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ABSTRACT

Abstract

Tomography refers to various imaging methods that use penetrating waves to gather
data about an inaccessible or obscured object of interest. In general, the waves are
systematically propagated through the object from multiple directions in order to
gather the necessary data for a good reconstruction. The object under reconstruction
is perceived as a function characterized by a domain that can either be discrete or
continuous, and its output range comprises real numbers. The primary objective is
to restore this function by leveraging available data, encompassing integrals or sum-
mations over portions of its domain. In the case of Discrete Tomography (DT), the
function’s range is typically a finite collection, commonly employed for reconstruct-
ing digital images featuring multiple gray levels, referred to as multi-level discrete
tomography. Another specific case is Binary Tomography (BT), which focuses on
reconstructing binary images.

In DT, very few projections are in ideal situations used for recovering the object.
Consequently, DT finds extensive application in domains where the material composi-
tion of the object being examined is already known, such as industrial non-destructive
testing or electron tomography|[41, 42].

So far, only a handful of algorithms have been proposed to address the DT prob-
lem, particularly when confronted with the multi-level tomography image reconstruc-
tion challenge. These algorithms encompass the Discrete Algebraic Reconstruction
Technique (DART) introduced by Batenburg and Sijbers in their work [5], the Multi-
Well Potential based method (MWPDT) outlined in the publication by Lukié [57], a
hybrid approach that combines non-local projection constraints with continuous con-
vex relaxation for multilabeling problem resolution, and the Non-Linear Discretization
function-based reconstruction algorithm (NLD) as described by Chen and coauthors

[23]. Nevertheless, it is important to note that certain limitations are associated
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with some of these methods, such as the tendency to produce radical solutions, de-
creased accuracy in reconstructions when confronted with limited projection data, or
susceptibility to becoming trapped in local minimum solutions.

In recent years several machine learning algorithms and techniques have been
applied in discrete tomography to enhance reconstruction accuracy, speed up the
process, or handle specific challenges. These algorithms can be based on Convo-
lutional Neural Networks (CNNs) [48] or Reinforcement Learning [86]. Combining
traditional optimization techniques with machine learning approaches can lead to
hybrid methods that leverage the strengths of both. For example, using machine
learning for initialization or as a post-processing step in combination with optimiza-
tion algorithms. The downsides of using machine learning in discrete tomography
include challenges related to the need for large labeled datasets, interpretability is-
sues with complex models, potential overfitting, computational complexity, and the
requirement for expertise in both machine learning and domain-specific knowledge.
Additionally, concerns about robustness to noise, limited explainability, and depen-
dency on training distribution may impact the applicability of machine learning in
discrete tomography applications. It’s important to note that the application of ma-
chine learning in discrete tomography is an active area of research, and new methods
and improvements continue to emerge.

Graph cuts have emerged as a prominent strategy in the fields of image processing
and computer vision for addressing various problem-solving tasks. This methodology
revolves around the creation of a dedicated graph to represent the energy function,
with the objective of achieving either global or local energy minimization by the
identification of the minimal cut on the graph. Efficient computation of the minimum
cut can be achieved by utilizing max-flow algorithms, which often yield a solution that
comes with theoretical guarantees on its quality.

In DT, the reconstruction problem is usually under-determined with only two pro-
jections, and it becomes NP-hard with more than two projection directions. Prior
information is crucial in tackling this issue and making the reconstruction process

more feasible. This prior knowledge can encompass a wide range of details about the



objects in the image. For instance, it might involve knowing that the objects in the
image are expected to have specific shapes or adhere to particular geometrical prop-
erties, such as being circular or rectangular. By incorporating this prior information
into the reconstruction process, we aim to reduce the ambiguity in the problem and
improve the accuracy of the final reconstructed image.

This raises an intriguing question: Can shape descriptors be used as prior informa-
tion? In specific situations, there might be a requirement for reconstructions utilizing
only one projection direction. Image reconstruction from a single projection, a chal-
lenging task in fields like medical imaging, astronomy, and security, is applied when
obtaining multiple measurements is not feasible. For instance, emergency medical
X-rays use a single image for rapid injury diagnosis, and in astronomy, occultation
events rely on changes in starlight to unveil celestial object characteristics. Secu-
rity scanners minimize radiation exposure by reconstructing baggage contents from a
single scan. In industrial non-destructive testing, single projections are employed to
inspect welds or structures. In such instances, harnessing a known shape descriptor
of the observed object can be highly beneficial in obtaining satisfactory images.

This thesis provides an overview of discrete tomography, beginning with the defini-
tion of digital images, followed by explanations of tomography and discrete tomogra-
phy, as well as some of the shape descriptors that can be used as a priori information in
reconstruction. Existing reconstruction methods in discrete tomography are reviewed.
The thesis outlines three innovative approaches to address image reconstruction chal-
lenges in discrete tomography. Initially, it introduces a novel method that integrates
the gradient approach with the graph cuts method. Subsequently, it enhances this
method by incorporating two additional pieces of a priori information—specifically,
shape orientation and shape circularity. These pieces of information serve as substi-

tutes in situations where there is a limited number of projection directions.
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REZIME

Rezime

Digitalna slika

Digitalnu sliku matematicki mozemo definisati kao dvodimenzionalni niz diskre-
tnih vrednosti, gde svaka vrednost predstavlja odredenu karakteristiku slike, kao sto
su intenzitet, boja ili tekstura. Formalno, digitalnu sliku mozemo predstaviti kao
funkciju f(z,y), gde = i y predstavljaju prostorne koordinate slike, a f(z,y) je vre-
dnost slike na toj odredenoj lokaciji.

U matematickoj notaciji, digitalnu sliku mozemo definisati kao:

I(x,y), ako (z,y) € D
flz,y) =
0, inace,

gde je I(x,y) intenzitet piksela na poziciji (z,y), D je domen slike, i f(x,y) je
digitalna slika.

Domen slike D obi¢no se definiSe kao oblast u Dekartovom koordinatnom sistemu,
u kojoj su vrednosti piksela definisane, dok se pikseli izvan ovog regiona smatraju
nulama. Vrednosti intenziteta I(x,y) obitno se predstavljaju kao skup diskretnih
vrednosti, kao sto su celobrojni ili binarni brojevi, u zavisnosti od formata slike i
broja bitova koji se koriste za predstavljanje svakog piksela.

Digitalna slika cesto se predstavlja kao matrica, gde svaki element matrice odgo-
vara vrednosti intenziteta piksela na slici. Na ovaj nacin, vrednosti digitalne slike
mogu se matematicki predstaviti i lako obraditi, analizirati i manipulisati.

U matematickim razmatranjima ¢esto se pretpostavlja da je funkcija slike f(z,y)
neprekidna i dovoljno puta diferencijabilna. To omogucé¢ava primenu razlicitih metoda

matematicke analize, kao Sto su visestruki integrali, diferencijalni operatori i dife-
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rencijalne jednacine. Na ovaj nacin, dobijeni rezultati (jednacine/operatori) zatim se

diskretizuju i prilagodavaju za upotrebu u digitalnom okruzenju.

Tomografija

Re¢ tomografija se odnosi na razli¢ite metode snimanja u kojima se koristi talasna
energija koja prolazi kroz nepoznati objekat od interesa da bi se prikupili podaci o
njemu; obic¢no je taj objekat teSsko dostupan ili nevidljiv. U vecini slucajeva, talasi
se moraju slati kroz objekat iz velikog broja razlic¢itih pravaca kako bi se prikupilo
dovoljno podataka za uspesnu rekonstrukciju. Objekat koji se pokusava rekonstru-
isati posmatra se kao funkcija sa domenom koji moze biti diskretan ili neprekidan,
i sa skupom slika koji ¢ine dati skup (obi¢no) realnih brojeva. Zadatak tomografije
jeste rekonstrukcija ove funkcije na osnovu poznatih podataka (integrala ili suma

podskupova njenog domena).

Projektivna geometrija u tomografiji

Glavni problem postavljen u tomografiji je rekonstrukcija informacija o objektu na
osnovu posmatranih podataka. Posmatrani podaci se dobijaju merenjem intenziteta
talasa koji prodiru kroz objekat iz razlicitih pravaca. Dok talas iz izvora prolazi kroz
objekat, njegova snaga oslabi, i nova vrednost intenziteta talasa se belezi na detektoru.
Tu vrednost nazivamo projekcijom.

Projektivna geometrija bavi se odnosima izmedu objekta i projekcije objekta na
neko drugo podrucje (detektor). Najéeséi tipovi projekcija u tomografiji su projekcije
paralelnog zraka i projekcije lepezastog zraka (Slika 1).

U projekciji paralelnog zraka, kroz objekat prolaze paralelni zraci koji idu od izvora
(izvor se kreée u paralelnom smeru) do detektora. U projekciji lepezastog zraka, izvor
je fiksan, rotira se oko objekta i Salje radijalne zrake prema detektoru.

U ovoj disertaciji, fokusiramo se na projekcije paralelnog zraka. Geometrija le-
pezastog zraka moze se konvertovati u geometriju paralelnog zraka, tako da se sva

razmatranja iz ovog poglavlja mogu primeniti i na projekcije lepezastog zraka [6].
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Slika 1: Geometrije slikanja paralelnog zraka i lepezastog zraka

Diskretna tomografija

Diskretna tomografija (DT) [41, 42] mozZe se definisati kao grana tomografije koja
se bavi rekonstrukcijom diskretnih objekata ili slika iz ograni¢enog broja projekcija.
Za razliku od kontinuirane tomografije, koja se bavi rekonstrukcijom slika sa kon-
tinuiranim vrednostima intenziteta, diskretna tomografija se usmerava na rekonstru-
kciju slika sa diskretnim ili binarnim vrednostima. Diskretna priroda objekata ili
slika uvodi dodatne izazove i ograni¢enja u proces rekonstrukcije. Pojam diskretne
tomografije je skovao Lari Sep (Larry Shepp), koji je organizovao prvu konferenciju
na ovu temu 1994. godine.

U idealnom slucaju, za tacno rekonstruisanje objekta u DT-i, ¢esto je potreban
mali broj projekcija. Zbog toga DT ima Sirok spektar primena u oblastima gde su ma-
terijali objekta pod istrazivanjem poznati unapred, kao sto su industrijsko ispitivanje
materijala ili elektronska tomografija [41, 42].

Problemi rekonstrukcije u diskretnoj tomografiji obi¢no se formulisu kao optimiza-
cioni problemi, gde se definise funkcija cilja koja meri uskladenost izmedu objekta i
projekcionih podataka. Potom se trazi minimum funkcije cilja, koriste¢i razlicite nu-

mericke metode.
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Standardna metoda za objasnjavanje procesa prikupljanja projekcionih podataka
u diskretnoj tomografiji koristi koncept linija projekcija. Kako bismo to ilustrovali,
razmotrimo 2D resetku koja predstavlja objekat koji treba rekonstruisati. Svaka
¢elija u ovoj resetki moze imati vrednost iz diskretnog skupa. Proces prikupljanja
projekcionih podataka simulira sta bi se desilo ako bi linije bile projektovane kroz
objekat iz razlicitih pravaca i gde bi se te linije sekle sa objektom.

Kako se prikupljaju projekcioni podaci, sakuplja se informacija o presecima izmedu
linija projekcije i ¢elija. Sakupljeni projekcioni podaci iz razlic¢itih pravaca mogu se
organizovati u matricu. Svaki red u matrici odgovara jednom uglu projekcije, a svaka
kolona odgovara odredenom broju preseka popunjenih celija.

Primarni cilj diskretne tomografije je rekonstruisati originalnu resetku objekta
koriste¢i matricu prikupljenih projekcionih podataka. Ovaj proces ukljucuje reSavanje
inverznog problema: pronalazenje konfiguracije resetke koja bi dovela do posmatranih
projekcionih podataka.

Posmatrajmo sliku u* dimenzija N = 4 x 4 = 16. Slika 2 prikazuje primer
izracunavanja vrednosti projekcije na u*. Linija projekcije prodire kroz piksele slike.

Vrednost projekcije b; racuna se kao b; = a; 4u}+a; gug+a; 7us+a; sug+a; 9Us+a; 10U -

* * * Uy b:

U up us3 a,

U*6 'a|/74 al8

3 )
Usg a.

|6 * *

uz
Ug aj 10 . .
// Y11 Y12
a.

*
9] Y10

* * * *
Uis Uig Uis Uig

Slika 2: Primer izrac¢unavanja vrednosti projekcije na slici

Diskretna tomografija se suocava sa izazovima povezanim sa diskretnom prirodom
reprezentacije objekta, sto rezultira specijalizovanim metodama dizajniranim posebno
za rekonstrukcije sa diskretnim ili binarnim resetkama.

Jedan od izazova u problemima rekonstrukcije u diskretnoj tomografiji je suocava-
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nje sa Sumom i nesigurnoséu u projekcionim podacima. Projekcioni podaci mogu biti
pogodeni Sumom, kao Sto su elektronski Sum ili rasipanje svetlosti, Sto moze otezati
preciznu rekonstrukciju objekta. Pored toga, projekcioni podaci mogu sadrzati slu-
¢ajnu odnosno stohasticku komponentu, sto znac¢i da se merenja ne znaju tacno.
Stoga, metode rekonstrukcije cesto ukljucuju regularizacioni ¢lan koji pomaze stabi-
lizaciji reSenja i smanjenju uticaja Suma i nesigurnosti.

Jos jedan izazov u diskretnoj tomografiji je kombinatorna priroda problema. Skup
mogucih resenja je neodreden, Sto znaci da postoji vrlo veliki broj moguc¢ih objekata
koji bi mogli proizvesti dati skup merenja. Stoga se metode rekonstrukcije ¢esto
oslanjaju na neki oblik a priori znanja o objektu kako bi se problem uc¢inio manje
neodredenim.

Problem rekonstrukcije u diskretnoj tomografiji moze se prikazati slede¢im li-

nearnim sistemom jednacina:

apiuy + 12Uz + azuz + ...+ aivun = by
a21U1 + 22U + ao3U3 + ...+ AoaNUN = bQ
a31U1 + A3z2Ug + G33U3z + ... + A3NUN = bg

apr1uy + aproUo + apr3us + ...+ aApyNuUN = bM,

koji se moze posmatrati u matriénoj formi kao:

Au=b, (1)

gdesu: A€ RN e AN b e RM i A ={\;, N, ..., \i} za kb > 2.
Zadatak je rekonstruisati sliku predstavljenu nepoznatim vektorom w. Opseg
mogucih vrednosti za sliku, predstavljen skupom A, definisan je od strane korisnika

i moze biti binaran ili sa viSe nivoa sive boje. Projekcioni podaci su sadrzani u
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projekcionoj matrici A, gde svaki red odreduje duzinu preseka izmedu piksela i pro-
jekcionih zraka koji prolaze kroz njih. Elementi matrice odredeni su duzinom ovih
preseka. Projekcioni vektor b racuna se kao suma proizvoda intenziteta piksela i
duzine projekcionih zraka koji prolaze kroz njih.

Proces projekcije koristi razlicite pravce i koristi paralelnu metodu projekcije
zraka, gde se uzima viSe paralelnih projekcionih zraka za svaki pravac. Ugao «
odgovoran je za odredivanje pravca projekcije. Kako bi se osigurala pokrivenost
cele resetke slike, udaljenost izmedu susednih paralelnih projekcionih zraka jednaka
je duzini stranice piksela i ravnomerno su rasporedeni. Broj paralelnih projekcionih
zraka je specificiran kako bi se pokrila cela resetka slike.

Rekonstrukcioni problem podrazumeva pronalazenje slike u predstavljene linearnim
sistemom jednacina (1), koriste¢i projekcionu matricu A i vektor b. Ovaj sistem Cesto
nema jednistveno resenje, sa N > M. Cilj je ne samo pronaéi reSenje koje se podu-
dara sa datim projekcijama, vec i reSenje koje blisko odrazava originalnu sliku. Da bi
se dobilo visokokvalitetno i zadovoljavajuce resenje, potrebno je koristiti sva dostupna
znanja (a priori informacije) o objektu u pitanju.

Metodi minimizacije energije su moc¢ne tehnike koje se koriste u obradi slika za
reSavanje razlic¢itih problema, kao sto su uklanjanje Suma sa slike, segmentacija slika,
popunjavanje slika i obnova slika. Ovi metodi imaju za cilj da pronadu optimalnu kon-
figuraciju energetske funkcije koja predstavlja gresku ili neslaganje izmedu obradene
slike i zeljenog rezultata.

Fundamentalni koncept ukljucuje formulisanje problema diskretne tomografije
kao modela minimizacije, gde je cilj pronaé¢i vrednost funkcije u koja minimizuje
funkcionelu E(u). Tipi¢no, u ovom kontekstu, u predstavlja sliku. Pojam energija
potice iz analogije u fizici, gde stabilan sistem karakterise minimalna ukupna energija.

U svakom pristupu minimizaciji energije, moraju se zadovoljiti dva kljucna kri-
terijuma. Prvo, dizajn energetske funkcije ili modela mora usko odrazavati stvarni
problem koji se reSava, a njen minimum, po moguéstvu globalni, treba predstavljati
optimalno resenje problema. Drugo, optimizacioni algoritam koji se koristi za mini-

mizaciju energije treba da bude brz i precizan, omoguc¢avajuéi dobro aproksimiranje
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minimalne vrednosti uz efikasnu upotrebu dostupnih ra¢unarskih resursa. Neposto-
vanje bilo kog od ovih kriterijuma moze znacajno smanjiti efikasnost metoda ili ih
potpuno uciniti neprikladnim za prakticne primene.

U obradi slika, energetska funkcija (poznata i kao funkcija cilja) kvantifikuje
kvalitet ili prikladnost date slike. Energetska funkcija obi¢no se sastoji od dve glavne
komponente: funkcije koja meri slicnost rekonstrikcije prikupljenim projekcionim po-
dacima i regularizacione funkcije.

Prilikom primene minimizacije energije u rekonstrukciji slika, u najopstijem kon-
tekstu, pokusava se dobiti rekonstruisana forma posmatrane slike u minimizacijom

sledece funkcije:

E(u) = F(Lu,b) + AR(u). 2)

Argument u” koji minimizuje energetsku funkciju,

u" = arg min F(u) (3)

u

smatra se procenom originalne slike.

Funkcija F', koja meri udaljenost izmedu projekcionih podataka b i rekonstrukcije
u nakon primene operatera L, procenjuje koliko dobro rekonstruisana slika odgovara
posmatranim podacima. U kontekstu uklanjanja Suma sa slike, ¢lan za vernost po-
dacima kaznjava razlike izmedu slike degradirane Sumom i slike bez Suma.

Regularizaciona funkcija R namece a priori znanje o resenju u. Ocekuje se da
niske vrednosti R doprinose, do odredene mere, eliminaciji nezeljenih karakteristika.
Regularizacija takode obezbeduje numericku stabilnost problema. Regularizacioni
parametar A reguliSe balans izmedu ova dva ¢lana, odnosno nivo uklanjanja Suma
u odnosu na precizno rekonstruisanje detalja slike. Regularizacioni ¢lan podstice
odredene osobine ili karakteristike u rekonstruisanoj slici i sprecava pojavu prekom-
plikovanih reSenja ili reSenja sa dosta Suma. Regularizacija pomaze u sprecavanju
preprilagodavanja i proizvodi vizuelno privlacnije rezultate.

Nalazenje analitickog resenja za problem (2) obi¢no nije izvodljivo zbog njegove

XIIT



dimenzionalnosti. Stoga je potreban odgovarajuéi optimizacioni pristup za njegovo
resavanje.

Clan za podudaranje podataka u E moze se oblikovati kao konveksna kvadratna
funkcija u obliku sume kvadrata gresaka, Sto ¢ini njegovo numericko reSavanje re-
lativno jednostavnim. Metoda konjugovanih gradijenata pokazala se kao jedan od
najefikasnijih pristupa za minimizaciju ove funkcije, pruzajuéi reSenje u najvise N
(dimenzije u) iteracija. lako se ovaj ¢llan ¢esto predstavlja kao konveksna kvadratna
funkcija, vazno je napomenuti da moze odstupati od ovog oblika. Nekvadratni ¢lanovi
za podudaranje podataka javljaju se u slozenim sistemima ili modelima, stvarajuéi
probleme za numericku obradu. U takvim slucajevima, tradicionalne metode opti-
mizacije razvijene za kvadratne probleme mogu biti manje efikasne [20].

Medutim, regularizacioni ¢lan R moze imati potpuno drugaciji oblik. Moze pokazi-
vati visoku nelinearnost, negativnost, pa cak i nediferencijabilnost u odredenim ta-
ckama. Ove karakteristike ¢ine minimizaciju E izazovnom. Visoka nelinearnost
povecava racunarsku slozenost tokom numerickih evaluacija, dok negativnost moze
rezultirati time da energetska funkcija E nije konveksna, sto otezava odredivanje
globalnog minimuma. Osim toga, nediferencijabilnost funkcije R implicira da je i
E nediferencijabilna, ¢ime mnoge metode minimizacije zasnovane na gradijentu ili
izvodima viseg reda postaju neprikladne. Ovo je veliko ogranicenje, jer se mnoge
efikasne deterministicke metode oslanjaju na rac¢unanje gradijenata.

Analiza gore navedenog pokazuje da problemi obrade slika sa regularizacijom nisu
uvek dobro postavijeni (well-possed). Na primer, kada energetska funkcija sadrzi
negativan regularizacioni ¢lan, to moze dovesti do negativnosti problema, Sto moze
rezultirati visestrukim lokalnim minimumima bez jedinstvenog globalnog minimuma.
U takvim sluc¢ajevima, glavni doprinos regularizacije je suzavanje prvobitnog skupa
reSenja, ali ne i nuzno dovodenje do jedinstvenog resenja.

Problem (2) predstavlja problem neprekidne optimizacije. Medutim, odredene
primene, kao $to su diskretna tomografija ili defazifikacija, ogranicavaju prostor pre-

trage na diskretan skup. Ogranic¢eni problem sa regularizacijom formulisan je kao:
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min Fg(u), (4)

u€ef)

gde Q predstavlja dopustiv skup. Ispunjavanje uslova ogranicenja predstavlja do-
datni izazov, uz prethodno analizirane probleme, koji treba resiti. Jedan moguéi
pristup je transformisati ogranic¢eni problem u neprekidni putem reformulacije uslova
ogranicenja kao novog regularizacionog sabirka. Primer takvog pristupa je konveksno-
konkavna regularizacija u diskretnoj tomografiji [84]. Alternativno, drugi nacin za
reSavanje ovog izazova je direktna primena odgovarajuc¢e metode optimizacije posebno
dizajnirane za probleme sa ograni¢enjima.

U rekonstrukeiji slika, regularizacija je tehnika koja se koristi za ogranicavanje
prostora resenja inverznog problema kako bi se dobilo jedinstveno i stabilno resenje.
Inverzni problem u rekonstrukeiji slika odnosi se na zadatak procene nepoznate slike
na osnovu datog skupa merenja ili posmatranja. Merenja ili posmatranja mogu biti
degradirana Sumom ili mogu biti nepotpuna, Sto inverzni problem ¢ini slabo posta-
vljenim (ill-posed problem).

Regularizacija se moze definisati kao dodatan sabirak koji se dodaje funkciji cilja
koja se minimizuje kako bi se pronaslo resenje inverznog problema. Regularizaciona
funkcija namecée odredene osobine resenju, kao sto su glatkost, orijentacija i slicno,
Sto reSenje ¢ini smislenijim i manje osetljivim na Sum ili nepotpunost podataka.

Regularizacioni ¢lan cesto je funkcija slike sama po sebi i bira se na osnovu kara-
kteristika slike i vrste inverznog problema. Regularizacija se moze matematicki for-
mulisati kao ¢lan kazne, uslov ili a priori verovatnoca raspodele slike. Cilj regula-
rizacije je da se dobije stabilno resenje inverznog problema.

Postoji nekoliko funkcija za regularizaciju koje se Cesto koriste u rekonstrukciji
slika, svaka sa svojim prednostima i manama.

Do sada je samo nekoliko algoritama predlozeno za resavanje problema DT-a.
Ti algoritmi ukljucuju Diskretnu Algebarsku Rekonstrukcionu Tehniku (DART) [5],
metodu zasnovanu na Visestrukim Potencijalima (MWPDT) [57], kombinaciju nepo-

stojanih projekcionih ograni¢enja sa kontinuiranim konveksnim relaksiranjem pro-
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blema visestrukog obelezavanja [99] i algoritam rekonstrukeije zasnovan na nelinearnoj
diskretizaciji funkcije (NLD) [92]. Medutim, neki od ovih metoda imaju ogranicenja,
kao Sto su pruzanje radikalnih resenja, manje tacne rekonstrukcije, posebno kada se
smanji broj projekcija, ili ostajanje u lokalnim minimumima, tj. polu-kontinualna
resenja.

U prethodnih par godina metode masinskog ucenja su pocele da imaju primenu
i u rekonstrukeija slika u tomografiji [48, 86]. Kombinovanje tradicionalnih tehnika
optimizacije sa pristupima masinskog ucenja moze dovesti do hibridnih metoda koje
koriste prednosti oba pristupa. Na primer, upotreba masinskog ucenja za inicija-
lizaciju ili kao postupak postprocesiranja u kombinaciji sa tradicionalnim algoritmima
optimizacije. Za adekvatnu primenu metoda masinskog ucenja, neophodno je imati
veliku bazu podataka na osnovu kojih bi se mogao trenirati algoritam. Dodatno,
mana ovakvog pristupa lezi u nemoguénosti poptpune interpretacije resenja, kao i u
velikoj racunarskoj kompleksnosti.

Jedan od ¢esto korisé¢enih pristupa za resavanje problema obrade slika i racunarske
vizije je zasnovan na presecanju grafova. Ovaj pristup podrazumeva izgradnju speci-
jalizovanog grafa za datu funkciju energije, tako da minimum preseka na grafu mini-
mizuje energiju, bilo globalno ili lokalno. Minimum preseka se moze efikasno izracunati
pomocu algoritama maksimalnog protoka, a rezultat obi¢no pruza resenje sa teore-
tskim garancijama kvaliteta.

U DT-u, problem rekonstrukcije je obi¢no neodreden sa samo dve projekcije, dok
postaje NP-tezak sa vise od dva projekciona pravca [38]. Da bi se smanjila neo-
dredenost, ¢esto se u rekonstrukciju uklju¢uju unapred poznate informacije o objektu,
kao sto su konveksnost, povezanost, homogenost, slicnost sa modelnom slikom, obim
i orijentacija. To postavlja pitanje da li se i koji deskriptori oblika mogu koristiti kao
a priori informacije. Potreba za rekonstrukcijama koriste¢i samo jedan pravac proje-
kcije moze se javiti kada su i projekcioni sistem i posmatrani objekat fiksirani. Primer
takve situacije moze biti ispitivanje materijala u gradevinarstvu, kao Sto je ispitivanje
strukture zida. Primene u medicini mogu zahtevati izuzetno nisku radijaciju za paci-

jenta. U slucajevima kada je odredeni deskriptor oblika posmatranog objekta (npr.
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odredeni unutrasnji organ) poznat, metoda rekonstrukcije koja koristi ove informa-
cije moze obezbediti prihvatljive slike koriste¢i samo jedan pravac projekcije, ¢ime se
smanjuje doza radijacije za pacijenta.

Ova teza pruza pregled diskretne tomografije, pocevsi od definicije digitalnih slika,
zatim definisanja tomografije i diskretne tomografije, kao i pregled postoje¢ih metoda
rekonstrukcije u diskretnoj tomografiji i postojec¢e deskriptore slike koji mogu da se
koriste kao a priori informacija prilikom rekonstrukcije slike. Na kraju, teza pruza
definiciju novih metoda rekonstrukcije u diskretnoj tomografiji koje pokazuju bolje

performanse u poredenju sa postoje¢im metodama.

Metode za rekonstrukciju slika u digitalnoj tomografiji za-

snove na secenju grafova

Graf G je ureden par G = (X, p), gde je X konacan neprazan skup elemenata koji se
zovu ¢vorovi, a p je konac¢an skup uredenih, ili neuredenih parova, razlic¢itih elemenata
skupa X koji se zovu grane. Ukoliko je p skup uredenih parova, re¢ je o usmerenom
grafu, u suprotnom imamo neusmereni graf. Ukoliko se svakoj grani grafa dodeli neka
vredonst, dobijamo ponderisani (tezinski) graf.

Tehnika secenja grafa je moéna tehnika koja se koristi u obradi slike za razlicite
zadatke, poput segmentacije slike, prepoznavanja objekata i matiranja slike. Ovaj
koncept ukljucuje particionisanje slike na dva ili vise segmenata pronalazenjem opti-
malnog reza kroz graf, kojim je predstavljena slika.

U tehnikama rezanja grafa, slika se predstavlja kao graf, gde je svaki piksel ¢vor,
a grane predstavljaju odnose izmedu piksela. Cilj tehnike rezanja grafa je pronadi
particiju grafa koja minimizuje funkciju cilja, u ovu svrhu mogu se koristiti razliciti
algoritmi, kao Sto su algoritam maksimalnog protoka-minimalnog reza ili metoda
secenja grafa zasnovana na dinamickom programiranju.

Optimizacija uz upotrebu tehnike secenja grafa pruza prakti¢an pristup resavanju
raznovrsnih izazova u obradi slike koji se mogu izraziti u kontekstu minimizacije

energije, kako je dokumentovano u razli¢itim istrazivanjima [8, 12, 13, 15, 16, 49, 52,
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55].

Potsov model

U teoriji secenja grafa, Potsov model [95] se koristi kao nac¢in formulisanja i
reSavanja optimizacionih problema koji ukljuc¢uju grafove. Cilj je podeliti ¢vorove
grafa u grupe tako da su grane koje povezuju ¢vorove unutar grupe minimizovane,
dok su grane koje povezuju ¢vorove izmedu grupa maksimizovane. Ovo moze biti
korisno za zadatke poput segmentacije slike, gde je cilj podeliti sliku na razli¢ite re-
gione ili objekte. U nasoj primeni, Potsov model se zasniva na minimizaciji sledeée

energije:

E(d) = ZD(]?, dp) + Z Kipg) - (1- 6dp,dq)7 (5)

pEP (p.9)eN
gde d = {d, | p € P} oznacava intenzitet piksela slike p € P. Izraz D(p,d,) oznacava
trosak dodeljivanja oznake d, pikselu p. Potencijalna interakcija izmedu parova suse-
dnih piksela p i ¢ oznacava se kao K, q), a N predstavlja skup susednih parova piksela.

Funkcija d4,.4, je Kronekerova delta funkcija.

