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ABSTRACT

Abstract

Tomography refers to various imaging methods that use penetrating waves to gather

data about an inaccessible or obscured object of interest. In general, the waves are

systematically propagated through the object from multiple directions in order to

gather the necessary data for a good reconstruction. The object under reconstruction

is perceived as a function characterized by a domain that can either be discrete or

continuous, and its output range comprises real numbers. The primary objective is

to restore this function by leveraging available data, encompassing integrals or sum-

mations over portions of its domain. In the case of Discrete Tomography (DT), the

function’s range is typically a finite collection, commonly employed for reconstruct-

ing digital images featuring multiple gray levels, referred to as multi-level discrete

tomography. Another specific case is Binary Tomography (BT), which focuses on

reconstructing binary images.

In DT, very few projections are in ideal situations used for recovering the object.

Consequently, DT finds extensive application in domains where the material composi-

tion of the object being examined is already known, such as industrial non-destructive

testing or electron tomography[41, 42].

So far, only a handful of algorithms have been proposed to address the DT prob-

lem, particularly when confronted with the multi-level tomography image reconstruc-

tion challenge. These algorithms encompass the Discrete Algebraic Reconstruction

Technique (DART) introduced by Batenburg and Sijbers in their work [5], the Multi-

Well Potential based method (MWPDT) outlined in the publication by Lukić [57], a

hybrid approach that combines non-local projection constraints with continuous con-

vex relaxation for multilabeling problem resolution, and the Non-Linear Discretization

function-based reconstruction algorithm (NLD) as described by Chen and coauthors

[23]. Nevertheless, it is important to note that certain limitations are associated
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with some of these methods, such as the tendency to produce radical solutions, de-

creased accuracy in reconstructions when confronted with limited projection data, or

susceptibility to becoming trapped in local minimum solutions.

In recent years several machine learning algorithms and techniques have been

applied in discrete tomography to enhance reconstruction accuracy, speed up the

process, or handle specific challenges. These algorithms can be based on Convo-

lutional Neural Networks (CNNs) [48] or Reinforcement Learning [86]. Combining

traditional optimization techniques with machine learning approaches can lead to

hybrid methods that leverage the strengths of both. For example, using machine

learning for initialization or as a post-processing step in combination with optimiza-

tion algorithms. The downsides of using machine learning in discrete tomography

include challenges related to the need for large labeled datasets, interpretability is-

sues with complex models, potential overfitting, computational complexity, and the

requirement for expertise in both machine learning and domain-specific knowledge.

Additionally, concerns about robustness to noise, limited explainability, and depen-

dency on training distribution may impact the applicability of machine learning in

discrete tomography applications. It’s important to note that the application of ma-

chine learning in discrete tomography is an active area of research, and new methods

and improvements continue to emerge.

Graph cuts have emerged as a prominent strategy in the fields of image processing

and computer vision for addressing various problem-solving tasks. This methodology

revolves around the creation of a dedicated graph to represent the energy function,

with the objective of achieving either global or local energy minimization by the

identification of the minimal cut on the graph. Efficient computation of the minimum

cut can be achieved by utilizing max-flow algorithms, which often yield a solution that

comes with theoretical guarantees on its quality.

In DT, the reconstruction problem is usually under-determined with only two pro-

jections, and it becomes NP-hard with more than two projection directions. Prior

information is crucial in tackling this issue and making the reconstruction process

more feasible. This prior knowledge can encompass a wide range of details about the
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objects in the image. For instance, it might involve knowing that the objects in the

image are expected to have specific shapes or adhere to particular geometrical prop-

erties, such as being circular or rectangular. By incorporating this prior information

into the reconstruction process, we aim to reduce the ambiguity in the problem and

improve the accuracy of the final reconstructed image.

This raises an intriguing question: Can shape descriptors be used as prior informa-

tion? In specific situations, there might be a requirement for reconstructions utilizing

only one projection direction. Image reconstruction from a single projection, a chal-

lenging task in fields like medical imaging, astronomy, and security, is applied when

obtaining multiple measurements is not feasible. For instance, emergency medical

X-rays use a single image for rapid injury diagnosis, and in astronomy, occultation

events rely on changes in starlight to unveil celestial object characteristics. Secu-

rity scanners minimize radiation exposure by reconstructing baggage contents from a

single scan. In industrial non-destructive testing, single projections are employed to

inspect welds or structures. In such instances, harnessing a known shape descriptor

of the observed object can be highly beneficial in obtaining satisfactory images.

This thesis provides an overview of discrete tomography, beginning with the defini-

tion of digital images, followed by explanations of tomography and discrete tomogra-

phy, as well as some of the shape descriptors that can be used as a priori information in

reconstruction. Existing reconstruction methods in discrete tomography are reviewed.

The thesis outlines three innovative approaches to address image reconstruction chal-

lenges in discrete tomography. Initially, it introduces a novel method that integrates

the gradient approach with the graph cuts method. Subsequently, it enhances this

method by incorporating two additional pieces of a priori information—specifically,

shape orientation and shape circularity. These pieces of information serve as substi-

tutes in situations where there is a limited number of projection directions.
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REZIME

Rezime

Digitalna slika

Digitalnu sliku matematički možemo definisati kao dvodimenzionalni niz diskre-

tnih vrednosti, gde svaka vrednost predstavlja odred̄enu karakteristiku slike, kao što

su intenzitet, boja ili tekstura. Formalno, digitalnu sliku možemo predstaviti kao

funkciju f(x, y), gde x i y predstavljaju prostorne koordinate slike, a f(x, y) je vre-

dnost slike na toj odred̄enoj lokaciji.

U matematičkoj notaciji, digitalnu sliku možemo definisati kao:

f(x, y) =




I(x, y), ako (x, y) ∈ D

0, inače,

gde je I(x, y) intenzitet piksela na poziciji (x, y), D je domen slike, i f(x, y) je

digitalna slika.

Domen slike D obično se definǐse kao oblast u Dekartovom koordinatnom sistemu,

u kojoj su vrednosti piksela definisane, dok se pikseli izvan ovog regiona smatraju

nulama. Vrednosti intenziteta I(x, y) obično se predstavljaju kao skup diskretnih

vrednosti, kao što su celobrojni ili binarni brojevi, u zavisnosti od formata slike i

broja bitova koji se koriste za predstavljanje svakog piksela.

Digitalna slika često se predstavlja kao matrica, gde svaki element matrice odgo-

vara vrednosti intenziteta piksela na slici. Na ovaj način, vrednosti digitalne slike

mogu se matematički predstaviti i lako obraditi, analizirati i manipulisati.

U matematičkim razmatranjima često se pretpostavlja da je funkcija slike f(x, y)

neprekidna i dovoljno puta diferencijabilna. To omogućava primenu različitih metoda

matematičke analize, kao što su vǐsestruki integrali, diferencijalni operatori i dife-
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rencijalne jednačine. Na ovaj način, dobijeni rezultati (jednačine/operatori) zatim se

diskretizuju i prilagod̄avaju za upotrebu u digitalnom okruženju.

Tomografija

Reč tomografija se odnosi na različite metode snimanja u kojima se koristi talasna

energija koja prolazi kroz nepoznati objekat od interesa da bi se prikupili podaci o

njemu; obično je taj objekat teško dostupan ili nevidljiv. U većini slučajeva, talasi

se moraju slati kroz objekat iz velikog broja različitih pravaca kako bi se prikupilo

dovoljno podataka za uspešnu rekonstrukciju. Objekat koji se pokušava rekonstru-

isati posmatra se kao funkcija sa domenom koji može biti diskretan ili neprekidan,

i sa skupom slika koji čine dati skup (obično) realnih brojeva. Zadatak tomografije

jeste rekonstrukcija ove funkcije na osnovu poznatih podataka (integrala ili suma

podskupova njenog domena).

Projektivna geometrija u tomografiji

Glavni problem postavljen u tomografiji je rekonstrukcija informacija o objektu na

osnovu posmatranih podataka. Posmatrani podaci se dobijaju merenjem intenziteta

talasa koji prodiru kroz objekat iz različitih pravaca. Dok talas iz izvora prolazi kroz

objekat, njegova snaga oslabi, i nova vrednost intenziteta talasa se beleži na detektoru.

Tu vrednost nazivamo projekcijom.

Projektivna geometrija bavi se odnosima izmed̄u objekta i projekcije objekta na

neko drugo područje (detektor). Najčešći tipovi projekcija u tomografiji su projekcije

paralelnog zraka i projekcije lepezastog zraka (Slika 1).

U projekciji paralelnog zraka, kroz objekat prolaze paralelni zraci koji idu od izvora

(izvor se kreće u paralelnom smeru) do detektora. U projekciji lepezastog zraka, izvor

je fiksan, rotira se oko objekta i šalje radijalne zrake prema detektoru.

U ovoj disertaciji, fokusiramo se na projekcije paralelnog zraka. Geometrija le-

pezastog zraka može se konvertovati u geometriju paralelnog zraka, tako da se sva

razmatranja iz ovog poglavlja mogu primeniti i na projekcije lepezastog zraka [6].
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(a) Paralelni zrak (b) Lepezasti zrak

Slika 1: Geometrije slikanja paralelnog zraka i lepezastog zraka

Diskretna tomografija

Diskretna tomografija (DT) [41, 42] može se definisati kao grana tomografije koja

se bavi rekonstrukcijom diskretnih objekata ili slika iz ograničenog broja projekcija.

Za razliku od kontinuirane tomografije, koja se bavi rekonstrukcijom slika sa kon-

tinuiranim vrednostima intenziteta, diskretna tomografija se usmerava na rekonstru-

kciju slika sa diskretnim ili binarnim vrednostima. Diskretna priroda objekata ili

slika uvodi dodatne izazove i ograničenja u proces rekonstrukcije. Pojam diskretne

tomografije je skovao Lari Šep (Larry Shepp), koji je organizovao prvu konferenciju

na ovu temu 1994. godine.

U idealnom slučaju, za tačno rekonstruisanje objekta u DT-i, često je potreban

mali broj projekcija. Zbog toga DT ima širok spektar primena u oblastima gde su ma-

terijali objekta pod istraživanjem poznati unapred, kao što su industrijsko ispitivanje

materijala ili elektronska tomografija [41, 42].

Problemi rekonstrukcije u diskretnoj tomografiji obično se formulǐsu kao optimiza-

cioni problemi, gde se definǐse funkcija cilja koja meri usklad̄enost izmed̄u objekta i

projekcionih podataka. Potom se traži minimum funkcije cilja, koristeći različite nu-

meričke metode.
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Standardna metoda za objašnjavanje procesa prikupljanja projekcionih podataka

u diskretnoj tomografiji koristi koncept linija projekcija. Kako bismo to ilustrovali,

razmotrimo 2D rešetku koja predstavlja objekat koji treba rekonstruisati. Svaka

ćelija u ovoj rešetki može imati vrednost iz diskretnog skupa. Proces prikupljanja

projekcionih podataka simulira šta bi se desilo ako bi linije bile projektovane kroz

objekat iz različitih pravaca i gde bi se te linije sekle sa objektom.

Kako se prikupljaju projekcioni podaci, sakuplja se informacija o presecima izmed̄u

linija projekcije i ćelija. Sakupljeni projekcioni podaci iz različitih pravaca mogu se

organizovati u matricu. Svaki red u matrici odgovara jednom uglu projekcije, a svaka

kolona odgovara odred̄enom broju preseka popunjenih ćelija.

Primarni cilj diskretne tomografije je rekonstruisati originalnu rešetku objekta

koristeći matricu prikupljenih projekcionih podataka. Ovaj proces uključuje rešavanje

inverznog problema: pronalaženje konfiguracije rešetke koja bi dovela do posmatranih

projekcionih podataka.

Posmatrajmo sliku u∗ dimenzija N = 4 × 4 = 16. Slika 2 prikazuje primer

izračunavanja vrednosti projekcije na u∗. Linija projekcije prodire kroz piksele slike.

Vrednost projekcije bi računa se kao bi = ai,4u
∗
4+ai,6u

∗
6+ai,7u
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Slika 2: Primer izračunavanja vrednosti projekcije na slici

Diskretna tomografija se suočava sa izazovima povezanim sa diskretnom prirodom

reprezentacije objekta, što rezultira specijalizovanim metodama dizajniranim posebno

za rekonstrukcije sa diskretnim ili binarnim rešetkama.

Jedan od izazova u problemima rekonstrukcije u diskretnoj tomografiji je suočava-
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nje sa šumom i nesigurnošću u projekcionim podacima. Projekcioni podaci mogu biti

pogod̄eni šumom, kao što su elektronski šum ili rasipanje svetlosti, što može otežati

preciznu rekonstrukciju objekta. Pored toga, projekcioni podaci mogu sadržati slu-

čajnu odnosno stohastičku komponentu, što znači da se merenja ne znaju tačno.

Stoga, metode rekonstrukcije često uključuju regularizacioni član koji pomaže stabi-

lizaciji rešenja i smanjenju uticaja šuma i nesigurnosti.

Još jedan izazov u diskretnoj tomografiji je kombinatorna priroda problema. Skup

mogućih rešenja je neodred̄en, što znači da postoji vrlo veliki broj mogućih objekata

koji bi mogli proizvesti dati skup merenja. Stoga se metode rekonstrukcije često

oslanjaju na neki oblik a priori znanja o objektu kako bi se problem učinio manje

neodred̄enim.

Problem rekonstrukcije u diskretnoj tomografiji može se prikazati sledećim li-

nearnim sistemom jednačina:

a11u1 + a12u2 + a13u3 + . . .+ a1NuN = b1

a21u1 + a22u2 + a23u3 + . . .+ a2NuN = b2

a31u1 + a32u2 + a33u3 + . . .+ a3NuN = b3

. . . . . . . . . . . . . . . . . . . . . . . .

aM1u1 + aM2u2 + aM3u3 + . . .+ aMNuN = bM ,

koji se može posmatrati u matričnoj formi kao:

Au = b, (1)

gde su: A ∈ RM×N , u ∈ ΛN , b ∈ RM i Λ = {λ1, λ2, ..., λk} za k ≥ 2.

Zadatak je rekonstruisati sliku predstavljenu nepoznatim vektorom u. Opseg

mogućih vrednosti za sliku, predstavljen skupom Λ, definisan je od strane korisnika

i može biti binaran ili sa vǐse nivoa sive boje. Projekcioni podaci su sadržani u
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projekcionoj matrici A, gde svaki red odred̄uje dužinu preseka izmed̄u piksela i pro-

jekcionih zraka koji prolaze kroz njih. Elementi matrice odred̄eni su dužinom ovih

preseka. Projekcioni vektor b računa se kao suma proizvoda intenziteta piksela i

dužine projekcionih zraka koji prolaze kroz njih.

Proces projekcije koristi različite pravce i koristi paralelnu metodu projekcije

zraka, gde se uzima vǐse paralelnih projekcionih zraka za svaki pravac. Ugao α

odgovoran je za odred̄ivanje pravca projekcije. Kako bi se osigurala pokrivenost

cele rešetke slike, udaljenost izmed̄u susednih paralelnih projekcionih zraka jednaka

je dužini stranice piksela i ravnomerno su raspored̄eni. Broj paralelnih projekcionih

zraka je specificiran kako bi se pokrila cela rešetka slike.

Rekonstrukcioni problem podrazumeva pronalaženje slike u predstavljene linearnim

sistemom jednačina (1), koristeći projekcionu matricu A i vektor b. Ovaj sistem često

nema jednistveno rešenje, sa N > M . Cilj je ne samo pronaći rešenje koje se podu-

dara sa datim projekcijama, već i rešenje koje blisko odražava originalnu sliku. Da bi

se dobilo visokokvalitetno i zadovoljavajuće rešenje, potrebno je koristiti sva dostupna

znanja (a priori informacije) o objektu u pitanju.

Metodi minimizacije energije su moćne tehnike koje se koriste u obradi slika za

rešavanje različitih problema, kao što su uklanjanje šuma sa slike, segmentacija slika,

popunjavanje slika i obnova slika. Ovi metodi imaju za cilj da pronad̄u optimalnu kon-

figuraciju energetske funkcije koja predstavlja grešku ili neslaganje izmed̄u obrad̄ene

slike i željenog rezultata.

Fundamentalni koncept uključuje formulisanje problema diskretne tomografije

kao modela minimizacije, gde je cilj pronaći vrednost funkcije u koja minimizuje

funkcionelu E(u). Tipično, u ovom kontekstu, u predstavlja sliku. Pojam energija

potiče iz analogije u fizici, gde stabilan sistem karakterǐse minimalna ukupna energija.

U svakom pristupu minimizaciji energije, moraju se zadovoljiti dva ključna kri-

terijuma. Prvo, dizajn energetske funkcije ili modela mora usko odražavati stvarni

problem koji se rešava, a njen minimum, po mogućstvu globalni, treba predstavljati

optimalno rešenje problema. Drugo, optimizacioni algoritam koji se koristi za mini-

mizaciju energije treba da bude brz i precizan, omogućavajući dobro aproksimiranje
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minimalne vrednosti uz efikasnu upotrebu dostupnih računarskih resursa. Nepošto-

vanje bilo kog od ovih kriterijuma može značajno smanjiti efikasnost metoda ili ih

potpuno učiniti neprikladnim za praktične primene.

U obradi slika, energetska funkcija (poznata i kao funkcija cilja) kvantifikuje

kvalitet ili prikladnost date slike. Energetska funkcija obično se sastoji od dve glavne

komponente: funkcije koja meri sličnost rekonstrikcije prikupljenim projekcionim po-

dacima i regularizacione funkcije.

Prilikom primene minimizacije energije u rekonstrukciji slika, u najopštijem kon-

tekstu, pokušava se dobiti rekonstruisana forma posmatrane slike u minimizacijom

sledeće funkcije:

E(u) = F (Lu, b) + λR(u). (2)

Argument ur koji minimizuje energetsku funkciju,

ur = argmin
u

E(u) (3)

smatra se procenom originalne slike.

Funkcija F , koja meri udaljenost izmed̄u projekcionih podataka b i rekonstrukcije

u nakon primene operatera L, procenjuje koliko dobro rekonstruisana slika odgovara

posmatranim podacima. U kontekstu uklanjanja šuma sa slike, član za vernost po-

dacima kažnjava razlike izmed̄u slike degradirane šumom i slike bez šuma.

Regularizaciona funkcija R nameće a priori znanje o rešenju u. Očekuje se da

niske vrednosti R doprinose, do odred̄ene mere, eliminaciji neželjenih karakteristika.

Regularizacija takod̄e obezbed̄uje numeričku stabilnost problema. Regularizacioni

parametar λ regulǐse balans izmed̄u ova dva člana, odnosno nivo uklanjanja šuma

u odnosu na precizno rekonstruisanje detalja slike. Regularizacioni član podstiče

odred̄ene osobine ili karakteristike u rekonstruisanoj slici i sprečava pojavu prekom-

plikovanih rešenja ili rešenja sa dosta šuma. Regularizacija pomaže u sprečavanju

preprilagod̄avanja i proizvodi vizuelno privlačnije rezultate.

Nalaženje analitičkog rešenja za problem (2) obično nije izvodljivo zbog njegove
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dimenzionalnosti. Stoga je potreban odgovarajući optimizacioni pristup za njegovo

rešavanje.

Član za podudaranje podataka u E može se oblikovati kao konveksna kvadratna

funkcija u obliku sume kvadrata grešaka, što čini njegovo numeričko rešavanje re-

lativno jednostavnim. Metoda konjugovanih gradijenata pokazala se kao jedan od

najefikasnijih pristupa za minimizaciju ove funkcije, pružajući rešenje u najvǐse N

(dimenzije u) iteracija. Iako se ovaj čllan često predstavlja kao konveksna kvadratna

funkcija, važno je napomenuti da može odstupati od ovog oblika. Nekvadratni članovi

za podudaranje podataka javljaju se u složenim sistemima ili modelima, stvarajući

probleme za numeričku obradu. U takvim slučajevima, tradicionalne metode opti-

mizacije razvijene za kvadratne probleme mogu biti manje efikasne [20].

Med̄utim, regularizacioni član Rmože imati potpuno drugačiji oblik. Može pokazi-

vati visoku nelinearnost, negativnost, pa čak i nediferencijabilnost u odred̄enim ta-

čkama. Ove karakteristike čine minimizaciju E izazovnom. Visoka nelinearnost

povećava računarsku složenost tokom numeričkih evaluacija, dok negativnost može

rezultirati time da energetska funkcija E nije konveksna, što otežava odred̄ivanje

globalnog minimuma. Osim toga, nediferencijabilnost funkcije R implicira da je i

E nediferencijabilna, čime mnoge metode minimizacije zasnovane na gradijentu ili

izvodima vǐseg reda postaju neprikladne. Ovo je veliko ograničenje, jer se mnoge

efikasne determinističke metode oslanjaju na računanje gradijenata.

Analiza gore navedenog pokazuje da problemi obrade slika sa regularizacijom nisu

uvek dobro postavljeni (well-possed). Na primer, kada energetska funkcija sadrži

negativan regularizacioni član, to može dovesti do negativnosti problema, što može

rezultirati vǐsestrukim lokalnim minimumima bez jedinstvenog globalnog minimuma.

U takvim slučajevima, glavni doprinos regularizacije je sužavanje prvobitnog skupa

rešenja, ali ne i nužno dovod̄enje do jedinstvenog rešenja.

Problem (2) predstavlja problem neprekidne optimizacije. Med̄utim, odred̄ene

primene, kao što su diskretna tomografija ili defazifikacija, ograničavaju prostor pre-

trage na diskretan skup. Ograničeni problem sa regularizacijom formulisan je kao:
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min
u∈Ω

EQ(u), (4)

gde Ω predstavlja dopustiv skup. Ispunjavanje uslova ograničenja predstavlja do-

datni izazov, uz prethodno analizirane probleme, koji treba rešiti. Jedan mogući

pristup je transformisati ograničeni problem u neprekidni putem reformulacije uslova

ograničenja kao novog regularizacionog sabirka. Primer takvog pristupa je konveksno-

konkavna regularizacija u diskretnoj tomografiji [84]. Alternativno, drugi način za

rešavanje ovog izazova je direktna primena odgovarajuće metode optimizacije posebno

dizajnirane za probleme sa ograničenjima.

U rekonstrukciji slika, regularizacija je tehnika koja se koristi za ograničavanje

prostora rešenja inverznog problema kako bi se dobilo jedinstveno i stabilno rešenje.

Inverzni problem u rekonstrukciji slika odnosi se na zadatak procene nepoznate slike

na osnovu datog skupa merenja ili posmatranja. Merenja ili posmatranja mogu biti

degradirana šumom ili mogu biti nepotpuna, što inverzni problem čini slabo posta-

vljenim (ill-posed problem).

Regularizacija se može definisati kao dodatan sabirak koji se dodaje funkciji cilja

koja se minimizuje kako bi se pronašlo rešenje inverznog problema. Regularizaciona

funkcija nameće odred̄ene osobine rešenju, kao što su glatkost, orijentacija i slično,

što rešenje čini smislenijim i manje osetljivim na šum ili nepotpunost podataka.

Regularizacioni član često je funkcija slike sama po sebi i bira se na osnovu kara-

kteristika slike i vrste inverznog problema. Regularizacija se može matematički for-

mulisati kao član kazne, uslov ili a priori verovatnoća raspodele slike. Cilj regula-

rizacije je da se dobije stabilno rešenje inverznog problema.

Postoji nekoliko funkcija za regularizaciju koje se često koriste u rekonstrukciji

slika, svaka sa svojim prednostima i manama.

Do sada je samo nekoliko algoritama predloženo za rešavanje problema DT-a.

Ti algoritmi uključuju Diskretnu Algebarsku Rekonstrukcionu Tehniku (DART) [5],

metodu zasnovanu na Vǐsestrukim Potencijalima (MWPDT) [57], kombinaciju nepo-

stojanih projekcionih ograničenja sa kontinuiranim konveksnim relaksiranjem pro-
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blema vǐsestrukog obeležavanja [99] i algoritam rekonstrukcije zasnovan na nelinearnoj

diskretizaciji funkcije (NLD) [92]. Med̄utim, neki od ovih metoda imaju ograničenja,

kao što su pružanje radikalnih rešenja, manje tačne rekonstrukcije, posebno kada se

smanji broj projekcija, ili ostajanje u lokalnim minimumima, tj. polu-kontinualna

rešenja.

U prethodnih par godina metode mašinskog učenja su počele da imaju primenu

i u rekonstrukcija slika u tomografiji [48, 86]. Kombinovanje tradicionalnih tehnika

optimizacije sa pristupima mašinskog učenja može dovesti do hibridnih metoda koje

koriste prednosti oba pristupa. Na primer, upotreba mašinskog učenja za inicija-

lizaciju ili kao postupak postprocesiranja u kombinaciji sa tradicionalnim algoritmima

optimizacije. Za adekvatnu primenu metoda mašinskog učenja, neophodno je imati

veliku bazu podataka na osnovu kojih bi se mogao trenirati algoritam. Dodatno,

mana ovakvog pristupa leži u nemogućnosti poptpune interpretacije rešenja, kao i u

velikoj računarskoj kompleksnosti.

Jedan od često korǐsćenih pristupa za rešavanje problema obrade slika i računarske

vizije je zasnovan na presecanju grafova. Ovaj pristup podrazumeva izgradnju speci-

jalizovanog grafa za datu funkciju energije, tako da minimum preseka na grafu mini-

mizuje energiju, bilo globalno ili lokalno. Minimum preseka se može efikasno izračunati

pomoću algoritama maksimalnog protoka, a rezultat obično pruža rešenje sa teore-

tskim garancijama kvaliteta.

U DT-u, problem rekonstrukcije je obično neodred̄en sa samo dve projekcije, dok

postaje NP-težak sa vǐse od dva projekciona pravca [38]. Da bi se smanjila neo-

dred̄enost, često se u rekonstrukciju uključuju unapred poznate informacije o objektu,

kao što su konveksnost, povezanost, homogenost, sličnost sa modelnom slikom, obim

i orijentacija. To postavlja pitanje da li se i koji deskriptori oblika mogu koristiti kao

a priori informacije. Potreba za rekonstrukcijama koristeći samo jedan pravac proje-

kcije može se javiti kada su i projekcioni sistem i posmatrani objekat fiksirani. Primer

takve situacije može biti ispitivanje materijala u grad̄evinarstvu, kao što je ispitivanje

strukture zida. Primene u medicini mogu zahtevati izuzetno nisku radijaciju za paci-

jenta. U slučajevima kada je odred̄eni deskriptor oblika posmatranog objekta (npr.
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odred̄eni unutrašnji organ) poznat, metoda rekonstrukcije koja koristi ove informa-

cije može obezbediti prihvatljive slike koristeći samo jedan pravac projekcije, čime se

smanjuje doza radijacije za pacijenta.

Ova teza pruža pregled diskretne tomografije, počevši od definicije digitalnih slika,

zatim definisanja tomografije i diskretne tomografije, kao i pregled postojećih metoda

rekonstrukcije u diskretnoj tomografiji i postojeće deskriptore slike koji mogu da se

koriste kao a priori informacija prilikom rekonstrukcije slike. Na kraju, teza pruža

definiciju novih metoda rekonstrukcije u diskretnoj tomografiji koje pokazuju bolje

performanse u pored̄enju sa postojećim metodama.

