Q)]) = Inry,([Q]}) € AT,

6. Finally, we consider the case when the last applied rule is (Eq).
Then we have that the last step in the derivation is

Fg l_ Q MR Q =TI L
I'boHFL:o
By the induction hypothesis applied to M =p, N and
Ly = Qo weget [M]) = [N]) and w = Q : 0. Since the
derivation I'y - K : ¢ —+ 7 — ¢ has the length 1 and the length
of the derivation @) =r, L is less than m — 1, we can apply the
induction hypothesis to Q@ =r, Land I'i1 F K: 0 — 7 — ¢ and
we obtain [Q]) = [L]} and w = K: 0 — 7 — 0. We conclude
[L]y = [Q]; € A7, thus w = L : 0.

This concludes the proof of Theorem [3.19} O

Remark 3.20. We now give the motivation for defining an environment as a
total mapping. In order to prove that equal terms have the same interpretation
in every model, an environment has to be a total mapping. Otherwise, if p is a
partial mapping and p(x,w) is defined, whereas p(y,w) is not, then [Kxy[} is
not defined. As a consequence, we would have that the interpretation of Kxy
is mot the same as the interpretation of x, although they are equal terms.
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A direct consequence of the previous theorem is the soundness of the type
assignment system.

Corollary 3.21 (Soundness of CL™>%), If T M : 0, then T =M : 0.

The equivalence class of a term M with respect to the equivalence relation
generated by the rules in Figure is denoted by [M]r, i.e.

[Mlp ={N|NeCL>*" and M =p N}.

We prove the completeness of the equational theory and the type assignment
system separately. First, a notion of a canonical model is introduced.

Definition 3.22 (Canonical model). Let Ty be a consistent basis. A canonical
model /CE? is a pair (KU, p*) such that the tuple

’CFO = <WF07 = {Dwr}7 {AZFL {Appwr}v {Projl,wr}7 {PTOjQ,wF}a {Inlwr}v
{Inry. }, {iwr,wp/ I3

consists of:

(i) the set Wp, of possible worlds, one for each consistent superset of the
basis Tg, i.e. Wp, = {wr |To CT and T is a consistent basis},

(i) the relation = on Wp, defined as follows:

wr = wr if and only if T C TV, (3.15)

(iii) the family {Dyy} = {Dwr buwrewr, where
Dy ={[M]r | M € CL™"},
(iv) the family {A7, } = { A}, Yuwrewr, ,ocTypes Where
A7 ={[N]r| N € CL™”*" and T+ N : o},
(v) the family {Appu,} = {Appwr buwrewr, where

Appwr([M]F7 [N]F) = [MN]Fv

(vi) the family { Proji wy} = {Proj1,wy burewr, where

Projy wr ((M]r) = [m1(M)]r,
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(vii) the family {Projs,w.} = {Proj2 wr }wrewr, where

Proja we ([M]r) = [m2(M)]r,

(viii) the family {Inly.} = {Inlw; bwrewr, where

Inly ([M]r) = [ing (M)]r,

(iz) the family {Inry.} = {Inry bwrewr, where

Inry. ([M]r) = [ing(M)]r,

(.Z') the fam”y {iwr,wr/} = {iwr,wr/ }wr,wF/ €EWr ,wr Jwps where

twewe, ([M]r) = [M]rr.

The valuation p* is defined by p*(x,wr) = [x]r.

We prove that a canonical model introduced in Definition is a Kripke
C'L model.

Lemma 3.23. The canonical model ICEP 1s a Kripke C'L model.

Proof. We prove that the tuple ICEP satisfies the conditions of Definition
We show that K is a Kripke applicative structure (Definition [3.8)), which is
extensional (Definition and has combinators (Definition (3.10).

By the definition of a canonical model (Definition we have that
the set of possible worlds is partially ordered by relation =, since the set
{T'| Ty CT and T is a consistent basis} is partially ordered by inclusion.

Let o € Types. By Definition we have

AZ ={[Nlr | N e CL™*F and T+ N : o}
C{[M]r| M e CL?*"} =D,

Further, as a direct consequence of the condition that every I is a consistent
basis (Definition , we have that A% = {[N]r | T+ N : 0} = 0 for every
wp € Wr,. Now, we look at the set A, = {[N]p | N € CL7>**" and '+ N :
1}. If [M]p € A,,., then by the definition of the set A, , we have I' M : 1.
By the rule (13) in Figure we conclude M =r (), i.e. [M]r = [()]r. Thus,
the only element of A}, is [()]r.

We define the injective function H : Dy, W Dy, — D, as follows:
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H ({0, [M]r)) = [iny (M)]r
H((1, [M]r)) = [z (M)]r

It is an easy task to prove that the codomain of the restriction of the function
H to the set A7 W A7 is AL".

We define the injective function G : D,. — Dy. X D,. as
G([M]r) = {[m(M)]r, [r2(M)]r). Again, we have that the codomain of the
restriction of the function G' to the set A7 is A7 x A7 .

Next, the family of application functions App,,. has to satisfy the con-
dition (vi) in Definition For [M]r € Dy, and [N]r € D, we have
Appuwr ([M]r, [N]r) = [MN]r € Dy, by Deﬁnition If [M]r € A777 and
[N]r € A7, for some types 0,7 € Types, then ' M :0 - 7and ' N : 0
by Definition By the rule (— elim) in Figure we derive ' = MN : o,
ie. [MN]r € A7,_. Thus, if we restrict the function App,. to A7 x A7, _,
the codomain is A7, .

Let [M]r € Dy,.. By Definition|3.22|we have Proji v ([M]r) = [m1(M)]r €
Dy and Projo . ([M]r) = [m(M)lr € Dy.. If [M]r € AX7, then
PFM:o0x7and I' - 7 (M) : o follows by the rule (x eliml) in Fig-
ure Thus, the codomain of the restriction of the function Proj; . to the
set A7 is A7 . Similarly, if [M]r € AZX7, then I' = M : 0 x 7 and by rule
(x elim2) in Figure [4.2| we obtain T' - 7o (M) : 7. Hence, we conclude that the
codomain of the restriction of the function Proja .. to the set A7X7 is A7 .

For [M|r € D,,., we have

Inly ([M]r) = [in (M)]r € Duy
Inryy ([M]r) = [ing(M)]r € Dy,

Let [M]r € A7, . Then I' - M : 0 and we conclude I' - iny (M) : 0 4 7 by rule
(4 introl), i.e. the codomain of the restriction of the function I'nl,,. to the set
Ag, is AZFT. Similarly, if [M|p € A7, then T F M : 0 and T'Fing(M) : 740
follows by rule (4 intro2) in Figure Thus, if we restrict Inr,,. to A7, the
codomain is A7,

Let us consider the family of transition functions ¢yp .. By Defini-
tion we have 4y w., : Dw. — Dy, . In Proposition we have proved
that if M = N and ' C I, then M =p. N. This property ensures that
he function 4y ., is well defined. More precisely, it cannot happen that
[M]r = [N]r and iy w., ((M]r) # twp w. ([N]r). Let [M]r € A and I' C TV
(wr 2 wrr). By Deﬁnition [M]r € A7, implies I' = M : ¢ and by Propo-
sition we obtain IV = M : 0, i.e. [M]r € A, ,. Hence, the codomain of

the restriction of the function 4., to the set A7 is A7 .
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It remains to prove that transition functions satisfy conditions fidand
and that they commute with functions Appy,., Proji wp, Proj2.wp, Inly,, and
Inry,. The transition function 4y .., is a surjective function from D,,. to
D,,..,. By the definition of a canonical model, the function .. ., is the iden-
tity, since I' C T" and 4y e ([M]r) = [M]r. Let wr, wr and wr~ be pos-
sible worlds of Wr, such that wr < wps < wrr. The latter is equivalent to
I' C TV C T by Definition By the definition of the transition function in
Definition [3.22] we derive

in/ ,Wprr o in,wF/ ([M]F) = Z.’u)l—v s (iwr,wrz ([M]F)) = Z.’u)l—v s ([M]F/)
= [M]rr =t wp, ([M]r).
This proves that a transition function satisfies the condition (comp]). Let

[M]r,[N]r € Dy, and wr =< wr. We then have the following sequences of
equalities

bwp 1w (APPwr (M1, [N]r)) = dwp wp, ([MN]r)
= [MN]p
= Appuw,, ([M]r, [N]r)
= Appur, (bwr wp, ([M]r), dwp s ([N]P)),

iwr,wp/(PTOjl,wr([Mh‘)) = iwr,wp/([wl(M)]F)
= [m(M)]r
= Proji,uw. ([M]r)
= Projl,wr/ (iwr,wr/([M}F))»

Z.wr,wp/ (PTOj?,wr([M]F)) = iwr,wp/ ([WZ(M)]F)
= [m2(M)]r
= Projzuw,., ([M]r)
= PTOjZ,wp/ (iwr,wp/([M]F))y

bwpwps (Il ([M]r)) = twp,wp, ([I01(M)]r)
= [in1 (M)]r
= Inlw,, ((M]r)
= Inlwy, (twp we, ([M]r)),
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twrwps (IN7wr ((M]r)) = dwp wp, ([in2(M)]r)
= [ing(M)]r
= Inry,, ([M]r)
= Im”wp/ (iwr Wi ([M]F))a

which prove that K¢ is a Kripke applicative structure. In order to prove
that X' has combinators we define the following elements:

° kwr - [K]F

® Syr = [S]F

® Cyr = [Ch—‘
[ ] Zwr = [Z]F
® Uypr = [U]F

The elements defined above represent combinators of the applicative struc-
ture Ko, The proof that these elements satisfy the conditions from Defini-
tion [3.10] follows straightforwardly from the rules in Figure 3.1 and Figure[3.2)

The extensionality of the applicative structure X' is a direct conse-
quence of the extensionality of combinatory logic, i.e. of the extensionality of
the equational theory given in Figure We prove that the two conditions
from Definition [3.9] are satisfied. First, we show that for all [M]r, [N]r € D,
if Proji,w([M]r) = Proji,w.([Nlr) and Proja . ([M]r) = Projzuw. ([N]r),
then [M]r = [N]r. By Definition We have Proji w.([M|r) = [m1(M)]r
and Projs . ([M]r) = [m2(M)]r. So, from the assumption we conclude
[’R’l(MﬂF = [Wl(N)]F and [WQ(M)]F = [WQ(N)}F, i.e. 7T1(M) =r 7T1(N) and
72(M) =r m2(N). Now, by the rules in Figure [3.1] we derive

M =r P(P1M)(PoM) =p P(my(M))(m2(M))

=r P(m1(N))(m2(N)) =r P(P1N)(P2N)
=r N
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Next we prove that the second condition of extensionality (Definition
is satisfied. Let [M]r and [N]r be the elements of D,,. such that for all T C T
and [Plr, [Q]r € Dy, , the equalities

Appwr/ (in,’wF/ ([M]F)7 Inlwr/ ([P]F')) = Appwr‘/ (iwr,wp/ ([Nh—‘)a Inlwr‘/ ([P]F/))
(3.16)
and

Appwr‘/ (in;wr‘/ ([M]F)’ I’I’L’I‘wr, ([Q]F')) = Appwr‘/ (iwr,wr/ ([N}F% In’rwr‘/ ([Q}F’))
(3.17)
hold.

Since I' C T', we take I' = I". By Definition we have the following
equations:

Appur (twp wr ([M]r), Inlw ([P]r)) = [M(in1(P))]r (3.18)
Appur (iwre we ([M]r), Inruy ([Q)r)) = [M(inz(Q))]r (3.19)
Appur (fwe awr ([N]r), Indwr ([Pr)) = [N (in1 (P))]r (3.20)
Appur (twp wr ([Nr), Inrwe ([Q]r)) = [N (in2(Q))]r (3.21)

The assumptions and [3.17] are equivalent to the equations
[M(iny (P))]r = [N(in1(P))]r and [M (inz(Q))]r = [N (in2(Q))]r

i.e. M(iny(P)) =r N(iny(P)) and M (iny(Q)) =r N(in2(Q)) for any terms P
and Q. We take P and @ to be variables z and y which do not appear in
terms M and N and we obtain M (iny(z)) =p N(iny(z)) and M(ina(y)) =r
N (inz(y)). By the rules of Figure we have

S(KM)lz =p (KMz)(lhz) =r M(l1z)
=r M(ini(2)) =p N(in1(z))
Since z is not a variable of M and N, it appears neither in S(KM)l; nor

in S(KN)ly, therefore by the rule (24) in Figure [3.1| we conclude S(KM)l; =r
S(KN)l;. Similarly,

S(KM)lay =r (KMy)(l2y) =r M(l2y)
=r M(inz(y)) =r N(in2(y))
=r (KNQ)(|2Z/) =T S(KN)lzy-
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As a consequence, we have S(KM)l; =p S(KN)lz. The relation =r is closed
under contexts, so for a variable z that does not appear in terms M and N we
have

Mz =p ((C(S(KM)L))(S(KM)I2))z =r (C(S(KN)I))(S(KN)Iy))z = N=.

Again, by the rule (24) in Figure we conclude M =r N, i.e.
[M]r = [N]r. This concludes the proof of the extensionality.

It remains to prove that ICEP is a Kripke C'L model, i.e. that the mapping
p* satisfies the conditions of Definition [3.11] The environment p* is a map-
ping from a set of variables and worlds to the set of domains by its definition,
p*(x,wr) = [x]r € Dy, where wr is an arbitrary world of ICZE. The environ-
ment p* satisfies the condition Let wr and wrs be worlds in ICE? such
that p*(z,wr) € Dy and wr < wr/. By Definition we have

P(x, wF’) = [m]r’ = iwrywr/ ([x]p) = iwr,wp/ (p(x7 wF))'
This concludes the proof that Kgi’ is a Kripke C'L model. O

The notion of an environment of a canonical model (Definition [3.22) is
defined as the map which assigns to a variable its equivalence class. We prove
that the interpretation of any term in a canonical model is its equivalence
class.

Lemma 3.24. Let I'y be a consistent basis and ICEE a canonical model. For
every term M and a possible world wr in ICEE’, the equality [M]," = [M]r
holds.

Proof. The proof is by induction on the structure of the term M.

If M is a variable x, then we have [z]]F = p*(z,wr) = [z]r by Defini-
tion

Let the term M be a constant K. Then by Definition and Defini-
tion we have [K]}" = ky, = [K]p. The remaining cases when M is a
term constant are analogous.

If term M is an application NL, then by the induction hypothesis and
Definition B.14] we have

[NL],* = Appur (INT5, [L157) = Appue ([N, [L]r) = [N L]r.

Assume that the term M is the first projection w1 (N). By Definition |3.14}
Definition [3.22] and the induction hypothesis we derive

[m (V)] = Projiwe (INp7) = Projiw:([N]r) = [m(N)]r.



88

The case when the term M is the second projection mo(N) proceeds anal-
ogously.

If the term M is the left injection in; (V), then by Definition [3.14] Defini-
tion [3:22 and the induction hypothesis we have

[iny (N[ = Inlo (INT5¥) = Inbwe ([N]r) = [ing (N)]r

The case when the term M is the right injection iny(IN) proceeds analo-
gously.

Finally, if M is the empty pair (), then

[015 = Tuwr = [0lr,

since we have showed in the proof of Lemma that [()]r is the unique
element of A}, .
O

We may now show the other direction of Theorem [3.19] First, we prove
that the equational theory given in Figure [3.1]is complete with respect to the
proposed semantics.

Theorem 3.25. Let M and N be terms and I' a consistent basis. If for every
Kripke CL model K,,, such that KC, =T, and a world w of the model we have
[M]; = [Ny, then M =p N.

Proof. Let us assume that for every Kripke C'L model IC, such that £, =T
and world w of the model, [M] = [N]} holds. We consider a canonical model
ICE*. As a direct consequence of Definition we have ICE* E T'. From the

assumption we conclude that for a world wp of model K7., [M];F = [N];r
and by Lemma we obtain [M]r = [N]r, i.e. M =p N. O

We now state the main result of this chapter, the completeness of full
simply typed combinatory logic with respect to the proposed semantics.

Theorem 3.26. Let I' be a consistent basis. IfT' =M : 0, then T+ M : 0.

Proof. Suppose that, for a consistent basis I', we have I' = M : 0. For a
canonical model ICE, it holds that ICE* T, as stated in the proof of Theorem
Thus, in the world wr of the model K}, we have [M];F € AJ, . By
Definition and Lemma we derive

[M]r = [M]“r € A5, = {[N]r | N € CL™** and T N : o}.

So, we conclude I' - M : o. O
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3.4 Concluding remarks

In this chapter, the full simply typed combinatory logic is studied and the
Kripke-style semantics of the full simply typed combinatory logic is presented.

The full simply typed combinatory logic is the simply typed combinatory
logic extended with product types, sum types, the empty type and the unit
type. Via the Curry-Howard correspondence, the full simply typed combina-
tory logic is related to the full intuitionistic logic (with all the connectives).
Since the intuitionistic logic is sound and complete with respect to the Kripke
semantics, the question of the soundness and completeness of the full simply
typed combinatory logic naturally arises. This is not the first time that Kripke-
style semantics is employed as a semantics for the model of computation. In
[124], the authors introduced the Kripke-style semantics of the simply typed
A-calculus and proved the soundness and completeness of the simply typed
A-calculus with respect to the proposed semantics. Motivated by their work
we have introduced the Kripke-style semantics of the full simply typed calculi
(A-calculus and combinatory logic) in [94].

This chapter presents the Kripke-style semantics introduced in [94], but
for a different calculus. The full simply typed A-calculus and combinatory
logic studied in [94] did not include a typing rule which ensures that the equal
terms inhabit the same type. The calculus without this typing rule cannot be
complete with respect to the proposed semantics. In order to obtain a sound
and complete calculus, we added the typing rule for equal terms. The main
results of the chapter are soundness and completeness of the full simply typed
combinatory logic with respect to the proposed Kripke-style semantics.

At the end, we give some open questions and the ideas for the future work.

e The next step is to employ the presented Kripke-style semantics as a
semantics of the full simply typed A-calculus. As it has been discussed,
the translation of the full simply typed A-calculus with the typing rule
for equal terms into the combinatory logic with the same rule is more
involved than in the case without the typing rule for equal terms. Thus,
we leave this for the future work.

e Another possibility to further develop this approach to different frame-
works in logic and computation, e.g. polymorphic types.

e Kripke-style semantics has found its application in various fields. One
of the recent applications of Kripke-style semantics is in the blockchain
technology. In [118], Marinkovi¢ et al. introduce a temporal epistemic
logic with probabilities as an extension of temporal epistemic logic and
use this framework to model and reason about probabilistic properties
of the blockchain protocol. The semantics of the logic is defined as a
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Kripke-style semantics. Further, in [24] Briinnler et al. introduce BCL,
a dynamic logic to reason about blockchain updates and the semantics of
the logic is again Kripke-style semantics. Kripke models for modal logic
have been used by Hirai in [81] for analysing the protocol of blockchain.
We see that Kripke-style semantics is a structure suitable for describing
and analysing properties of blockchain, so it is a promising research topic.



Chapter 4

Logic of combinatory logic

In this chapter, we present the logic of combinatory logic, a propositional
extension of the simply typed combinatory logic, which has been introduced in
[95] @7]. We give its syntax, axiomatization and semantics, and prove that the
axiomatization is sound and complete with respect to the proposed semantics.