Primena metoda secenja grafova u diskretnoj tomografiji
Tehnika za rekonstrukciju slike opisana u ovom odeljku je prvi put predstavljena od
strane Sulc i Lukiéa u [59] i naziva se metodom rekonstrukcije Diskretne Tomografije
Tehnikom Secenja Grafa (GCDT).
Prvi korak u procesu rekosntrukcije je pronalazak neprekidnog resenja problema
(6).
min  Eg(u) := ||Au — b||*. (6)

wel0, 1N

Gde je, Eg kvadratna funkcija nad skupom Q = [0,1]¥. Za resavanje ovog pro-

blema minimizacije koristimo algoritam Spektralnog Projektovanog Gradijenta (SPG)
[10].

Sledeéi korak u rekonstrukeiji je diskretizacija neprekidnog resenja jednacine (6),

dobijenog primenom SPG algoritma. U ovu svrhu, koristimo algoritam predlozen u
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[85, 93] 1 [58, 61], i biramo Potsov model interakcije zbog njegove sposobnosti da
promovise kompaktnost u resenjima, kako je primeceno u [14, 36, 89]. Izraz D, u
(5.2) je formulisan na osnovu intenziteta piksela, u(p), i dizajniran je tako da bude

mali ili jeftin u blizini odredenih sivih vrednosti.

D(p,0) = u(p) — Al
D(p,1) = |u(p) — A,

D(p,2) = [u(p) = A,

D(p,k —1) = [u(p) — Axl.

Potencijal interakcije, K, ), izmedu susednih piksela je postavljen kao konstantna
vrednost 1. Energetska funkcija (5) se zatim minimizuje koristeéi algoritam za Opti-
mizaciju Secenjem Grafa(GCO) [14, 16, 27, 53]. GCO algoritam dodeljuje vrednost
oznake, d,, svakom pikselu, koja odgovara unapred definisanom nivou sive boje i

odreduje intenzitete piksela u kona¢nom diskretnom resenju.

Metoda zasnovana na orijentaciji oblika

Nas pristup rekonstrukciji tomografije sjedinjuje metodu secenja grafa sa tehnikom
minimizacije baziranom na gradijentu, koristeci orijentaciju oblika kao kljuc¢nu a priori
informaciju.

U pocetnom koraku nase metode, izracunavamo vrednosti troskova podataka za
svaki piksel unutar slike. Ove vrednosti proizlaze iz intenziteta kontinualno aproksimi-

rane konacne rekonstruisane slike, postignute minimizacijom energetske funkcije:

N
min  Eq(u) =wpl|Au = b|* +wy Y Y (u; — uy)?
)

uel0,1]N i1 et
+wo(®(u) — a®)? + pulu, 7 — u).
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Ovde uvodimo kljuéne elemente:

e 7=1,1,...,1]7 kao N-dimenzionalni vektor,

e wp koeficijent za kontrolu prilagodavanja podacima,

e wy koeficijent za regulisanje kompaktnosti resenja,

e T(i) predstavljanja indekse susednih piksela piksela i,

e O(u) za orijentaciju trenutnog resenja,

e o kao stvarnu orijentaciju (a priori informacija),

e wo koeficijent za odredivanje uticaja regularizacije orijentacije,

e (u,T — u) za podsticanje intenziteta piksela prema binarnim vrednostima,

1 za kontrolu uticaja binarizacije.

Za svako fiksirano p, koristimo iterativni optimizacioni algoritam SPG za reSavanje
problema (7). U slede¢em koraku, vrsimo sveobuhvatnu binarizaciju neprekidnog
reSenja dobijenog algoritmom SPG. Ova binarizacija koristi metodu secenja grafa
baziranu na Potsovom modelu. Funkcija troska podataka D u (5) oblikovan je na

osnovu informacija dobijenih iz glatkog resenja u:

D(p,0) = u(p),

D(p,1) =1 —u(p).

Takode, definisemo skup susednih parova N, sa (p,q) € N. Dva piksela su susedna
kade se njihove koordinate na slici razlikuju za samo jednu vrednost. Potencijal
interakcije K, je 1.

S ovim definicijama, spremni smo da minimiziramo energetsku funkciju u (5)

koristec¢i algoritam za optimizaciju rezanja grafa (Graph Cuts Optimization - GCO)
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16]. Algoritam GCO dodeljuje vrednosti oznaka d, € 0,1 svakom pikselu p. Ovde
P

opisana metoda je predlozena u [66].

Metoda zasnovana na cirkularnosti oblika
Metoda rekonstrukcije za resavanje problema diskretne tomografije predlozena u

[67] i ukratko opisana u ovom odeljku sastoji se od dva dela:

1. Pronalazenje kontinualnog resenja problema minimizacije energije koriste¢i metod
minimizacije baziran na gradijentu. Energetska funkcija ukljucuje informacije

o cirkularnosti originalnog objekta.

2. Diskretizacija dobijenog neprekidnog reSenja primenom algoritma baziranog
na secenju grafa. Vrednosti piksela neprekidne slike koriste se za definisanje

funkcije troska podataka za graf.

Energetska funkcija koja se koristi za izracunavanje neprekidnog resenja data je

slede¢om jednacinom:

min  Eg(u) —prAu—sz—i—sz > (w

uel0,1]N i=1 jET(i) (8)

+we (C(u) = C*)* + p(u, T —u),

i sastoji se od sledeca cetiri ¢lana:

1. Clan prilagodavanja podacima, ||Au — b||2, regulisan parametrom wp > 0, koji

osigurava slicnost projekcionim podacima.

2. Funkcija homogenosti, ZZ 1ZjeT (u; — u;)?, regulisana parametrom wy >
0; Ovde, Y (i) predstavlja skup indeksa susednih piksela pikselu i. Ovaj ¢lan

osigurava glatko¢u resenja;

3. Clan, (C(u)—C*)?, meri udaljenost izmedu cirkularnosti trenutnog resenja (C(u))
i poznate cirkularnosti originalne slike (C*). Parametar we > 0 odreduje uticaj

regularizacije cirkularnosti.
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4. Clan regularizacije konkavnosti, (u, 7—u), gde je 7 = [1,1, ..., 1]7 vektor veli¢ine
N. Ovaj ¢lan pomaze u pomeranju intenziteta piksela prema binarnim vredno-
stima, a njegov uticaj postepeno raste tokom procesa rekonstrukcije, regulisan

parametrom g > 0.

Optimizacioni problem (8) je ogranicen, kvadratni problem minimizacije energije koji
se moze resiti razlicitim metodama optimizacije. Mi smo izabrali optimizacioni algo-
ritam SPG [9] zbog dobrih performansi u slicnim problemima.

2 u energetskoj funkciji (8) odreden

Gradijent regularizacionog ¢lana (C(u) — C*)
je analiticki, sto omogucava brzu minimizaciju i odredivanje neprekidnog reSenja
pomoc¢u SPG algoritma.

Kriterijum zaustavljanja prilikom trazenja neprekidnog resenja je (u, 7—u) < Epp,
gde Ey;, reguliSe stepen binarizacije resenja u, i u nasSim eksperimentima ima vrednost
100.

Nakon izracunavanja neprekidnog resenja, slede¢i korak je njegova potpuna bina-
rizacija. Ovo se postize primenom Potsove metode.

Navedeni algoritam daje vrednosti oznaka d,, za svaki piksel p, gde je d, predefi-

nisan kao d, = 0 =+ 0id, = 1 — 1. Ove vrednosti oznaka odreduju intenzitete

piksela u kona¢nom (binarnom) resenju, oznacavajuéi kraj procesa rekonstrukcije.

Naucni doprinosi i originalni rezultati

U tezi je uvedena nova metoda za rekonstrukciju slika zasnovana na minimizaciji
funkcije energije u diskretnoj tomografiji koja kombinuje gradijentnu metodu sa meto-
dom secenja grafova. Ova metoda je objavljena u publikaciji [59] i pokazuje dobre
performanse u poredenju sa postoje¢im metodama koje se bave slicnim problemima.

U tezi je pokazano da se performanse metoda za rekonstrukciju slika u diskretnoj
tomografiji sa malim brojem projekcionih podataka mogu znacajno poboljsati ukoliko
se u njih ukljuci i a priori informacija o objektu. U tezi je poseban akcenat stavljen

na orijentaciju i cirkularnost oblika.

XXII



U tezi je predstavljena nova metoda, obljavljena u publikaciji [66], koja integrise
metodu sec¢enja grafa sa tehnikom minimizacije zasnovane na gradijentu, koristeci
orijentaciju kao poznatu informaciju o obliku. Metoda pokazuje zavidne performanse
prilikom rekonstrukcije binarnih slika na osnovu projekcionih podataka iz jedne di-
menzije. Dodatno, opisan je novi metod predstavljen u publikaciji [67] koji koristi
cirkularnost oblika kao a priori informaciju o objektu, kao i rezultati eksperimenata
koji pokazuju veliku efikasnost ovih metoda u rekonstrukciji slika sa smanjenim pro-

jekcionim podacima.

Struktura teze

Ova doktorska disertacija je podeljena u Sest poglavlja. U uvodnom poglavlju
predstavljeni su istrazivacki problem i njegov znacaj. Poglavlje pruza pregled cele
teze, isticuéi kljucne ciljeve i doprinose sprovedenog istrazivanja. Takode sadrzi
listu originalnih radova koji ¢ine osnovu teze. Do kraja ovog poglavlja, ¢itaoci ¢e
imati jasno razumevanje opsega istrazivanja i njegove relevantnosti u oblasti digi-
talne obrade slika i tomografije.

Poglavlje 2 sluzi kao osnova dalje diskusije. Poc¢inje sa definicijom digitalne slike,
opisujuéi kako se ona predstavlja i anlizira. Zatim se definiSe tomografska proje-
ktivna geometrija, isticuéi njen znacaj. Uvedena je Radonova transformacija, jedan
od osnovnih matematickih alata u tomografiji, a zatim se detaljno istrazuju njena
svojstva i primene. Sledeca je predstavljena Furijeova transformacija, naglasavajuci
njenu vaznost u analizi frekvencijskog sadrzaja. Poglavlje se zavrsava objasnjenjem
Furijeove teoreme i njene primene kroz algoritam filtrirane rekonstrukcije.

Poglavlje 3 prebacuje fokus na diskretnu tomografiju, znacajan pristup rekon-
strukciji slika sa diskretnim nivoima intenziteta. Pocinje formulisanjem problema
diskretne tomografije i razmatranjem povezanih izazova, kao i definicijom binarne
slike. Poglavlje zatim istrazuje problem rekonstrukcije slike u digitalnoj tomografiji.

Objasnjen je koncept regularizacije koji se koristi u situacijama gde znamo neke in-
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formacije o objektu na slici koji se rekonstruise, ali se rekonstrukcija vrsi na osnovu
malog broja projektivnih podataka. Predstavljen je Rajserov algoritam, zajedno sa
drugim algebarskim tehnikama rekonstrukcije kao sto su Algebraic Reconstruction
Technique (ART), Simultaneous Iterative Reconstruction Technique (SIRT), Simul-
taneous Algebraic Reconstruction Technique (SART), Discrete Algebraic Reconstruc-
tion Technique (DART) i Simulated Annealing Algorithm. Takode, razmatrane su
metode rekonstrukcije zasnovane na gradijentu kako bi se pruzio Siri uvid u razlicite
pristupe tomografskoj rekonstrukeciji.

U poglavlju 4 predstavljeni su desktiptori oblika, kao sto su geometrijski momenti
1 momenti invarijantnosti, orijentacija i cirkularnost oblika. Pomenuti deskriptori
oblika su temeljno opisani, naglasavajuc¢i njihov potencijal u analizi i rekonstrukciji
slika.

Poglavlje 5 prikazuje originalne doprinose disertacije. Prvi glavni doprinos je
primena optimizacije se¢enjem grafa. Koncept secenja grafa je detaljno objasnjen,
kao i originalna ideja njegove primene u rekonstrukciji slike u diskretnoj tomografiji.
Predstavljeni su eksperimentalni rezultati za metodu zasnovanu na secenju grafa,
koji pokazuju njenu efikasnost i performanse u poredenju sa postojeéim pristupima.
Poglavlje zatim integriSe informaciju o cirkularnosti i orijentaciji oblika u metode
rekonstrukcije zasnovane na secenju grafa, sto dovodi do razvoja dve nove strategije
za rekonstrukciju. Detaljna objasnjenja ovih metoda, zajedno sa eksperimentalnim
rezultatima, pruzaju ocenu njihovih performansi i mogué¢ih prednosti.

U zakljuénom poglavlju 6, sumirani su glavni rezultati i doprinosi disertacije.
Poglavlje potvrduje znacaj istrazivanja i njegov potencijalni uticaj na oblast diskretne
tomografije i rekonstrukcije slika i daje predlog mogué¢ih buducih pravaca istrazivanja.

Disertacija se zatvara sveobuhvatnim popisom svih referenci citiranih u celom
dokumentu. Ovaj deo prepoznaje izvore i prethodna istrazivanja koja su podrzala i

uticala na disertaciju.
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CHAPTER 1

Introduction

1.1 Thesis motivation and contribution

Tomography is an umbrella term for a broad range of imaging techniques that rely on

the process of image slicing. Tomographic imaging can be divided into two categories:
e Transmission tomography
e Emission tomography

In transmission tomography, the source of the radiation is outside the object. A source
is transmitting low energy ray through the object, a wave penetrates the object, and
part of the energy is attenuated. The detector then registers the attenuated intensity
of the wave. From the intensity of these projections, a reconstruction of the image of
the object is being made.

On the other hand, in emission tomography, radioactive substances are injected
and redistributed into the object. The unstable radionuclide decays by generating
~v-rays, detected by a detector array encircling the target. The acquired multiview
projection data set is then used to reconstruct the image.

In this thesis, we are focused only on transmission tomography.

In recent decades, we have seen enormous growth in the development and usage of
tomography. The main reason for the development of this field is its wide application
in many spheres of modern life.

In 1930 radiologist Alessandro Vallebona developed the basics of tomography in

medicine in the form of ”classic” X-ray tomography. Subsequently, a multitude of to-
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mographic techniques have been developed and applied within the medical domain to
facilitate the early detection of diseases. These methods include ultrasound diagnos-
tics (sonography), computed tomography (CT), magnetic resonance imaging (MRI),
positron emission tomography (PET), single-photon emission computed tomography
(SPECT), optical coherence tomography (OCT), electrical impedance tomography
(EIT), digital volume tomography (DVT), and ”classic” X-ray tomography. The key
distinguishing factor among these imaging techniques is their energy sources.

Angiography serves as an illustration of a medical diagnostic technique employing
tomography to provide visualizations of the interior of organs and blood vessels,
with a primary focus on arteries, veins, and the chambers of the heart. During the
procedure, a contrast agent with radio-opaque properties is introduced into the blood
vessel, rendering it visible through X-ray-based methods like fluoroscopy.

During the COVID-19 pandemic, Computed Tomography (CT) imaging has played
a crucial role in various aspects related to the virus. CT scans have been widely used as
a supplementary diagnostic tool to detect and assess lung involvement caused by the
SARS-CoV-2 virus. When the initial Polymerase Chain Reaction (PCR) tests were
inconclusive or had false-negative results, CT imaging provided valuable informa-
tion for diagnosing COVID-19 cases. It can reveal characteristic lung abnormalities,
such as ground-glass opacities and consolidations, which are indicative of COVID-19
pneumonia.

Apart from diagnosis, CT scans have been instrumental in evaluating the severity
and extent of lung involvement in COVID-19 patients, helping healthcare profession-
als determine the appropriate level of care and treatment. Serial CT scans have also
been used to monitor disease progression, allowing clinicians to assess whether the
disease is improving or worsening and adjust treatment plans accordingly.

In situations of overwhelmed healthcare systems, C'T imaging has assisted in triag-
ing patients based on the severity of lung involvement, enabling more efficient resource
allocation. Additionally, CT scans have been a valuable tool in advancing the sci-
entific understanding of COVID-19. By studying CT scans from large cohorts of

patients, researchers have gained insights into the patterns of lung involvement, dis-
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ease progression, and the impact of various treatments.

Furthermore, CT imaging has been used to evaluate lung damage and fibrosis
in patients who have recovered from COVID-19. Some individuals may experience
persistent lung issues even after recovery, and CT scans aid in assessing the extent of
long-term lung damage.

Throughout the pandemic, the responsible and efficient use of CT imaging in
COVID-19 cases has been subject to ongoing discussions. Concerns about radiation
exposure, resource allocation, and potential virus spread in radiology facilities have
been considered, leading to an increased need for image reconstruction methods that
require fewer projections for a valid reconstruction.

Next to medicine, tomography has its application in security and cargo inspection
since it can be used in materials categorization and detection, thus allowing the
exposure of dangerous and prohibited goods [88].

Computed Tomography has emerged as a highly valuable and non-destructive
tool in the field of archaeology. Using advanced imaging techniques, CT scans have
revolutionized how researchers study artifacts, human remains, and archaeological
sites, providing unparalleled insights into the past [45].

In artifact analysis, C'T scanning enables archaeologists to delve into the inner
compositions of items like pottery, metalwork, and statuettes, revealing hidden fea-
tures, inscriptions, and construction details that may not be visible to the naked
eye. This non-invasive approach allows for thorough examination without the risk of
damage.

Human remains examination has also significantly benefited from CT scanning.
By producing detailed images of skeletal remains, researchers can study ancient dis-
eases, injuries, and even the mummification processes used in various societies. Ad-
ditionally, C'T scans aid in facial reconstruction and the analysis of burial practices,
shedding light on the lives of past civilizations.

Beyond archaeology, CT scanning extends its utility to paleontology, enabling
the examination of fossils and other ancient remains. The technology facilitates the

investigation of internal structures, offering valuable insights into extinct species’
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biology and evolutionary history.

Moreover, CT scanning plays a crucial role in exploring monuments and archae-
ological sites without causing harm to delicate structures. By scanning subsurface
layers, archaeologists can discover hidden chambers, tunnels, or artifacts, enhancing
our understanding of ancient civilizations.

Preservation of cultural heritage is another crucial aspect of CT’s application in
archaeology. Fragile or sensitive artifacts can be digitally preserved through CT scans,
reducing physical handling and the risk of damage during conservation efforts. In
figure 1.1.3, taken from [79], we can see how CT assisted in discovering and restoring

objects hidden within soil block.

Fig. 1.1.3: Radiographs. A soil block (a) and two radiographs (b-c) of it viewed from
different angles (images are taken from [79]).

Additionally, CT scanning has been employed to read and virtually "unroll” an-
cient scrolls and manuscripts that are too fragile to open physically, enabling access
to their contents without causing harm.

Additionally, tomography is used for non-destructive material testing, in the food
industry, geophysics, oceanography, and other areas of science.

Tomography is a cost-effective, non-destructive, non-invasive imaging technique
that has the potential to undertake many future challenges in various areas of appli-
cation.

Tomography is inherently interdisciplinary, drawing insights from mathematics,

computer science, image processing, and other related fields. This cross-disciplinary
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nature allows researchers to collaborate and explore innovative approaches to problem-
solving. This, together with the diverse application of tomography, was the biggest
motivation to start the research presented in this thesis.

The primary objective of here presented research is to address the challenge of
improving image reconstruction in discrete tomography using projections obtained
from a very limited number of angles. While there exist reconstruction methods
that produce relatively good smooth solutions, this thesis goes a step further by
concentrating on finding an optimal way to discretize these smooth solutions. By
achieving a more refined discretization, we aim to enhance the quality and accuracy
of the final image reconstruction.

Within this thesis, we introduce an innovative technique for obtaining image re-
constructions of grayscale images using a sparse set of projections. Our method
incorporates the Spectral Projection Gradient (SPG) algorithm, which aids in ob-
taining a smooth solution. Additionally, we employ a method based on graph cuts to
further refine the solution and achieve a discrete representation of the reconstructed
image.

In many discrete tomography applications, we possess prior knowledge about the
object within the image. Taking advantage of this valuable knowledge, we intro-
duce a regularization term into the algorithm, which acts as a constraint during the
reconstruction process. In particular, we incorporate information about the shape cir-
cularity and shape orientation into the regularization term. By doing so, we guide the
reconstruction algorithm to generate solutions that align with the known properties
of the object being imaged.

To evaluate the effectiveness of our proposed method, we conducted numerous ex-
periments and comparative analyses. The results conclusively demonstrate that our
approach, utilizing the SPG algorithm and graph cuts, outperforms existing methods
in terms of both reconstruction accuracy and computational efficiency. By leveraging
the available a priori information, we have successfully achieved substantial improve-
ments in image reconstruction from a sparse set of projections.

Overall, this research represents an advancement in the field of discrete tomog-
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raphy, as it tackles the challenge of limited projections by proposing an innovative
and effective reconstruction method. The incorporation of a priori knowledge fur-
ther enhances the reconstruction quality, making it well-suited for various real-world
applications where obtaining a sufficient number of projections is challenging or time-

consuming.

1.2 Thesis outline

This PhD thesis is divided into six chapters. In the introductory chapter, the research
problem and its significance are presented. The chapter provides an overview of the
entire thesis, outlining the key objectives and contributions. It also includes a list of
the original papers that constitute the core of the thesis. By the end of this chapter,
readers will have a clear understanding of the research scope and its relevance in the
field of digital image processing and tomography.

Chapter 2 provides a fundamental basis for future analyses and discussions. It
starts by introducing the basics of digital images, explaining how they are represented
and processed. Tomographic projective geometry is then explored, emphasizing its
role in capturing projections from different angles. The Radon Transform, a crucial
mathematical tool in tomography, is introduced, followed by an in-depth exploration
of its properties and applications. Next, the Fourier Transform is presented, high-
lighting its relevance in analyzing frequency content. The chapter concludes with an
explanation of the Fourier Slice Theorem and its application through the Filtered
Back Projection algorithm.

Chapter 3 shifts the focus to discrete tomography, a significant approach in recon-
structing images with discrete intensity levels. It begins by formulating the discrete
tomography problem and discussing the challenges associated with it. The binary
image representation and the 0-1 intensity assumption are introduced. The chapter
then delves into the reconstruction problem, exploring how to infer missing informa-
tion from the acquired projections. Concept of regularization terms, used to enforce

smoothness or constraints, is examined in detail. The Ryser algorithm, a popular
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method for discrete tomography, is presented, along with a comprehensive exploration
of algebraic reconstruction techniques such as Algebraic Reconstruction Technique
(ART), Simultaneous Iterative Reconstruction Technique (SIRT), Simultaneous Al-
gebraic Reconstruction Technique (SART), Discrete Algebraic Reconstruction Tech-
nique (DART), and the Simulated Annealing Algorithm. Additionally, gradient-based
reconstruction methods are discussed to provide a broader perspective on different
tomographic reconstruction approaches.

Chapter 4 focuses on Area Based Shape Descriptors, such as geometric moments
and moment invariants, shape orientation, and shape circularity. Each shape descrip-
tor is explained thoroughly, emphasizing its potential in image analysis and recon-
struction.

Chapter 5 showcases the original contributions of the thesis. The first major
contribution is the use of Graph Cut Optimization. The concept of graph cuts
is explained in detail, and its application to discrete tomography reconstruction is
elucidated. Experimental results for the Graph Cut-based method are presented,
demonstrating its effectiveness and performance compared to existing approaches.
The chapter then integrates shape circularity and orientation into Graph Cuts Re-
construction Methods, leading to the development of two novel approaches. Detailed
explanations of these methods, along with their experimental results and quality met-
rics, are provided to assess their performance and potential advantages.

In the concluding chapter 6, the main findings and contributions of the thesis are
summarized. The chapter reaffirms the significance of the research and its potential
impact on the field of discrete tomography and image reconstruction. Limitations
and potential challenges faced during the research are acknowledged, leading to fu-
ture research directions and possible improvements to the proposed methods. The
chapter concludes with a thought-provoking outlook on the potential applications and
extensions of the work presented in the thesis.

The thesis concludes with a comprehensive list of all the references cited through-
out the document. This section acknowledges the sources and prior research that

have influenced and supported the thesis.
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CHAPTER 2

Background

In this chapter, we give a short introduction to tomography and image reconstruction.

2.1 Digital image

A digital image can be mathematically described as a two-dimensional grid of discrete
values. Within this grid, each value corresponds to a specific attribute of the image,
such as its intensity, color, or texture. To be more formal, we can represent a digital
image as a function f(z,y), where z and y denote the spatial coordinates within the
image, and f(z,y) signifies the value associated with that particular position.

In mathematical notation, a digital image can be defined as:

I(x,y), if (x, D
o) = (z,y), if(z,y) €

0, otherwise.

I(x,y) is the intensity value at the location (z,y), D is the domain of the image,
and f(z,y) is the digital image.

The domain of the image D is typically defined as a rectangular region in the
Cartesian plane, where the pixel values are defined, and the pixels outside of this
region are considered to be zero. The intensity values I(z,y) are typically represented
by a set of discrete values, such as integers or binary values, depending on the image
format and the number of bits used to represent each pixel.

A digital image is often represented as a matrix, where each element of the matrix
corresponds to the intensity value of a pixel in the image. In this way, a digital

image’s values can be represented mathematically, and it is easy to process, analyze,
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and manipulate.

In mathematical considerations, it is often assumed that the function of an im-
age f(z,y) is continuous and sufficiently many times differentiable. This enables the
application of various methods of mathematical analysis, such as multiple integrals,
differential operators, and differential equations. In this way, the obtained results
(equations/operators) are then discretized and thus adapted for use in a digital envi-
ronment.

There are several important properties of digital images that are commonly used
to describe and analyze them:

Resolution: This property refers to the number of pixels in the image and is
typically measured in terms of the number of pixels per inch (ppi) or the number of
pixels per centimeter (ppc). The higher the resolution, the more detailed the image
will be.

Bit depth: This characteristic denotes the quantity of bits allocated to represent
each pixel within the image. Standard bit depths include 8-bit (256 levels of gray or
24-bit color), 16-bit (65536 levels of gray or 48-bit color), and 32-bit (4.3 billion levels
of gray or 96-bit color). The higher the bit depth, the more color or tonal variations
can be represented in the image.

Color space: This property refers to the color model used to represent the colors
in the image. Common color spaces include RGB (red, green, blue), CMYK (cyan,
magenta, yellow, black), and LAB (lightness, a, b). Each color space possesses its
unique merits and drawbacks, and the selection of a specific color space can impact
the ultimate visual presentation of the image.

Compression: This property refers to the method employed for diminishing the
size of an image file. Typical compression methods encompass lossless techniques like
PNG, which retain all the original information in the image, and lossy methods such
as JPEG, which sacrifice some information to achieve a smaller file size.

File format: This property refers to the file type used to save the image. Common
file formats include JPEG, PNG, GIF, and TIFF. Each file format has its advantages

and disadvantages, and the choice of file format can affect the image’s quality, size,
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and compatibility.

Geometry: This property refers to the shape of the image, including its size,
orientation, and distortion. The geometry of an image can be affected by factors such
as camera position, lens distortion, and image processing techniques.

Spectral content: This property refers to the distribution of colors or tones in
the image. The spectral content of an image can be affected by factors such as lighting
conditions, camera settings, and post-processing techniques.

Noise: This property refers to the random variations in the intensity values of
the image that are not part of the true signal. Noise can be caused by factors such
as camera sensor noise, electronic noise, insufficient light conditions, and image com-
pression.

Contrast: This property refers to the variation in brightness levels between the
brightest and darkest areas within the image. The image’s contrast can be influenced
by factors such as lighting circumstances, camera configurations, and post-processing
methods.

Sharpness: This property refers to the degree of detail and clarity in the image.
The sharpness of an image can be affected by factors such as lens quality, camera

settings, and post-processing techniques.

2.2 Tomographic projective geometry

The main problem posed in tomography is reconstructing the information about an
object based on the observed data. Observed data is obtained by measuring the
intensity of the waves penetrating the object from different angles. While a wave
from the source passes through the object, its power weakens, and the new value is
recorded on the detector. This value we call a projection.

Projective geometry deals with relationships between an object and its projections
to some other area. The primary categories of projections in tomography include
parallel-beam projections and fan-beam projections (Figure 2.2.4).

In the parallel beam projection, an object is penetrated by parallel rays that
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y
y
. Source
Source < X
/ 6 /
X
7 N/ X i
3 (x.y)
S Detector
Detector
(a) Parallel-beam (b) Fan-beam

Fig. 2.2.4: The imaging geometries of parallel-beam and fan-beam imaging using flat
detector

go from a source (the source is moving in a parallel direction) to the detector. In
fan-beam projection, the source is fixed, rotates around the object, and sends radial
beams towards the detector. Two common types of detectors used in tomography
are flat detectors and curved detectors. Flat detectors are essentially planar arrays
of detectors arranged in a grid. Unlike flat detectors, curved detectors have a curved
shape, which can match the geometry of certain optical systems or imaging setups.

This thesis primarily focuses on two-dimensional (2 — D) projections. However,
it’s important to note that in three-dimensional (3— D) scenarios, there are additional
projection geometries. For instance, cone-beam geometry involves the X-ray source
emitting rays in a cone shape, covering a larger volume of the object with each
projection. Another example is helical or spiral geometry, where the X-ray source
and detector continuously rotate around the object, while the object is simultaneously
moved along the axis.

In this dissertation, the primary focus centers on parallel beam projections. It
is important to note that fan-beam geometry can be transformed into parallel beam

geometry [6]. Converting fan beam geometry to parallel beam geometry involves
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mathematical transformations to reinterpret acquired data. In fan beam imaging,
diverging rays are used, and projections are obtained along curved paths. The pro-
cess typically includes parameterizing the fan beam geometry and applying rebinning
techniques (such as Fourier rebinning [26]) to organize data into parallel beam-like
projections. Consequently, all the considerations presented in this chapter are equally

applicable to fan-beam projections as well.

2.3 Radon transform

When rays are sent from the source to the object, the energy of those waves that do
not hit the object stays the same, while the power of those rays that hit the object
gets attenuated since some part of it is absorbed by the object. We can think of this
process as taking the intensity of every pixel of the object image and adding them
up (integrating them) to get an image profile from a specific direction (Figure 2.3.5).
By changing the direction of the penetrating wave, we obtain new different profiles

of the same object (Figure 2.3.6).

Source

\V4

flxy) |

N,

R(f(x,y))

Fig. 2.3.5: Geometric illustration of the Radon transform of a 2-D function

Let us now observe the projection of an image f(z,y) under an angle 6. For each

wave a; and fixed angle 6, there is precisely one intensity detected on the detector.
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We can mark that value as p(p, ). The value p(p, @) is actually a line integral along

the a; line, after representing a; in parametric form:
a; :xcos+ysinbh = p.