Metode za rekonstrukciju slika u digitalnoj tomografiji za-

snove na sečenju grafova

Graf G je ured̄en par G = (X, ρ), gde je X konačan neprazan skup elemenata koji se

zovu čvorovi, a ρ je konačan skup ured̄enih, ili neured̄enih parova, različitih elemenata

skupa X koji se zovu grane. Ukoliko je ρ skup ured̄enih parova, reč je o usmerenom

grafu, u suprotnom imamo neusmereni graf. Ukoliko se svakoj grani grafa dodeli neka

vredonst, dobijamo ponderisani (težinski) graf.

Tehnika sečenja grafa je moćna tehnika koja se koristi u obradi slike za različite

zadatke, poput segmentacije slike, prepoznavanja objekata i matiranja slike. Ovaj

koncept uključuje particionisanje slike na dva ili vǐse segmenata pronalaženjem opti-

malnog reza kroz graf, kojim je predstavljena slika.

U tehnikama rezanja grafa, slika se predstavlja kao graf, gde je svaki piksel čvor,

a grane predstavljaju odnose izmed̄u piksela. Cilj tehnike rezanja grafa je pronaći

particiju grafa koja minimizuje funkciju cilja, u ovu svrhu mogu se koristiti različiti

algoritmi, kao što su algoritam maksimalnog protoka-minimalnog reza ili metoda

sečenja grafa zasnovana na dinamičkom programiranju.

Optimizacija uz upotrebu tehnike sečenja grafa pruža praktičan pristup rešavanju

raznovrsnih izazova u obradi slike koji se mogu izraziti u kontekstu minimizacije

energije, kako je dokumentovano u različitim istraživanjima [8, 12, 13, 15, 16, 49, 52,
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55].

Potsov model

U teoriji sečenja grafa, Potsov model [95] se koristi kao način formulisanja i

rešavanja optimizacionih problema koji uključuju grafove. Cilj je podeliti čvorove

grafa u grupe tako da su grane koje povezuju čvorove unutar grupe minimizovane,

dok su grane koje povezuju čvorove izmed̄u grupa maksimizovane. Ovo može biti

korisno za zadatke poput segmentacije slike, gde je cilj podeliti sliku na različite re-

gione ili objekte. U našoj primeni, Potsov model se zasniva na minimizaciji sledeće

energije:

E(d) =
∑

p∈P
D(p, dp) +

∑

(p,q)∈N
K(p,q) · (1− δdp,dq), (5)

gde d = {dp | p ∈ P} označava intenzitet piksela slike p ∈ P . Izraz D(p, dp) označava

trošak dodeljivanja oznake dp pikselu p. Potencijalna interakcija izmed̄u parova suse-

dnih piksela p i q označava se kaoK(p,q), aN predstavlja skup susednih parova piksela.

Funkcija δdp,dq je Kronekerova delta funkcija.

Primena metoda sečenja grafova u diskretnoj tomografiji

Tehnika za rekonstrukciju slike opisana u ovom odeljku je prvi put predstavljena od

strane Šulc i Lukića u [59] i naziva se metodom rekonstrukcije Diskretne Tomografije

Tehnikom Sečenja Grafa (GCDT).

Prvi korak u procesu rekosntrukcije je pronalazak neprekidnog rešenja problema

(6).

min
u∈[0,1]N

EQ(u) := ∥Au− b∥2. (6)

Gde je, EQ kvadratna funkcija nad skupom Ω = [0, 1]N . Za rešavanje ovog pro-

blema minimizacije koristimo algoritam Spektralnog Projektovanog Gradijenta (SPG)

[10].

Sledeći korak u rekonstrukciji je diskretizacija neprekidnog rešenja jednačine (6),

dobijenog primenom SPG algoritma. U ovu svrhu, koristimo algoritam predložen u
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[85, 93] i [58, 61], i biramo Potsov model interakcije zbog njegove sposobnosti da

promovǐse kompaktnost u rešenjima, kako je primećeno u [14, 36, 89]. Izraz D, u

(5.2) je formulisan na osnovu intenziteta piksela, u(p), i dizajniran je tako da bude

mali ili jeftin u blizini odred̄enih sivih vrednosti.

D(p, 0) = |u(p)− λ1|,

D(p, 1) = |u(p)− λ2|,

D(p, 2) = |u(p)− λ3|,

...

D(p, k − 1) = |u(p)− λk|.

Potencijal interakcije, K(p,q), izmed̄u susednih piksela je postavljen kao konstantna

vrednost 1. Energetska funkcija (5) se zatim minimizuje koristeći algoritam za Opti-

mizaciju Sečenjem Grafa(GCO) [14, 16, 27, 53]. GCO algoritam dodeljuje vrednost

oznake, dp, svakom pikselu, koja odgovara unapred definisanom nivou sive boje i

odred̄uje intenzitete piksela u konačnom diskretnom rešenju.

Metoda zasnovana na orijentaciji oblika

Naš pristup rekonstrukciji tomografije sjedinjuje metodu sečenja grafa sa tehnikom

minimizacije baziranom na gradijentu, koristeći orijentaciju oblika kao ključnu a priori

informaciju.

U početnom koraku naše metode, izračunavamo vrednosti troškova podataka za

svaki piksel unutar slike. Ove vrednosti proizlaze iz intenziteta kontinualno aproksimi-

rane konačne rekonstruisane slike, postignute minimizacijom energetske funkcije:

min
u∈[0,1]N

EQ(u) =wP∥Au− b∥2 + wH

N∑

i=1

∑

j∈Υ(i)

(ui − uj)
2

+ wO(Φ(u)− α∗)2 + µ⟨u, τ − u⟩.
(7)
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Ovde uvodimo ključne elemente:

• τ = [1, 1, . . . , 1]T kao N-dimenzionalni vektor,

• wP koeficijent za kontrolu prilagod̄avanja podacima,

• wH koeficijent za regulisanje kompaktnosti rešenja,

• Υ(i) predstavljanja indekse susednih piksela piksela i,

• Φ(u) za orijentaciju trenutnog rešenja,

• α∗ kao stvarnu orijentaciju (a priori informacija),

• wO koeficijent za odred̄ivanje uticaja regularizacije orijentacije,

• ⟨u, τ − u⟩ za podsticanje intenziteta piksela prema binarnim vrednostima,

• µ za kontrolu uticaja binarizacije.

Za svako fiksirano µ, koristimo iterativni optimizacioni algoritam SPG za rešavanje

problema (7). U sledećem koraku, vršimo sveobuhvatnu binarizaciju neprekidnog

rešenja dobijenog algoritmom SPG. Ova binarizacija koristi metodu sečenja grafa

baziranu na Potsovom modelu. Funkcija troška podataka D u (5) oblikovan je na

osnovu informacija dobijenih iz glatkog rešenja u:

D(p, 0) = u(p),

D(p, 1) = 1− u(p).

Takod̄e, definǐsemo skup susednih parova N , sa (p, q) ∈ N . Dva piksela su susedna

kade se njihove koordinate na slici razlikuju za samo jednu vrednost. Potencijal

interakcije K(p,q) je 1.

S ovim definicijama, spremni smo da minimiziramo energetsku funkciju u (5)

koristeći algoritam za optimizaciju rezanja grafa (Graph Cuts Optimization - GCO)
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[16]. Algoritam GCO dodeljuje vrednosti oznaka dp ∈ 0, 1 svakom pikselu p. Ovde

opisana metoda je predložena u [66].

Metoda zasnovana na cirkularnosti oblika

Metoda rekonstrukcije za rešavanje problema diskretne tomografije predložena u

[67] i ukratko opisana u ovom odeljku sastoji se od dva dela:

1. Pronalaženje kontinualnog rešenja problema minimizacije energije koristeći metod

minimizacije baziran na gradijentu. Energetska funkcija uključuje informacije

o cirkularnosti originalnog objekta.

2. Diskretizacija dobijenog neprekidnog rešenja primenom algoritma baziranog

na sečenju grafa. Vrednosti piksela neprekidne slike koriste se za definisanje

funkcije troška podataka za graf.

Energetska funkcija koja se koristi za izračunavanje neprekidnog rešenja data je

sledećom jednačinom:

min
u∈[0,1]N

EQ(u) := wP∥Au− b∥22 + wH

N∑

i=1

∑

j∈Υ(i)

(ui − uj)
2+

+wC (C(u)− C∗)2 + µ ⟨u, τ − u⟩ ,

(8)

i sastoji se od sledeća četiri člana:

1. Član prilagod̄avanja podacima, ∥Au− b∥22, regulisan parametrom wP > 0, koji

osigurava sličnost projekcionim podacima.

2. Funkcija homogenosti,
∑N

i=1

∑
j∈Υ(i)(ui − uj)

2, regulisana parametrom wH >

0; Ovde, Υ(i) predstavlja skup indeksa susednih piksela pikselu i. Ovaj član

osigurava glatkoću rešenja;

3. Član, (C(u)−C∗)2, meri udaljenost izmed̄u cirkularnosti trenutnog rešenja (C(u))
i poznate cirkularnosti originalne slike (C∗). Parametar wC > 0 odred̄uje uticaj

regularizacije cirkularnosti.
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4. Član regularizacije konkavnosti, ⟨u, τ−u⟩, gde je τ = [1, 1, ..., 1]T vektor veličine

N . Ovaj član pomaže u pomeranju intenziteta piksela prema binarnim vredno-

stima, a njegov uticaj postepeno raste tokom procesa rekonstrukcije, regulisan

parametrom µ > 0.

Optimizacioni problem (8) je ograničen, kvadratni problem minimizacije energije koji

se može rešiti različitim metodama optimizacije. Mi smo izabrali optimizacioni algo-

ritam SPG [9] zbog dobrih performansi u sličnim problemima.

Gradijent regularizacionog člana (C(u) − C∗)2 u energetskoj funkciji (8) odred̄en

je analitički, što omogućava brzu minimizaciju i odred̄ivanje neprekidnog rešenja

pomoću SPG algoritma.

Kriterijum zaustavljanja prilikom traženja neprekidnog rešenja je ⟨u, τ−u⟩ < Ebin,

gde Ebin regulǐse stepen binarizacije rešenja u, i u našim eksperimentima ima vrednost

100.

Nakon izračunavanja neprekidnog rešenja, sledeći korak je njegova potpuna bina-

rizacija. Ovo se postiže primenom Potsove metode.

Navedeni algoritam daje vrednosti oznaka dp za svaki piksel p, gde je dp predefi-

nisan kao dp = 0 → 0 i dp = 1 → 1. Ove vrednosti oznaka odred̄uju intenzitete

piksela u konačnom (binarnom) rešenju, označavajući kraj procesa rekonstrukcije.

Naučni doprinosi i originalni rezultati

U tezi je uvedena nova metoda za rekonstrukciju slika zasnovana na minimizaciji

funkcije energije u diskretnoj tomografiji koja kombinuje gradijentnu metodu sa meto-

dom sečenja grafova. Ova metoda je objavljena u publikaciji [59] i pokazuje dobre

performanse u pored̄enju sa postojećim metodama koje se bave sličnim problemima.

U tezi je pokazano da se performanse metoda za rekonstrukciju slika u diskretnoj

tomografiji sa malim brojem projekcionih podataka mogu značajno pobolǰsati ukoliko

se u njih uključi i a priori informacija o objektu. U tezi je poseban akcenat stavljen

na orijentaciju i cirkularnost oblika.
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U tezi je predstavljena nova metoda, obljavljena u publikaciji [66], koja integrǐse

metodu sečenja grafa sa tehnikom minimizacije zasnovane na gradijentu, koristeći

orijentaciju kao poznatu informaciju o obliku. Metoda pokazuje zavidne performanse

prilikom rekonstrukcije binarnih slika na osnovu projekcionih podataka iz jedne di-

menzije. Dodatno, opisan je novi metod predstavljen u publikaciji [67] koji koristi

cirkularnost oblika kao a priori informaciju o objektu, kao i rezultati eksperimenata

koji pokazuju veliku efikasnost ovih metoda u rekonstrukciji slika sa smanjenim pro-

jekcionim podacima.

Struktura teze

Ova doktorska disertacija je podeljena u šest poglavlja. U uvodnom poglavlju

predstavljeni su istraživački problem i njegov značaj. Poglavlje pruža pregled cele

teze, ističući ključne ciljeve i doprinose sprovedenog istraživanja. Takod̄e sadrži

listu originalnih radova koji čine osnovu teze. Do kraja ovog poglavlja, čitaoci će

imati jasno razumevanje opsega istraživanja i njegove relevantnosti u oblasti digi-

talne obrade slika i tomografije.

Poglavlje 2 služi kao osnova dalje diskusije. Počinje sa definicijom digitalne slike,

opisujući kako se ona predstavlja i anlizira. Zatim se definǐse tomografska proje-

ktivna geometrija, ističući njen značaj. Uvedena je Radonova transformacija, jedan

od osnovnih matematičkih alata u tomografiji, a zatim se detaljno istražuju njena

svojstva i primene. Sledeća je predstavljena Furijeova transformacija, naglašavajući

njenu važnost u analizi frekvencijskog sadržaja. Poglavlje se završava objašnjenjem

Furijeove teoreme i njene primene kroz algoritam filtrirane rekonstrukcije.

Poglavlje 3 prebacuje fokus na diskretnu tomografiju, značajan pristup rekon-

strukciji slika sa diskretnim nivoima intenziteta. Počinje formulisanjem problema

diskretne tomografije i razmatranjem povezanih izazova, kao i definicijom binarne

slike. Poglavlje zatim istražuje problem rekonstrukcije slike u digitalnoj tomografiji.

Objašnjen je koncept regularizacije koji se koristi u situacijama gde znamo neke in-
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formacije o objektu na slici koji se rekonstruǐse, ali se rekonstrukcija vrši na osnovu

malog broja projektivnih podataka. Predstavljen je Rajserov algoritam, zajedno sa

drugim algebarskim tehnikama rekonstrukcije kao što su Algebraic Reconstruction

Technique (ART), Simultaneous Iterative Reconstruction Technique (SIRT), Simul-

taneous Algebraic Reconstruction Technique (SART), Discrete Algebraic Reconstruc-

tion Technique (DART) i Simulated Annealing Algorithm. Takod̄e, razmatrane su

metode rekonstrukcije zasnovane na gradijentu kako bi se pružio širi uvid u različite

pristupe tomografskoj rekonstrukciji.

U poglavlju 4 predstavljeni su desktiptori oblika, kao što su geometrijski momenti

i momenti invarijantnosti, orijentacija i cirkularnost oblika. Pomenuti deskriptori

oblika su temeljno opisani, naglašavajući njihov potencijal u analizi i rekonstrukciji

slika.

Poglavlje 5 prikazuje originalne doprinose disertacije. Prvi glavni doprinos je

primena optimizacije sečenjem grafa. Koncept sečenja grafa je detaljno objašnjen,

kao i originalna ideja njegove primene u rekonstrukciji slike u diskretnoj tomografiji.

Predstavljeni su eksperimentalni rezultati za metodu zasnovanu na sečenju grafa,

koji pokazuju njenu efikasnost i performanse u pored̄enju sa postojećim pristupima.

Poglavlje zatim integrǐse informaciju o cirkularnosti i orijentaciji oblika u metode

rekonstrukcije zasnovane na sečenju grafa, što dovodi do razvoja dve nove strategije

za rekonstrukciju. Detaljna objašnjenja ovih metoda, zajedno sa eksperimentalnim

rezultatima, pružaju ocenu njihovih performansi i mogućih prednosti.

U zaključnom poglavlju 6, sumirani su glavni rezultati i doprinosi disertacije.

Poglavlje potvrd̄uje značaj istraživanja i njegov potencijalni uticaj na oblast diskretne

tomografije i rekonstrukcije slika i daje predlog mogućih budućih pravaca istraživanja.

Disertacija se zatvara sveobuhvatnim popisom svih referenci citiranih u celom

dokumentu. Ovaj deo prepoznaje izvore i prethodna istraživanja koja su podržala i

uticala na disertaciju.
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CHAPTER 1

Introduction

1.1 Thesis motivation and contribution

Tomography is an umbrella term for a broad range of imaging techniques that rely on

the process of image slicing. Tomographic imaging can be divided into two categories:

• Transmission tomography

• Emission tomography

In transmission tomography, the source of the radiation is outside the object. A source

is transmitting low energy ray through the object, a wave penetrates the object, and

part of the energy is attenuated. The detector then registers the attenuated intensity

of the wave. From the intensity of these projections, a reconstruction of the image of

the object is being made.

On the other hand, in emission tomography, radioactive substances are injected

and redistributed into the object. The unstable radionuclide decays by generating

γ-rays, detected by a detector array encircling the target. The acquired multiview

projection data set is then used to reconstruct the image.

In this thesis, we are focused only on transmission tomography.

In recent decades, we have seen enormous growth in the development and usage of

tomography. The main reason for the development of this field is its wide application

in many spheres of modern life.

In 1930 radiologist Alessandro Vallebona developed the basics of tomography in

medicine in the form of ”classic” X-ray tomography. Subsequently, a multitude of to-
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1. INTRODUCTION

mographic techniques have been developed and applied within the medical domain to

facilitate the early detection of diseases. These methods include ultrasound diagnos-

tics (sonography), computed tomography (CT), magnetic resonance imaging (MRI),

positron emission tomography (PET), single-photon emission computed tomography

(SPECT), optical coherence tomography (OCT), electrical impedance tomography

(EIT), digital volume tomography (DVT), and ”classic” X-ray tomography. The key

distinguishing factor among these imaging techniques is their energy sources.

Angiography serves as an illustration of a medical diagnostic technique employing

tomography to provide visualizations of the interior of organs and blood vessels,

with a primary focus on arteries, veins, and the chambers of the heart. During the

procedure, a contrast agent with radio-opaque properties is introduced into the blood

vessel, rendering it visible through X-ray-based methods like fluoroscopy.

During the COVID-19 pandemic, Computed Tomography (CT) imaging has played

a crucial role in various aspects related to the virus. CT scans have been widely used as

a supplementary diagnostic tool to detect and assess lung involvement caused by the

SARS-CoV-2 virus. When the initial Polymerase Chain Reaction (PCR) tests were

inconclusive or had false-negative results, CT imaging provided valuable informa-

tion for diagnosing COVID-19 cases. It can reveal characteristic lung abnormalities,

such as ground-glass opacities and consolidations, which are indicative of COVID-19

pneumonia.

Apart from diagnosis, CT scans have been instrumental in evaluating the severity

and extent of lung involvement in COVID-19 patients, helping healthcare profession-

als determine the appropriate level of care and treatment. Serial CT scans have also

been used to monitor disease progression, allowing clinicians to assess whether the

disease is improving or worsening and adjust treatment plans accordingly.

In situations of overwhelmed healthcare systems, CT imaging has assisted in triag-

ing patients based on the severity of lung involvement, enabling more efficient resource

allocation. Additionally, CT scans have been a valuable tool in advancing the sci-

entific understanding of COVID-19. By studying CT scans from large cohorts of

patients, researchers have gained insights into the patterns of lung involvement, dis-
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1. INTRODUCTION

ease progression, and the impact of various treatments.

Furthermore, CT imaging has been used to evaluate lung damage and fibrosis

in patients who have recovered from COVID-19. Some individuals may experience

persistent lung issues even after recovery, and CT scans aid in assessing the extent of

long-term lung damage.

Throughout the pandemic, the responsible and efficient use of CT imaging in

COVID-19 cases has been subject to ongoing discussions. Concerns about radiation

exposure, resource allocation, and potential virus spread in radiology facilities have

been considered, leading to an increased need for image reconstruction methods that

require fewer projections for a valid reconstruction.

Next to medicine, tomography has its application in security and cargo inspection

since it can be used in materials categorization and detection, thus allowing the

exposure of dangerous and prohibited goods [88].

Computed Tomography has emerged as a highly valuable and non-destructive

tool in the field of archaeology. Using advanced imaging techniques, CT scans have

revolutionized how researchers study artifacts, human remains, and archaeological

sites, providing unparalleled insights into the past [45].

In artifact analysis, CT scanning enables archaeologists to delve into the inner

compositions of items like pottery, metalwork, and statuettes, revealing hidden fea-

tures, inscriptions, and construction details that may not be visible to the naked

eye. This non-invasive approach allows for thorough examination without the risk of

damage.

Human remains examination has also significantly benefited from CT scanning.

By producing detailed images of skeletal remains, researchers can study ancient dis-

eases, injuries, and even the mummification processes used in various societies. Ad-

ditionally, CT scans aid in facial reconstruction and the analysis of burial practices,

shedding light on the lives of past civilizations.

Beyond archaeology, CT scanning extends its utility to paleontology, enabling

the examination of fossils and other ancient remains. The technology facilitates the

investigation of internal structures, offering valuable insights into extinct species’
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1. INTRODUCTION

biology and evolutionary history.

Moreover, CT scanning plays a crucial role in exploring monuments and archae-

ological sites without causing harm to delicate structures. By scanning subsurface

layers, archaeologists can discover hidden chambers, tunnels, or artifacts, enhancing

our understanding of ancient civilizations.

Preservation of cultural heritage is another crucial aspect of CT’s application in

archaeology. Fragile or sensitive artifacts can be digitally preserved through CT scans,

reducing physical handling and the risk of damage during conservation efforts. In

figure 1.1.3, taken from [79], we can see how CT assisted in discovering and restoring

objects hidden within soil block.

Fig. 1.1.3: Radiographs. A soil block (a) and two radiographs (b-c) of it viewed from
different angles (images are taken from [79]).

Additionally, CT scanning has been employed to read and virtually ”unroll” an-

cient scrolls and manuscripts that are too fragile to open physically, enabling access

to their contents without causing harm.

Additionally, tomography is used for non-destructive material testing, in the food

industry, geophysics, oceanography, and other areas of science.

Tomography is a cost-effective, non-destructive, non-invasive imaging technique

that has the potential to undertake many future challenges in various areas of appli-

cation.

Tomography is inherently interdisciplinary, drawing insights from mathematics,

computer science, image processing, and other related fields. This cross-disciplinary
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nature allows researchers to collaborate and explore innovative approaches to problem-

solving. This, together with the diverse application of tomography, was the biggest

motivation to start the research presented in this thesis.

The primary objective of here presented research is to address the challenge of

improving image reconstruction in discrete tomography using projections obtained

from a very limited number of angles. While there exist reconstruction methods

that produce relatively good smooth solutions, this thesis goes a step further by

concentrating on finding an optimal way to discretize these smooth solutions. By

achieving a more refined discretization, we aim to enhance the quality and accuracy

of the final image reconstruction.

Within this thesis, we introduce an innovative technique for obtaining image re-

constructions of grayscale images using a sparse set of projections. Our method

incorporates the Spectral Projection Gradient (SPG) algorithm, which aids in ob-

taining a smooth solution. Additionally, we employ a method based on graph cuts to

further refine the solution and achieve a discrete representation of the reconstructed

image.

In many discrete tomography applications, we possess prior knowledge about the

object within the image. Taking advantage of this valuable knowledge, we intro-

duce a regularization term into the algorithm, which acts as a constraint during the

reconstruction process. In particular, we incorporate information about the shape cir-

cularity and shape orientation into the regularization term. By doing so, we guide the

reconstruction algorithm to generate solutions that align with the known properties

of the object being imaged.

To evaluate the effectiveness of our proposed method, we conducted numerous ex-

periments and comparative analyses. The results conclusively demonstrate that our

approach, utilizing the SPG algorithm and graph cuts, outperforms existing methods

in terms of both reconstruction accuracy and computational efficiency. By leveraging

the available a priori information, we have successfully achieved substantial improve-

ments in image reconstruction from a sparse set of projections.

Overall, this research represents an advancement in the field of discrete tomog-
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raphy, as it tackles the challenge of limited projections by proposing an innovative

and effective reconstruction method. The incorporation of a priori knowledge fur-

ther enhances the reconstruction quality, making it well-suited for various real-world

applications where obtaining a sufficient number of projections is challenging or time-

consuming.

1.2 Thesis outline

This PhD thesis is divided into six chapters. In the introductory chapter, the research

problem and its significance are presented. The chapter provides an overview of the

entire thesis, outlining the key objectives and contributions. It also includes a list of

the original papers that constitute the core of the thesis. By the end of this chapter,

readers will have a clear understanding of the research scope and its relevance in the

field of digital image processing and tomography.

Chapter 2 provides a fundamental basis for future analyses and discussions. It

starts by introducing the basics of digital images, explaining how they are represented

and processed. Tomographic projective geometry is then explored, emphasizing its

role in capturing projections from different angles. The Radon Transform, a crucial

mathematical tool in tomography, is introduced, followed by an in-depth exploration

of its properties and applications. Next, the Fourier Transform is presented, high-

lighting its relevance in analyzing frequency content. The chapter concludes with an

explanation of the Fourier Slice Theorem and its application through the Filtered

Back Projection algorithm.

Chapter 3 shifts the focus to discrete tomography, a significant approach in recon-

structing images with discrete intensity levels. It begins by formulating the discrete

tomography problem and discussing the challenges associated with it. The binary

image representation and the 0-1 intensity assumption are introduced. The chapter

then delves into the reconstruction problem, exploring how to infer missing informa-

tion from the acquired projections. Concept of regularization terms, used to enforce

smoothness or constraints, is examined in detail. The Ryser algorithm, a popular
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method for discrete tomography, is presented, along with a comprehensive exploration

of algebraic reconstruction techniques such as Algebraic Reconstruction Technique

(ART), Simultaneous Iterative Reconstruction Technique (SIRT), Simultaneous Al-

gebraic Reconstruction Technique (SART), Discrete Algebraic Reconstruction Tech-

nique (DART), and the Simulated Annealing Algorithm. Additionally, gradient-based

reconstruction methods are discussed to provide a broader perspective on different

tomographic reconstruction approaches.

Chapter 4 focuses on Area Based Shape Descriptors, such as geometric moments

and moment invariants, shape orientation, and shape circularity. Each shape descrip-

tor is explained thoroughly, emphasizing its potential in image analysis and recon-

struction.

Chapter 5 showcases the original contributions of the thesis. The first major

contribution is the use of Graph Cut Optimization. The concept of graph cuts

is explained in detail, and its application to discrete tomography reconstruction is

elucidated. Experimental results for the Graph Cut-based method are presented,

demonstrating its effectiveness and performance compared to existing approaches.

The chapter then integrates shape circularity and orientation into Graph Cuts Re-

construction Methods, leading to the development of two novel approaches. Detailed

explanations of these methods, along with their experimental results and quality met-

rics, are provided to assess their performance and potential advantages.

In the concluding chapter 6, the main findings and contributions of the thesis are

summarized. The chapter reaffirms the significance of the research and its potential

impact on the field of discrete tomography and image reconstruction. Limitations

and potential challenges faced during the research are acknowledged, leading to fu-

ture research directions and possible improvements to the proposed methods. The

chapter concludes with a thought-provoking outlook on the potential applications and

extensions of the work presented in the thesis.

The thesis concludes with a comprehensive list of all the references cited through-

out the document. This section acknowledges the sources and prior research that

have influenced and supported the thesis.
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CHAPTER 2

Background

In this chapter, we give a short introduction to tomography and image reconstruction.

2.1 Digital image

A digital image can be mathematically described as a two-dimensional grid of discrete

values. Within this grid, each value corresponds to a specific attribute of the image,

such as its intensity, color, or texture. To be more formal, we can represent a digital

image as a function f(x, y), where x and y denote the spatial coordinates within the

image, and f(x, y) signifies the value associated with that particular position.

In mathematical notation, a digital image can be defined as:

f(x, y) =




I(x, y), if (x, y) ∈ D

0, otherwise.

I(x, y) is the intensity value at the location (x, y), D is the domain of the image,

and f(x, y) is the digital image.