The importance of the logic of combinatory logic can be seen from differ-
ent perspectives. From the perspective of reasoning, by defining the classical
propositional logic over the simply typed combinatory logic we obtain a formal
system for reasoning about type assignment statements. As a consequence, we
can employ the well-established methods such as DPLL, resolution method,
SAT solvers and SMT solvers to reason about the simply typed combinatory
logic. Due to the Curry-Howard correspondence this is a first step towards the
development of a tool for automated reasoning about combinatory terms and
programs. From the perspective of programming language theory, we can see
the logic of combinatory logic as a convenient framework for abstract syntax:
the structure of programming languages, disregarding the superficial details of
concrete syntax. From the proof-theoretic perspective, we have a precise cor-
respondence between syntactic and semantic structure: an internal language
for reasoning about the simply typed combinatory logic is given by the rules
of classical propositional logic.

Contribution of the chapter
e We develop a framework for reasoning about simply typed terms.

e The introduced logic LCL is an extension of the simply typed combina-
tory logic.
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e We prove that the equational theory of the simply typed combinatory
logic is sound and complete with respect to the semantics of LC'L.

e The axiomatization of the logic LCL is proved to be sound and complete
with respect to the proposed semantics.

e The proposed semantics is a new semantics of the simply typed combina-
tory logic. We give the proof of soundness and completeness of the simply
typed combinatory logic extended with the typing rule that ensures that
equal terms inhabit the same type.

Overview of the chapter We start this chapter with preliminaries for the
simply typed combinatory logic in Section In Section [£:2] we present the
logic of combinatory logic by giving its syntax in Section axiomatization
in Section [.2.2] and semantics in Section £.2.3] Section [.3] presents the proofs
of soundness and completeness of the equational theory with respect to the
proposed semantics. The main results, namely the soundness and strong com-
pleteness of the given axiomatization with respect to the proposed semantics,
are given in Section [4.4]

4.1 Simply typed combinatory logic

In this section, we present the simply typed combinatory logic CL_, ([11], 21,
78]), through its syntax, equational theory and type assignment system.

We start with the syntax of untyped combinatory logic CL. The set of
terms of CL is built up from a countable set of term variables
V={x,y,2,...,21,...} and a set of term constants {S, K, 1}, and it is gener-
ated by the following grammar

| M=z |S|K[I|MM| (4.1)

where z is a term variable. Term constants S, K, and | are called primi-
tive combinators. Other well-known combinators such as B,W,C,... are de-
scribed in [2I]. The set of all untyped terms is denoted by C'L and we let
M,N,...,My,...range over CL. As in the previous chapters, the set of vari-
ables that occur in a term M is denoted by FV (M), and the substitution of a
term N for the occurrences of variable z in a term M is denoted by M{N/x}.
A subterm of a term M is any term that is a part of M. For example, the
term Kz(IS) is a subterm of the term (S(Kz(IS)))(Il).

Primitive combinators represent functions, so they are characterized by the
following rewriting rules:
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SMNL — (ML)(NL)
KMN — M
IM — M

Terms of the form SMNL,KMN,IM are called redexes. The rewriting
rules presented above induce relations between C'L terms, which are an im-
portant aspect of the combinatory logic. We mainly focus on the equational
theory that arises from these rules and in order to formally introduce this
theory, we define one-step reduction.

Definition 4.1. If N is a redex such that N — N' and N is a subterm of a
term M, then My M', where M’ is obtained from M by replacing the subterm
N with N'. The relation >1 is called the one-step reduction.

The weak reduction, denoted by >, is the reflexive and transitive closure of
the one-step reduction >;. The one-step reduction also induces an equivalence
relation, called the weak equality.

Definition 4.2. The weak equality, denoted by =,,, is the reflexive, transitive
and symmetric closure of the reduction 1. It can be characterized inductively
as follows:

1. If M>; N, then M =, N.

2. If M is a CL-term, then M =, M.

3. If M =, N, then N =, M.

4. If M =, N and N =, L, then M =,, L.

Another equivalence relation obtained from the weak reduction is the ez-
tensional weak equality, denoted by =, ,, and introduced in Definition @
below.

Definition 4.3 ([21]). CL-terms Q and Q{M1/N1,...,M,,/N,,} are exten-
sionally weakly equal, denoted by Q =y, Q{M1/N1,..., My /Np} if and only
if for every i € {1,...,m}, there exists n; such that for a series of distinct
variables T;1,%;2,...,%; pn,, that occur neither in M; nor in N;, there exists a
CL-term P; with Mimi717 Ti2y.. - Tin; Pw P; and Nixi,lxi,Q T, Pw P;.

An alternative way to formally introduce weak equality and extensional
weak equality is axiomatically.
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M=M (i) SMNL = (ML)(NL) (S)
KMN =M (K) M =M (I)
M =N M =N N=1L
N =l (sym) =1L (trans)
i @)y py )

Fiaure 4.1: Equational theory £Q

Definition 4.4. The equational theory £Q is given by the axioms and rules
in Figure[].1]

If M = N can be derived from the set of axioms and rules in Figure
then we say that C'L-terms M and N are equal. The equational theory £Q
introduces a new equivalence relation on the set of C'L-terms, which coincides
with the weak equality. This is stated in the following proposition, for which
the respective proof can be found in [21].

Proposition 4.5 ([21]). An equation M = N is provable in £Q if and only if
M=, N.

The theory obtained by extending the equational theory £Q with the rule

Mz=Nz ¢ FV(M)UFV(N)
=N (ext)

is called the extensional equational theory and it is denoted by £Q7. We
write M = N, when M = N can be derived in the equational theory £Q".
The equivalence class of a term M with respect to the equivalence relation
generated by £Q" is denoted by [M], i.e.

[M]={N | M = N is provable in £Q"}

The equivalence relation generated by the extensional equational theory £Q"
coincides with the extensional weak equality.

Proposition 4.6 ([21]). An equation M = N is provable in EQ" if and only
if M =y, N.

In this chapter, we focus on the equational theory £Q". In [21], the inequa-
tional theory, which is related to the weak reduction, has also been studied.
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This chapter focuses on the simply typed terms. Simple types are built
up from a countable set of type variables Vrype = {a,b, ¢, ..., a1,. ..} using only
one type operator —, called the functional type. The set of all simple types is
denoted by Types_, and is generated by the following grammar

‘O’ZZ:G,|O'—>O" (4.2)

We let o,7,...,01,... range over Types_,. The notions of type statement,
declaration, basis and the domain of the basis are defined as in Definition [3.1]
(Chapter [3)).

The type assignment system for the simply typed combinatory logic, denoted
by CL_,, is given in Figure f.2] We say that a term M can be typed with
a type o in a basis I', or that M : o is derivable from T, if we can derive
the typing judgment I' k¢, M : o by the rules of Figure The set of all
statements M : o that are typable from some basis I' is also denoted by C'L_,,
ie.

CL_, ={M : 0| 3U such that I'Fcp M : 0}

Iz:oblcpz:0 (axiom €)

ke, S:(c—=(p— 7)) = (0 —=p) = (c—7) (axiom S)

PhopL K:io—= (71— 0) (axiom K) Phepl:o— o0 (axiom I)

I'reL M :o— 71 I'tep, N:o

TFon MN : 7 (= elim)

FI1GURE 4.2: Type assignment system CL_,

At the end of this section, we give some auxiliary properties of the typing
system. The proofs follow by the induction on the length of derivations and
are omitted.

Proposition 4.7. If Tter, M :0 and T C TV then TV o M : 0.
For a set X of term variables, we write I' | X ={z:0 €T |z € X}.
Proposition 4.8. 1. IfT'k¢p M : o, then FV(M) C dom(T).

2. IfTker M o, thenT | FV(M) ke, M : 0.
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4.2 Logic of combinatory logic

In this section, we formally introduce the propositional extension of the simply
typed combinatory logic, called the logic of combinatory logic and denoted by
LCL. The logic of combinatory logic is obtained by extending the simply
typed combinatory logic with classical propositional connectives of negation
and implication. We introduce LC'L through its syntax, axiomatization and
semantics.

4.2.1 Syntax LCL

The language of LCL obtained from the language of the simply typed com-
binatory logic and the language of the classical propositional logic. The set
of LC L-formulas is the set of all type statements that are typable from some
basis I closed under the propositional connectives (negation and implication)
and it is given by the following grammar:

OLIZM20'|—\OZ|CM:>OL‘ (4.3)

where M : 0 € CL_,. We let o, 3,... range over the set of LC L-formulas.
Other classical propositional connectives A, V, < are defined in the standard
way.

a V B stands for —a = 3,
a A B stands for —(—a V =),
a < [ stands for (a = 8) A (B = «).

A formula o A —« is denoted by 1.

The logic of combinatory logic is a step towards formalization of meta-
language of the simply typed combinatory logic. In the simply typed combi-
natory logic, if a term M has type 0 — 7 and a term N has type ¢ in some
basis I', then M N is typable in I' with the type 7. We can formally express
this in LC'L with formula

(M:0—-TAN:0)=MN:T.

4.2.2 Axiomatization of LCL

This subsection presents the axiomatic system of the logic of combinatory logic
LCL, which is obtained from the type assignment system for simply typed
combinatory logic and the axiomatic system of classical propositional logic.
The axiomatic system of LCL is given by the axiom schemes and inference

rule in Figure
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Axiom schemes:

) Si(0= (= p) > (0 7) = (0 - p)
) K:io—(r—o0)
) lio—=o0

) (M:o0—-71)=(N:0o)=(MN:T1)),
M:0—7,N:o,MN:7€CL_,
M:o=N:0,f M=N,M:0,N:0e€CL_,
a= (= a)
(a=(B=7)=((a=p8)=(a=17)
(o= =) = ((ha= ) = )

Inference rule:

a=f «

3 (MP)

FIGURE 4.3: Axiom schemes and inference rules for LC'L

The axiomatic system of LCL comprises eight axiom schemes, which can
be classified as follows.

e The first three axiom schemes, (1), (2) and (3), are non-logical and
correspond to the axioms for typing primitive combinators.

e The axiom schemes (4) and (5) correspond to the typing rules of the
simply typed combinatory logic. The axiom scheme (4) corresponds
to the rule (— elim) for typing an application and the axiom scheme
(5) corresponds to the rule that guarantees that equal terms have the
same type. The condition M = N in the axiom scheme (5) requires
that M = N is provable in the equational theory £Q". This rule is
not included in the typing system in Figure In order to obtain the
completeness of the type assignment system, it is necessary to add this
rule to the original system as it will be discussed in Section [4.5]

e The last three axiom schemes, (6), (7) and (8), are logical axioms from
the axiomatic system of the classical propositional logic.

The axiomatic system of LC'L also includes one inference rule , the classical
Modus Ponens (MP). The notion of a proof in LCL is formally introduced in
the next definition, followed by an example, which illustrates a proof in LCL.
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Definition 4.9. Let T be a set of LCL-formulas and o an LC L-formula.
A formula o can be derived from T, denoted by T + «, if there exists a se-
quence of formulas ag, aq, ..., a, such that o, is the formula o and for every
i € {0,1,...,n}, oy is either an aziom instance, or o; € T, or «; is a for-
mula which can be derived by the inference rule (MP) applied to some previous
members of the sequence.

A formula « is a theorem, denoted by + «, if it is deducible from the empty
set, i.e. O - .

If an LC L-formula « can be derived from a set T using only axiom schemes
6 — 8 and inference rule (MP), then we say that T F « is obtained by propo-
sitional reasoning.

Example 4.10. We prove that if M : 0 — 7, N : 0 and MN : 7 are LCL-
formulas, then M : 0 — 7,N : 0+ MN : 7. We write the proof as the sequence
of formulas, starting with the formulas M : 0 — 7 and N : o as hypotheses.

1. M :0 — 7, hypothesis

2. N :o, hypothesis

3. M:o0—=7)=((N:0)=(MN :7)) an instance of (4)
4. (N:o)= (MN :7), from (1) and (3) by rule (MP)

5. MN : 7, from (2) and (4) by rule (MP)

We may notice that for almost every axiom scheme and typing rule in Fig-
ure except (axiom €), there is an axiom scheme in Figure Although in
the axiomatic system of LCL there is no corresponding axiom scheme for (ax-
iom €), by Definition we can derive I,z : 0 bF¢r, 2 : 0. As we have already
discussed, the logic LC'L is an extension of the simply typed combinatory logic
and this is stated in the following proposition.

Proposition 4.11. IfI't¢p M : o, thenT'H M : 0.

Proof. The proof is by induction on the derivation of I' ¢y, M : 0in CL_,. O

The notion of a consistent set is introduced in the previous chapter, when a
consistent basis is defined and compared with a consistent set in the intuition-
istic propositional logic. In the logic LC'L, the definition of a consistent set
is equivalent to the definition of a consistent set in the classical propositional
logic.

Definition 4.12. A set of LC L-formulas T is consistent if there exists at least
one formula which is not derivable from T. Otherwise, T is inconsistent.
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Alternatively, we say that T is inconsistent if and only if 7'+ 1. We will
write T, F 8 for T U {a} F B.

A key step in proving the strong completeness of the axiomatic system of
LCL is the proof of Deduction theorem.

Theorem 4.13 (Deduction theorem). Let T be a set of formulas and «, 3
formulas of LCL. If T,a+ 3, then T - a = (3.

Proof. The proof is by induction on the length n of the proof of T, a - 5. For
the base case suppose that n = 1. Then § is either an axiom or 8 € T U {a}.
Let 8 be an axiom. The proof proceeds as follows:

1. TF 3, since § is an axiom
2. Tk p= (a=p), since = (a = ) is an instance of (6)
3. Tka=p, from (1) and (2) by rule (MP)

Next, let 8 € T. Then

1. THpG, since BeT
2. THB= (a=p), since § = (a = B) is an instance of (6)
3. TrFa= g, from (1) and (2) by rule (MP)

If B =a, then T+ o = «, since a = « is a theorem in LC'L.

Let us assume that the statement holds if the proof length is less than &
and consider the case when the proof length is £ > 1. In the case that 5 is an
axiom or belongs to the set T'U {«a} the proof proceeds as above. Assume the
formula § is derived from T'U {a} by an application of inference rule (MP). If
B is obtained by an application of rule (MP) on formulas a; and «; = 8 such
that T,a F o7 and T,a F a1 = (3, then the derivation lengths of T, - ay
and T,a - a; = B are less than k. By the induction hypothesis we have
THa=a and T+ a = (ag = ). The proof proceeds as follows:

T F a = a1, by the induction hypothesis

T+ a= (a1 = ), by the induction hypothesis
TH(a= (1= 0)= ((a= o) = (a=0)), by (7)
TF(a= a1)= (a=p), from (2) and (3) by rule (MP)
TFa= g, from (1) and (4) by rule (MP)

U Wb

This concludes the proof. O
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4.2.3 Semantics of LCL

In this section, we introduce a semantics of the logic of combinatory logic.

Dana Scott introduced the first models for the untyped combinatory logic
in [156l [157]. Since then different models for both the untyped and typed com-
binatory logic have been proposed, starting with a term model introduced by
Barendregt ([9, 12]) , which is constructed from the language of the combina-
tory logic. The algebraic and set theoretical semantics of dual and symmetric
combinatory calculi have been introduced by Bimbo in [20]. Additionally, in
[21] Bimbo has presented several models for the combinatory logic such as the
operational models for the untyped combinatory logic and two models for the
typed combinatory logic: combinatory algebras and relational models. More
models can be found in [2, 1T}, 13].

Building models for the typed combinatory logic from the models of the
untyped combinatory logic is a standard approach, and in that case types are
interpreted as subsets of the untyped model. Over the past decades, different
approaches have been proposed such as the ones introduced in [124] and [94].
The semantics introduced in [124] is a Kripke-style semantics, which interprets
a typing judgment I' - M : o, considering term M and its type o at the same
type. Although the main result of [124] is Kripke-style semantics for the simply
typed A-calculus, they can also be employed as semantics of the simply typed
combinatory logic. In fact, some features of the semantics are proved using a
translation of the A-calculus into the combinatory logic. This approach and
the general concept of a model of untyped calculus were combined in [94] with
the goal to define Kripke-style semantics of the full simply typed A-calculus
and combinatory logic. The Kripke-style semantics of the full simply typed
combinatory logic is presented in Chapter [3] As it has been discussed in the
previous chapter, the interpretation of a term is defined without considering
its type, which is the main difference with respect to the semantics introduced
in [124]. The semantics of the logic of combinatory logic is not a Kripke-style
semantics, but it has been inspired by the semantics introduced in [124] and
[94]. Furthermore, we have used the similar approach to define the semantics
of the combinatory logic with intersection types in [62].

In order to define semantics of LC' L, the notion of an applicative structure
for LC'L is introduced.

Definition 4.14. An applicative structure for LCL is a tuple
M=(D,{A%},,-, s, k,1)
where

e D is a nonempty set, called domain.
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o {A%}, = {A%}seTypes_, 15 a family of sets indexed by o such that A C D
for all o,

e - is a binary operation on D, i.e. - : D x D — D, which is extensional:
for di,ds € D, di = ds whenever (Ve € D)(dy - e = ds - €), and it holds
that the codomain of the restriction of function - to the set A7 x A°
is AT for every o, € Types_,.

o s € D such that for every o,7,p € Types_,

s € A=) ((0=T) =3 (0—p)) (4.4)

and for every d,e, f € D,

((s-d)-e)-f=(d-f)-(e-f) (4.5)
o k € D such that for every o,7 € Types_,
ke AT (=0) (4.6)
and for every d,e € D,
(k-d)-e=d (4.7)

o i € D such that for every o € Types_,
1€ A°77 (4.8)

and for every d € D,
i-d=d (4.9)

The uniqueness of the elements s, k, % is a consequence of the extensionality
of the operation -. We provide an applicative structure with a valuation of term
variables, called an environment.

Definition 4.15. Let M be an applicative structure. An environment p for
M is a map from the set of term wvariables to the domain of the applicative
structure M, p:V — D.

Let M be an applicative structure, p an environment for M and d an
element from the domain of M. We write p(z := d) to denote an environment
for M that is identical to p on all variables except x, i.e.

d, y==x

plw=d)y) = {p(y), y#x
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Definition 4.16. An LCL-model is a tuple M, = (M, p), where M is an
applicative structure and p is an environment for M.

An environment interprets term variables. The interpretation of terms is
defined by extending the environment p to the interpretation map [-],.

Definition 4.17. Let M be an applicative structure and p an environment for
M. The interpretation (meaning) of a term M in the environment p, denoted
by [M],, is defined inductively as follows:

b [[x]]p = p(x),

e [SI, =s,
° [[K]]P = k;
o [Il, =1

o [MN],=[M],-[N],-

The interpretation map [-], is a total mapping from the set of all C'L-terms
to the domain of an applicative structure. The existence of elements s, k, ¢ in
an applicative structure guarantees that the interpretation map is well defined,
i.e. that the interpretation of every C'L-term in an environment p is defined.

The following lemmas present some auxiliary results. The proofs proceed
by induction on the structure of term and are omitted. The first result shows
that the interpretation of a term depends only on variables that occur in the
term.

Lemma 4.18. Let M be an applicative structure, p1 and ps two environments
for M and M a CL-term. If p1(x) = p2(x) for every x that occurs in M, then

[[M]]pl = [[M]]pz °

The second result gives the interpretation of a term obtained by a substi-
tution.