For every p and 6 we obtain the value p(p, €) of the projection wave p through the

image f(x,y) under angle 6 in the following way:

p(0.) = R(F(0.0) = [ ) / " feay)S(rcosd + ysing — pydedy,  (2.1)

where ¢ is a Dirac 0 function [28]. Transform (2.1) is named Radon transform
[76]. By visualizing the function R(f(p,0)), we get a sinogram. The Radon transform
evaluates the integral of the function f(z,y) along the line defined by the angle § and
the distance parameter p. Radon transform is the mathematical basis for connecting
spatial coordinates (x,y) and projection coordinates (p, 6).

We can obtain an image reconstruction if we take the projections from each angle
and inverse them (Figure 2.3.7).

The inverse Radon transform R [R(f(p,0))] is defined as:

RR(F(p,0)] = f(,y) = %/0 /_Oo R(p,0) - 5(xcos 0+ ysind — p) dpdd. (2.2)

Within this equation, the integration is performed over the entire parameter space.
The fundamental objective of this integration process is to reconstruct the original
spatial distribution of the function f(x,y) in the plane. The process is essentially a
transition from the projection domain to the spatial domain. The projection data are
methodically merged and re-projected to reconstitute the original function’s spatial
properties, which were first recorded as line integrals of the function along various

angles and distances.
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(a) 9 directions (b) 90 directions

Fig. 2.3.7: Inverse Radon transform

Properties of Radon transform

Although the properties of the Radon transform presented here are applicable for
more dimensions, we limit ourselves to 2-D situations because it is the most relevant
for the application. Proofs of these properties [30] follow directly from the definition
of the Radon transform.

Let us denote with R(f(p,0)) as Radon transform of a piecewise continuous func-
tion with bounded support f(z,y) on the line zcosf + ysinf = p. The following

properties are in place:
e Linearity:
Rewfi(@,y) + azfa(@,y)) = arR(f1(p, 0)) + 2R (fa(p,0)), o1, a2 € R.

e Symmetry:

The parameter set of p € [0,00) and 6 € [0, 7] denotes every element of Radon

transform, since R(f(p,0)) = R(f(—p,0 £ 7)).

e Periodicity:

R(f(p,0)) = R(f(p, 0 + 2kx)), Yk € Z.

e Scaling by factor a:
R(f(a, ay)) = LR(f(ap.6)), a 0.
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¢ Rotation by an angle 6;:

If we write function f(x,y) in polar coordinates f(r,®) and rotate it for an

angle 6, we obtain following:

e Shifting by a vector (xg,yo):
R(f(z =m0,y — y0)) = R(f(p — o cos b — y,sin0,0)).

By utilizing Radon’s direct and inverse transforms, we can establish a mathemat-
ical link between the images and measurement data obtained from the detector. The

Radon transform captures this connection.

2.4 Fourier transform

The fundamental ideas behind the Fourier transform can be traced back to Joseph
Fourier (1768 - 1830), a French mathematician and physicist who introduced the
concept in the early 19th century. Fourier’s work was published in his book [33] in
1822, which is where most of his related work can be found.

The Fourier transform is a mathematical operation that converts a function of
space (or time) into a function of frequency. It decomposes a complex signal into its
constituent sine and cosine waves of various frequencies.

As we transition to the next chapter on the Fourier transform, it is noteworthy
to recognize the interplay between these transforms in imaging and signal processing.
After obtaining Radon projections, the Fourier transform can be applied to analyze
the frequency components inherent in these projections. This combined approach
enhances our ability to interpret and process the captured data, providing a compre-
hensive foundation for understanding and manipulating images in applications like
medical imaging and beyond.

The sinusoid function can be written as

f(z) = Asin (2rwzx + 0), (2.3)
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where A represents the amplitude, # is the phase or the shift of the sinusoid. Sinusoid

1
T

function is a periodic function with a period 1" and frequency w =

The L'(R™) is the vector space of equivalence classes of integrable functions on
R™ where a function f is equivalent to a function g if f = g almost everywhere. The
L' norm of a function f is defined as ||f|[z: = [|f|dz, where integral is a Lebesgue

integral. A function f is in the L! space if this integral converges, meaning that the

function is absolutely integrable. This makes L'(R") into a normed vector space.

Definition 1 For f € L'(R) the Fourier transform F|[f(z)] = F(w) and its inverse
Fourier transform F'[F(w)] = f(z) are defined by

Flf (@) = Flw) = / " f@)e P, (2.4)

FlUF(w)] = f(z) = /_OO F(w)e®™%dw, Vi=—1. (2.5)

Observing the equation (2.5), we conclude that the original function (signal) is a
sum of frequencies. F(w) is complex and holds the amplitude and the phase of the

sinusoid of the frequency w.

=

—
.-.-.-------.@iii@.--------....

=

=

(a) Original image (b) Fourier transform

Fig. 2.4.8: Original image and its Fourier transform

Examining the image 2.4.8, one can discern several distinct characteristics in the
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(a) Rotated original (b) FT of the rotated original

(e) Scaled original (f) FT of scaled original

(g) Translated original (h) FT of translated original

Fig. 2.4.9: Properties Fourier transform
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resulting Fourier transform. The central portion of the Fourier transform image mir-
rors the presence of low-frequency elements within the original image, encompassing
its smooth and gradually changing areas. In contrast, the outer regions of the Fourier
transform image correspond to the higher-frequency components that capture the
finer details, such as edges and textures, present in the original image. When the
original image contains recurring patterns or lines, these patterns manifest as cor-
responding lines in the Fourier transform image, highlighting the presence of these
repetitions. Additionally, bright spots in the Fourier transform image indicate strong
frequency components in the corresponding positions of the original image, often indi-
cating significant features or objects. It is important to note that the image’s central
region specifically represents the zero-frequency component.

Fourier transform F[f] = F(w) of function f(z) holds following properties [70]
illustrated in Figure 2.4.9:

e Linearity:
Floafi(x) + asfo(x)] = an Ffi(x)] + aaF[fo()], a1, 00 € R.

e Scaling:

Flf(aa)] = LF(2),a £0.

e Shifting:
Flf(x — a)] = e F(w).

e Differentiation:

Flim (f(@)] = (i2nw)"F(w).

2-D Fourier transform F[f(z,y)] = F(u,v) of the function f(z,y) we define as:
Flf(x,y)] = F(u,v) = / / £z, y)e 2rwetvn) gody, (2.6)
The inverse Fourier transform is

FUF(u,v)] = f(z,y) = /_00 /_OO F(u, v)e®™ o) dydy, (2.7)
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where u and v are frequencies along x and y respectively.

Convolution theorem

Definition 2 For f, g € L*(R) convolution of functions f and g is:

(f*g)(x / flx —v)g(y)dy, z € R.

Theorem 1 If f,g € L'(R) are functions in spacial domain and F[f] = F(w) and

Flg] = G(w) are Fourier transforms of functions f and g, then:

(f % 9)(@) = F H(F(w) - Gw)).

The convolution theorem, in other words, states that performing convolution in the
spatial domain is essentially the same as executing point-wise multiplication in the
frequency domain. This theorem also holds in 2-D.

The convolution theorem [33] holds significant importance as it enables complex
and costly linear filtering processes in the spatial domain to be replaced with straight-

forward and computationally efficient multiplications in the frequency domain.

Fourier slice theorem

The Fourier Slice Theorem [17] gives a connection between the Fourier transform of

each of the projections and the original image.

Theorem 2 Fourier Slice: The Fourier transform P(w, @) of a projection p(p,0) of

an image I(x,y) satisfies:
P(w,0) = F(wcosf,wsinf), V0 € [0,7), Yw € R,

where F(w cos8,wsin @) represents the Fourier transform of the original image I(x,y)

along the line u = wcosO;v = wsin b in the frequency domain (u,v).
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The claim made here can be proved using well-known facts. The original image has
a 2-D Fourier transform, while each projection has a 1-D Fourier transform.
Let us consider a projection under fixed angle 6, = 6 and take a 1-D Fourier

transform of that projection with respect to p:

P(w) = /00 p(p, 0)e” 2™ dp. (2.8)

—00

By including equation (2.1) in the previous equation, we get:

o0

</ / I(z,y)6(xcosf + ysinb — p)dmdy> e~ 2mn )

= / / I(z,y) </ d(zcosh + ysinf — p)e’i%‘“pdp> dxdy
_ / / [(iL‘, y)€727riw(xcos 0+y Sino)dxdy.

If in the equation above we say that u = wcosf and v = wsin f we get:

P(w) :/ / I(z,y)e” ™=t dudy . V6 € [0, 7). (2.9)

On the right-hand side of the equation (2.9), it is depicted the 2-D Fourier trans-
form of the initial image I(x,y) along the trajectory defined by v = wcos# and
v =wsiné.

Equation (2.9) elucidates that the 1-D Fourier transform of an image projection
at an angle 6 is equivalent to a cross-section taken through the 2-D Fourier transform

of the original image at the same angle, as visually represented in Figure 2.4.10.

2.5 Filtered back projection

To reconstruct an image, we need to get the sum of Fourier transforms of the image

from as many as possible projections and then apply the inverse Fourier transform.
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Fig. 2.4.10: Illustration of Fourier slice theorem (image is taken from [72])

While summing up the Fourier transforms, the middle part of the object is overly
representative, which causes a blurry image (as shown on Figure 2.5.11). To avoid
this, we can use a filtered back projection.

Frequency domain filters are tools used to refine images by manipulating their
high- and low-frequency components, leading to effects like smoothing and sharpen-
ing. They differ from spatial domain filters because they primarily deal with the
frequency characteristics of images. Essentially, these filters focus on modifying the
frequency content to achieve two primary outcomes: smoothing and sharpening.

The original image can be represented using an inverse Fourier transform.

(2,y) = F[F(u,v)] = / / F(u, 0)e 2700 gy . (2.10)

If we use the polar coordinates in equation (2.10) v = wcos @ and v = wsin 0, dudv =

wdwdf, we get:

27 oo
I(z,y) = / / F(wcos 8, wsin @) e ((weosOat(wsinty) ,q,,q0. (2.11)
0 —00
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Original image Non-Filtered back projection Filtered back projection

Fig. 2.5.11: Comparison of simple and filtered back projection image reconstruction

By the Fourier slice theorem we have P(w, ) = F(w cos,wsin ), this yields:

2 o)
I(x’ y) = / / P(w7 6)6i27r(mcosOersin@y)wwdwd@'
0 —0o0
If we apply shifting property that P(w,0 + 7) = P(—w, 0), we get following:

I(z,y) = / / (W] P, B)er(meostrusintnie g
0 —00

= / [/ |w|P(w, 0)e™™,dw
0 —00

Within the given equation (2.12) the inner part represents the inverse Fourier trans-

}de. (2.12)

p=x cos 0+ysin O

form of the projection, which is then multiplied by a filter function denoted as |w|.
In this way, we obtain filtered back projections [77].

The application of filters in the Fourier domain generally involves these steps:

e Compute the Fourier transform of the input image, converting it into the fre-

quency domain.
e Multiply the transformed image by the frequency response of the chosen filter.

e Perform an inverse Fourier transform to convert the modified frequency-domain

image back into the spatial domain.
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Filtered back projection reconstruction

Filtered back projection (FBP) is a widely used reconstruction algorithm in computed
tomography (CT) imaging, converting raw projection data into a 2-D or 3-D image.
The choice of filter in FBP is crucial, influencing the quality and characteristics of

the reconstructed image.

Common filters in FBP
1. Ram-Lak (Ramp) Filter [97]:
e Frequency Response: Constant amplitude and linearly increasing fre-
quency.
e Characteristics: Simple and commonly used. Emphasizes high frequen-
cies, contributing to good spatial resolution but may introduce more noise.
2. Shepp-Logan Filter [87]:
e Frequency Response: Similar to Ram-Lak but with a more complex
shape.
e Characteristics: Designed to reduce artifacts and noise, providing im-
proved image quality compared to Ram-Lak.
3. Butterworth Filter [19]:
¢ Frequency Response: Adjustable based on filter order and cutoff fre-
quency.
e Characteristics: Offers flexibility; lower orders provide smoother images,
while higher orders can enhance edges but may amplify noise.

4. Hann (Hanning) Filter [65]:

e Frequency Response: Bell-shaped curve with smoother roll-off.

e Characteristics: Provides smoother images by suppressing higher fre-

quencies, balancing noise reduction with spatial resolution.
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5. Hamming Filter [40]:

e Frequency Response: Similar to Hann but with a wider main lobe.

e Characteristics: Offers smoother images, reducing high-frequency noise

at the expense of some spatial resolution.

Considerations in filter selection

e Spatial Resolution vs. Noise Trade-off: Filters like Ram-Lak emphasize
spatial resolution but may introduce more noise. Filters like Hanning and Ham-

ming prioritize noise reduction but may sacrifice spatial resolution.

e Clinical Application: Filters may be chosen based on specific clinical needs,

such as emphasizing fine structures in vascular imaging.

e Artifact Reduction: Filters like Shepp-Logan and Butterworth are designed

to reduce artifacts, contributing to overall image quality.

e User Preferences: The choice of filter may be influenced by user preferences

and institutional protocols.

High pass filter

High-pass filters in the Fourier domain enhance high-frequency components, empha-

sizing edges and fine details. Types include:
e Ideal High-Pass Filter: Abrupt cutoff, introducing spatial artifacts.

e Butterworth High-Pass Filter: Smoother transition controlled by order,

mitigating artifacts.

e Gaussian High-Pass Filter: Uses Gaussian function, with standard deviation

controlling the transition smoothness.
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Low pass filter

Low-pass filters in the Fourier domain emphasize low-frequency components, leading

to smoother variations in color and intensity. Types include:
e Ideal Low-Pass Filter: Abrupt cutoff with potential ringing artifacts.

e Butterworth Low-Pass Filter: Gradual transition controlled by order, re-

ducing ringing artifacts.

e Gaussian Low-Pass Filter: Uses Gaussian function, with standard deviation

controlling the transition sharpness.

While high-pass and low-pass filters (Figure 2.5.12) excel in enhancing specific
image features, their application requires careful consideration of potential noise am-
plification and artifacts. Additionally, these filters can be used in conjunction with
FBP to optimize the trade-off between spatial resolution and noise suppression based

on the imaging requirements.

Original image High-pass filter Low-pass filter

Fig. 2.5.12: Comparison of high and low pass filters
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CHAPTER 3

D1iscrete Tomography

This chapter delves into discrete tomography (DT) [41, 42], a specialized field dedi-
cated to reconstructing discrete objects from a limited set of projections. In contrast
to continuous tomography, which deals with images of continuous intensity values, dis-
crete tomography focuses specifically on binary or discrete values, introducing unique
challenges in terms of reconstruction algorithms, model formulations, and solution
uniqueness. Coined by Larry Shepp in 1994, discrete tomography has garnered at-
tention for its diverse applications, ranging from medical imaging to material science
and security.

DT is positioned as a specialized form of CT, given that discrete functions can
be considered a subset of general functions. While it logically extends findings from
CT to discrete functions, DT requires its own set of principles to address inquiries
about coherence, existence, and uniqueness. An additional incentive to explore dedi-
cated discrete reconstruction methods is the hope that, due to the discrete nature of
the unknown image, determining it might require less data compared to the require-
ments for general functions. As a result, DT commonly employs a modest number of
projections.

Discrete tomography finds applications in various fields due to its ability to re-
construct objects or images with limited information.

In the field of medical imaging, discrete tomography can be utilized to reconstruct
images of various body structures, including bones, teeth, and other organs and tis-
sues. For instance, in dental computed tomography (CT), discrete tomography is

used to reconstruct images of teeth and jaw bones. This can help in the diagnosis
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and treatment planning of disorders that are related to the teeth and jaws. Discrete
tomography can also be used to reconstruct images of the inner ear, which is helpful
in the diagnosis and treatment of hearing impairments.

In materials science, discrete tomography can be used to reconstruct images of
materials at the micro and nanoscale. For example, in electron tomography, discrete
tomography is used to reconstruct images of materials at the nanoscale, which can
aid in understanding their mechanical, electrical, and optical properties.

Pipes, metal castings, and printed circuit boards are just some of the industrial
structures that might benefit from discrete tomography examination. For instance,
discrete tomography can be used in non-destructive testing to reconstruct images of
the interior structure of pipes and metal castings, which can then be used to help
spot flaws like fractures and voids.

Discrete tomography is also used in a wide range of other fields, such as archae-
ology, computer vision, and cryptography.

The significance of DT lies in bridging the gap between continuous tomography
and the discrete world, allowing for the reconstruction of objects with discrete inten-
sity values prevalent in real-world applications. By tailoring algorithms and models
for discrete tomography, unique challenges associated with discrete objects or im-
ages can be addressed, leading to improved reconstruction accuracy, computational
efficiency, and a more profound understanding of discrete structures.

In the subsequent sections of this chapter, we will explore the formulation of
discrete tomography models, including binary tomography models, grayscale tomog-
raphy models, hybrid models, and various reconstruction algorithms employed in

discrete tomography.

3.1 Discrete tomography formulation

In discrete tomography, a reconstruction problem involves the challenge of recreating
the inner structure of an object based on a collection of projection data. Typically,

this projection data is acquired by illuminating the object with X-rays, electrons,
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or other forms of radiation through the object and measuring the intensity of the
radiation that emerges on the other side. The goal of the reconstruction problem
is to use this projection data to construct an image of the internal structure of the
object.

In discrete tomography, the object being imaged can only take on a discrete set of
values, such as black and white or multiple grayscale levels. Therefore, the reconstruc-
tion problem is finding the object’s specific discrete values that are most consistent
with the projection data.

Discrete tomography requires a suitable representation of objects or images in the
discrete domain. Depending on the application and desired level of detail, different
types of discrete representations can be employed, such as pixel-based representations
or higher-level discrete structures.

Pixel-based Representations: Pixel-based representations are commonly used in
discrete tomography, where the objects or images are discretized into a grid of pixels.
Each pixel can have a binary value (0 or 1) or represent different intensity levels in
grayscale tomography. The arrangement and relationships between the pixels play a
crucial role in the reconstruction process.

Higher-Level Discrete Structures: In certain cases, the discrete representation may
involve higher-level structures beyond individual pixels. For example, the objects or
images may be represented using line segments, rectangles, squares, or other combina-
torial structures, which in this context are seen as arrangements of discrete elements
that follow certain rules or constraints. These higher-level structures introduce addi-
tional constraints and considerations in the reconstruction models.

Discretization of the Tomographic Projection Process: The tomographic projec-
tion process, which captures the interactions between the objects or images and the
projection angles, also needs to be discretized to fit the discrete tomography frame-
work. This involves defining discrete projection angles and discretizing the measure-
ment process.

Discrete Projection Angles: In discrete tomography, projection angles are dis-

cretized to a finite set of discrete values. The choice of discrete projection angles
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depends on factors such as the desired resolution, the number of projections avail-
able, and the specific reconstruction algorithm employed. Common discretization
schemes include equidistant angles, evenly spaced angles, or predefined sets of angles
based on specific requirements.

Discretization of Measurement Process: The measurement process in tomography
involves computing the projection values or measurements by quantifying the interac-
tions between the objects or images and the projection angles. In discrete tomography,
this measurement process must be adapted to the discrete nature of the objects or
images. It may involve quantizing the continuous measurements or applying specific
discretization techniques tailored to the discrete representation used.

By properly formulating the discrete representation of objects/images and dis-
cretizing the tomographic projection process, discrete tomography models can capture

the essential characteristics and constraints needed for accurate reconstruction.

3.2 Reconstruction problem

Reconstruction problems in discrete tomography are typically formulated as optimiza-
tion problems, in which an objective function is defined to measure the consistency
between the object and the projection data. The objective function is then mini-
mized with respect to the object using methods such as gradient descent or linear
programming.

The standard method to explain the process of projection data collection in dis-
crete tomography is by using the concept of line projections. To illustrate, consider
a 2-D grid or lattice that represents the object to be reconstructed. Each cell in this
grid can have a value from some discrete set. The process of collecting projection
data simulates what would happen if lines were projected through the object from
different angles and where these lines intersect with the object.

The object’s representation is established using a 2-D grid, where each cell’s status
(empty or filled) captures the discrete nature of the object. For each projection angle,

a projection line is conceptualized through the grid. These lines can be described
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Fig. 3.2.13: Example of a projection value calculation on an image

parametrically, using equations like the slope-intercept form or by specifying an angle
and distance from a reference point. As projection data is collected, information
about the intersections between projection lines and cells is gathered. The collected
projection data from different angles can be organized into a matrix. Each row in the
matrix corresponds to a projection angle, and each column corresponds to a particular
count of intersected filled cells. The primary objective of discrete tomography is to
reconstruct the original object grid by utilizing the projection data matrix gathered
earlier. This process involves solving an inverse problem: finding a configuration of
the grid that would lead to the observed projection data.

Figure 3.2.13 shows an example of a projection value calculation on an image u*
of size N =4 x 4 = 16. A projection ray penetrates through the image pixels. The
projection value b; is calculated by b; = a; 4u) +a; gug +a; 7us 4 a; sug +a; gUg +a; 10U -

The data collected in continuous tomography is typically in the form of continuous
projections, which represent the integral of the object’s properties along the path of
the imaging beam. Data collected in discrete tomography consists of projections that
involve counting the number of discrete elements (e.g., pixels) along certain directions.
Discrete tomography addresses the challenges associated with the discrete nature
of object representation, resulting in specialized computational methods designed
specifically for reconstructions involving discrete or binary grids. One of the challenges
in reconstruction problems in tomography is dealing with noise and uncertainty in

the projection data. The projection data may be affected by noise, such as electronic
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noise or scatter, which can make it difficult to reconstruct the object accurately.
Additionally, the projection data may be uncertain, meaning that the measurements
are not known exactly. Therefore, reconstruction methods often include regularization
terms that help to stabilize the solution and reduce the effects of noise and uncertainty.

Another challenge in discrete tomography is the combinatorial nature of the prob-
lem. The set of possible solutions is combinatorially large, meaning that there are a
very large number of possible objects that could have produced a given set of measure-
ments. Therefore, reconstruction methods often rely on some form of prior knowledge
about the object, such as smoothness [44], sparsity [83] or non-negativity constraints
[22] to make the problem more tractable.

The problem of DT reconstruction can be explained through the linear set of

equations provided below.

apuy + aauz + azuz + ...+ aiyun = by
a21U1 + agUg + ao3U3 + ...+ anyuy = bQ
asi Uy + aszoUs + as33us 4+ ...+ asNyuy = bg
apriuy + appote + apr3us + ... +taynuny = bM,

which we examine in its matrix form:

Au=0b, (3.1)

where A € RM*N e AN b e RM and A = {1, Ao, ..., A} for & > 2.

The task is reconstructing an image represented by the unknown column vector
u. The range of possible values for the image, represented by set A, is defined by
the user and can be binary or multi-colored. The projection data is captured in the

projection matrix A, where each row corresponds to the intersection length between
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pixels and the projection rays traversing them. These matrix elements are determined
based on the extent of these intersections. The projection vector b is computed as
the summation of the products of pixel intensities and the lengths of the projection
rays passing through them.

In the process of projection, various directions are employed, using a parallel beam
projection method where multiple parallel projection rays are taken for each direction.
The angle « plays a key role in determining the direction of the projection. To ensure
that the entire image grid is covered, the spacing between adjacent parallel projection
beams is set equal to the size of a pixel, with even distribution. The number of parallel
projection rays is carefully chosen to guarantee comprehensive coverage of the entire
image grid.

Now, the reconstruction task at hand involves finding the image solution, denoted
as u, which is represented by a linear system of equations (3.1). This system is
often underdetermined, meaning there are more unknowns (N) than equations (M).
The objective goes beyond merely finding a solution that aligns with the provided
projections; it also aims to create an image that closely resembles the original one. To
achieve a high-quality and satisfactory solution, it is crucial to make use of all available

knowledge, including any prior information, about the object being reconstructed.

3.3 Binary image representation and the 0-1 in-
tensity assumption

Binary tomography involves the reconstruction of binary images, where each pixel or
element in the image is represented by a binary value, typically 0 or 1. This binary
representation simplifies the reconstruction problem by reducing the complexity of
intensity values. The 0-1 intensity assumption assumes that the objects of interest
are perfectly opaque (1) or completely transparent (0), allowing for a straightforward
binary representation.

The binary image is represented as a matrix, where each entry corresponds to a

35



3. DISCRETE TOMOGRAPHY

pixel in the image. A value of 1 indicates that the pixel belongs to the object or
region of interest, while a value of 0 indicates that the pixel is part of the background
or is transparent. The matrix can be denoted as M, where M, ; represents the value
of the pixel at row ¢ and column j.

The binary representation simplifies the reconstruction problem by reducing the
number of possible intensity values, making it more amenable to discrete tomography
techniques. Additionally, the binary nature of the representation allows for the uti-
lization of various combinatorial structures and algorithms tailored to binary objects.

By assuming the 0-1 intensity values, binary tomography focuses on the presence
or absence of objects rather than their varying intensity levels. This simplification
is particularly suitable for scenarios where the primary interest lies in detecting the
presence or absence of specific objects or features.

A potential use of the 0-1 intensity assumption can be found in human X-ray an-
giography. This involves creating images of blood vessels and heart chambers using
X-ray tomography. By introducing a high-contrast agent into the body area of inter-
est, the problem can be addressed through BT. This entails detecting the contrast
agent’s presence in specific positions [21, 74].

The main challenges in binary tomography arise from the fact that the recon-
structed image is binary, which introduces non-linearity and combinatorial complex-
ity into the reconstruction problem. The goal is to find the binary image that best
matches the given projections, subject to certain constraints and regularization tech-
niques.

Binary tomography reconstruction methods can be classified into four main classes:
algebraic methods, stochastic sampling methods, heuristic combinatorial, and relax-
ation methods approaches. Each of these methods has its own strengths and weak-
nesses in solving the binary tomography problem [47].

Algebraic Methods: Algebraic approaches leverage the inherent algebraic proper-
ties of binary tomography problems to offer valuable insights into solution uniqueness
and the necessary number of projections. These methods often rely on mathematical

equations and principles to reconstruct binary images from limited projection data.
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Although these approaches are theoretically elegant, they can encounter difficulties
when extended to more practical projection models and when confronted with noisy
data. They are commonly used for theoretical analysis and small-scale problems
where the algebraic structure can be adequately captured.

Heuristic Combinatorial Approaches: Heuristic combinatorial approaches combine
ideas from combinatorial optimization and iterative methods. These methods offer
practical efficiency and are known to perform well in practice. They often rely on
heuristics, which are rules of thumb or approximations, to guide the reconstruction
process. Some of the heuristic approaches are simulated annealing [1], tabu search
[35], and evolutionary algorithms [73]. While these algorithms demonstrate effective-
ness in handling diverse binary tomography scenarios, it is essential to recognize that
they do not guarantee optimal solutions. The quality of the reconstruction heav-
ily relies on the specific heuristics employed, necessitating careful consideration and
tuning of hyperparameters. Achieving optimal performance often involves balancing
trade-offs, and the effectiveness of these approaches is closely tied to the selection and
fine-tuning of heuristic parameters.

Stochastic Sampling Methods: Stochastic sampling methods take a probabilistic
approach to binary tomography reconstruction. They construct probability density
functions on the space of discrete images, enabling the sampling of potential solutions.
Markov Chain Monte Carlo (MCMC) techniques are often employed to explore the
solution space and find suitable reconstructions [69, 34, 7, 71, 29]. These methods
offer a high degree of flexibility, making them well-suited for addressing intricate
reconstruction scenarios. However, it’s worth noting that the computational cost
can be significant, especially for large-scale datasets. Like heuristic combinatorial
approaches, the successful implementation of stochastic sampling methods demands
careful consideration and tuning of model internal parameters to strike a balance
between computational efficiency and reconstruction accuracy. The effectiveness of
stochastic sampling methods lies in their ability to provide probabilistic reconstruc-
tions, accommodating uncertainty in the reconstruction process. Despite their com-

putational demands, stochastic sampling methods remain a valuable tool in binary
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tomography reconstruction, offering a probabilistic framework to capture the inherent
uncertainty in the imaging process.

Relaxation Methods: Relaxation methods involve relaxing the constraints of the
binary tomography problem to enable a more tractable solution. These methods
often use convex or non-convex relaxation techniques, leading to natural extensions of
variational formulations and iterative algorithms. They are known for their efficiency
in solving large-scale binary tomography problems. However, ensuring convergence
to the correct binary solution can be challenging, and some relaxation methods may
not perform well when the data is noisy or when dealing with complex structures.
Linear-programming based methods, a variant of relaxation techniques, can work well
on small-scale images and noise-free data [94].

In the field of binary tomography, researchers continuously explore and develop

new algorithms and variants that suit different problem settings.

3.4 Ryser algorithm

In this subsection, we present a brief summary of Ryser’s [54, 82] theoretical solutions
that answer the existence question in the binary tomography problem.

The reconstruction of a binary matrix from its row and column sum vectors is
studied in circumstances when some elements of the matrix may be specified and
the matrix can be identified from these values. This allows for the reconstruction of
binary pictures using just two projection angles.

Let us consider two non negative vectors R = (ry, 7, ..., 7)) and S = (81, S2, ..., Sm)-

}m><n

The tomographic equivalent class of all binary matrices A = (a;;) € {0,1 for

which stands:

n
r, = Zai’j, Sj = ai,j (32)
7j=1

i=1

is denoted by U(R, S).

Ryser has demonstrated the condition for the existence of such matrices, that is,
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whether U(R, S) is empty or not.
Consider the matrix C, where the ¢ — th row is composed of r; ones followed by
n — r; zeros. Such a matrix is referred to as maximal. It is clear that row sums

determine a uniquely maximal matrix. Let vector S denote the column sum of C.

Theorem 3 (Ryser, 1957) Let S and R be a pair of two non negative vectors. The
class U(R, S) is nonempty if and only if

n

Zs;zis—j, 2<1<n, (3.3)

J=l J=l
where 5; € S, s € S', and vector S is the non increasing permutation of the elements

of vector S.

A pair (R, S) is considered compatible if it is feasible to create a binary matrix
that adheres to the given row sums R and column sums S.

Assume that the set U(R,S) contains a binary matrix A. Consequently, the
class U(R, S") accommodates a binary matrix A’, derived from A through a suitable
permutation of its columns. If there exists any disparity between A and A’, the
former can be derived from the latter by left-shifting the 1’s in the rows of A’. This
process aligns with the relationship described in equation 3.3. Assuming equation 3.3
holds for vectors R and S, our goal is to generate a binary matrix A using the Ryser
algorithm described in Algorithm 3.4.1. The proof that Algorithm 3.4.1 produces a
matrix A with a row sum vector R and a column sum vector S can be found in [54].