The domain of the image D is typically defined as a rectangular region in the

Cartesian plane, where the pixel values are defined, and the pixels outside of this

region are considered to be zero. The intensity values I(x, y) are typically represented

by a set of discrete values, such as integers or binary values, depending on the image

format and the number of bits used to represent each pixel.

A digital image is often represented as a matrix, where each element of the matrix

corresponds to the intensity value of a pixel in the image. In this way, a digital

image’s values can be represented mathematically, and it is easy to process, analyze,
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and manipulate.

In mathematical considerations, it is often assumed that the function of an im-

age f(x, y) is continuous and sufficiently many times differentiable. This enables the

application of various methods of mathematical analysis, such as multiple integrals,

differential operators, and differential equations. In this way, the obtained results

(equations/operators) are then discretized and thus adapted for use in a digital envi-

ronment.

There are several important properties of digital images that are commonly used

to describe and analyze them:

Resolution: This property refers to the number of pixels in the image and is

typically measured in terms of the number of pixels per inch (ppi) or the number of

pixels per centimeter (ppc). The higher the resolution, the more detailed the image

will be.

Bit depth: This characteristic denotes the quantity of bits allocated to represent

each pixel within the image. Standard bit depths include 8-bit (256 levels of gray or

24-bit color), 16-bit (65536 levels of gray or 48-bit color), and 32-bit (4.3 billion levels

of gray or 96-bit color). The higher the bit depth, the more color or tonal variations

can be represented in the image.

Color space: This property refers to the color model used to represent the colors

in the image. Common color spaces include RGB (red, green, blue), CMYK (cyan,

magenta, yellow, black), and LAB (lightness, a, b). Each color space possesses its

unique merits and drawbacks, and the selection of a specific color space can impact

the ultimate visual presentation of the image.

Compression: This property refers to the method employed for diminishing the

size of an image file. Typical compression methods encompass lossless techniques like

PNG, which retain all the original information in the image, and lossy methods such

as JPEG, which sacrifice some information to achieve a smaller file size.

File format: This property refers to the file type used to save the image. Common

file formats include JPEG, PNG, GIF, and TIFF. Each file format has its advantages

and disadvantages, and the choice of file format can affect the image’s quality, size,
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and compatibility.

Geometry: This property refers to the shape of the image, including its size,

orientation, and distortion. The geometry of an image can be affected by factors such

as camera position, lens distortion, and image processing techniques.

Spectral content: This property refers to the distribution of colors or tones in

the image. The spectral content of an image can be affected by factors such as lighting

conditions, camera settings, and post-processing techniques.

Noise: This property refers to the random variations in the intensity values of

the image that are not part of the true signal. Noise can be caused by factors such

as camera sensor noise, electronic noise, insufficient light conditions, and image com-

pression.

Contrast: This property refers to the variation in brightness levels between the

brightest and darkest areas within the image. The image’s contrast can be influenced

by factors such as lighting circumstances, camera configurations, and post-processing

methods.

Sharpness: This property refers to the degree of detail and clarity in the image.

The sharpness of an image can be affected by factors such as lens quality, camera

settings, and post-processing techniques.

2.2 Tomographic projective geometry

The main problem posed in tomography is reconstructing the information about an

object based on the observed data. Observed data is obtained by measuring the

intensity of the waves penetrating the object from different angles. While a wave

from the source passes through the object, its power weakens, and the new value is

recorded on the detector. This value we call a projection.

Projective geometry deals with relationships between an object and its projections

to some other area. The primary categories of projections in tomography include

parallel-beam projections and fan-beam projections (Figure 2.2.4).

In the parallel beam projection, an object is penetrated by parallel rays that
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(a) Parallel-beam (b) Fan-beam

Fig. 2.2.4: The imaging geometries of parallel-beam and fan-beam imaging using flat
detector

go from a source (the source is moving in a parallel direction) to the detector. In

fan-beam projection, the source is fixed, rotates around the object, and sends radial

beams towards the detector. Two common types of detectors used in tomography

are flat detectors and curved detectors. Flat detectors are essentially planar arrays

of detectors arranged in a grid. Unlike flat detectors, curved detectors have a curved

shape, which can match the geometry of certain optical systems or imaging setups.

This thesis primarily focuses on two-dimensional (2 − D) projections. However,

it’s important to note that in three-dimensional (3−D) scenarios, there are additional

projection geometries. For instance, cone-beam geometry involves the X-ray source

emitting rays in a cone shape, covering a larger volume of the object with each

projection. Another example is helical or spiral geometry, where the X-ray source

and detector continuously rotate around the object, while the object is simultaneously

moved along the axis.

In this dissertation, the primary focus centers on parallel beam projections. It

is important to note that fan-beam geometry can be transformed into parallel beam

geometry [6]. Converting fan beam geometry to parallel beam geometry involves
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mathematical transformations to reinterpret acquired data. In fan beam imaging,

diverging rays are used, and projections are obtained along curved paths. The pro-

cess typically includes parameterizing the fan beam geometry and applying rebinning

techniques (such as Fourier rebinning [26]) to organize data into parallel beam-like

projections. Consequently, all the considerations presented in this chapter are equally

applicable to fan-beam projections as well.

2.3 Radon transform

When rays are sent from the source to the object, the energy of those waves that do

not hit the object stays the same, while the power of those rays that hit the object

gets attenuated since some part of it is absorbed by the object. We can think of this

process as taking the intensity of every pixel of the object image and adding them

up (integrating them) to get an image profile from a specific direction (Figure 2.3.5).

By changing the direction of the penetrating wave, we obtain new different profiles

of the same object (Figure 2.3.6).

Fig. 2.3.5: Geometric illustration of the Radon transform of a 2-D function

Let us now observe the projection of an image f(x, y) under an angle θ. For each

wave ai and fixed angle θ, there is precisely one intensity detected on the detector.
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(a) Original image (b) Sinogram
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Fig. 2.3.6: Original image, its sinogram and Radon transforms from different positions
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We can mark that value as p(ρ, θ). The value p(ρ, θ) is actually a line integral along

the ai line, after representing ai in parametric form:

ai : x cos θ + y sin θ = ρ .

For every ρ and θ we obtain the value p(ρ, θ) of the projection wave ρ through the

image f(x, y) under angle θ in the following way:

p(ρ, θ) = R(f(ρ, θ)) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)δ(x cos θ + y sin θ − ρ)dxdy, (2.1)

where δ is a Dirac δ function [28]. Transform (2.1) is named Radon transform

[76]. By visualizing the function R(f(ρ, θ)), we get a sinogram. The Radon transform

evaluates the integral of the function f(x, y) along the line defined by the angle θ and

the distance parameter ρ. Radon transform is the mathematical basis for connecting

spatial coordinates (x, y) and projection coordinates (ρ, θ).

We can obtain an image reconstruction if we take the projections from each angle

and inverse them (Figure 2.3.7).

The inverse Radon transform R−1[R(f(ρ, θ))] is defined as:

R−1[R(f(ρ, θ))] = f(x, y) =
1

2π

∫ π

0

∫ ∞

−∞
R(ρ, θ) · δ(x cos θ + y sin θ − ρ) dρ dθ. (2.2)

Within this equation, the integration is performed over the entire parameter space.

The fundamental objective of this integration process is to reconstruct the original

spatial distribution of the function f(x, y) in the plane. The process is essentially a

transition from the projection domain to the spatial domain. The projection data are

methodically merged and re-projected to reconstitute the original function’s spatial

properties, which were first recorded as line integrals of the function along various

angles and distances.
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(a) 9 directions (b) 90 directions

Fig. 2.3.7: Inverse Radon transform

Properties of Radon transform

Although the properties of the Radon transform presented here are applicable for

more dimensions, we limit ourselves to 2-D situations because it is the most relevant

for the application. Proofs of these properties [30] follow directly from the definition

of the Radon transform.

Let us denote with R(f(ρ, θ)) as Radon transform of a piecewise continuous func-

tion with bounded support f(x, y) on the line x cos θ + y sin θ = ρ. The following

properties are in place:

• Linearity:

R(α1f1(x, y) + α2f2(x, y)) = α1R(f1(ρ, θ)) + α2R(f2(ρ, θ)), α1, α2 ∈ R.

• Symmetry:

The parameter set of ρ ∈ [0,∞) and θ ∈ [0, π] denotes every element of Radon

transform, since R(f(ρ, θ)) = R(f(−ρ, θ ± π)).

• Periodicity:

R(f(ρ, θ)) = R(f(ρ, θ + 2kπ)), ∀ k ∈ Z.

• Scaling by factor α:

R(f(αx, αy)) = 1
|α|R(f(αρ, θ)), α ̸= 0.
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• Rotation by an angle θ0:

If we write function f(x, y) in polar coordinates f(r,Φ) and rotate it for an

angle θ0 we obtain following:

R(f(r,Φ + θ0)) = R(f(ρ, θ + θ0)).

• Shifting by a vector (x0, y0):

R(f(x− x0, y − y0)) = R(f(ρ− x0 cos θ − yo sin θ, θ)).

By utilizing Radon’s direct and inverse transforms, we can establish a mathemat-

ical link between the images and measurement data obtained from the detector. The

Radon transform captures this connection.

2.4 Fourier transform

The fundamental ideas behind the Fourier transform can be traced back to Joseph

Fourier (1768 - 1830), a French mathematician and physicist who introduced the

concept in the early 19th century. Fourier’s work was published in his book [33] in

1822, which is where most of his related work can be found.

The Fourier transform is a mathematical operation that converts a function of

space (or time) into a function of frequency. It decomposes a complex signal into its

constituent sine and cosine waves of various frequencies.

As we transition to the next chapter on the Fourier transform, it is noteworthy

to recognize the interplay between these transforms in imaging and signal processing.

After obtaining Radon projections, the Fourier transform can be applied to analyze

the frequency components inherent in these projections. This combined approach

enhances our ability to interpret and process the captured data, providing a compre-

hensive foundation for understanding and manipulating images in applications like

medical imaging and beyond.

The sinusoid function can be written as

f(x) = A sin (2πωx+ θ), (2.3)
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where A represents the amplitude, θ is the phase or the shift of the sinusoid. Sinusoid

function is a periodic function with a period T and frequency ω = 1
T
.

The L1(Rn) is the vector space of equivalence classes of integrable functions on

Rn, where a function f is equivalent to a function g if f = g almost everywhere. The

L1 norm of a function f is defined as ∥f∥L1 =
∫
|f |dx, where integral is a Lebesgue

integral. A function f is in the L1 space if this integral converges, meaning that the

function is absolutely integrable. This makes L1(Rn) into a normed vector space.

Definition 1 For f ∈ L1(R) the Fourier transform F [f(x)] = F (ω) and its inverse

Fourier transform F−1[F (ω)] = f(x) are defined by

F [f(x)] = F (ω) =

∫ ∞

−∞
f(x)e−i2πωxdx, (2.4)

F−1[F (ω)] = f(x) =

∫ ∞

−∞
F (ω)ei2πωxdω,

√
i = −1. (2.5)

Observing the equation (2.5), we conclude that the original function (signal) is a

sum of frequencies. F (ω) is complex and holds the amplitude and the phase of the

sinusoid of the frequency ω.

(a) Original image (b) Fourier transform

Fig. 2.4.8: Original image and its Fourier transform

Examining the image 2.4.8, one can discern several distinct characteristics in the
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(a) Rotated original (b) FT of the rotated original

(c) Linear combination of 2 images (d) FT Linear combination

(e) Scaled original (f) FT of scaled original

(g) Translated original (h) FT of translated original

Fig. 2.4.9: Properties Fourier transform
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resulting Fourier transform. The central portion of the Fourier transform image mir-

rors the presence of low-frequency elements within the original image, encompassing

its smooth and gradually changing areas. In contrast, the outer regions of the Fourier

transform image correspond to the higher-frequency components that capture the

finer details, such as edges and textures, present in the original image. When the

original image contains recurring patterns or lines, these patterns manifest as cor-

responding lines in the Fourier transform image, highlighting the presence of these

repetitions. Additionally, bright spots in the Fourier transform image indicate strong

frequency components in the corresponding positions of the original image, often indi-

cating significant features or objects. It is important to note that the image’s central

region specifically represents the zero-frequency component.

Fourier transform F [f ] = F (ω) of function f(x) holds following properties [70]

illustrated in Figure 2.4.9:

• Linearity:

F [α1f1(x) + α2f2(x)] = α1F [f1(x)] + α2F [f2(x)], α1, α2 ∈ R.

• Scaling:

F [f(αx)] = 1
|α|F (ω

α
) , α ̸= 0.

• Shifting:

F [f(x− α)] = e−i2ωαF (ω).

• Differentiation:

F [ dn

dxn (f(x))] = (i2πω)nF (ω).

2-D Fourier transform F [f(x, y)] = F (u, v) of the function f(x, y) we define as:

F [f(x, y)] = F (u, v) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−i2π(ux+vy)dxdy. (2.6)

The inverse Fourier transform is

F−1[F (u, v)] = f(x, y) =

∫ ∞

−∞

∫ ∞

−∞
F (u, v)ei2π(ux+vy)dudv, (2.7)
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where u and v are frequencies along x and y respectively.

Convolution theorem

Definition 2 For f, g ∈ L1(R) convolution of functions f and g is:

(f ∗ g)(x) =
∫ ∞

−∞
f(x− y)g(y)dy, x ∈ R.

Theorem 1 If f, g ∈ L1(R) are functions in spacial domain and F [f ] = F (ω) and

F [g] = G(ω) are Fourier transforms of functions f and g, then:

(f ∗ g)(x) = F−1(F (ω) ·G(ω)).

The convolution theorem, in other words, states that performing convolution in the

spatial domain is essentially the same as executing point-wise multiplication in the

frequency domain. This theorem also holds in 2-D.

The convolution theorem [33] holds significant importance as it enables complex

and costly linear filtering processes in the spatial domain to be replaced with straight-

forward and computationally efficient multiplications in the frequency domain.

Fourier slice theorem

The Fourier Slice Theorem [17] gives a connection between the Fourier transform of

each of the projections and the original image.

Theorem 2 Fourier Slice: The Fourier transform P (ω, θ) of a projection p(ρ, θ) of

an image I(x, y) satisfies:

P (ω, θ) = F (ω cos θ, ω sin θ), ∀θ ∈ [0, π), ∀ω ∈ R,

where F (ω cos θ, ω sin θ) represents the Fourier transform of the original image I(x, y)

along the line u = ω cos θ; v = ω sin θ in the frequency domain (u, v).
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The claim made here can be proved using well-known facts. The original image has

a 2-D Fourier transform, while each projection has a 1-D Fourier transform.

Let us consider a projection under fixed angle θk = θ and take a 1-D Fourier

transform of that projection with respect to ρ:

P (ω) =

∫ ∞

−∞
p(ρ, θ)e−i2πωρdρ. (2.8)

By including equation (2.1) in the previous equation, we get:

P (ω) =

∫ ∞

−∞

(∫ ∞

−∞

∫ ∞

−∞
I(x, y)δ(x cos θ + y sin θ − ρ)dxdy

)
e−i2πωρdρ

=

∫ ∞

−∞

∫ ∞

−∞
I(x, y)

(∫ ∞

−∞
δ(x cos θ + y sin θ − ρ)e−i2πωρdρ

)
dxdy

=

∫ ∞

−∞

∫ ∞

−∞
I(x, y)e−2πiω(x cos θ+y sin θ)dxdy.

If in the equation above we say that u = ω cos θ and v = ω sin θ we get:

P (ω) =

∫ ∞

−∞

∫ ∞

−∞
I(x, y)e−2πi(ux+vy)dxdy, ∀θ ∈ [0, π). (2.9)

On the right-hand side of the equation (2.9), it is depicted the 2-D Fourier trans-

form of the initial image I(x, y) along the trajectory defined by u = ω cos θ and

v = ω sin θ.

Equation (2.9) elucidates that the 1-D Fourier transform of an image projection

at an angle θ is equivalent to a cross-section taken through the 2-D Fourier transform

of the original image at the same angle, as visually represented in Figure 2.4.10.

2.5 Filtered back projection

To reconstruct an image, we need to get the sum of Fourier transforms of the image

from as many as possible projections and then apply the inverse Fourier transform.
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Fig. 2.4.10: Illustration of Fourier slice theorem (image is taken from [72])

While summing up the Fourier transforms, the middle part of the object is overly

representative, which causes a blurry image (as shown on Figure 2.5.11). To avoid

this, we can use a filtered back projection.

Frequency domain filters are tools used to refine images by manipulating their

high- and low-frequency components, leading to effects like smoothing and sharpen-

ing. They differ from spatial domain filters because they primarily deal with the

frequency characteristics of images. Essentially, these filters focus on modifying the

frequency content to achieve two primary outcomes: smoothing and sharpening.

The original image can be represented using an inverse Fourier transform.

I(x, y) = F−1[F (u, v)] =

∫ ∞

−∞

∫ ∞

−∞
F (u, v)ei2π(ux+vy)dudv. (2.10)

If we use the polar coordinates in equation (2.10) u = ω cos θ and v = ω sin θ, dudv =

ωdωdθ, we get:

I(x, y) =

∫ 2π

0

∫ ∞

−∞
F (ω cos θ, ω sin θ)ei2π((ω cos θ)x+(ω sin θ)y)ωdωdθ. (2.11)
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Original image Non-Filtered back projection Filtered back projection

Fig. 2.5.11: Comparison of simple and filtered back projection image reconstruction

By the Fourier slice theorem we have P (ω, θ) = F (ω cos θ, ω sin θ), this yields:

I(x, y) =

∫ 2π

0

∫ ∞

−∞
P (ω, θ)ei2π(x cos θ+y sin θy)ωωdωdθ.

If we apply shifting property that P (ω, θ + π) = P (−ω, θ), we get following:

I(x, y) =

∫ π

0

∫ ∞

−∞
|ω|P (ω, θ)ei2π(x cos θ+y sin θy)ωdωdθ

=

∫ π

0

[ ∫ ∞

−∞
|ω|P (ω, θ)ei2πωρdω

∣∣∣∣∣
ρ=x cos θ+y sin θ

]
dθ. (2.12)

Within the given equation (2.12) the inner part represents the inverse Fourier trans-

form of the projection, which is then multiplied by a filter function denoted as |ω|.
In this way, we obtain filtered back projections [77].

The application of filters in the Fourier domain generally involves these steps:

• Compute the Fourier transform of the input image, converting it into the fre-

quency domain.

• Multiply the transformed image by the frequency response of the chosen filter.

• Perform an inverse Fourier transform to convert the modified frequency-domain

image back into the spatial domain.
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Filtered back projection reconstruction

Filtered back projection (FBP) is a widely used reconstruction algorithm in computed

tomography (CT) imaging, converting raw projection data into a 2-D or 3-D image.

The choice of filter in FBP is crucial, influencing the quality and characteristics of

the reconstructed image.

Common filters in FBP

1. Ram-Lak (Ramp) Filter [97]:

• Frequency Response: Constant amplitude and linearly increasing fre-

quency.

• Characteristics: Simple and commonly used. Emphasizes high frequen-

cies, contributing to good spatial resolution but may introduce more noise.

2. Shepp-Logan Filter [87]:

• Frequency Response: Similar to Ram-Lak but with a more complex

shape.

• Characteristics: Designed to reduce artifacts and noise, providing im-

proved image quality compared to Ram-Lak.

3. Butterworth Filter [19]:

• Frequency Response: Adjustable based on filter order and cutoff fre-

quency.

• Characteristics: Offers flexibility; lower orders provide smoother images,

while higher orders can enhance edges but may amplify noise.

4. Hann (Hanning) Filter [65]:

• Frequency Response: Bell-shaped curve with smoother roll-off.

• Characteristics: Provides smoother images by suppressing higher fre-

quencies, balancing noise reduction with spatial resolution.
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5. Hamming Filter [40]:

• Frequency Response: Similar to Hann but with a wider main lobe.

• Characteristics: Offers smoother images, reducing high-frequency noise

at the expense of some spatial resolution.

Considerations in filter selection

• Spatial Resolution vs. Noise Trade-off: Filters like Ram-Lak emphasize

spatial resolution but may introduce more noise. Filters like Hanning and Ham-

ming prioritize noise reduction but may sacrifice spatial resolution.

• Clinical Application: Filters may be chosen based on specific clinical needs,

such as emphasizing fine structures in vascular imaging.

• Artifact Reduction: Filters like Shepp-Logan and Butterworth are designed

to reduce artifacts, contributing to overall image quality.

• User Preferences: The choice of filter may be influenced by user preferences

and institutional protocols.

High pass filter

High-pass filters in the Fourier domain enhance high-frequency components, empha-

sizing edges and fine details. Types include:

• Ideal High-Pass Filter: Abrupt cutoff, introducing spatial artifacts.

• Butterworth High-Pass Filter: Smoother transition controlled by order,

mitigating artifacts.

• Gaussian High-Pass Filter: Uses Gaussian function, with standard deviation

controlling the transition smoothness.
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Low pass filter

Low-pass filters in the Fourier domain emphasize low-frequency components, leading

to smoother variations in color and intensity. Types include:

• Ideal Low-Pass Filter: Abrupt cutoff with potential ringing artifacts.

• Butterworth Low-Pass Filter: Gradual transition controlled by order, re-

ducing ringing artifacts.

• Gaussian Low-Pass Filter: Uses Gaussian function, with standard deviation

controlling the transition sharpness.

While high-pass and low-pass filters (Figure 2.5.12) excel in enhancing specific

image features, their application requires careful consideration of potential noise am-

plification and artifacts. Additionally, these filters can be used in conjunction with

FBP to optimize the trade-off between spatial resolution and noise suppression based

on the imaging requirements.

Original image High-pass filter Low-pass filter

Fig. 2.5.12: Comparison of high and low pass filters
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CHAPTER 3

Discrete Tomography

This chapter delves into discrete tomography (DT) [41, 42], a specialized field dedi-

cated to reconstructing discrete objects from a limited set of projections. In contrast

to continuous tomography, which deals with images of continuous intensity values, dis-

crete tomography focuses specifically on binary or discrete values, introducing unique

challenges in terms of reconstruction algorithms, model formulations, and solution

uniqueness. Coined by Larry Shepp in 1994, discrete tomography has garnered at-

tention for its diverse applications, ranging from medical imaging to material science

and security.

DT is positioned as a specialized form of CT, given that discrete functions can

be considered a subset of general functions. While it logically extends findings from

CT to discrete functions, DT requires its own set of principles to address inquiries

about coherence, existence, and uniqueness. An additional incentive to explore dedi-

cated discrete reconstruction methods is the hope that, due to the discrete nature of

the unknown image, determining it might require less data compared to the require-

ments for general functions. As a result, DT commonly employs a modest number of

projections.

Discrete tomography finds applications in various fields due to its ability to re-

construct objects or images with limited information.

In the field of medical imaging, discrete tomography can be utilized to reconstruct

images of various body structures, including bones, teeth, and other organs and tis-

sues. For instance, in dental computed tomography (CT), discrete tomography is

used to reconstruct images of teeth and jaw bones. This can help in the diagnosis
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and treatment planning of disorders that are related to the teeth and jaws. Discrete

tomography can also be used to reconstruct images of the inner ear, which is helpful

in the diagnosis and treatment of hearing impairments.

In materials science, discrete tomography can be used to reconstruct images of

materials at the micro and nanoscale. For example, in electron tomography, discrete

tomography is used to reconstruct images of materials at the nanoscale, which can

aid in understanding their mechanical, electrical, and optical properties.

Pipes, metal castings, and printed circuit boards are just some of the industrial

structures that might benefit from discrete tomography examination. For instance,

discrete tomography can be used in non-destructive testing to reconstruct images of

the interior structure of pipes and metal castings, which can then be used to help

spot flaws like fractures and voids.

Discrete tomography is also used in a wide range of other fields, such as archae-

ology, computer vision, and cryptography.

The significance of DT lies in bridging the gap between continuous tomography

and the discrete world, allowing for the reconstruction of objects with discrete inten-

sity values prevalent in real-world applications. By tailoring algorithms and models

for discrete tomography, unique challenges associated with discrete objects or im-

ages can be addressed, leading to improved reconstruction accuracy, computational

efficiency, and a more profound understanding of discrete structures.

In the subsequent sections of this chapter, we will explore the formulation of

discrete tomography models, including binary tomography models, grayscale tomog-

raphy models, hybrid models, and various reconstruction algorithms employed in

discrete tomography.

3.1 Discrete tomography formulation

In discrete tomography, a reconstruction problem involves the challenge of recreating

the inner structure of an object based on a collection of projection data. Typically,

this projection data is acquired by illuminating the object with X-rays, electrons,
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or other forms of radiation through the object and measuring the intensity of the

radiation that emerges on the other side. The goal of the reconstruction problem

is to use this projection data to construct an image of the internal structure of the

object.

In discrete tomography, the object being imaged can only take on a discrete set of

values, such as black and white or multiple grayscale levels. Therefore, the reconstruc-

tion problem is finding the object’s specific discrete values that are most consistent

with the projection data.

Discrete tomography requires a suitable representation of objects or images in the

discrete domain. Depending on the application and desired level of detail, different

types of discrete representations can be employed, such as pixel-based representations

or higher-level discrete structures.

Pixel-based Representations: Pixel-based representations are commonly used in

discrete tomography, where the objects or images are discretized into a grid of pixels.

Each pixel can have a binary value (0 or 1) or represent different intensity levels in

grayscale tomography. The arrangement and relationships between the pixels play a

crucial role in the reconstruction process.

Higher-Level Discrete Structures: In certain cases, the discrete representation may

involve higher-level structures beyond individual pixels. For example, the objects or

images may be represented using line segments, rectangles, squares, or other combina-

torial structures, which in this context are seen as arrangements of discrete elements

that follow certain rules or constraints. These higher-level structures introduce addi-

tional constraints and considerations in the reconstruction models.

Discretization of the Tomographic Projection Process: The tomographic projec-

tion process, which captures the interactions between the objects or images and the

projection angles, also needs to be discretized to fit the discrete tomography frame-

work. This involves defining discrete projection angles and discretizing the measure-

ment process.

Discrete Projection Angles: In discrete tomography, projection angles are dis-

cretized to a finite set of discrete values. The choice of discrete projection angles
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depends on factors such as the desired resolution, the number of projections avail-

able, and the specific reconstruction algorithm employed. Common discretization

schemes include equidistant angles, evenly spaced angles, or predefined sets of angles

based on specific requirements.

Discretization of Measurement Process: The measurement process in tomography

involves computing the projection values or measurements by quantifying the interac-

tions between the objects or images and the projection angles. In discrete tomography,

this measurement process must be adapted to the discrete nature of the objects or

images. It may involve quantizing the continuous measurements or applying specific

discretization techniques tailored to the discrete representation used.

By properly formulating the discrete representation of objects/images and dis-

cretizing the tomographic projection process, discrete tomography models can capture

the essential characteristics and constraints needed for accurate reconstruction.

3.2 Reconstruction problem

Reconstruction problems in discrete tomography are typically formulated as optimiza-

tion problems, in which an objective function is defined to measure the consistency

between the object and the projection data. The objective function is then mini-

mized with respect to the object using methods such as gradient descent or linear

programming.

The standard method to explain the process of projection data collection in dis-

crete tomography is by using the concept of line projections. To illustrate, consider

a 2-D grid or lattice that represents the object to be reconstructed. Each cell in this

grid can have a value from some discrete set. The process of collecting projection

data simulates what would happen if lines were projected through the object from

different angles and where these lines intersect with the object.