Lemma 4.19 (Substitution lemma). Let M, N be C'L-terms and p an envi-
ronment. Then

[M{N/x}], = [M]p(@:=[n1,)-
Next, we introduce the notion of satisfiability of a formula in a model.

Definition 4.20. The satisfiability of an LCL-formula in a model M, is
defined as follows:

o M, =M : 0 if and only if [M], € A°.
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e M, =aApifand only if M, = a and M, |= 8.
o M, =~ if and only if it is not true that M, = «.

The satisfiability of a set of formulas and the notion of semantical conse-
quence are defined as in Chapter To make this chapter self-contained we
revisit the definition.

Definition 4.21. 1. A model M, satisfies a set T of LC'L-formulas, de-
noted by M, =T, if and only if M, = o for every a € T

2. An LCL-formula « is a semantical consequence of a set T, denoted by

T = «, if and only if M, =T implies M, |= a.

4.3 Soundness and completeness of the equa-
tional theory

In this section, we prove that the equational theory £Q", given in Section (4.1},
is sound and complete with respect to the semantics of LC'L introduced in
Section {.2.3

In every LC L-model, the interpretation of every CL-term is defined. Nat-
urally, we expect that equal terms have equal interpretations in every model
and this is the first result we present in this section (Theorem . Another
question that arises is whether two terms that have equal interpretations in
every model are equal. The positive answer to this question is proved in The-

orem [4.23]

Theorem 4.22 (Soundness of £Q7). If M = N in provable in £Q", then
[M], = [N], for any LCL-model M, = (M, p).

Proof. The proof is by induction on the length of the proof of M = N.

In the case M = N is obtained from axiom (id), terms M and N are
identical and we have [M], = [N],, for every LC'L-model M, = (M, p).

If M = N falls under axiom (S), then the term M is of the form ((SP)Q)R
and the term N is the term (PR)(QR) for some terms P,Q, R. By Defini-
tion 14! and Definition we derive

[(SPYR)E], = (([S], - [P1,) - [Q1) - [E],
((s-[P1o) - [QD,) - [,

= ([Pl - [E],) - (1@, - [BI,)
[(PR) (QR)],-
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Similarly, in the case that M = N falls under axiom (K), term M is
an application KPQ and N is the term P, for some terms P,Q. Again, by
Definition E.14] and Definition we obtain

[[KPQ]]p = ([[K]]p : [[P]]p> ’ [[Q]]p = (k : [[P]]p) ’ [[Q]]p = [[P]]p'

Similarly, if M = N is obtained by axiom (I), then M is of the form IP,
N is a term P, for some term P, and we derive

[[lPHp:[[l]]p'[[P]]p:i'[[P]]p:[[Pﬂp'

Let M = N be obtained from N = M by rule (sym). We obtain
[N], = [M], for every LC' L-model M, = (M, p) by the induction hypothesis.
Consequently, it holds that [M], = [N],.

If M = N is obtained from M = P and P = N by the rule (trans), then
by the induction hypothesis we have [M], = [P], and [P], = [N],, for every
LCL-model M, = (M, p). We conclude that [M], = [N],.

If M = N is obtained from L = @ by rule (app-l) , then the term M is
of the form LP and the term N is of the form QP, for some term P. For
every LC'L-model M, = (M, p), it holds that [L], = [Q], by the induction
hypothesis. Now, by Definition [f.17} we obtain

HLP]]P = [[Lﬂp ) [[Pﬂp = [[Q]]p ) [[P]]p = [[QP]]P'

In the case when M = N is obtained from L = ) by rule (app-r), the terms
M and N are of the form PL and PQ, respectively, for some term P. For
every LC'L-model M, = (M, p), we have that [L], = [Q], by the induction
hypothesis. Further, by Definition we derive

[[PL]]/J = [[P]]p : [[Lﬂp = [[P]]p ’ [[Q]]p = [[PQ]]p-

Finally, assume that M = N is obtained by rule (ext) from Mx = Nz
where the variable x appears neither in M nor in N. We show that
[M], = [N], for every LCL-model M, = (M,p). Let d be an element
from the domain of the model M,. Since [Mz], = [Nz], holds for any
model M, = (M, p) by the induction hypothesis, it also holds for the model
(M, p(x := d)). The variable x does not appear in the term M, thus by
Lemma we have [M], = [M],(z:=4) and the same holds for the term N.
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We derive

[M], - d = [M]p@:=a) - d
= [M] p(@i=a) - [#] p(a:=a)
= [M2]p(a:=a)
= [Nz]p@i=a)
= [Nlp@:=a) - [2] p(a:=a)
= [[N]]p(ac:zd) -d
= [N], - d.

We have proved that [M],-d = [N],-d holds for every element d from the
domain. We conclude that [M], = [N], by the extensionality of the operation

This concludes the proof. O

Next, we prove the completeness of the equational theory £Q", which is
the converse of Theorem

Let us recall that [M] denotes the equivalence class of a term M with
respect to the equivalence relation generated by the equational theory £Q",
[M]={N | M = N is provable in £Q"}.

Theorem 4.23 (Completeness of £Q"). If [M], = [N], in every LC L-model,
then M = N is provable in EQ".

Proof. We define the LC L-model M« = (Mo, p*) as follows. The applicative
structure My is a tuple (D, {A%},,, s, k, %) where:

o D={[M]| MeCL},

{A%} o = {A%}ocTypes_, is a family of sets indexed by o such that

A° ={[M]| MeCLand + M :o}
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The environment p* is defined by

Notice that a set A“ is defined as the set of all equivalence classes of typable
terms. The judgment - M : ¢ indicates that we can derive - M : o by the
axioms and rules given in Figure that is M : o is a theorem in LCL.

We have to prove that M, is an LC'L-model. Fist, we prove that the
tuple My = (D,{A%},,, s,k,%) is an applicative structure, i.e. that it sat-
isfies the conditions of Definition The domain D is a nonempty set
{[M]| M € CL}. For every type o, we have

A°={M]| MeCLand +M:o}C{[M]|MeCL}=D.

The operation - given by [M] - [N] = [MN] is a binary operation on the
domain D. Its extensionality follows from the extensionality of the equational
theory £Q". Assume that [M] and [N] are the elements of the domain D such
that [M] - [L] = [N] - [L], for every [L] € D. Let = be a variable that does
not appear in M or N. If we take L to be x, then [M] - [x] = [N] - [z], i.e.
[Mz] = [Nx]. So, we have that Mz = Nz is provable in £Q" and by rule
(ext) we conclude that M = N is provable in £Q", i.e. [M] = [N]. Thus, - is
extensional.

Further, assume that [M] € A°~7 and [N] € A? for some 0,7 € Types_,.
Then - M : ¢ — 7 and - N : ¢ directly follow from the definition of sets
A7 and A?, respectively. As an instance of axiom scheme (4) we have
(M:0—7)=((N:0)= (MN :71)). By the rule Modus Ponens we derive
F MN : 7. Thus, we conclude that [MN] € A™ and that the codomain of the
restriction of function - to the set A°77 x A% is A7,

We prove that elements s, k, 7 belong to the respective subsets of the do-
main and satisfy equations given in Definition [£.14] Since
FS:(oc—=(r—=p)— (6 1) — (60 = p)is an axiom, for every
o,p,7 € Types_,, we have [S] € Ale=(T=p)=((e=7)=(=0)) by the definition
of the structure My. So, the element [S] satisfies the equation (4.4). For any
[M],[N],[L] € D, we have

(] [M]) - [N]) - [Z] = [(SM)N)L] = [(ML)(NL)
= [ML] - [NL]
(M) - L)) - (N1 - [L).

Hence, the element [S] also satisfies the equation (4.5)).
By similar reasoning, we prove that the element [K] € D satisfies equa-
tions (4.6) and (4.7). We have that K : 0 — (7 — o) is an axiom for every
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0,7 € Types_,, hence [K] € A°7(7=9) Next, for every [M],[N] € D we derive
(K] - [M]) - [N] = [(KM)N] = [M].

Similarly, the element [l] satisfies equations (4.8) and (4.9). For every
o € Types_,, | : 0 — o is an axiom and as a consequence we have [I] € A77°
for every o € Types_,. Further, for every [M] € D, we have

(1] - [M] = [IM] = [M].

We conclude that the tuple M is an applicative structure for LC'L. Since p*
is a total function from the set of term variables to the domain D, we have
that M~ is an LC L-model.

By similar reasoning as in the proof of Lemma (Chapter [3)), we can
prove that [M],« = [M], for every term M.

If we assume that [M], = [N], holds in every LCL-model, then we have
that it also holds in M, i.e. [M],» = [N],«. Since the interpretation of a
term in M« is its equivalence class with respect to the equivalence relation
generated by the equational theory £Q", we obtain that [M]| = [M],« =
[N],« = [N], i.e. that M = N is provable in £Q". O

We may notice that we deal only with the interpretation of a term and we
do not consider its type here, so the sets A? were not of utmost importance in
the proof of completeness of the equational theory £Q". Any family {A“}, of
subsets of the domain D that satisfies the conditions of Definition E.14] could
be used in the proof.

The soundness of the equational theory is crucial for the proof of the sound-
ness and strong completeness of the axiomatization LC'L, which is proved in
the following section. In particular, this result was necessary in order to prove
that every instance of axiom scheme (5) is satisfied in every LC L-model. An
instance of (5) is of the form M : 0 = N : o, for some terms M, N such that
M = N is provable in the equational theory £Q". Then [M], = [N], in every
LCL-model and as a consequence we have that the formula M : 0 = N : o is
satisfied in every LC'L-model.

We have proved that [M], = [N], holds in every LCL-model if and only
if M = N is provable in £Q". Additionally, if we want to prove M = N in
£Q" it is enough to prove [M],« = [N],« in the model M., given in the
proof of Theorem [£.23] Nevertheless, this does not make it easier to determine
if two terms are equal, since both problems are undecidable. Proving M = N
in £Q" is undecidable and as a consequence proving N € [M] is undecidable.
Thus, the problem of determining if [M],« = [N],~ is undecidable.
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4.4 Soundness and strong completeness of the
axiomatization of LC'L

In this section, we give the proof of the soundness and strong completeness of
the logic of combinatory logic, i.e. of its axiomatization given in Section [{.2.2]
with respect to the semantics proposed in Section [£.2.3] In addition, we also
prove that the simply typed combinatory logic with equality is sound and
complete with respect to the proposed semantics.

4.4.1 Soundness of LCL

This subsection presents the first result, soundness of the axiomatization of
LCL. We prove that if a formula is a deductive consequence of a set of
formulas, then it is also a semantical consequence of that set.

Theorem 4.24 (Soundness of LCL). If T+ «, then T | a.

Proof. We show that each instance of an axiom scheme is satisfied by any
model and that the inference rule Modus Ponens preserves satisfiability.

By Definition we have that s € Al (T=P)=(e=1)=(@=0)) for every
o,T,p € Types_, and every model M,, and by Definition we have that
[S], = s. Hence, it follows that [S], € Alc=(T=P)={e=7]={0=0)) and that
every instance of axiom scheme (1) is satisfied in every LCL-model M,,.

Similarly, since k € A°~(7>9) for every 0,7 € Types_, by Definition m
and [K], = k by Definition we conclude that [K], € A7) for every
0,7 € Types_,. This implies that every instance of axiom scheme (2) is satisfied
in every model.

By similar reasoning, we obtain that every instance of axiom scheme (3)
is satisfied in every model. From i € A°~? (Definition and [I], = @
(Definition [£.17)), it follows that [I], € A7,

The satisfiability of propositional connectives is defined as usual, that is
an implication « = f is not satisfied by a model if and only if « is satisfied
and [ is not satisfied by the model. If we suppose that there exists a model
M, such that an instance of (4), (M : 0 — 7) = ((N : 0) = (MN : 7)), is
not satisfied by a model M,. Then M, =M : 0 — 7, M, = N : 0 and
M, = MN : 7. We have that M, = M : 0 — 7 implies [M], € A7, and
M, = N : o implies [N], € A?. Further, we obtain [MN], = [M], - [N], €
A" by Definition [£.14] and Definition .17} This contradicts the assumption
M, = MN : 7, so we conclude that every instance of (4) is satisfied by any
LC L-model.

Next, we consider an instance of axiom scheme (5), M : ¢ = N : o, where
M = N is provable in £Q". If a model M, satisfies M : o, ie. M, =M : 0,
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then we have [M], € A? by Definition m Since M = N is provable in
£Q", we know that [M], = [N], by Theorem It directly follows that
[N], € A%. Hence, an instance of axiom scheme (5) is satisfied by any LCL-
model.

Every instance of axiom scheme (6), o = (8 = «), is satisfied by any
LC L-model, otherwise we would have that o and 3 are satisfied by the model
and « is not satisfied, which leads to a contradiction.

The satisfiability of an instance of axiom scheme (7) follows by the propo-
sitional reasoning. Let M, be a model such that

(1) My, Ea=(B=1),
(2) M, Ea =8,
(3) M, = a.

Then (2) and (3) imply M, = 5. Further, (1), (3) and M, = 3 imply
M, = v. Hence, every instance of axiom scheme (7) is satisfied by any LCL-
model.

Now, we prove that every instance of axiom scheme (8) is satisfied by any
model. If we assume that there exists a model M, such that an instance of
(8), (= —=f) = ((—a = B) = «), is not satisfied by M, then we have

(1) My E~a= -8,
(2) M, = —a= 3,
(3) M, [~ a.

From (3), it follows that M, = —a. Further, (1) and M, = -« imply
M, |= —f. Similarly, (2) and M, = —~« imply M, = 3. However, the latter
contradicts M, = ~3. We conclude that the assumption is not true, so every
instance of axiom scheme (8) is satisfied by any LC L-model.

Finally, we prove that the inference rule Modus Ponens preserves satisfia-
bility. By Definition we have that M, = 3, whenever M, = o = 3 and
M, = a. This concludes the proof. O

4.4.2 Strong completeness of LCL

In this subsection, we prove the strong completeness of the logic of combinatory
logic, which is the converse of Theorem [£.36]

When logical system is given with two different presentations, e.g. se-
mantics (model theory) and axiomatization (proof theory), we can study two
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kinds of completeness results: (weak) completeness and strong completeness.
The logical system is complete, i.e. weakly complete, if the following holds:

If = ¢ then F . (4.10)

In other words, completeness means that if a formula is true in every model
of the logic, then it is provable in the logic. On the other hand, the logic is
strongly complete if the following holds:

If T ¢ then T F . (4.11)

where T is a set of formulas. Therefore, the strong completeness means that
if a formula is a semantical consequence of a set of formulas, then it is also
a deductive consequence of that set. The completeness only addresses the
special case of strong completeness when the set of premises is empty. Thus,
strong completeness implies completeness.

We adapt the Henkin-style completeness method, developed for the proof
of completeness of modal logic. The proof of strong completeness comprises
the following steps:

e the proof of Deduction theorem given in Section [.2.2]

e the proof that every consistent set of LC'L-formulas can be extended to
a maximal consistent set,

the construction of a canonical model using the maximal consistent set,

the proof that the canonical model is LC' L-model,

the proof that every consistent set is satisfiable,
e the proof of strong completeness of LCL.

First, an auxiliary result, which describes the property of a consistent set,
is given and a notion of a maximal consistent set is introduced.

Lemma 4.25. Let T be a consistent set of formulas. For any formula «,
either T U {a} is consistent, or T U {—«} is consistent.

Proof. Assume the opposite, i.e. that there exists a consistent set 7" and a
formula « such that both T'U {a} and T'U {—a} are inconsistent. It follows
that T, + L and T,—-«a + L. By Theorem [£13] we get T - o = L and
ThF-a= 1. Now, TFa= 1 isequivalent to T'+ —a, and T F —a = L is
equivalent to T+ «. However, T =« and T F « contradict the assumption
that T is a consistent set, so TU{«a} and TU{—a} cannot be both inconsistent.

O
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Definition 4.26. Let T be a set of formulas. T is a mazximal consistent set
if it is consistent and for any formula «, either a« € T or ~a € T.

A key point in proving the strong completeness of the logic of combinatory
logic is the proof that every consistent set can be extended to a maximal
consistent set.

Theorem 4.27 (Lindenbaum’s theorem). FEvery consistent set of
LCL-formulas can be extended to a maximal consistent set.

Proof. Let T be a consistent set. We construct a set 7, which is a maximal
consistent set and includes the set T, i.e. T C T*. We let ag,a;,... be an
enumeration of all LC L-formulas. The sequence of sets 7;, ¢ = 0,1,... and
the set T™ are defined as follows:

(1) To =T,
(2) for every i >0

(a) if T; U{a;} is consistent, then T; 1 = T; U {a; }, otherwise
(b) Tiyr = T; U {—ay},

(3) T* = D T;.
=0

We may notice from the definition of set 7* that 7' C T*. We show that T
is a maximal consistent set. From the definition of the set T™*, it follows that it
is maximal, so it remains to prove it is consistent. In order to do so, we prove
that it is deductively closed set, which does not contain all formulas. From
the definition of the set T it follows that it does not contains all formulas.
Further, every set T;, i € {0,1,2,...}, is consistent by its definition.

We prove that the set T* is deductively closed, i.e. that for every formula
o such that T* F ¢, it holds that a € T*. For o« = «; and the set T} such
that T; = a we have a € T™, due to the consistency of the set T ax(ijy41- If
T* I «, then there is a sequence of formulas «g, o, ..., a, that is a proof of
« from T™. The sequence «q, o, ..., ay, is finite, so there is a set T; such that
T; F a. It follows that o € T*, thus T™ is deductively closed.

O

Remark 4.28. We may notice that if T* is a maximal consistent set which

contains the set T, defined as in the proof of Theorem[{.27, and T \ «, then
a € T*. This is the consequence of the fact that T* is deductively closed.
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Using the maximal consistent set 7, we construct a canonical applicative
structure. Providing a canonical applicative structure with an environment
results in a canonical model. The canonical model is defined in the way that
it satisfies exactly the formulas from the maximal consistent set.

Definition 4.29. Let T™* be a maximal consistent set. A canonical applicative
structure is a tuple My« = (D,{A%},,-, s, k, %) where

o D={[M]|MeCL},

{A%} s = {A%}oeTypes_, 15 a family of sets indexed by o such that

A ={[M]| M eCL and M : 0 € T*},

.59,
o k= (K],
o i =1l

Lemma 4.30. A canonical applicative structure M« is an applicative struc-
ture for LC'L.

Proof. We show that the tuple Mp+ given in Definition satisfies the con-
ditions of Definition [£.14]

The set D = {[M] | M € CL} is a nonempty set. For every type o, we
have

A" ={[M]|M € CLand M :0eT*} C{[M]| M e CL}=D.

We may notice that the set A7 is well-defined. If M = N is provable in
EQ" then M : 0 = N : ¢ is an instance of axiom scheme and as a consequence
M :0 = N:oe&T*. Since T™ is deductively closed, we have that for terms
M, N such that M = N is provable in £Q", M : ¢ € T* if and only if
N : 0 € T*. This implies that if [M] € A? and N € [M], then [N] € A7, that
is A7 is well-defined.

The operation - given by [M]-[N] = [M N] is a binary operation on D. Its
extensionality follows from the extensionality of the equational theory £Q" by
the same reasoning as in the proof of Theorem [£.23] where the domain and
the operation are defined the same as here.