Ryser demonstrated that if two matrices consisting of 0’s and 1’s have identical
sums for both their rows and columns, then it is possible to transform the first matrix
into the second using a series of simple operations. Each operation involves changing
1’s to 0’s and 0’s to 1’s, while keeping the sum of each row and column the same.
This finding is akin to a principle in binary tomography, where matrices composed
of 0’s and 1’s can be seen as binary images. When two matrices with matching row
and column sums are considered, they correspond to two binary images that share

the same horizontal and vertical projections. Such images are referred to as being
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Algorithm 3.4.1 Ryser Algorithm
input : A compatible pair of vectors (R, S) satisfying 3.3;
output: A binary matrix A;
begin
Step 1. Construct S’ from S by permutation 7;
Step 2. Let B= A and k = n;
Step 3.
while £ > 1 do
while s, > >"" b, do
let jo = r?@lxj < klby; = 1,b; 441 = - - - = bik = 0;

let row ig be where such a jy was found;
set biyjo = 0 and b;, = 0 (i.e., shift the 1 to the right);

| reduce k by 1;

Step 4. Construct the matrix A from B by permutation 7! of the columns;
L return Matrix A

"tomographically equivalent.”

To illustrate the Ryser algorithm, let us consider a simple example of a 5 x 6
binary image that should be reconstructed from its projections. This binary image
can be represented as a matrix A = (a;;)sx6, ai; € {0,1}, where 0 represents an
empty pixel, and 1 represents an object pixel.

Let us assume we have two projection directions of an unknown image, represented
by matrix A, one horizontal and one vertical. Horizontal projection: R = [2,4, 3,4, 1]
(sum of the pixels in each row), vertical projection: S = [3,4,3,2,1,1] (sum of
the pixels in each column). In order to generate matrix A, we firstly construct a
maximal matrix based on the row sums and we calculate column sums of that ma-
trix, S = [5,4,3,2,0,0], then we construct a non-increasing permutation of vector S,
S'=[4,3,3,2,1,1], vectors S and S’ satisfy (3) which means that there is a class of
binary matrices whose row sum is vector R and column sum is vector S. Thus, it is
possible to reconstruct a binary image from these projection data. In the following

lines, we describe finding one solution for this problem using the Ryser algorithm.

1. Step 1: Arrange the column sums S in a non-increasing order to create a new

sequence, denoted as 5.
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2. Step 2: Create a maximum matrix A defined by vector R.

110000

111100

|
I
—

11000

111100

100000

3. Step 3: Move elements from the rightmost columns of A to the columns where
the sum of elements in the corresponding column is smaller than the value in

S’. This step adjusts the matrix while maintaining the specified column sums.

110 0 110000 11 0
111 1 111001 11 1
=111 1 0l ~1]1 11000 11 0
111 0 111010 11 0
1 00 0 100000 10 0
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101000 011000

1 01101 1 01101

=11 10100/~ 110100

111010 111010

100 000 100000

4. Step 4: Reverse the permutation used in step 1. This step ensures that the
resulting matrix matches the original order of the column sums and generates

the following matrix as one solution to the given problem:

010000

The Ryser Algorithm provides a method to reconstruct the binary matrix A based

on the given row sums R and column sums S and its time complexity is O(n(m +

logn)).

3.5 Discrete algebraic reconstruction technique

The Discrete Algebraic Reconstruction Technique (DART) is one of the widely used
iterative reconstruction algorithms in discrete tomography. It is based on Algebraic

Reconstruction Methods (ARM) and was introduced by Batenburg and Sijbers in [5].
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Algebraic Reconstruction Methods (ARM) are iterative algorithms used in com-
puted tomography for image reconstruction from angular projections. Unlike analyti-
cal methods such as filtered back-projection, ARM approaches the problem iteratively.
It updates the image iteratively to converge to the best approximation of the true im-
age. ARM aims to minimize differences between measured and estimated projections
by solving a system of linear equations. FEach equation corresponds to projection
data and its corresponding ray path through the image. ARM gradually improves
image reconstruction through iterative solving. However, ARM faces challenges like

computational complexity and sensitivity to noise, as mentioned in [5].

3.5.1 Algebraic Reconstruction Technique (ART)

The Algebraic Reconstruction Technique (ART) models the reconstruction problem
as a system of linear equations solved iteratively. Pixels’ values are variables in vector
u, and the imaging process is described by matrix A. The angular projections are
in vector b. For a matrix A of dimensions m x n and vector b, ART iteratively

approximates the solution as follows:

bl' — <CLZ', .I'k>

uF = b N S ai,
[l

(3.4)

where i = kK mod m + 1, a; is the i-th row of matrix A, b; is the i-th component
of vector b, and )\, is a relaxation parameter. ART handles unconventional scanning
geometry (non-uniform angular sampling and limited-angle tomography) but requires

more computational resources.

3.5.2 Simultaneous Iterative Reconstruction Technique (SIRT)

The Simultaneous Iterative Reconstruction Technique (SIRT) is a variant of ART
that provides slightly improved images at a slower pace [3]. In SIRT, matrix A
represents the scanner’s action, and matrix AT back-projects the projection images
onto the reconstruction region. SIRT alternates forward and back projections using

the update equation:
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uP T = ub + CATR(b — AuF), (3.5)

where C' and R are diagonal matrices containing inverses of column and row sums
of the system matrix, respectively. These matrices adjust for ray-pixel interactions.

The Simultaneous Algebraic Reconstruction Technique (SART) [2] combines ART
and SIRT. It updates u, per projection angle, striking a balance between ART and
SIRT. SART computes updates for all rays per projection angle in blocks, making it

a block iterative method.

3.5.3 DART algorithm

The Discrete Algebraic Reconstruction Technique (DART) algorithm starts by gen-
erating a continuous reconstruction through a fixed number of SIRT iterations. This
initial reconstruction serves as a starting point for the DART process. The recon-
structed image is then subjected to a segmentation step, which aims to obtain an
image containing only permissible grey values. This segmentation is achieved by
rounding the pixel values to the nearest admissible grey values, thereby simplifying
the representation of the image.

Subsequently, the segmented image is partitioned into two distinct groups of pixels:
free pixels and fixed pixels. Free pixels are those that are adjacent to at least one
pixel with a different grey value, effectively delineating the edges of the object within
the image.

The core of the DART algorithm involves performing a predetermined number of
SIRT iterations specifically on the free pixels, while keeping the fixed pixels at their
respective grey values. By maintaining certain pixels at fixed values, the problem
is simplified, resulting in a system with fewer variables but the same number of
equations. However, the presence of noise in the data, combined with the fixed pixel
values, can lead to fluctuations in the values of the free pixels after each round of
SIRT iterations.

To mitigate the influence of noise and stabilize the reconstruction, a smoothing
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operation is applied to the free pixels. This operation involves using a Gaussian
smoothing filter with a radius of 1. The filter works to even out the values of neigh-
boring pixels and reduce the impact of noise, contributing to a smoother and more
accurate reconstruction.

The DART algorithm can be terminated based on specific criteria. It may halt
when the total projection error falls below a predefined threshold or after a certain
fixed number of iterations have been executed. Once the algorithm concludes, the
final reconstruction is obtained by performing segmentation on the resulting image.
This final reconstruction contains only pixels with permissible grey values, providing
an accurate representation of the object under study.

DART is particularly well-suited for scenarios where objects consist of distinct
compositions, each corresponding to a constant grey value in the reconstructed image.
It employs a fixed threshold function for discretization without regularization, which
can sometimes result in more radical solutions, especially when dealing with limited
projection data. Despite this, DART finds extensive use across various applications

57, 59, 93].

3.6 Energy minimization in image reconstruction

Energy-minimization methods are powerful techniques used in image processing to
solve various problems, such as image denoising, image segmentation, image inpaint-
ing, and image restoration. These methods aim to find the optimal configuration of
an energy function, which represents the cost or discrepancy between the processed
image and the desired result.

The fundamental concept involves formulating the task as a minimization model,
wherein the objective is to find the value of a function u that minimizes the functional
E(u). Typically, u represents an image in this context. The term ”energy” is drawn
from a physical analogy, where a stable system is characterized by having minimal
total energy.

In any energy-minimization approach, two crucial criteria must be satisfied. Firstly,
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the design of the energy function, or model, must closely mimic the real problem being
addressed, and its minimum point, preferably global, should represent the optimal
solution to the problem. Secondly, the optimization algorithm used for energy min-
imization should be both fast and accurate, allowing for a good approximation of
the minimum value while making efficient use of available computational resources.
Failure to meet either of these criteria could significantly reduce the method’s effec-
tiveness or render it entirely unsuitable for practical applications.

In image processing, an energy function (also known as an objective function or
cost function) quantifies the quality or appropriateness of a given image. The energy
function typically consists of two main components: the data fidelity term and the
regularization term.

When applying energy minimization in image reconstruction, in its most generic
context, one attempts to recover a reconstructed form of the observed image u by

minimizing the following energy function:

E(u) = F(Lu,b) + AR(u). (3.6)

An argument u” that minimizes this energy function,

u” = argmin E(u) (3.7)

u

is regarded as an estimate of the original image.

The function F' measures how dissimilar the reconstructed image u is from the
original data b after applying the operator L (where L typically represents a linear
transformation or measurement operator). It is generally referred to as the ”data
fidelity term,” and it essentially assesses how well the processed image matches the
observed data. In the context of image denoising, the data term penalizes differences
between the noisy and denoised images.

On the other hand, the "regularization term,” denoted as R, introduces prior
knowledge or expectations about the solution u. Essentially, it is a tool to encourage

smoother and more desirable characteristics in the processed image while discourag-
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ing undesired features. Lower values of the regularization term, R, are expected to
contribute to the removal of unwanted details. Additionally, regularization plays a
crucial role in enhancing the numerical stability of the image reconstruction process.
The regularization parameter, A\, acts as a control knob that dictates the trade-off
between the degree of smoothing applied to the image and the accuracy of recov-
ering fine image details. The regularization term encourages certain properties or
characteristics in the processed image. It serves as a smoothness constraint and dis-
courages overly complex or noisy solutions. Regularization helps prevent overfitting
and produces more visually appealing results.

Finding an analytical solution for the problem (3.6) is generally not feasible due to
its large-scale nature. Consequently, an appropriate optimization approach is required
for solving it.

The data fitting term in £ can be formed as a convex quadratic function in the
form of a sum of the squares of the errors, making its numerical treatment relatively
straightforward. The conjugate gradient method proves to be one of the most effi-
cient approaches for minimizing this term, providing a solution in at most N (size
of u) iteration steps. While the data fitting term in the energy function F is often
represented as a convex quadratic function, it’s important to recognize that it can
deviate from this form. Non-quadratic data fitting terms arise in complex systems
or models, introducing challenges for numerical treatment. In such cases, traditional
optimization methods designed for quadratic problems may be less effective [20].

However, the regularization term R can take a completely different form compared
to the data fitting term. It may exhibit high non-linearity, non-convexity, and even
non-differentiability at certain points. These characteristics make the minimization
of F challenging. High non-linearity increases the computational complexity during
numerical evaluations, while non-convexity can result in the energy function F being
non-convex, making it difficult to determine the global minimum. Furthermore, the
non-differentiability of R implies that E is also non-differentiable, rendering many
minimization methods based on gradient or higher-order differential information un-

suitable. This is a significant restriction, as many efficient deterministic methods rely

47



3. DISCRETE TOMOGRAPHY

on gradient calculations.

The analysis above demonstrates that the regularized image processing problems
are not always well-posed. For instance, when the energy function contains a non-
convex regularization term, it can lead to non-convexity in the problem, resulting in
multiple local minima without a unique global minimum. In such cases, the main
contribution of the regularization is to significantly restrict the originally vast set of
solutions without necessarily leading to a unique solution.

The problem (3.6) represents an unconstrained optimization problem. However,
certain applications, such as discrete tomography or defuzzification, restrict the search

space to a discrete set. The constrained regularized problem is formulated as follows:

min Eg(u), (3.8)

u€ef)

where (2 represents the feasible set. Addressing the constraint condition poses
an additional challenge on top of the previously analyzed issues, which needS to be
resolved. Omne possible approach is to transform the constrained problem into an
unconstrained one by reformulating the constraint condition as a new regularization
term. An example of such an approach is convex-concave regularization in discrete to-
mography [84]. Alternatively, another way to tackle this challenge is to directly apply

an appropriate optimization method specifically designed for constrained problems.

3.6.1 Regularization terms

In image reconstruction, regularization is a technique used to constrain the solution
space of an inverse problem in order to obtain a unique and stable solution. The
inverse problem in image reconstruction refers to the task of estimating an unknown
image from a given set of measurements or observations. The measurements or ob-
servations may be corrupted by noise, or they may be incomplete, which makes the
inverse problem ill-posed.

Regularization can be defined as an additional term added to the objective func-

tion that is being minimized in order to find the solution to the inverse problem. The
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regularization term imposes certain properties on the solution, such as smoothness,
sparsity, or piecewise constancy, which makes the solution more meaningful and less
sensitive to noise or incompleteness of data.

The regularization term is often a function of the image itself, and it is chosen
based on the characteristics of the image and the type of the inverse problem. The
regularization term can be mathematically formulated as a penalty term, a constraint,
or a prior probability distribution on the image. The goal of regularization is to
balance the goodness of fit of the model to the data and the regularization term in
order to obtain a stable and interpretable solution to the inverse problem.

There are several regularization terms that are commonly used in image recon-
struction, each with its own advantages and disadvantages. Some of the most widely
used regularization terms include:

L2-norm regularization: This term is also known as Tikhonov regularization, and
it promotes smooth solutions by minimizing the L2-norm of the image. A popular
L2-norm regularization method is the Tikhonov regularization algorithm, which was
first introduced in [91]. Building upon the foundation laid by L2-norm regularization,
Total Variation (TV) regularization emerged as another tool in image processing.
This regularization technique is based on the idea that natural images often exhibit
piecewise constant or piecewise smooth structures. By minimizing the total variation
of an image, TV regularization promotes solutions that capture these characteristics.
The versatility of TV regularization is evident in its applications, spanning image
denoising, deblurring, and inpainting. A popular TV regularization method is the
Rudin-Osher-Fatemi (ROF) model, introduced in [81].

L1-norm regularization: This term promotes sparse solutions by minimizing the
L1-norm of the image, which is the sum of the absolute values of the image’s pixels.
This method is widely used in compressed sensing and sparse representation. A
popular L1-norm regularization method is the basis pursuit (BP) algorithm, which
was first introduced in the paper [24].

Non-local Means (NLM) regularization: This term is based on the idea that similar

patches in an image should have similar intensities. NLM regularization promotes

49



3. DISCRETE TOMOGRAPHY

solutions that are consistent with this idea by using non-local means to estimate the
image’s pixels. This method is widely used in image denoising, and many papers
have been published on this topic. A popular NLM regularized method is the non-
local means denoising algorithm, which was first introduced in [18]. Deep learning
based regularization: This term is based on the idea of using deep neural networks to
extract features and to make predictions [51]. Many papers have been published on
this topic, and it has been used in various image reconstruction tasks such as image
inpainting, deblurring, and denoising.

Regularization using geometric moments: In certain scenarios, it is feasible to
have prior knowledge about aspects such as the orientation of shapes, the location
of shape centroids, or the circularity of shapes within discrete tomography problems.
These descriptors of shape characteristics can be effectively quantified using geometric
moments. Consequently, they can be seamlessly integrated into the energy function
as a regularization component, as demonstrated in the works by Luki¢ and Balazs
[58, 62, 63]. By incorporating geometric moments into the regularization term of the
energy function, the reconstruction process benefits from improved shape fidelity and
structural consistency, ultimately leading to more reliable results.

These are some of the most popular regularization terms used in image recon-
struction. However, there are many other techniques, and many papers have been

published on this topic [62, 64, 67].

3.6.2 Simulated annealing algorithm

One of the image reconstructing methods that is based on energy minimization is the
Simulated Annealing (SA) algorithm. SA is a stochastic optimization technique. The
fundamental idea of SA originated in 1953 [68], when scientists applied the concept of
slow cooling of material in a heat bath to solve a physical problem. In a real annealing
process, the observed system starts at a high temperature and high energy, gradually
cooling down until it reaches approximate thermodynamic equilibrium, converging to
a steady, frozen ground state. This idea was extended to optimization problems in

1982 [50] and introduced as the general SA optimization algorithm. SA has found

50



3. DISCRETE TOMOGRAPHY

applications in tomography reconstruction problems [60, 61, 93].

The SA algorithm relies solely on objective function values during the reconstruc-
tion process, which offers great flexibility in incorporating different types of regular-
ization terms into the energy function. However, SA is non-deterministic, meaning
different runs of the same problem may yield different solutions. Additionally, SA

can have relatively high running times and require careful tuning of its parameters.

3.6.3 Gradient based reconstruction methods

Gradient based reconstruction methods in image processing are algorithms that use
the gradient information of an image to reconstruct or restore the image. These meth-
ods are often used in image restoration and reconstruction tasks, such as deblurring,
denoising, and inpainting, which aim to remove noise, blur, or missing information
from an image.

One of the main advantages of gradient-based reconstruction methods is that they
can effectively preserve fine details and edges in the image, which are often lost or
distorted in other types of reconstruction methods. These methods also often have
fast convergence rates and can be implemented relatively easily.

There are several different types of gradient-based reconstruction methods, in-
cluding total variation (TV) methods [81], which minimize the total variation of the
image gradient, and wavelet-based methods, which use wavelet transforms to decom-
pose the image into different frequency bands and reconstruct the image using the
gradient information in these bands.

Gradient-based reconstruction methods are widely used in image processing be-
cause they can effectively restore and reconstruct images that have been degraded by
noise, blur, or missing information while preserving important image features such
as edges and fine details. These methods can be used in a variety of applications,
including medical imaging, satellite imaging, and microscopy.

The gradient method used within this research to obtain the smooth solution of
an image is the Spectral Projection Gradient (SPG) method introduced in [9]. SPG

is a deterministic optimization algorithm that is used to solve optimization problems
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of the form:

in
min Eq(z),

where the feasible region €2 is a closed convex set in R™ and E is a smooth function.
The method involves projecting the current iterate x onto the set €2, Py(z), using a
spectral decomposition of the projection operator and then using the projected iterate
as the next iterate in the optimization process.

SPG algorithm is outlined in Algorithm 3.6.1. To begin the reconstruction process,
we initiate an arbitrary initial solution uy € €. The tolerance of the final stopping
criterium is controlled by parameter Err. The prerequisites for the application of the

SPG algorithm are as follows:
i) The projection P, of any point = € R™ onto the set € is defined.

ii) The function Ej is defined and possesses continuous partial derivatives on an

open set that encompasses (2.

The SPG algorithm combines the non-monotone line search technique [37] and the
spectral gradient step-length selection method [4, 11, 78]. If conditions i) and ii)
are satisified, the algorithm converges to a constrained stationary point. See [9] for

detailed analysis.

Algorithm 3.6.1 SPG optimization algorithm.
0.

Initialize u
Initialize d° = Po(u® — VEg(u")) — u’; Set k = 0;

repeat

Determine the current step-length \¥ > 0 using a non-monotone line search
approach;

uk—i—l — uk + )\kdk:7

Calculate the gradient spectral step-length ;.1 > 0;

dFtt = Pg(ukJrl _ 9k+1VEQ(uk+l)) _ ukJrl; k=Fk+ 1;

until [|u* — u* 1| < Err;

The SPG method utilizes the spectral properties of the operator that relate the
image to the measurements or observations. It projects the gradient of the cost

function onto the eigenspace of the operator and updates the image in the direction

52



3. DISCRETE TOMOGRAPHY

of the projected gradient. This allows the method to take into account the spectral
properties of the operator and the regularization term and to converge faster to a
solution.

This method has several attractive properties, including global convergence, fast
convergence rates, and the ability to handle large-scale optimization problems. It is
also relatively simple to implement and can be used with a wide range of optimization
problems.

One of the main advantages of the SPG method is that it can handle optimiza-
tion problems with complex constraints, such as those involving inequality or equality

constraints or those involving multiple sets or subspaces.
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CHAPTER 4

Area Based Shape Descriptors

As mentioned in previous chapters, in today’s data-rich landscape, images are indis-
pensable across various domains, including medicine, security, industry, geology, and
archaeology. These images often contain numerous objects that need to be accurately
recognized, categorized, and labeled. Initially, the traditional approach involved di-
rectly working and comparing the objects themselves, which often resulted in com-
putationally intensive and inaccurate comparisons between objects. However, a more
effective strategy involves converting these objects of interest into numerical repre-
sentations, typically vectors in a mathematical space (often denoted as R?). This
transformation allows for more advanced operations and analysis of the objects.

To make this transformation possible, we need to identify and quantify specific
properties of the objects efficiently.

Shape represents an attribute that allows for numerical characterization and holds
substantial potential for discriminating between objects. Over time, numerous shape
descriptor techniques have been developed [90]. These descriptors encompass those
tailored to specific shapes and those capturing shared characteristics across multiple
shapes, including circularity [75], ellipticity, rectangularity, triangularity [80], sym-
metry [96], and more. Even within a single shape attribute, a variety of alternative
measurements often exist.

Shapes can be analyzed based on information derived solely from boundary points
(boundary-based) or from all points within the shape (area-based). Area-based meth-
ods are known for their robustness, especially in the presence of noise, and computa-

tional efficiency. Moreover, these techniques are well-suited for discrete domains such
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as digital images.

4.1 Geometric moments and moment invariants

Geometric moments are numerical characteristics of an image that are used for digital
image processing and computer vision applications. They are used to describe the
shape, size, orientation and other characteristics of an object or group of objects.
Geometric moments provide a more accurate description of an object than other
methods such as Fourier transform or the Hough transform.

Moment invariants are numerical characteristics of an image that remain un-
changed under certain transformations such as scaling, rotation and translation.
These invariants are used to recognize objects in an image regardless of orientation,
scale or position. They can also be used to detect and track objects in an image.
Moment invariants are computed using geometric moments.

The calculation of geometric moments involves the integration of intensity values
across all pixels within an image. The moments are calculated by multiplying the
pixel intensity by its coordinates, then summing over the entire image. Moment
invariants are calculated by combining two or more moments with different orders.

The most commonly used moment invariants are the Hu invariants, which are a
set of seven moment invariants developed by Hu in 1962. These invariants can be
used to recognize objects in an image regardless of orientation, scale, or position.
Other moment invariants include the Zernike moments, describing the shape of an
object, and the Legendre moments, which are used to recognize objects in an image
regardless of orientation.

Geometric moments and moment invariants are powerful tools that can be used
to recognize, track, and classify objects in an image. Additionally, they can facilitate

the identification of similarities between different objects.
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The geometric (p, ¢)-moment of a given planar shape S is defined as:

My q(S) = / /S 2Py dz dy. (4.1)

Order of moment m, 4 is p + ¢. When in discrete spaces, m,, , is approximated in

the following way:

Mypq(S) = Z e, (4.2)

(4,5)€dig(S)
where dig(S) is the digitization of the real shape S, (i,j) are spatial coordinates
of each pixel in the image, pixels are considered to be of size 1 x 1. Moments are
used in image processing and computer vision to describe very common features.
For example, the position of a shape, which is one of its basic features, is generally
described in terms of moments. Specifically, the shape centroid (z.(S), y.(S)) tells us

the position of a given shape S is. This is specified as:

(5e(5).e(5) = (2ot ). (13)

Next, we present central moments which are translation invariant

() = [ [ (@ = 2($)7 (0 = ()" do dy (4.9

Following we introduce the normalized moment. Normalized geometric moments
are a valuable tool in image processing because they offer scale and rotation invari-
ance, noise robustness, and the ability to capture essential shape characteristics of
objects in an image. These properties make them suitable for a wide range of appli-
cations

my.q(S
Hp,g(S) = #)(13;);(1' (4.5)

It is easy to see that pu,,(S) = pp4(rS), where r is a scaling factor.
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In medical imaging, accurately identifying and characterizing tumors in C'T scans
is critical for diagnosis and treatment planning. However, tumors can vary in size,
shape, and position within the body, and CT scans may capture them at different ori-
entations. This variability makes it challenging to develop a consistent and automated
method for tumor detection.

Hu moments introduced by Ming-Kuei Hu in [43] can help address this problem
by providing a way to describe and compare tumor shapes while being invariant to

rotation and scale. The following are the Hu moments.

I = pop+ oy
Iy = (p20— po2)” + 4(p1)?

(30 — 3p12)” + By — pos)?
Iy = (pso+ p12)” + (H21 + pog)’

(3,0 — 3pe1,2) (p3,0 + p1,2) [(H&o + p19)* — 3(pa1 + Mo,g)g]
+(3p2,1 — to,3)(f21 + f0,3) [3(M3,0 + M1,2)2 — (po1 + M0,3)2]
Is = (p2,0— Ho2) [(N&o + p12)? — (p21 + M0,3)2]

+4pl, Wpzo + p1,2) (2,1 + o)

Iz = (Bpz1 — po3) (a0 + f12) [(H:z,o + p12)? = 3(p2 + Mo,g)z]

+(ps,0 — 3p1,2)(H21 + to3) [3(M3,0 + p12)? — (21 + ,uo,3)2] .

A reader can notice that Hu moments use normalized moments hence exhibiting
invariance to translation and scaling. Moreover, it can be demonstrated that these
moments demonstrate rotational invariance [31].

Zernike moments [98] are a powerful set of orthogonal moments widely employed
in image processing and pattern recognition for shape representation. Developed by
Frits Zernike in 1934, these moments have gained popularity due to their desirable
properties, such as rotation invariance and compactness in capturing shape informa-

tion. Zernike moments are particularly useful for characterizing the boundary shape
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of objects or regions in images, making them well-suited for shape analysis tasks, such
as object recognition and shape matching.

Zernike moments are based on the Zernike polynomials, which are a set of orthog-
onal polynomials defined over the unit disk. Each Zernike polynomial is associated
with two integer indices, n and m, where n represents the radial order, and m denotes
the azimuthal order. The radial order determines the number of nodes in the radial
direction, while the azimuthal order governs the number of times the shape rotates
around its center within 360 degrees.

The general form of the Zernike polynomial Z, ,,(p, ¢) is given by:

Zn,m(p7 ¢) - Rn,m(p) : eimd)’

where p represents the radial distance from the center of the unit disk to a point on
the boundary of the shape (normalized to lie within the unit circle, 0 < p < 1), ¢
is the azimuthal angle of the point measured from the reference axis, and R, ,(p) is

the radial polynomial defined as:

(—=1)% - (n— k)! n-2
Rym(p) = 2:% K- ((n+m)/2—Ek)-((n—m)/2—k)! 2k,

To compute the Zernike moments for a given shape, the region of interest (ROI)
containing the shape is first converted to a binary image, with the shape of interest
represented as white pixels on a black background. The image is then mapped to
the unit disk using polar coordinates, and the Zernike moments are calculated by
integrating the product of the binary intensity values and the corresponding Zernike
polynomials over the shape’s boundary.

The calculation of Zernike moments can be computationally efficient due to their
orthogonality properties, which allow moments of higher orders to be expressed as
linear combinations of lower-order moments. This property leads to a reduction in
the number of required calculations, making Zernike moments practical for real-time
applications.

One of the key advantages of Zernike moments is their ability to capture shape
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features in a rotation-invariant manner. Since the Zernike polynomials are orthogonal,
the moments computed from a shape and its rotated version remain the same, albeit
with possible sign changes. This property is particularly beneficial for shape matching
and recognition tasks, where the orientation of objects may vary.

Once the Zernike moments are computed, they serve as a compact and meaningful
representation of the shape. These moments can be used as feature vectors for vari-
ous shape analysis tasks, such as object recognition, shape classification, and shape
matching. By comparing the Zernike moments of different shapes using appropri-
ate distance metrics, shape similarities or dissimilarities can be quantified, enabling

effective shape recognition and matching algorithms.

4.2 Shape orientation

Shape orientation is a crucial aspect of characterizing objects in image analysis, com-
puter vision, and various other fields. One effective method for determining the
orientation of a shape involves the use of geometric moments. In this section, we
will explore how geometric moments can be employed to calculate the orientation of
a shape, specifically by finding the axis of the least second moment of inertia. This
method is widely used in the field of image processing for shape analysis [46, 90].
The primary objective in shape orientation determination is to minimize the inte-
gral of squared distances from points within a shape to a specific line. Mathematically,

this can be formulated as follows:

I(a, S, p) = //STQ(x,y,a,p)d:cdy. (4.6)

Here, I(a, S, p) represents the integral of squared distances, « is the angle of the
line with respect to a reference axis, and S is the shape of interest.
The distance function r(z,y, «, p) is defined as the perpendicular distance from a

point (z,y) € S to a line given by:
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Xsina —Y cosa = p. (4.7)

The axis of the least second moment of inertia corresponds to the line that mini-
mizes the integral defined in Equation (4.6). It is worth noting that this axis passes
through the centroid of the shape. Consequently, we can set p = 0 and focus on
minimizing F(a, S) = I(«, S, p = 0), where S’ is the translated shape such that its
centroid coincides with the origin.

The squared distance function r?(z,y, o, p = 0) simplifies to (zsina — ycos a)?,

leading us to the minimizing function:

F(a, S) = sin® amman(S) + cos? amp2(S) —sinamy1(9). (4.8)

In Equation (4.8), Ma(S), Mo2(S), and 4 1(S) represent the central moments
of the shape S. These moments capture important information about the shape’s
geometry.

The orientation of a given shape S is determined by finding the angle a at which
the function F'(«,S) reaches its minimum. To identify this angle, we can look for
points where the first derivative of F'(«, S) equals zero.

Taking the derivative of F(«, S) with respect to o and setting it equal to zero, we

obtain the orientation angle a:

sin (2a) 2m1,1(5)
cos (2a)  m2,0(S) — m2(S)

(4.9)

Equation (4.9) provides a straightforward and computationally efficient method
for determining the orientation of a shape based on its geometric moments. By solving
this equation, we can find the angle at which the shape is oriented.

While the method described here is a fundamental and widely-used approach
to shape orientation determination, it may have limitations, especially for highly
symmetrical shapes. Researchers have developed additional methods to address these
limitations [25, 39].

Geometric moments provide a robust and computationally efficient method for
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determining the orientation of shapes in image analysis. By minimizing the integral
of squared distances to a line, based on central moments, the orientation angle of a
shape can be readily calculated.

Shape orientation has practical applications in fields like binary tomography, as
demonstrated in a paper by Lukié¢ and Balazs [58]. In this context, shape orientation
serves as a regularization condition during image reconstruction. The reconstruction
process involves minimizing an energy or objective function, denoted as E(u), where
u represents the binary image to be reconstructed. The energy function for binary im-
age reconstruction, proposed by the authors, encompasses three integral components:
firstly, the Data Fitting Term assesses the correspondence between the reconstructed
image and the observed projection data, ensuring their alignment. Secondly, the
Smooth Regularization Term enforces uniformity in pixel values among neighboring
regions in the reconstructed image, a characteristic commonly found in real images.
Lastly, the Orientation Term evaluates how well the reconstructed image aligns with
a predetermined orientation angle, denoted as a*, representing the expected orienta-
tion of the original object within the image. Researchers adjust the impact of these
terms using parameters, with the option to exclude the Orientation Term, simplify-
ing the energy function into a form suitable for discrete tomography. As shown by
the authors, by incorporating shape orientation as an additional constraint in the
reconstruction process, it becomes possible to improve the quality of reconstructions,

especially in scenarios with limited projection data.