The object’s representation is established using a 2-D grid, where each cell’s status

(empty or filled) captures the discrete nature of the object. For each projection angle,

a projection line is conceptualized through the grid. These lines can be described
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Fig. 3.2.13: Example of a projection value calculation on an image

parametrically, using equations like the slope-intercept form or by specifying an angle

and distance from a reference point. As projection data is collected, information

about the intersections between projection lines and cells is gathered. The collected

projection data from different angles can be organized into a matrix. Each row in the

matrix corresponds to a projection angle, and each column corresponds to a particular

count of intersected filled cells. The primary objective of discrete tomography is to

reconstruct the original object grid by utilizing the projection data matrix gathered

earlier. This process involves solving an inverse problem: finding a configuration of

the grid that would lead to the observed projection data.

Figure 3.2.13 shows an example of a projection value calculation on an image u∗

of size N = 4 × 4 = 16. A projection ray penetrates through the image pixels. The

projection value bi is calculated by bi = ai,4u
∗
4+ai,6u

∗
6+ai,7u

∗
7+ai,8u

∗
8+ai,9u

∗
9+ai,10u

∗
10.

The data collected in continuous tomography is typically in the form of continuous

projections, which represent the integral of the object’s properties along the path of

the imaging beam. Data collected in discrete tomography consists of projections that

involve counting the number of discrete elements (e.g., pixels) along certain directions.

Discrete tomography addresses the challenges associated with the discrete nature

of object representation, resulting in specialized computational methods designed

specifically for reconstructions involving discrete or binary grids. One of the challenges

in reconstruction problems in tomography is dealing with noise and uncertainty in

the projection data. The projection data may be affected by noise, such as electronic
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noise or scatter, which can make it difficult to reconstruct the object accurately.

Additionally, the projection data may be uncertain, meaning that the measurements

are not known exactly. Therefore, reconstruction methods often include regularization

terms that help to stabilize the solution and reduce the effects of noise and uncertainty.

Another challenge in discrete tomography is the combinatorial nature of the prob-

lem. The set of possible solutions is combinatorially large, meaning that there are a

very large number of possible objects that could have produced a given set of measure-

ments. Therefore, reconstruction methods often rely on some form of prior knowledge

about the object, such as smoothness [44], sparsity [83] or non-negativity constraints

[22] to make the problem more tractable.

The problem of DT reconstruction can be explained through the linear set of

equations provided below.

a11u1 + a12u2 + a13u3 + . . .+ a1NuN = b1

a21u1 + a22u2 + a23u3 + . . .+ a2NuN = b2

a31u1 + a32u2 + a33u3 + . . .+ a3NuN = b3

. . . . . . . . . . . . . . . . . . . . . . . .

aM1u1 + aM2u2 + aM3u3 + . . .+ aMNuN = bM ,

which we examine in its matrix form:

Au = b, (3.1)

where A ∈ RM×N , u ∈ ΛN , b ∈ RM and Λ = {λ1, λ2, ..., λk} for k ≥ 2.

The task is reconstructing an image represented by the unknown column vector

u. The range of possible values for the image, represented by set Λ, is defined by

the user and can be binary or multi-colored. The projection data is captured in the

projection matrix A, where each row corresponds to the intersection length between
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pixels and the projection rays traversing them. These matrix elements are determined

based on the extent of these intersections. The projection vector b is computed as

the summation of the products of pixel intensities and the lengths of the projection

rays passing through them.

In the process of projection, various directions are employed, using a parallel beam

projection method where multiple parallel projection rays are taken for each direction.

The angle α plays a key role in determining the direction of the projection. To ensure

that the entire image grid is covered, the spacing between adjacent parallel projection

beams is set equal to the size of a pixel, with even distribution. The number of parallel

projection rays is carefully chosen to guarantee comprehensive coverage of the entire

image grid.

Now, the reconstruction task at hand involves finding the image solution, denoted

as u, which is represented by a linear system of equations (3.1). This system is

often underdetermined, meaning there are more unknowns (N) than equations (M).

The objective goes beyond merely finding a solution that aligns with the provided

projections; it also aims to create an image that closely resembles the original one. To

achieve a high-quality and satisfactory solution, it is crucial to make use of all available

knowledge, including any prior information, about the object being reconstructed.

3.3 Binary image representation and the 0-1 in-

tensity assumption

Binary tomography involves the reconstruction of binary images, where each pixel or

element in the image is represented by a binary value, typically 0 or 1. This binary

representation simplifies the reconstruction problem by reducing the complexity of

intensity values. The 0-1 intensity assumption assumes that the objects of interest

are perfectly opaque (1) or completely transparent (0), allowing for a straightforward

binary representation.

The binary image is represented as a matrix, where each entry corresponds to a

35



3. DISCRETE TOMOGRAPHY

pixel in the image. A value of 1 indicates that the pixel belongs to the object or

region of interest, while a value of 0 indicates that the pixel is part of the background

or is transparent. The matrix can be denoted as M , where Mi,j represents the value

of the pixel at row i and column j.

The binary representation simplifies the reconstruction problem by reducing the

number of possible intensity values, making it more amenable to discrete tomography

techniques. Additionally, the binary nature of the representation allows for the uti-

lization of various combinatorial structures and algorithms tailored to binary objects.

By assuming the 0-1 intensity values, binary tomography focuses on the presence

or absence of objects rather than their varying intensity levels. This simplification

is particularly suitable for scenarios where the primary interest lies in detecting the

presence or absence of specific objects or features.

A potential use of the 0-1 intensity assumption can be found in human X-ray an-

giography. This involves creating images of blood vessels and heart chambers using

X-ray tomography. By introducing a high-contrast agent into the body area of inter-

est, the problem can be addressed through BT. This entails detecting the contrast

agent’s presence in specific positions [21, 74].

The main challenges in binary tomography arise from the fact that the recon-

structed image is binary, which introduces non-linearity and combinatorial complex-

ity into the reconstruction problem. The goal is to find the binary image that best

matches the given projections, subject to certain constraints and regularization tech-

niques.

Binary tomography reconstruction methods can be classified into four main classes:

algebraic methods, stochastic sampling methods, heuristic combinatorial, and relax-

ation methods approaches. Each of these methods has its own strengths and weak-

nesses in solving the binary tomography problem [47].

Algebraic Methods: Algebraic approaches leverage the inherent algebraic proper-

ties of binary tomography problems to offer valuable insights into solution uniqueness

and the necessary number of projections. These methods often rely on mathematical

equations and principles to reconstruct binary images from limited projection data.
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Although these approaches are theoretically elegant, they can encounter difficulties

when extended to more practical projection models and when confronted with noisy

data. They are commonly used for theoretical analysis and small-scale problems

where the algebraic structure can be adequately captured.

Heuristic Combinatorial Approaches: Heuristic combinatorial approaches combine

ideas from combinatorial optimization and iterative methods. These methods offer

practical efficiency and are known to perform well in practice. They often rely on

heuristics, which are rules of thumb or approximations, to guide the reconstruction

process. Some of the heuristic approaches are simulated annealing [1], tabu search

[35], and evolutionary algorithms [73]. While these algorithms demonstrate effective-

ness in handling diverse binary tomography scenarios, it is essential to recognize that

they do not guarantee optimal solutions. The quality of the reconstruction heav-

ily relies on the specific heuristics employed, necessitating careful consideration and

tuning of hyperparameters. Achieving optimal performance often involves balancing

trade-offs, and the effectiveness of these approaches is closely tied to the selection and

fine-tuning of heuristic parameters.

Stochastic Sampling Methods: Stochastic sampling methods take a probabilistic

approach to binary tomography reconstruction. They construct probability density

functions on the space of discrete images, enabling the sampling of potential solutions.

Markov Chain Monte Carlo (MCMC) techniques are often employed to explore the

solution space and find suitable reconstructions [69, 34, 7, 71, 29]. These methods

offer a high degree of flexibility, making them well-suited for addressing intricate

reconstruction scenarios. However, it’s worth noting that the computational cost

can be significant, especially for large-scale datasets. Like heuristic combinatorial

approaches, the successful implementation of stochastic sampling methods demands

careful consideration and tuning of model internal parameters to strike a balance

between computational efficiency and reconstruction accuracy. The effectiveness of

stochastic sampling methods lies in their ability to provide probabilistic reconstruc-

tions, accommodating uncertainty in the reconstruction process. Despite their com-

putational demands, stochastic sampling methods remain a valuable tool in binary
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tomography reconstruction, offering a probabilistic framework to capture the inherent

uncertainty in the imaging process.

Relaxation Methods: Relaxation methods involve relaxing the constraints of the

binary tomography problem to enable a more tractable solution. These methods

often use convex or non-convex relaxation techniques, leading to natural extensions of

variational formulations and iterative algorithms. They are known for their efficiency

in solving large-scale binary tomography problems. However, ensuring convergence

to the correct binary solution can be challenging, and some relaxation methods may

not perform well when the data is noisy or when dealing with complex structures.

Linear-programming based methods, a variant of relaxation techniques, can work well

on small-scale images and noise-free data [94].

In the field of binary tomography, researchers continuously explore and develop

new algorithms and variants that suit different problem settings.

3.4 Ryser algorithm

In this subsection, we present a brief summary of Ryser’s [54, 82] theoretical solutions

that answer the existence question in the binary tomography problem.

The reconstruction of a binary matrix from its row and column sum vectors is

studied in circumstances when some elements of the matrix may be specified and

the matrix can be identified from these values. This allows for the reconstruction of

binary pictures using just two projection angles.

Let us consider two non negative vectorsR = (r1, r2, ..., rm) and S = (s1, s2, ..., sm).

The tomographic equivalent class of all binary matrices A = (aij) ∈ {0, 1}m×n for

which stands:

ri =
n∑

j=1

ai,j, sj =
m∑

i=1

ai,j (3.2)

is denoted by U(R, S).

Ryser has demonstrated the condition for the existence of such matrices, that is,
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whether U(R, S) is empty or not.

Consider the matrix C, where the i − th row is composed of ri ones followed by

n − ri zeros. Such a matrix is referred to as maximal. It is clear that row sums

determine a uniquely maximal matrix. Let vector S̄ denote the column sum of C.

Theorem 3 (Ryser, 1957) Let S and R be a pair of two non negative vectors. The

class U(R, S) is nonempty if and only if

n∑

j=l

s′j ≥
n∑

j=l

s̄j, 2 ≤ l ≤ n, (3.3)

where s̄j ∈ S̄, s′j ∈ S ′, and vector S ′ is the non increasing permutation of the elements

of vector S.

A pair (R, S) is considered compatible if it is feasible to create a binary matrix

that adheres to the given row sums R and column sums S.

Assume that the set U(R, S) contains a binary matrix A. Consequently, the

class U(R, S ′) accommodates a binary matrix A′, derived from A through a suitable

permutation of its columns. If there exists any disparity between Ā and A′, the

former can be derived from the latter by left-shifting the 1’s in the rows of A′. This

process aligns with the relationship described in equation 3.3. Assuming equation 3.3

holds for vectors R and S, our goal is to generate a binary matrix A using the Ryser

algorithm described in Algorithm 3.4.1. The proof that Algorithm 3.4.1 produces a

matrix A with a row sum vector R and a column sum vector S can be found in [54].

Ryser demonstrated that if two matrices consisting of 0’s and 1’s have identical

sums for both their rows and columns, then it is possible to transform the first matrix

into the second using a series of simple operations. Each operation involves changing

1’s to 0’s and 0’s to 1’s, while keeping the sum of each row and column the same.

This finding is akin to a principle in binary tomography, where matrices composed

of 0’s and 1’s can be seen as binary images. When two matrices with matching row

and column sums are considered, they correspond to two binary images that share

the same horizontal and vertical projections. Such images are referred to as being
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Algorithm 3.4.1 Ryser Algorithm

input : A compatible pair of vectors (R, S) satisfying 3.3;
output: A binary matrix A;
begin

Step 1. Construct S ′ from S by permutation π;
Step 2. Let B = Ā and k = n;
Step 3.
while k > 1 do

while s′k >
∑m

i=1 bik do

let j0 =
m

max
i=1

j < k|bij = 1, bi,j+1 = · · · = bik = 0;

let row i0 be where such a j0 was found;
set bi0j0 = 0 and bi0k = 0 (i.e., shift the 1 to the right);

reduce k by 1;

Step 4. Construct the matrix A from B by permutation π−1 of the columns;
return Matrix A

”tomographically equivalent.”

To illustrate the Ryser algorithm, let us consider a simple example of a 5 × 6

binary image that should be reconstructed from its projections. This binary image

can be represented as a matrix A = (ai,j)5×6, ai,j ∈ {0, 1}, where 0 represents an

empty pixel, and 1 represents an object pixel.

Let us assume we have two projection directions of an unknown image, represented

by matrix A, one horizontal and one vertical. Horizontal projection: R = [2, 4, 3, 4, 1]

(sum of the pixels in each row), vertical projection: S = [3, 4, 3, 2, 1, 1] (sum of

the pixels in each column). In order to generate matrix A, we firstly construct a

maximal matrix based on the row sums and we calculate column sums of that ma-

trix, S̄ = [5,4,3,2,0,0], then we construct a non-increasing permutation of vector S,

S ′=[4,3,3,2,1,1], vectors S̄ and S ′ satisfy (3) which means that there is a class of

binary matrices whose row sum is vector R and column sum is vector S. Thus, it is

possible to reconstruct a binary image from these projection data. In the following

lines, we describe finding one solution for this problem using the Ryser algorithm.

1. Step 1: Arrange the column sums S in a non-increasing order to create a new

sequence, denoted as S ′.
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2. Step 2: Create a maximum matrix Ā defined by vector R.

Ā =




1 1 0 0 0 0

1 1 1 1 0 0

1 1 1 0 0 0

1 1 1 1 0 0

1 0 0 0 0 0




3. Step 3: Move elements from the rightmost columns of Ā to the columns where

the sum of elements in the corresponding column is smaller than the value in

S ′. This step adjusts the matrix while maintaining the specified column sums.

⇒




1 1 0 0 0 0

1 1 1 0 0 1

1 1 1 0 0 0

1 1 1 0 1 0

1 0 0 0 0 0




⇒




1 1 0 0 0 0

1 1 1 0 0 1

1 1 1 0 0 0

1 1 1 0 1 0

1 0 0 0 0 0




⇒




1 1 0 0 0 0

1 1 0 1 0 1

1 1 0 1 0 0

1 1 1 0 1 0

1 0 0 0 0 0
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⇒




1 0 1 0 0 0

1 0 1 1 0 1

1 1 0 1 0 0

1 1 1 0 1 0

1 0 0 0 0 0




⇒




0 1 1 0 0 0

1 0 1 1 0 1

1 1 0 1 0 0

1 1 1 0 1 0

1 0 0 0 0 0




4. Step 4: Reverse the permutation used in step 1. This step ensures that the

resulting matrix matches the original order of the column sums and generates

the following matrix as one solution to the given problem:

A =




1 0 1 0 0 0

0 1 1 1 0 1

1 1 0 1 0 0

1 1 1 0 1 0

0 1 0 0 0 0




.

The Ryser Algorithm provides a method to reconstruct the binary matrix A based

on the given row sums R and column sums S and its time complexity is O(n(m +

log n)).

3.5 Discrete algebraic reconstruction technique

The Discrete Algebraic Reconstruction Technique (DART) is one of the widely used

iterative reconstruction algorithms in discrete tomography. It is based on Algebraic

Reconstruction Methods (ARM) and was introduced by Batenburg and Sijbers in [5].
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Algebraic Reconstruction Methods (ARM) are iterative algorithms used in com-

puted tomography for image reconstruction from angular projections. Unlike analyti-

cal methods such as filtered back-projection, ARM approaches the problem iteratively.

It updates the image iteratively to converge to the best approximation of the true im-

age. ARM aims to minimize differences between measured and estimated projections

by solving a system of linear equations. Each equation corresponds to projection

data and its corresponding ray path through the image. ARM gradually improves

image reconstruction through iterative solving. However, ARM faces challenges like

computational complexity and sensitivity to noise, as mentioned in [5].

3.5.1 Algebraic Reconstruction Technique (ART)

The Algebraic Reconstruction Technique (ART) models the reconstruction problem

as a system of linear equations solved iteratively. Pixels’ values are variables in vector

u, and the imaging process is described by matrix A. The angular projections are

in vector b. For a matrix A of dimensions m × n and vector b, ART iteratively

approximates the solution as follows:

uk+1 = uk + λk
bi − ⟨ai, xk⟩

∥ai∥2
ai, (3.4)

where i = k mod m+ 1, ai is the i-th row of matrix A, bi is the i-th component

of vector b, and λk is a relaxation parameter. ART handles unconventional scanning

geometry (non-uniform angular sampling and limited-angle tomography) but requires

more computational resources.

3.5.2 Simultaneous Iterative Reconstruction Technique (SIRT)

The Simultaneous Iterative Reconstruction Technique (SIRT) is a variant of ART

that provides slightly improved images at a slower pace [3]. In SIRT, matrix A

represents the scanner’s action, and matrix AT back-projects the projection images

onto the reconstruction region. SIRT alternates forward and back projections using

the update equation:
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uk+1 = uk + CATR(b− Auk), (3.5)

where C and R are diagonal matrices containing inverses of column and row sums

of the system matrix, respectively. These matrices adjust for ray-pixel interactions.

The Simultaneous Algebraic Reconstruction Technique (SART) [2] combines ART

and SIRT. It updates uk per projection angle, striking a balance between ART and

SIRT. SART computes updates for all rays per projection angle in blocks, making it

a block iterative method.

3.5.3 DART algorithm

The Discrete Algebraic Reconstruction Technique (DART) algorithm starts by gen-

erating a continuous reconstruction through a fixed number of SIRT iterations. This

initial reconstruction serves as a starting point for the DART process. The recon-

structed image is then subjected to a segmentation step, which aims to obtain an

image containing only permissible grey values. This segmentation is achieved by

rounding the pixel values to the nearest admissible grey values, thereby simplifying

the representation of the image.

Subsequently, the segmented image is partitioned into two distinct groups of pixels:

free pixels and fixed pixels. Free pixels are those that are adjacent to at least one

pixel with a different grey value, effectively delineating the edges of the object within

the image.

The core of the DART algorithm involves performing a predetermined number of

SIRT iterations specifically on the free pixels, while keeping the fixed pixels at their

respective grey values. By maintaining certain pixels at fixed values, the problem

is simplified, resulting in a system with fewer variables but the same number of

equations. However, the presence of noise in the data, combined with the fixed pixel

values, can lead to fluctuations in the values of the free pixels after each round of

SIRT iterations.

To mitigate the influence of noise and stabilize the reconstruction, a smoothing
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operation is applied to the free pixels. This operation involves using a Gaussian

smoothing filter with a radius of 1. The filter works to even out the values of neigh-

boring pixels and reduce the impact of noise, contributing to a smoother and more

accurate reconstruction.

The DART algorithm can be terminated based on specific criteria. It may halt

when the total projection error falls below a predefined threshold or after a certain

fixed number of iterations have been executed. Once the algorithm concludes, the

final reconstruction is obtained by performing segmentation on the resulting image.

This final reconstruction contains only pixels with permissible grey values, providing

an accurate representation of the object under study.

DART is particularly well-suited for scenarios where objects consist of distinct

compositions, each corresponding to a constant grey value in the reconstructed image.

It employs a fixed threshold function for discretization without regularization, which

can sometimes result in more radical solutions, especially when dealing with limited

projection data. Despite this, DART finds extensive use across various applications

[57, 59, 93].

3.6 Energy minimization in image reconstruction

Energy-minimization methods are powerful techniques used in image processing to

solve various problems, such as image denoising, image segmentation, image inpaint-

ing, and image restoration. These methods aim to find the optimal configuration of

an energy function, which represents the cost or discrepancy between the processed

image and the desired result.

The fundamental concept involves formulating the task as a minimization model,

wherein the objective is to find the value of a function u that minimizes the functional

E(u). Typically, u represents an image in this context. The term ”energy” is drawn

from a physical analogy, where a stable system is characterized by having minimal

total energy.

In any energy-minimization approach, two crucial criteria must be satisfied. Firstly,

45



3. DISCRETE TOMOGRAPHY

the design of the energy function, or model, must closely mimic the real problem being

addressed, and its minimum point, preferably global, should represent the optimal

solution to the problem. Secondly, the optimization algorithm used for energy min-

imization should be both fast and accurate, allowing for a good approximation of

the minimum value while making efficient use of available computational resources.

Failure to meet either of these criteria could significantly reduce the method’s effec-

tiveness or render it entirely unsuitable for practical applications.

In image processing, an energy function (also known as an objective function or

cost function) quantifies the quality or appropriateness of a given image. The energy

function typically consists of two main components: the data fidelity term and the

regularization term.

When applying energy minimization in image reconstruction, in its most generic

context, one attempts to recover a reconstructed form of the observed image u by

minimizing the following energy function:

E(u) = F (Lu, b) + λR(u). (3.6)

An argument ur that minimizes this energy function,

ur = argmin
u

E(u) (3.7)

is regarded as an estimate of the original image.

The function F measures how dissimilar the reconstructed image u is from the

original data b after applying the operator L (where L typically represents a linear

transformation or measurement operator). It is generally referred to as the ”data

fidelity term,” and it essentially assesses how well the processed image matches the

observed data. In the context of image denoising, the data term penalizes differences

between the noisy and denoised images.

On the other hand, the ”regularization term,” denoted as R, introduces prior

knowledge or expectations about the solution u. Essentially, it is a tool to encourage

smoother and more desirable characteristics in the processed image while discourag-
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ing undesired features. Lower values of the regularization term, R, are expected to

contribute to the removal of unwanted details. Additionally, regularization plays a

crucial role in enhancing the numerical stability of the image reconstruction process.

The regularization parameter, λ, acts as a control knob that dictates the trade-off

between the degree of smoothing applied to the image and the accuracy of recov-

ering fine image details. The regularization term encourages certain properties or

characteristics in the processed image. It serves as a smoothness constraint and dis-

courages overly complex or noisy solutions. Regularization helps prevent overfitting

and produces more visually appealing results.

Finding an analytical solution for the problem (3.6) is generally not feasible due to

its large-scale nature. Consequently, an appropriate optimization approach is required

for solving it.

The data fitting term in E can be formed as a convex quadratic function in the

form of a sum of the squares of the errors, making its numerical treatment relatively

straightforward. The conjugate gradient method proves to be one of the most effi-

cient approaches for minimizing this term, providing a solution in at most N (size

of u) iteration steps. While the data fitting term in the energy function E is often

represented as a convex quadratic function, it’s important to recognize that it can

deviate from this form. Non-quadratic data fitting terms arise in complex systems

or models, introducing challenges for numerical treatment. In such cases, traditional

optimization methods designed for quadratic problems may be less effective [20].

However, the regularization term R can take a completely different form compared

to the data fitting term. It may exhibit high non-linearity, non-convexity, and even

non-differentiability at certain points. These characteristics make the minimization

of E challenging. High non-linearity increases the computational complexity during

numerical evaluations, while non-convexity can result in the energy function E being

non-convex, making it difficult to determine the global minimum. Furthermore, the

non-differentiability of R implies that E is also non-differentiable, rendering many

minimization methods based on gradient or higher-order differential information un-

suitable. This is a significant restriction, as many efficient deterministic methods rely
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on gradient calculations.

The analysis above demonstrates that the regularized image processing problems

are not always well-posed. For instance, when the energy function contains a non-

convex regularization term, it can lead to non-convexity in the problem, resulting in

multiple local minima without a unique global minimum. In such cases, the main

contribution of the regularization is to significantly restrict the originally vast set of

solutions without necessarily leading to a unique solution.

The problem (3.6) represents an unconstrained optimization problem. However,

certain applications, such as discrete tomography or defuzzification, restrict the search

space to a discrete set. The constrained regularized problem is formulated as follows:

min
u∈Ω

EQ(u), (3.8)

where Ω represents the feasible set. Addressing the constraint condition poses

an additional challenge on top of the previously analyzed issues, which needS to be

resolved. One possible approach is to transform the constrained problem into an

unconstrained one by reformulating the constraint condition as a new regularization

term. An example of such an approach is convex-concave regularization in discrete to-

mography [84]. Alternatively, another way to tackle this challenge is to directly apply

an appropriate optimization method specifically designed for constrained problems.

3.6.1 Regularization terms

In image reconstruction, regularization is a technique used to constrain the solution

space of an inverse problem in order to obtain a unique and stable solution. The

inverse problem in image reconstruction refers to the task of estimating an unknown

image from a given set of measurements or observations. The measurements or ob-

servations may be corrupted by noise, or they may be incomplete, which makes the

inverse problem ill-posed.

Regularization can be defined as an additional term added to the objective func-

tion that is being minimized in order to find the solution to the inverse problem. The
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regularization term imposes certain properties on the solution, such as smoothness,

sparsity, or piecewise constancy, which makes the solution more meaningful and less

sensitive to noise or incompleteness of data.

The regularization term is often a function of the image itself, and it is chosen

based on the characteristics of the image and the type of the inverse problem. The

regularization term can be mathematically formulated as a penalty term, a constraint,

or a prior probability distribution on the image. The goal of regularization is to

balance the goodness of fit of the model to the data and the regularization term in

order to obtain a stable and interpretable solution to the inverse problem.

There are several regularization terms that are commonly used in image recon-

struction, each with its own advantages and disadvantages. Some of the most widely

used regularization terms include:

L2-norm regularization: This term is also known as Tikhonov regularization, and

it promotes smooth solutions by minimizing the L2-norm of the image. A popular

L2-norm regularization method is the Tikhonov regularization algorithm, which was

first introduced in [91]. Building upon the foundation laid by L2-norm regularization,

Total Variation (TV) regularization emerged as another tool in image processing.

This regularization technique is based on the idea that natural images often exhibit

piecewise constant or piecewise smooth structures. By minimizing the total variation

of an image, TV regularization promotes solutions that capture these characteristics.

The versatility of TV regularization is evident in its applications, spanning image

denoising, deblurring, and inpainting. A popular TV regularization method is the

Rudin-Osher-Fatemi (ROF) model, introduced in [81].

L1-norm regularization: This term promotes sparse solutions by minimizing the

L1-norm of the image, which is the sum of the absolute values of the image’s pixels.

This method is widely used in compressed sensing and sparse representation. A

popular L1-norm regularization method is the basis pursuit (BP) algorithm, which

was first introduced in the paper [24].

Non-local Means (NLM) regularization: This term is based on the idea that similar

patches in an image should have similar intensities. NLM regularization promotes
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solutions that are consistent with this idea by using non-local means to estimate the

image’s pixels. This method is widely used in image denoising, and many papers

have been published on this topic. A popular NLM regularized method is the non-

local means denoising algorithm, which was first introduced in [18]. Deep learning

based regularization: This term is based on the idea of using deep neural networks to

extract features and to make predictions [51]. Many papers have been published on

this topic, and it has been used in various image reconstruction tasks such as image

inpainting, deblurring, and denoising.

Regularization using geometric moments: In certain scenarios, it is feasible to

have prior knowledge about aspects such as the orientation of shapes, the location

of shape centroids, or the circularity of shapes within discrete tomography problems.

These descriptors of shape characteristics can be effectively quantified using geometric

moments. Consequently, they can be seamlessly integrated into the energy function

as a regularization component, as demonstrated in the works by Lukić and Balazs

[58, 62, 63]. By incorporating geometric moments into the regularization term of the

energy function, the reconstruction process benefits from improved shape fidelity and

structural consistency, ultimately leading to more reliable results.