Let [M] € A°~7 and [N] € A for some 0,7 € Types_,. By Definition
we have that [M] € A7 is equivalent to M : ¢ — 7 € T* and [N] € A°
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is equivalent to N : ¢ € T*. The set T is deductively closed, so we get
MN : 7 € T*, which implies [M N] € A”. We have shown that the codomain
of the restriction of function - to the set A°~7 x A% is A".

Next, we prove that elements s, k, ¢ belong to the respective subsets of the
domain and satisfy equations given in Definition We have already proved
that the elements s = [S], k = [K] and 4 = [|] satisfy equations [4.5] [£.7]and [4.9]
respectively, in the proof of Theorem [£.23 Since
S:(c—=(tr—=p) = (0 = 7)— (6 = p)) is an instance of axiom scheme
(1), we have S : (6 — (1 — p)) = ((¢ = 7) = (0 — p)) € T*. Thus,
s = [§] € Ale={r=p)=((e=m)=(0=0)),

Similarly, we have that K : ¢ — (7 — o) is an instance of axiom scheme
(2) for every o,7 € Types_,, hence K: 0 — (7 — o) € T*. We conclude that
k= [K] € A=) for every o, T € Types._,.

For every o € Types_,, | : 0 — o is an instance of axiom scheme (3), so it
belongs to the set T* and we have that i = [I] € A7 for every o € Types_,,

This concludes the proof that M« is an applicative structure for LCL.

O

Definition 4.31. A canonical model is a tuple My« o = (Mrps, p*), where
M« is a canonical applicative structure and p* is the environment defined by
p*(x) = [].

As we have already discussed in the proof of Theorem [£.23] if an environ-
ment p* is defined by p*(x) = [z] on the domain D = {[M] | M € CL}, then
the interpretation of every term M is given by [M],~ = [M].

The main property of a canonical model My« ,« is that it satisfies exactly
the formulas from T*.

Lemma 4.32. Let My« ,~ be a canonical model and « a formula. Then
Mo o = if and only if o € T,

Proof. The proof is by induction on the structure of the formula a.
In the case when « is a statement M : o, we have

M p =M : o if and only if [M],- € A7
if and only if [M] e A°
if and only if M :0 € T*.
If formula « is a conjunction g A vy, then
My po = B A7y if and only if Myps o = and My« =7y
ifand only if € T* and v € T*
if and only if BA~vy e T*.
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Finally, assume « is a negation —3. Then

Mrs o = B if and only if Mrps ,« B 8
if and only if 3 ¢ T*
if and only if -8 € T*.

Now, we are ready to prove that every consistent set is satisfiable.
Theorem 4.33. Every consistent set is satisfiable.

Proof. Assume that T is a consistent set. The set T' can be extended to a
maximal consistent set 7% by Theorem We consider the canonical model
M+ . By Lemma @ we have that My ,« satisfies all formulas from set
T*. Consequently, Mr+ ,« |= T, since T C T*. Thus, Mz« ,» is a model of
the set T O

Theorem 4.34 (Strong completeness of LCL). If T = «, then T + «.

Proof. Assume that T = «. Then the set T'U {—a} is not satisfiable and
as a consequence it is not consistent, by Theorem The latter implies
TU{-a}F L, and by Theorem and the propositional reasoning it follows
that T - «a. O

Corollary 4.35. T+« if and only if T E « .

4.5 Soundness and completeness of the simply
typed combinatory logic

As a consequence of the soundness and strong completeness of the logic of com-
binatory logic, we have that the simply typed combinatory logic is sound and
complete with respect to the proposed semantics. The soundness of the simply
typed combinatory logic, presented in Section is a direct consequence of

Proposition and Theorem
Theorem 4.36 (Soundness of CL.,). IfT'kFop M : 0, thenTEM :0 .

Proof. Let T F¢p, M : 0. By Proposition [4.11] there exists a proof for M : o
from ' in LCL,i.e. T M : 0. Then we obtain I' = M : o by Theorem
O
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If we consider the type assignment system given in Figure [£.2] then the
converse of Theorem [£.36] does not hold. As a counterexample, we take state-
ments ¢ : o and Kzy : 0. In the equational theory £Q" we can prove the
equation Kzy = x. Thus, by Theorem we have that the terms Kzy and
x have equal interpretations in every LCL-model, i.e. [Kzy], = [z],. In
other words, whenever a model satisfies = : o, then it also satisfies Kzy : o,
ie. z:0 | Koy : 0. If the simple type assignment system, given in Fig-
ure 4.2) was complete, then we would conclude x : ¢ o, Kxy : 0. However,
x: 0 ko Kry : 0 can not be derived in CL_,.

In order to obtain a type assignment system that is sound and complete,
we have to extend the system given in Figure [£:2] by the following rule

Ilbo=M:o M = N is provable in £Q" (eq)
TFo- N o d

The rule (eq) guarantees that equal terms inhabit the same types. The type
assignment system obtained by adding the rule (eq) to the type assignment
system in Figure [£.2]is denoted by C'LZ,. The derivability in C'LZ, is denoted
by Fcr=- The typing rule (eq) corresponds to the axiom scheme (5) in the
axiomatization of LCL. We may notice that Proposition £.11] holds also for
the system CL=,, that isif ' o= M : 0, then ' M : o (in LCL). The type
assignment system C'LZ, is sound and complete with respect to the semantics

proposed in Section
Theorem 4.37 (Soundness of CLS). If T'Fgp= M 0, thenT = M : 0.

Proof. The proof is a direct consequence of Theorem (.24 and Proposition
and proceeds by similar reasoning as the proof of Theorem [4.36] O

The converse of Theorem .37 also holds. We follow the approach used in
Chapter [3| and for a basis I' we define a model M' such that M' = M : o if
and only if I' o= M : 0.

Definition 4.38. Let I be a basis. We define a tuple M as follows.
M" =(D,{A%},,-, s, k,i)
where
e D={[M]|MeCL},
o {A%}, = {A%}seTypes_, 18 a family of sets indexed by o such that

AU:{[M]|M€CL and I' ko= M:O’},
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.59,
e k=[K],
o =]l

Lemma 4.39. Let ' be a basis. The tuple M introduced in Deﬁnition
is an applicative structure for LC'L.

Proof. Similarly as in the proof of Theorem [.23] we prove that the tuple
MY =(D,{A%},,-,s,k,1) satisfies the conditions of Definition By Def-
inition [4.38] we have that the set D is nonempty and for every o € Types_,,

A ={[M]|MeCLandTTk¢cr=M :0} C{[M]| M e CL} =D.

The operation - is a binary, extensional operation on the set D. The exten-
sionality of - follows from the extensionality of the equational theory £Q" and
it has been shown in the proof of Theorem [£:23] By the similar reasoning as
in the proof of Theorem [4.23] we obtain that the codomain of the restriction
of function - to the set A°~7 x A% is A”. Let [M] € A°~" and [N] € A7. It
follows that I' Fa,= M : 0 — 7 and I’ ko= N : o by Definition So, we
derive I' o= M N : 7 by the rule (— elim). The latter implies [M N] € A™.

It remains to show that elements s, k,z belong to the respective subsets
of the set D, i.e. that they satisfy the conditions 4] .6 and [£.8] and the
equations and respectively. By the rules in Figure we have
F'ktar=S:(c = (p—=17) = ((c = p) = (6 = 1)), for all o,p,7 €
Types_,. So, we can conclude s = [S] € A= (=)= ((e=p)=(0=7) for every
o,p,7 € Types_,, i.e. element s satisfies the condition @ The proof that
elements k and ¢ satisfy conditions and respectively, follows by similar
reasoning. O

We use the applicative structure M" to define a model M. that satisfies
only typing statements derivable from I' in the system CLZ,.

Lemma 4.40. Let MY = (D,{A%},,-,s,k,i) be an applicative structure
given in Definition [{.58 and p* an environment defined by p*(x) = [z]. Then
Mg* EM:oif and only if T Feor= M : 0.

Proof. As it was discussed in the proof of Theorem [4.23] if the domain is
D = {[M] | M € CL} and an environment is defined by p*(z) = [z], then
[M],+ = [M] for every term M. It follows that
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ML, = M : o if and only if [M],. € A%
if and only if [M] € {[N]| N € CLand T tF¢r= N : o}
if and only if I' o= M : 0.

O

Finally, we are ready to prove that the type assignment system CLZ is
complete with respect to the semantics introduced in Section

Theorem 4.41 (Completeness of CLT,). Let T be a basis. If ' = M : o, then
r FCL: M:o.

Proof. Let T be a basis such that I' = M : 0. We consider the model Mg*
given in Definition which is a model of I" by Lemma ie. MJ. =T.
From ML, =T and ' | M : o, we obtain M. |= M : 0. Then we get
I'tcr= M : o by Lemma [:40] . O

We end this section with the proof that the logic of combinatory logic is a
conservative extension of the simply typed combinatory logic. Proposition [{.11]
has shown that the logic of combinatory logic is an extension of the simply
typed combinatory logic, and we prove that this extension is conservative if
we consider the simply typed combinatory logic with equality .

Theorem 4.42. Let I be a basis. If ' M : 0, then T o= M : 0.

Proof. Assume T is a basis such that I' = M : 0. By Theorem [4.34] we have
that I' = M : 0. Then by Theorem |4.41] we obtain I' Feyp,= M : 0. O

4.6 Concluding remarks

In this chapter, the classical propositional extension of the simply typed com-
binatory logic, called the logic of combinatory logic LC'L, is presented. The
logic LCL is introduced in [95] [97].

The logic of combinatory logic is presented through its syntax, axiomati-
zation and semantics. The language of the logic LC'L is defined as the set of
all typed terms closed under the classical propositional connectives. The logic
LCL can be explained in two ways:

e LCL is the simply typed combinatory logic extended with the classical
propositional connectives, and corresponding axioms and rules.
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e LCL is obtained from classical the propositional logic by replacing propo-
sitional primitives with typed statements M : o, where M is a C'L-term
and o is a simple type.

The axiomatization of the logic LCL is obtained from the axiomatization of
the classical propositional logic and the type assignment system for the simply
typed combinatory logic. The semantics of LC'L is an applicative structure
provided with a valuation of term variables.

First, the soundness and completeness of the equational theory of untyped
combinatory logic is proved. The soundness of the equational theory ensures
that equal terms have the same interpretation in every model, whereas the
completeness guarantees that if two terms have the same interpretation in
every model, then they are equal. As the main results, we have proved the
soundness and strong completeness of the axiomatization of LC'L with respect
to the proposed semantics. In the proof of strong completeness, we have
adapted the Henkin-style completeness method, which is developed for the
completeness proof of modal logic and became the standard way to prove
completeness.

In addition, the proposed semantics of LC'L has proven to be a semantics
of the simply typed combinatory logic with equality. More precisely, if we
consider the simply typed combinatory logic that includes the typing rule
which ensures that equal terms inhabit the same type, then it is sound and
complete with respect to the proposed semantics.

We end the chapter with several topics for further work.

e The motivation for the study of the propositional extension of the simply
typed combinatory logic is the development of a framework for proba-
bilistic reasoning about typed terms. So, the next step is the development
of the probabilistic extension of LC'L and this is the topic of the next
chapter.

e The combinatory logic and A-calculus are equivalent theories, so a nat-
ural question arises: Can the same approach be used to develop the
propositional extension of the simply typed A-calculus?

e Herein, we considered the propositional extension of typed calculus. It
would be interesting to enrich the language and to study first-order ex-
tensions of simply typed calculi. This would be a step forward towards
the formalization of the metalogic for simply typed theories.

o We have studied simple types, but various type systems have been devel-
oped for both the combinatory logic and A-calculus such as intersection
types, polymorphic types, higher-order types, etc. So, the extensions of
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different type systems with appropriate logics in order to enable formal
reasoning about these type systems is another interesting topic for the
future work.
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Chapter 5

Probabilistic reasoning in
type theory

In this chapter, we introduce the logic PCL, which is a probabilistic extension
of the logic of combinatory logic introduced in Chapter [4]

The motivation for developing a new formal model for reasoning about
typed terms is the fact that reasoning with uncertainty has gained an im-
portant role in various fields of computer science, artificial intelligence and
cognitive science, while it is underdeveloped in typed calculi.

Different approaches that deal with introducing non-determinism and prob-
abilities into the typed calculi have been investigated, e.g. [4], 22, B35l [36] 45|
47, 55, 99]. However, the goal of these papers was to formalize computation
in the presence of uncertainty and not to provide a framework that enables
probabilistic reasoning about typed terms. Our goal is to introduce the logic
in which we can express the following sentence:

The probability that a term M inhabits a type o is at least s.

We develop our formal model along the lines of the method used for the
logic LPP; ([128],[132]), a probabilistic extension of the classical propositional
logic. The logic LP P, enriches the classical propositional logic with probability
operators of the form P>, with the intended meaning “the probability is at
least s”. The iterations of the probability operators, e.g. P>,P>s, are not
allowed in the logic LPP,, therefore the logic LPP, cannot express higher-
order probabilities, i.e. it cannot express the following: “the probability that
the event has the probability s is r.”

The idea of formalization of probabilistic reasoning about typed terms has
been presented in [63H66], 92] 96]. In [64], we have introduced a formal model
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for reasoning about probabilities of simply typed lambda terms, whereas in [66]
a probabilistic extension of the A-calculus with intersection types has been
introduced. These models are based on well-known models for A-calculus:
term models for the simply typed A-calculus ([77]) and filter models for A-
calculus with intersection types ([7]). However, these models are not suitable
for propositional reasoning about typed terms. In order to achieve the strong
completeness of the probabilistic extension of typed calculus, we first need to
obtain the strong completeness of the propositional extension of the calculus.
We could not achieve these results with respect to the existing models for -
calculus and combinatory logic. For this reason, we have developed the logic
of combinatory logic (LCL), which has been proven to be sound and complete
with respect to the proposed semantics in Chapter [

In thus chapter, we propose a probabilistic extension of LCL as a logical
framework for reasoning about typed terms.

Contribution of the chapter

e We introduce the logic PC'L, which is a probabilistic extension of the
logic of combinatory logic introduced in Chapter [

e We propose a semantics of the logic PC'L based on the possible world
approach.

e We prove that the logic PC'L is not compact and an infinitary axioma-
tization is given.

e We prove that the given axiomatization of PC'L is sound and complete
with respect to the proposed semantics.

Overview of the chapter Section[5.1]recalls the logic LPP,. In Section[5.2]
the syntax of the logic PC'L is introduced. The semantics and axiomatization
of the logic PCL are given in Sections [5.3] and respectively. Section [5.5
presents the main results about the logic PCL: soundness and strong com-

pleteness. Finally, some concluding remarks and future work are given in
Section 5.6

5.1 The logic LPP,

In this section, we present the probability logic LP P, introduced in [128] by
Ognjanovié. The syntax, semantics and axiomatization of LPP, are given,
followed by the main results about LPP,, namely the soundness and strong
completeness of the given axiomatization with respect to the given semantics.
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5.1.1 Syntax LPP,

The logic LPP, is a logic for formal reasoning about probabilities of formulas.
It is a probabilistic extension of the classical propositional logic and the lan-
guage of the LPP; logic is obtained by extending the language of the classical
propositional logic with probability operators.

Let S be the set of rational numbers from the real unit interval [0, 1], i.e.
S =Qn0,1]. The alphabet of the LPP; consists of:

e the countable set of propositional letters (primitive propositions)
P= {paq7"'7p17"'}a

e classical propositional connectives = and A,

e the list of probability operators P>, where s € S.

In the logic LPP,, a probability operator can only be applied to a classical
propositional formula, thus the language of LPP, is defined as the union of
two sets of formulas: classical propositional formulas and probabilistic formu-
las. The set of the classical propositional formulas is defined by the following
grammar:

‘a:::p|oz/\a\—|a‘ (5.1)

The set Forc denotes the set of all classical propositional formulas and is
ranged over by o, 3,...,a1,.. ..

Definition 5.1. Let s € S and o € Forc. The formula
PZSOé
is called a basic probabilistic formula.

The set of all probabilistic formulas, denoted by Forp, is the smallest set
that contains all basic probabilistic formulas and is closed under the classical
propositional connectives — and A.

The probabilistic formulas are generated by the grammar:

pi=Pssa|pAp|-p| (5.2)

Let ¢, 1, ...,p1,...range over Forp. The intended meaning of the formula
Ps; is “the probability of « is at least s”.
The set of all LP P, formulas is

Forypp, = Forc U Forp.
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Let A, B, ... range over Forypp,. Other classical propositional connectives
V,= and <, both for classical propositional formulas and probabilistic for-
mulas, are defined as usual:

AV B stands for =(-=A A —B)
A = B stands for AV B
A < B stands for (A = B) A (B = A)

The following abbreviations are used to introduce other probability opera-
tors:

P_sa stands for - P>«
P< o stands for P>q1_s—a

P ;o stands for - P< o

P_sa stands for P> a A —Ps o

The logic LP P, allows neither mixing of the classical propositional formulas
and the probabilistic formulas nor nested probability operators. For example,
the following formulas are not well-defined formulas in LP Py:

. (p A _'Q> A PZ%(_‘r)a

° PoiPoi(pA—q).

Thus, in the logic LP P, it is not possible to express higher order probabil-
ities.
5.1.2 Semantics of LPP,

The semantics of LPP, is based on the possible world approach, where a set
of possible worlds is equipped with a finitely additive probability measure.

Definition 5.2 ([105]). A collection X of subsets of a non-empty set Q is
called an algebra of subsets of Q1 if it has the following three properties.

1. Qe X.

2. For ACQ, if Ae X, then Q\ A e X.
3. FOT‘Al,AQ,...7An QQ, ifAhAg,...,AnEX, then U Ai € X.
i=1

Definition 5.3 ([105]). Let X be an algebra of subsets of Q. A function
p: X —[0,1] is called a finitely additive probability measure if
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o u(Q) =1,
o forany Y1,Yo € X, if YiNYy =10, then
(Y1 UY2) = pu(Yr) + p(Ya).

Definition 5.4 ([128]). An LPPy-model is a structure M = (W, H,u,v)
where:

o W is a nonempty set of objects called worlds,
e H is an algebra of subsets of W,
e 1 is a finitely additive probability measure, p: H — [0,1], and

e v: W x P — {true, false} provides a two-valued valuation of primitive
propositions, for each world w € W.

The valuation of primitive propositions interprets each primitive proposi-
tion as true or false in every possible world. In order to provide interpretation
for all classical propositional formulas in world w, the valuation v(w, ) is ex-
tended to all classical propositional formulas as usual.

Definition 5.5. Let M = (W, H, pu,v) be an LPPy-model and w € W a
possible world in M.

1. The interpretation of a classical propositional formula o in world w,
denoted by I,(w, ), is defined as follows:

o Iy(w,p) = v(w,p),

o I,(w,a A B) = true if and only if I,(w,a) = I,(w,B) = true,
otherwise I,(w,a A 8) = false,

o I,(w,~a) = true if and only if I,(w,a) = false, otherwise
I,(w, ~«a) = false.

2. [a)m is the set of all worlds of model M in which o is true, i.e.

[a]pm ={w | we W and I,(w, ) = true}.

For a formula o and a world w, if I, (w, ) = true, then we write w E a,
otherwise we write w [~ a. If M is clear from the context, then the subscript
M from [a]am can be omitted.