4.3 Shape circularity

Circularity serves as a valuable metric for quantifying the roundness or resemblance
to a circle of a given shape.

One of the most common ways to quantify circularity is through the standard cir-
cularity measure, denoted as Cy(S). This measure exploits a fundamental geometric
principle — the circle has the largest area among all shapes with the same perimeter.

Accordingly, Cy(S) is defined as follows:
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_ 4ATA(S)

Cat(S) = P(S)2 (4.10)

where A(S) represents the area of the shape S, while P(S) represents the perime-
ter of the shape S. Notably, C(S) takes into account both interior and boundary
information of the shape, making it a holistic descriptor of circularity.

Another approach to assess circularity involves utilizing Hu invariants, which are
geometric invariants associated with a shape. The circularity measure C(S), intro-

duced by [100], incorporates the Hu invariant I;:

1 1

C(S) = = ,
() 2m(po0 + pro2) 2w (S)

(4.11)

where fi29 and fi2 are the central moments of the shape S. Unlike Cy(S), C(S5)
is primarily area-based and does not penalize deep intrusions into the shape. This
property makes it more robust to noise, as it focuses on the overall shape charac-
teristics rather than the shape’s perimeter. In contrast, Cy(S) is sensitive to shape

irregularities that lead to significant perimeter increases.
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CHAPTER 5

Thests Contributions

5.1 Graph cut optimization

Graphs and directed graphs (also known as digraphs) are fundamental mathematical
structures used in various fields, including image processing and image reconstruction

[56).

Definition 3 The graph G is an ordered pair G = (X, p), where X is a finite non-
empty set of elements called nodes (vertices), and p is a finite set of ordered or un-

ordered pairs, with distinct elements from the set X, called edges.

The edges of the graph represent relationships or connections between the nodes.
Graphs can be used to model and represent various types of relationships and data.

They are typically categorized into two main types, undirected and directed graph.

Definition 4 An undirected graph G = (X, p) is an ordered pair that satisfies the

following conditions:
1. X is a finite non-empty set of elements called nodes,

2. p is a finite set of unordered pairs of distinct elements from X, representing

edges.

In an undirected graph, the edges in G have no direction; they connect two vertices
without specifying a starting or ending point. Undirected graphs are used to represent
relationships where the order of connection between nodes does not matter, such as

social networks or road networks.
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Definition 5 A directed graph (or digraph) G = (X, p) is an ordered pair that satis-

fies the following conditions:

1. X is a finite non-empty set of elements called nodes.

2. pis a finite set of ordered pairs of distinct elements from X, representing directed

edges.

Directed graphs are used to represent relationships with a clear direction, such as

flow networks, dependencies, or sequential processes.

Definition 6 A weighted graph, denoted as G = (X, p,w), is an ordered triple where
X is a finite non-empty set of nodes, p is a finite set of edges (ordered or unordered
pairs of distinct elements from X ), and w : p — R is a function associating each edge

i p with a real number, referred to as its weight.

The weights in a weighted graph represent some measure or cost associated with
traveling from one node to another along the edge. In other words, a weighted
graph assigns a numerical value to each connection in the graph to represent the
distance, cost, capacity, or any other relevant quantity between the vertices connected
by that edge. Graphs play a crucial role in image processing and reconstruction by
providing a structured way to represent and analyze image data. Graphs can be
used to represent images where each pixel or region is a node, and edges connect
neighboring pixels or regions. Techniques like graph-based segmentation use graph
properties to partition an image into meaningful segments. Graph-based methods,
such as graph cuts and spectral graph theory, are used to compress images efficiently

while preserving important features.

5.1.1 Graph cuts

Graph cut is a powerful technique used in image processing and computer vision for a

variety of tasks, such as image segmentation, object recognition, and image matting.
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Definition 7 Let G = (X, p,w) be a directed weighted graph, with non negative
weights, and let a,b € X. An a — b-cut of a graph G is a partition of nodes X
into two disjoint sets, A and B, so that a € A and b € B. The cost of the cut,
denoted by cut(A, B), is the sum of the costs of all edges that go from A to B:

cut(A, B) = Z w(u,v),

u€A
vEB

where A and B form a partition of the set of nodes X, i.e., AUB = X and ANB = ).

For an a — b - cut, node a is often referenced as a source and node b as a sink.
Source and sink nodes are refereed as terminals. The graph cuts algorithm aims
to find the optimal cut that minimizes the cost of partitioning set X. Algorithms
for this purpose are detailed in [14]. If the weights in the graph are derived from
a certain energy function, the graph cuts algorithm becomes a powerful tool for
energy minimization. In this scenario, finding the optimal graph cut is equivalent to
minimizing the energy function. The algorithm excels in solving binary or multi-label
segmentation problems, efficiently determining an optimal partition that balances
data fidelity and smoothness.

In the graph cuts application in image processing, the image is represented as
a directed weighted graph, where pixels are nodes, and edges encode relationships
between pixels (e.g. nodes representing pixels that are spatially adjacent are con-
nected by edges). In general, the direction of the edge between neighbouring pixels is
arbitrary and can be chosen based on the specific implementation of the graph cuts
algorithm . The energy function E(X) drives the labeling configuration of pixels and

consists of a data term and a smoothness term:

E(AB)= Y  w;+A) d

(4,5)€06(A,B) i€A
Here, 0(A, B) represents edges crossing the cut, w;; is the weight associated with
edge (i,7), and d; is a data term capturing fidelity to observed data. The algorithm

involves creating a specialized graph corresponding to the energy function. Regular
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image pixels become nodes, and edges are of two types, n — links for neighboring
pixels and t — links for connecting pixels to terminals. Edge costs derive from the
energy function, and the minimum cut on this graph minimizes the energy. Each
graph cut provides a different image segmentation.

The choice of source and sink nodes depends on the specific requirements of image
processing task. The source node represents the starting set, often associated with the
foreground or the region of interest in the image. In the context of image segmenta-
tion, the source node could be related to the pixels or regions that should be identified
or highlighted. The sink node represents the destination set, often associated with
the background or the region we want to distinguish from the foreground.

The cornerstone of Graph Cuts in image reconstruction is the Min-Cut/Max-
Flow algorithm [32]. This algorithm seeks to find the minimum cut in a flow network,
which is modeled using the constructed graph G. The final cut yields the optimal
segmentation of the image into disjoint regions, balancing the trade-off between data
fidelity and smoothness.

Graph cut optimization offers a convenient approach for tackling a diverse range
of image processing challenges that can be expressed in the context of energy mini-
mization, as documented in various studies [8, 12, 13, 15, 16, 49, 52, 55].

The graph cuts method has several advantages over other image reconstruction
techniques. For example, it can handle large amounts of missing data and can produce
good results even when the quality of the original image is poor. However, it can be

computationally expensive and may not always produce the best results in all cases.

5.1.2 Potts model

Graph cuts serve as a potent tool for energy minimization, particularly in addressing
image reconstruction challenges. The key lies in formulating an energy function that
is amenable to graph cuts and can effectively tackle image reconstruction problems.
One such formulation is provided by the Potts model [95].

To apply the Potts model for image reconstruction, a graph is created to depict

pixel relationships. Nodes in this graph correspond to image pixels, and edges con-
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0.2 0.4 0.8

0.1 0.7 1

Fig. 5.1.14: Given gray scale image for graph cut optimisation

nect neighboring pixels. Labels denote potential intensity values or categories for
each pixel. The objective is to group nodes, maximizing edges within groups while
minimizing edges between groups. This proves valuable in image segmentation tasks,
where the aim is to partition an image into distinct regions or objects.

In our application, the Potts model is governed by the minimization of the follow-

ing energy equation:

E(d) = ZD(}?, dp) + Z Kipg - (1= d4,4,), (5.1)

pEP (P.g)eN
where d = {d,|p € P} represents the labeling of image pixels p € P. The term
D(p,d,) denotes the data cost, which is a penalty or cost associated with assigning
a label d, to a pixel p. The interaction potential between neighboring pixel pairs p
and ¢ is denoted as K, q), where A represents the set of neighboring pixel pairs. The

function dg, 4, is the Kronecker delta function defined as:

0, 177

1, 1=

0ij =

The second term in 5.1 promotes spatial coherence by penalizing inconsistencies be-
tween adjacent pixels. The goal of image reconstruction in the Potts model is to find
the labeling d that minimizes the total energy of the system.

Now, let’s bridge these theoretical concepts with a practical example. Consider
a grayscale image, as illustrated in Figure 5.1.14. To achieve the objective of image
binarization, the image is processed using the Potts model and graph cuts algorithm.

We start by constructing a directed graph associated with the image, as shown in
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Figure 5.1.15a. In this graph, each pixel corresponds to a node, and edges connect
neighboring pixels, reflecting the defined energy function. In our specific case (Potts
model), interactions between neighboring pixels are implemented using a Kronecker
delta function, which registers only whether the pixels are adjacent or not. To main-
tain coherence with the general definition, in our example two directed edges (p, q)
and (g, p) between neighbouring pixels p and ¢ are created, both of the edges have the
constant weight of 1. Edges connecting nodes to the labels (0) and (1) are weighted
based on the terminal label assignment cost. The function D(p,d,) represents the
cost of assigning the label (source or sink) d, to pixel p, and it depends on how close
the intensity of the pixel u(p) is to the value d,. The values of the function D(p,d,)
are specified at the beginning of the process. Subsequently, based on the values of
D(p,d,), the weights w(p,d,) of edges (p,d,) are calculated in the corresponding
directed graph.

In our example we define w(p, q) in the following manner:

(
1, p and q are neighbouring pixels

w(p,q) = |ulp) — 1|, ¢=0* )

lu(p)l, q=1

\

where u(p) is the intensity of the pixel p, 0* and 1* are source and sink respectively.
This selection for the weights function was made in order to ensure that the minimum
cut separates less similar pixels.

Figure 5.1.15b illustrates one cut on the graph. The cut represents one segmen-
tation of the image. The cost of the cut is calculated as the sum of weights of the
removed edges. In our case, cut(0*,1*) =4-2-1+03+04+02+0.14+0+0.1+
0.2+03+0=9.6.

To achieve image binarization, the algorithm seeks the minimum cut in the graph
Figure 5.1.15a. Various algorithms, such as those developed by Kolmogorov and
Zabih [53], are employed to find the optimal cut. Once optimal graph is obtained,

the image graph is partitioned into two sets as shown on Figure 5.1.16a. Asigning 0
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(a) Directed graph created for image 5.1.14 associated to the energy
E, numbers on edges reflect their weights

(b) Cut on the graph 5.1.15a, node 0* is the source, node 1* is the
sink

Fig. 5.1.15: Specially designed graph for image 5.1.14 and its cut
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0 0 1
0 0 1
0 1 1

(b) Binary recon-
struction of the image
5.1.14

Fig. 5.1.16: Graph cut reconstruction

label to all the nodes connected to the source and label 1 to the nodes connected to
the sink yields the binary reconstruction (Figure 5.1.16b). This final result effectively
separates foreground and background pixels, minimizing the overall energy of the
system.

The Potts model tackles a discrete optimization problem, where the image is
represented by a set of discrete labels. The regularization term accounts for the cost
of assigning different labels to neighboring pixels, with the cost defined as a function

of the labels.
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5.1.3 Discrete tomography reconstruction based on graph

cuts method

In this chapter, we delve into a novel approach to discrete tomography reconstruc-
tion, fusing the powerful graph cuts method with the quadratic iterative minimization
technique. Our journey begins with the computation of data cost values for each pixel
within the image. These values are extracted from the intensity of the reconstructed

image, which is the solution to the energy-minimization problem articulated as fol-

lows:
in F = ||Au — b||%, 5.2
uin Q(u) == ||Au — b (5.2)
AERMXN, UGAN, bGRM, A:{)\l,AQ,...,)\k}, k> 2.
Eq takes the form of a quadratic function, Q = [0, 1] represents the feasible

set, k is the number of different gray level values and the set A is given by the user
and represents pixel labels. We solve this minimization problem through a selection
of optimization algorithms, with our preferred choice being the Spectral Projected
Gradient (SPG) optimization algorithm.

For the SPG algorithm to be effective, following prerequisites must be met:

For the SPG algorithm to operate effectively, certain conditions must be satisfied:

1. The objective function should possess continuous partial derivatives within an

open set that encompasses the ().

2. An availability of the projection function P, for any given vector onto the set

Q.

The objective function in (5.2) is differentiable in RY, and the projection Py is
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defined as:

O, UZSO

[PQ(U/)]Z: 1 ui>1 s where Zzl,,N

u;, elsewhere
\

Thus, we fulfill the necessary conditions for the application of the SPG algorithm.
The outcome of the SPG optimization is a smooth solution to (5.2).

Our subsequent step entails discretizing this smooth solution obtained from Equa-
tion 5.2, which we achieved using the SPG algorithm. We draw upon discrete tomog-
raphy reconstruction algorithms proposed by Schiile et al. [85, 93] and Lukié et al.
[58, 61], and opt for the Potts interaction model for its capacity to promote compact-
ness in solutions, as observed in [14, 36, 89]. The data cost term, denoted as D in
(5.2), and defined in (5.3) is formulated based on the pixel intensities, u(p), and is

designed to be small or inexpensive near specific gray values.

D(p,i) = |u(p) — Ni|, fori=0,1,2,... k—1. (5.3)

The interaction potential, K, ), between adjacent pixels, in our method, is set as
a constant value of 1. The energy function in (5.1) is then minimized utilizing the
Graph Cuts Optimization (GCO) algorithm [14, 16, 27, 53]. The GCO algorithm
assigns a label value, d,, to each pixel, which corresponds to a predefined gray level
and determines the pixel intensities in the final discrete solution.

The technique described in this section is firstly introduced by Sulc and Lukié¢ in
[59] and is referred to as the Graph Cuts Discrete Tomography (GCDT) reconstruction
method.
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5.1.4 Experimental results for GCDT method

In this section, we provide a brief showcase of the effectiveness of the suggested recon-
struction technique based on graph cuts (referred to as GCDT) to justify its applica-
tion in the later introduced methods. We use the Shepp-Logan image for evaluation,
and additional experimental results can be found in Section 5.4. The Shepp-Logan
image is a well-known phantom in discrete tomography, containing 6 gray levels. We
perform experiments employing multiple projection directions, capturing 128 parallel
rays for each direction. These rays are uniformly sampled within the range of 0 to
180 degrees.

We compare the results obtained from the GCDT with DART method [5]. Fur-
thermore, as a control method, we employ a basic yet less potent approach called
TRDT (Thresholding and Discretization Technique). Within this approach, we ap-
ply a thresholding function on the continuous solution and assign predetermined gray

levels based on pixel intensities.

S

PH1 PH2 PH3 Shepp-Logan

Fig. 5.1.17: Original test images (128 x 128). Phantoms PH1, PH2, and PH3 are
composed of three distinct gray levels, specifically 0, 0.5, and 1. Shepp-Logan phan-
tom comprises six different gray levels, namely 0,0.1,0.2,0.3,0.4, and 1.

Figure 5.1.17 shows the original test images used in the experiments, including
Shepp-Logan.

Table 5.1.1 presents the summary of the experimental results. We assess the out-
comes achieved through the application of three distinct reconstruction techniques:

TRDT, DART, and GCDT. The results pertaining to the DART technique are ex-
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12 proj.

15 proj. 18 proj.
Fig. 5.1.18: Reconstructions of the Shepp-Logan test images by the proposed GCDT
method.

Table 5.1.1: Results from experiments conducted on the Shepp-Logan image employ-
ing three distinct reconstruction methods. The term "m.r.” denotes the misclassifi-
cation rate, where a lower value signifies superior reconstruction, and ”d” represents
the quantity of projections.

d | TRDT (m.r. %) | DART (m.r. %) | GCDT (m.r. %)

12 12.74 14.21 5.72
Shepp- 15 10.44 8.44 3.17
Logan

18 10.03 2.56 2.14
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tracted from the work of Batenburg and Sijbers [5]. The experimental setup involves
the acquisition of projection data from three different configurations, namely 12, 15,
and 18 projection directions. Notably, across all these configurations, the GCDT
method consistently emerges as the most efficient, yielding the lowest mean recon-
struction error (m.r.) values, where m.r. is the pixel error measure relative to the
total number of image pixels.

In summary, our experimental findings underscore the effectiveness of the pro-
posed GCDT method in the context of Shepp-Logan image reconstruction. This
method surpasses alternative techniques in terms of both reconstruction quality and
computational efficiency. For a comprehensive exploration of additional experimen-
tal results and detailed performance analyses, readers are encouraged to consult the

original research paper [59].

5.2 A priori information in image reconstruction

A priori information, also known as prior information or prior knowledge, is infor-
mation that is known or assumed before considering new data. In the context of
image reconstruction algorithms, a priori information about the shape or characteris-
tics of the object being reconstructed can be valuable in improving the accuracy and
efficiency of the reconstruction process.

There are various ways to obtain a priori information, and the method often
depends on the specific application and the nature of the imaging problem. In some
cases, a priori information can be obtained through direct physical measurements of
the object. For example, in medical imaging, certain characteristics of tissues may be
known from previous experiments or measurements using different imaging modalities.
Mathematical models and simulations can provide a priori information about the
expected characteristics of the object. Researchers may use computational models
based on physics or other relevant principles to simulate how an object should appear
in the given imaging system. Machine learning techniques can be employed to learn

a priori information from a large dataset of representative examples. Convolutional
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neural networks (CNNs) and other deep learning approaches can learn patterns and
features from training data, capturing the inherent structures in images. Knowledge
from domain experts can be considered as a valuable source of a priori information.
Expert input can help define constraints, assumptions, or features relevant to the
specific application.

The accuracy of image reconstruction algorithms can be sensitive to the correct-
ness of a priori information. If the prior information is inaccurate or does not align
well with the actual characteristics of the object, it may lead to artifacts or errors in
the reconstructed image.

Some algorithms are designed to be more robust to uncertainties in the a priori
information. For example, Bayesian frameworks allow for the incorporation of un-
certainties, and regularization techniques can help mitigate the effects of inaccurate
prior information.

There is often a trade-off between relying on a priori information and adapting to
the data. Balancing the weight given to prior information versus the observed data is
a critical aspect of algorithm design. In summary, obtaining a priori information can
involve various methods, and the impact of inaccuracies in this information depends
on the specific algorithm and application. Robust algorithms are designed to handle

uncertainties and balance the influence of prior information with the observed data.

5.3 Graph cuts reconstruction methods assisted
by shape circularity and shape orientation

The idea of incorporating a priori information into the reconstruction process is rooted
in the belief that supplementing the algorithm with relevant knowledge about the im-
aged object can improve accuracy and robustness. In this regard, the question arises:
Can the shape descriptors described in chapter 4 serve as a valuable a priori informa-
tion, potentially replacing the need for extensive projection data in the reconstruction

process?
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To further enhance the performance of graph cuts reconstruction methods, we
explore the possibility of introducing an additional regularization term representing
shape circularity or shape orientation.

The hypothesis suggests that even with limited projection data from a single direc-
tion, knowing an object’s circularity could lead to promising reconstruction outcomes.
By integrating circularity as prior knowledge, the reconstruction algorithm can be
regularized, steering it toward more plausible and physically meaningful solutions.

In addition to circularity, shape orientation is another important aspect of a
shape’s geometry. It can provide crucial information about the object’s alignment,
which is often valuable in various imaging applications.

These novel approaches aim to capitalize on the benefits of circularity and orien-
tation as a priori information. By integrating both descriptors into the graph cuts
reconstruction algorithm, we seek to achieve superior results compared to traditional
methods that rely solely on projection data.

In the subsequent sections of this chapter, we will delve deeper into the practical
implementation of shape circularity and orientation as regularization terms in graph
cuts reconstruction methods. We will explore experimental results and case studies to
validate the hypothesis that leveraging these geometric descriptors can indeed lead to

more accurate and robust reconstructions in scenarios with limited projection data.

5.3.1 The new method based on shape orientation

Our novel tomography reconstruction approach seamlessly integrates the graph cuts
method with a gradient-based minimization technique, all while leveraging shape
orientation as crucial a priori information.

In the initial step of our method, we calculate data cost values for each pixel within

the image. These values are derived from the intensities of a smoothly approximated
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final reconstructed image, achieved through the minimization of an energy function:

min EQ( )—U)PHAU—bHQ—'—wHZ Z

uelo1y i=1 jer() (5.4)

+wo(®(u) — a*)? + pulu, 7 — u).
Here, we introduce key elements:

1. Data fitting term, ||Au — b||3, regularized by the parameter wp > 0. This term
ensures adherence to the projection data. The regularization parameter wp
controls the impact of this term. A higher value of wp penalizes deviations
from the data more strongly, leading to a solution that closely fits the observed

data. However, setting it too high may result in overfitting.

2. Homogeneity term, S > jern (W — u;)?, regularized by the parameter wy >
0. Here, Y(7) represents the set of indices of neighboring pixels (in the z and y
axis directions) of pixel i. This term encourages neighboring pixels to have sim-
ilar intensities, promoting smoothness in the solution. A higher wy strengthens
the smoothness constraint. It helps in reducing noise in the solution. Too
high values, though, may oversmooth the solution, potentially causing a loss of

important details.

3. Term, (®(u) — *)?, which quantifies the disparity in orientation between the
current solution ®(u) and the known orientation of the original image a*. The

parameter wep > 0 determines the impact of the orientation regularization.

4. Concave regularization term, (u, 7 —u), where 7 = [1,1, ..., 1]7 is a vector of size
N. This term helps in moving pixel intensities toward binary values, and its
influence gradually increases during the reconstruction process, regulated by the
parameter p > 0. The parameter i controls the strength of this regularization.
Higher values of p increase the influence of this term, which can be useful for
obtaining binary solutions. However, an excessively high g might lead to a

binary solution that does not capture the underlying structure.
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For each fixed i, we employ the Spectral Projected Gradient (SPG) iterative op-
timization algorithm to solve the problem (5.4). In the subsequent step, we perform
a comprehensive binarization of the smoothed solution obtained from the SPG algo-
rithm. This binarization utilizes the graph cuts method based on the Potts model
(details in Section 5.1.3). The data cost term D in (5.1) is crafted from the informa-

tion derived from the smooth solution w:

D(p,0) = u(p),

D(p,1) =1 — u(p).

We also define a set of neighboring pairs, denoted as A/. For two different pixels p
and ¢, we have that (p,q) € N if the image coordinates of p and ¢ differ by at most
1 in either the horizontal or vertical direction. The interaction potential K, is set
as a constant with a value of 1.

With these definitions, we are ready to minimize the energy function in (5.1)
using the GCO (Graph Cuts Optimization) algorithm [16]. The GCO algorithm
assigns label values d,, to each pixel p, where each label value corresponds to either 0
or 1.

We henceforth refer to this method as the Graph Cuts Binary Tomography As-
sisted by Orientation (GCORIENTBT).

5.3.2 The new method based on shape circularity

The approach suggested in this section for addressing the discrete tomography prob-

lem is divided into two components:

1. Identification of a continuous (smooth) solution to the energy minimization
problem through the utilization of a gradient-based minimization technique.
The energy function incorporates information about the circularity of the orig-

inal object.
2. Making the acquired smooth solution discrete by employing a graph cuts-based
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algorithm. The pixel values from the smooth image are employed to establish

the data cost term for the graph.

The energy function used for calculating the smooth solution is given by the

following equation:

N
min Eg(u) :== wp||Au — b||5 + wy Z Z (ui — uj)*+
velol =1 et (5.5)
+we (C(u) = C)* + p (u, 7 — u),

and is constructed of following terms:

e 7=[1,1,...,1]T as an N-dimensional vector,

wp term for controlling data fitting,

wy term for regulating homogeneity of the solution,
e Y(i) to represent neighboring pixel indexes of pixel 1,
e C(u) for the circularity of the solution,

e C* as the true circularity (a priori information),

we > 0 to determine circularity regularization impact,

e (u,T — u) to encourage pixel intensities toward binary values,

1 to control the influence of the binarization term.

The problem of minimizing energy, as expressed in equation (5.5) through con-
strained quadratic optimization, can be tackled using various optimization methods.
We specifically chose the Spectral Projected Gradient (SPG) algorithm [9] due to its
proven effectiveness in similar problem domains.

Efficient minimization and extraction of the smooth solution in the energy function

(5.5) are made possible by analytically determining the gradient for the regularization
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term (C(u) — C*)?. The termination condition for the smooth solution is defined as
(u, 7 — u) < Epppn, with Ep;, determining the level of binarization for the solution u
and set to 100 in our experiments.

After computing the smooth solution, the next step involves complete binarization,
achieved through the graph cuts method based on the Potts model. The resulting
label values d, for each pixel p (where d, =0 — 0 and d, = 1 — 1) determine pixel
intensities in the final binary solution, indicating the conclusion of the reconstruction
procedure. This approach is referred to as Graph Cuts Binary Tomography Assisted
by Circularity (GCCIRCBT).

GCCIRCBT provides a notable advantage over GCORIENTBT, primarily due
to its analytical determination of the regularization gradient. This enables a swift
determination of the smooth solution using the SPG algorithm, leading to a significant

reduction in algorithm runtime compared to existing similar techniques.

5.4 Experimental results

In this section, we assess the effectiveness of different algorithms in reconstructing dis-
crete tomography images, with particular emphasis on our proposed methods (GCDT,
GCORIENTBT, GCCIRCBT). To gauge the effectiveness of our approaches, we con-
ducted comprehensive experiments using a diverse set of test images (Figure 5.4.19).
PH1-3 encompass 3 shades of gray, PH4-6 encompass 6 shades of gray, and PHT7-
12 depict binary images. PH1-PH11 consist of synthetic images, while PH12 is a
binary-segmented fluorescence image of Calcein-stained Chinese hamster ovary cells.
Each projection direction for multi-gray-level images involves a total of 128 parallel
rays, whereas binary images utilize 64 projection rays. In every case, the projection
directions are evenly distributed across the range of 0 to 180 degrees. This set of
projection data is utilized as input for the reconstruction algorithms.

Our evaluation includes a comparison of several established reconstruction algo-

rithms:

e Graph Cuts Discrete Tomography Algorithm (GCDT) [59]
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Discrete Algebraic Reconstruction Technique (DART) [5]

Method based on classical threshold (TRDT)

Multi Well Potential based method (MWPDT) [57]

Graph Cuts Tomography Assisted by the Orientation prior (GCORIENTBT)
[66]

Graph Cuts Binary Tomography Assisted by the Circularity prior (GCCIRCBT)
[67]

All the reconstruction methods (GCDT, DART, TRDT, MWPDT, GCORIENTBT,
GCCIRCBT) are fully implemented in the Matlab programming language.
In our experiments, we employed the GCORIENTBT and GCCIRCBT recon-

struction process with the parameter values given in table (5.4.2).

Parameter Value
Initial vector ug = [0.5,0.5,...,0.5]"
Data fitting weight wp = 0.1

Homogeneity weight (GCORIENTBT) | wy = 0.5

Homogeneity weight (GCCIRCBT) wy = 0.1

Orientation preservation weight weo = 0.1
Circularity regularization weight we = 3000
Concave regularization weight w = 0.0001

Table 5.4.2: Model parameter values used in the experiments

These values were determined through an iterative experimental process on our
test set. To obtain these values, we performed multiple runs, adjusting the param-
eters based on the observed reconstruction quality. The selection aimed to strike a
balance between model adherence to the data, smoothness of the solution, preserva-

tion of circular patterns or aimed orientation, and promotion of binary-like intensity
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values. Future improvements may involve exploring Adaptive Regularization Weight-
ing techniques, allowing the algorithm to dynamically adjust parameters during the
optimization process based on the characteristics of the data. Additionally, conduct-
ing a systematic sensitivity analysis and employing cross-validation techniques could

further enhance the robustness and generalization of the reconstruction algorithm.

PH4 PH5
PH7 PHS8

PHI10 PHI1 PHI12

PH3
PH6
PH9

Fig. 5.4.19: Original test images. Phantoms PH1, PH2, and PH3 contain three dis-
tinct gray levels, while PH4, PH5, and PH6 contain 6 different gray levels. Phantoms
PHT7 through PH12 feature binary images.
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5.4.1 Quality metrics

To provide a comprehensive evaluation of reconstruction quality, we employ a set of
fundamental metrics. For all these metrics, a lower value indicates better reconstruc-

tion.

e Pixel Error (PE): This metric quantifies the absolute number of misclassified

pixels, offering insights into the accuracy of reconstructions.

e Misclassification Rate (m.r.): It provides a normalized view of pixel error rel-
ative to the total number of image pixels, helping us understand the overall

fidelity of the reconstructions.

e Projection Error (PRE): PRE assesses the alignment of the reconstructed im-

ages with the given projection data, which is critical for accurate reconstruction.

The direction of projection is determined by the angle «, and we denote the
number of different projection angles used as d. When using horizontal and verti-
cal projection data, we can effectively determine circularity and orientation shape
descriptors, as discussed in Luki¢ et al. [62]. Therefore, when using three or more
projection angles, including circularity and orientation as prior information becomes
redundant, as these attributes are already present in the projection values. Conse-
quently, we omit results for GCORIENTBT and GCCIRCBBT when using a higher
number of projections since they would be identical to those obtained by GCDT.

5.4.2 Comparison of algorithms

The outcomes pertaining to the effectiveness of various algorithms on test images
PH1, PH2, and PH3 have been summarized in Table 5.4.3 and Table 5.4.4, with
corresponding visual representations in Figure 5.4.20 and Figure 5.4.22. In terms
of the metrics PE and m.r., the GCDT method demonstrated superior performance
in 10 out of 12 instances, while for the PRE metric, GCDT excelled in 8 cases.

However, when considering execution time, the MWPDT method emerged as the
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leader, as GCDT necessitated a notably higher number of iterations to achieve a
smooth solution.

The reconstruction outcomes for phantoms featuring 6 distinct gray levels are
detailed in Table 5.4.5. In this context, the GCDT method surpassed TRDT and
DART in 10 out of 12 scenarios, with DART exhibiting superior performance in
the remaining 2 cases. Visual representations of the reconstructions from 6 and 15
projection directions are provided in Figure 5.4.21 and Figure 5.4.23, respectively.

The analysis conducted thus far underscores the competitive efficacy of a model
combining graph cuts and a gradient-based approach (GCDT). This promising out-

come has spurred further testing and refinement of the algorithm.