These are some of the most popular regularization terms used in image recon-

struction. However, there are many other techniques, and many papers have been

published on this topic [62, 64, 67].

3.6.2 Simulated annealing algorithm

One of the image reconstructing methods that is based on energy minimization is the

Simulated Annealing (SA) algorithm. SA is a stochastic optimization technique. The

fundamental idea of SA originated in 1953 [68], when scientists applied the concept of

slow cooling of material in a heat bath to solve a physical problem. In a real annealing

process, the observed system starts at a high temperature and high energy, gradually

cooling down until it reaches approximate thermodynamic equilibrium, converging to

a steady, frozen ground state. This idea was extended to optimization problems in

1982 [50] and introduced as the general SA optimization algorithm. SA has found
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applications in tomography reconstruction problems [60, 61, 93].

The SA algorithm relies solely on objective function values during the reconstruc-

tion process, which offers great flexibility in incorporating different types of regular-

ization terms into the energy function. However, SA is non-deterministic, meaning

different runs of the same problem may yield different solutions. Additionally, SA

can have relatively high running times and require careful tuning of its parameters.

3.6.3 Gradient based reconstruction methods

Gradient based reconstruction methods in image processing are algorithms that use

the gradient information of an image to reconstruct or restore the image. These meth-

ods are often used in image restoration and reconstruction tasks, such as deblurring,

denoising, and inpainting, which aim to remove noise, blur, or missing information

from an image.

One of the main advantages of gradient-based reconstruction methods is that they

can effectively preserve fine details and edges in the image, which are often lost or

distorted in other types of reconstruction methods. These methods also often have

fast convergence rates and can be implemented relatively easily.

There are several different types of gradient-based reconstruction methods, in-

cluding total variation (TV) methods [81], which minimize the total variation of the

image gradient, and wavelet-based methods, which use wavelet transforms to decom-

pose the image into different frequency bands and reconstruct the image using the

gradient information in these bands.

Gradient-based reconstruction methods are widely used in image processing be-

cause they can effectively restore and reconstruct images that have been degraded by

noise, blur, or missing information while preserving important image features such

as edges and fine details. These methods can be used in a variety of applications,

including medical imaging, satellite imaging, and microscopy.

The gradient method used within this research to obtain the smooth solution of

an image is the Spectral Projection Gradient (SPG) method introduced in [9]. SPG

is a deterministic optimization algorithm that is used to solve optimization problems
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of the form:

min
x∈Ω

EQ(x),

where the feasible region Ω is a closed convex set in Rn and EQ is a smooth function.

The method involves projecting the current iterate x onto the set Ω, PΩ(x), using a

spectral decomposition of the projection operator and then using the projected iterate

as the next iterate in the optimization process.

SPG algorithm is outlined in Algorithm 3.6.1. To begin the reconstruction process,

we initiate an arbitrary initial solution u0 ∈ Ω. The tolerance of the final stopping

criterium is controlled by parameter Err. The prerequisites for the application of the

SPG algorithm are as follows:

i) The projection PΩ of any point x ∈ Rn onto the set Ω is defined.

ii) The function EQ is defined and possesses continuous partial derivatives on an

open set that encompasses Ω.

The SPG algorithm combines the non-monotone line search technique [37] and the

spectral gradient step-length selection method [4, 11, 78]. If conditions i) and ii)

are satisified, the algorithm converges to a constrained stationary point. See [9] for

detailed analysis.

Algorithm 3.6.1 SPG optimization algorithm.

Initialize u0;
Initialize d0 = PΩ(u

0 −∇EQ(u
0))− u0; Set k = 0;

repeat
Determine the current step-length λk > 0 using a non-monotone line search
approach;
uk+1 = uk + λkdk;
Calculate the gradient spectral step-length θk+1 > 0;
dk+1 = PΩ(u

k+1 − θk+1∇EQ(u
k+1))− uk+1; k = k + 1;

until ∥uk − uk−1∥∞ < Err;

The SPG method utilizes the spectral properties of the operator that relate the

image to the measurements or observations. It projects the gradient of the cost

function onto the eigenspace of the operator and updates the image in the direction
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of the projected gradient. This allows the method to take into account the spectral

properties of the operator and the regularization term and to converge faster to a

solution.

This method has several attractive properties, including global convergence, fast

convergence rates, and the ability to handle large-scale optimization problems. It is

also relatively simple to implement and can be used with a wide range of optimization

problems.

One of the main advantages of the SPG method is that it can handle optimiza-

tion problems with complex constraints, such as those involving inequality or equality

constraints or those involving multiple sets or subspaces.
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CHAPTER 4

Area Based Shape Descriptors

As mentioned in previous chapters, in today’s data-rich landscape, images are indis-

pensable across various domains, including medicine, security, industry, geology, and

archaeology. These images often contain numerous objects that need to be accurately

recognized, categorized, and labeled. Initially, the traditional approach involved di-

rectly working and comparing the objects themselves, which often resulted in com-

putationally intensive and inaccurate comparisons between objects. However, a more

effective strategy involves converting these objects of interest into numerical repre-

sentations, typically vectors in a mathematical space (often denoted as Rd). This

transformation allows for more advanced operations and analysis of the objects.

To make this transformation possible, we need to identify and quantify specific

properties of the objects efficiently.

Shape represents an attribute that allows for numerical characterization and holds

substantial potential for discriminating between objects. Over time, numerous shape

descriptor techniques have been developed [90]. These descriptors encompass those

tailored to specific shapes and those capturing shared characteristics across multiple

shapes, including circularity [75], ellipticity, rectangularity, triangularity [80], sym-

metry [96], and more. Even within a single shape attribute, a variety of alternative

measurements often exist.

Shapes can be analyzed based on information derived solely from boundary points

(boundary-based) or from all points within the shape (area-based). Area-based meth-

ods are known for their robustness, especially in the presence of noise, and computa-

tional efficiency. Moreover, these techniques are well-suited for discrete domains such
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as digital images.

4.1 Geometric moments and moment invariants

Geometric moments are numerical characteristics of an image that are used for digital

image processing and computer vision applications. They are used to describe the

shape, size, orientation and other characteristics of an object or group of objects.

Geometric moments provide a more accurate description of an object than other

methods such as Fourier transform or the Hough transform.

Moment invariants are numerical characteristics of an image that remain un-

changed under certain transformations such as scaling, rotation and translation.

These invariants are used to recognize objects in an image regardless of orientation,

scale or position. They can also be used to detect and track objects in an image.

Moment invariants are computed using geometric moments.

The calculation of geometric moments involves the integration of intensity values

across all pixels within an image. The moments are calculated by multiplying the

pixel intensity by its coordinates, then summing over the entire image. Moment

invariants are calculated by combining two or more moments with different orders.

The most commonly used moment invariants are the Hu invariants, which are a

set of seven moment invariants developed by Hu in 1962. These invariants can be

used to recognize objects in an image regardless of orientation, scale, or position.

Other moment invariants include the Zernike moments, describing the shape of an

object, and the Legendre moments, which are used to recognize objects in an image

regardless of orientation.

Geometric moments and moment invariants are powerful tools that can be used

to recognize, track, and classify objects in an image. Additionally, they can facilitate

the identification of similarities between different objects.
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The geometric (p, q)-moment of a given planar shape S is defined as:

mp,q(S) =

∫∫

S

xpyq dx dy. (4.1)

Order of moment mp,q is p+ q. When in discrete spaces, mp,q is approximated in

the following way:

mp,q(S) =
∑

(i,j)∈dig(S)
ipjq, (4.2)

where dig(S) is the digitization of the real shape S, (i, j) are spatial coordinates

of each pixel in the image, pixels are considered to be of size 1 × 1. Moments are

used in image processing and computer vision to describe very common features.

For example, the position of a shape, which is one of its basic features, is generally

described in terms of moments. Specifically, the shape centroid (xc(S), yc(S)) tells us

the position of a given shape S is. This is specified as:

(xc(S), yc(S)) =
(m1,0(S)

m0,0(S)
,
m0,1(S)

m0,0(S)

)
. (4.3)

Next, we present central moments which are translation invariant

mp,q(S) =

∫∫

S

(x− xc(S))
p(y − yc(S))

q dx dy. (4.4)

Following we introduce the normalized moment. Normalized geometric moments

are a valuable tool in image processing because they offer scale and rotation invari-

ance, noise robustness, and the ability to capture essential shape characteristics of

objects in an image. These properties make them suitable for a wide range of appli-

cations

µp,q(S) =
mp,q(S)

m0,0(S)
1+ p+q

2

. (4.5)

It is easy to see that µp,q(S) = µp,q(rS), where r is a scaling factor.
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In medical imaging, accurately identifying and characterizing tumors in CT scans

is critical for diagnosis and treatment planning. However, tumors can vary in size,

shape, and position within the body, and CT scans may capture them at different ori-

entations. This variability makes it challenging to develop a consistent and automated

method for tumor detection.

Hu moments introduced by Ming-Kuei Hu in [43] can help address this problem

by providing a way to describe and compare tumor shapes while being invariant to

rotation and scale. The following are the Hu moments.

I1 = µ2,0 + µ0,2

I2 = (µ2,0 − µ0,2)
2 + 4(µ1,1)

2

I3 = (µ3,0 − 3µ1,2)
2 + (3µ2,1 − µ0,3)

2

I4 = (µ3,0 + µ1,2)
2 + (µ2,1 + µ0,3)

2

I5 = (µ3,0 − 3µ1,2)(µ3,0 + µ1,2)
[
(µ3,0 + µ1,2)

2 − 3(µ2,1 + µ0,3)
2
]

+(3µ2,1 − µ0,3)(µ2,1 + µ0,3)
[
3(µ3,0 + µ1,2)

2 − (µ2,1 + µ0,3)
2
]

I6 = (µ2,0 − µ0,2)
[
(µ3,0 + µ1,2)

2 − (µ2,1 + µ0,3)
2
]

+4µ1, 1(µ3,0 + µ1,2)(µ2,1 + µ0,3)

I7 = (3µ2,1 − µ0,3)(µ3,0 + µ1,2)
[
(µ3,0 + µ1,2)

2 − 3(µ2,1 + µ0,3)
2
]

+(µ3,0 − 3µ1,2)(µ2,1 + µ0,3)
[
3(µ3,0 + µ1,2)

2 − (µ2,1 + µ0,3)
2
]
.

A reader can notice that Hu moments use normalized moments hence exhibiting

invariance to translation and scaling. Moreover, it can be demonstrated that these

moments demonstrate rotational invariance [31].

Zernike moments [98] are a powerful set of orthogonal moments widely employed

in image processing and pattern recognition for shape representation. Developed by

Frits Zernike in 1934, these moments have gained popularity due to their desirable

properties, such as rotation invariance and compactness in capturing shape informa-

tion. Zernike moments are particularly useful for characterizing the boundary shape
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of objects or regions in images, making them well-suited for shape analysis tasks, such

as object recognition and shape matching.

Zernike moments are based on the Zernike polynomials, which are a set of orthog-

onal polynomials defined over the unit disk. Each Zernike polynomial is associated

with two integer indices, n and m, where n represents the radial order, and m denotes

the azimuthal order. The radial order determines the number of nodes in the radial

direction, while the azimuthal order governs the number of times the shape rotates

around its center within 360 degrees.

The general form of the Zernike polynomial Zn,m(ρ, ϕ) is given by:

Zn,m(ρ, ϕ) = Rn,m(ρ) · eimϕ,

where ρ represents the radial distance from the center of the unit disk to a point on

the boundary of the shape (normalized to lie within the unit circle, 0 ≤ ρ ≤ 1), ϕ

is the azimuthal angle of the point measured from the reference axis, and Rn,m(ρ) is

the radial polynomial defined as:

Rn,m(ρ) =

(n−m)/2∑

k=0

(−1)k · (n− k)!

k! · ((n+m)/2− k)! · ((n−m)/2− k)!
· ρn−2k.

To compute the Zernike moments for a given shape, the region of interest (ROI)

containing the shape is first converted to a binary image, with the shape of interest

represented as white pixels on a black background. The image is then mapped to

the unit disk using polar coordinates, and the Zernike moments are calculated by

integrating the product of the binary intensity values and the corresponding Zernike

polynomials over the shape’s boundary.

The calculation of Zernike moments can be computationally efficient due to their

orthogonality properties, which allow moments of higher orders to be expressed as

linear combinations of lower-order moments. This property leads to a reduction in

the number of required calculations, making Zernike moments practical for real-time

applications.

One of the key advantages of Zernike moments is their ability to capture shape
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features in a rotation-invariant manner. Since the Zernike polynomials are orthogonal,

the moments computed from a shape and its rotated version remain the same, albeit

with possible sign changes. This property is particularly beneficial for shape matching

and recognition tasks, where the orientation of objects may vary.

Once the Zernike moments are computed, they serve as a compact and meaningful

representation of the shape. These moments can be used as feature vectors for vari-

ous shape analysis tasks, such as object recognition, shape classification, and shape

matching. By comparing the Zernike moments of different shapes using appropri-

ate distance metrics, shape similarities or dissimilarities can be quantified, enabling

effective shape recognition and matching algorithms.

4.2 Shape orientation

Shape orientation is a crucial aspect of characterizing objects in image analysis, com-

puter vision, and various other fields. One effective method for determining the

orientation of a shape involves the use of geometric moments. In this section, we

will explore how geometric moments can be employed to calculate the orientation of

a shape, specifically by finding the axis of the least second moment of inertia. This

method is widely used in the field of image processing for shape analysis [46, 90].

The primary objective in shape orientation determination is to minimize the inte-

gral of squared distances from points within a shape to a specific line. Mathematically,

this can be formulated as follows:

I(α, S, ρ) =

∫∫

S

r2(x, y, α, ρ)dxdy. (4.6)

Here, I(α, S, ρ) represents the integral of squared distances, α is the angle of the

line with respect to a reference axis, and S is the shape of interest.

The distance function r(x, y, α, ρ) is defined as the perpendicular distance from a

point (x, y) ∈ S to a line given by:
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X sinα− Y cosα = ρ. (4.7)

The axis of the least second moment of inertia corresponds to the line that mini-

mizes the integral defined in Equation (4.6). It is worth noting that this axis passes

through the centroid of the shape. Consequently, we can set ρ = 0 and focus on

minimizing F (α, S) = I(α, S ′, ρ = 0), where S ′ is the translated shape such that its

centroid coincides with the origin.

The squared distance function r2(x, y, α, ρ = 0) simplifies to (x sinα − y cosα)2,

leading us to the minimizing function:

F (α, S) = sin2 αm2,0(S) + cos2 αm0,2(S)− sinαm1,1(S). (4.8)

In Equation (4.8), m2,0(S), m0,2(S), and m1,1(S) represent the central moments

of the shape S. These moments capture important information about the shape’s

geometry.

The orientation of a given shape S is determined by finding the angle α at which

the function F (α, S) reaches its minimum. To identify this angle, we can look for

points where the first derivative of F (α, S) equals zero.

Taking the derivative of F (α, S) with respect to α and setting it equal to zero, we

obtain the orientation angle α:

sin (2α)

cos (2α)
=

2m1, 1(S)

m2, 0(S)−m0,2(S)
. (4.9)

Equation (4.9) provides a straightforward and computationally efficient method

for determining the orientation of a shape based on its geometric moments. By solving

this equation, we can find the angle at which the shape is oriented.

While the method described here is a fundamental and widely-used approach

to shape orientation determination, it may have limitations, especially for highly

symmetrical shapes. Researchers have developed additional methods to address these

limitations [25, 39].

Geometric moments provide a robust and computationally efficient method for
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determining the orientation of shapes in image analysis. By minimizing the integral

of squared distances to a line, based on central moments, the orientation angle of a

shape can be readily calculated.

Shape orientation has practical applications in fields like binary tomography, as

demonstrated in a paper by Lukić and Balazs [58]. In this context, shape orientation

serves as a regularization condition during image reconstruction. The reconstruction

process involves minimizing an energy or objective function, denoted as E(u), where

u represents the binary image to be reconstructed. The energy function for binary im-

age reconstruction, proposed by the authors, encompasses three integral components:

firstly, the Data Fitting Term assesses the correspondence between the reconstructed

image and the observed projection data, ensuring their alignment. Secondly, the

Smooth Regularization Term enforces uniformity in pixel values among neighboring

regions in the reconstructed image, a characteristic commonly found in real images.

Lastly, the Orientation Term evaluates how well the reconstructed image aligns with

a predetermined orientation angle, denoted as α∗, representing the expected orienta-

tion of the original object within the image. Researchers adjust the impact of these

terms using parameters, with the option to exclude the Orientation Term, simplify-

ing the energy function into a form suitable for discrete tomography. As shown by

the authors, by incorporating shape orientation as an additional constraint in the

reconstruction process, it becomes possible to improve the quality of reconstructions,

especially in scenarios with limited projection data.

4.3 Shape circularity

Circularity serves as a valuable metric for quantifying the roundness or resemblance

to a circle of a given shape.

One of the most common ways to quantify circularity is through the standard cir-

cularity measure, denoted as Cst(S). This measure exploits a fundamental geometric

principle – the circle has the largest area among all shapes with the same perimeter.

Accordingly, Cst(S) is defined as follows:
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Cst(S) =
4πA(S)

(P (S))2
, (4.10)

where A(S) represents the area of the shape S, while P (S) represents the perime-

ter of the shape S. Notably, Cst(S) takes into account both interior and boundary

information of the shape, making it a holistic descriptor of circularity.

Another approach to assess circularity involves utilizing Hu invariants, which are

geometric invariants associated with a shape. The circularity measure C(S), intro-

duced by [100], incorporates the Hu invariant I1:

C(S) =
1

2π(µ2,0 + µ0,2)
=

1

2πI1(S)
, (4.11)

where µ2,0 and µ0,2 are the central moments of the shape S. Unlike Cst(S), C(S)

is primarily area-based and does not penalize deep intrusions into the shape. This

property makes it more robust to noise, as it focuses on the overall shape charac-

teristics rather than the shape’s perimeter. In contrast, Cst(S) is sensitive to shape

irregularities that lead to significant perimeter increases.
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CHAPTER 5

Thesis Contributions

5.1 Graph cut optimization

Graphs and directed graphs (also known as digraphs) are fundamental mathematical

structures used in various fields, including image processing and image reconstruction

[56].

Definition 3 The graph G is an ordered pair G = (X, ρ), where X is a finite non-

empty set of elements called nodes (vertices), and ρ is a finite set of ordered or un-

ordered pairs, with distinct elements from the set X, called edges.

The edges of the graph represent relationships or connections between the nodes.

Graphs can be used to model and represent various types of relationships and data.

They are typically categorized into two main types, undirected and directed graph.

Definition 4 An undirected graph G = (X, ρ) is an ordered pair that satisfies the

following conditions:

1. X is a finite non-empty set of elements called nodes,

2. ρ is a finite set of unordered pairs of distinct elements from X, representing

edges.

In an undirected graph, the edges in G have no direction; they connect two vertices

without specifying a starting or ending point. Undirected graphs are used to represent

relationships where the order of connection between nodes does not matter, such as

social networks or road networks.
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Definition 5 A directed graph (or digraph) G = (X, ρ) is an ordered pair that satis-

fies the following conditions:

1. X is a finite non-empty set of elements called nodes.

2. ρ is a finite set of ordered pairs of distinct elements from X, representing directed

edges.

Directed graphs are used to represent relationships with a clear direction, such as

flow networks, dependencies, or sequential processes.

Definition 6 A weighted graph, denoted as G = (X, ρ, w), is an ordered triple where

X is a finite non-empty set of nodes, ρ is a finite set of edges (ordered or unordered

pairs of distinct elements from X), and w : ρ → R is a function associating each edge

in ρ with a real number, referred to as its weight.

The weights in a weighted graph represent some measure or cost associated with

traveling from one node to another along the edge. In other words, a weighted

graph assigns a numerical value to each connection in the graph to represent the

distance, cost, capacity, or any other relevant quantity between the vertices connected

by that edge. Graphs play a crucial role in image processing and reconstruction by

providing a structured way to represent and analyze image data. Graphs can be

used to represent images where each pixel or region is a node, and edges connect

neighboring pixels or regions. Techniques like graph-based segmentation use graph

properties to partition an image into meaningful segments. Graph-based methods,

such as graph cuts and spectral graph theory, are used to compress images efficiently

while preserving important features.

5.1.1 Graph cuts

Graph cut is a powerful technique used in image processing and computer vision for a

variety of tasks, such as image segmentation, object recognition, and image matting.

64



5. THESIS CONTRIBUTIONS

Definition 7 Let G = (X, ρ, w) be a directed weighted graph, with non negative

weights, and let a, b ∈ X. An a − b-cut of a graph G is a partition of nodes X

into two disjoint sets, A and B, so that a ∈ A and b ∈ B. The cost of the cut,

denoted by cut(A,B), is the sum of the costs of all edges that go from A to B:

cut(A,B) =
∑

u∈A
v∈B

w(u, v),

where A and B form a partition of the set of nodes X, i.e., A∪B = X and A∩B = ∅.

For an a − b - cut, node a is often referenced as a source and node b as a sink.

Source and sink nodes are refereed as terminals. The graph cuts algorithm aims

to find the optimal cut that minimizes the cost of partitioning set X. Algorithms

for this purpose are detailed in [14]. If the weights in the graph are derived from

a certain energy function, the graph cuts algorithm becomes a powerful tool for

energy minimization. In this scenario, finding the optimal graph cut is equivalent to

minimizing the energy function. The algorithm excels in solving binary or multi-label

segmentation problems, efficiently determining an optimal partition that balances

data fidelity and smoothness.

In the graph cuts application in image processing, the image is represented as

a directed weighted graph, where pixels are nodes, and edges encode relationships

between pixels (e.g. nodes representing pixels that are spatially adjacent are con-

nected by edges). In general, the direction of the edge between neighbouring pixels is

arbitrary and can be chosen based on the specific implementation of the graph cuts

algorithm . The energy function E(X) drives the labeling configuration of pixels and

consists of a data term and a smoothness term:

E(A,B) =
∑

(i,j)∈δ(A,B)

wij + λ
∑

i∈A
di.

Here, δ(A,B) represents edges crossing the cut, wij is the weight associated with

edge (i, j), and di is a data term capturing fidelity to observed data. The algorithm

involves creating a specialized graph corresponding to the energy function. Regular
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image pixels become nodes, and edges are of two types, n − links for neighboring

pixels and t − links for connecting pixels to terminals. Edge costs derive from the

energy function, and the minimum cut on this graph minimizes the energy. Each

graph cut provides a different image segmentation.

The choice of source and sink nodes depends on the specific requirements of image

processing task. The source node represents the starting set, often associated with the

foreground or the region of interest in the image. In the context of image segmenta-

tion, the source node could be related to the pixels or regions that should be identified

or highlighted. The sink node represents the destination set, often associated with

the background or the region we want to distinguish from the foreground.

The cornerstone of Graph Cuts in image reconstruction is the Min-Cut/Max-

Flow algorithm [32]. This algorithm seeks to find the minimum cut in a flow network,

which is modeled using the constructed graph G. The final cut yields the optimal

segmentation of the image into disjoint regions, balancing the trade-off between data

fidelity and smoothness.

Graph cut optimization offers a convenient approach for tackling a diverse range

of image processing challenges that can be expressed in the context of energy mini-

mization, as documented in various studies [8, 12, 13, 15, 16, 49, 52, 55].

The graph cuts method has several advantages over other image reconstruction

techniques. For example, it can handle large amounts of missing data and can produce

good results even when the quality of the original image is poor. However, it can be

computationally expensive and may not always produce the best results in all cases.

5.1.2 Potts model

Graph cuts serve as a potent tool for energy minimization, particularly in addressing

image reconstruction challenges. The key lies in formulating an energy function that

is amenable to graph cuts and can effectively tackle image reconstruction problems.

One such formulation is provided by the Potts model [95].

To apply the Potts model for image reconstruction, a graph is created to depict

pixel relationships. Nodes in this graph correspond to image pixels, and edges con-
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Fig. 5.1.14: Given gray scale image for graph cut optimisation

nect neighboring pixels. Labels denote potential intensity values or categories for

each pixel. The objective is to group nodes, maximizing edges within groups while

minimizing edges between groups. This proves valuable in image segmentation tasks,

where the aim is to partition an image into distinct regions or objects.

In our application, the Potts model is governed by the minimization of the follow-

ing energy equation:

E(d) =
∑

p∈P
D(p, dp) +

∑

(p,q)∈N
K(p,q) · (1− δdp,dq), (5.1)

where d = {dp | p ∈ P} represents the labeling of image pixels p ∈ P . The term

D(p, dp) denotes the data cost, which is a penalty or cost associated with assigning

a label dp to a pixel p. The interaction potential between neighboring pixel pairs p

and q is denoted as K(p,q), where N represents the set of neighboring pixel pairs. The

function δdp,dq is the Kronecker delta function defined as:

δi,j =





0, i ̸= j

1, i = j

.

The second term in 5.1 promotes spatial coherence by penalizing inconsistencies be-

tween adjacent pixels. The goal of image reconstruction in the Potts model is to find

the labeling d that minimizes the total energy of the system.

Now, let’s bridge these theoretical concepts with a practical example. Consider

a grayscale image, as illustrated in Figure 5.1.14. To achieve the objective of image

binarization, the image is processed using the Potts model and graph cuts algorithm.

We start by constructing a directed graph associated with the image, as shown in
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Figure 5.1.15a. In this graph, each pixel corresponds to a node, and edges connect

neighboring pixels, reflecting the defined energy function. In our specific case (Potts

model), interactions between neighboring pixels are implemented using a Kronecker

delta function, which registers only whether the pixels are adjacent or not. To main-

tain coherence with the general definition, in our example two directed edges (p, q)

and (q, p) between neighbouring pixels p and q are created, both of the edges have the

constant weight of 1. Edges connecting nodes to the labels (0) and (1) are weighted

based on the terminal label assignment cost. The function D(p, dp) represents the

cost of assigning the label (source or sink) dp to pixel p, and it depends on how close

the intensity of the pixel u(p) is to the value dp. The values of the function D(p, dp)

are specified at the beginning of the process. Subsequently, based on the values of

D(p, dp), the weights w(p, dp) of edges (p, dp) are calculated in the corresponding

directed graph.

In our example we define w(p, q) in the following manner:

w(p, q) =





1, p and q are neighbouring pixels

|u(p)− 1|, q = 0∗

|u(p)|, q = 1∗

,

where u(p) is the intensity of the pixel p, 0∗ and 1∗ are source and sink respectively.

This selection for the weights function was made in order to ensure that the minimum

cut separates less similar pixels.

Figure 5.1.15b illustrates one cut on the graph. The cut represents one segmen-

tation of the image. The cost of the cut is calculated as the sum of weights of the

removed edges. In our case, cut(0∗, 1∗) = 4 · 2 · 1 + 0.3 + 0.4 + 0.2 + 0.1 + 0 + 0.1 +

0.2 + 0.3 + 0 = 9.6.

To achieve image binarization, the algorithm seeks the minimum cut in the graph

Figure 5.1.15a. Various algorithms, such as those developed by Kolmogorov and

Zabih [53], are employed to find the optimal cut. Once optimal graph is obtained,

the image graph is partitioned into two sets as shown on Figure 5.1.16a. Asigning 0
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(a) Directed graph created for image 5.1.14 associated to the energy
E, numbers on edges reflect their weights

(b) Cut on the graph 5.1.15a, node 0∗ is the source, node 1∗ is the
sink

Fig. 5.1.15: Specially designed graph for image 5.1.14 and its cut
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(a) Optimal cut of the graph 5.1.15a

(b) Binary recon-
struction of the image
5.1.14

Fig. 5.1.16: Graph cut reconstruction

label to all the nodes connected to the source and label 1 to the nodes connected to

the sink yields the binary reconstruction (Figure 5.1.16b). This final result effectively

separates foreground and background pixels, minimizing the overall energy of the

system.