In contrast to the classical propositional formulas, which are interpreted as
true or false in a possible world, probabilistic formulas are interpreted as true
or false in a model by introducing the satisfiability relation. The satisfiability
relation is defined for the measurable L P P;-models.
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Definition 5.6 ([128]). An LPPs-model M = (W, H, j1,v) is measurable if
[a]pm € H for every formula o € Fore. The class of all measurable LPPs-
models is denoted by LPP5 Meas-

The following example illustrates the notion of a measurable L P P,-model.

Example 5.7. Let us consider the primitive propositions p, q,r and the struc-
ture M = (W, H, u,v) such that

o W= {w17w27w3}a

o H="P(W), where P(W) is the power set of W,

o p0) = 0, plwn) = 2, wlws) = 3, plws) = 2, plfwrwn) = 2,
p({w, w3}) = g p({wa, ws}) = %, w(W) =1,
o v(wi,p) = v(wi,q) = v(wy,r) = true, v(wa,q) = v(we,r) = true,

v(we,p) = false, v(ws,p) = v(ws,q) = false and v(ws,r) = true.

The structure M is an LPPs-model. Indeed, W is a non-empty set and
H is an algebra of subsets of W. The function p: P(W) — [0,1] is a finitely
additive probability measure since it assigns 0 to the empty set, 1 to the entire
space W and it is finitely additive, i.e. for every E1, Fs, ... E, C W such that
if i # j, then E; N E; = 0, it holds that p(Ey U E; U ... U E,) = u(Ey) +
w(E2) + ...+ u(Ey,). Moreover, since the function p is defined for all subsets
of W, for every a € Forc the set [a|a is measurable, i.e. [y € H. Thus,
the model M is an LP P5 \eas-model.

Definition 5.8 ([128]). The satisfiability relation |=C LP P meas X Forppp, is
defined in the following way:

e M E « if and only if for every w € W, v(w, &) = true.
o M = Psqa if and only if u([a]) > s.

o M E —y if and only if it is not the case that M = ¢.
e M E=pAY if and only if M = ¢ and M | .

If M E A, then we say M is a model of formula A. Directly from Defi-
nition [5.5| and Definition [5.8] it follows that every valid classical propositional
formula is true in every LP P>-model.

The notions of satisfiable and valid formulas, satisfiable set of formulas and
semantical consequence are given in the following definition.
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Definition 5.9. Let A € Forppp, be a formula and let T C Forppp,.
o A is satisfiable if there is a LP P2 meas-model M such that M = A.

o A set of formulas T is satisfiable if there is a LP P5 pmeas-model M such
that M = A for every A€ T.

o A is valid if for every LP Py meas-model M, M = A holds.

o A is a semantical consequence of the set T, denoted by T |= A, if it holds
that A is satisfied in a model M (denoted by M = A) whenever T is
satisfied in that model (denoted by M =T ).

The satisfiability of a formula in a model is illustrated in the following
example.

Example 5.10. Let us consider the model M given in[5.3. From the definition
of the valuation v in M and Definition[5.5] it follows that

® W1 Izp\/r, w2 ':p\/’r} w3 Izp\/r,
e wi Eq=p, we fEq=p and ws E q=p.

So, we conclude M = pVr. Thus, M |= Ps1(pV r). On the other
hand, the formula q = p is not true in the world ws, hence it holds that
M B q = p. Since [q = plpm = {wi, w3} and p({w,ws}) = 2, we have that
M = P_s(q = p). From [-plp = {wz, w3} and p({ws, ws}) = 2, we derive
M P<%(_‘p)-

Classical propositional formulas in the logic LPP, do not behave in the
usual way. In the classical propositional logic, if @ V S is true in some model,
then either a or S is true in the model. However, this is not the case in the logic
LPP;. Also, in the logic LP P, it is possible to have M £ « and M £ —a.
We illustrate this in the following example.

Example 5.11. Let us consider the model M = (W, H, u,v) where:
o W = {wy,ws, w3},
e H=PW),
o u(@) =0, p(wr) = p(ws) = p(ws) = 3, p({wi, wa}) = p({wi, ws}) =
p({wa, ws}) = %, p(W) =1,
e v(wy,p) = v(wy,p) = true and v(wsz,p) = false.

Since wy = —p, we have that M W= —p. Similarly, from w3 = p, it follows
that M £ p. However, pV —p is true in every world w;, i € {1,2,3},
thus M = pV —p.
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The logic LPP; is not compact. We do not discuss non-compactness of the
logic LPP,, since we prove non-compactness of the logic PCL in Section [5.3]
It follows by the similar reasoning as the non-compactness of the logic LPPs.

5.1.3 Axiomatization of LPP,

The axiomatic system of L PP consists of six axiom schemes and three infer-
ence rules given in Figure

(1) all instances of the classical propositional tautologies (atoms are any
L P Py-formulas)

(2) Pxoa

(3) P<;a= Posa, s>

(4) Pcsa = P<sar

(5) (P>ra A P>y A Psi(maV =8)) = Peminf1,r4s3(@V 5)

(6) (P<ya A PcyfB) = Pepys(aVp), r+s<1

A  A=B R2) O (= Ps_r1a|k>1}
(R1) 7 (R2) P.ia (R3) w;&sa

F1GURE 5.1: The axiomatic system of LPP;

Axiom scheme (1) and inference rule (R1) ensure that the classical propo-
sitional logic is a sublogic of LPP,. Axiom schemes (2) — (6) deal with prob-
abilistic part of LPP,. The measure of a set of worlds that satisfy a classical
propositional formula is at least 0 by the axiom scheme (2). The monotonicity
of measures is ensured by the axiom schemes (3) and (4). Axiom schemes (5)
and (6) correspond to the additivity of measures.

Inference rule (R1) is Modus Ponens. The rule (R2) can be considered
as the rule of necessitation in modal logics. The iterations of probability
operators are not allowed in LPP,, so the rule (R2) can be applied only to
classical propositional formulas. The third rule is an infinitary rule with the
countable set of assumptions and one conclusion. Intuitively, the rule (R3)
guarantees that if the probability is arbitrary close to s, then it is at least s.

The presented axiomatization of L PP, is not minimal, in the sense that the
set of axioms can be reduced. The first axiom scheme comprises all tautologies
of classical propositional logic, however instead of including all tautologies
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we could include just three axiom schemes from the axiomatic system of the
classical propositional logic, as it was done in Chapter [d] Then all tautologies
of the classical propositional logic are derivable from the axiom schemes using
the first inference rule.

The proof is defined similarly as in Chapter @] The only difference is that
it can be a countable sequence of formulas, whereas in Chapter [ it is a finite
sequence. This is due to the infinitary rule in the axiomatization of LPP;.

Definition 5.12. A formula ¢ is deducible from a set T of formulas (denoted
by T Frpp, @) if there is a sequence @y, ..., on (n is a finite or countable
ordinal) of Forypp,-formulas, such that

* on =1y, and

o every p; , i <mn, is an ariom-instance, or p; € T, or ¢; is derived by an
inference rule applied to some previous members of the sequence.

A proof for ¢ from T is the corresponding sequence of formulas.

The definition of a consistent set of LP P,-formulas is again similar to the
definition of a consistent set of LC'L-formulas in Chapter [4]

Definition 5.13. A set T of formulas is consistent if there is at least a formula
from Forc and at least a formula from Forp that are not deducible from T,
otherwise T is inconsistent.

Recall that in the definition of a consistent set of LCL-formulas, it is
required that there is at least one LCL-formula not derivable from the set.
However, in the case of a consistent set of L P P,-formulas it is not enough to
have at least one LP P>-formula not derivable from the set. There have to be
at least one formula from the set Forc and at least one formula from the set
Forp that are not derivable from the set, because Forc and Forp are disjoint.

5.1.4 Soundness and strong completeness of LPP,

The main results about the logic LP P, presented in [128] are soundness and
strong completeness of the given axiomatization with respect to the proposed
semantics. We state these theorems without their proof, which can be found
in [128, [132].

Theorem 5.14 (Soundness of LPP,). The aziomatic system of LP Py is sound
with respect to the class of LP Py meas-models.

Theorem 5.15 (Strong completeness of LPP,). Every consistent set of LPPs-
formulas T' is LP Ps veas-satisfiable.
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The proof of the strong completeness of LP P, is obtained by adapting the
Henkin-style completeness method, as in the proof of the strong completeness
of LCL in Chapter [} The main steps in the proof are as follows:

e the proof of Deduction theorem,

e the proof that a consistent set of formulas can be extended to a maximal
consistent set,

e the construction of a canonical model,
e the proof that a canonical model is an LP P,-model,
e the proof that every consistent set is satisfiable,

e the proof of strong completeness.

5.2 Syntax PCL

In this section, the language of PCL is introduced. As it is discussed, PCL
is a probabilistic extension of the logic of combinatory logic LC'L introduced
in Chapter [dl The alphabet of PCL comprises the alphabet of LC'L and the
alphabet of probability logic. So, it consists of:

e the alphabet of the simply typed combinatory logic, that is all symbols
needed to define simply typed C'L-terms, given in Section .1}

e the classical propositional connectives =, A and =,
e the list of probability operators P, for every s € S = [0,1] N Q.

Similarly to the language of LPP,, the language of PCL is layered into
two sets of formulas: basic formulas and probabilistic formulas.

Basic formulas are LC'L formulas introduced in Section Let us recall,
the LC L-formulas are generated by the following grammar

CVIZMZO'|—\OZ|O[:>CV‘ (5.3)

where M : 0 € CL_,. Herein, the set of LC L-formulas (i.e. basic formulas) is
denoted by Forg.

Probabilistic formulas are obtained by applying the probability operator
to LCL-formulas. For s € S and an LCL-formula «, the formula P> o is
called a basic probabilistic formula. The set of all probabilistic formulas is
the set of basic probabilistic formulas closed under the classical propositional
connectives - and A, i.e
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pu=PraloNg| w\ (5.4)

Forp denotes the set of all probabilistic formulas and ¢,, ..., @1, ... range
over Forp.
The language of PC'L is the union of basic and probabilistic formulas.

Forpcr, = Forg U Forp

The set of all PC L-formulas is denoted by Forpcop and is ranged over by
A B,C,...

The same abbreviations as in Section [5.1| are used to introduce other prob-
ability operators (e.g. P<s, Pss, P<s and P—g).

In the definition of LC L-formulas only two classical propositional connec-
tives are used, namely negation and implication, whereas in the definition
of probabilistic formulas only negation and conjunction are used. Neverthe-
less, other classical propositional connectives are defined as usual (see Section
. Both a A = and ¢ A = are denoted by L. The logic PCL is based
on the probability logic LPP,, so mixing of basic formulas and probabilistic
formulas, and nested probability operators are not allowed. For example, the
following formulas are not well-defined formulas in PCL:

o (I:J)/\PZ%(Z’:J%T),

o PoiPi(zio—T)

5.3 Semantics of PCL

In this section, the semantics of PCL is introduced. Following the approach
used for the logic LP P,, the semantics of the logic PCL is based on the possible
world approach, where the set of possible worlds is equipped with a finitely
additive probability measure.

Definition 5.16. A PCL-model is a structure

M= (W, {Dw}’ {A;}’ {'UI}> {SW}a {kw}’ {iw}v H, p, p)
where:
o W is a non-empty set of objects, called possible worlds,

e {Dy} = {Dytwew is a family of sets indexed by worlds, where the set
D,, is referred to as the domain of the world w,



132
o {A9} = {Af Yuew,ocTypes, 5 a family of sets indexed by types o and
worlds w such that A, C D,, for allw € W and o € Types_, .

o {-w} ={wlwew is a family of binary operations indexed by worlds such
that the following hold:

— -w 18 6 binary operation on D, i.e. - : Dy X Dy, — Dy,

— - 08 extensional, that is for every w € W and every dy,ds € D,,,
if (Ve € Dy)(dy e =dg -y €), then dy = da,

— for every o, 7 € Types_,, it holds that the codomain of the restriction
of function -, to the set AS7™ x A% is A7,

o {sy} = {Sw}lwew is a family of elements indexed by worlds such that
for every w € W the following hold:

— 8w € Duu
— for every o, 1, p € Types_,,

Sy € Aq(f%(fﬁp))ﬁ((ffﬂf)%(vﬂp)) (5.5)
— and for every d,e, f € D,
((Sw w d) w e) w [ = (d ‘w f) '(e w f) (5'6)

o {ky} = {kuw}wew is a family of elements indexed by worlds such that
for every w € W the following hold:

— ky, € Dy,
— for every o, 7 € Types_,,

k., € AZ7(20) (5.7)
— and for every d,e € D,,,

(ky wd) we=d (5.8)

o {iy} = {iw}wew is a family of elements indexed by worlds such that for
every w € W the following hold:
— 2y € Dy,

— for every o € Types_,,
Ty € ASTC (5.9)
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— and for every d € D,,,
twwd=4d (5.10)

e H is an algebra of subsets of W.
e 1 is a finitely additive probability measure, p: H — [0, 1].

e p:WxV — |J D, provides for each world a two-valued valuation of
weWw
term variables such that for every w € W, p(w, ) is a map from the set

of term variables to the domain D,,, i.e. p(w,-):V — D,,.

The following proposition gives the connection between LC L-models and
PCL-models and it is a direct consequence of Definition [5.16]

Proposition 5.17. Let

M = (VV’ {Dw}7 {AZ)}, {'UI}> {Sw}a {kw}7 {iw}v H, p, P)
be a PCL-model. For each w € W, the structure

My, = <Dwa {AZ;}CH ‘wsy Sw kwaiw>

is an applicative structure for LCLand M,, = (M.y,p(w,-)) is an LCL-
model.

Note that the similar proposition holds for an LPP,-model. For every
world w in an LPPy-model, the function v(w,-) is a valuation of primitive
propositions, that is each world generates one model of classical propositional
logic. Similarly, in a PCL-model each world generates one LC L-model.

In order to define satisfiability of a formula in a model, we first introduce
the notion of satisfiability of a basic formula « in a possible world w of a model

M.

Definition 5.18. Let M = (VVa {Dw}y {AZ}, {'w}7 {Sw}7 {kw}7 {iw}a H, p, p)
be a PCL-moodel, w' a possible world in M and o a basic formula. The for-
mula « is satisfied in a world w’, denoted by w' |= « if and only if o is satisfied
by the LCL-model M, = (Mory pur) where
Mw’ = <Dw’a {AZ),}U, ‘w’y Sw’ kw'a iw’> and Pw’ (.T) = P(w/, 33)

We define the class of measurable PC L-models, as in the logic LPP,. The
set [a]aq is defined as in the logic LPP, (Definition [5.5).

Definition 5.19. A PCL-model
M = (VV, {Dw}v {AZ)}v {’w}, {Sw}a {kw}a {iw}v Hv 122 P)

is measurable if [a]pq € H for every formula o € Forg. The class of all
measurable PC' L-models is denoted by PC Lyjeas-
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Similarly as in the logic LP Ps, the satisfiability relation is defined for the
measurable PC L-models.

Definition 5.20. The satisfiability relation |=C PC Lyeas X Forpey, is defined
in the following way:

e M E « if and only if for every w € W, w = a.

o M = Pssa if and only if u(la]) > s.

e M E —y if and only if it is not the case that M = .
e M EpAY if and only if M = ¢ and M = .

The notions of satisfiable formulas, valid formulas and semantical conse-
quences are defined the same as in the logic LPP» (see Definition .

Compactness We say that the compactness theorem holds for some logic L
if the following holds:

The set X of formulas of the logic L is satisfiable if and only if
every finite subset of X is satisfiable.

The compactness theorem does not hold for the logic PCL. In the following
example, we present a set X of PC L-formulas such that each finite subset of
X is satisfiable, but the set X is not satisfiable.

Example 5.21. Let us consider the set
X ={-Po(x:0)}U{P_1(z:0)|neN}

For every finite subset X' of X, there exists the largest k € N such that
P_i(x:0) € X'. We show that X' is satisfiable. Since {x : o} is a consistent
set of LC'L-formulas, there is an LC L-model Mél such that ./\/lllj1 Eax:o by
Theorem . Let M}, = (M", p1) and M' = (D1,{A7},1,81,k1,41). On
the other hand, x : o is not a theorem of the logic LC'L, so it is not true in every
LCL-model by Theorem . Hence, there exists an LCL-model Miz such
that M2, W=z 2 0. Let M, = (M?, p2) and M? = (D2, {A3}, -2, 82, ko, i2).

Now, we construct a PCL-model M’ such that M’ |= X'. Let M’ be the
following structure

M = (W’ {Dw}v {Agv}v {'w}v {Sw}v {kw}v {iw},H,u,p),

where:
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o W = {wy,wa},

Dy, = D, i € {1,2},

Ag = A7 for every o and i € {1,2},
® w; = i, S {1’2}’

® Sy, =8;, 1€ {1,2},

ko, = ki, i € {1,2},
o iy, =i, i€ {1,2},

e H=PW),

o u(wy) = %H and p(we) = kiﬂ,

o plwi,x) = pila).

From the construction of the model M’, we have that ww = z : o and
wy = x :o. Thus, p([x: o]) = %ﬂ and M’ = X'. However, the set X is not
satisfiable. Let M’ be a PCL-model. For every m > 0, if u([x : o]) = m, then
there exists ng € N such that % <m and M’ £ P<%x co. If m =0, then

M [ =P_y(z: 0).

A consequence of the non-compactness is that any finite axiomatization
of the logic PC'L which is sound cannot be strongly complete (meaning that
if a formula semantically follows from a set 7', then this formula is derivable
from T'). Let us suppose the opposite, i.e. that there is a finite axiomatization
of PCL that is sound and strongly complete. Let X be an infinite set of
formulas such that every subset of X is satisfiable and X itself is not. From
the strong completeness of the axiomatization, it follows that the set X is
inconsistent, since it is unsatisfiable. So, it holds that X FL1. Since the
axiomatization is finite, the proof of X F_L has to be a finite sequence of
formulas. Thus, there exists a finite subset X’ C X such that X’ 1. Then
X'’ is also inconsistent. Furthermore, we conclude X' is unsatisfiable by the
soundness of the axiomatization. This contradicts the assumption that every
finite subset of X is satisfiable.

Since the goal is to give the axiomatization which is sound and strongly
complete with respect to the proposed semantics, in the following section we
give an infinitary axiomatization of the logic PCL.
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5.4 Axiomatization of PC'L

In this section, the axiomatic system of PCL, denoted by Axpcyr, is intro-
duced. The axiomatic system is obtained from the axiomatic system of the
logic LCL and the axiomatic system of the logic LPP,, in the way we ex-
plain below. It consists of 14 axiom schemes and three inference rules given in
Figure

We briefly discuss the axiomatic system of PCL.

e Axiom schemes (1) — (5) are axiom schemes for the logic LC'L given in
Figure

e Axiom schemes (6) — (10) are axiom schemes from the axiomatic system
of the logic LPP, and they are concerned with the probabilistic aspect
of the logic PCL.

e Axiom scheme (11) ensures that equivalent formulas have equal mea-
sures.

e The last three axiom schemes are axiom schemes for the classical proposi-
tional logic. Atoms in the axiom schemes (12)—(14) are any probabilistic
formulas.

e The inference rules are the same as in the axiomatization of LPPs.

Note that we did not follow the approach used for LPP, and listed all
classical tautologies as axioms. We left out the first axiom scheme of LPP;
and added three axioms schemes for the classical propositional logic, where
atoms can be any probabilistic formulas of PC'L. From the axiom schemes
(12) — (14) and the inference rule (R1) all classical propositional tautologies,
where atoms are any PC L-formulas, can be derived.