Table 5.4.3: Results from experiments conducted on images PH1, PH2, and PH3 are
presented, employing three distinct reconstruction methods. The symbol d denotes

the number of projections, and the most outstanding performance is highlighted in
bold font.

PH1 PH2 PH3

d 6 9 12 15| 6 | 9 |12 | 15| 6 9 |12 | 15

(PE)| 255/ 159 | 59 | 35 |143|138| 20 | 18 | 655|456 | 275 | 174

MWP (m.r. %)|1.55/0.97(0.36(0.21|0.87|0.84|0.12|0.11|3.99/2.78|1.67{1.06

<)

(PE)[ 412 [ 175 | 48 | 28 | 209|141 | 17 | 17 |412|301 | 101 | 41

272169 | 8 | 5 [225(124| 12 | 12 |272] 116/ 20 | 9

)
)
TRDT (m.r. %)|2.51|1.06]0.29]0.17|1.28{0.86(0.10{0.10{2.51|1.83|0.61{0.25
(PE)
)

GCDT (m.r. %)|1.66]0.42(0.04(0.03(1.37|0.76/0.07/0.07|1.66/0.70/0.12|0.05
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Table 5.4.4: The experimental findings for images PH1, PH2, and PH3, employing
three diverse reconstruction methods. In this context, "e.t.” represents elapsed time
in minutes, while d signifies the number of projections. The optimal performance is
denoted in bold font.

PH1 PH2 PH3

(PRE) | 14.70 | 12.19 | 9.96 | 9.08 | 14.11 | 18.94 | 6.08 771 | 19.83 | 18.77 | 18.80 | 16.43

)
MWPDT  (e.t.) | 1.76 2.63 3.17 | 406 | 5.34 817 | 6.36 | 11.62 | 2.19 2.87 | 4.30 | 4.66

(PRE) | 18.66 | 14.72 | 10.61 | 8.87 | 17.98 | 17.30 | 7.09 7.09 | 23.64 | 17.87 | 13.66 | 10.61
TRDT (et.) | 7.73 12.58 | 14.55 | 17.77 | 6.24 | 10.82 | 16.01 | 17.74 | 7.28 | 11.07 | 13.39 | 16.00

(PRE) | 23.24 | 11.12 | 6.52 | 4.39 | 26.77 | 21.04 | 6.01 | 6.00 | 25.87 | 14.96 | 7.59 | 5.60

GCDT (et.) | 7.73 12.58 | 14.55 | 17.77 | 6.25 | 10.82 | 16.01 | 17.74 | 7.29 | 11.07 | 13.40 | 16.01

Table 5.4.5: Results of the experiments for PH4, PH5 and PH6 images, employing
three distinct reconstruction methods. The symbol d denotes the number of projec-
tions, and the most outstanding performance is highlighted in bold font.

PH4 PH5 PH6

d 6 9 12 15 6 9 12 15 6 9 12 15

(PE) | 1976 | 804 | 551 | 399 | 219 | 134 | 42 28 727 | 473 | 251 | 192

GCDT (m.r. %) | 12.06 | 4.91 | 3.36 | 2.44 | 1.34 | 0.82 | 0.26 | 0.17 | 4.44 | 2.89 | 1.53 | 1.17

(P 2435 | 1415 | 1188 | 998 | 1364 | 1330 | 1286 | 1274 | 889 | 807 | 587 | 552

=

(PE) | 1695 | 1242 | 1177 | 1089 | 488 | 379 | 288 | 319 | 649 | 836 | 596 | 707

)
)
TRDT (mr. %) | 14.86 | 8.64 | 7.25 | 6.09 | 8.32 | 8.12 | 7.85 | 7.78 | 543 | 4.92 | 3.58 | 3.37
)
)

DART (m.r. %) | 10.34 | 7.58 | 7.18 | 6.65 | 2.98 | 2.31 | 1.76 | 1.95 | 3.96 | 5.10 | 3.64 | 4.32
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Fig. 5.4.20: Reconstructions of the 3 gray level test images using data from 6 projec-

tion directions.
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PE=412 (2.51%)

PE=225 (1.37%)

PH1

PE=209 (1.28%)

PE=143 (0.87%)

PE=367 (2.24%)

PH2

PE=655 (3.99%)

PE=519 (3.16%)

PH3

GCDT

MWPDT

TRDT
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PE=1976 (12.06%)[PE=2435 (14.86%)PE=1695 (10.34%)

PH4

PE=219 (1.34%) |PE=1364 (8.33%) | PE=488 (2.98%)

PH5

PE=727 (4.44%) | PE=889 (5.43%) | PE=649 (3.96%)

PH6

GCDT TRDT DART

Fig. 5.4.21: Reconstructions of the 6 gray level test images using data from 6 projec-
tion directions.
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PE=5 (0.03%)

PE=35 (0.21%)

PE=28 (0.17%)

PH1

PE=12 (0.07%)

PE=17 (0.10%)

PE=18 (0.11%)

PH2

PE=9 (0.05%)

PE=174 (1.06%)

PE=41 (0.25%)

PH3

GCDT

MWPDT

TRDT

Fig. 5.4.22: Reconstructions of the 3 gray level test images using data from 15 pro-

jection directions.
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PE=1089 (6.65%)

PH4

PE=28 (0.17%)

PE=1274 (7.78%)

PE=319 (1.95%)

PE=192 (1.17%)

PH5

PE=552 (3.37%)

PE=707 (4.32%)

PH6

GCDT

TRDT

DART

Fig. 5.4.23: Reconstructions of the 6 gray levels test images using data from 15
projection directions.
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PE=49 (1.20%) | PE=44 (1.07%) | PE=45 (1.10%)

PH7

PE=66 (1.61%) | PE= 67 (1.64%) | PE=45 (1.10%)

PHS8

PE=800 (19.53%)PE=800 (19.53%)PE=604 (14.75%)

PH9

GCDT TRDT DART

Fig. 5.4.24: Reconstructions of the binary test images (PH7, PH8, PH9) using data
from 2 projection directions (vertical and horizontal).

Our investigations on binary images, as illustrated in Figure 5.4.24 and Figure
5.4.25, unveiled that the GCDT method yields unsatisfactory outcomes, producing in
some cases an entirely black image, particularly when reconstructing from only two
projections. To overcome this limitation, we propose enhancing the GCDT method
by incorporating orientation and circularity as prior information, resulting in the

formulation of the GCORIENTBT and GCCIRCBT algorithms.
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PE=734 (17.91%)

PE= 100 (2.44%)

PH10

PE= 100 (2.44%)

PE=63 (1.54%)

PHI11

PE= 478 (11.67%)

PE=452 (11.04%)

PE=676 (16.50%)

PH12

GCDT

TRDT

DART

Fig. 5.4.25: Reconstructions of the binary test images (PH10, PH11, PH12) using
data from 2 projection directions (vertical and horizontal).
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We proceeded to compare these algorithms with two other reconstruction methods,
namely DART and GCDT, as depicted in Figure 5.4.32 and Figure 5.4.33. For our
analysis, we utilized 6 binary images with data obtained from a single projection and
tested the models across 6 different projection angles.

In our prior study [66], GCORIENTBT demonstrated outstanding results in sce-
narios with limited projection view availability. In a subsequent investigation [67],
we explored whether circularity is as effective or potentially superior as a regulariza-
tion term. The results indicate that in 17 out of 36 cases, GCCIRCBT produced the
best reconstruction (smallest PE/m.r.), while GCORIENTBT prevailed in 13 cases.
As anticipated, incorporating the prior information into the GCDT method led to
significantly improved results for binary images, particularly when dealing with lim-
ited projection data. Moreover, GCCIRCBT exhibited a noteworthy advantage in
terms of running time, being, on average, 2.12 times faster than its top competitor,
GCORIENTBT (Figure 5.4.34).

Summarizing the outcomes from the analysis of reconstruction tasks involving
multiple gray levels, as detailed in Tables 5.4.3 and 5.4.5, the GCDT method show-
cased superior reconstruction quality in 20 out of 24 instances, accounting for 83% of
the cases. Additionally, the combined performance of GCORIENTBT and GCCIR-
CBT proved to be superior in 83% of the cases, with GCCIRCBT holding a slight
advantage. This underscores the commendable efficacy of the graph cuts-based recon-
struction approach in DT, emphasizing the notable benefits of incorporating shape

circularity and orientation as a priori information.
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1
1

PE=444 (10.83%)[PE=682 (16.655%)[PE=682 (16.65%)| PE=252 (6.15%)
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PE=800 (19.53%)| PE=800 (19.53%) [PE=800 (19.53%)PE=886 (21.63%)

PH9

DART GCDT GCORIENTBT | GCCIRCBT

Fig. 5.4.26: Reconstructions of the binary test images (PH7, PH8, PH9) using data
from 1 projection direction, a = 0°.
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PE=132 (3.22%) | PE=444 (10.84%) | PE=101 (2.46%) | PE=130 (3.17%)

PHI11

N

PE=720 (17.58%)| PE=720 (17.58%) | PE=300 (7.32%) | PE=624 (15.23%)

PH12

DART GCDT GCORIENTBT GCCIRCBT

Fig. 5.4.27: Reconstructions of the binary test images (PH10, PH11, PH12) using
data from 1 projection direction, oo = 0°.
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g L S —

PE=810 (19.78%)| PE=724 (17.68%) [PE=870 (21.24%)| PE=334 (8.15%)

PH9

DART GCDT GCORIENTBT | GCCIRCBT

Fig. 5.4.28: Reconstructions of the binary test images (PH7, PH8, PH9) using data
from 1 projection direction, direction angle is a = 60°.
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PHI12

DART GCDT GCORIENTBT GCCIRCBT

Fig. 5.4.29: Reconstructions of the binary test images (PH10, PH11, PH12) using
data from 1 projection direction, direction angle is o = 60°.
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Fig. 5.4.30: Reconstructions of the binary test images (PH7, PH8, PH9) using data
from 1 projection direction, direction angle is a = 30°.
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Fig. 5.4.31: Reconstructions of the binary test images (PH10, PH11, PH12) using
data from 1 projection direction, direction angle is a = 30°.
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Comparison of Pixel Error
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Fig. 5.4.32: Experimental outcomes for BT employing four distinct reconstruction
methods, focusing on Pixel Error.
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Fig. 5.4.33: Experimental outcomes for BT with an emphasis on misclassification rate
(m.r)., employing four diverse reconstruction methods.
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Fig. 5.4.34: Experimental outcomes for BT with an emphasis on average elapsed time
(e.t.)., employing four diverse reconstruction methods.
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CHAPTER 6

Conclusion and Future Work

In this thesis, we have conducted an in-depth investigation into the field of discrete
tomography, a discipline primarily concerned with reconstructing discrete objects or
images from a limited set of projections. Our exploration has encompassed various
aspects of discrete tomography, including its foundational formulation, binary tomog-
raphy models, and a range of reconstruction algorithms. Throughout our research,
our primary objective has been the development and evaluation of regularized models
tailored for tomographic image reconstruction, specifically addressing the challenges
associated with generating high-quality images from sparse projection data.

Within the thesis, we emphasize the significant performance of an algorithm that
combines gradient-based techniques with graph cuts optimization for solving discrete
tomography problems. In scenarios where the availability of projections is severely
constrained, we have adapted this method by incorporating shape descriptors as prior
knowledge about the objects being reconstructed. Our experimental results conclu-
sively demonstrate that the proposed approach outperforms previously published re-
construction methods regarding reconstruction quality. These findings establish that
the integration of a gradient-based method with graph cuts optimization, enhanced
by the inclusion of area-based shape descriptors as prior information, represents an
effective strategy for achieving high-quality reconstructions in the context of discrete
tomography.

While this thesis has made significant progress in exploring regularized models for
tomographic image reconstruction, several avenues for future research remain open.

We identify the following areas as promising directions for extending and refining our
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work:

Multi-Modal Shape Regularization: Explore the integration of multiple area-based
shape descriptors as regularization terms simultaneously. Combining shape orienta-
tion and circulation with other descriptors like eccentricity, roundness, or elongation
could provide a more comprehensive and robust regularization framework, captur-
ing different aspects of the object’s shape and improving the overall reconstruction
accuracy.

Adaptive Regularization Weighting: Investigate adaptive approaches for adjusting
the weights or importance of the shape descriptors during the reconstruction process.
Some regions of the tomographic data might benefit more from specific shape de-
scriptors than others. Developing adaptive regularization schemes that automatically
adjust the weights based on the local image characteristics can lead to more effective
regularization and enhanced reconstruction results.

Parameter Tuning for Shape Regularization: Conduct a thorough study on the
impact of the parameters associated with shape orientation and circulation regular-
ization. Fine-tuning these parameters can significantly influence the regularization’s
effectiveness in preserving shapes and structures of the object. Utilize techniques
like cross-validation or optimization algorithms to determine the optimal parameter
values for specific imaging scenarios.

Deep Learning-Based Regularization: As deep learning approaches have shown
remarkable success in various imaging tasks, integrating deep neural networks into our
regularization framework holds great promise. Investigating the use of convolutional
neural networks (CNNs) and generative models for regularization can potentially
improve the accuracy and efficiency of tomographic image reconstruction.

By pursuing these future research directions, we believe that the field of tomo-
graphic image reconstruction can benefit from more robust, accurate, and efficient
methods, enabling a wide range of applications in various scientific and industrial
domains.

In conclusion, this thesis has provided a comprehensive overview of discrete to-

mography, its formulation, binary tomography models, and reconstruction algorithms.
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The research conducted here contributes to the growing body of knowledge in discrete
tomography and offers a foundation for future advancements in this field. The im-
plications and limitations discussed in this chapter highlight promising directions for
future research, paving the way for improved reconstruction techniques and broader

applications of discrete tomography in various domains.
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Abstract

The topic of this paper includes graph cuts based computed tomography reconstruction
methods in binary and multi-gray level cases. This approach combines the graph cuts
and a gradient based method. The present paper introduces and analyses the shape
circularity as a new regularization and incorporates it in a graph cuts based computed
tomography reconstruction approach, thus introducing a new energy-minimization
based reconstruction algorithm for binary tomography. Proposed method is capable for
reconstructions in cases of limited projection view availability. Results of experimental
evaluation of the considered graph cuts type reconstruction methods for both binary
and multi-level tomography are presented.
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1 Introduction

Image reconstruction represents a collection of methods used to enhance and improve
the quality of the image or to extract additional information from the image. Very
often we need to obtain information about an object which is not visible or easily
accessible. An area of image processing whose scope are these type of problems is
named tomography.
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Tomography deals with reconstructing images from the given projection data. Pro-
jection data is obtained by a wave penetrating through an unknown object. This wave
is then detected on the opposite side of an object. A set of projection data is obtained
at a particular angle. The source and detector are then rotated at a small angle, and a
new projection is obtained. The object aimed to be restored is seen as a function with
a domain that can be discrete or continuous and a range that is a given set of (usually)
real numbers. Discrete Tomography (DT) (Herman and Kuba 1999, 2006) is a field of
tomography that focuses on reconstruction of discrete images (finite number of pixel
values) using much fewer number of projections. We distinguish binary tomography
(BT) concentrating on binary images and multi-level discrete tomography concentrat-
ing on digital images that consist of numerous gray levels. DT has a wide range of
applications in areas where the materials of the object under investigation are known
before, such as industrial non-destructive testing or electron tomography, as well in
many diagnostic approaches in medicine (Herman and Kuba 1999, 2006).

In the related conference publication (Marceta and Luki¢ 2020), we proposed a
new graph cuts based binary tomography reconstruction algorithm (GCORIENTBT)
for limited projection availability. This approach incorporates the shape orientation
(Zuni¢ et al. 2006) as an a priori information about the solution into the reconstruction
process.

This paper brings a new regularization approach based on the shape circularity
(Zuni¢ et al. 2010). We use the same graph cuts based optimization approach as in the
case of the GCORIENTBT method, but, instead of the shape orientation, the shape
circularity is reviewed and applied as an a priori information in the reconstruction
process. We found the motivation for this choice in recently published paper (Luki¢ and
Balézs 2020), where the circularity prior is successfully applied in a combination with
convex-concave based regularization (Schiile et al. 2005). The proposed circularity
based method (GCCIRCBT) has an important advantage compared to GCORIENTBT,
since the gradient of the regularization is determined in an analytical way which makes
the determination of the smooth solution fast by the SPG algorithm. Running time of
the algorithm is significantly decreased compared to existing similar techniques. We
demonstrate by experiments that the prior information can boost the performance of
reconstruction in cases of very low number of projections. Additionally, this paper
gives an overview and experimental evaluation of the most often used algorithms for
multi-level tomography reconstruction problem, which, to the best of our knowledge
was addressed by only few researches.

This paper is organized as follows. Section 2 gives a brief overview of the basic
reconstruction problem. Section 3 begins by examining the approach that uses graph
cuts for energy minimization, followed by the introduction of shape orientation and
circularity as shape descriptors and finishing with describing and analyzing the new
reconstruction method. Experimental results are provided in Sect. 4. Our conclusions
are drawn in the final section.

2 Reconstruction problem

In this chapter we introduce some notations and define the DT problem mathematically.
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DT reconstruction problem can be outlined by the following linear system of equa-
tions

ajul +apur +aizuz+ ... +ayuy = by
axiuy + axuy +axuz + ... +ayxy = by
aziuy + azuy +azuz + ... +azyxy = b3

ayiul + appur +apyzuz + ... +aynxy = by,
which we examine in its matrix form

Au=b, (1)

where A € RNy e AN b e RM and A = {A1, Mg, ..., Ag} fork > 2.

Unknown image to be reconstructed is denoted by u and is represented in a column
vector form. Set A is given by the user and denotes the gray levels of the image, if
k = 2, problem becomes problem of binary tomography. Matrix A is named projection
matrix. Each row of this matrix is determined by one projection ray and its entries
are calculated as the length of the intersection of the pixels and projection ray passing
through them. The corresponding components of the vector b consist of the detected
projection values calculated as a sum of products of the pixel’s intensity and the
corresponding length of the projection ray through that pixel.

Projection process is performed from different directions. For each projection direc-
tion a number of parallel projection rays is taken (parallel beam projection). The
projection direction is determined by the angle «. Every two adjacent parallel projec-
tion rays are equidistant with their distance being equal to the side length of pixels.
Number of parallel projection rays is specified in a way to cover the whole image grid.

The reconstruction problem means finding the solution image u of the linear sys-
tem of equations (1), where the projection matrix A and the projection vector b are
given. This system is often undetermined (N > M). We are interested in finding a
reconstruction which resembles the original image as closely as possible, not just one
that corresponds to the given projections. Therefore, it is necessary to use all available
information (a priori information) about the object of interest in order to determine
quality and acceptable solution.

3 Graph cuts reconstruction methods assisted by shape circularity
and shape orientation

Image reconstruction is commonly performed by regularized energy minimization,

due to its simplicity and generally good performance. In its most general setting one

tries to recover a reconstructed version of the observed image y by minimizing an

energy function which has the following form:

E(u) = F(Lu, b) + AR (). 2)
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An argument #” which minimizes the energy function,
u" = argmin E (u) (3)
u

is considered to be an estimate of the original image. The function F is called the data
fidelity term and measures the distance between the data b and the reconstruction u
after the forward operator L has acted on it. The function R is called the regularization
term and it imposes a priori knowledge on the solution u. It is expected that small
values of R will lead, up to a certain extent, to the elimination of the undesirable
features. Regularization also provides numerical stabilization of image reconstruction
problem. The regularization parameter A controls the trade-off between the two terms,
1.e. the level of smoothing vs. faithful recovery of the image detail.

3.1 Graph cut optimization

Graph cut optimization can be conveniently utilized to solve a wide variety image
processing problems that can be formulated in terms of energy minimization (Boykov
etal. 1998, 2001; Birchfield and Tomasi 1999; Kolmogorov and Zabih 2001; Kwatra
et al. 2003; Boykov and Kolmogorov 2003; Boykov and Jolly 2001; Kim and Zabih
2003).

A directed, weighted graph G = (X, p), is determined by a set of nodes X, that
are connected together through edges p. All the edges are directed from one node to
another and appointed some weight or cost. A cut of a graph G is a partition of set
X into two disjoint subsets A named source and B named sink. Any cut determines
a unique cut-set consisting of a set of edges that have one endpoint in each subset
of the partition. Cost of a cut is calculated as a sum of weights of all edges going
from A to B. The minimum cut problem consists of finding a cut with minimum cost
among all possible cuts. Algorithms to solve this problem can be found in (Boykov
and Kolmogorov 2004).

The main idea behind application of graph cuts method in energy minimization is
construction of a graph specially designed for the energy function so that the solu-
tion of minimum cut problem also minimizes the energy function. The solution of
the minimum cut problem, in turn, can be computed very efficiently by max-flow
algorithms.

The Potts model in graph cuts theory, on which min-cut/max-flow algorithm is
applied, is based on the minimization of the following energy

Ed)=Y D(p.dp)+ Y. Kpg (1—84,4,). 4)
peP (P.9)eN

where d = {d,|p € P} represents the labelling of the image pixels p € P. By
D(p, d,) we denote the data cost term, where D(p, d),) is a penalty or cost for assign-
ing alabel d), to a pixel p. K, 4) is an interaction potential between neighboring pairs
p and g, N is a set of neighboring pairs. Function 8d,.d, 1s a Kronecker delta function.
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3.2 Geometric moments

The geometric moment of a digitized image u is defined by

mp )= > ul,ji’j,

(i, j)es2

where 2 C R? denotes the image domain.
The center of gravity (or centroid) of an image (or a shape) u is defined by

(Ce(u), Cy () = (m1,o(u) mo,l(u)) |

mo.o(u) mo,o(u)

The centroid enables the definition of the centralized moment which is translation
invariant. The centralized moment of an image u of order p + ¢ is given by

Mpg) =Y uli, )i — Ceu)P(j = Cyu).

(i,j)es

The shape is a characteristic of an object which allows numerical characterizations
and, in addition, has high object discrimination capacity. Many approaches regarding
shape descriptors have been developed (Sonka et al. 2007). There are shape descriptors
that accurately describe specific shapes and the ones that describe single character-
istics that are present over a variety of shapes. In this paper we will focus on two
shape descriptors, namely orientation and circularity, and we will measure them using
geometric moments.

3.3 Shape orientation

Shape orientation is determined by the angle o, which represents the slope of the axis
of the second moment of inertia (orientation axis) of the considered shape (Sonka et al.
2007). The orientation (angle «) for the the given image u can be calculated by the
following equation:

sin(2a) 2. ﬁ11,1(u)

cos(Qa)  mpo(u) — moo(u)’

)

Moments in (5) are translation invariant, making the orientation invariant to translation
transformations, for more details see (Luki¢ and Balazs 2016; Zunié et al. 2006).

The graph cuts reconstruction method which applies the shape orientation in the
binary tomography reconstruction process (GCORIENTBT) is proposed and analyzed
in our recently published paper (Marceta and Luki¢ 2020), therefore we omit its
detailed description.
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3.4 Shape circularity

Shape circularity is a familiar shape descriptor. Exploiting the fact that the circle has
the largest area among all the shapes with the same perimeter, the most standard
method defines the shape circularity Cg; (S) in the following way

4w A(S)

Cst(S) = W,

(6)

where A(S) is the area of the shape S and P(S) is the perimeter of S. It is easy to
notice that Cg;(S) is not area based nor boundary based, since it uses the information
both from the interior and boundary points.

For the given shape, represented by the image u, the circularity can also be rated or
measured by the following formula

1

C = ,
) = G0 + 102G0)

(7)

where wp 4 (u) is the normalized moment of u of order p + q. It is defined by the
following formula

my q(u)

g ) = Yt

m,o(u

It is trivial to show, that the normalized moment, besides being translation invariant,
is invariant to uniform scaling as well. The circularity measure C(u«) is proposed and
thoroughly analyzed in (Zuni¢ et al. 2010). In addition, in the same paper it has been
proven that circularity is highly performant in shape classification problems. The
following Theorem summarizes the most important properties of C(u).

Theorem 1 (Zunié et al. 2010) The circularity measure C(u), for a compact shape u
(closed and bounded), satisfies:

(a) C(u) € (0, 1], for all shapes defined by u;

(b) C(u) = 1 < u represents a circle;

(c) C(u) is invariant w.r.t. similarity transformations (translation, rotation and scal-
ing);

(d) Foreach § > O there is a shape u such that 0 < C(u) < 4.

The standard circularity measure C;(S) penalizes deep intrusions into the shape,
because such intrusions lead to an essential perimeter increase, which, by the defini-
tion, decreases Cg;(S). The measure C(S) is area based and does not penalize such
intrusions. On the other hand, C () is robust to noise, as area based descriptor, whereas
C,:(S) can only cope with small levels of noise because it uses the shape perimeter
for the computation. For our model we use C(S) as a measure of circularity.
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3.5 The new method based on shape circularity

Reconstruction method for solving discrete tomography problem we propose in this
paper consists of two parts:

¢ Finding a continuous (smooth) solution of the energy minimization problem using
gradient based minimization method. Information about the circularity of the orig-
inal object is incorporated in the energy function.

e Discretization of the obtained smooth solution applying graph cuts based algo-
rithm. Pixel values of the smooth image are used to define data cost term for the
graph.

N
min Eq(u) := wplAu — blz+wy Y Y (i —uj)*+
uel0,1] i=1 jeT (i)

twe (Cu) = C*) + (w7 —u) | (8)

Energy function we use for calculation of the smooth solution is given in the equa-
tion (8) and is constructed of four terms:

1. Data fitting term, ||Au — b||%, regularized by parameter wp > 0. Data fitting term
ensures adherence to the projection data.

2. Homogeneity term, 3 ' | 3 jer (@i —uj)?, regularized by parameter wy > 0.
T (i) is set of indices of two neighbouring pixels (in x and y axis directions) of
pixel i. This term ensures the smoothness of the solution.

3. Term, (C(u) — C*)?, measures the distance between the circularity of current
solution(C («)) and known circularity of the original image (C*). Parameter wc > 0
determines the impact of the circularity regularization.

4. Concave regularization term, (4, Tt — u), where t = [1,1,..., 1]" is a vector of
size N, has the role to move pixels intensities toward binary values. Influence of
this term is gradually increased during the reconstruction and it is regulated by
parameter p > 0.

T

Problem (8) is a constrained and quadratic type energy-minimization problem that
can be solved by several optimization methods. We have selected Spectral Projected
Gradient (SPG) optimization algorithm (Birgin et al. 2001) for this task, since it has
shown good performance in successful application in similar problems (Luki¢ and
Balazs 2016; Luki¢ and Nagy 2014; Nagy and Luki¢ 2016; Birgin et al. 2000). The
SPG algorithm combines the non-monotone line search algorithm (Grippo et al. 1986)
and the spectral gradient step-length selection (Barzilai and Borwein 1988; Raydan
1997; Birgin and Martinez 2001), its pseudo-code is presented in Alg. 1.

The gradient of the regularization term

(Cw) —c*)?

in the energy function (8) is determined in a fully analytical manner, for its exact
expression see (Luki¢ and Baldzs 2020). This allows a fast minimization process and
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Algorithm 1: SPG optimization algorithm.

u® =05,0.5, ...,0.517;
d® = Po® — VEo®) —ul; k =0;
repeat
Determine the current step-length 1% > 0 by a line search approach, see (Birgin et al. 2001);
Wkl = gk 4k gk
Calculate the gradient spectral step-length 6y > 0, see (Birgin et al. 2001);
dk+1 — P_Q(Mk+1 _ ‘9k+lVEQ(“k+l)) _ Ltk+1; k=k+ 1
until |[uf — k1|0 < 1072;

new _ uk;

u

determination of the smooth solution by SPG algorithm, in contrast to the GCORI-
ENTBT method when the gradient of the shape orientation based regularization is
calculated in numerical manner.

The stopping criterion for smooth solution is given by

(u’ T — l/l) < Ebli’h

where Ej;, regulates the degree of binarization of the solution # and it is set to
100 in our experiments. Partial binarization of the continuous solution boosts the
determination of data cost terms for graph cuts method.

Next action after calculation of the smooth solution is its full binarization. This is
done by applying the graph cuts method based on the Potts model, described in Sect.
3.1. We construct energy function according to the one used in the Potts model (4) in
the following way:

e Data cost term, D,

D(p,0) = u(p),
D(p,1) =1—u(p),

where u(p) represents the intensity of a pixel p.
e Set of neighboring pairs, N\,

(p, q) € N if the image coordinates of p and ¢ differ for one value only.
e Interaction potential, K,

Kipqg =1

After successful construction of the energy function (4), the next task is solving
a problem of finding a minimum of this function. That is achieved by implementing
GCO graph cuts based optimization algorithm, introduced in (Boykov et al. 2001) and
further analyzed in (Boykov and Kolmogorov 2004; Delong et al. 2010; Kolmogorov
and Zabih 2004). The output of GCO algorithm are label values d), for each pixel
p, where d,, is predefined as d, = 0 — Oand d, = 1 — 1. As a result of the
adequate construction of the function (4), obtained label values determine intensities
of pixels in the final (binary) solution, marking the end of the reconstruction process.
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Fig.1 Original test images.
Phantoms PH1, PH2 and PH3
contain 3 different gray levels,
PH4, PH5 and PH6 contain 6
different gray levels, while PH7,
PHS, PH9, PH10, PH11, PH12
present binary images

PH1 PH2 PH3

PH5 PH6
PH7 PHS8 PH9

PH10 PHI11 PH12

PH4

We denote this method by Graph Cuts Binary Tomography Assisted by the Circularity
prior (GCCIRCBT) reconstruction method.

4 Experimental results

In this section we aim to evaluate the performance of the algorithms that are, to
the best of our knowledge, most commonly used for solving similar reconstruction
problems in DT and to experimentally confirm if the new circularity prior improves
the reconstruction quality. In order to achieve above mentioned goal, we use test
set containing 12 test images (phantoms) presented in Fig. 1. PH1-3 contain 3 gray
levels, PH4-6 contain 6 gray levels, while PH7-12 represent binary images. Images
PH1-PHI11 are synthetic, whereas PH12 is a binary segmented florescence image of
Calcein stained Chinese hamster ovary cell. A total of 128 parallel rays is taken for
each projection direction for multi gray level images and 64 projection rays for binary
images. In all cases, the projection directions are uniformly selected between 0 and
180 degrees. This projection information is used as input in reconstruction algorithms:
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Fig.2 Reconstructions of the 3

gray level test images using data - .

from 6 projection directions

PE=272 (1.66%)[PE=255 (1.55%)[PE=412 (2.51%)
PH1

PE=225 (1.37%)[PE=209 (1.28%)PE=143 (0.87%)
PH2

PE=367 (2.24%)|PE=655 (3.99%)PE=519 (3.16%)
PH3
GCDT | MWPDT | TRDT

e Graph Cuts Discrete Tomography Algorithm (GCDT) (Luki¢ and Marceta 2017)

e Discrete Algebraic Reconstruction Technique (DART) (Batenburg and Sijbers
2007)

e Method based on classical threshold (TRDT)

e Multi Well Potential based method (MWPDT) (Luki¢ 2011)

e Graph Cuts Tomography Assisted by the Orientation prior (GCORIENTBT)
(Marceta and Luki¢ 2020)

e Graph Cuts Binary Tomography Assisted by the Circularity prior (GCCIRCBT),
introduced in this paper

MWPDT method is developed and used only for phantoms with 3 gray levels,
GCORIENTBT and GCCIRCBT only for binary images, while the rest of the algo-
rithms mentioned in this section can be used for reconstruction of images with arbitrary
number of gray levels. In our experiments, each reconstruction method (GCDT, DART,
TRDT, MWPDT, GCORIENTBT, GCCIRCBT) is completely implemented in pro-
gramming language Matlab.