The Potts model tackles a discrete optimization problem, where the image is

represented by a set of discrete labels. The regularization term accounts for the cost

of assigning different labels to neighboring pixels, with the cost defined as a function

of the labels.

70



5. THESIS CONTRIBUTIONS

5.1.3 Discrete tomography reconstruction based on graph

cuts method

In this chapter, we delve into a novel approach to discrete tomography reconstruc-

tion, fusing the powerful graph cuts method with the quadratic iterative minimization

technique. Our journey begins with the computation of data cost values for each pixel

within the image. These values are extracted from the intensity of the reconstructed

image, which is the solution to the energy-minimization problem articulated as fol-

lows:

min
u∈[0,1]N

EQ(u) := ∥Au− b∥2, (5.2)

A ∈ RM×N , u ∈ ΛN , b ∈ RM , Λ = {λ1, λ2, ..., λk}, k ≥ 2.

.

EQ takes the form of a quadratic function, Ω = [0, 1]N represents the feasible

set, k is the number of different gray level values and the set Λ is given by the user

and represents pixel labels. We solve this minimization problem through a selection

of optimization algorithms, with our preferred choice being the Spectral Projected

Gradient (SPG) optimization algorithm.

For the SPG algorithm to be effective, following prerequisites must be met:

For the SPG algorithm to operate effectively, certain conditions must be satisfied:

1. The objective function should possess continuous partial derivatives within an

open set that encompasses the Ω.

2. An availability of the projection function PΩ for any given vector onto the set

Ω.

The objective function in (5.2) is differentiable in RN , and the projection PΩ is
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defined as:

[PΩ(u)]i =





0, ui ≤ 0

1, ui ≥ 1

ui, elsewhere

, where i = 1, . . . , N .

Thus, we fulfill the necessary conditions for the application of the SPG algorithm.

The outcome of the SPG optimization is a smooth solution to (5.2).

Our subsequent step entails discretizing this smooth solution obtained from Equa-

tion 5.2, which we achieved using the SPG algorithm. We draw upon discrete tomog-

raphy reconstruction algorithms proposed by Schüle et al. [85, 93] and Lukić et al.

[58, 61], and opt for the Potts interaction model for its capacity to promote compact-

ness in solutions, as observed in [14, 36, 89]. The data cost term, denoted as D in

(5.2), and defined in (5.3) is formulated based on the pixel intensities, u(p), and is

designed to be small or inexpensive near specific gray values.

D(p, i) = |u(p)− λi|, for i = 0, 1, 2, . . . , k − 1. (5.3)

The interaction potential, K(p,q), between adjacent pixels, in our method, is set as

a constant value of 1. The energy function in (5.1) is then minimized utilizing the

Graph Cuts Optimization (GCO) algorithm [14, 16, 27, 53]. The GCO algorithm

assigns a label value, dp, to each pixel, which corresponds to a predefined gray level

and determines the pixel intensities in the final discrete solution.

The technique described in this section is firstly introduced by Šulc and Lukić in

[59] and is referred to as the Graph Cuts Discrete Tomography (GCDT) reconstruction

method.
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5.1.4 Experimental results for GCDT method

In this section, we provide a brief showcase of the effectiveness of the suggested recon-

struction technique based on graph cuts (referred to as GCDT) to justify its applica-

tion in the later introduced methods. We use the Shepp-Logan image for evaluation,

and additional experimental results can be found in Section 5.4. The Shepp-Logan

image is a well-known phantom in discrete tomography, containing 6 gray levels. We

perform experiments employing multiple projection directions, capturing 128 parallel

rays for each direction. These rays are uniformly sampled within the range of 0 to

180 degrees.

We compare the results obtained from the GCDT with DART method [5]. Fur-

thermore, as a control method, we employ a basic yet less potent approach called

TRDT (Thresholding and Discretization Technique). Within this approach, we ap-

ply a thresholding function on the continuous solution and assign predetermined gray

levels based on pixel intensities.

PH1 PH2 PH3 Shepp-Logan

Fig. 5.1.17: Original test images (128 × 128). Phantoms PH1, PH2, and PH3 are
composed of three distinct gray levels, specifically 0, 0.5, and 1. Shepp-Logan phan-
tom comprises six different gray levels, namely 0, 0.1, 0.2, 0.3, 0.4, and 1.

Figure 5.1.17 shows the original test images used in the experiments, including

Shepp-Logan.

Table 5.1.1 presents the summary of the experimental results. We assess the out-

comes achieved through the application of three distinct reconstruction techniques:

TRDT, DART, and GCDT. The results pertaining to the DART technique are ex-
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smooth rec.

12 proj. 15 proj. 18 proj.

Fig. 5.1.18: Reconstructions of the Shepp-Logan test images by the proposed GCDT
method.

Table 5.1.1: Results from experiments conducted on the Shepp-Logan image employ-
ing three distinct reconstruction methods. The term ”m.r.” denotes the misclassifi-
cation rate, where a lower value signifies superior reconstruction, and ”d” represents
the quantity of projections.

d TRDT (m.r. %) DART (m.r. %) GCDT (m.r. %)

12 12.74 14.21 5.72

Shepp-
15 10.44 8.44 3.17

Logan
18 10.03 2.56 2.14
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tracted from the work of Batenburg and Sijbers [5]. The experimental setup involves

the acquisition of projection data from three different configurations, namely 12, 15,

and 18 projection directions. Notably, across all these configurations, the GCDT

method consistently emerges as the most efficient, yielding the lowest mean recon-

struction error (m.r.) values, where m.r. is the pixel error measure relative to the

total number of image pixels.

In summary, our experimental findings underscore the effectiveness of the pro-

posed GCDT method in the context of Shepp-Logan image reconstruction. This

method surpasses alternative techniques in terms of both reconstruction quality and

computational efficiency. For a comprehensive exploration of additional experimen-

tal results and detailed performance analyses, readers are encouraged to consult the

original research paper [59].

5.2 A priori information in image reconstruction

A priori information, also known as prior information or prior knowledge, is infor-

mation that is known or assumed before considering new data. In the context of

image reconstruction algorithms, a priori information about the shape or characteris-

tics of the object being reconstructed can be valuable in improving the accuracy and

efficiency of the reconstruction process.

There are various ways to obtain a priori information, and the method often

depends on the specific application and the nature of the imaging problem. In some

cases, a priori information can be obtained through direct physical measurements of

the object. For example, in medical imaging, certain characteristics of tissues may be

known from previous experiments or measurements using different imaging modalities.

Mathematical models and simulations can provide a priori information about the

expected characteristics of the object. Researchers may use computational models

based on physics or other relevant principles to simulate how an object should appear

in the given imaging system. Machine learning techniques can be employed to learn

a priori information from a large dataset of representative examples. Convolutional
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neural networks (CNNs) and other deep learning approaches can learn patterns and

features from training data, capturing the inherent structures in images. Knowledge

from domain experts can be considered as a valuable source of a priori information.

Expert input can help define constraints, assumptions, or features relevant to the

specific application.

The accuracy of image reconstruction algorithms can be sensitive to the correct-

ness of a priori information. If the prior information is inaccurate or does not align

well with the actual characteristics of the object, it may lead to artifacts or errors in

the reconstructed image.

Some algorithms are designed to be more robust to uncertainties in the a priori

information. For example, Bayesian frameworks allow for the incorporation of un-

certainties, and regularization techniques can help mitigate the effects of inaccurate

prior information.

There is often a trade-off between relying on a priori information and adapting to

the data. Balancing the weight given to prior information versus the observed data is

a critical aspect of algorithm design. In summary, obtaining a priori information can

involve various methods, and the impact of inaccuracies in this information depends

on the specific algorithm and application. Robust algorithms are designed to handle

uncertainties and balance the influence of prior information with the observed data.

5.3 Graph cuts reconstruction methods assisted

by shape circularity and shape orientation

The idea of incorporating a priori information into the reconstruction process is rooted

in the belief that supplementing the algorithm with relevant knowledge about the im-

aged object can improve accuracy and robustness. In this regard, the question arises:

Can the shape descriptors described in chapter 4 serve as a valuable a priori informa-

tion, potentially replacing the need for extensive projection data in the reconstruction

process?
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To further enhance the performance of graph cuts reconstruction methods, we

explore the possibility of introducing an additional regularization term representing

shape circularity or shape orientation.

The hypothesis suggests that even with limited projection data from a single direc-

tion, knowing an object’s circularity could lead to promising reconstruction outcomes.

By integrating circularity as prior knowledge, the reconstruction algorithm can be

regularized, steering it toward more plausible and physically meaningful solutions.

In addition to circularity, shape orientation is another important aspect of a

shape’s geometry. It can provide crucial information about the object’s alignment,

which is often valuable in various imaging applications.

These novel approaches aim to capitalize on the benefits of circularity and orien-

tation as a priori information. By integrating both descriptors into the graph cuts

reconstruction algorithm, we seek to achieve superior results compared to traditional

methods that rely solely on projection data.

In the subsequent sections of this chapter, we will delve deeper into the practical

implementation of shape circularity and orientation as regularization terms in graph

cuts reconstruction methods. We will explore experimental results and case studies to

validate the hypothesis that leveraging these geometric descriptors can indeed lead to

more accurate and robust reconstructions in scenarios with limited projection data.

5.3.1 The new method based on shape orientation

Our novel tomography reconstruction approach seamlessly integrates the graph cuts

method with a gradient-based minimization technique, all while leveraging shape

orientation as crucial a priori information.

In the initial step of our method, we calculate data cost values for each pixel within

the image. These values are derived from the intensities of a smoothly approximated
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final reconstructed image, achieved through the minimization of an energy function:

min
u∈[0,1]N

EQ(u) =wP∥Au− b∥2 + wH

N∑

i=1

∑

j∈Υ(i)

(ui − uj)
2

+ wO(Φ(u)− α∗)2 + µ⟨u, τ − u⟩.
(5.4)

Here, we introduce key elements:

1. Data fitting term, ∥Au− b∥22, regularized by the parameter wP > 0. This term

ensures adherence to the projection data. The regularization parameter wP

controls the impact of this term. A higher value of wP penalizes deviations

from the data more strongly, leading to a solution that closely fits the observed

data. However, setting it too high may result in overfitting.

2. Homogeneity term,
∑N

i=1

∑
j∈Υ(i)(ui−uj)

2, regularized by the parameter wH >

0. Here, Υ(i) represents the set of indices of neighboring pixels (in the x and y

axis directions) of pixel i. This term encourages neighboring pixels to have sim-

ilar intensities, promoting smoothness in the solution. A higher wH strengthens

the smoothness constraint. It helps in reducing noise in the solution. Too

high values, though, may oversmooth the solution, potentially causing a loss of

important details.

3. Term, (Φ(u) − α∗)2, which quantifies the disparity in orientation between the

current solution Φ(u) and the known orientation of the original image α∗. The

parameter wO > 0 determines the impact of the orientation regularization.

4. Concave regularization term, ⟨u, τ−u⟩, where τ = [1, 1, ..., 1]T is a vector of size

N . This term helps in moving pixel intensities toward binary values, and its

influence gradually increases during the reconstruction process, regulated by the

parameter µ > 0. The parameter µ controls the strength of this regularization.

Higher values of µ increase the influence of this term, which can be useful for

obtaining binary solutions. However, an excessively high µ might lead to a

binary solution that does not capture the underlying structure.
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For each fixed µ, we employ the Spectral Projected Gradient (SPG) iterative op-

timization algorithm to solve the problem (5.4). In the subsequent step, we perform

a comprehensive binarization of the smoothed solution obtained from the SPG algo-

rithm. This binarization utilizes the graph cuts method based on the Potts model

(details in Section 5.1.3). The data cost term D in (5.1) is crafted from the informa-

tion derived from the smooth solution u:

D(p, 0) = u(p),

D(p, 1) = 1− u(p).

We also define a set of neighboring pairs, denoted as N . For two different pixels p

and q, we have that (p, q) ∈ N if the image coordinates of p and q differ by at most

1 in either the horizontal or vertical direction. The interaction potential K(p,q) is set

as a constant with a value of 1.

With these definitions, we are ready to minimize the energy function in (5.1)

using the GCO (Graph Cuts Optimization) algorithm [16]. The GCO algorithm

assigns label values dp to each pixel p, where each label value corresponds to either 0

or 1.

We henceforth refer to this method as the Graph Cuts Binary Tomography As-

sisted by Orientation (GCORIENTBT).

5.3.2 The new method based on shape circularity

The approach suggested in this section for addressing the discrete tomography prob-

lem is divided into two components:

1. Identification of a continuous (smooth) solution to the energy minimization

problem through the utilization of a gradient-based minimization technique.

The energy function incorporates information about the circularity of the orig-

inal object.

2. Making the acquired smooth solution discrete by employing a graph cuts-based
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algorithm. The pixel values from the smooth image are employed to establish

the data cost term for the graph.

The energy function used for calculating the smooth solution is given by the

following equation:

min
u∈[0,1]N

EQ(u) := wP∥Au− b∥22 + wH

N∑

i=1

∑

j∈Υ(i)

(ui − uj)
2+

+wC (C(u)− C∗)2 + µ ⟨u, τ − u⟩ ,

(5.5)

and is constructed of following terms:

• τ = [1, 1, . . . , 1]T as an N-dimensional vector,

• wP term for controlling data fitting,

• wH term for regulating homogeneity of the solution,

• Υ(i) to represent neighboring pixel indexes of pixel i,

• C(u) for the circularity of the solution,

• C∗ as the true circularity (a priori information),

• wC > 0 to determine circularity regularization impact,

• ⟨u, τ − u⟩ to encourage pixel intensities toward binary values,

• µ to control the influence of the binarization term.

The problem of minimizing energy, as expressed in equation (5.5) through con-

strained quadratic optimization, can be tackled using various optimization methods.

We specifically chose the Spectral Projected Gradient (SPG) algorithm [9] due to its

proven effectiveness in similar problem domains.

Efficient minimization and extraction of the smooth solution in the energy function

(5.5) are made possible by analytically determining the gradient for the regularization
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term (C(u) − C∗)2. The termination condition for the smooth solution is defined as

⟨u, τ − u⟩ < Ebin, with Ebin determining the level of binarization for the solution u

and set to 100 in our experiments.

After computing the smooth solution, the next step involves complete binarization,

achieved through the graph cuts method based on the Potts model. The resulting

label values dp for each pixel p (where dp = 0 → 0 and dp = 1 → 1) determine pixel

intensities in the final binary solution, indicating the conclusion of the reconstruction

procedure. This approach is referred to as Graph Cuts Binary Tomography Assisted

by Circularity (GCCIRCBT).

GCCIRCBT provides a notable advantage over GCORIENTBT, primarily due

to its analytical determination of the regularization gradient. This enables a swift

determination of the smooth solution using the SPG algorithm, leading to a significant

reduction in algorithm runtime compared to existing similar techniques.

5.4 Experimental results

In this section, we assess the effectiveness of different algorithms in reconstructing dis-

crete tomography images, with particular emphasis on our proposed methods (GCDT,

GCORIENTBT, GCCIRCBT). To gauge the effectiveness of our approaches, we con-

ducted comprehensive experiments using a diverse set of test images (Figure 5.4.19).

PH1-3 encompass 3 shades of gray, PH4-6 encompass 6 shades of gray, and PH7-

12 depict binary images. PH1-PH11 consist of synthetic images, while PH12 is a

binary-segmented fluorescence image of Calcein-stained Chinese hamster ovary cells.

Each projection direction for multi-gray-level images involves a total of 128 parallel

rays, whereas binary images utilize 64 projection rays. In every case, the projection

directions are evenly distributed across the range of 0 to 180 degrees. This set of

projection data is utilized as input for the reconstruction algorithms.

Our evaluation includes a comparison of several established reconstruction algo-

rithms:

• Graph Cuts Discrete Tomography Algorithm (GCDT) [59]
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• Discrete Algebraic Reconstruction Technique (DART) [5]

• Method based on classical threshold (TRDT)

• Multi Well Potential based method (MWPDT) [57]

• Graph Cuts Tomography Assisted by the Orientation prior (GCORIENTBT)

[66]

• Graph Cuts Binary Tomography Assisted by the Circularity prior (GCCIRCBT)

[67]

All the reconstruction methods (GCDT, DART, TRDT, MWPDT, GCORIENTBT,

GCCIRCBT) are fully implemented in the Matlab programming language.

In our experiments, we employed the GCORIENTBT and GCCIRCBT recon-

struction process with the parameter values given in table (5.4.2).

Parameter Value

Initial vector u0 = [0.5, 0.5, . . . , 0.5]T

Data fitting weight wP = 0.1

Homogeneity weight (GCORIENTBT) wH = 0.5

Homogeneity weight (GCCIRCBT) wH = 0.1

Orientation preservation weight wO = 0.1

Circularity regularization weight wC = 3000

Concave regularization weight µ = 0.0001

Table 5.4.2: Model parameter values used in the experiments

These values were determined through an iterative experimental process on our

test set. To obtain these values, we performed multiple runs, adjusting the param-

eters based on the observed reconstruction quality. The selection aimed to strike a

balance between model adherence to the data, smoothness of the solution, preserva-

tion of circular patterns or aimed orientation, and promotion of binary-like intensity
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values. Future improvements may involve exploring Adaptive Regularization Weight-

ing techniques, allowing the algorithm to dynamically adjust parameters during the

optimization process based on the characteristics of the data. Additionally, conduct-

ing a systematic sensitivity analysis and employing cross-validation techniques could

further enhance the robustness and generalization of the reconstruction algorithm.
ORIGINAL 

PH1 PH2 PH3
ORIGINAL ORIGINAL ORIGINAL 

PH4 PH5 PH6

PH7 PH8 PH9

PH10 PH11 PH12

Fig. 5.4.19: Original test images. Phantoms PH1, PH2, and PH3 contain three dis-
tinct gray levels, while PH4, PH5, and PH6 contain 6 different gray levels. Phantoms
PH7 through PH12 feature binary images.
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5.4.1 Quality metrics

To provide a comprehensive evaluation of reconstruction quality, we employ a set of

fundamental metrics. For all these metrics, a lower value indicates better reconstruc-

tion.

• Pixel Error (PE): This metric quantifies the absolute number of misclassified

pixels, offering insights into the accuracy of reconstructions.

• Misclassification Rate (m.r.): It provides a normalized view of pixel error rel-

ative to the total number of image pixels, helping us understand the overall

fidelity of the reconstructions.

• Projection Error (PRE): PRE assesses the alignment of the reconstructed im-

ages with the given projection data, which is critical for accurate reconstruction.

The direction of projection is determined by the angle α, and we denote the

number of different projection angles used as d. When using horizontal and verti-

cal projection data, we can effectively determine circularity and orientation shape

descriptors, as discussed in Lukić et al. [62]. Therefore, when using three or more

projection angles, including circularity and orientation as prior information becomes

redundant, as these attributes are already present in the projection values. Conse-

quently, we omit results for GCORIENTBT and GCCIRCBBT when using a higher

number of projections since they would be identical to those obtained by GCDT.

5.4.2 Comparison of algorithms

The outcomes pertaining to the effectiveness of various algorithms on test images

PH1, PH2, and PH3 have been summarized in Table 5.4.3 and Table 5.4.4, with

corresponding visual representations in Figure 5.4.20 and Figure 5.4.22. In terms

of the metrics PE and m.r., the GCDT method demonstrated superior performance

in 10 out of 12 instances, while for the PRE metric, GCDT excelled in 8 cases.

However, when considering execution time, the MWPDT method emerged as the

84



5. THESIS CONTRIBUTIONS

leader, as GCDT necessitated a notably higher number of iterations to achieve a

smooth solution.

The reconstruction outcomes for phantoms featuring 6 distinct gray levels are

detailed in Table 5.4.5. In this context, the GCDT method surpassed TRDT and

DART in 10 out of 12 scenarios, with DART exhibiting superior performance in

the remaining 2 cases. Visual representations of the reconstructions from 6 and 15

projection directions are provided in Figure 5.4.21 and Figure 5.4.23, respectively.

The analysis conducted thus far underscores the competitive efficacy of a model

combining graph cuts and a gradient-based approach (GCDT). This promising out-

come has spurred further testing and refinement of the algorithm.

Table 5.4.3: Results from experiments conducted on images PH1, PH2, and PH3 are
presented, employing three distinct reconstruction methods. The symbol d denotes
the number of projections, and the most outstanding performance is highlighted in
bold font.

PH1 PH2 PH3

d 6 9 12 15 6 9 12 15 6 9 12 15

(PE) 255 159 59 35 143 138 20 18 655 456 275 174

MWP (m.r. %) 1.55 0.97 0.36 0.21 0.87 0.84 0.12 0.11 3.99 2.78 1.67 1.06

(PE) 412 175 48 28 209 141 17 17 412 301 101 41

TRDT (m.r. %) 2.51 1.06 0.29 0.17 1.28 0.86 0.10 0.10 2.51 1.83 0.61 0.25

(PE) 272 69 8 5 225 124 12 12 272 116 20 9

GCDT (m.r. %) 1.66 0.42 0.04 0.03 1.37 0.76 0.07 0.07 1.66 0.70 0.12 0.05
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Table 5.4.4: The experimental findings for images PH1, PH2, and PH3, employing
three diverse reconstruction methods. In this context, ”e.t.” represents elapsed time
in minutes, while d signifies the number of projections. The optimal performance is
denoted in bold font.

PH1 PH2 PH3

d 6 9 12 15 6 9 12 15 6 9 12 15

(PRE) 14.70 12.19 9.96 9.08 14.11 18.94 6.08 7.71 19.83 18.77 18.80 16.43

MWPDT (e.t.) 1.76 2.63 3.17 4.06 5.34 8.17 6.36 11.62 2.19 2.87 4.30 4.66

(PRE) 18.66 14.72 10.61 8.87 17.98 17.30 7.09 7.09 23.64 17.87 13.66 10.61

TRDT (e.t.) 7.73 12.58 14.55 17.77 6.24 10.82 16.01 17.74 7.28 11.07 13.39 16.00

(PRE) 23.24 11.12 6.52 4.39 26.77 21.04 6.01 6.00 25.87 14.96 7.59 5.60

GCDT (e.t.) 7.73 12.58 14.55 17.77 6.25 10.82 16.01 17.74 7.29 11.07 13.40 16.01

Table 5.4.5: Results of the experiments for PH4, PH5 and PH6 images, employing
three distinct reconstruction methods. The symbol d denotes the number of projec-
tions, and the most outstanding performance is highlighted in bold font.

PH4 PH5 PH6

d 6 9 12 15 6 9 12 15 6 9 12 15

(PE) 1976 804 551 399 219 134 42 28 727 473 251 192

GCDT (m.r. %) 12.06 4.91 3.36 2.44 1.34 0.82 0.26 0.17 4.44 2.89 1.53 1.17

(PE) 2435 1415 1188 998 1364 1330 1286 1274 889 807 587 552

TRDT (m.r. %) 14.86 8.64 7.25 6.09 8.32 8.12 7.85 7.78 5.43 4.92 3.58 3.37

(PE) 1695 1242 1177 1089 488 379 288 319 649 836 596 707

DART (m.r. %) 10.34 7.58 7.18 6.65 2.98 2.31 1.76 1.95 3.96 5.10 3.64 4.32
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PE=272 (1.66%)PE=255 (1.55%)PE=412 (2.51%)

PH1
GRAPH−CUT PE= 225 MR=1.3733% TRESHOLDING  PE= 209 MR=1.2756%

PE=225 (1.37%)PE=209 (1.28%)PE=143 (0.87%)

PH2

PE=367 (2.24%)PE=655 (3.99%)PE=519 (3.16%)

PH3

GCDT MWPDT TRDT

Fig. 5.4.20: Reconstructions of the 3 gray level test images using data from 6 projec-
tion directions.
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GRAPH−CUT PE= 1976 MR=12.0605% TRESHOLDING  PE= 2435 MR=14.8621% DART  PE= 1695 MR=10.3455%

PE=1976 (12.06%)PE=2435 (14.86%)PE=1695 (10.34%)

PH4
GRAPH−CUT PE= 219 MR=1.3367% TRESHOLDING  PE= 1364 MR=8.3252%

PE=219 (1.34%) PE=1364 (8.33%) PE=488 (2.98%)

PH5
GRAPH−CUT PE= 727 MR=4.4373% TRESHOLDING  PE= 889 MR=5.426% DART  PE= 649 MR=3.9612%

PE=727 (4.44%) PE=889 (5.43%) PE=649 (3.96%)

PH6

GCDT TRDT DART

Fig. 5.4.21: Reconstructions of the 6 gray level test images using data from 6 projec-
tion directions.
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PE=5 (0.03%) PE=35 (0.21%) PE=28 (0.17%)

PH1
GRAPH−CUT PE= 12 MR=0.073242% TRESHOLDING  PE= 17 MR=0.10376%

PE=12 (0.07%) PE=17 (0.10%) PE=18 (0.11%)

PH2

PE=9 (0.05%) PE=174 (1.06%) PE=41 (0.25%)

PH3

GCDT MWPDT TRDT

Fig. 5.4.22: Reconstructions of the 3 gray level test images using data from 15 pro-
jection directions.
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GRAPH−CUT PE= 399 MR=2.4353% TRESHOLDING  PE= 998 MR=6.0913% DART  PE= 1089 MR=6.6467%

PE=399 (2.44%) PE=998 (6.09%) PE=1089 (6.65%)

PH4
GRAPH−CUT PE= 28 MR=0.1709% TRESHOLDING  PE= 1274 MR=7.7759%

PE=28 (0.17%) PE=1274 (7.78%) PE=319 (1.95%)

PH5
GRAPH−CUT PE= 192 MR=1.1719% TRESHOLDING  PE= 552 MR=3.3691% DART  PE= 707 MR=4.3152%

PE=192 (1.17%) PE=552 (3.37%) PE=707 (4.32%)

PH6

GCDT TRDT DART

Fig. 5.4.23: Reconstructions of the 6 gray levels test images using data from 15
projection directions.
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PE=49 (1.20%) PE=44 (1.07%) PE=45 (1.10%)

PH7

PE=66 (1.61%) PE= 67 (1.64%) PE=45 (1.10%)

PH8

PE=800 (19.53%)PE=800 (19.53%)PE=604 (14.75%)

PH9

GCDT TRDT DART

Fig. 5.4.24: Reconstructions of the binary test images (PH7, PH8, PH9) using data
from 2 projection directions (vertical and horizontal).

Our investigations on binary images, as illustrated in Figure 5.4.24 and Figure

5.4.25, unveiled that the GCDT method yields unsatisfactory outcomes, producing in

some cases an entirely black image, particularly when reconstructing from only two

projections. To overcome this limitation, we propose enhancing the GCDT method

by incorporating orientation and circularity as prior information, resulting in the

formulation of the GCORIENTBT and GCCIRCBT algorithms.
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PE=634 (15.47%) PE=634 (15.47%)PE=734 (17.91%)

PH10

PE= 100 (2.44%) PE= 100 (2.44%) PE=63 (1.54%)

PH11
GRAPH−CUT PE= 478 MR=11.6699% TRESHOLDING  PE= 452 MR=11.0352% DART  PE= 676 MR=16.5039%

PE= 478 (11.67%)PE=452 (11.04%)PE=676 (16.50%)

PH12

GCDT TRDT DART

Fig. 5.4.25: Reconstructions of the binary test images (PH10, PH11, PH12) using
data from 2 projection directions (vertical and horizontal).
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We proceeded to compare these algorithms with two other reconstruction methods,

namely DART and GCDT, as depicted in Figure 5.4.32 and Figure 5.4.33. For our

analysis, we utilized 6 binary images with data obtained from a single projection and

tested the models across 6 different projection angles.