Proposition 5.22. Aziom schemes (7) and (8) are equivalent to the following
formulas:

(7") Psia = Pssa, t > s,
(8') Pssa = Pssa,
respectively.

Proof. The proof follows directly from the definition of probability operators.
O

The notions of proof and consistent set in the logic PC'L are defined as in
the logic LPP; in Definition and Definition [5.13] respectively. If there
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Axiom schemes:

I

(M:0—=71)=((N:0)=(MN:1)),
M:0—s7,N:o,MN:7€CL_,
55M:0=N:o, it M=N,M:0,N:0e€CL_,

)
)
7) P<;a = Pogo,s > 1
8) Pcsa = P<,a
9) (P>ra A P>y A Psi(maV =f)) = Pominf1r+s(@V B)
) (P<ya A Pesf) = Pepys(aV p),r+s<1
) P>1(a= B) = (P>sa = P>,0)
12) A= (B=A)
) (A= (B=0C))=((A=B)=(A=0))
) (mA=-B)= ((nA= B)=A)

Inference rules:

A A=B
(R1) A=
(6%
(R2) Pora

fo=Pojalk> 1)
© = PZSOé

(R3)

FI1GURE 5.2: The axiomatic system of PCL
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is a proof for formula A from a set T" of formulas in the logic PC'L, we write
T Fpor A. We will omit the subscript PC'L when there is no ambiguity in
the context. For a formula A, we will write T, A - B to denote T'U {A} - B.

If the proof of formula A € Forpcy, from the set T is obtained using only
axiom schemes (12) — (14) and the inference rule (R1), then we say that T+ A
is obtained by propositional reasoning.

In the following definitions the notions of a maximal consistent set and a
deductively closed set are introduced.

Definition 5.23. A set T' is maximally consistent if it is consistent and:
1. for every a € Forg, if T'F o, then a €T and P>ia €T,
2. for every ¢ € Forp, either p € T or mp € T.

Definition 5.24. A set T is deductively closed if T+ A implies A € T, for
every A € Forpcyp,.

A crucial step in the completeness proof is the Deduction theorem.

Theorem 5.25 (Deduction theorem). Let T be a set of PCL-formulas and
p, € Forp. If T, 1, then T+ p = 1.

Proof. The proof proceeds by the induction on the length of the proof of

T,k .
If the length of the proof is 1, then 1 is either an instance of an axiom
scheme or it belongs to the set T'U {¢}.

e In the case that ¢ is an axiom, we have

1. TF1, by Definition [5.12
2. THY=(p=1), by axiom scheme (12),
3. ThHe=1, from (1)and (2) by (R1).

e If ¢» € T, then we have

T F 1, by Definition [5.12]
TkHvY = (p=1), by axiom scheme (12),
THe=1, from (1)and (2) by (R1).
o If ¢ € {p}, i.e. ¢ =1) then
TEe=e,

since ¢ = ¢ is a tautology in the classical propositional logic.
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Let us assume that the statement holds when the length of the proof i is
1 < ¢ < k and prove that it holds when the length of the proof is k.

If the length of the proof is k > 1, then ¢ is either an axiom or belongs to
the set T'U {¢} or is obtained by an application of some inference rule. If it is
an axiom or belongs to the set T'U {¢}, the proof proceeds the same as in the
base case.

Let 1 be obtained by applying the rule (R1) to some formulas ¢; and
11 = ¢ such that T, o F; and T, p - 91 = ¥. Then

T,pt 1, the assumption,

T, ¥ =1, the assumption,

TF =11, by the induction hypothesis,

TFe= (Y1 =1), Dby the induction hypothesis,

TH(e= W =)= ((p=91)=(p=1)), by axiom scheme(13),
TH(p=19Y1)=(p=1), from (2)and (3) by (R1),

THe=1, from (1)and (4) by (R1).

NS ote W

If 9 is of the form P« and it is obtained by applying the rule (R2) to
T,p F «, then we have T+ «. This is due to the fact that a € Forg and
¢ € Forp, so ¢ cannot affect the proof of « from T U {p}. Furthermore, we
obtain

1. Tk a, by the assumption,

2. TF P>ia, by the rule (R2) applied to (1),

3. TFHPsia= (¢= P>1a), by axiom scheme (12),
4. TFe= Psia, from (2) and (3) by (R1).

Finally, we consider the case when v is of the form ¢ = P>,a and is
obtained by applying the rule (R3) to the set of formulas {¢y = P>, 10 |

k

1 1
k> -} such that T, p F ¢y = Ps,_1q, for all k > —. Then we derive
S = S

T, ot = PZS_%a, the assumption,
THe= (Y = PZS,%a), by the induction hypothesis,
TH(eANY) = P.,_1a, by propositional reasoning,

TtH (A1) = Pssa, by the rule (R3),
Tt ¢ = (Y1 = P>5a), by propositional reasoning.

AN SR



140

O

5.5 Soundness and strong completeness of PCL

This section presents the main results about the logic PC'L: its soundness and
strong completeness with respect to the proposed semantics.

Theorem 5.26 (Soundness of PCL). The aziomatic system Axpcy is sound
with respect to the class of PC Lyeas-models.

Proof. We prove that every instance of an axiom scheme is true in every PC'L-
model and that the inference rules preserve validity.

Axioms schemes (1) — (5) belong to the axiomatic system of LCL. Since
each world w of a PC'L-model M generates an LCL-model M,, by Proposi-
tion and each instance « of the axiom schemes (1) — (5) is true in every
LC L-model by Theorem we conclude M,, |= . Similarly, every instance
of axiom schemes (12) — (14) where atoms are LC L-formulas, i.e. basic for-
mulas, is an instance of an axiom in the logic LC'L. Thus, each instance of
axiom schemes (12) — (14) is satisfied in model M,,. Now, for every possible
world w from the model M, w = « by Definition By Definition we
obtain M |= a, for every PC Lyeas-model M.

Let us consider the axiom scheme (6); let P>ga be one of its instances and
M a PCLyess-model. We have that the range of u is [0, 1] by the definition
of probability measure p, so u(X) > 0, for every X € H. Thus, u([a]am) >0
for every a € Forg. We conclude that M = P>,a.

An instance of the axiom scheme (7) is of the form P<,a = Pa, for some
formula o € Forg and numbers 7, s € S such that s > r. We prove that if P<,a
holds in a PCL-model M, then P« also holds in M. From M = P<,«, we
obtain p([a]a) < r by Definition[5.20] Since r < s, we have that u([a]um) < s.
Thus, M | P, and each instance of axiom scheme (7) is satisfied by any
PC Lyjeas-model.

Similarly, in order to prove that each instance of the axiom scheme (8) is
satisfied by any PC Lpess-model M, we have to prove that if M | P, «, then
M E P<sa. From M = Poga, it follows that u([ajam) < s, and since s > s
we conclude p([a]am) < s. Hence, M |= P< a.

Next, let us consider an instance of the axiom scheme (9). We prove
that if P>,c, P>s8 and P>q(—a V =) hold in a PCLyess-model M, then
P> pmin{1.r+s}y(a vV ) also holds in M. Let us assume that M = Ps.aq,
M E P>, and M = Psi(—a V =), which is equivalent to u([a]m) > 7,
u([Blm) = s and p([~a vV =B]m) > 1, respectively. From pu([-aV =5]u) > 1,
we obtain u([a A BJam) < 0, which implies p(Joe A B]aq) = 0. Thus, the sets
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[a]am and [B]aq are disjoint. By the definition of finitely additive probability
measure, we have

plle v Bla) = p(lalaa U [8Lae) = pllalae) + pl(Blac) =7+ 5.

Hence: M ': PZmin{l,r+s}(a N ﬁ)

In order to prove that an instance of the axiom scheme (10) is satisfied
by any PCLmess-model M, we prove that if M = P<,a and M E P8,
where 7 + s < 1, then M = Poys(aV 8). From M = Pc,a it follows
that p([a]am) < r. Similarly, from P83, we obtain u([f]m) < s. For the
probability measure p it holds that p(Y; UY3) = u(Y1) U p(Ya) — p(Y1 NYs),
for any sets ¥i,Y2 € H. Thus, alfala U [Bla) = alfala) + u(8lac) -
w([@]mN[BIm). Since p([a]aU[B]am) > 0 by the definition of finitely additive
probability measure, we conclude pu([a]pmU[B)am) < p([) ) +u([Blm) < 7+s.
Hence, M | Pois(aV pB).

Let us consider an instance of the axiom scheme (11). We prove that
it P>1(ow = B) and Ps,a hold in some PC Lyeas-model M, then P> 3 also
hold in the model. From M = Ps1(a = ), we get p(ja = Blm) =1, ie.
[ = Blm = W. It follows that if a world w € W satisfies the formula «, then
it also satisfies the formula 8. Thus, [a]pm C [B]m. Now, by the definition
of finitely additive probability measure, we have pu([8lm) > u([a]am). So, if
M E Ps,a, then we have u([ajam) > s. Consequently, p([Blm) > s, ie.
ME P, > s

The satisfiability of the axiom schemes (12) — (14) where atoms are proba-
bilistic formulas follows directly from the definition of satisfiability of classical
connectives.

Next, we consider the inference rules and prove that they preserve validity.
The inference rule (R1) is Modus Ponens. The satisfiability of logical connec-
tives is defined as in the classical propositional logic and an implication A = B
does not hold only if A holds and B does not. So, if A and A = B hold, then
B has to hold as well.

Let us consider the inference rule (R2). If M = a, then w | « for each
possible world w in M and [a]p = W. Thus, M = Psqa.

Finally, we consider the infinitary rule (R3). Let us assume that M is a

1
PC Lyeas-model such that M = ¢ = P>Sf%a for all £ > —. We prove that
- S

1
M = ¢ implies M = P> a. If M |= ¢, then M |= Po,_1aforall k > —, ie.
= =57k s

k
1
w([a)pm) = s — e We prove that it is not possible that u([a]ar) < s. From
p([a]am) < s, it follows that s—pu([a)ag) > 0. Due to the Archimedean property

1
of real numbers, we have that there exists n € N such that — < s — p([a]m).
n
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1 1
Then p(fajpm) < s — e In addition, from p([ajam) > 0, we get n > o

1 1
This contradicts the assumption that p([a]y) > s — % for all kK > —. Hence,

s
p([alm) > s holds, i.e. M = P> a.
O

The strong completeness proof for the logic PC'L is more involved. Fol-
lowing the approach used for the logic LPP,, we adapt the Henkin-style com-
pleteness method. The proof of strong completeness comprises the following
steps:

e the proof of Deduction theorem,

e the proof that every consistent set of PC L-formulas can be extended to
a maximal consistent set,

the construction of a canonical model using maximal consistent set,

the proof that a canonical model is a PC L-model,
e the proof that every consistent set is satisfiable,
e the proof of strong completeness.

The proof of Deduction theorem is given in Section [5.4f We present some
auxiliary results about properties of consistent sets.

Lemma 5.27. Let o be a basic formula and let s, € S be such that s > r.
Then the formulas

Ps,a = P>ra and P<,o = Pcga
are theorems in the logic PC'L.

Proof. We first prove that the formula P>;a = P>« can be derived using
axiom schemes and inference rules of Figure [5.2l We distinguish two cases.

o If s =r, then P> ;o = P>;a is an instance of classical tautology ¢ = ¢,
which is derivable using axiom schemes (12) and (13) and the inference
rule (R1) of Figure

e Let us assume that s > . Then instances of axiom schemes (7) and (8)
are formulas P<,a = P.s;a and P.,o = P<,a, respectively. Using the
definition of probability operators and logical connectives introduced in
Section B.1.1] we obtain that

P<,a = Posais equivalent to P>;a = P, and

Pora = P<,o is equivalent to Ps,a = Ps,o.
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From P>,a = Ps,a, P>,a = P>,a and the transitivity of the implication
in the classical propositional logic, we obtain P>sa = P>,q.
The proof that P<,a = P< o is a theorem proceeds similarly. O

Lemma 5.28. Let T be a consistent set of PCL-formulas.

(1) For any formula ¢ € Forp, either T U {¢} is consistent or T U {-p} is
consistent.

1
(2) If ~(¢ = P>sa) € T, then there is some n > 5 such that
TU{p= ~Ps,_1a} is consistent.
Proof. (1) Let T be a consistent set of PCL-formulas and ¢ € Forp. If
both T'U {¢} and T U {—¢} are incounsistent, then we have T'U {¢} FL and
TU{—¢} L. By Deduction theorem, we obtain T+ ¢ =1 and T F —p =1,
that is T+ —p and T+ ¢. We further derive T' - —p A ¢, that is T' L.

However, this contradicts the assumption that 7" is consistent.
(2) Let T be a consistent set and ~(p = P>,«) € T. Suppose that for every

1

n>—, TU{p = —-Ps,_1a} is inconsistent. Then TU {p = -P5,_1a} L.
S = n - n

We obtain the following

TH(p= P, 1a)=1, by Deduction theorem,

TE=(=pV ﬁPZS_%a)\/ 1, by propositional reasoning,

TH(pAPss_1a)V(pA—p), by propositional reasoning,

TH{eANPss_1a)V(pA=9)) = (@A (Ps_1aV-gp)),
the distributive law,

THeA(Pss_1aV-p), from (3)and (4) by (R1),

6. TH-pVPs,

Ll O

o

n

1, by propositional reasoning,
7. THy=Ps,_1a, by propositional reasoning.
We have used the distributive law and the property of the classical propo-
sitional logic: if T+ @ A, then T F .
1 1
We have derived T' - ¢ = Ps _1a for every n > —. If n = —, then it
=" S S

1
also holds that 7'+ ¢ = P, 1« for every n > —. By the inference rule
>s—% s

(R3) in Figure [5.2] we obtain 7'+ ¢ = P>sa. However, this contradicts the
assumption that T is consistent set and that —(¢ = P>sa) € T. O
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Lemma 5.29. Let T be a maximal consistent set of formulas.
(1) For € Forp, if TH 1, then € T.

(2) For any formula o € Forg, if t = sup{s | Pssa € T} and t € S, then
PZtOL S T.

(3) For all formulas ¢, € Forp,
oV eT ifand onlyif p €T orp €T.

(4) For all formulas A,B € Forpcy such that either A;B € Forg or
A, B € Forp,

ANBeT ifand only if AcT and BeT.

(5) For all formulas A,B € Forpcy, such that either A;B € Forg or
A, B € Forp,

if AeT and A= B €T, then BeT.

Proof. (1) Let T be a maximal consistent set and ¢ a PCL-formula such
that T+ ¢. By Definition we have that either ¢y € T or ~p € T. If
—p € T, then T + —). Nevertheless, this contradicts the assumption that 7 is
consistent and 7' F ¢. Thus, ¢ € T. This proves that T is deductively closed
set.

(2) Let us assume that T is a maximal consistent set, a € Forg,
t = sup{s | Pssa € T} and ¢ € S. By the monotonicity of the measure
proved in Lemma we have that for every s € S such that s < ¢ it holds
that T'F P>, Then we obtain T P>« by the inference rule (R3) in Fig-
ure[5.2]. Since T is a maximal consistent set, P>;a € T follows from the first
statement of this lemma.

Proofs (3) — (5) follow from the deductive closeness of the maximal consis-
tent set 7. 0

We prove Lindenbaum’s theorem, which states that every consistent set
can be extended to a maximal consistent set.

Theorem 5.30 (Lindenbaum’s theorem). FEwvery consistent set of
PCL-formulas can be extended to a mazimal consistent set.

Proof. Let T be a consistent set. Let us denote by Cng(7") the consistent set
of formulas that contains all basic formulas derivable from T, i.e.

Cng(T) ={a| @ € Forg and T a}.
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We take ¢, 1, ... to be an enumeration of all probabilistic formulas, that
is formulas from Forp, and define a sequence of sets T;, 7 = 0,1, 2,. .. as follows:

(1) To=TU CnB(T) U {lea | (A CnB(T)},
(2) for every i >0,

(a) if T; U{p;} is consistent, then T;1; = T; U {¢;}, otherwise

(b) if ¢; is of the form ¢ = P>/, then
Tit1 = T; U{~pi, b = P51}, for some positive integer n, so
that T}y, is consistent, otherwise,

(¢) Tiv1 =T U{~pi}.

We define the set T* = | J:=, T;.

We prove that the set 7 is a maximal consistent set that includes 7. By
the definition of the sequence of sets, we have that each set T;, i =0,1,2,...
is consistent. The existence of the natural number n from the step 2(b) is
ensured by Lemma [5.28

The set T* is maximal by the steps (1) and (2) in its definition. In order
to prove that 7™ is consistent, it is enough to prove that it is a deductively
closed set which does not contain all formulas.

From the definition of the set T™*, it follows that it does not contain all
formulas. For a formula o € Forg, the formulas a and —« cannot both belong
to Tp. For a probabilistic formula ¢ € Forp, let ¢ = ¢; and —¢p = ;. Since
the set Tinax(i,j}+1 18 consistent, the set 7™ does not contain both ¢ and —p.

It remains to prove that T* is deductively closed. For a basic formula
o € Forg, if T'F o, then by the construction of Ty, o € T* and P>1a € T™.

From the definition of a proof and the set 7™, it follows that if ¢ = ¢; and
T; = ¢, then ¢ € T due to the consistency of Tinax(i,j3+1- Using the induction
on the length of a proof, we prove that for a probabilistic formula ¢ € Forp,

if T* - ¢, then ¢ € T™.

Let the sequence @1, s, ..., be the proof of ¢ from T*. The sequence
can be countably infinite. We prove that for each ¢, if the formula ¢; is
obtained by applying an inference rule to premises that belong to the set T,
then the formula ¢ also belongs to T*. In the case that a finitary rule is
applied, there exists a set T} such that all the premises belong to T; and
T; = ¢;. Thus, ¢; € T*. If the infinitary rule is applied, then the formula
@; is of the form ¢ = P>,a and it is obtained from the set of premises
{ok =9 = Psg,a| s €S} such that T* - ¢F. By the induction hypothesis,
we get ¢ = P>, a € T*, for every k. If we assume that ¢; = ¢ = P>,a ¢ T,
then there exist [ and j such that =(¢ = P>sa), ¥ = ﬁstf%a € T} by the
step (2)(b) in the definition of T*. Now, for some j' > j, we have the following:
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o Y AN-P>, 0 € Ty, using the definition of the propositional connectives,
o ¢ € Ty, from ¢ A =P>sa € Tj» by the propositional reasoning,
. —\PZS_%Q € Ty, follows from ¢ = ﬂPZS_%a €Tjand ¢y €Ty

. PZS_%(X € Ty, follows from ¢ = P, _1a € T* and ¢ € T},

[

The last two conclusions contradict each other, so it is not possible that
pi =% = P>sa ¢ T*. Thus, p; =9 = P>;a € T*.
Since T™* is a deductively closed set that does not contain all formulas, we
conclude it is consistent.
O

Definition 5.31. Let T be a consistent set, T* a maximal consistent set in-
troduced in the proof of Theorem and Modelspcr(T) the set of all LCL-
models M,, = (M,;,p;) that satisfy the set Cng(T), where
M; = (Di,{A%} s, i, Si, ki, 15). A canonical model My« is a tuple

Mrp. = (VV, {Di}a {A;’T}v {'i}’ {Si}v {kl}7 {ii}?H?:u?p)
such that

o W is a set of possible worlds, one for each LCL-model that satisfies
Cng(T); W = {w; | @ € I} where I is the cardinality of the set
Modelsrcr(T).

e {D;} = {D;}icr is a family of sets, where D; is the domain of LCL-
model M,

o {A7} = {A7}icroeTypes., i85 a family of sets, where {A7}o is a family
given in the LC L-model M;,

o {;} = {itier is a family of binary operations given in the LC L-model
M,

o {s;} = {si}icr, {ki} = {kiticr, {8} = {:}ics are families of elements
of the domains such that s;, k; and i; are the elements given in the LCL-
model M,

e [a] ={w; | M; E a} and H = {[a] | « € Forg},

o u([e]) =sup{s | P>sa € T*},

e p is a two-valued valuation defined by p(w;,x) = p;(x), where p; is a
valuation of the LC'L-model M,,,.
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Lemma 5.32. Let My« be a canonical model and o, 3 € Forg. Then the
following claims hold

(1)

H is an algebra of subsets of W,

1

p(W) =1 and p(0) = 0,

u(le]) =1 = p([=al),

u(l] UB) = w(la]) + u([8]), for all disjoint [a] and [4].
(1) For basic formulas «, oy, as, ..., a, it holds that

- W=[aV-a]€H,
— if [a] € H, then its complement [-a] € H,
— if [ay], [az], ..., [an] € H, then

[a1]U o] U...Ufay] =[a1 Vas V...Va,] € H
So, we conclude that H is an algebra of subsets of W.