In the evaluation process, we analyze the quality of the reconstructions. The quality
of the reconstructions is expressed by the pixel error (P E), i.e. the absolute number
of the misclassified pixels, and by the misclassification rate (m.r.), i.e. the pixel error
measure relative to the total number of image pixels. Additionally, as a qualitative
error measure, we consider the projection error, defined by PRE = |Au" — b,
where u” represents the reconstructed image. This error indicates the accordance of
the reconstruction with the given projection data.
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Fig.3 Reconstructions of the 6
gray level test images using data
from 6 projection directions

Fig.4 Reconstructions of the 3
gray level test images using data
from 15 projection directions
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Fig.5 Reconstructions of the 6
gray levels test images using
data from 15 projection
directions

PE=399 (2.44%)| PE=998 (6.09%) PE=1089 (6.65%)
PH4

PE=28 (0.17%) [PE=1274 (7.78%)| PE=319 (1.95%)
PH5

PE=192 (1.17%)| PE=552 (3.37%) | PE=707 (4.32%)
PHG6
GCDT | TRDT | DART

We compare performance of the observed algorithms on the various projection data
of the test images. The projection direction is determined by the angle « and, in this
section, number of different projection angles used for obtaining projection data is
denoted by d. Horizontal and vertical projection data provide enough information for
determination of circularity and orientation shape descriptors (see Luki¢ and Baldzs
2020). Thus, orientation and circularity of a shape do not present any additional infor-
mation about an object if horizontal and vertical projection data is known. Therefore,
in cases of 3 or more projection angles circulation and orientation as a priori informa-
tion are redundant, as they are already present in projection values. This is the reason
why for reconstructions that use higher number of projections, we do not show results
for GCORIENTBT and GCCIRCBBT (they would be identical to those obtained by
GCDT).

Results regarding the performance of different algorithms on test images PH1, PH2
and PH3 (Tables 1, 2 and Figs. 2, 4), show that for P E and m.r. as metrics, method
GCDT provided the best results in 10 out of 12 cases, for P R E metric GCDT method
dominates in 8 cases, while in terms of the execution time MWPDT method prevails.
GCDT uses significantly higher number of iterations for obtaining the smooth solution
compared to MWPDT method in total, thus resulting in greater consumption of time.

Reconstruction results of phantoms with 6 different gray levels (Table 3) show
that, compared to TRDT and DART, GCDT method prevails in 10 out of 12 cases,
whilst DART performs the best in 2 cases. In Figs. 3, 5 reconstructions from 6 and 15
projection directions respectively are presented.

@ Springer



Journal of Combinatorial Optimization

Fig.6 Reconstructions of the
binary test images using data
from 2 projection directions
(vertical and horizontal)
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Fig.7 Reconstructions of the binary test images using data from 1 projection direction, & = 0°

Results down to this point of the analysis show competitive performance of a model
based on the combination of graph cuts and a gradient based method (GCDT). This
encourages us to test and develop this algorithm further.

Our experiments on binary images (Fig. 6) demonstrate that GCDT method gives
poor results in cases of the reconstruction from two projections. In order to avoid
this drawback we can add orientation and circularity as a priori information to GCDT
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Fig. 8 Reconstructions of the binary test images using data from 1 projection direction, direction angle is

o = 60°
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Fig. 10 Experimental results for BT using four different reconstruction methods (Pixel Error)
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Fig. 11 Experimental results for BT using four different reconstruction methods (m.r.)
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Fig. 12 Experimental results for BT using four different reconstruction methods (average e.t.)

method, thus building the GCORIENTBT and GCCIRCBT algorithm. Later, we have
compared these algorithms with two other reconstruction methods (DART, GCDT)
(Figs. 10, 11). For analyzis we have used 6 binary images, data was given from one
projection, and we have tested the model by using 6 different projection angles.

In (Marceta and Luki¢ 2020) it was shown that GCORIENTBT gives very good
results in cases of limited projection view availability. We have now been inquiring
if the circularity is equally good or even better to use as a regularization term. In
17 out of 36 cases GCCIRCBT gives the best reconstruction (smallest PE/m.r.) and
GCORIENTBT wins in 13 cases. It can be noticed that, as expected, by adding the
prior to GCDT method, significantly better results for BT are obtained in cases of
limited projection data availability. The noticeable advantage of GCCIRCBT is in
running time, execution time of GCCIRCBT is in most of the cases significantly
shorter compared to its best competitor GCORIENTBT (Fig. 12).

Summarizing the results obtained by the total of 24 multi-gray level analyzed recon-
struction tasks, see Tables 1 and 3, the quality of the reconstruction, indicated by m.r.
for the proposed GCDT method was the best in 20 cases, i.e. in 83% of the analyzed
cases. Further, GCORIENTBT and GCCIRCBT together performed better in 83%
of the cases, with GCCIRCBT being slightly superior, thus indicating excellent per-
formance of graph cuts based reconstruction approach in DT as well as prevailing
advantages of using shape circularity as an a priori information.

5 Conclusions

This paper has highlighted the noteworthy performance of an algorithm based on the
combination of gradient based method and graph cuts optimization method for solving
problems in Discrete Tomography. In cases of very limited projection accessibility we
modified the method using shape descriptor circularity as an a priori information
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about the object. Conducted experiments gave priority in reconstruction quality to
the proposed method compared to the formerly published reconstruction methods. In
conclusion, our results show that itis suitable to use the combination of a gradient based
method with the graph cuts optimization method, which can be successfully enhanced
by circularity as an a priori information, for providing high quality reconstructions in
discrete tomography.
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Abstract. The topic of this paper includes graph cuts based tomog-
raphy reconstruction methods in binary and multi-gray level cases. A
energy-minimization based reconstruction method for binary tomogra-
phy is introduced. This approach combines the graph cuts and a gradient
based method, and applies a shape orientation as an a priori informa-
tion. The new method is capable for reconstructions in cases of limited
projection view availability. Results of experimental evaluation of the
considered graph cuts type reconstruction methods for both binary and
multi level tomography are presented.

Keywords: Discrete tomography - Shape orientation - Energy
minimization methods

1 Introduction

The word tomography comes from Greek words tomos which means slice and
graphein which means to write and it denotes an area in image processing that
deals with reconstructing images from the given projection data. Its main focus
usually are the objects which are not easily accessible or visible.

A wave penetrates through an unknown object and collects the projection
data from the object. In order to gather enough data for a successful reconstruc-
tion, waves usually need to penetrate the object from large number of directions.
The unknown object that tomography pursues to restore is identified as a func-
tion with a domain that can be discrete or continuous and a range that is a
given set of (usually) real numbers. Therefore, in order to obtain the image of
the unknown object, it is needed to reconstruct this function based on the known
data (integrals or sums over subsets of its domain). In Discrete Tomography (DT)
[11,12] the range of the function is a finite set. DT that deals with the problem
of reconstruction of binary images is named binary tomography (BT). If DT
deals with the reconstruction of digital images which consist of numerous gray
levels, it is referenced as multi-level discrete tomography.

Although problems of multi-level discrete tomography image reconstruction
can occur frequently in the application, to the best of our knowledge, there are
only few reconstruction algorithms that deal with such problems. Discrete Alge-
braic Reconstruction Technique (DART) [1], Multi-Well Potential based method

(© Springer Nature Switzerland AG 2020
T. Lukié¢ et al. (Eds.): IWCIA 2020, LNCS 12148, pp. 219-235, 2020.
https://doi.org/10.1007/978-3-030-51002-2_16
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(MWPDT) [17], a combination of non-local projection constraints with a con-
tinuous convex relaxation of the multilabeling problem [25] and the Non-Linear
Discretization function based reconstruction algorithm (NLD) [24] are among
them. A recently introduced method (GCDT) [20], which combines a gradi-
ent based algorithm with a graph cuts type optimization method, showed good
performance for this type of problem. This paper gives an overview and exper-
imental evaluation of most often used algorithms for multi-level tomography
reconstruction problem.

The good performance of the GCDT algorithm for multi-level case motivate
us to make a step further and apply and adjust this approach to an other interest-
ing problem: binary tomography for limited projection availability. We propose
a new method which incorporates an a prior knowledge about the solution into
the reconstruction process. The smooth solution is determined by the regular-
ized gradient based SPG algorithm [4] which is subsequently binarized applying
a max-flow type graph cut algorithm, introduced in [9] and further analyzed in
[7,10,15]. The added prior information is the shape orientation descriptor [26].
Our motivation for the selection of this type of prior information is lies in the
fact that it shows excellent performance in combination with convex-concave
and gradient based approaches, see the reconstruction method (BTO) [18].

The paper has the following structure. Section 2 gives the description of the
basic reconstruction problem. In Sect.3 the new reconstruction method is pre-
sented. Experimental results are provided in Sect. 4. Finally, the conclusion is
given in the Sect. 5.

2 Reconstruction Problem

In this paper we consider the DT reconstruction problem, represented by a linear
system of equations

Au=b, AcRMN yecAV beRM, A={\ ...\, E>2 (1)

where k is the number of different gray level values. The set A is given by the
user. The matrix A is a so-called projection matriz, whose each row corresponds
to one projection ray. The corresponding components of the vector b contain
the detected projection values, while the vector u represents the unknown image
to be reconstructed. The i-th row entries a;. of A represent the length of the
intersection of the pixels and the i-th projection ray passing through them. The
projection value measured by a projection ray is calculated as a sum of prod-
ucts of the pixel’s intensity and the corresponding length of the projection ray
through that pixel. Projections are taken from different directions. For each pro-
jection direction a number of parallel projection rays are taken (parallel beam
projection). The projection direction is determined by the angle 5. The distance
between two adjacent parallel projection rays can vary depending on the recon-
struction problem, we set this distance to be equal to the side length of pixels.
The reconstruction problem means finding the solution image w of the linear
system of Eq. (1), where the projection matrix A and the projection vector b are
given. This system is often undetermined (N > M).
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3 Graph Cuts Reconstruction Method Assisted by Shape
Orientation

A directed, weighted graph G = (X, p), consists of a set of nodes X and a set of
directed edges p that connect them. The nodes,in image processing interpreta-
tions, mostly correspond to pixels or voxels in 3D. All edges of graph are assigned
some weight or cost.

Let G = (X, p) be a directed graph with non-negative edge weights that has
two special nodes or terminals, the source A and the sink B. An a — b-cut (which
is referred informally as a cut) C = A, B is a partition of the terminals in X
into two disjoint sets A and B so that a € A and b € B. The cost of the cut is
the sum of costs of all edges that go from A to B:

c¢(A,B) = Z c(z,y).

r€AYyEB,(z,y)€Ep

The minimum a — b-cut problem is to find a cut C' with the minimum cost among
all cuts. Algorithms to solve this problem can be found in [7].

The approach that uses graph cuts for energy minimization has, as basic
technique, construction of a specialized graph for the energy function to be
minimized such that the minimum cut on the graph also minimizes the energy.
The form of the graph depends on the exact form of X and on the number of
labels. The minimum cut, in turn, can be computed very efficiently by max flow
algorithms.

These methods have been successfully used in the last 20 years for a wide
variety of problems, naming image restoration [8,9], stereo and motion [2,14],
image synthesis [16], image segmentation [6] and medical imaging [5,13].

The Potts model in graph cuts theory is based on the minimization of the
following energy

E(d)=) D(p.dy)+ Y Kgg-1—0d4,4,), (2)

pEP (p,g)eEN

where d = {d,|p € P} represents the labelling of the image pixels p € P.
By D(p,d,) we denote the data cost term, where D(p,d),) is a penalty or cost
for assigning a label d, to a pixel p. K, 4 is an interaction potential between
neighboring pairs p and ¢, N is a set of neighboring pairs. Function g4, 4, is
Kronecker delta function.

3.1 Shape Orientation

In this section we give a short description and a calculation method of the shape
orientation.
The geometrical moment of a digitize image u is defined by

mpqg(u) = > uli,j)i59,
(i,7)€NR

where 2 C R? denotes the image domain.
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The center of gravity (or centroid) of an image (or a shape) w is defined by

(Ca(u), Cy(u) = (ml,o(“) mo,l(U)> '

m(),o (u) ’ mo,o (u)

The centroid enables the definition of the centralized moment which is transla-
tion invariant. The centralized moment of an image u of order p + ¢ is given by

Mpg(w) = Y ulisj)(i = Co(w)P(j = Cy(u))?.

(i,7)€8

The shape orientation is an often used and well known shape descriptor [26].
The orientation is determined by the angle «, which represents the slope of the
axis of the second moment of inertia (orientation axis) of the considered shape
[23]. The orientation (angle «) for the the given image u can be calculated by
the following equation:

sin(2a) 2-mq1(u)

- . (3)

cos(2a) g o(u) — mo2(u)

Moments in (3) are translation invariant, making the orientation invariant to
translation transformations, for more details see [18,26].

3.2 The Proposed Method

Our tomography reconstruction approach is a combination of the graph cuts
method and a gradient based minimization method. In the first step, we deter-
mine the data cost values for each image pixels. The data cost values are deter-
mined as intensity values of the continuous or smooth approximation (solution)
of the final reconstruction image. The smooth solution is obtained by the fol-
lowing energy-minimization problem

N
min Eg(u) := wp||Au — b||3 + wg Z Z (u; — uj)?
u€[0,1] i=1 jeT (i) (4)

+wo (¢(u) — a*)? + p{u, 7 — u),

where 7 = [1,1,...,1] is a vector of size IN. Parameter wp regulates the influ-
ence of the data fitting term, wy controls the second term, whose role is to
enhance the homogeneity or compactness of the solution. By 7'(i) two neighbor
pixel indexes (in = and y axis directions) of pixel i is denoted. The orientation of
the solution v is denoted by ¢(u), while o* is given true orientation. Parameter
wo determines the impact of the orientation regularization. The task of the con-
cave regularization term (u,7 — u) (inner product of vectors u and 1 — u) is to
push pixel intensities toward binary values. Parameter p regulates the influence
of this binarization term and its value is gradually increased during the recon-
struction process. The problem (4), for each fixed pu, is solved by the Spectral
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Projected Gradient (SPG) iterative optimization algorithm, originally proposed
by Birgin et al. [3]. Motivation for application of this algorithm is supported
by its successful application in similar problems, see [19,21,22]. The reconstruc-
tion process (4) is terminated before the fully binary solution is achieved. The
termination criterion is given by

(u, 7 — u) < Epin,

where Ey;, regulates the degree of binarization of the solution u. In our experi-
ments its value is set as 100. This partially binarization of the smooth solution
is applied in order to improve the determination of data cost terms for graph
cuts method.

In the next step we have to fully binarize the smooth solution of the problem
(4), obtained by the SPG algorithm. For this task we apply the graph cuts
method based on the Potts model, described in Sect.3. The data cost term D
in (2) is determined using information provided by the smooth solution u. More
precisely, we define it in the following way

D(p,0) = u(p),
D(p,1) =1 —u(p),

where u(p) represents the intensity of a pixel p. The idea is to make data cost
small or cheap in the vicinity of the given gray values. The neighbor pairs are
defined based on 1-neighboring system, i.e., (p,q) € N if the image coordinates
of p and ¢ differ for one value only. The interaction potential K, . (see (2))
in our experiments is set as a constant and its value is 1. Now, the energy
function in (2) is determined and ready to be minimized. For this task we use
the GCO graph cuts based optimization algorithm, introduced in [9] and further
analyzed in [7,10,15]. The GCO algorithm determines the label values d, for
each pixel p. Each label value is assigned to one predefined gray level in the
following way: d, = 0 — 0 and d, = 1 — 1. Therefore, the obtained label values
also determine intensities of pixels in the final (binary) solution, therefore the
reconstruction process is terminated. We denote this method by Graph Cuts
Tomography Assisted by the Orientation prior (GCORIENTBT) reconstruction
method. If in the Eq. 4 we set values of parameters w,, wy and p as 0, and solve
it using the combination of SPG and GCO algorithms, we are getting algorithm
introduced in [20] and denoted by GCDT.

4 Experimental Results

In this section we experimentally evaluate the proposed graph cuts based recon-
struction methods, denoted by GCDT and GCORIENTBT. In the experiments
for multi gray level tomography we use 6 test images (phantoms), as originals
in reconstructions, presented in Fig. 1. Phantoms PH1, PH2 and PH3 contain 3
gray levels, while phantoms PH4, PH5 and PH6 contain 6 gray levels. In addi-
tion, GCDT was also tested on binary images using phantoms PH7, PH8, PH9
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as well as on two medical images: binary segmented CT image of a bone implant,
inserted in a leg of a rabbit (PH10) and a Binary segmented florescence image
of Calcein stained Chinese hamster ovary cell (PH11). We consider reconstruc-
tions of these images obtained from different projection directions. A total of 128
parallel rays are taken for each projection direction for multi gray level images
and 64 projection rays for binary images. In all cases, the projection directions
are uniformly selected between 0 and 180°. The obtained results are compared
with two reconstruction methods suggested for multi level discrete tomography,
so far: 1) Multi Well Potential based method (MWPDT) proposed in [17] (this
method is developed and used only for phantoms with 3 gray levels); and 2)
DART method, proposed in [1]. We also include into the evaluation process
a simple method based on classical threshold, denoted by TRDT. Addition-
ally, binary images are compared with similar reconstruction method for binary
tomography introduced in [18] and denoted by BTO. All reconstruction methods
(BTO, DART, GCORIENTBT, MWPDT, GCDT and TRDT) are implemented
completely in Matlab.

PHI1 PH2 PH3

PHG6

PH10 PH11

PH4 PH5
PH7 PHS PH9

Fig. 1. Original test images (128x128). Phantoms PH1, PH2 and PH3 contain 3 differ-
ent gray levels (0,0.5,1), PH4, PH5 and PH6 contain 6, while PH7, PH8, PH9, PH10,
PH11 present binary images.
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N A

PE=272 (1.66%)[PE=255 (1.55%)[PE=412 (2.51%)
PHI

PE=225 (1.37%)[PE=209 (1.28%)PE=143 (0.87%)
PH2

PE=367 (2.24%)[PE=655 (3.99%)PE=519 (3.16%)
PH3
GCDT | MWPDT |  TRDT

Fig. 2. Reconstructions of the test images using data from 6 projection directions.

In the evaluation process, we analyze the quality of the reconstructions and
required running times. The quality of the reconstructions are expressed by the
pixel error (PE), i.e., the absolute number of the misclassified pixels, and by
the misclassification rate (m.r.), i.e., the pixel error measure relative to the
total number of image pixels. Also, as a qualitative error measure, we consider
the projection error, defined by PRE = ||Au" — b||, where u" represents the
reconstructed image. This error express the accordance of the reconstruction
with the given projection data.

In Table 1 we present pixel errors for reconstructions of three phantom images
(PH1, PH2 and PH3) obtained from different number of projections by three
different methods (MWPDT, GCDT and TRDT). From total of 12 different
reconstruction problems, GCDT method provided best results in 10 cases, while
in 2 cases the dominant was the MWP method. Regrading the PRFE values, see
Table 2, the proposed GCDT method dominated in 8 cases, while MWP in 4
cases.
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PE=1976 (12.06%)[PE=2435 (14.86%)[PE=1695 (10.34%)
PHA

PE=219 (1.34%) | PE=1364 (8.33%) | PE=488 (2.98%)
PH5

PE=727 (4.44%) | PE=889 (5.43%) | PE=649 (3.96%)
PH6
GCDT | TRDT | DART

Fig. 3. Reconstructions of the test images using data from 6 projection directions.

Best running times in all experiments were achieved by the MWP method.
GCDT and TRDT methods use the smooth solution/reconstruction as a first
step, before the “discretization process” starts.

The smooth solution is achieved as a final termination, with high precision,
which requires significantly higher number of iterations compared to MWPDT
method in total, thus resulting in greater consumption of time. In Figs. 2 and 4
reconstructions from 6 and 15 projection directions of images containing 3 gray
level are presented.

Reconstruction results of phantoms with 6 different gray levels (Table 3) show
that, compared to TRDT and DART, GCDT method prevails in 10 out of 12
cases, whilst DART performes the best in 2 cases. In Figs. 3 and 5 reconstructions
from 6 and 15 projection directions respectively are presented.

In addition to multi level discrete tomography, we have tested our algorithm
on binary images. It can be noticed on the Fig.6 that GCDT method gives
poor results in the cases of the reconstruction from two projections. On the
other hand, already from higher number of projections, GCDT shows competi-
tive performance. We have tried to avoid this drawback by adding orientation as
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PE=5 (0.03%) | PE=35 (0.21%) [PE=28 (0.17%)
PH1

PE=12 (0.07%)| PE=17 (0.10%) |[PE=18 (0.11%)
PH2

PE=9 (0.05%) [PE=174 (1.06%)|PE=41 (0.25%)
PH3
GCDT | MWPDT | TRDT

Fig. 4. Reconstructions of the test images using data from 15 projection directions.

a priori information to GCDT method, thus building the GCORIENTBT algo-
rithm. Later, we have compared the GCORIENTBT algorithm with three other
reconstruction methods (BTO, DART, GCDT) (Tables4 and 5). In 12 out of 15
cases, GCORIENTBT gives the best reconstruction (smallest PE/m.r.). It can be
noticed that, as expected, by adding the orientation prior to GCDT method, sig-
nificantly better results for BT are obtained. The advantage of GCORIENTBT
is in running time as well. Execution time of GCORIENTBT is in most of the
cases even more than 50% shorter compared to its best competitor BTO.
Summarizing the results obtained by the total of 24 multi- gray level ana-
lyzed reconstruction tasks, see Tables 1 and 3, the quality of the reconstruction,
indicated by m.r.for the proposed GCDT method was the best in 20 cases, i.e., in
83% of the analyzed cases. We emphasize that the results of the GCDT method,
in cases when they are the best, are significantly better (in the most of the cases
more than 50% better). Farther, GCORIENTBT performed better in 80% of the

cases.
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PE=399 (2.44%)

PE=998 (6.09%)

PE=1089 (6.65%)

PE=28 (0.17%)

PH4

PE=1274 (7.78%)

PE=319 (1.95%)

PE=192 (1.17%)

PH5

PE=552 (3.37%)

PE=707 (4.32%)

PH6

GCDT |

TRDT

| DART

Fig. 5. Reconstructions of the test images using data from 15 projection directions.

Table 1. Experimental results for PH1, PH2 and PH3 images, using three different
reconstruction methods. The abbreviation d indicates the number of projections. The
best performance is bold fonted.

d PH1 PH2 PH3
6 9 12 15 6 9 12 15 6 9 12 15
(PE) 255 | 159 |59 35 143 | 138 |20 18 655 | 456 |275 | 174
MWP (m.r. %) |1.55|0.97 |0.36 [0.21 |0.87|0.84 |0.12 |0.11 | 3.99 | 2.78 | 1.67 | 1.06
(PE) 412 | 175 |48 28 209 | 141 |17 17 412 | 301 | 101 |41
TRDT (m.r. %) |2.51 |1.06 [0.29 |0.17 | 1.28 | 0.86 | 0.10 |0.10 | 2.51 | 1.83 | 0.61 |0.25
(PE) 272 | 69 8 5 225 | 124 |12 12 272 | 116 | 20 9
GCDT (m.r. %) |1.66 |0.42|0.04|0.03|1.37 |0.76 | 0.07 | 0.07 | 1.66 | 0.70 | 0.12 | 0.05




PE=646 (15.17%)

Graph Cuts Based Tomography

o

PE=660 (16.11%)

PE=726 (17.72%)

PE=448 (10.94%)

PH7

PE=452 (11.04%)

PE=107 (2.61%)

PE=574 (14.01%)

PH8

il

PE=604 (14.75%)

PE=757 (18.48%)

353 (8.62%)

PH9

| 1

PE=337 (8.23%)

PE=74 (1.81%)

PE= 478 (11.67%)

PH10

PE=452 (11.04%)

PE=676 (16.50%)

PH11

GCDT

|

TRDT

|

DART
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Fig. 6. Reconstructions of the binary test images using data from 2 projection direc-

tions.
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PE=466 (11.38%)
e.t.= 227

PE=813 (19.85%)
e.t.= 0.87

PE=929 22 68%
et.= 0 46

PE=464 (11.32%)
e.t.= 82.61

PE=669(16.33%)
e.t.= 32

PE=817 (19.95%)
e.t.=0.84

PE=817 (19.95%)
et.= 047

)| PE=652(15.92%)
e.t.= 31.95

PE=970 (23.68%)
e.t.= 177

PE=564 (13.77%)
et.=0.5

PE=990 (24.17%)
e.t.= 069

)| PE=976(23.83%)
e.t.= 60.17

PE=672 (16.41%)
e.t.—= 328

PE=722 (17.63%)[PE
e.t.—= 0.54

=722 (17.63%)
et.= 041

PE=657 (16.04%)
e.t.= 60.44

PE=209 (5.10%)
e.t.= 280

PH10

720 (17.58%)
e.t.= 0.44

PE=720 (17.58%)
et.= 042

PE=180 (4.39%)
e.t.= 66.89

PH11

BTO GCDT

DART | [ GCORIENTBT

Fig. 7. Reconstructions of the binary test images using data from 1 projection direction,
a = 0°. The abbreviation e.t. means elapsed time in seconds.
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e.t.= 2.7

PE=283 (6.91%)
e.t.= 108.92

PE=166 (4.05%)
e.t.= 300 0.94

/]

PE=218 (5.32%)
et—094

/]

PE=364 (8.89%)
et—291

PE=162 (3.96%)
e.t.= 130.75

PE=1132 (27.64%)
et.= 222

PE=1284 (31.35%)
et.= 1 19

R = :

PE=1131 (27.61%)
e.t.= 2.59

)| PE=1127(27.51%
e.t.= 216.88
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PE=573 (13.99%)
e.t.= 503

L |

PE=1235 (30.15%)
e.t.= 0 71

PE=722 (17.63%)
et.= 0 33

) | PE=658(16.06%)
e.t.= 219

PE=1367 (33.37%)

e.t.= 394

L |

PE=1438 (35.11%)
e.t. —1 06

PE=720 (17.58%)

t—322

PE=1389 (33.91%)
e.t.= 112.26

PHI11

BTO | DART | GCDT [ GCORIENTBT

Fig. 8. Reconstructions of the binary test images using data from 1 projection direction,
o = 45°. The abbreviation e.t. means elapsed time in seconds.
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Table 2. Experimental results for PH1, PH2 and PH3 images, using three different
reconstruction methods. The abbreviation e.t. means elapsed time in minutes and d
indicates the number of projections. The best performance is bold fonted.

d PH1 PH2 PH3

6 9 12 |15 |6 9 12 |15 |6 9 12 |15
(PRE)|14.70/12.19 |9.96 | 9.08 |14.11|18.94| 6.08 | 7.71 [19.83|18.77 |18.80 |16.43

MWPDT (e.t.) 1.76 | 2.63 | 3.17| 4.06 | 5.34 | 8.17 | 6.36 [11.62 | 2.19 | 2.87 | 4.30 | 4.66
(PRE)|18.66 |14.72 |10.61 | 8.87 |17.98 |17.30 | 7.09 |7.09 |23.64 |17.87 |13.66 |10.61

TRDT  (et.) | 7.73 |12.58 |14.55 |17.77 | 6.24 |10.82 |16.01 [17.74 | 7.28 [11.07 |13.39 |16.00
(PRE)|23.24 |11.12| 6.52| 4.39|26.77 |21.04 | 6.01| 6.00/25.87 |14.96| 7.59| 5.60

GCDT  (et.) | 7.73|12.58 |14.55 |17.77 | 6.25 |10.82 |16.01 |17.74 | 7.29 |11.07 |13.40 |16.01

Table 3. Experimental results for PH4, PH5 and PH6 images, using three different
reconstruction methods. The abbreviation d indicates the number of projections. The
best performance is bold fonted.

d PH4 PH5 PH6
6 9 12 15 6 9 12 15 6 9 12 15
(PE) 1976 | 804 |551 | 399 |219 |134 |42 28 727 | 473 | 251 | 192
GCDT (m.r. %) |12.06 | 4.91 |3.36 |2.44|1.34|0.82|0.26 | 0.17 | 4.44 | 2.89 |1.53 | 1.17
(PE) 2435 | 1415|1188 | 998 |1364 | 1330 | 1286 | 1274 | 889 |807 | 587 | 552
TRDT (m.r. %) |14.86 [8.64 |7.25 [6.09 |8.32 |8.12 |7.85 | 7.78 |5.43 |4.92 |3.58 | 3.37
(PE) 1695 | 1242 | 1177 | 1089 | 488 |[379 | 288 |[319 |649 |836 |596 | 707
DART (m.r. %) |10.34 |7.58 |7.18 [6.65 |2.98 |2.31 |1.76 |1.95 |3.96 | 5.10 |3.64 |4.32

Table 4. Experimental results for PH7, PH8 and PH9 images, using three different
reconstruction methods. « indicates the direction of projections. The best performance
is bold fonted.

a PHT PHS PH9
0° 45° | 90° |0° 45° | 90° |0° 45° | 90°

(PE) 466 | 378 |383 |669 |166 |362 |970 |1132 | 369

BTO (m.r. %) |11.38 [9.23 |9.35 |16.33 | 4.06 |8.84 |[23.68 |27.64 |9.01
(PE) 813 |435 [935 |[817 |218 [817 |[564 |1284 |670

DART (m.r. %) | 19.85 | 10.62 | 22.83 | 19.95 |5.32 | 19.95 | 13.77 | 31.35 | 16.36
(PE) 929 |812 |935 |[817 364 |817 [990 |1131 |1180

GCDT (m.r. %) | 22.68 | 19.82 | 22.83 | 19.95 |8.89 |19.95|24.17 |27.61 |28.81
(PE) 464 |283 [378 |652 |162 (324 [976 |1127 |373
GCORIENTBT (m.r. %)|11.32|6.91 |9.23 |15.93 | 3.96 | 7.91 |23.83 | 27.51|9.11

According to the above presented results, we conclude that experiments con-
firm the capability of the proposed methods to provide high quality reconstruc-
tions both for gray-level (GCDT) and binary (GCORIENTBT) images.
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Table 5. Experimental results for PH10 and PH11 using three different reconstruction
methods. « indicates the direction of projections. The best performance is bold fonted.

a PH10 PH11
0° 45° | 90° |[0° 45° | 90°
(PE) 672 | 573 [597 [209 |1367 |379
BTO (m.r. %) | 16.41 | 13.99 | 14.58 | 5.10 |33.37 |9.25
(PE) 722 | 1235 |414 | 720 |[1438 |720
DART (m.r. %) | 17.63 |30.15 |17.63|17.58 | 35.11 |17.58
(PE) 722 722|534 |720 |720 |720
GCDT (m.r. %) |17.63 | 17.63 |13.04 | 17.58 | 17.58 | 17.58
(PE) 657 | 658 | 377 [180 |1389 |340
GCORIENTBT (m.r. %) | 16.04 | 16.06 |9.20 | 4.39 |33.91 |8.30

5 Conclusions

In this paper we presented an approach for solving problem posed by discrete
tomography. The approach uses a gradient based method to obtain a smooth
reconstruction of an image and then uses graph cuts optimization method for
discretization. In cases of lowered projection directions, the method uses ori-
entation as an a priori information. Conducted experiments gave priority in
reconstruction quality to the proposed methods compared to the formerly pub-
lished reconstruction methods. Based on the obtained experimental results and
analysis presented in this paper, we have concluded that the combination of a
gradient based method with the graph cuts optimization method is suitable for
providing high quality reconstructions in discrete tomography.
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Abstract. In this paper, we are proposing a new energy-minimization
reconstruction method for the multi gray level discrete tomography. The
proposed reconstruction approach combines a gradient based algorithm
with the graph cuts optimization. This new technique is able to recon-
struct images that consist of an arbitrary number of gray levels. We
present the experimental evaluation of the new method, where we com-
pare its performance with performance of the already suggested methods
for multi-level discrete tomography. The obtained experimental results
give an advantage to the proposed approach, especially regarding the
quality of the reconstructed test images.