In our prior study [66], GCORIENTBT demonstrated outstanding results in sce-

narios with limited projection view availability. In a subsequent investigation [67],

we explored whether circularity is as effective or potentially superior as a regulariza-

tion term. The results indicate that in 17 out of 36 cases, GCCIRCBT produced the

best reconstruction (smallest PE/m.r.), while GCORIENTBT prevailed in 13 cases.

As anticipated, incorporating the prior information into the GCDT method led to

significantly improved results for binary images, particularly when dealing with lim-

ited projection data. Moreover, GCCIRCBT exhibited a noteworthy advantage in

terms of running time, being, on average, 2.12 times faster than its top competitor,

GCORIENTBT (Figure 5.4.34).

Summarizing the outcomes from the analysis of reconstruction tasks involving

multiple gray levels, as detailed in Tables 5.4.3 and 5.4.5, the GCDT method show-

cased superior reconstruction quality in 20 out of 24 instances, accounting for 83% of

the cases. Additionally, the combined performance of GCORIENTBT and GCCIR-

CBT proved to be superior in 83% of the cases, with GCCIRCBT holding a slight

advantage. This underscores the commendable efficacy of the graph cuts-based recon-

struction approach in DT, emphasizing the notable benefits of incorporating shape

circularity and orientation as a priori information.
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GRAPH−CUT PE= 682 GRAPH−CUT PE= 304

PE=444 (10.83%)PE=682 (16.655%)PE=682 (16.65%) PE=252 (6.15%)

PH7

PE=509(12.43%) PE=509 (12.43%) PE=178 (4.35%) PE=469(11.45%)

PH8

PE=800 (19.53%) PE=800 (19.53%) PE=800 (19.53%)PE=886 (21.63%)

PH9

DART GCDT GCORIENTBT GCCIRCBT

Fig. 5.4.26: Reconstructions of the binary test images (PH7, PH8, PH9) using data
from 1 projection direction, α = 0◦.
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PE=634 (15.48%)PE=634 (15.4785%)PE=634 (15.4785%)PE=982 (23.9746%)

PH10
DART  PE= 242 MR=5.9082% GRAPH−CUT PE= 102

PE=132 (3.22%) PE=444 (10.84%) PE=101 (2.46%) PE=130 (3.17%)

PH11
DART  PE= 720 MR=17.5781%

PE=720 (17.58%) PE=720 (17.58%) PE=300 (7.32%) PE=624 (15.23%)

PH12

DART GCDT GCORIENTBT GCCIRCBT

Fig. 5.4.27: Reconstructions of the binary test images (PH10, PH11, PH12) using
data from 1 projection direction, α = 0◦.
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GRAPH−CUT PE= 304

PE=846 (20.65%)PE=1110 (27.10%)PE=954 (23.29%) PE=647 (15.8%)

PH7

PE=509(12.43%) PE=509 (12.43%) PE=891 (21.75%)PE=757 (18.48%)

PH8

PE=810 (19.78%) PE=724 (17.68%) PE=870 (21.24%) PE=334 (8.15%)

PH9

DART GCDT GCORIENTBT GCCIRCBT

Fig. 5.4.28: Reconstructions of the binary test images (PH7, PH8, PH9) using data
from 1 projection direction, direction angle is α = 60◦.
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PE=634 (15.48%) PE=634 (15.48%) PE=870 (21.24%) PE=372 (9.08%)

PH10

PE=710 (17.33%)PE= 710 (17.33%) PE= 710 (17.33%) PE=423 (10.32%)

PH11

PE=720 (17.58%) PE=720 (17.58%) PE=1353 (33.03%)PE=519 (12.67%)

PH12

DART GCDT GCORIENTBT GCCIRCBT

Fig. 5.4.29: Reconstructions of the binary test images (PH10, PH11, PH12) using
data from 1 projection direction, direction angle is α = 60◦.
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PE=1194 (29.15%)PE=1110 (27.1%)PE=594 (14.50%)PE=722 (17.63%)

PH7

PE=509(12.43%) PE=509 (12.43%)PE=454 (11.08%) PE=677(16.53%)

PH8

PE=810 (19.78%) PE=724 (17.68%)PE=860 (21.00%) PE=335 (8.18%)

PH9

DART GCDT GCORIENTBT GCCIRCBT

Fig. 5.4.30: Reconstructions of the binary test images (PH7, PH8, PH9) using data
from 1 projection direction, direction angle is α = 30◦.
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PE=744 (18.16%)PE=634 (15.48%) PE=661 (16.14%) PE=389 (9.50%)

PH10

PE=710 (17.33%)PE=710 (17.33%) PE=552 (13.48%) PE=377 (9.20%)

PH11

PE=720 (17.58%)PE=720 (17.58%)PE=1426 (34.81%)PE=365 (8.91%)

PH12

DART GCDT GCORIENTBT GCCIRCBT

Fig. 5.4.31: Reconstructions of the binary test images (PH10, PH11, PH12) using
data from 1 projection direction, direction angle is α = 30◦.
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Fig. 5.4.32: Experimental outcomes for BT employing four distinct reconstruction
methods, focusing on Pixel Error.
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Fig. 5.4.33: Experimental outcomes for BT with an emphasis on misclassification rate
(m.r)., employing four diverse reconstruction methods.
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Fig. 5.4.34: Experimental outcomes for BT with an emphasis on average elapsed time
(e.t.)., employing four diverse reconstruction methods.
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CHAPTER 6

Conclusion and Future Work

In this thesis, we have conducted an in-depth investigation into the field of discrete

tomography, a discipline primarily concerned with reconstructing discrete objects or

images from a limited set of projections. Our exploration has encompassed various

aspects of discrete tomography, including its foundational formulation, binary tomog-

raphy models, and a range of reconstruction algorithms. Throughout our research,

our primary objective has been the development and evaluation of regularized models

tailored for tomographic image reconstruction, specifically addressing the challenges

associated with generating high-quality images from sparse projection data.

Within the thesis, we emphasize the significant performance of an algorithm that

combines gradient-based techniques with graph cuts optimization for solving discrete

tomography problems. In scenarios where the availability of projections is severely

constrained, we have adapted this method by incorporating shape descriptors as prior

knowledge about the objects being reconstructed. Our experimental results conclu-

sively demonstrate that the proposed approach outperforms previously published re-

construction methods regarding reconstruction quality. These findings establish that

the integration of a gradient-based method with graph cuts optimization, enhanced

by the inclusion of area-based shape descriptors as prior information, represents an

effective strategy for achieving high-quality reconstructions in the context of discrete

tomography.

While this thesis has made significant progress in exploring regularized models for

tomographic image reconstruction, several avenues for future research remain open.

We identify the following areas as promising directions for extending and refining our
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work:

Multi-Modal Shape Regularization: Explore the integration of multiple area-based

shape descriptors as regularization terms simultaneously. Combining shape orienta-

tion and circulation with other descriptors like eccentricity, roundness, or elongation

could provide a more comprehensive and robust regularization framework, captur-

ing different aspects of the object’s shape and improving the overall reconstruction

accuracy.

Adaptive Regularization Weighting: Investigate adaptive approaches for adjusting

the weights or importance of the shape descriptors during the reconstruction process.

Some regions of the tomographic data might benefit more from specific shape de-

scriptors than others. Developing adaptive regularization schemes that automatically

adjust the weights based on the local image characteristics can lead to more effective

regularization and enhanced reconstruction results.

Parameter Tuning for Shape Regularization: Conduct a thorough study on the

impact of the parameters associated with shape orientation and circulation regular-

ization. Fine-tuning these parameters can significantly influence the regularization’s

effectiveness in preserving shapes and structures of the object. Utilize techniques

like cross-validation or optimization algorithms to determine the optimal parameter

values for specific imaging scenarios.

Deep Learning-Based Regularization: As deep learning approaches have shown

remarkable success in various imaging tasks, integrating deep neural networks into our

regularization framework holds great promise. Investigating the use of convolutional

neural networks (CNNs) and generative models for regularization can potentially

improve the accuracy and efficiency of tomographic image reconstruction.

By pursuing these future research directions, we believe that the field of tomo-

graphic image reconstruction can benefit from more robust, accurate, and efficient

methods, enabling a wide range of applications in various scientific and industrial

domains.

In conclusion, this thesis has provided a comprehensive overview of discrete to-

mography, its formulation, binary tomography models, and reconstruction algorithms.
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The research conducted here contributes to the growing body of knowledge in discrete

tomography and offers a foundation for future advancements in this field. The im-

plications and limitations discussed in this chapter highlight promising directions for

future research, paving the way for improved reconstruction techniques and broader

applications of discrete tomography in various domains.
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[63] Lukić, T., Balázs, P.: Limited-view binary tomography reconstruction assisted

by shape centroid. The Visual Computer 38(2), 695–705 (2022)
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[67] Marčeta, M., Lukić, T.: Regularized graph cuts based discrete tomography

reconstruction methods. Journal of Combinatorial Optimization 44(4), 2324–

2346 (2022)

[68] Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.:

Equation of State Calculations by Fast Computing Machines. Journal of Chem-

ical Physics 21(6), 1087–1092 (1953)

[69] Minh, D.D., Minh, D.L.: Understanding the hastings algorithm. Communica-

tions in Statistics-Simulation and Computation 44(2), 332–349 (2015)
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Abstract
The topic of this paper includes graph cuts based computed tomography reconstruction
methods in binary and multi-gray level cases. This approach combines the graph cuts
and a gradient based method. The present paper introduces and analyses the shape
circularity as a new regularization and incorporates it in a graph cuts based computed
tomography reconstruction approach, thus introducing a new energy-minimization
based reconstruction algorithm for binary tomography. Proposedmethod is capable for
reconstructions in cases of limited projection view availability. Results of experimental
evaluation of the considered graph cuts type reconstruction methods for both binary
and multi-level tomography are presented.

Keywords Discrete tomography · Binary tomography · Shape circularity · Graph
cuts optimization · Energy minimization methods

1 Introduction

Image reconstruction represents a collection of methods used to enhance and improve
the quality of the image or to extract additional information from the image. Very
often we need to obtain information about an object which is not visible or easily
accessible. An area of image processing whose scope are these type of problems is
named tomography.
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Tomography deals with reconstructing images from the given projection data. Pro-
jection data is obtained by a wave penetrating through an unknown object. This wave
is then detected on the opposite side of an object. A set of projection data is obtained
at a particular angle. The source and detector are then rotated at a small angle, and a
new projection is obtained. The object aimed to be restored is seen as a function with
a domain that can be discrete or continuous and a range that is a given set of (usually)
real numbers. Discrete Tomography (DT) (Herman and Kuba 1999, 2006) is a field of
tomography that focuses on reconstruction of discrete images (finite number of pixel
values) using much fewer number of projections. We distinguish binary tomography
(BT) concentrating on binary images and multi-level discrete tomography concentrat-
ing on digital images that consist of numerous gray levels. DT has a wide range of
applications in areas where the materials of the object under investigation are known
before, such as industrial non-destructive testing or electron tomography, as well in
many diagnostic approaches in medicine (Herman and Kuba 1999, 2006).

In the related conference publication (Marčeta and Lukić 2020), we proposed a
new graph cuts based binary tomography reconstruction algorithm (GCORIENTBT)
for limited projection availability. This approach incorporates the shape orientation
(Žunić et al. 2006) as an a priori information about the solution into the reconstruction
process.

This paper brings a new regularization approach based on the shape circularity
(Žunić et al. 2010). We use the same graph cuts based optimization approach as in the
case of the GCORIENTBT method, but, instead of the shape orientation, the shape
circularity is reviewed and applied as an a priori information in the reconstruction
process.We found themotivation for this choice in recently published paper (Lukić and
Balázs 2020), where the circularity prior is successfully applied in a combination with
convex-concave based regularization (Schüle et al. 2005). The proposed circularity
basedmethod (GCCIRCBT) has an important advantage compared toGCORIENTBT,
since the gradient of the regularization is determined in an analytical waywhichmakes
the determination of the smooth solution fast by the SPG algorithm. Running time of
the algorithm is significantly decreased compared to existing similar techniques. We
demonstrate by experiments that the prior information can boost the performance of
reconstruction in cases of very low number of projections. Additionally, this paper
gives an overview and experimental evaluation of the most often used algorithms for
multi-level tomography reconstruction problem, which, to the best of our knowledge
was addressed by only few researches.

This paper is organized as follows. Section 2 gives a brief overview of the basic
reconstruction problem. Section 3 begins by examining the approach that uses graph
cuts for energy minimization, followed by the introduction of shape orientation and
circularity as shape descriptors and finishing with describing and analyzing the new
reconstruction method. Experimental results are provided in Sect. 4. Our conclusions
are drawn in the final section.

2 Reconstruction problem

In this chapterwe introduce somenotations and define theDTproblemmathematically.
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DT reconstruction problem can be outlined by the following linear system of equa-
tions

a11u1 + a12u2 + a13u3 + . . . + a1N uN = b1
a21u1 + a22u2 + a23u3 + . . . + a2N xN = b2
a31u1 + a32u2 + a33u3 + . . . + a3N xN = b3
. . . . . . . . . . . . . . . . . . . . . . . .

aM1u1 + aM2u2 + aM3u3 + . . . + aM N xN = bM ,

which we examine in its matrix form

A u = b, (1)

where A ∈ RM×N , u ∈ ΛN , b ∈ RM and Λ = {λ1, λ2, ..., λk} for k ≥ 2.
Unknown image to be reconstructed is denoted by u and is represented in a column

vector form. Set Λ is given by the user and denotes the gray levels of the image, if
k = 2, problem becomes problem of binary tomography.Matrix A is named projection
matrix. Each row of this matrix is determined by one projection ray and its entries
are calculated as the length of the intersection of the pixels and projection ray passing
through them. The corresponding components of the vector b consist of the detected
projection values calculated as a sum of products of the pixel’s intensity and the
corresponding length of the projection ray through that pixel.

Projection process is performed fromdifferent directions. For each projection direc-
tion a number of parallel projection rays is taken (parallel beam projection). The
projection direction is determined by the angle α. Every two adjacent parallel projec-
tion rays are equidistant with their distance being equal to the side length of pixels.
Number of parallel projection rays is specified in a way to cover the whole image grid.

The reconstruction problem means finding the solution image u of the linear sys-
tem of equations (1), where the projection matrix A and the projection vector b are
given. This system is often undetermined (N > M). We are interested in finding a
reconstruction which resembles the original image as closely as possible, not just one
that corresponds to the given projections. Therefore, it is necessary to use all available
information (a priori information) about the object of interest in order to determine
quality and acceptable solution.

3 Graph cuts reconstructionmethods assisted by shape circularity
and shape orientation

Image reconstruction is commonly performed by regularized energy minimization,
due to its simplicity and generally good performance. In its most general setting one
tries to recover a reconstructed version of the observed image y by minimizing an
energy function which has the following form:

E(u) = F(Lu, b) + λR(u). (2)

123



Journal of Combinatorial Optimization

An argument ur which minimizes the energy function,

ur = arg min
u

E(u) (3)

is considered to be an estimate of the original image. The function F is called the data
fidelity term and measures the distance between the data b and the reconstruction u
after the forward operator L has acted on it. The function R is called the regularization
term and it imposes a priori knowledge on the solution u. It is expected that small
values of R will lead, up to a certain extent, to the elimination of the undesirable
features. Regularization also provides numerical stabilization of image reconstruction
problem. The regularization parameter λ controls the trade-off between the two terms,
i.e. the level of smoothing vs. faithful recovery of the image detail.

3.1 Graph cut optimization

Graph cut optimization can be conveniently utilized to solve a wide variety image
processing problems that can be formulated in terms of energy minimization (Boykov
et al. 1998, 2001; Birchfield and Tomasi 1999; Kolmogorov and Zabih 2001; Kwatra
et al. 2003; Boykov and Kolmogorov 2003; Boykov and Jolly 2001; Kim and Zabih
2003).

A directed, weighted graph G = (X , ρ), is determined by a set of nodes X , that
are connected together through edges ρ. All the edges are directed from one node to
another and appointed some weight or cost. A cut of a graph G is a partition of set
X into two disjoint subsets A named source and B named sink. Any cut determines
a unique cut-set consisting of a set of edges that have one endpoint in each subset
of the partition. Cost of a cut is calculated as a sum of weights of all edges going
from A to B. The minimum cut problem consists of finding a cut with minimum cost
among all possible cuts. Algorithms to solve this problem can be found in (Boykov
and Kolmogorov 2004).

The main idea behind application of graph cuts method in energy minimization is
construction of a graph specially designed for the energy function so that the solu-
tion of minimum cut problem also minimizes the energy function. The solution of
the minimum cut problem, in turn, can be computed very efficiently by max-flow
algorithms.

The Potts model in graph cuts theory, on which min-cut/max-flow algorithm is
applied, is based on the minimization of the following energy

E(d) =
∑

p∈P
D(p, dp) +

∑

(p,q)∈N
K(p,q) · (1 − δdp,dq ), (4)

where d = {dp|p ∈ P} represents the labelling of the image pixels p ∈ P . By
D(p, dp)we denote the data cost term, where D(p, dp) is a penalty or cost for assign-
ing a label dp to a pixel p. K(p,q) is an interaction potential between neighboring pairs
p and q,N is a set of neighboring pairs. Function δdp,dq is a Kronecker delta function.
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3.2 Geometric moments

The geometric moment of a digitized image u is defined by

m p,q(u) =
∑

(i, j)∈Ω

u(i, j)i p jq ,

where Ω ⊆ R2 denotes the image domain.
The center of gravity (or centroid) of an image (or a shape) u is defined by

(Cx (u), Cy(u)) =
(

m1,0(u)

m0,0(u)
,

m0,1(u)

m0,0(u)

)
.

The centroid enables the definition of the centralized moment which is translation
invariant. The centralized moment of an image u of order p + q is given by

m p,q(u) =
∑

(i, j)∈Ω

u(i, j)(i − Cx (u))p( j − Cy(u))q .

The shape is a characteristic of an object which allows numerical characterizations
and, in addition, has high object discrimination capacity. Many approaches regarding
shape descriptors have been developed (Sonka et al. 2007). There are shape descriptors
that accurately describe specific shapes and the ones that describe single character-
istics that are present over a variety of shapes. In this paper we will focus on two
shape descriptors, namely orientation and circularity, and we will measure them using
geometric moments.

3.3 Shape orientation

Shape orientation is determined by the angle α, which represents the slope of the axis
of the secondmoment of inertia (orientation axis) of the considered shape (Sonka et al.
2007). The orientation (angle α) for the the given image u can be calculated by the
following equation:

sin(2α)

cos(2α)
= 2 · m̄1,1(u)

m̄2,0(u) − m̄0,2(u)
. (5)

Moments in (5) are translation invariant, making the orientation invariant to translation
transformations, for more details see (Lukić and Balázs 2016; Žunić et al. 2006).

The graph cuts reconstruction method which applies the shape orientation in the
binary tomography reconstruction process (GCORIENTBT) is proposed and analyzed
in our recently published paper (Marčeta and Lukić 2020), therefore we omit its
detailed description.
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3.4 Shape circularity

Shape circularity is a familiar shape descriptor. Exploiting the fact that the circle has
the largest area among all the shapes with the same perimeter, the most standard
method defines the shape circularity Cst (S) in the following way

Cst (S) = 4π A(S)

(P(S))2
, (6)

where A(S) is the area of the shape S and P(S) is the perimeter of S. It is easy to
notice that Cst (S) is not area based nor boundary based, since it uses the information
both from the interior and boundary points.
For the given shape, represented by the image u, the circularity can also be rated or
measured by the following formula

C(u) = 1

2π(μ2,0(u) + μ0,2(u))
, (7)

where μp,q(u) is the normalized moment of u of order p + q. It is defined by the
following formula

μp,q(u) = m p,q(u)

m0,0(u)1+
p+q
2

.

It is trivial to show, that the normalized moment, besides being translation invariant,
is invariant to uniform scaling as well. The circularity measure C(u) is proposed and
thoroughly analyzed in (Žunić et al. 2010). In addition, in the same paper it has been
proven that circularity is highly performant in shape classification problems. The
following Theorem summarizes the most important properties of C(u).

Theorem 1 (Žunić et al. 2010) The circularity measure C(u), for a compact shape u
(closed and bounded), satisfies:

(a) C(u) ∈ (0, 1], for all shapes defined by u;
(b) C(u) = 1 ⇔ u represents a circle;
(c) C(u) is invariant w.r.t. similarity transformations (translation, rotation and scal-

ing);
(d) For each δ > 0 there is a shape u such that 0 < C(u) < δ.

The standard circularity measure Cst (S) penalizes deep intrusions into the shape,
because such intrusions lead to an essential perimeter increase, which, by the defini-
tion, decreases Cst (S). The measure C(S) is area based and does not penalize such
intrusions. On the other hand,C(S) is robust to noise, as area based descriptor, whereas
Cst (S) can only cope with small levels of noise because it uses the shape perimeter
for the computation. For our model we use C(S) as a measure of circularity.
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3.5 The newmethod based on shape circularity

Reconstruction method for solving discrete tomography problem we propose in this
paper consists of two parts:

• Finding a continuous (smooth) solution of the energy minimization problem using
gradient based minimization method. Information about the circularity of the orig-
inal object is incorporated in the energy function.

• Discretization of the obtained smooth solution applying graph cuts based algo-
rithm. Pixel values of the smooth image are used to define data cost term for the
graph.

min
u∈[0,1]N

EQ(u) := wP‖Au − b‖22 + wH

N∑

i=1

∑

j∈Υ (i)

(ui − u j )
2 +

+wC
(
C(u) − C∗)2 + μ 〈u, τ − u〉 , (8)

Energy function we use for calculation of the smooth solution is given in the equa-
tion (8) and is constructed of four terms:

1. Data fitting term, ‖Au − b‖22, regularized by parameter wP > 0. Data fitting term
ensures adherence to the projection data.

2. Homogeneity term,
∑N

i=1
∑

j∈Υ (i)(ui − u j )
2, regularized by parameter wH > 0.

Υ (i) is set of indices of two neighbouring pixels (in x and y axis directions) of
pixel i . This term ensures the smoothness of the solution.

3. Term, (C(u) − C∗)2, measures the distance between the circularity of current
solution(C(u)) and known circularity of the original image (C∗). ParameterwC > 0
determines the impact of the circularity regularization.

4. Concave regularization term, 〈u, τ − u〉, where τ = [1, 1, . . . , 1]T is a vector of
size N , has the role to move pixels intensities toward binary values. Influence of
this term is gradually increased during the reconstruction and it is regulated by
parameter μ > 0.

Problem (8) is a constrained and quadratic type energy-minimization problem that
can be solved by several optimization methods. We have selected Spectral Projected
Gradient (SPG) optimization algorithm (Birgin et al. 2001) for this task, since it has
shown good performance in successful application in similar problems (Lukić and
Balázs 2016; Lukić and Nagy 2014; Nagy and Lukić 2016; Birgin et al. 2000). The
SPG algorithm combines the non-monotone line search algorithm (Grippo et al. 1986)
and the spectral gradient step-length selection (Barzilai and Borwein 1988; Raydan
1997; Birgin and Martínez 2001), its pseudo-code is presented in Alg. 1.

The gradient of the regularization term

(
C(u) − C∗)2

in the energy function (8) is determined in a fully analytical manner, for its exact
expression see (Lukić and Balázs 2020). This allows a fast minimization process and
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Algorithm 1: SPG optimization algorithm.

u0 = [0.5, 0.5, ..., 0.5]T ;
d0 = PΩ(u0 − ∇EQ(u0)) − u0; k = 0;
repeat
Determine the current step-length λk > 0 by a line search approach, see (Birgin et al. 2001);
uk+1 = uk + λkdk ;
Calculate the gradient spectral step-length θk+1 > 0, see (Birgin et al. 2001);
dk+1 = PΩ(uk+1 − θk+1∇EQ(uk+1)) − uk+1; k = k + 1;

until ‖uk − uk−1‖∞ < 10−2;

unew = uk ;

determination of the smooth solution by SPG algorithm, in contrast to the GCORI-
ENTBT method when the gradient of the shape orientation based regularization is
calculated in numerical manner.

The stopping criterion for smooth solution is given by

〈u, τ − u〉 < Ebin,

where Ebin regulates the degree of binarization of the solution u and it is set to
100 in our experiments. Partial binarization of the continuous solution boosts the
determination of data cost terms for graph cuts method.

Next action after calculation of the smooth solution is its full binarization. This is
done by applying the graph cuts method based on the Potts model, described in Sect.
3.1. We construct energy function according to the one used in the Potts model (4) in
the following way:

• Data cost term, D,

D(p, 0) = u(p),

D(p, 1) = 1 − u(p),

where u(p) represents the intensity of a pixel p.
• Set of neighboring pairs, N ,

(p, q) ∈ N if the image coordinates of p and q differ for one value only.
• Interaction potential, K ,

K(p,q) = 1.

After successful construction of the energy function (4), the next task is solving
a problem of finding a minimum of this function. That is achieved by implementing
GCO graph cuts based optimization algorithm, introduced in (Boykov et al. 2001) and
further analyzed in (Boykov and Kolmogorov 2004; Delong et al. 2010; Kolmogorov
and Zabih 2004). The output of GCO algorithm are label values dp for each pixel
p, where dp is predefined as dp = 0 → 0 and dp = 1 → 1. As a result of the
adequate construction of the function (4), obtained label values determine intensities
of pixels in the final (binary) solution, marking the end of the reconstruction process.
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Fig. 1 Original test images.
Phantoms PH1, PH2 and PH3
contain 3 different gray levels,
PH4, PH5 and PH6 contain 6
different gray levels, while PH7,
PH8, PH9, PH10, PH11, PH12
present binary images

PH1 PH2 PH3

PH4 PH5 PH6

PH7 PH8 PH9

PH10 PH11 PH12

We denote this method by Graph Cuts Binary Tomography Assisted by the Circularity
prior (GCCIRCBT) reconstruction method.