We prove that [a] C [8] implies u([a]) < w([8]). From [a] C [3], we
conclude that every LCL-model of a is also a model of 3, thus the
formula @ = B is true in every LC'L-model. From the strong com-
pleteness of the logic LC'L, proved in Theorem it follows that
a = [ is a theorem and o = f € Cng(I). Then we obtain that
Psi(a = B) € T* by the definition of the set T*. The latter and
the fact that P>1(a = ) = (P>sa = P>4f) is an instance of axiom
scheme (11) imply that Ps>;a = P>,8 € T* for every s € S. Conse-

quently, p([a]) < p([B))-

w([a]) = 0 follows from the fact that P>« is an axiom and it belongs to
T*.

For any « € Forg, the formula o V =« is a theorem, thus it belongs to
Cng(T) and P>1(a V —~a) € T*. Therefore, we have W = [a V ] and
w(W) = 1. Using the definition of probability operators, we get

Psq(aV-a) = Psi1_o(aV —a) = P<g=(a V -a) = 7Pso(a A —a).
From the latter and Theorem [5.22] we conclude that
sup{t | P>i(a A—-a)} =0

and p(0) = 0.
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()

Let p([e]) = sup{s | P>sa € T*} = r. If r = 1, then we obtain
Psja € T* by Lemma (2) Since P> = —P5¢—ay, it follows that
—Pso-a € T*. As it was discussed earlier, the formula P>;a = Pssa
for ¢ > s is a theorem. So, we conclude p([-a]) = 0 and p([a]) =
1 — p([—a]). On the other hand, if » < 1, then for each rational number
r" € (r,1], "Pspa = Pepra € T*. The axiom scheme (8) ensures that
PST/()(,P21,T/—|O[ eT*.

So, it has to hold that r = sup{s | P>s—a € T*} > 1—r. Otherwise, for

ro € (r1,1—7) it holds that P>,,~a ¢ T*. From ry < 1—r it follows that
1 —ry >, so we have P>,,—a € T*. This contradicts P>,,—a & T™.

If we assume that sup{s | P>s—a € T*} > 1 — r, then there exists a
rational number 7" € [0, r) such that P>1_,»—a € T* and ~Ps,na € T*,
Since r > ", we have that P>, = Ps,» € T* by Proposition
Hence, P-,»a € T*. This contradicts — P, a € T™*.

Thus,
sup{s | P>sma € T*} =1 —sup{s | P>sa € T*},

Le., p([a]) =1 - p([-al).

Let us assume that [o] N [8] = 0, pu([e]) = r and p([8]) = s. Since
[B] C [-a], we obtain 7 +s < r + (1 —r) = 1 using the previously
proved properties in the lemma. If » > 0 and s > 0, then for every
rational number ' € [0,r) and for every rational number s’ € [0, s), we
have that P>, a, P>y € T* due to the properties of the supremum.
Then, using the axiom scheme (9), we derive P>,yq(aV 3) € T*. The
latter implies r + s < tg = sup{t | P>¢(a vV 8) € T*)}. In the case that
r+ s =1, the statement holds. Let us consider the case when r + s < 1.
If r + s < to, then for every rational number ¢ € (r + s,tp) it holds
that P>y (aV 3) € T*. Further, there exist rational numbers r” > r and
s" > s such that:

—|PZT//O[ S 1—‘*7 i.e. P<rr//Oé S T*,
—\PZSNO[ - T*, le P<5”Oé S T*,
and " + 5" =t < 1.

The axiom scheme (8) ensures that P<,»a € T*. Using the axiom scheme
(10), we derive

P<r”+s”(04 V ﬁ) eT”, ie. _‘PZT‘”—‘,-S” (Oz \ ﬁ) eT”,

and
ﬂPZt’ (a \% ,8) erT”.
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This contradicts P>y (a VvV 3) € T*. Hence, r + s = ¢y and we conclude
that u([a] U [8]) = p([a]) + p([8]). Finally, in the case that » = 0 or
s = 0, we can reason as above, where v’ = 0 or s’ = 0.

O

Lemma 5.33. A canonical model M+ is a PCL-model.

Proof. We prove that the tuple My« given in Definition [5.31] satisfies the
conditions of Definition

Since Cng(T) is a consistent set of LC L-formulas, there is an LC L-model
that satisfies the set Cng(T), so the set Modelspcr(T) is not empty. Conse-
quently, the set W is not empty. For M, = (M,,p;) € Modelspcr(T), we
have that D;, {A%},, -, 8i, ki, 4; satisfy the conditions of Definition
since they form an LCL-model M;. In Lemma 1) we have proved that
H is an algebra of subsets of W. By Lemma [5.32] we conclude that the
function p is a finitely additive probability measure. Finally, the function p
defined by p(w;, z) = p;(x) is a two-valued valuation p : W x V. — |J Dy,

w; EW

such that p(w;,-) = p; : V. — D,,. This concludes the proof that Mr. is a
PC L-model. O

Proposition 5.34. Let Mr« be a canonical model. For every A € Forpcyr,
Moy« = A if and only if A € T*.

Proof. The proof proceeds by induction on the structure of formula A.

Let A be a basic formula «. If o € T, then by the definition of 7™ we
have that o € Cng(T'). Thus, for every M; € Modelspcr(T), it holds that
M; E a. Each world w; of My« corresponds to one LC L-model M; and it
holds that w; |= « if and only if M; = a. Hence, we conclude w; = «, for
each i € I and it follows that My« = a. If My« = a, then w; [ «, for each
i € I, that is each model M; € Modelsycr(T) of the set Cng(T) is also the
model of a. Hence, Cng(T) = « in the logic LC'L. By the strong completeness
of the logic LCL proved in Theorem (Chapter [4), we obtain Cng(T) - a.
Consequently, a € T* due to the definition of Cng(7") and T™*.

Next, let us assume that A is a basic probabilistic formula P>,a. If
Ps,o € T*, then p(fa]) = sup{t | P>, € T*} > s. So, we conclude
Mrp« = Psza by Definition On the other hand, suppose that
Mrps = Psga, ie. p([a]) = sup{t | P>, € T*} > s. If u(la]) > s, then
Pss;a € T* by the definition of supremum and Lemma If u([a]) = s,
then P> a € T* by Lemma [5.29(2).

In the case when A is a negation —p, by Definition and the induction
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hypothesis we obtain

Mr« =~ if and only if M« £ ¢
if and only if o & T*
if and only if p € T™*.

Similarly, if A is a conjunction ¢ A 1, then by Definition [5.20] and the
induction hypothesis we conclude

Mrps = @ At if and only if My« = ¢ and My« E
if and only if p € T* and ¢ € T*
if and only if p A € T™.

Theorem 5.35. Every consistent set T of PC L-formulas is satisfiable.

Proof. Let T be a consistent set. By Theorem [5.30} it can be extended to a
maximal consistent T*. Let M+ be a canonical model introduced in Defini-
tion Since T' C T* by the definition of T* and the model M. satisfies
all formulas from the set 7% by Proposition we obtain that the model
M« satisfies all formulas from the set T as well, i.e. Mp« |=T. Thus, T is
satisfiable. O

Theorem 5.36 (Strong completeness). If T = A, then T - A.

Proof. Let T be a set of formulas and A a formula such that T = A. From
T |= A it follows that the set T'U {—A} is not satisfiable. Then we conclude
that 7' U {=A} is inconsistent by Theorem [5.35], that is T U {~A} L. By
Deduction theorem, we derive T'+ = A =1, which is equivalent to TH A. O

5.6 Concluding remarks

In this chapter, we have introduced the logic PC'L, which is a probabilistic
extension of the logic of combinatory logic.

Following the approach used for the logic LP P, and some other probabil-
ity logics, e.g. first-order probability logic and intuitionistic probability logic
([132]), the language of the logic PCL is layered into two sets: basic formulas,
which are actually LC L-formulas, and probabilistic formulas. The probabilis-
tic formulas are obtained by applying probability operators of the form P>,
to the basic formulas. The proposed semantics of the logic PCL is based on
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the possible world approach. We have proved that the compactness theorem
does not hold for the logic PCL, i.e. there is an infinite set X that is not
satisafiable, although each finite subset of X is satisfiable. For this reason,
a finite axiomatization of the logic PC'L cannot be sound and complete with
respect to the proposed semantics. Thus, we give an infinitary axiomatization
of the logic PCL. The main results of the chapter are the soundness and
strong completeness of the given axiomatization with respect to the proposed
semantics.

First, we have proved the soundness of the axiomatization of PCL, that is
we proved that every instance of an axiom scheme holds in every PC L-model
and that inference rules preserve validity. The proof of strong completeness
is more involved. Herein, we adapted the Henkin-style completeness method,
which was also used for the logic LP P, ([128]). We proved that every consistent
set can be extended to a maximal consistent set. The maximal consistent set is
used for the definition of a canonical model that is a PC'L model which satisfies
exactly formulas from the maximal consistent set. Consequently, we obtained
that every consistent set is satisfiable, which implies the strong completeness
of the logic PCL.

At the end, we list some ideas for the future work.

e The presented logic is a formal model for reasoning about probabilities
of simply typed combinatory terms. The next step is to adapt the ap-
proach for probabilistic reasoning about simply typed A-calculus. The
adaptation is not straightforward since it relies on the translations from
combinatory logic to A-calculus which are rather involved.

e Simplifying the semantics by using finite sets of probability values yields
a compact logic. One line of research is to provide finite axiomatizations
of those logics.

e The basic formulas in the logic PCL are obtained as the set of typed
statements closed under classical propositional connectives. Another
possibility is to have intuitionistic reasoning at the basic level.

e Also, intuitionistic reasoning about probabilities has been studied by
Markovi¢, Ognjanovi¢ and Raskovié in [I19]. Instead of considering clas-
sical propositional connectives in the definition of probabilistic formulas,
one can consider the intuitionistic ones.

e The development of the first order extension of the logic PC'L is a topic
for the future work.

e Various type disciplines have been introduced for A-calculus and com-
binatory logic such as polymorphic, intersection and higher-order types.
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In the future, we plan to consider probabilistic extensions of different
typed calculi.



Chapter 6

Conclusion

In this chapter, we summarise the contributions, present the related work and
give some initial ideas for future work.

6.1 Summary of contributions

In this thesis, we have studied four different formal systems:
e the probabilistic A-calculus with let-in operator,
e the full simply typed combinatory logic,
e the logic of combinatory logic and
e the probabilistic extension of the logic of combinatory logic.
We considered two approaches used to introduce probability into calculus:

1. to add a probabilistic choice to the language of untyped calculus as prim-
itive in order to obtain probabilistic computation;

2. to extend the language of a typed calculus with probability operators in
order to obtain a framework for probabilistic reasoning about the typed
calculus in the style of probability logic.

In Chapter [2] we have studied the probabilistic A-calculus Ag jet, that is
the pure, untyped A-calculus extended with two operators: the probabilistic
choice operator @ and let-in operator. The implemented evaluation strategy is
a lazy call-by-name evaluation. The probabilistic choice operator & represents
a fair choice, in the sense that the term M & N evaluates to M or N with the
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equal probability. The let-in operator simulates the call-by-value evaluation in
the call-by-name setting. A problem addressed in Chapter [2]is the program
equivalence in Ag . The proof of context equivalence of two programs in
higher-order languages is challenging, since it has to be shown that programs
behave the same in any context and there are infinitely many contexts. For
this reason, we aimed to find an effective method for checking program equiv-
alence. Besides context equivalence, we have considered two other equivalence
relations: bisimilarity and testing equivalence. First, we have presented the
operational semantics of Ag jr as a labelled Markov chain, then we have in-
troduced the notion of probabilistic applicative bisimilarity for Ag jet. The
first contribution of Chapter [2]is the proof that the probabilistic applicative
bisimilarity is a congruence. We have proved this using Howe’s technique
([84]). As a consequence, the probabilistic applicative bisimilarity is included
in the context equivalence. In order to prove that the context equivalence is
included in the probabilistic applicative bisimilarity, we have presented the
testing language ([35]). The induced testing equivalence is proved to coincide
with probabilistic applicative bisimilarity ([47]). The second main contribution
of the chapter is the proof of the property that for every test there is a context
such that the success probability of the test applied to a term is equal to the
convergence probability of the context applied to the term. Consequently, the
context equivalence is included in the testing equivalence. We have proved
that all three equivalence relations coincide.

Chapter |3| has studied the full simply typed combinatory logic CL™>7,
that is, the simply typed combinatory logic extended with product types, sum
types, empty type and unit type. We have presented the language of the full
simply typed combinatory logic, its operational semantics, that is the equa-
tional theory induced by reduction relation and the type assignment system.
The reduction relation in CL™ %" depends on the typing relation. In order
to ensure that equal terms inhabit the same type, the type assignment system
is defined so that the typing relation depends on the reduction relation. Thus,
the equational theory induced by reduction relation and the type assignment
system are defined simultaneously. We have presented a Kripke-style semantics
of CL™%¥ introduced in [94], which is inspired by the Kripke-style semantics
of the simply typed A-calculus introduced in [124]. The semantics is defined
as an extensional Kripke applicative structure, which has special elements
corresponding to combinators and is provided with a valuation of variables.
The main contributions of the chapter are the soundness and completeness
of CL™*% with respect to the presented semantics. First, the soundness of
the equational theory and the type assignment system are proved. The proof
method used for the soundness proof is mathematical induction. Second, the
completeness of the equational theory and the type assignment system are
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proved using the notion of a canonical model. The canonical model is based
on a consistent basis and it is defined so that the interpretation of a term is
the set of equivalence classes of terms typable in the basis. The completeness
proofs follow directly from this property of the canonical model.

In Chapter 4] we have introduced the logic of combinatory logic LC'L. The
logic LCL is the propositional extension of the simply typed combinatory logic.
It is a formal system for reasoning about typed statements. We have intro-
duced the syntax, axiomatization and semantics of LC'L. The language of LCL
is obtained by closing the set of typed statements under classical propositional
connectives. The axiomatization of LCL has arisen from the type assignment
system of the simply typed combinatory logic and the axiomatic system of
classical propositional logic. The semantics of LC'L is based on the exten-
sional applicative structures extended with special elements corresponding to
primitive combinators. The main contributions of the chapter are the sound-
ness and strong completeness of LC'L with respect to the proposed semantics.
First, we have proved that the equational theory of the simply typed combi-
natory logic is sound and complete with respect to the proposed semantics.
Then the proof of soundness and strong completeness of the axiomatization of
LCL with respect to the proposed semantics is given. Similarly to Chapter [3]
the proof method used for proving soundness is the mathematical induction.
In the proof of completeness of the equational theory we have constructed the
model such that the interpretation of a term in the model is the equivalence
class of the term with respect to the equational theory of the simply typed
combinatory logic. As a consequence, we have obtained the completeness of
the equational theory. The proof that the axiomatization of LCL is strongly
complete is more involved. First, we prove that every consistent set can be
extended to a maximal consistent set. Then we have defined an LC L-model
such that it satisfies only formulas from the maximal consistent set. Using this
model, we have proved that every consistent set is satisfiable. The strong com-
pleteness of the axiomatization follows directly from this result. Additionally,
we have shown that the proposed semantics are novel semantics of the simply
typed combinatory logic. More precisely, we proved that the simply typed
combinatory logic containing the typing rule that ensures that equal terms
inhabit the same type is sound and complete with respect to the proposed
semantics. Thus, the logic of combinatory logic is a conservative extension of
the simply typed combinatory logic.

Chapter [5| has introduced the logic PCL, the probabilistic extension of
the logic of combinatory logic. Following the approach used for probabilistic
extensions of different logics such as classical propositional logic, intuitionistic
propositional logic, justification logic ([132]), we extend the logic LCL with
probability operators of the form P>, with the intended meaning “probability



156

is at least s”. We have introduced the syntax, semantics and axiomatization
of PCL. The set of formulas is layered into two sets: basic formulas, i.e.
LC L-formulas, and probabilistic formulas obtained by applying probability
operators to basic formulas. The semantics of PCL is based on the possible
world approach, where the set of possible worlds is equipped with a finitely ad-
ditive probability measure. The axiomatization of PCL comprises the axioms
and rules from the axiomatization of LC'L and the axioms and rules from the
axiomatization of probability logic. The axiomatization of PCL is infinitary,
since it has one infinitary rule, i.e. a rule with a countable set of premises.
This is due to the non-compactness of the logic PC'L which we have proved.
The main contributions of the chapter are the soundness and strong com-
pleteness of the given axiomatization with respect to the proposed semantics.
The proof of soundness is straightforward. Similarly to the previous chapters,
we have used mathematical induction. The proof of strong completeness is
more involved. Following the approach used in Chapter @] we first proved
that every consistent set can be extended to a maximal consistent set. Then
we constructed a PCL-model that satisfies only formulas from the maximal
consistent set. We have used this model to prove that every consistent set is
satisfiable and as a consequence we obtained strong completeness.