1 Introduction

Tomography [14] reconstructs images of non accessible or non visible objects. It
deals with recovering images from a number of projections. Tomography will be
our focus in this paper. From a mathematical point of view, the object corre-
sponds to a function. The problem posed, is to reconstruct this function from
its integrals, or its sums over subsets of its domain. In general, the tomographic
reconstruction problem may be continuous or discrete. In Discrete Tomography
(DT) [15, 16] the range of the function is a finite set. In practice, DT often deals
with reconstructions of digital images that consist of a number of gray levels.
DT has a wide range of applications in areas where the materials of the object
under investigation are known before, such as industrial non-destructive testing
or electron tomography [15, 16].

To the best of our knowledge, there are only a few reconstruction algorithms
suggested for this DT problem, that deal with multi gray level tomography im-
age reconstruction. These are the Discrete Algebraic Reconstruction Technique
(DART) [2], the Multi-Well Potential based method (MWPDT) [22], method
which combines non-local projection constraints, continuous convex relaxation
of the Multilabeling problem and DC programming (MDC) [25], and the Non-
Linear Discretization function based reconstruction algorithm (NLD) [30]. The
DART method uses a fixed threshold function for the discretization process
(without any regularization), which can lead to radical solutions and less ac-
curate reconstructions, especially in the case of reduced projection data. The
MDC is a powerful method, but less flexible related to adding new regulariza-
tion terms, because the energy function has to be expressed as a difference of
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convex functions. The MWPDT and NLD methods applies a non-convex energy
function in the reconstruction process, which can stuck in local minimum, i.e.,
in a semi-continuous solution. The proposed method in this paper is developed
in such a way to avoids the above listed disadvantages.

One of the approaches used for solving problems in image processing and
computer vision has been developed based on graph cuts. The core of this ap-
proach is to construct a specialized graph for the energy function to be minimized
such that the minimum cut on the graph also minimizes the energy (either glob-
ally or locally). The minimum cut, in turn, can be computed very efficiently by
max-flow algorithms. The output of these algorithms is generally a solution with
some interesting theoretical quality guarantees. In [20] is given, which conditions
the energy function needs to satisfy in order to be minimized via graph cuts.

In this paper, we propose a new deterministic reconstruction method for the
DT problem, which combines a gradient based method, with a graph cuts type
optimization method. The proposed method uses a smooth regularization prior
and allows reconstruction of images that contain an arbitrary number of different
gray levels.

The structure of the paper is the following. In Section 2, the basic recon-
struction problem is described. In Section 3, we present the new reconstruction
method based on the graph cuts approach. Our experimental results are provided
in Section 4 and finally, Section 5 is the conclusion.

2 Reconstruction Problem

* Uy b o
uy up u3 ! %
g
u*ﬁ a7 '/ai',B B
us a:
i,6 *
/ L|7 Us
vy A
9 i,10 o « @
// . 1| Y2 %
A 39| Y10 K
¥ " « "
u13 Uis U1s U1e

(a) (b)

Fig.1: (a) Example of a projection value calculation on an image u* of size N =
4 x4 = 16. A projection ray penetrates through the image pixels. The projection
value b; is calculated by b; = a; au} + a; 6ug + a; 7us + a; gug + a; ous + a; 10U7-
(b) Parallel beam projection. The source-detector system can rotate around a
center point. The projection direction is determined by the angle 3.
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In this paper we consider the DT reconstruction problem, represented by a
linear system of equations

Awu = b, where

1
AeRMXN ye AN b e RM A= {\, a0, ..., A}, N €[0,1], k> 2. M)

The value of k represents the number of different gray level values. The set A is
given by the user. The matrix A is a so-called projection matriz, whose each row
corresponds to one projection ray. The corresponding components of the vector b
contain the detected projection values, while the vector u represents the unknown
binary image to be reconstructed. The i-th row entries a;. of A represent the
length of the intersection of the pixels and the i-th projection ray passing through
them, see Figure 1(a). The projection value measured by a projection ray is
calculated as a sum of products of the pixel’s intensity and the corresponding
length of the projection ray through that pixel. The side length of each pixel is
one. Therefore, vertical and horizontal projection rays represent the sum of the
gray intensity values of pixels in corresponding columns and rows, respectively.
Projections are taken from different directions. For each projection direction, a
number of parallel projection rays are taken (parallel beam projection), as shown
in Figure 1(b). The distance between two adjacent parallel projection rays can
vary depending on the reconstruction problem. We set this distance to be equal
to the side length of pixels.

The reconstruction problem means finding the solution image u of the lin-
ear system of equations (1), where the projection matrix A and the projection
vector b are given. This system is often undetermined (N > M), and there-
fore additional regularization (based on a priori information) is needed for the
determination of quality and acceptable solutions.

3 Reconstruction Method Based on the Graph Cuts
Method

A directed, weighted graph G = (X, p), consists of a set of nodes X and a set
of directed edges p that connect them. The nodes, in image processing inter-
pretations, mostly correspond to pixels or voxels in 3D. All edges of graph are
assigned some weight or cost.

Let G = (X, p) be a directed graph with non-negative edge weights that has
two special nodes or terminals, the source A and the sink B. An a — b-cut (which
is referred informally as a cut) C = A, B is a partition of the terminals in X
into two disjoint sets A and B so that a € A and b € B. The cost of the cut is
the sum of the costs of all edges that go from A to B:

c(A,B) = > c(,y).
z€AYEB, (z,y)€Ep

The minimum a — b-cut problem is to find a cut C, with the minimum cost
among all cuts. Algorithms to solve this problem can be found in [8].
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The approach that uses graph cuts for energy minimization has, as a basic
technique, the construction of a specialized graph for the energy function to be
minimized, so that the minimum cut on the graph also minimizes the energy.
The form of the graph depends on the exact form of X and on the number of
labels. The minimum cut, in turn, can be computed very efficiently by max flow
algorithms.

These methods have been successfully used in the last 20 years for a wide
variety of problems, naming image restoration [9, 10], stereo and motion [3,19],
image synthesis [21], image segmentation [7] and medical imaging [6, 18].

3.1 Potts model

The Potts model in graph cuts theory is based on the minimization of the fol-
lowing energy

E(d)=> Dp,dy)+ > Ky T(dp #dy), (2)

peP (P, 9)EN

where d = {dp|p € P} represents the labelling of the image pixels p € P.
By D(p,d,) we denote the data cost term, where D(p,d)) is a penalty or cost
for assigning a label d, to a pixel p. K, ,) is an interaction potential between
neighboring pairs p and ¢, A is a set of neighboring pairs. Function T'(+) is 1 if
the condition inside parenthesis is true and 0 otherwise.

3.2 Proposed reconstruction method

Our tomography reconstruction approach is a combination of the graph cuts
method and the quadratic iterative minimization method. In the first step, we
determine the data cost values for each image pixels. The data cost values are de-
termined as intensity values of the continuous/smooth approximation of the final
reconstruction image, obtained as a solution of the following energy-minimization
problem
. . 2
i Eq(u) := || Au = b|]". (3)
Function Eg is quadratic type and £2 = [0, 1]V is a feasible set. Therefore, the
problem (3) is a constrained and quadratic type energy-minimization problem.
This minimization problem can be solved by several optimization methods. Ac-
cording to our earlier experiences in similar problems [23,24,26] we chose the
Spectral Projected Gradient (SPG) optimization algorithm [4] for this task.
For THE application of this algorithm two conditions must be satisfied [4]:
i) The objective function has continuous partial derivatives on an open set that
contains (2; ii) The projection function Py, of an arbitrary vector onto the set
2 is provided. The objective function in (3) is a multiple differentiable function
in RY, therefore requirement i) is satisfied. The projection Py, of an arbitrary
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vector u € R™ onto the set {2 we define as

0, Uj S O
[Po(w)]; =41, w=>1, where i =1,...,N.
u;, elsewhere

Py, is a projection with respect to the Euclidean distance, i.e.
Pg(z) = arg {Ini}ll da(z,y)}. Hence, requirement ii) is also satisfied.
ye

The pseudo-code of the SPG is presented in Alg. 1. The reconstruction pro-
cess, starts with the initial solution u°, where each pixel intensity is set as 0.5, as
the middle of the interval [0, 1]. The SPG algorithm combines the non-monotone
line search algorithm [13] and the spectral gradient step-length selection [1, 5,
27].

Algorithm 1: SPG optimization algorithm.
u® =[0.5,0.5,...,0.5]7; d° = Po(u® — VEg(u®)) — u®; k = 0;
repeat
Determine the step-length A* > 0 by a line search approach, see [4];
uk'H — uk + )\kdk7
Calculate the gradient spectral step-length 051 > 0, see [4];
d*l = Po(uf ! — 0,11 VEQ(uF ) —uf =k + 1;
until |[u* — uF71 <1072

U = u¥;

e

PH1 PH2 PH3 Shepp-Logan

Fig. 2: Original test images (128x128). Phantoms PH1, PH2 and PH3 contain 3
different gray levels (0,0.5,1), while Shepp-Logan contains 6 different gray levels
(0,0.1,0.2,0.3,0.4,1).

In the next step we have to discretize the smooth solution of the problem 3 w,
obtained by the SPG algorithm. For this task we apply the graph cuts method
based on the Potts model, described in Section 3.1. The energy model in (2)
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is successfully used in many energy minimization problems with similar energy
structure: sum of a data and a regularization/neighboring interaction terms. We
mention discrete tomography reconstruction algorithms proposed by Schiile et
al. [28,31] and Lukié et al. [23,24]. The Potts interaction model (second term in
(2)) showed good ability to enhance compactness of the solution (see [8,12,29]),
in a similar way as the compactness saving regularization terms do in already
suggested reconstruction methods [24,28], which also motivate our choice for
application of this model. We note that other interaction models, for example
the linear model [8], can also be taken into consideration, but this issue is out of
focus of this paper. The data cost term D in (2) is determined using information
provided by the smooth solution. More precisely, we define it in the following

Way

D(p,0) = [u(p) — M1
D(p,1) = [u(p) — Az
D(p,2) = [u(p) — A3

I
I
)

D(pka 1) = |up7>‘k|7

where u(p) represents the intensity of a pixel p. The idea is to make data cost
small/cheap in the vicinity of the given gray values. The neighbor pairs are
defined based on 1-neighboring system, i.e., (p,q) € A if the image coordinates
of p and ¢ differs for one value only. The interaction potential K, ;) (see (2)) in
our experiments is set as a constant and its value is 1. Now, the energy function
in (2) is determined and ready to be minimized. For this task we use the GCO
graph cuts based optimization algorithm, introduced in [10] and further analyzed
in [8,11,20]. The GCO algorithm determines the label values d, for each pixel
p. Each label value is assigned to one predefined gray level in the following
way: d, = 0 = A, dp =1 = Ao, ..., dy = (k—1) = Xj. Therefore, the
obtained label values also determine intensities of pixels (from the given set of
gray levels) in the final (discrete) solution, therefore the reconstruction process
is terminated. We denote this method by Graph Cuts Discrete Tomography
(GCDT) reconstruction method.

Naturally arises the simplest, but less powerful, way for discretization of the
smooth solution u provided as a result of the minimization problem (3). This
approach is based on the application of the thresholding function, defined by

)\1 v< T
A M1 <v<Ty

t(v) =

I

A T—1 <w

where v € R and 7; = %, l=1,2,...,k — 1. The final solution u" is
obtained by application of the thresholding function to the smooth solution w,
e, u” = [t(u1),t(u2),t(u3),....,t(un)]. We denote this method by TRDT, and
use it in experimental work as a control method.
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PE=272 (1.66%)PE=255 (1.55%)|PE=412 (2.51%)
PH1

PE=295 (1.80%)PE=379 (2.31%)[PE=555 (3.38%)
PH2

PE=367 (2.24%)PE=655 (3.99%)PE=519 (3.16%)
PH3
GCDT | MWPDT |  TRDT

Fig. 3: Reconstructions of the test images using data from 6 projection directions.

4 Experimental Results

In this section we experimentally evaluate the proposed graph cuts based recon-
struction method, denoted by GCDT. In the experiments we use 4 test images
(phantoms), as originals in reconstructions, presented in Figure 2. Phantoms
PH1, PH2 and PH3 contain 3 gray levels, while the well-known Shepp-Logan
phantom [17] contains 6 gray levels. We consider reconstructions of these im-
ages obtained from different projection directions. A total of 128 parallel rays
are taken for each projection direction. In all cases, the projection directions are
uniformly selected between 0 and 180 degrees. The obtained results are compared
with the results provided by the Multi Well Potential based method (MWPDT)
[22], already suggested for multi-level discrete tomography reconstruction, and
with the simple method based on the classical thresholding, denoted by TRDT.
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Related to the Shepp-Logan test image, the DART method, proposed in [2], is
also included into the evaluation process.

PE=5 (0.03%) | PE=35 (0.21%) |PE=28 (0.17%)
PH1

PE=6 (0.03%) | PE=5 (0.03%) |PE=11 (0.06%)
PH2

PE=9 (0.05%) |PE=174 (1.06%)|PE=41 (0.25%)

PH3
GCDT [ MWPDT | TRDT

Fig. 4: Reconstructions of the test images using data from 15 projection direc-
tions.

In the evaluation process, we analyze the quality of the reconstructions and
required running times. The quality of the reconstructions are expressed by the
pixel error (PE), i.e., the absolute number of the misclassified pixels, and by
the misclassification rate (m.r.), i.e., the pixel error measure relative to the
total number of image pixels. Also, as a qualitative error measure, we consider
the projection error, defined by PRE = | Au" — b||, where u” represents the
reconstructed image. This error expresses the accordance of the reconstruction
with the given projection data.
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In Table 2 we present pixel errors for reconstructions of three phantom im-
ages (PH1, PH2 and PH3) obtained from a different number of projections by
three different methods (MWPDT, GCDT and TRDT). In Figures 3 and 4 re-
constructions from 6 and 15 projection directions are presented. From a total
of 12 different reconstruction problems, GCT method provided the best results
in 10 cases, while in 2 cases the dominant was the MWPDT method. We em-
phasize that the results of the GCT method, in cases when they are the best,
are significantly better, at least by 50%, compared with other results. Table 3
presents the obtained projection errors (PRE) and the needed running times
in these experiments. Regrading the PRE values, the proposed GCT method
dominated in 8 cases, while MWPDT in 4 cases.

smooth rec.

12 proj.

15 proj.

Fig. 5: Reconstructions of the Shepp-Logan test images by the proposed GCDT
method.

All reconstruction methods (MWPDT, GCDT and TRDT) are implemented
completely in Matlab. The best running times in all of the experiments was
achieved by the MWPDT method (see Table 3). GCDT and TRDT methods
uses the smooth solution/reconstruction as a first step, before the ”binarization
process” starts by GCO graph cuts optimization [10]. This smooth solution is
achieved as a final termination, with high precision. This process, because of the
high precision, requires significantly higher number of iterations than is needed
for MWPDT method in total, resulting in a greater consumption of time.

Table 1: FExperimental results for Shepp-Logan image, using three different
reconstruction methods. The abbreviation m.r. indicates misclassification rate
and d indicates the number of projections.

d | TRDT (m.r. %) | DART (m.r. %) | GCDT (m.r. %)
Shepp- 12 12.74 14.21 5.72
Logan 15 10.44 8.44 3.17

18 10.03 2.56 2.14
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Reconstruction results of the well-known Shepp-Logan [17] phantom image is
presented in Table 1. This phantom is considered to be one of the most complex,
containing 6 different gray levels. We compare the results obtained by the three
different reconstruction methods: TRDT, DART and GCDT. The results for
DART are taken from [2]. The projection data is acquired from 12, 15 and 18
projection directions. The GCDT method provides the best results in all cases
(smallest m.r. values).

Table 2: Experimental results for PH1, PH2 and PH3 images, using three dif-
ferent reconstruction methods. The abbreviation d indicates the number of pro-
jections.

PH1 PH2 PH3

d 6 |9 12156 | 9 [12]15] 6 | 9 |12] 15
(PE)| 255|159 | 59 | 35 |379|242| 56 | 5 |655|456 (275|174
MWP (m.r. %)|1.55/0.97|0.36]0.21|2.31|1.47(0.34|0.03|3.99(2.78|1.67|1.06
(PE)|412]175| 48 | 28 | 555|290 | 37 | 11 |412|301|101| 41
TRDT (m.r. %)|2.51|1.06|0.29/0.17|3.38(1.77|0.22]0.06|2.51|1.83|0.61|0.25
(PE)|272| 69 | 8 | 5 [295|121| 15| 6 |272|116| 20 | 9
GCDT (m.r. %)|1.66|0.42|0.04|0.03|1.80(0.73|0.09]0.03|1.66|0.70|0.12|0.05

Summarizing the results obtained by the total of the 15 analyzed reconstruc-
tion tasks, see Tables 1 and 2, the quality of the reconstruction, indicated by
m.r., for the proposed GCDT method was the best in 13 cases, i.e., in 87% of
the cases. According to these results, we conclude that the experiments confirm
the capability of the proposed method to provide high quality reconstructions.

Table 3: Experimental results for PH1, PH2 and PH3 images, using three differ-
ent reconstruction methods. The abbreviation e.t. means elapsed time in minutes
and d indicates the number of projections.

PH1 PH2 PH3
d 6 9 |12 | 15| 6 9 |12 | 15| 6 9 | 12 | 15
(PRE)|14.70/12.19{9.96 | 9.08 [15.32(15.50| 9.68 | 3.09 [19.83|18.77|18.80/16.43,
MWPDT (e.t.) 1.76]2.63]3.17|4.06 | 1.78|2.82|3.21|3.06|2.19|2.87 [4.30 | 4.66

(PRE)|18.66/14.72/10.61| 8.87 (19.01/19.09| 8.89 | 6.23 23.64/17.87|13.66/10.61

(PRE)23.24111.12/ 6.52 | 4.39 [18.31(13.94]| 7.10 | 4.57 [25.87|14.96| 7.59 | 5.60
GCDT  (e.t.)| 7.73(12.5814.55(17.77| 5.45{10.91]12.67|15.74| 7.29 |11.07|13.40/16.01

)
)
)
TRDT  (e.t.)|7.73 |12.5814.55/17.77 5.44 [10.90]12.67|15.74 7.28 [11.07]13.3916.00
)
t)
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5 Conclusions

In this paper, a new energy-minimization based reconstruction method for multi-
level tomography is proposed. It combines a gradient based method, with the
graph cuts optimization method. Experiments show advantages of the proposed
method in comparison with three formerly published reconstruction methods.
Based on the obtained experimental results and analysis presented in this paper,
we conclude that the combination of a gradient based method with graph cuts
optimization method is suitable for providing high quality reconstructions.
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[Inan TpC€TMaHa ImoJaTrakKa

Ha3uB npojexta/mcrpaxxnBama

Regularized Models for Tomographic Image Reconstruction,

(Hac/oOB Ha CPIICKOM je3uKy: Mojienu ca peryjiapu3ainjoM 3a peKOHCTPYKIIH]y CIIMKa y ToMorpadujun)

Ha3uB nHCTHTYIMje/MHCTUTYIHja Y OKBHPY KOjUX ce CIIPOBOIM MCTPAKUBaHE

a) dakynTeT TeXHUIKKUX HayKa, YHuBep3ureT y HoBom Cany

6)

B)
Ha3uB nporpama y oKBHpPY KOT ce peajn3yje HCTPA:KUBaHe

HctpaxuBame ce BPIIN Y OKBHPY H3paje JOKTOPCKE IUCEPTAIlHje Ha CTYIHjCKOM IIPOTpaMy

MaremaTnka y TEXHHIIH.

1. Onuc nogaraka

1.1 Bpcra cTyaumje

Yxpamxo onucamu mun cmyouje y oxksupy xoje ce nooayu npuxkynsajy

Y oBoj cTynuju HUCY IPUKYN/HAHHU MOJAAIN.

1.2 Bpcre nojaraka
a) KBaHTUTATUBHU

0) KBaIUTaTUBHU

1.3. Haunn npukymbama nojgaTaxka
a) aHKeTe, YITUTHUIH, TECTOBU
0) KIMHUYKE POLIeHe, MEIUIIMHCKH 3aIIHCH, EIeKTPOHCKH 3IPaBCTBEHH 3aIlCH

B) TEHOTHUIIOBU: HABECTH BPCTY

') aAIMUHUCTPATUBHU NOJALU: HABECTH BPCTY

) y30pLIM TKMBA: HABECTU BPCTY

) caumiy, pororpaduje: HaBECTU BPCTY

€) TeKCT, HAaBECTH BPCTY

K) Maria, HaBeCTH BPCTY

3) OCTaJIO: OTIMCATH

HarnoHanHu noprtai 0TBOpEHe Hayke — Open.ac.rs



1.3 ®opmar nonaraka, ynorpedpeHe ckane, KOJIMIHHA [ToJaTaka

1.3.1 YnorpebsbeHu copTBep U popMaT TaTOTEKe:

a) Excel ¢dajn, natoreka

b) SPSS ¢ajn, naroreka

¢) PDF oajn, naroreka

d) Tekct dajn, natoreka

e) JPG o¢ajn, naroteka

f) Ocraio, natoreka

1.3.2. bpoj 3anuca (koA KBaHTUTATUBHUX MOAATAKA)

a) 6poj BapujabIu

0) Opoj Mepema (MCITUTaHUKa, IPOIIeHa, CHUMaKa | CII.)

1.3.3. IloHOBIbEHA MEpEmBA
a) ma

0) He

VKoauko je OATOBOP Aa, OATOBOPUTH HaA cne,ueha nuTama:

a) BPEMEHCKH pa3Mak W3MeJ]jy TOHOBJHEHUX Mepa je

0) Bapujabiie Koje ce BHILE ITyTa Mepe 0JHOCE Ce Ha

B) HOBE Bep3uje (ajiioBa Koju capixe MOHOBJbEHA MEpEHha Cy UMEHOBaHE Kao
Hanomene:

a) Ja
6) He

Axo je 002060p ne, 0bpaznoscumu

Ha nu popmamu u cogpmeep omozyhasajy demwerve u dy2opouny 8aruoHOCm nooamaxa?

2. [Ipukymbame nogaraka

HanyonanHu nopran oTBOpeHe Hayke — OPen.ac.rs



2.1 Metoznonoruja 3a NpUKyIbamke/TeHepUCamke oJaTaka

2.1.1. Y oKBUpY KOT UCTPa)KMBAUKOTI HALIPTa Cy IOAALHM IPUKYTIJbEHHU?

a) CKCIICPUMECHT, HABECTHU TUIT

6) KOpEJIalluOHO UCTPAKUBALEC, HABECTU THUIL

I_[) aHaJIn3a TCKCTa, HABECCTHU THUII

IT) OCTajI0, HABECTH IITa

2.1.2 Hagecmu 8pcme MepHUX UHCMpyMeHama uiy Cmanoapoe noodamaxa cneyuguunux 3a oopehery
HAyuHy OUCYUNIUHY (aKo nocmoje).

2.2 KBanuTer nojiaTaka v CTaHapau

2.2.1. Tperman HenocTajyhux nogaraka

a) Jla mu marpuna caapxu Henocrajyhe nogarke? la He

AKO je 0JITOBOp J1a, OJITOBOPUTH Ha clieneha nurama:

a) Komuku je 6poj Hemoctajyhux momataka?
0) Jla i ce KOPHUCHUKY MaTpHIle MpernopyJyje 3aMeHa Heaoctajyhux nogaraka? la  He
B) AKoO je 0ITOBOp 112, HABECTH CyrecTHje 3a TPeTMaH 3aMeHe HellocTajyhux monaraka

2.2.2. Ha Koju Ha4YMH je KOHTPOJIMCAH KBaJUTET mojaaTaka? Onucatu

2.2.3. Ha xoju Ha4MH je U3BpIlIcHa KOHTPOJIa yHOCA MOoaTaka y MaTpHily?
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3. Tperman nogaraxka u npareha foxkymeHnranuja

3.1. TpermaH 1 uyBame MoJaTaka

3.1.1. [looayu he 6umu denorosanu y PEno3UmMopujym.

3.1.2. URL adpeca
3.1.3. DOI

3.1.4. [ia nu he nodayu dumu y omeopenom npucmyny?

a) Ja
0) Ja, anu nocae embapea xoju he mpajamu 0o
8) He

AKo je 002060p He, nagecmu pasioe

3.1.5. [looayu nehe bumu denonosaru y penoumopujym, anu he oumu uysamu.

Obpasnodcerve

3.2 MeTamnofanu ¥ JOKyMEHTalMja oaaTaka

3.2.1. Koju crangapa 3a meranoaatke he Outu npumermeH?

3.2.1. HaBectu MeTanoAaTke Ha OCHOBY KOjUX CY ITOJIAIU JISIOHOBAHH Y PEMO3UTOPH]jYM.

Axo je nompebno, Hasecmu memooe Koje ce Kopucme 3a npeysumarbe no0amaxd, AHaIumuixe u
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npoyedypanue ungopmayuje, LUXo80 Koouparse, demasmte onuce gapujadiu, 3anuca umo.

3.3 Crpareryja u CTaHIap/u 3a YyBame MojaTaka

3.3.1. lo kor nepuoja he mogany OWUTH YyBaHH y PEIO3ZUTOPHjyMY?

3.3.2. la nu he momaru 6utn nenonosanu mox mmgpom? Jla He

3.3.3. la 1 he mudpa Oute gocTynHa oapelheHoM kpyry uctpakupada? /la He

3.3.4. la v ce mojany Mopajy yKIOHHTH U3 OTBOPEHOT MPUCTYIIA MOCIIe U3BECHOT BpeMeHa?
Jla He

O0pa3noxuTH

4. Be30eqHOCT MOAATAKA M 3aIITUTA MOBEPLUBUX HH(pOpManHja

Ogaj onesbak MOPA Outu nonymeH ako Ballly IOAAIM YKJbYUY]jy JIMYHE IOJaTKe KOjU e OJHOCE Ha
YUECHHUKE y UCTPaXKUBamwy. 3a pyra UCTpaKuBama Tpeda Takohe pasMOTPUTH 3aLUTUTY U CUTYPHOCT
10JaTaKa.

4.1 ®opmanHu CTaHAAPAU 32 CUTYPHOCT HH(OpManja/moaaTaka

HcrpaknBadn KOju CIIPOBO/IE HCTIMTUBAA C JbyIMMa MOPajy Aa ce MpUApkKaBajy 3aKoHa O 3alITHTH
nonaraka o smuHocta (https://www.paragraf.rs/propisi/zakon o zastiti podataka o licnosti.html) u
OI[FOBapajthF HHCTUTYIIUOHAJIHOT KOACKCa O aKaIEMCKOM UHTCTPUTETY.

4.1.2. [1a 1u je uctpaxkuBame o100peHo o1 cTpaHe eTuuke komucuje? Jla He

Ako je onrosop [la, HaBeCTH JaTyM M Ha3UB €TUYKE KOMHCH]E KOja je 0100priIa HCTPaKUBAE
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4.1.2. la mu nojany ykJby4yjy JUYHE MMOJATKE yUYeCHUKa y ucTpaxuBamwy? Jla He

AKO je 0roBOp Ja, HABEJUTE Ha KOjH HAUYMH CTE OCUTYPAJIH MOBEPJHUBOCT M CUTYPHOCT HH(pOpMaLuja
BE3aHUX 32 UCIIUTaHUKE!

a) Ioganu HUCY y OTBOPEHOM IIPUCTYITY
0) [Mopanm cy aHOHUIMU3UPAHH
1) OcraJio, HaBeCTH IITa

5. JlocTynHOCT MoxaTaKka

5.1. Illooayu he bumu
a) jagrno docmynHu
6) 00CMYNHU CaAMO YCKOM Kpy2y Ucmpanxicusaua y oopehenoj nayunoj oobnacmu

y) 3ameopeHu

Axo ¢y nooayu 0ocmynHu camo yCKOM Kpyey UCpaxcusaid, Hagecmu noo Kojum ycioguma Moy 0a ux
Kopucme:

Axo ¢y nooayu 00cmynHu camo yCKOM Kpyay UCMpaxcusaid, Hagecmu Ha KOju HauuH Moy
npUCMynumu nOOAyUMA:

5.4. Hasecmu nuyenyy noo xojom he npuxkynmenu nooayu oumu apxusupanu.

6. Yiiore u oiroBOpHOCT

6.1. Hagecmu ume u npesume u meji aopecy 61acHuKa (aymopa) nooamaxa
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0.2. Hasecmu ume u npesume u meji aopecy ocobe Koja o0picasa Mampuyy ¢ nooayuma

6.3. Hagecmu ume u npesume u mejn aopecy ocobe xoja omocyhyje npucmyn nooayuma opyeum

ucmpascusaduma
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