4 Experimental results

In this section we aim to evaluate the performance of the algorithms that are, to
the best of our knowledge, most commonly used for solving similar reconstruction
problems in DT and to experimentally confirm if the new circularity prior improves
the reconstruction quality. In order to achieve above mentioned goal, we use test
set containing 12 test images (phantoms) presented in Fig. 1. PH1-3 contain 3 gray
levels, PH4-6 contain 6 gray levels, while PH7-12 represent binary images. Images
PH1-PH11 are synthetic, whereas PH12 is a binary segmented florescence image of
Calcein stained Chinese hamster ovary cell. A total of 128 parallel rays is taken for
each projection direction for multi gray level images and 64 projection rays for binary
images. In all cases, the projection directions are uniformly selected between 0 and
180 degrees. This projection information is used as input in reconstruction algorithms:
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Fig. 2 Reconstructions of the 3
gray level test images using data
from 6 projection directions

PE=272 (1.66%)PE=255 (1.55%)PE=412 (2.51%)
PH1

PE=225 (1.37%)PE=209 (1.28%)PE=143 (0.87%)
PH2

PE=367 (2.24%)PE=655 (3.99%)PE=519 (3.16%)
PH3

GCDT MWPDT TRDT

• Graph Cuts Discrete Tomography Algorithm (GCDT) (Lukić and Marčeta 2017)
• Discrete Algebraic Reconstruction Technique (DART) (Batenburg and Sijbers
2007)

• Method based on classical threshold (TRDT)
• Multi Well Potential based method (MWPDT) (Lukić 2011)
• Graph Cuts Tomography Assisted by the Orientation prior (GCORIENTBT)
(Marčeta and Lukić 2020)

• Graph Cuts Binary Tomography Assisted by the Circularity prior (GCCIRCBT),
introduced in this paper

MWPDT method is developed and used only for phantoms with 3 gray levels,
GCORIENTBT and GCCIRCBT only for binary images, while the rest of the algo-
rithmsmentioned in this section can be used for reconstruction of imageswith arbitrary
number of gray levels. In our experiments, each reconstructionmethod (GCDT,DART,
TRDT, MWPDT, GCORIENTBT, GCCIRCBT) is completely implemented in pro-
gramming language Matlab.

In the evaluation process, we analyze the quality of the reconstructions. The quality
of the reconstructions is expressed by the pixel error (P E), i.e. the absolute number
of the misclassified pixels, and by the misclassification rate (m.r .), i.e. the pixel error
measure relative to the total number of image pixels. Additionally, as a qualitative
error measure, we consider the projection error, defined by P RE = ‖Aur − b‖,
where ur represents the reconstructed image. This error indicates the accordance of
the reconstruction with the given projection data.
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Fig. 3 Reconstructions of the 6
gray level test images using data
from 6 projection directions

PE=1976 (12.06%)PE=2435 (14.86%)PE=1695 (10.34%)
PH4

PE=219 (1.34%) PE=1364 (8.33%) PE=488 (2.98%)
PH5

PE=727 (4.44%) PE=889 (5.43%) PE=649 (3.96%)
PH6

GCDT TRDT DART

Fig. 4 Reconstructions of the 3
gray level test images using data
from 15 projection directions

PE=5 (0.03%) PE=35 (0.21%) PE=28 (0.17%)
PH1

PE=12 (0.07%) PE=17 (0.10%) PE=18 (0.11%)
PH2

PE=9 (0.05%) PE=174 (1.06%) PE=41 (0.25%)
PH3

GCDT MWPDT TRDT
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Fig. 5 Reconstructions of the 6
gray levels test images using
data from 15 projection
directions

PE=399 (2.44%) PE=998 (6.09%) PE=1089 (6.65%)
PH4

PE=28 (0.17%) PE=1274 (7.78%) PE=319 (1.95%)
PH5

PE=192 (1.17%) PE=552 (3.37%) PE=707 (4.32%)
PH6

GCDT TRDT DART

We compare performance of the observed algorithms on the various projection data
of the test images. The projection direction is determined by the angle α and, in this
section, number of different projection angles used for obtaining projection data is
denoted by d. Horizontal and vertical projection data provide enough information for
determination of circularity and orientation shape descriptors (see Lukić and Balázs
2020). Thus, orientation and circularity of a shape do not present any additional infor-
mation about an object if horizontal and vertical projection data is known. Therefore,
in cases of 3 or more projection angles circulation and orientation as a priori informa-
tion are redundant, as they are already present in projection values. This is the reason
why for reconstructions that use higher number of projections, we do not show results
for GCORIENTBT and GCCIRCBBT (they would be identical to those obtained by
GCDT).

Results regarding the performance of different algorithms on test images PH1, PH2
and PH3 (Tables 1, 2 and Figs. 2, 4), show that for P E and m.r . as metrics, method
GCDT provided the best results in 10 out of 12 cases, for P RE metric GCDTmethod
dominates in 8 cases, while in terms of the execution time MWPDT method prevails.
GCDT uses significantly higher number of iterations for obtaining the smooth solution
compared to MWPDT method in total, thus resulting in greater consumption of time.

Reconstruction results of phantoms with 6 different gray levels (Table 3) show
that, compared to TRDT and DART, GCDT method prevails in 10 out of 12 cases,
whilst DART performs the best in 2 cases. In Figs. 3, 5 reconstructions from 6 and 15
projection directions respectively are presented.
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Fig. 6 Reconstructions of the
binary test images using data
from 2 projection directions
(vertical and horizontal)

PE=49 (1.20%) PE=44 (1.07%) PE=45 (1.10%)
PH7

PE=66 (1.61%) PE= 67 (1.64%) PE=45 (1.10%)
PH8

PE=800 (19.53%) PE=800 (19.53%)PE=604 (14.75%)
PH9

PE=634 (15.47%) PE=634 (15.47%)PE=734 (17.91%)
PH10

PE= 100 (2.44%) PE= 100 (2.44%) PE=63 (1.54%)
PH11

PE= 478 (11.67%)PE=452 (11.04%)PE=676 (16.50%)
PH12

GCDT TRDT DART
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PE=444 (10.83%) PE=682 (16.655%) PE=682 (16.65%) PE=252 (6.15%)

PH7

PE=509(12.43%) PE=509 (12.43%) PE=178 (4.35%) PE=469(11.45%)

PH8

PE=800 (19.53%) PE=800 (19.53%) PE=800 (19.53%) PE=886 (21.63%)

PH9

PE=634 (15.48%)PE=634 (15.4785%)PE=634 (15.4785%)PE=982 (23.9746%)
PH10

PE=132 (3.22%) PE=444 (10.84%) PE=101 (2.46%) PE=130 (3.17%)

PH11

PE=720 (17.58%) PE=720 (17.58%) PE=300 (7.32%) PE=624 (15.23%)

PH12
DART GCDT GCORIENTBT GCCIRCBT

Fig. 7 Reconstructions of the binary test images using data from 1 projection direction, α = 0◦

Results down to this point of the analysis show competitive performance of a model
based on the combination of graph cuts and a gradient based method (GCDT). This
encourages us to test and develop this algorithm further.

Our experiments on binary images (Fig. 6) demonstrate that GCDT method gives
poor results in cases of the reconstruction from two projections. In order to avoid
this drawback we can add orientation and circularity as a priori information to GCDT
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PH12
DART GCDT GCORIENTBT GCCIRCBT

Fig. 8 Reconstructions of the binary test images using data from 1 projection direction, direction angle is
α = 60◦
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PH10
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Fig. 9 Reconstructions of the binary test images using data from 1 projection direction, direction angle is
α = 30◦
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Fig. 10 Experimental results for BT using four different reconstruction methods (Pixel Error)
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Fig. 11 Experimental results for BT using four different reconstruction methods (m.r.)
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Fig. 12 Experimental results for BT using four different reconstruction methods (average e.t.)

method, thus building the GCORIENTBT and GCCIRCBT algorithm. Later, we have
compared these algorithms with two other reconstruction methods (DART, GCDT)
(Figs. 10, 11). For analyzis we have used 6 binary images, data was given from one
projection, and we have tested the model by using 6 different projection angles.

In (Marčeta and Lukić 2020) it was shown that GCORIENTBT gives very good
results in cases of limited projection view availability. We have now been inquiring
if the circularity is equally good or even better to use as a regularization term. In
17 out of 36 cases GCCIRCBT gives the best reconstruction (smallest PE/m.r.) and
GCORIENTBT wins in 13 cases. It can be noticed that, as expected, by adding the
prior to GCDT method, significantly better results for BT are obtained in cases of
limited projection data availability. The noticeable advantage of GCCIRCBT is in
running time, execution time of GCCIRCBT is in most of the cases significantly
shorter compared to its best competitor GCORIENTBT (Fig. 12).

Summarizing the results obtained by the total of 24multi-gray level analyzed recon-
struction tasks, see Tables 1 and 3, the quality of the reconstruction, indicated by m.r.
for the proposed GCDT method was the best in 20 cases, i.e. in 83% of the analyzed
cases. Further, GCORIENTBT and GCCIRCBT together performed better in 83%
of the cases, with GCCIRCBT being slightly superior, thus indicating excellent per-
formance of graph cuts based reconstruction approach in DT as well as prevailing
advantages of using shape circularity as an a priori information.

5 Conclusions

This paper has highlighted the noteworthy performance of an algorithm based on the
combination of gradient basedmethod and graph cuts optimizationmethod for solving
problems in Discrete Tomography. In cases of very limited projection accessibility we
modified the method using shape descriptor circularity as an a priori information
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about the object. Conducted experiments gave priority in reconstruction quality to
the proposed method compared to the formerly published reconstruction methods. In
conclusion, our results show that it is suitable to use the combination of a gradient based
method with the graph cuts optimization method, which can be successfully enhanced
by circularity as an a priori information, for providing high quality reconstructions in
discrete tomography.
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Abstract. In this paper, we are proposing a new energy-minimization
reconstruction method for the multi gray level discrete tomography. The
proposed reconstruction approach combines a gradient based algorithm
with the graph cuts optimization. This new technique is able to recon-
struct images that consist of an arbitrary number of gray levels. We
present the experimental evaluation of the new method, where we com-
pare its performance with performance of the already suggested methods
for multi-level discrete tomography. The obtained experimental results
give an advantage to the proposed approach, especially regarding the
quality of the reconstructed test images.

1 Introduction

Tomography [14] reconstructs images of non accessible or non visible objects. It
deals with recovering images from a number of projections. Tomography will be
our focus in this paper. From a mathematical point of view, the object corre-
sponds to a function. The problem posed, is to reconstruct this function from
its integrals, or its sums over subsets of its domain. In general, the tomographic
reconstruction problem may be continuous or discrete. In Discrete Tomography
(DT) [15, 16] the range of the function is a finite set. In practice, DT often deals
with reconstructions of digital images that consist of a number of gray levels.
DT has a wide range of applications in areas where the materials of the object
under investigation are known before, such as industrial non-destructive testing
or electron tomography [15, 16].

To the best of our knowledge, there are only a few reconstruction algorithms
suggested for this DT problem, that deal with multi gray level tomography im-
age reconstruction. These are the Discrete Algebraic Reconstruction Technique
(DART) [2], the Multi-Well Potential based method (MWPDT) [22], method
which combines non-local projection constraints, continuous convex relaxation
of the Multilabeling problem and DC programming (MDC) [25], and the Non-
Linear Discretization function based reconstruction algorithm (NLD) [30]. The
DART method uses a fixed threshold function for the discretization process
(without any regularization), which can lead to radical solutions and less ac-
curate reconstructions, especially in the case of reduced projection data. The
MDC is a powerful method, but less flexible related to adding new regulariza-
tion terms, because the energy function has to be expressed as a difference of
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convex functions. The MWPDT and NLD methods applies a non-convex energy
function in the reconstruction process, which can stuck in local minimum, i.e.,
in a semi-continuous solution. The proposed method in this paper is developed
in such a way to avoids the above listed disadvantages.

One of the approaches used for solving problems in image processing and
computer vision has been developed based on graph cuts. The core of this ap-
proach is to construct a specialized graph for the energy function to be minimized
such that the minimum cut on the graph also minimizes the energy (either glob-
ally or locally). The minimum cut, in turn, can be computed very efficiently by
max-flow algorithms. The output of these algorithms is generally a solution with
some interesting theoretical quality guarantees. In [20] is given, which conditions
the energy function needs to satisfy in order to be minimized via graph cuts.

In this paper, we propose a new deterministic reconstruction method for the
DT problem, which combines a gradient based method, with a graph cuts type
optimization method. The proposed method uses a smooth regularization prior
and allows reconstruction of images that contain an arbitrary number of different
gray levels.

The structure of the paper is the following. In Section 2, the basic recon-
struction problem is described. In Section 3, we present the new reconstruction
method based on the graph cuts approach. Our experimental results are provided
in Section 4 and finally, Section 5 is the conclusion.

2 Reconstruction Problem
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Fig. 1: (a) Example of a projection value calculation on an image u∗ of size N =
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(b) Parallel beam projection. The source-detector system can rotate around a
center point. The projection direction is determined by the angle β.
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In this paper we consider the DT reconstruction problem, represented by a
linear system of equations

Au = b,where

A ∈ RM×N , u ∈ ΛN , b ∈ RM , Λ = {λ1, λ2, ..., λk}, λi ∈ [0, 1], k ≥ 2.
(1)

The value of k represents the number of different gray level values. The set Λ is
given by the user. The matrix A is a so-called projection matrix, whose each row
corresponds to one projection ray. The corresponding components of the vector b
contain the detected projection values, while the vector u represents the unknown
binary image to be reconstructed. The i-th row entries ai,· of A represent the
length of the intersection of the pixels and the i-th projection ray passing through
them, see Figure 1(a). The projection value measured by a projection ray is
calculated as a sum of products of the pixel’s intensity and the corresponding
length of the projection ray through that pixel. The side length of each pixel is
one. Therefore, vertical and horizontal projection rays represent the sum of the
gray intensity values of pixels in corresponding columns and rows, respectively.
Projections are taken from different directions. For each projection direction, a
number of parallel projection rays are taken (parallel beam projection), as shown
in Figure 1(b). The distance between two adjacent parallel projection rays can
vary depending on the reconstruction problem. We set this distance to be equal
to the side length of pixels.

The reconstruction problem means finding the solution image u of the lin-
ear system of equations (1), where the projection matrix A and the projection
vector b are given. This system is often undetermined (N > M), and there-
fore additional regularization (based on a priori information) is needed for the
determination of quality and acceptable solutions.

3 Reconstruction Method Based on the Graph Cuts
Method

A directed, weighted graph G = (X, ρ), consists of a set of nodes X and a set
of directed edges ρ that connect them. The nodes, in image processing inter-
pretations, mostly correspond to pixels or voxels in 3D. All edges of graph are
assigned some weight or cost.

Let G = (X, ρ) be a directed graph with non-negative edge weights that has
two special nodes or terminals, the source A and the sink B. An a−b-cut (which
is referred informally as a cut) C = A,B is a partition of the terminals in X
into two disjoint sets A and B so that a ∈ A and b ∈ B. The cost of the cut is
the sum of the costs of all edges that go from A to B:

c(A,B) =
∑

x∈A,y∈B,(x,y)∈ρ
c(x, y).

The minimum a − b-cut problem is to find a cut C, with the minimum cost
among all cuts. Algorithms to solve this problem can be found in [8].
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The approach that uses graph cuts for energy minimization has, as a basic
technique, the construction of a specialized graph for the energy function to be
minimized, so that the minimum cut on the graph also minimizes the energy.
The form of the graph depends on the exact form of X and on the number of
labels. The minimum cut, in turn, can be computed very efficiently by max flow
algorithms.

These methods have been successfully used in the last 20 years for a wide
variety of problems, naming image restoration [9, 10], stereo and motion [3, 19],
image synthesis [21], image segmentation [7] and medical imaging [6, 18].

3.1 Potts model

The Potts model in graph cuts theory is based on the minimization of the fol-
lowing energy

E(d) =
∑

p∈P
D(p, dp) +

∑

(p,q)∈N
K(p,q) · T (dp 6= dq), (2)

where d = {dp|p ∈ P} represents the labelling of the image pixels p ∈ P.
By D(p, dp) we denote the data cost term, where D(p, dp) is a penalty or cost
for assigning a label dp to a pixel p. K(p,q) is an interaction potential between
neighboring pairs p and q, N is a set of neighboring pairs. Function T (·) is 1 if
the condition inside parenthesis is true and 0 otherwise.

3.2 Proposed reconstruction method

Our tomography reconstruction approach is a combination of the graph cuts
method and the quadratic iterative minimization method. In the first step, we
determine the data cost values for each image pixels. The data cost values are de-
termined as intensity values of the continuous/smooth approximation of the final
reconstruction image, obtained as a solution of the following energy-minimization
problem

min
u∈[0,1]N

EQ(u) := ‖Au− b‖2. (3)

Function EQ is quadratic type and Ω = [0, 1]N is a feasible set. Therefore, the
problem (3) is a constrained and quadratic type energy-minimization problem.
This minimization problem can be solved by several optimization methods. Ac-
cording to our earlier experiences in similar problems [23, 24, 26] we chose the
Spectral Projected Gradient (SPG) optimization algorithm [4] for this task.

For THE application of this algorithm two conditions must be satisfied [4]:
i) The objective function has continuous partial derivatives on an open set that
contains Ω; ii) The projection function PΩ of an arbitrary vector onto the set
Ω is provided. The objective function in (3) is a multiple differentiable function
in RN , therefore requirement i) is satisfied. The projection PΩ of an arbitrary



Gradient and Graph Cuts Based Method 5

vector u ∈ Rn onto the set Ω we define as

[PΩ(u)]i =





0, ui ≤ 0
1, ui ≥ 1
ui, elsewhere

, where i = 1, . . . , N .

PΩ is a projection with respect to the Euclidean distance, i.e.
PΩ(x) = arg {min

y∈Ω
d2(x, y)}. Hence, requirement ii) is also satisfied.

The pseudo-code of the SPG is presented in Alg. 1. The reconstruction pro-
cess, starts with the initial solution u0, where each pixel intensity is set as 0.5, as
the middle of the interval [0, 1]. The SPG algorithm combines the non-monotone
line search algorithm [13] and the spectral gradient step-length selection [1, 5,
27].

Algorithm 1: SPG optimization algorithm.

u0 = [0.5, 0.5, ..., 0.5]T ; d0 = PΩ(u0 −∇EQ(u0))− u0; k = 0;
repeat

Determine the step-length λk > 0 by a line search approach, see [4];
uk+1 = uk + λkdk;
Calculate the gradient spectral step-length θk+1 > 0, see [4];
dk+1 = PΩ(uk+1 − θk+1∇EQ(uk+1))− uk+1; k = k + 1;

until ‖uk − uk−1‖∞ < 10−2;

unew = uk;

PH1 PH2 PH3 Shepp-Logan

Fig. 2: Original test images (128x128). Phantoms PH1, PH2 and PH3 contain 3
different gray levels (0,0.5,1), while Shepp-Logan contains 6 different gray levels
(0,0.1,0.2,0.3,0.4,1).

In the next step we have to discretize the smooth solution of the problem 3 u,
obtained by the SPG algorithm. For this task we apply the graph cuts method
based on the Potts model, described in Section 3.1. The energy model in (2)
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is successfully used in many energy minimization problems with similar energy
structure: sum of a data and a regularization/neighboring interaction terms. We
mention discrete tomography reconstruction algorithms proposed by Schüle et
al. [28, 31] and Lukić et al. [23, 24]. The Potts interaction model (second term in
(2)) showed good ability to enhance compactness of the solution (see [8, 12, 29]),
in a similar way as the compactness saving regularization terms do in already
suggested reconstruction methods [24, 28], which also motivate our choice for
application of this model. We note that other interaction models, for example
the linear model [8], can also be taken into consideration, but this issue is out of
focus of this paper. The data cost term D in (2) is determined using information
provided by the smooth solution. More precisely, we define it in the following
way

D(p, 0) = |u(p)− λ1|,
D(p, 1) = |u(p)− λ2|,
D(p, 2) = |u(p)− λ3|,
...
D(p, k − 1) = |up − λk|,

where u(p) represents the intensity of a pixel p. The idea is to make data cost
small/cheap in the vicinity of the given gray values. The neighbor pairs are
defined based on 1-neighboring system, i.e., (p, q) ∈ N if the image coordinates
of p and q differs for one value only. The interaction potential K(p,q) (see (2)) in
our experiments is set as a constant and its value is 1. Now, the energy function
in (2) is determined and ready to be minimized. For this task we use the GCO
graph cuts based optimization algorithm, introduced in [10] and further analyzed
in [8, 11, 20]. The GCO algorithm determines the label values dp for each pixel
p. Each label value is assigned to one predefined gray level in the following
way: dp = 0 → λ1, dp = 1 → λ2, ..., dp = (k − 1) → λk. Therefore, the
obtained label values also determine intensities of pixels (from the given set of
gray levels) in the final (discrete) solution, therefore the reconstruction process
is terminated. We denote this method by Graph Cuts Discrete Tomography
(GCDT) reconstruction method.

Naturally arises the simplest, but less powerful, way for discretization of the
smooth solution u provided as a result of the minimization problem (3). This
approach is based on the application of the thresholding function, defined by

t(v) =





λ1 v < τ1
λ2 τ1 ≤ v < τ2
...
λk τl−1 ≤ v

,

where v ∈ R and τl = λi+λi+1

2 , l = 1, 2, ..., k − 1. The final solution ur is
obtained by application of the thresholding function to the smooth solution u,
i.e., ur = [t(u1), t(u2), t(u3), ..., t(uN )]. We denote this method by TRDT, and
use it in experimental work as a control method.
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PE=272 (1.66%) PE=255 (1.55%) PE=412 (2.51%)
PH1

PE=295 (1.80%) PE=379 (2.31%) PE=555 (3.38%)
PH2

PE=367 (2.24%) PE=655 (3.99%) PE=519 (3.16%)
PH3

GCDT MWPDT TRDT

Fig. 3: Reconstructions of the test images using data from 6 projection directions.

4 Experimental Results

In this section we experimentally evaluate the proposed graph cuts based recon-
struction method, denoted by GCDT. In the experiments we use 4 test images
(phantoms), as originals in reconstructions, presented in Figure 2. Phantoms
PH1, PH2 and PH3 contain 3 gray levels, while the well-known Shepp-Logan
phantom [17] contains 6 gray levels. We consider reconstructions of these im-
ages obtained from different projection directions. A total of 128 parallel rays
are taken for each projection direction. In all cases, the projection directions are
uniformly selected between 0 and 180 degrees. The obtained results are compared
with the results provided by the Multi Well Potential based method (MWPDT)
[22], already suggested for multi-level discrete tomography reconstruction, and
with the simple method based on the classical thresholding, denoted by TRDT.
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Related to the Shepp-Logan test image, the DART method, proposed in [2], is
also included into the evaluation process.

PE=5 (0.03%) PE=35 (0.21%) PE=28 (0.17%)
PH1

PE=6 (0.03%) PE=5 (0.03%) PE=11 (0.06%)
PH2

PE=9 (0.05%) PE=174 (1.06%) PE=41 (0.25%)
PH3

GCDT MWPDT TRDT

Fig. 4: Reconstructions of the test images using data from 15 projection direc-
tions.

In the evaluation process, we analyze the quality of the reconstructions and
required running times. The quality of the reconstructions are expressed by the
pixel error (PE), i.e., the absolute number of the misclassified pixels, and by
the misclassification rate (m.r.), i.e., the pixel error measure relative to the
total number of image pixels. Also, as a qualitative error measure, we consider
the projection error, defined by PRE = ‖Aur − b‖, where ur represents the
reconstructed image. This error expresses the accordance of the reconstruction
with the given projection data.
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In Table 2 we present pixel errors for reconstructions of three phantom im-
ages (PH1, PH2 and PH3) obtained from a different number of projections by
three different methods (MWPDT, GCDT and TRDT). In Figures 3 and 4 re-
constructions from 6 and 15 projection directions are presented. From a total
of 12 different reconstruction problems, GCT method provided the best results
in 10 cases, while in 2 cases the dominant was the MWPDT method. We em-
phasize that the results of the GCT method, in cases when they are the best,
are significantly better, at least by 50%, compared with other results. Table 3
presents the obtained projection errors (PRE) and the needed running times
in these experiments. Regrading the PRE values, the proposed GCT method
dominated in 8 cases, while MWPDT in 4 cases.

smooth rec. 12 proj. 15 proj. 18 proj.

Fig. 5: Reconstructions of the Shepp-Logan test images by the proposed GCDT
method.

All reconstruction methods (MWPDT, GCDT and TRDT) are implemented
completely in Matlab. The best running times in all of the experiments was
achieved by the MWPDT method (see Table 3). GCDT and TRDT methods
uses the smooth solution/reconstruction as a first step, before the ”binarization
process” starts by GCO graph cuts optimization [10]. This smooth solution is
achieved as a final termination, with high precision. This process, because of the
high precision, requires significantly higher number of iterations than is needed
for MWPDT method in total, resulting in a greater consumption of time.

Table 1: Experimental results for Shepp-Logan image, using three different
reconstruction methods. The abbreviation m.r. indicates misclassification rate
and d indicates the number of projections.

d TRDT (m.r. %) DART (m.r. %) GCDT (m.r. %)
12 12.74 14.21 5.72

Shepp-
15 10.44 8.44 3.17Logan
18 10.03 2.56 2.14
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Reconstruction results of the well-known Shepp-Logan [17] phantom image is
presented in Table 1. This phantom is considered to be one of the most complex,
containing 6 different gray levels. We compare the results obtained by the three
different reconstruction methods: TRDT, DART and GCDT. The results for
DART are taken from [2]. The projection data is acquired from 12, 15 and 18
projection directions. The GCDT method provides the best results in all cases
(smallest m.r. values).

Table 2: Experimental results for PH1, PH2 and PH3 images, using three dif-
ferent reconstruction methods. The abbreviation d indicates the number of pro-
jections.

PH1 PH2 PH3
d 6 9 12 15 6 9 12 15 6 9 12 15

(PE) 255 159 59 35 379 242 56 5 655 456 275 174
MWP (m.r. %) 1.55 0.97 0.36 0.21 2.31 1.47 0.34 0.03 3.99 2.78 1.67 1.06

(PE) 412 175 48 28 555 290 37 11 412 301 101 41
TRDT (m.r. %) 2.51 1.06 0.29 0.17 3.38 1.77 0.22 0.06 2.51 1.83 0.61 0.25

(PE) 272 69 8 5 295 121 15 6 272 116 20 9
GCDT (m.r. %) 1.66 0.42 0.04 0.03 1.80 0.73 0.09 0.03 1.66 0.70 0.12 0.05

Summarizing the results obtained by the total of the 15 analyzed reconstruc-
tion tasks, see Tables 1 and 2, the quality of the reconstruction, indicated by
m.r., for the proposed GCDT method was the best in 13 cases, i.e., in 87% of
the cases. According to these results, we conclude that the experiments confirm
the capability of the proposed method to provide high quality reconstructions.

Table 3: Experimental results for PH1, PH2 and PH3 images, using three differ-
ent reconstruction methods. The abbreviation e.t. means elapsed time in minutes
and d indicates the number of projections.

PH1 PH2 PH3
d 6 9 12 15 6 9 12 15 6 9 12 15

(PRE)14.7012.19 9.96 9.08 15.3215.50 9.68 3.09 19.8318.7718.8016.43
MWPDT (e.t.) 1.76 2.63 3.17 4.06 1.78 2.82 3.21 3.06 2.19 2.87 4.30 4.66

(PRE)18.6614.7210.61 8.87 19.0119.09 8.89 6.23 23.6417.8713.6610.61
TRDT (e.t.) 7.73 12.5814.5517.77 5.44 10.9012.6715.74 7.28 11.0713.3916.00

(PRE)23.2411.12 6.52 4.39 18.3113.94 7.10 4.57 25.8714.96 7.59 5.60
GCDT (e.t.) 7.73 12.5814.5517.77 5.45 10.9112.6715.74 7.29 11.0713.4016.01
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5 Conclusions

In this paper, a new energy-minimization based reconstruction method for multi-
level tomography is proposed. It combines a gradient based method, with the
graph cuts optimization method. Experiments show advantages of the proposed
method in comparison with three formerly published reconstruction methods.
Based on the obtained experimental results and analysis presented in this paper,
we conclude that the combination of a gradient based method with graph cuts
optimization method is suitable for providing high quality reconstructions.
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