6.2 Related work

Probabilistic programming is a new programming paradigm which has proven
to be extremely applicable and useful in various areas, such as robotics [163],
machine learning [135] and natural language processing [I17]. For this rea-
son, questions about probabilistic program equivalence have been addressed
in different settings (|35l [36], 43| [44], [47, [48]). The probabilistic A-calculi with
call-by-value and call-by-name passing policies have been investigated in [35]
and [47], respectively. In [35], Crubillé and Dal Lago have proved the full
abstraction, that is, they have proved that the bisimilarity and the context
equivalence coincide in the call-by-value setting. In turn, in [47] Dal Lago,
Sangiorgi and Alberti have proved that in the call-by-name setting bisimi-
larity implies context equivalence, but they do not coincide. Also, they have
conjectured that adding a sequencing operator can recover the full abstraction.
This conjecture is proved in Chapter Both papers use the same approach
as we have used in the thesis. They prove that the bisimilarity is a congruence
using Howe’s technique. Further, in [35] the authors introduced the testing lan-
guage and they proved that the context equivalence implies bisimilarity using
the testing equivalence, which coincides with bisimilarity. On the other hand,
in [47] the authors gave examples of terms that are context equivalent in the
call-by-name setting but not bisimilar, meaning that the context equivalence
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does not imply the bisimilarity in this setting. A similar approach was used
in [36], where Crubillé, Dal Lago, Sangiorgi and Vignudelli proved that simi-
larity (resp. bisimilarity) is fully abstract with respect to the context preorder
(resp. context equivalence) in call-by-value probabilistic A-calculus endowed
with Plotkin’s parallel disjunction operator. The soundness of the applicative
bisimilarity with respect to the context equivalence in linear A-calculus ex-
tended with probabilistic binary choice and quantum data has been proved in
[44] by Dal Lago and Rioli. In [48], Dal Lago, Gavazzo and Levy have studied
Abramsky’s applicative bisimilarity in call-by-value A-calculi with algebraic
effects. The authors have generalised Howe’s technique in order to show that
the applicative similarity is a precongruence. As a consequence, the applica-
tive similarity is a sound proof technique for the contextual preorder. In [43],
Dal Lago and Gavazzo have proved that the applicative bisimiliarity behaves
well in a A-calculus endowed with an operator performing sampling from con-
tinuous distributions. In [99], we have conjectured that the need for the let-in
operator in lazy call-by-name A-calculus was not due to the call-by-name eval-
uation strategy, but due to the lazyness of the calculus. This conjecture has
been proved by Curzi and Pagani in [40].

Kripke-style semantics presented in Chapter [3] has been inspired by the
Kripke-style semantics of the simply typed A-calculus introduced in [124]. The
semantics is defined as an extensional Kripke applicative structure with special
elements that correspond to primitive combinators endowed with valuation of
variables. In [124], the authors have considered the equations between terms
of the same type that are described by an axiomatic system and they proved
that the axiomatic system is sound and complete with respect to the pro-
posed Kripke-style semantics. The semantics for the simply typed A-calculus
and semantics of the full simply typed A-calculus introduced in [123] are not
Kripke-style semantics, still they have certain similarities with the Kripke-
style semantics presented in the thesis. They are similar in the sense that the
applicative structure, the extensionality of applicative structure and the exis-
tence of elements called combinators are defined in a similar way. However,
the soundness and completeness results are not presented in [123]. The results
from [124] have been generalised to the second-order A-calculus in [59], where
the author considered not only equalities but also inequalities and obtained
the soundness and completeness results for both inequalities and equalities.
Another extension of the work introduced in [124] is the development of mod-
ified Kripke models for syntactic realizability and dependent type theory. The
generalization of the interpretation of intuitionistic first-order logic in Kripke
models to a dependent type theory is given in [5] with the aim to establish the
coherence of interpretations of dependent type theory.

Chapter [ has introduced the propositional extension of the simply typed
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combinatory logic. Various extensions of combinatory logic have already been
investigated with the goal of obtaining formalisms capable to express new
features and paradigms. For example, in the calculus extended with new con-
structors such as pairs, records and variants ([137]), compound data structures
can be built. Moreover, it is possible to organise data in a better way and
to deal with heterogeneous collections of values. We have already discussed
adding probabilistic choice operator and shifting to the probabilistic computa-
tion. However, in this approach the calculus is extended with new operators,
whereas the logic introduced in Chapter [] is obtained as the combination of
different logical systems. This idea of combining different logical systems in
order to capture reasoning about certain logical structures has been introduced
by Scott in [I58], where the typed system of combinators, including fixed-point
combinator is extended with logical constants and connectives, and a deduc-
tive system for computable functions is developed. A similar approach was
used by Beeson in [16] to define the A-logic as the union of first-order logic
and A-calculus, and to develop a powerful tool for representing functions. The
extensions of the theory of combinators with additional constants and corre-
sponding axioms and rules with aim to capture inference are called systems of
illative combinatory logic, and they have been investigated in [8, 411 [42] [51].
Another approach related to ours is introduced in [6], where Axelsen, Gliick
and Kaarsgaard used a classical propositional logic to reason about reversible
logic circuits. The authors extended the system of reversible logic circuits with
classical propositional logic extended with ordered multiplicative conjunction,
so that reversible logic circuits play the role of propositions. This work and the
work presented in Chapter [] share the same philosophy of extending a basic
logical system with classical propositional logic to capture reasoning about the
basic logical system.

The work presented in Chapter [5] follows the approach used for probabilis-
tic extensions of different logics. The probabilistic extension of the classical
propositional logic LPP has been introduced by Ragkovi¢ in [146], where the
classical propositional logic is extended with probability operators of the form
P with the intended meaning “the probability is at least s”. In [128], Ogn-
janovi¢ extended the classical propositional logic with probability operators of
the form P>, and obtained the logic LPP,. The probability operator P>, has
the same meaning as in [146], but s takes the value from an infinite set, whereas
in [146] the set of values is finite. This was followed by the work presented in
[129] where Ognjanovi¢ and Raskovi¢ extended the classical propositional logic
with two kinds of probability operators P>, and @QF such that the meaning
of Qr is “the probability is in F”. The probabilistic extensions of the intu-
itionistic propositional logic and justification logic are introduced by Markovié,
Ognjanovi¢ and Raskovi¢ in [119] and by Kokkinis, Ognjanovi¢ and Studer in
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[104], respectively. The probabilistic extension of the first-order logic is intro-
duced by Ognjanovi¢ and Ragkovié¢ in [130]. All these systems are obtained in
the way that the language of a basic system, e.g. classical propositional logic,
intuitionistic propositional logic, justification logic, is extended with probabil-
ity operators applied to the formulas of the logic. In this way, a framework
for probabilistic reasoning about different systems is obtained. The questions
addressed in the mentioned papers are soundness, completeness and decidabil-
ity of the obtained probability logics. The proof method that we have used
in Chapter [5] follows the proof methods used in these papers. Recently, new
probability logics have been developed ([49)], [86] [87]). In [49], Dautovié, Doder
and Ognjanovi¢ have formalised the quantitative concept of confirmation, first
within a propositional logical framework and then using its first-order exten-
sion. A new probabilistic extension of the intuitionistic propositional logic
has been introduced by Ili¢-Stepi¢, Knezevi¢ and Ognjanovié in [86], where
contrary to other works on this topic (e.g. [I19]) reasoning with probabil-
ity operators is also intuitionistic. The most recent work has introduced a
framework for reasoning about quantum observations ([87]).

6.3 Future work

Every investigated topic leaves open questions and ideas for future work.

In Chapter [2| we have addressed the question of program equivalence in
the probabilistic setting. However, another question is what happens if the
inequalities associated with these equivalences are considered. It is known that
similarity and testing preorder do not coincide, so in the case of inequalities
we cannot use the same method as in Chapter |2l Thus, other options have to
be explored. In this work, we added the let-in operator to the calculus with
probabilistic operator, however we can also add the operator to a calculus
with different effects, e.g. non-determinism. All these questions can also be
addressed in the typed language.

Although the first idea was to develop the Kripke-style semantics of the full
simply typed A-calculus ([94]), in Chapter (3| the semantics are introduced for
the full simply typed combinatory logic. If we add the typing rule that ensures
that equal terms inhabit the same type to the calculi, then the translation from
combinatory logic to A-calculus is much more involved. For this reason, we
have considered only combinatory logic in Chapter [3] and left the semantics
of A-calculus for future work. Besides the considered typing system, many
different type systems have been introduced for A-calculus and combinatory
logic, so naturally it would be interesting to investigate if the same approach
can be adapted to other type disciplines.

The work presented in Chapter [d] can be continued in several directions. We
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have considered the propositional extension of the simply typed combinatory
logic. The combinatory logic and A-calculus are computationally equivalent
theories, so it would be interesting to see if the same approach can be used to
develop the propositional extension of the simply typed A-calculus. Also, we
could consider different type disciplines. As we have already discussed, many
type systems have been developed for A-calculus and combinatory logic. So, we
could develop frameworks for reasoning about different typed calculi. In order
to obtain a more expressive system, we can enrich the language and extend
calculus with first-order logic. The propositional logic considered in Chapter []
is classical and it would be interesting to investigate extending calculus with
some non-classical logic such as intuitionistic logic.

Regarding the framework for probabilistic reasoning introduced in Chap-
ter[5] there are also several directions to which the work can be extended. The
basis of the presented system is the logic LC L, that is propositional extension
of the simply typed combinatory logic. In the case of adapting the approach
used in Chapter [ to the simply typed A-calculus, the next step would be devel-
oping the framework for reasoning about simply typed A-terms. Also, changing
the calculus at the basis level would result in the framework for probabilistic
reasoning about different typed calculi. The introduced logic is not compact.
However, if we simplify the semantics so that the set of probability values is
finite, we will obtain compact logic and we can provide a finite axiomatization
of it. The propositional connectives both in basic formulas and probabilistic
formulas are classical connectives. Nevertheless, we can change the reasoning
at the basic level to intuitionistic reasoning as in [119]. The reasoning about
probabilities can also be shifted to intuitionistic, as in [86]. As for the logic
PCL, the next step is the development of first-order extension of PCL.
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[Inan Tpermana nogaTtaka

Ha3us npojexkra/mcrpaxuBama

BepoBaTHOCHO 3aKJby4HBAbE Y U3pauyHaBamby U TCOPHjU (HYHKIIMOHATHUX TUIIOBA

Probabilistic reasoning in computation and simple type theory

Ha3uB HHCTHUTYIMje/MHCTUTYIHja Y OKBHPY KOJHX Ce CIIPOBO/IM HCTPAKHBaMbe

a) dakynTeT TEXHUYKKUX HayKa, YHuBep3uteT y HoBom Cany

Ha3sue nporpama y oKBHpPY KOT ce peajin3yje HCTPAKUBAE

HcTtpakuBame ce BpPIIM Yy OKBHUPY H3paje MOKTOPCKE IMCEPTalHjeé Ha CTYAMjCKOM IIporpamy
MaremaTHKa y TEXHULIH.

1. Onuc nogaraka

1.1 Bpcra ctynuje

Yxpamko onucamu mun cmyouje y okeupy Koje ce nooayu npukyneajy
Y 0BOj cTyAUju HUCY NPUKYIUbAHU MOJALH.

1.2 Bpcre nopataka
a) KBaHTHUTaTUBHU

0) KBAJIMTATUBHU

1.3. Haunn npukymbama nojaraka
a) aHKeTe, YIIUTHULIU, TECTOBH
0) KIMHUYKE [TPOLICHE, MEULIHCKH 3aIIUCH, €IEKTPOHCKHU 3/IpaBCTBEHHU 3aIIHCH

B) TC€HOTUIIOBU: HABECTU BPCTY

1") AIMUHUCTPATUBHU ITOJAAIIN: HABECTU BPCTY

) y30pIIM TKUBA: HABECTH BPCTY

) caumim, GpoTorpaduje: HaBeCTH BPCTY

€) TEKCT, HAaBECTH BPCTY

’K) Mara, HaBE€CTU BPCTY

3) OCTAJIO: OMUCATH

1.3 ®opmat nozaraka, ynorpedpeHe ckaiie, KOIHIUHA 0aTaKa

Haunonanan TIopTaJl OTBOPEHE HAyKe — Open.ac.rs -



1.3.1 Ynorpe6sbenu codpTBep 1 hopMar gaToTeKe:

a) Excel ¢ajin, narorexa

b) SPSS dajn, naroreka

¢) PDF ¢ajn, narorexa

d) Texcr ajn, natorexa

e) JPG ¢ajn, natoreka

f) Ocrano, narorexa

1.3.2. bpoj 3anmca (ko1 KBAHTUTATHBHUX T0JIaTaKa)

a) Opoj Bapujabu

0) Opoj Mepema (MCIMTaHUKA, IPOIIeHa, CHUMAKa 1 CII.)

1.3.3. IloHOBJBEHA MEpEBHA
a) na

0) He

VYKOIHKO je 0ATOBOp 12, OArOBOPUTH Ha cieaeha murama:

a) BPEMEHCKH pa3MaK U3MeJljy IOHOBJbEHHUX Mepa je

0) Bapujabiie Koje ce BUILE ITyTa Mepe OJHOCE Ce Ha

B) HOBe Bep3uje (ajioBa KOju caaprke IIOHOBJFEHA MEpemha Cy MMEHOBAHE Kao
Hanowmene:

Ja nu popmamu u cogpmeep omozyhasajy demerve u 0y20poyHy 6aIUOHOCH NOOAMAKA?
a) [da
6) He

AKo je 002060p He, 0Opaznodcumu

2. [Ipukymbame NoJaTaKa

HauuoHajiuu nopraj OTBOPEHE HayKe — OPen.ac.rs



2.1 Metononoruja 3a NpUKyIUbabe/TeHepUCamhe o1aTaka

2.1.1. YV okBHpY KOT HCTPA)KMBAYKOT HAaLPTa Cy MOJALN IPUKYIIJHEHN?

a) CKCIICPUMEHT, HABCCTHU TUIL

0) KOpenannoHO NCTPAKMBAKE, HABECTH TUIT

Ll) aHaJin3a TEKCTa, HABECTH THII

,I[) 0CTajlo, HABECTH 1ITa

2.1.2 Hagecmu 8pcme MepHUX UHCMPYMEHama uiy cmanoapoe nodamaxka cneyuuunux 3a oopeherny
HAYyHy OUCYUNAUHY (aKo nocmoje).

2.2 KBanureT nogaraka u CTaHAapAH

2.2.1. Tperman HepocTajyhux mogaraka

a) Jla mu matpuna canpxu Hepocrajyhe nomatke? [la He

AKO je oIroBOp Ja, ONroBOpUTH Ha cieneha nuTama:

a) Konuku je 6poj Henocrajyhux momaraxa?
0) [la v ce KOpUCHUKY MaTpHIIe TIperopydyje 3amMeHa Heoctajyhnx mogaraka? la  He
B) AKo je oAroBop /1a, HAaBECTH CyrecTHje 3a TpeTMaH 3aMeHe HeJo0cTajyhnux nogaraka

2.2.2. Ha koju Ha4uH je KOHTPOJIUCAH KBAIUTET nojaTaka? Onucatu

2.2.3. Ha koju Ha4uH je U3BpIICHa KOHTPOJIAa YHOCA NOaTaKa Y MaTpHUILy?
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3. Tperman noaataka u npareha JoKyMeHTanuja

3.1. Tperman u yyBame mojaraka

3.1.1. [looayu he bumu denonosanu y PEno3Umopujym.

3.1.2. URL aopeca

3.1.3. DOI

3.1.4. la mu he nooayu bumu y omeopenom npucmyny?

a) la
6) a, anu nocne embapea xoju he mpajamu 0o
8) He

Ako je 002060p He, Hasecmu pasnoz

3.1.5. Ilooayu nehie bumu 0enonosanu y peno3umopujym, anu he oumu wysamu.

Obpasnooicerse

3.2 Mertanogany 1 JOKyMEHTaIHja ToJaTaKa

3.2.1. Koju crangapp 3a metanoaatke hie OGuTH npuMermbeH?

3.2.1. HaBecTn MeTanosaTKe Ha OCHOBY KOjUX CYy MOJAIH JACTIOHOBAHH Y PEIIO3UTOPUjYM.

Axko je nompebno, nagecmu memoode Koje ce Kopucme 3a npey3umarse n0O0AmMaxd, AHAIUMuyKe u
npoyedypanne ungopmayuje, LUxo80 Koouparve, demasbhe onuce apujadiu, 3anuca umo.
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3.3 Crpareruja u craHIapay 3a 4yBarbe [oJaTaka

3.3.1. lo xor neproxa he momamm OWTH 4yBaHU y pEIO3UTOPHjyMy?

3.3.2. la mu he momanu O6utu aenonoBanu mox mudpom? Ja He

3.3.3. la u he mmdpa 6utn nocrynna oapehenom kpyry ucrpaxknsada? la He

3.3.4. [la i ce mofaly MOpajy yKJIOHUTH U3 OTBOPEHOT IPHCTYIIA TIOCTIe H3BECHOT BpeMeHa?
Jla He

O06pasnoxutn

OCT moAaTaKa M 3alliITUTA MOBEP/bUBUX nH(])opMaunja

OBgaj onesbak MOPA 6uTH IOITyHeH ako Ballly IOAAIM YKJbYUYjy JIMYHE MOAAaTKE KOjU ce OJJHOCE Ha
YUYECHHKE Y HCTPaXXMBamy. 3a pyra HCTpaxKuBarwa Tpeda Takohe pa3MOTPUTH 3aLUTUTY U CUTYPHOCT
Ho/IaTaKa.

4.1 ®opMaHU CTaHIAPAU 38 CUT'YPHOCT HH(OpMaIHja/mogaTaka

HcrpaxuBaun Koju CIPOBO/IC HCIMTHBAKA C JbyIMMa MOPajy Jia Ce MPUIPKABajy 3aKOHA O 3alITUTH
NoZIaTaKa o JIMYHOCTH (https.//www.paragraf.rs/propisi/zakon_o_zastiti podataka o_licnosti.html) n
ozroBapajyher HHCTUTYIIHOHAIHOT KOJEKca O aKaJeMCKOM HHTETPUTETY.

4.1.2. 1a nu je uctpaxuBame ogo0peHo o1 cTpaHe eTruke komucuje? [la He

AKo je onroop [la, HaBeCTH JaTyM U Ha3UB €THUYKE KOMHUCH]E KOja je 000pHIIa HCTPaXKUBAE

4.1.2. JTa nu nojaiy yKJbydyjy JHMYHE IOJaTKe yYeCHHUKa y UcTpaxuBamy? Jla He
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AKo je oaroBop 11a, HaBeJUTE Ha KOJU HAYMH CTE OCUTYPAJIN ITOBEPIBMBOCT M CUTYPHOCT HH(pOpMarmja
BE3aHHUX 32 UCITUTAHUKE:

a) Toxaiu HUCY Y OTBOPEHOM MPUCTYITY
0) Tlonmanwm cy aHoHUMH3HpaHU
1) OcTaio, HaBECTH NITa

5. JIocTynHOCT noaTaKa

5.1. llooayu he bumu
a) jagno docmynHu
6) oocmynnu camo yckom Kpyey ucmpasjicugaya y oopehenoj nayunoj oonracmu

y) 3ameopeHu

AKo ¢y nodayu 00CmynHu camo YCKOM Kpyey UCmpa)cueayd, Hagecmu noo KOjum yCiosuma Moy oa ux
Kopucme:

AKo ¢y nodayu 00CmynHu camo YCKOM Kpyey UCmpa)cueayd, Hagecmu Ha Koju HA4uH Moy
NPUCIYRUMU NOOAYUMA.

5.4. Hasecmu nuyenyy noo kojom he npuxynmwenu nooayu 6umu apxusupanu.

6. Yiiore u 0ArOBOPHOCT

6.1. Hasecmu ume u npesume u mejii aopecy 61acrHuxa (aymopa) nodamaxa
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6.2. Hasecmu ume u npesume u mejii adpecy ocobe Koja o0parcasa Mampuyy ¢ nooayuma

6.3. Hagecmu ume u npesume u mejn aopecy ocobe xoja omoeyhyje npucmyn nooayuma oOpyeum

ucmpaskcuseaduma

Hanumonanuu TIopTaj OTBOPEHE HAYKE — open.ac.rs
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